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Correspondenceless Structure from Motion

Abstract

We present a novel approach for the estimation of 3D-motion directly from two images using the Radon
transform. The feasibility of any camera motion is computed by integrating over all feature pairs that satisfy
the epipolar constraint. This integration is equivalent to taking the inner product of a similarity function on
feature pairs with a Dirac function embedding the epipolar constraint. The maxima in this five dimensional
motion space will correspond to compatible rigid motions. The main novelty is in the realization that the
Radon transform is a filtering operator: If we assume that the similarity and Dirac functions are defined on
spheres and the epipolar constraint is a group action of rotations on spheres, then the Radon transform is a
correlation integral. We propose a new algorithm to compute this integral from the spherical Fourier
transform of the similarity and Dirac functions. Generating the similarity function now becomes a
preprocessing step which reduces the complexity of the Radon computation by a factor equal to the number
of feature pairs processed. The strength of the algorithm is in avoiding a commitment to correspondences,
thus being robust to erroneous feature detection, outliers, and multiple motions.
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Abstract

We present a novel approach for the estimation of 3D-motioectly
from two images using the Radon transform. The feasibilitamy cam-
era motion is computed by integrating over all feature pthied satisfy the
epipolar constraint. This integration is equivalent tarigkthe inner product
of a similarity function on feature pairs with a Dirac furartiembedding the
epipolar constraint. The maxima in this five dimensionaliorospace will
correspond to compatible rigid motions. The main novelty ithe realiza-
tion that the Radon transform is a filtering operator: If weumse that the
similarity and Dirac functions are defined on spheres andefgolar con-
straint is a group action of rotations on spheres, then tltwR&ansform is
a correlation integral. We propose a new algorithm to comhis integral
from the spherical Fourier transform of the similarity anuldd functions.
Generating the similarity function now becomes a preprsiogsstep which
reduces the complexity of the Radon computation by a fadaakto the
number of feature pairs processed. The strength of theitidgors in avoid-
ing a commitment to correspondences, thus being robustdnewus feature
detection, outliers, and multiple motions.
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1 Introduction

Estimation of 3D-motion from two calibrated views has beghaeistively stud-
ied in the case where optical flow or feature correspondeacegiven and the
scene is rigid. Algorithms working over multiple frames Igidnigh-quality mo-
tion trajectories and reconstructions when feature mateine cleaned through
outlier rejection and motions independent of the cameraxckided. These out-
lier rejection and segmentation steps are subject to theéafmental coupling of
data association and estimation: if we knew the motion ed8mdata associa-
tion would be trivial; if we knew the data association, matestimation would
be easier. Resistance to outliers and independent motmses gevere practical
limitations to the wide application of structure from matias a navigation tool,
visual GPS, or a camera tracker.

In this paper, we propose a novel approach for structure frmtion applica-
ble in the presence of large motions and many irrelevanufeatresulting from
reduced overlap of the fields of view. Our approach is baset@naive principle
that an exhaustive search over all possible correspondmmdgyurations for all
motion hypotheses would yield all 3D-motions compatibléwhese two views.
Such a search is intractable when we use a large field of vieaniarbitrary,
possibly unstructured environment with thousands of festu

The contribution of this paper is in the re-formulation abtHough-reminiscent
approach as a filtering problem: Assuming a similarity fimcbetween any two
features in the first and second view, we convolve this fanctvith a kernel that
checks the compatibility of a correspondence pair with fhipaar constraint for
a given motion hypothesis. The resulting integral is a Raansform known
from computer tomography where a material density is irgtsgh over a ray path.
In our case, this path is the subset of the cross product tdatllires that satisfies
the epipolar constraint.

The question is: Can we efficiently compute this integralidivng the com-
binatorially infeasible summation over all correspondancompatible with the
epipolar constraint? The answer is yes, because this isv@leion integral and
we can compute it through multiplication in the Fourier domd he final motion
space is obtained through a five dimensional inverse rataltisourier transform
on the motion parameters. An exhaustive search finds thenmaactrresponding
to rigid motions. The number of spherical Fourier coeffitsepreserved deter-
mines the resolution of the motion space. Obviously, the@gh can work on
arbitrarily large motions.

We present a complete end-to-end system, from images tompérameters



where the only tuning parameter is the coupled resolutioth@fimage and the
motion space. We extract hundreds of SIFT features [18] foickvwe define
their similarity function proportional to the Euclideanrnoof the attribute vectors
and we compute the spherical harmonics of the similaritytion as the input
to the correlation integral. In the experiments, we use asitimemispherical
omnidirectional images. A projective plane can always beped to the sphere
and the field of view has to be large for any structure from oroalgorithm to
succeed [26, 5]. The results on real sequences are compaediust estimation
of the Essential Matrix using RANSAC. Before continuinghibe related work
we summarize the main contributions of this paper:

e We propose a new integral transform that maps a similaribetion be-
tween two calibrated images to the strength of a motion Hygsis without
assuming any correspondences.

e We show that this Radon/Hough transform can be written asnaoto-
tion/correlation integral which can be computed from theesjral har-
monic coefficients of the image similarity function muchté&sthan com-
puting directly the Hough transform.

The inspiring idea of this work has first been drafted in [12re a Hough trans-
form is computed on the essential manifold. A short versiiothe current paper
has appeared in [20]. In this paper, we will present a coragletoretical and
experimental treatment of our approach. In the next sulsseete will discuss
related approaches. Then we will motivate the Radon tramstny explaining
how the well-known Hough line detection can be written as ddRantegral [6].
In section 2 we elaborate on the spherical and rotationafi&ouransforms. We
extend this to incorporate the epipolar geometry and we stuswto compute the
Radon transform in the frequency domain. We describe therigthign in a form
that can be easily replicated and we finish with experiments.

1.1 Related Work

Structure from motion without correspondences has a lyisiace the 80’s. Most
of the approaches, callelirect motion computation, assumed a temporally dense
sequence so that computation of spatio-temporal deresi feasible. When
assuming the projection of a plane [25, 31], the eight opficav parameters
can be estimated directly from the brightness change @ns&quation. When
no assumption about structure is made, several computstioemes have been
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proposed [14]. The main constraint used is depth-posiéss@and usually a vari-
ational problem is solved where depth is the unknown functiver the image.
Direct approaches based on normal optical flow or even jaddiiection have

been thoroughly studied by Fermuller et al. [9] who alsoldsthed formal con-

ditions for ambiguity and instability of solutions. Jin dt §15] have applied a
direct method for simultaneous matching of regions and 3idign estimation

over time by exploiting photometric constraints.

Among the approaches which do not use spatio-temporalatems and thus
can afford any amount of motion, the closest to ours is the tiyeDellaert et al.
[7], Antone and Teller [1], and Roy and Cox [27]. In [7], allgmble assignments
of 3D-points to image features are considered and the darogrespondence is
established through an iterative expectation-maxinoraicheme where the E-
step computes assignment weights and the M-step struatdrenation parame-
ters. In [1], images are already de-rotated using vanispaigt correspondences
and the translation is initialized via a Hough transformroa# possible feature
correspondences. Antone and Teller are the only ones whthespipolar con-
straint and address the complexity of such a Hough transfohay propose ways
to prune the search space through feature similarity asasdiinits in the param-
eter space. In [27], an exhaustive search in the 5D pararssee is performed
where for each motion hypothesis a cost function betweeantpai the first image
and segments of the corresponding epipolar line in the sEicoage is computed.
Our approach is also related to the learning of the epip@antetry [33] though
ours is not data-driven but requires a calibrated cameraa@proach is superior
to[7] and [1] because itis not based on an iterative procésshvean possibly run
through all assignments. While we use an exhaustive seanghrameter space,
the computation of the associated “likelihood” is accomsipdid without iteration
but directly from the spherical harmonic coefficients. Oppmach is superior
to Roy and Cox only in the efficient computation of each mohgpothesis. We
have not described here work on motion segmentation giveresondences.
The reader is referred to the application of normalized 28 and the general-
ized PCA [32] among tens of other papers on the subject. Begpother appli-
cations of spherical harmonic analysis in computer visieagers are referred to
[3, 19, 28].



2 Radon transform

The first steps of state-of-the-art motion estimation athors invariably involve
generating and matching features between image pairs. Swergtion is that
a sufficient number of these hypothesized pairs will reflest torrespondences.
Any subsequent processing, such as a RANSAC motion estimatill then ter-
minate quickly and correctly. The problem arises when teggirement cannot
be satisfied. When dealing with image pairs with small oyertar a particu-
larly noisy scene for feature detection, the true corredpanes within a group
of matched features may be very small. Our desire to prooesgas with small
overlap and to resist outliers leads us to revisit classmalist accumulation al-
gorithms like the Hough transform. In lieu of filtering sefsimage features in
search of the best matches, we will treat all possible fegpairs between two
images. The only discriminating measure we will considersgmilarity between
features. Our signal is not an image of greyscale intessibet rather a function
which maps feature pairs to their similarities. We will acg@ish our robust ac-
cumulation via a filtering which, for any camera motion, eots andcountsall
the feature pairs which satisfy a geometrical motion camstr The counting will
be weighted by the feature similarities (see figure 1). Therfilg result provides
the score for a particular motion, and in this way we can eatalall the possible
camera motions. Before presenting the concrete speatficafiour formulation,
we introduce necessary notation and definitions which wieus@ throughout this
section.

Consider a camera moving rigidly in space. Assuming thénsitc calibration
parameters of the camera are known (meaning we can assadiateach image
pixel a ray in space), we can assume that the camera modéiesic perspec-
tive. This is useful since many single-viewpoint cameraeys ranging from
traditional CCD cameras to fish-eye lenses and even omaoittireal cameras can
be treated with a spherical projection model. In this sgitoints? ¢ R? in
the world project to points on the unit sphegec S?, wherep = P/||P||. We
will identify rigid camera motions with elements of the Eidelan motion group
SE(3), with one notable irregularity. Since camera translaticais only be re-
covered up to scale, we fix the scale of the translationalanatbmponent to
have unit length. Although the set of all possible cameraanmnts can be iden-
tified with SE(3), we can represent any full observable camera motion wittira pa
(R,T) € {R € SO(3),T € R3 ||T|| = 1}. We will parameterize&SO(3) with
ZYZ Euler angles such thdt(«, 8,v) = R.(v)R,(8)R.(«). The projection ge-
ometry in stereo pairs has been extensively studied, asdaell known that if
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Figure 1: Concept: Instead of searching for corresponding pointaédset images, we
considerall feature pairs. The motion which is satisfied by the largebsstuof feature
pairs (weighted by a similarity measure) is considered ttheetrue camera motion. In
the example above a weighting could be generated from thitasim between local blob
structure.

pointsp andq represent projections of the same scene point in camerasaseq
by a motion(R, T"), they must obey the coplanarity (epipolar) constraint:

(Rpx q)"T =0 (1)

We are now prepared to concretely develop our accumulattenwe men-
tioned earlier, we will not be treating an image of intersitfor our robust ac-
cumulation, but rather a function on feature pairs. We dedjép, q) to mea-
sure the similarity between points pairs in two images. Assg an image has
n pixels, the number of possible point pairs considered waad?, of which
clearly no more tham pairs can represent true correspondences. With such a
miniscule percentage of inlying point pairs, it is essdntiat we construct a
sufficiently discriminating weighting function(p, ¢). In our setting it is clear
a simple image-based neighborhood similarity will not seffi Instead of using
intensity information directly, we have chosen to use thputer SIFT features
[18], which histogram neighborhood gradient orientatianpeaks and valleys of
difference-of-Gaussian. These histograms typically mgke 128-dimensional
vector (which we will denote witlp), which affords us many options in selecting
a similarity function. For example, our weighting could ded inversely on the
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Euclidean distance between two feature vectors:

g(p,q) = e Pl 2
Alternatively, we could choose a step function:

| 1if ||p — ¢q|| < Threshold
9(p,q) = { 0 otherwise (3)
Notice the value of;(p, ¢) is only defined for the point pairs where we have de-
tected features. We setp, ¢) = 0 whenever features were not detected at oth
andq.

To perform our robust accumulation, we need a way to filter eltect all
the feature pairs$p, ¢) from the similarity functiong which satisfy the epipolar
geometry given by a particular motion. To this end, we intial theEpipolar
Delta Filter (EDF). The EDF has the effect of counting all the feature p@irg)
which satisfy the motion constraint (weighted by their éeatsimilaritiesy (p, ¢)),
through an inner product wit. As the EDF captures the geometry of the epipo-
lar constraint, it must encode the possible locations ofmaage pointy after a
camera motion. We choose the most straightforward defintanstructed from
the epipolar constraint:

Ay (p,q) = 0((Rp x q)'T) (4)

Hered(z) is a unitimpulse:

5(:@:{ lifz=0

0 otherwise

We can now write our robust accumulation as a filtering of alaiity function g
with the EDF:

G(R,T) = / / 9(p, 0) Ar) (P, 9)dpdg 5)
peS? JqeS?

Effectively, G(R, T') is a global likelihood function as the relative likelihoools

all possible motions are computed. The correct camera magi@xpected to
coincide with the global peak in this grid. To generate okellhoods, we must
compute the integral (equation 5) as many times as the nuofilsamples we are
considering in our discrete motion space.
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If N is the number of samples in each dimension of the moti@atepand M
the number of features identified in each image, then the t®atyp of this direct
approach would be on the order ©f N5M?). This is an unacceptable load for
almost any practical application. In the following secame will demonstrate
an efficient algorithm to generate the valuesgfz, 7).

3 Motion estimation as correlation

In choosing to develop our global likelihood grid as a sptadriiltering process,
it is naturally revealed that the similarity functigris independent of the motion
parameters and the EDF is independent of any feature infamaF-or now, we
will focus our attention on the EDR ). As the direction of camera translation
is the unit vectorT' € S?, we can represerif’ with a rotationR, € SO(3):

T = Rses. This allows us to parameterize the space of camera motitdhsaw
rotation pair(R, R;) € SO(3) x SO(3). The EDF can now be redefined as

A(R,Rt)<p7 q) = ((Rpx Q)TRte?,)
= O((R;'Rp x R 'q)"es) (6)

If we write R. = R~'R, for the composite rotation embedding the rotational and
translational terms, we see that the EDF simplifies to

Aroro)(prq) = 0((R'p x R q)"es) 7)

Defining the rotation operatoyg, r, (Ar, r,f(p,q) = f(R;'p, Ry 'q)), the EDF
can be seen as just a spherical rotation of the EDF giveiRbyR;) = (1, I):

Arory(0a) = 6(R;'px R'q) es)
= Aun(R.'p, R ')
= A(RC,Rt)A(LI)(RQ) (8)

We call A(;,;) the canonical EDFfor our parameterization. To simplify nota-
tion, we will write A(p, ¢) in place ofA(; 1)(p, ¢). Notice that the canonical EDF
A(p, q) captures a translation along the Z axis and a rotation oéeithor 180°
about the Z axis. With the evolution of the EDF into equatiom@ can revisit
our original formulation of the global likelihood grid (egtion 4):

G(R., R;) = / / 9P, Q) A(r.,r)A(p, q)dpdq 9)
pJq
7



This shows us that our likelihoods can be computed as a atioelbetween
spherical functions. Figure 2 depicts the canonical EBfp, ¢). In the next
section we will explore the theory of generalized Fouriealgsis to help alleviate
some of the computational burden in evaluating our likedithéunction.

0@

A(b1, ¢1, 02, ¢2)

0 @
20 @

Figure 2:Here we show a 4D plot of the ED&(61, ¢1, 02, ¢2) in a 2D grid. Each plot

on the sphere is a plot ovéf,, ¢o) and different positions in the grid of spherical plots
correspond to different choices @, ¢;). The arrows (red in color) show the direction

of (61, ¢1). For the canonical EDF, corresponding to pure translatfidheocamera along

the Z-axis, A (61, ¢1, 02, ¢2) is peaked when the corresponding points are along the same
longitude, i.e. whem; = 6,. Thus each arrow goes through a peak\of

( ]

4 Harmonic Analysis

The spherical correlation we are considering recalls thesital signal correla-
tions on the real line or plane. Applications of such methiodtude standard
techniques in pattern matching. In such problems the seaffcn a planar shift
(translational and/or rotational) which aligns a templaaétern with a query im-
age, where the location of highest correlation marks theecbalignment. These



methods exploit the fact that correlations on the plane esexipressed as convo-
lutions, and the well-known convolution theorem allows pemal convolutions to
be replaced with pointwise multiplication in the spectrahwiin. Unfortunately,
this property does not extend simply to the sphere, as cotisok and corre-
lations on the sphere have different interpretations. &ih¢s not immediately
clear what the relationship between the two formulatioes ae will give a brief
explanation. For background material, readers shouldutbfis3, 23, 30].
A general definition of convolution can be given as

(f  h)(a / (g

Here f(z) andh(z) are defined on some group, andg, z € G. If we take the
real planeR? to be a group with the action of translations, the convotutian be
specifically written as

(fxh)(21,72) = / f(g1, 92)h(21 — g1, 22 — g2)dg1dgo

This equation is the traditional form of planar convolutiobnfortunately, al-
though the sphere is a manifold, it is not a group. We must fimclgernate
definition for the convolution of functions on the sphere.slivell known that
the sphere is a homogeneous space of the group of 3D rot&ti@(s), with the
isotropy subgroup of one dimensional rotatisft3(2) which keeps the north pole
fixed [10]. A general definition of convolutions on homogenggpaces can be
given as

(f h)(x / flgmh(g~'z)dg

Here f(z) andh(x) are defined on some homogeneous space of a gro@nd
7 is given as the fixed point of the isotropy subgroup. The clutian of two
functions on the sphere is given as

(Fxh)@) = | o [ ) 7 € S

Heree; is the standard Euclidean basis vector associated with #eesZ Look-
ing closely at this definition reveals that spherical contioh betrays the tradi-
tional concept of “measuring overlap” which is implied byapar convolution.
Here, points in one spherg ((z)) are integrated through entire circles on the
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second spherei(z)). The resulting functior{f = h)(x) is also defined on the
sphere, hence spherical convolution reflects the progevtia filtering operator.
To achieve the effect of a template matching operation, wstmproceed to the
general definition of correlation on homogeneous spaces:

e(g) = / f(@)h(g™ x)de

As beforef, h are defined on a homogeneous space of a gféupndg € G
(alternatively, if we were interested in correlation onugws, we could just specify
f, h to be functions o). IdentifyingS? as the homogeneous spaceSsh(3)
leads us to this definition of spherical correlation:

c(g) = f(x)h(g~ x)dx
zeS?
Here points on the sphere are given as unit vectors, and eterogthe rotation
group are given with the usualx 3 rotation matrices. Notice that the resulting
function ¢(g) is defined not on the sphere but the group of rotations. Thissgi
us the desired effect of measuring overlap. We rewrite tefgdion of spherical
correlation using the notation developed earlier:

G(R) = / F(m)Arh(n)dn, f.h € L3(S?).G(R) € £(50(3))  (10)

Here £%(S?) denotes square-integrability, meaning the set of funstiprsuch
that [ |f(n)|?dn is finite. If we wish to generalize the convolution theorem to
correlation on the sphere, we must be able to answer thresigog (1) How
can we compute the Fourier transform afh € £%(S?) and G € £%(SO(3))?

(2) How does the spectrum bfchange under a rotation zk4? (3) How can we
compute the Fourier transform ¢f( R) efficiently using the answers to questions
1 and 2? To answer these questions we will present a minimal introdndo
spherical and rotational signal processing.

4.1 Fourier Transforms on S? and SO(3)

This treatment of spherical harmonics is based on [8, 2].rdditional Fourier
analysis, periodic functions on the line (or equivalentigdtions on the circlg'),
are expanded in a basis spanned by the eigenfunctions o&filadian. Similarly,
the eigenfunctions of the spherical Laplacian provide astfas f(n) € £3(S?).

10



These eigenfunctions are the well known spherical harnsofyi¢, : S? — C),
which form an eigenspace of harmonic homogeneous polyrsmwiaimension
2l + 1. Consequently, thel + 1 spherical harmonics for ea¢gh> 0 form an
orthonormal basis for any(n) € S*. The (2! + 1) spherical harmonics of degree
[ are given as

21+ 1)1 —m)
A (I +m)!

Y;L(e,¢):(—1)m\/ !Pjn(cose)em, m=—1,...,1 (11)

where P! are the associated Legendre functions and the normalizator is
chosen to satisfy the orthogonality relation

/ YL ()Y (1) = St O (12)
nesS2

whered,;, is the Kronecker delta function. Any functiof(n) € £2(S?) can be
expanded in a basis of spherical harmonics:

l
o) = >N Yo (13)
leN m=-—1
wheref!, = F)YL(n)dn (14)
nes?

Thef,ln are the coefficients of the Spherical Fourier Transform (SHénceforth,
we will use ! andY! to annotate vectors iE?+* containing all coefficients of
degred.

Using a similar approach as seen above, we can develop seFtnamsform
on the rotation group'O(3) [4]. When considering functions € £2(SO(3)), the
Fourier transform can be described as a change of basisfi®group elements to
the basis of irreducible matrix representations. The spalenarmonic functions
Y! form a complete, orthonormal set providing a basis for thpresentations
of SO(3). Furthermore, Schur’s First Lemma from fundamlergpresentation
theory shows that they also supply a basis for the irredeaipresentations of
SO(3):

ArY'(n) = U'(R)Y'(n). (15)

The matrix elements df’ are given by

Unin(Rla, B,7)) = €™ Py, (cos(B))e™™  m,n

I
I
\.N

L1 (18)

11



The P! = are generalized associated Legendre polynomials whiclbeasalcu-
lated efficiently using recurrence relations. Such an Eaglle parameterization
of the irreducible representations 80 (3) leads to a useful expansion of func-
tionsf € L2(SO(3)):

f®=222%m (17)

1EN m=—1p=—1

/ F(R)UL, (R)dR (18)
ReSO(3)

wheref!

Theffnp, withm,p = —I,...,l are the(2] + 1) x (2[ + 1) coefficients of degree
[ of the SO(3) Fourier transform (SOFT).

Now that we have answered our first question, we can try tongteted how
the spectrum of a function changes under a rotation. It we would expect
a rotation to manifest itself as a modulation of the Fourigefficients as is the
case in traditional Fourier analysis. This is, in fact, theerved effect. As spher-
ical functions are rotated by elements of the rotation gr8aji3), the Fourier
coefficients are “modulated” by the irreducible represgéores of SO(3):

f) = Apf(n) <= f' U(R)"f' (19)

TheU' matrix representations &fO(3) are the spectral analogue to 3D rotations.

4.2 Rotation Estimation as Correlation

We are now prepared to address the final question regardiegeaaized theorem
for spherical correlation. Examining equation 10 more elgsve have developed
the necessary tools to treat bgtfy) and Azh(n) with their respective Spherical
Fourier expansions. Recently, [17, 21] have explored tmeptgation of such a
correlation in the spectral domain. Expanding the integréln)Arh(n)dn we
have

N-Y LYY Y R [ Fvion

Il m=—l n p=—mk=—n

Given the orthogonality of the spherical harmonic funcsigequation 12), the
only nonzero terms in the summation appear when [ andk = m, thus

= > Z Z fLhLUL, (R) (20)

I m=—Ilp=-I

12



At this point, a direct application of the SOFT f6f( R) produces

D 30 LA Mmoo AL

I m=—lp=—1 ReSO(3)

The orthogonality of the matricés (R) ([ U}, R)dR O1nOmqOpr) Yields
nonzero terms in the summation onIy WHeﬁ n, m = ¢, andp = r, resulting in
this simpler expression:

(21)

As we had initially desired, the result of the convolutioedhrem can indeed be
generalized to correlation on the sphere: #®@(3) Fourier coefficients of the
correlation of two spherical functions can be obtaineddliyefrom the multipli-
cation of the individual SFT coefficients. In vector formetf2l + 1) x (21 + 1)
matrix of SOFT coefficientsy! is equivalent to the outer product of the coeffi-
cient vectorsf! andh!. GivenG!, the inverse SOFT retrieves the desired function
G(R).

Recalling our original problem of filtering a feature sinnitg function with
the Epipolar Delta Filter (equation 9), we realize that we actually correlating
two functions or? x S2. As one would expect, the theory we have just introduced
extends easily. The Fourier transform for any functfog £%(S* x S?) is given
as

fog) = > Z Z fhz, Yo (Y2, (g) (22)

l1 l2 ml——l1 m2_—l2

fulz = / / £ (p, @)V (p) Vi (@) dpdg (23)

The spectrum of7(R,., R;) from equation 9 can be obtained from the Fourier
transforms ofy, A:

Ghl> = fhl Ahb (24)

mimaokika m maoka

As this last equation shows, the Fourier space of our likelthgrid is six
dimensional. However, we know that the space of observabtemns is only five
dimensional. This discrepancy arises because we idef#yrdtationR?;, with
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elements ofSO(3) even though the translation direction is independent of the
first Euler angle of rotation:

RZ(Q1)63 = Rz(ag)eg i a1, Qg

This issue is resolved easily in the following subsection.

4.3 The Canonical EDF and its Fourier Transform

The canonical Epipolar Delta Filtek embeds the epipolar geometry of the mo-
tions consistent with a rotatioR = [ and translatiold’ = e;. As defined, it is
only nonzero for point pairép, ¢q) € S? x S? such that(p x ¢)Te; = 0. For any
pointp, the points; which satisfy this constraint must all lie on the same great c
cle. In particular, if we write image points with sphericabedinate® andg, then
the pointsp(;, ¢1) andq(6s, ¢») can only satisfy the constraifp x ¢)Te; = 0

iff oo = ¢1,¢1 + worporq = +es. Armed with this information, we can take a
closer look at the Fourier transform of the EDF.

Proposmon 1. The Fourier transform of the EDFA(W2 ) is zero if and only if

mime
h

Proof. Let us begin by writing out the Fourier transform knowingttiia =

¢1, 91 + T

Ai}fme {/ Pl (cos 6;) sin 61d6; /P,Zﬁ2 (cos B2) sin 92d92/ei(m1+m2)¢1 d(bl} (14¢mm)
(25)

Immediately we see that jfn, | is odd, there™™ = —1 and theA = 0. Equiva-
lently, if we had taken the expansion making a variable suib&n for ¢, instead
of ¢, we would have a trailing multiplicative term ¢f + ¢2™), giving A=0
if |mo| odd. Furthermore, the integrﬁIPl1 cosfq)sin6dby = 0if m; = 0 or
(4 +my) is odd. This means thak = 0 when/, is odd. The same argument
showsA = 0 whenl, is odd. The remalnlng integrgl ™" (mitm2)é1dg is only
nonzero whemn, + ms = 0, which means\ = 0 whenevenn, + ms # 0.

Now it remains to show the proposition holds in the otherdtiom. If A = 0,
then we know at least one of the following must be true:

1. [ Pl (cosby)sinfidb; =0
2. [ P (cos6s)sinbydf, =0
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INPUT

1. A pair of spherical imagek, I>.
OFFLINE

1. Compute the Fourier transforth of A from equation 23.
ONLINE

1. Detect SIFT feature setsq from imagesly, I».

2. From the cross product of the feature sets generate thlarsiynfunction
g.
3. Compute the Fourier transforgnof g from equation 23.

4. Generate the 5D coefficient spaG&> . from j and A as de-
scribed in equation 26.

5. Using inverse Fourier transforms obt&ii k., R;). Note: only a partial
2D inverse transform is needed & = R(0, 3,7).

6. Locate(R., R;) at the maxima of5.

7. Extract the correct camera motion: relative orientabetween cameras
is R = R;R_ ', and the direction of translation & = R;e3.

Figure 3: The full motion estimation algorithm.

3. et = ]

4, [emilmtmérde, = ()

The first option can only be satisfiedif+ m; odd orm; = 0. The second option
requiress + my 0dd orm, = 0. The third condition requiresn; | odd (as before,
we can also derive the same requirement|fog| odd). The final option holds
only if m; + my # 0, and this completes our proof. O

We only have to consideh!t> . for Iy, I, |mi|, even. We can now reduce
the Fourier transform of the likelihood grid in equation 24:

~

Glllz _ fllizkl Alll2 (26)

mimeoki—mo m m2,—m2

Now that we have made our final simplification, we present ahnauof the full
algorithm in figure 3.
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5 Discretization and Sampling

There are some issues we must address before we can finaitzartsition from
the continuous environment (integration of functighs £2(S?)) to the discrete
setting (images and features). The most obvious conceateseto the Spheri-
cal Fourier Transform of a discrete spherical image. Int@oldito the existence
of a sampling theorem, we need to be assured that the costhplexity of the
transform does not outweigh the benefits of replacing theetadion with a mul-
tiplication in the spectral domain. In other words, we regun algorithm for a
discrete and fast SFT.

The bandwidthL of a spherical functiory is the smallest degree such that
ffn = 0, VI > L. Unfortunately, the signals we are dealing with (impulse re
sponses for the similarity functiopn and great circles for the EDF), do not have
a frequency limit. The bandwidth must be manually selectedi in practical
terms determines how accurately we wish to approximatewnation. Figure 4

&

40°

Figure 4:0n the left is an spherical image of a great circle. Idealig, function values
are unity for any point on the circle, and zero otherwise. k@nright is a segment of the
great circle that intersects the north and south poles. &tpmeant (which is highlighted on
the left image), This shows the reconstructed functioneslof the delta function at the
equator £20°). The four values of the bandwidthtested wer&2, 64, 128, and256. As
L increases, the closer the approximation to an impulse, dxduse of the discontinuity
there is also a greater overshoot (Gibbs phenomenon).

shows the approximation of the EDF for different bandwiditestions. From the
figure we see that even though our similarity function is espnted as a sum of
spherical impulses, the spectral representation is sredp#specially for smaller
values ofL.

Given a function with bandwidth, Driscoll and Healy [8] (and later refined in
[16]), have presented a fast, discrete SFT with a samplegrém that requiresl
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@

Figure 5:0n the left is a grid depicting the sampling of a sphericakfion with band-
width L = 8. Each white square is one spherical sample, and the exatidomf the
sample would be the middle of the square. The sampling theoequire2L uniformly
spaced samples in both coordinates [0, 7] and¢ € [0,27), hence there are 16 rows
and 16 columns. The image on the right depicts the positionthe sphere of all 62
samples. The highlighted samples on this sphere corresjotia highlighted row of
samples in the left image. One visible effect of this sangpthreorem is that the sampling
is dense at the north and south poles but sparse at the equator

uniformly spaced in each spherical coordinate (see figur&balling equation
11, a spherical harmonic is a product of a Legendre polynidmithe longitudinal
parameter) with a complex exponential (in the azimuthal parameter The
SFT amounts to performing many Legendre transform& followed by many
traditional Fourier transforms in. The more complex of the two is the Legendre
transform, which can be performed fastG{Llog® L) [8]. On the order ofL
Legendre transforms must be computed, which gives the ¢otaplexity of the
SFT asO(L*log® L). A similar separation-of-variables approach can be agplie
to derive a fast and discret®)(3) Fourier transform irO(L3log?L) [17], with a
similar sampling theorem.

Recall from equation 9 that we are parameterizing our mapace with ro-
tations, which in turn are parameterized with ZYZ Euler a&sglLet us use the
anglesy, 3, v, 0, and¢ to denote each of the five dimensions of our motion space,
so thatR. = R(«, 8,7), Ry = R(0,0,¢), anda, vy, ¢ € [0,27), 3,0 € [0, 7]. If
we fix L as the bandwidth of our similarity functignand EDFA, and we follow
the algorithm in figure 3 using the SFT and SOFT routines betan [16, 17],
the anglesy, v, and¢ will be sampled at

aj,yj,@-:W—g,jzo,1,...,2L—1 27)
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The angless, andd will be sampled at

m(2k +1)

ﬁkvek: A7,

k=0,1,...,20L—1 (28)
The total number of samples @#is thus32L°. In practice, this forces us to select
lower values forl, such as$2. Although we are capturing high resolution images
and locating image features with sub-pixel accuracy, tifecg¥e resolution of
one spherical images is jJu8L x 2L. The experiment detailed in figure 7 shows
just how our algorithm reacts when the feature locationa#eeted by Gaussian
noise when using such “low-resolution” spherical imagegyufe 6 shows the

Figure 6: On the left is an image from an omnidirectional sensor, wiffela of view
of 212°. In the middle is a spherical image with bandwidth= 32 mapped onto the
omnidirectional image plane. Each segment in this imageesponds to one pixel in the
spherical image. This shows the quantization or binningo¢een when mapping points
from a high-res image to a low-bandwidth spherical functi@n the right is the same
effect for a bandwidth. = 40.

relationship between the uniform angular spacing of thespal samples and the
original image domains of different single-viewpoint caa® It is clear for small
L many pixels from a high-res perspective or omnidirectiomalge will map to
the same spherical sample, and since we will detect feabarége original images
we must clarify how to generate a discrete version of ourlanity functiong.

The sampling theorem requireé samples in each angle, which means every
spherical function must have.? samples, ang must therefore have6L* sam-
ples. Let us writgp’, ¢*), j,k = 1,2,...,4L* for the samples of. Assume we
are given two input imagek, I, on which we deteciv; and/V, features, respec-
tively. We denote) as the set of all possible feature pairs (note thdtas N, N,
elements), and each element@®@fhas an associated weight given by equation 2
(or equation 3). The value of the discrete similarity fuootat a samplép’, ¢*)
is just the sum of the weights of all elementgpthat have this samplg’, ¢*) as
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the nearest neighbor. This process has the effect of jusitigueg the continuous
similarity function. Whenever different point pairs areagiized into the same
discrete sample, their similarity weights are simply comeloi.

Estimation errors in rotation Estimation errors in translation
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Figure 7:Results of a simulation testing the robust accumulatiohérpresence of Gaus-
sian noise. The locations of spherical point corresponeleace perturbed with Gaussian
noise in each spherical coordinate. The standard deviafighe noise distribution is
given here in pixels, and the error is computed by measuhiaglistance of the estimated
solution from the correct solution in the 5D motion space. t@mnleft is the error in the
estimated rotation (the angular distance between twoiootahatrices is computed as
arccos((trace(Ry* Ry) — 1)/2)), and on the right is the error in baseline direction. The
dashed plots (in red) represents the simulation performigd andwidthl, = 24. In
this case, a standard deviation of one unit corresponds>toand 3.8° in the spherical
coordinatesy andé. The solid plots (in blue) a fof. = 32, where a standard deviation
of one pixel corresponds t8.6° and2.8° in the spherical coordinates. For this higher
bandwidth, the results are still accurate in presence offgignt noise.

6 Experiments

In this section we will present the results of the motionraation algorithm on
real image sequences. We begin by describing the sphesicara system which
we use for our experiments.
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6.1 Spherical image acquisition

One of the benefits of choosing to model our camera with a sgigrerspective
projection is that it enables us to unite a number of singge¥goint camera sys-
tems. Our experiments were performed with a catadioptmeeca system along
with a traditional digital camera.

The projection model of a central catadioptric system isvedent to a spher-
ical projection followed by a projection onto the plane [11f calibrated, such
a sensor enables us to interpolate spherical perspectagesn Our system con-
sisted of a Canon Powershot G2 digital camera fastened toadbga mirror
attachment from RemoteRealit{24]. Being that the mirror’s field-of-view is
212, the camera captures slightly more than a hemisphere afiraiion. Fig-
ure 8 shows a sample catadioptric image obtained from a plecabirror and its
corresponding projection onto the sphere.

Figure 8: Top Left: a parabolic catadioptric image. Bottom: the cspanding image
on a uniformly sampled spherical grid. As the parabolic arifmages only a little more
than half the sphere, you can see the lower portion of thergahémage contains no
information. Top Right: the spherical image as it would appen the surface of the
sphere.
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6.2 Results

We proceed to show experimental results of our algorithrtetesen a sequence
of real omnidirectional images. The running time of our aidn for various
bandwidth choices is shown in figure 9. For our tests, we asduanfunction
bandwidth of L = 32, which left us with a spatial resolution @f. = 64 sam-
ples in each of the five dimensions of our motion space. Forpawison, we

250

200

150

100

Execution time (seconds)

50

0 @& — 1 1 I I
8 12 16 20 24 28 32

Bandwidth (L)

Figure 9:Timings of our algorithm for various bandwidth choices. Execution times
are for step 3 through step 7 (see figure 3).

employed RANSAC to estimate the Essential matrix. Althougieems natural
to use RANSAC in the presence of outliers, there are two atussues which
would prevent a naive implementation from being operathiest is the volume
of outliers. Assuming the number of features detected i @hdwo images is
N, there areN? possible feature pairs of which at madstare inliers. Since the
inlier rate is no more thah/N (for a typical scenario withtV'. = 1000, the inlier

rate is at most.1%), the likelihood of selecting a minimal set of true correspo
dences is negligible. To this end, we discarded all but thret beatching pairs
during the random sampling stage. We retained only apprabeiy0.025% of
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the possible feature pairs (e.g. this translates to 25@readairs from a set of
10° possible pairs). The second issue is in determining theitation threshold

of the RANSAC algorithm. In order to perform a proper evailaif our algo-
rithm, we implemented a best-case RANSAC which does not haeemination
threshold but rather iteraté8, 000 times. The essential matrix which satisfies the
most feature pairs (weighted witlp, ¢)) is selected as the motion. This ensures
that a manual selection of the termination threshold mayedaet too low to al-
low termination for an inferior motion. We have evaluated Badon estimation
alongside this modified RANSAC in order to provide an altéemaethod which is
comparable to ours. In some of the following experimentsiits, the RANSAC
performs very well and this is only because we have tunecthasameters quite
finely. The similarity function in equation 2 was used for &x@eriments depicted
in figure 10 through figure 12, while equation 3 was used foréneainder.

We begin with a pure translational sequence of images. Bydiand sliding
our camera along a rigid beam, we were able to generate twegregs of trans-
lational motion along the X and Z axes of the camera framangithe magnitude
of motion between each frame, we were able to plot the estisneamera trajec-
tory in figure 10. In general, there are four possible rotatiad translation pairs
which will satisfy a particular epipolar constraint. Thesgutions correspond to
the true solution, a baseline reversal, a camera rotatidé8(3fabout the baseline
(commonly referred to as the “twisted pair” configuratioor) a twisted pair with
baseline reversal. If the true motion is given @@y, T'), the other three motions
which satisfy the same epipolar constraint are gived®y—T'), (¢’*R,T), and
(eT”R, —T) (note thate?™ gives a rotation of 80° about thel” axis). In order to
identify the expected locations of the four peaks in oudiii@d space for the cor-
rect motion, we must remember that we identify elementsisffite dimensional
motion space with the paiiz., R;) whereR = R,R; ', T = Rse3. If we define
R, = R.(v)R,(B) so that—T = Rjes, then we can expect the four peaks to be
located at{ R™'R;, R;), (R'R}, R}), ((eI"R)™' Ry, R;), and((eI™R)™' R}, R}).
In the figures, for example, when we show a 2D translationee stith a peak at
R}, this slice can be generated from the bins correspondirtgetootation? ! ;.

In figure 10, the slice shown depicts a peakial0, 7, 7)es = —e;.

A similar experiment was performed with the camera moviogglthe Z axis.
The motion was recovered from pairs of consecutive imagéh, thve estimated
camera path shown in figure 11. Our Radon estimation has desrdaliation
from the observed ground truth Z axis than the RANSAC estonat

In order to test both rotations and translations while réicay ground-truth
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observations, we positioned the camera at the outside ddgéuontable. This
allowed us to capture images from the camera moving arouaccircle. There
was a45° rotation between each of the images in this sequence, arestineated
camera positions are shown in figure 12. Although the Radwajsctory esti-
mate deviates slightly from the plane, the positions as $e@n the overhead
view coincide with the recorded ground truth more accuyaten the RANSAC
estimation. After 6 pairwise tests, there was little err@nanulation in estimating
the trajectory.

We now discuss results of an experiment from a sequence gfesifaom an
outdoor environment. Figure 13 shows a representativetsmbeof images from
this sequence. Figure 14 shows some results from the mctionaion. Epipolar
lines are drawn to allow visual confirmation of the method’swaacy. Figure 15
displays the obtained camera trajectory using the visatidiz tools provided in
the Epipolar Geometry Toolbox [22]. This same trajectorprigjected onto the
X-Z plane in figure 16 to show the deviation from the groundnplavhich is
known to be (approximately) the correct plane of motion.siglanar motion also
restricts the axis of rotation to align with the Z axis, andifg17 shows just how
closely the measured rotations reflect this property.

7 Conclusion

We have presented a novel approach for the computation gh8fen from two
views without correspondences. It is based on the genarafi@ global like-
lihood function on the space of all observable camera metid@iven today’s
computing power, it is not the search through this likelitidonction but rather
the combinatorial explosion of all possible corresponésnthat is intractable.
Instead of traversing all possible correspondence as&gtsnour method com-
putes for each motion hypothesis a correlation functiorctvieonsiders only fea-
ture pairs satisfying the epipolar constraint. Such a fdathn can be expressed
as a correlation integral if the integration path can betemitas a group action
over the domain of integration. In this case, the integral lsa computed as an
inner-product in the Fourier domain. The bandwidth limdataffects directly the
resolution of the parameter space and it is indeed our futorg to establish a
“space localization” using wavelets. Such a localizationthe parameter space
would also allow a constrained search when prior distrdngiof motion are es-
tablished causally through time. In that case, we couldattieve near real-time
performance which right now is impossible in all correspemekless approaches.
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Figure 10:Top: the estimated trajectory of the camera. In solid blight) is the Radon
estimation, in dashed red (dark) is the RANSAC computatol, the yellow circle marks
the starting position. Bottom Left: A projection of the ®afory onto the Z-Y plane
showing the deviation of the estimated positions from thexi$.aBottom Right: theR,
slice of the gridG where the maxima was found.
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Figure 11:Left: the estimated trajectory of the camera. In solid blight) is the Radon
estimation, in dashed red (dark) is the RANSAC computatog, the yellow circle marks
the starting position. Top Right: A projection of the trajay onto the X-Y plane showing
the deviation of the estimated positions from the Z axist@uotRight: theR; slice of the

grid G where the maxima was found (notice the peak is locaterat), which corresponds
to the correct translation along Z).
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Circular motion Circular motion (X-Z projection)
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Figure 12:A camera moving along a circular path. Top left: In solid blight) is the
Radon estimation, in dashed red (dark) is the RANSAC. Taptrig projection onto the
X-Z plane showing the deviation from the plane of the turtgalBottom left: An over-
head view. The yellow stars are the observed ground trutiiguos of the camera. Bottom
right: four images from the sequence. Even though the damhimation is rotation, the
translation is still effectively detected by the Radon.
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Figure 13: Top row: two representative images from a sequence of outieages.
The motion between image positions is over five meters. At @asition, the equatorial
plane of the spherical image is roughly aligned to be pdralith the ground plane to
provide a rough, partial ground truth of the motion. The imagquence also contains
some dynamic scene content as there were people movinggtiootithe scene as the
images were taken. The bottom two images are the spherioggtons of the original
omni images. Only the visible band on the sphere is shown here
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Figure 14:0n the top row are a pair of images from a sequence for whichmibtéon
was estimated. The bottom two rows show the images aftertthey been rotationally
aligned. Epipolar circles have been overlaid onto the imaggince the images have
been rotationally aligned, points which lie along theseles in one image will lie along
the same circle in the second image. The intersection oétbiesles mark the focus of
expansion and contraction, which define the direction ofdligtion between this image
pair. The rotation between image pairs was estimated abajppately 45°, and as the
focus of expansion shows the translation was roughly in therial plane.
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Figure 15:This figure shows the camera trajectory estimated from aeseguof images
(see figure 13 for sample images). The camera frames dravursalit (blue) lines depict
the trajectory estimated using the Radon transform, whediashed (red) lines show the
RANSAC trajectory. In this sequence the motion is known taapproximately planar
in the equatorial plane. Since the magnitude of camera mgoaonot be recovered from
pairs of images alone, we have fixed the distance betweernragrositions to be 10 units
for visual purposes.
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Figure 16:This figure shows the camera trajectory estimated from aeseguof images

(see figure 13 for sample images), projected onto the ZX plahe camera frames drawn
with solid (blue) lines depict the trajectory estimatedngsihe Radon transform, while
the dashed (red) lines show the RANSAC trajectory. The masdnown to be planar

(on the equatorial plane) and the Radon estimate reflecsrtbie accurately. Since the
magnitude of camera motion cannot be recovered from imalge®,awe have set the
distance between camera positions to be 10 units for visualoges.
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Figure 17:As the camera motion in this sequence (see figure 13 for sampliges) is
known to be roughly planar, we know that the axis of rotatiamstralign with the Z axis.
This plot shows for all eight image pairs in the sequence thsamkce in degrees of the
estimated axis of rotation from the Z axis. The solid linauélis the estimate from our
Radon integral, and the dashed line (red) is the RANSAC eséim
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