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A PROGRAMMING SYSTEM
FOR DISTRIBUTED REAL-TIME APPLICATIONS

Insup Lee

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract

A distributed programming system designed to support
the construction and execution of a real-time distributed
program is presented. The system is to facilitate the
construction of a distributed program from sequential
programs written in different programming languages
and to simplify the loading and execution of the
distributed program. The system is based on a
distributed configuration language. The language is
used to write the configuration of a distributed program,
which  includes resource requirements, process
declarations, port connections, real-time constraints,
process assignment constraints, and process control
statements.

Introduction

It is well known that there are many potential
advantages of distributed processing. As distributed
systems become readily available, we need a simple way
to construct distributed programs to attain these
potential advantages. In particular, there should be a
simple way to combine several existing sequential
programs and to execute them as a distributed program.
Although message based interprocess communications
support the construction of a distributed program as a
collection of processes that cooperate by exchanging
messages, their dependencies are hidden in the text of
the source code; and therefore, make it hard to
understand the overall structure of a distributed
program. What we need is a clean way to glue a set of
sequential processes together to form a distributed
program; that is, we need a configuration language to
support programming-in-the-large [4] for distributed
programs.

The distributed programming system described in this
paper is to provide a coherent environment for the
development of a multi-sensory (vision and tactile)
system to investigate ®active perception® of three
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dimensional objects. The multi-sensory system consists
of a robot arm with six joints (PUMA 560), a three
finger robot hand with tactile sensors [1] and two CCD
cameras (Fairchild CCD3000). Active perception means
being able not only to see and feel objects but also to
manipulate and probe them.

Issues in implementing real-time distributed systems
for a multi-sensory system range from operating systems
to application programs. At the operating systems level,
we need to provide proper interprocess communication
mechanisms that can deliver messages within real-time
constraints so that the robot arm and hand can be
controlled in real-time. The process scheduler should be
general enough to support various scheduling disciplines
required by different application programs without too
much overhead. At the applications level, it should be
easy to construct a distributed program from a set of
component sequential processes, possibly written in
different programming languages. The multi-sensory
system will be built from a set of interacting processes
written in programming languages like C, FORTRAN,
LISP, Pascal, and Prolog. Its component processes
range from real-time joint motor controllers written in
C to knowledge-based experts written in Lisp or Prolog.
Although considerable work has been done on real-time
distributed systems in recent years [6, 8 16], these
systems are primarily designed to efficiently support
distributed real-time control processes. What we need is
a distributed system that can support not only low level
real-time control processes but also high level
knowledge-based systems.

The purposes of the distributed programming system,
called DPS, are to facilitate the construction of a real-
time distributed program from existing sequential
programs written in different programming languages
and to simplify the loading and execution of a real-time
distributed program. The distributed programming
system is based on a distributed configuration language,
called DICON. DICON is used to write the



configuration of a distributed program composed of
resource requirements, process declarations, real-time
constraints, process assignment constraints, and process
control statements. A distributed program is
constructed by compiling a configuration and is loaded
and started when a compiled configuration is executed.
During the execution of a distributed program, the
programmer can monitor and control the execution of
component processes for debugging.

Although there exist several distributed configuration
languages, such as CONIC [18], PRONET/NETSLA
{11], and PCL [15], they are not suitable to be used in
our distributed system. Their main concern is to
separate the descriptions of process hierarchies and
interprocess communications from the text of
component programs, presumably written in a single
distributed programming language. These configuration
languages do not support the specifications of real-time
and process allocation constraints. Thus, finding a
process assignment has to be carried out separately after
a distributed program has been constructed. The
process allocation problem, with and without real-time
constraints, has been investigated by many researchers
and many useful mathematical models (such as graph
theoretical [20, 21, 22], integer programming [3, 14, 17),
and heuristic [2, 7, 8] methods) have been developed to
solve the problem. We believe that a configuration
should include specifications of various assignment and
real-time constraints so that an optimal (or near
optimal) process allocation can be computed by a
process allocator based on existing (or modified)
assignment algorithms.

This paper is organized as follows: Section 2 describes
the organization of the underlying distributed system
and briefly discuss process scheduling and interprocess
communications  supported by the distributed
programming system kernel. Section 3 illustrates the
distributed programming system through an example.
Section 4 contains the description of DICON. Section 5
explains the implementation structure of the distributed
programming system and its current status.

DPS Kernel

The underlying distributed system consists of a loosely
coupled heterogeneous mix of computers, which will
eventually include three VAX 750s, ten super-
microcomputers and numerous microprocessors. The
three VAXes will run a UNIX system (Berkeley 4.2)
extended for our distributed environment. The other
computers will run the DPS kernel that provides
interprocess communications, process management, and
scheduling. The DPS kernel is UNIX

process
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compatible in a sense that any UNIX user process can
be executed without modifications. When the network
is dedicated to the multi-sensory system, the VAXes will
support knowledge-based experts. The super-
microcomputers will support time-critical processes and
compute-bound processes. The microprocessors are to
monitor tactile sensory pads on fingers and to drive
servo motors of the robot arm, hand, and two cameras.
To the programmer, the distributed system is viewed as
a network of UNIX systems. The distributed
programming system is not to replace the UNIX system
user interface for the network, but to supplement it for
distributed programming.

a distributed program means an
application program (e.g., a multi-sensory system)
composed of a set of communicating sequential
processes. Each process in the distributed program has
its own local data over which it has sole control. A
process communicates with other processes by
exchanging messages. The component processes of a
distributed program may be written in different
programming languages. To allow efficient use of the
system resources, the distributed system can be
partitioned to support several distributed programs at
the same time. Each partition supports one distributed
program.  Partitions may overlap to share system
resources. A resource manager handles partitioning of
the network.

In this paper,

Process Scheduling

A process that has timing constraints and whose
correctness depends on whether its timing constraints
are satisfied is called a real-time process. There are two
kinds of real-time processes: periodic and sporadic [19].
A periodic process becomes ready at regular intervals
and a sporadic process becomes ready at any time. In
our system, the programmer specifies execution time,
deadline and hardware interrupt level for each real-time
process. 'The programmer also specifies periods for
periodic processes and minimum intervals between
consecutive executions for sporadic processes. From the
execution time and hardware interrupt level, the actual
execution time is computed by adding overhead of non-
disabled interrupts to the execution time [23]. The
actual execution times, deadlines, periods and intervals
of real-time processes are used to ensure that all real-
time processes can be executed before their deadlines at
compile-time.

The DPS kernel schedules real-time processes based on
the earliest deadline algorithm with preemption. That
is, a real-time process with the earliest deadline is
executed until it blocks or another real-time process



with an earlier deadline becomes ready to run. We note
that the earliest deadline scheduling discipline is optimal
for the case where the effects of interprocess
communications are not considered [5]. Processes with
no timing constraints are executed only when no real-
time processes are ready. They are scheduled on a
preemptive priority base with 16 priority levels.
Processes with the highest priority are executed in
round robin with a programmer defined quantum. It is
the programmer’s responsibility to assign proper
priorities to processes.

Interprocess Commaunications

The DPS kernel supports message-based real-time
interprocess communications. Message addressing
schemes usually use either source object addressing or
destination object addressing [8]. With source object
addressing, a sending process sends a message to its local
object which is connected to a destination object. On
the other hand, with destination object addressing, a
sending process sends a message to an object in the
destination process. Since destination object addressing
requires global unique object names, and therefore,
hinders modularity of component processes, our system
supports source addressing.

In our system, messages are sent to and received from
ports. A port is an object into which messages may be
placed and from which messages may be removed. The
former is called in-port and the latter is called out-port.
Ports are typed; that is, each port can be used to send
or receive one type of messages. Each port has a unique
identifier that distinguishes it within a process; however,
the same port identifier can be used in different
processes. Processes are written and compiled without
specifying how ports are to be connected. In-ports and
out-ports have to be connected before messages can be
sent and received. Connections between in-ports and
out-ports are defined within a configuration written in
DICON.

There are six interprocess communication primitives
provided in each programming language supported by
DPS. The SendWait and SendNoWait system calls are
to place a message into a port. The ReceiveWait and
ReceiveNoWait system calls are to remove a message
from a port. All messages placed into a single port are
delivered in the same order as they are sent without
duplication under normal condition. The MsgPending
system call returns the number of outstanding messages
on a port. The MsgFlush system call cancels
outstanding messages on a port. The formats of these
system calls are as follows:
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o SendWait (Portld, Timeout, Varld)

o SendNoWait (Portld, Varld)

o ReceiveWait (Portld, Timeout, Varld)

o ReceiveNoWait (Portld, Handler, Varld}
e MsgPending (Portld)

o MsgFlush {Portld)

Portld is the name of a port. Varld is the name of a
variable which contains a message to be sent or to
which a message is to be received. A process executing
SendWait or ReceiveWait is delayed until the message is
received or until a message arrives, respectively. Here,
the process may specify, in a TimeOut argument, how
long it wishes to wait for the corresponding action to
take a place.

Unlike SendWait or ReceiveWait, a process executing
a SendNoWait or ReceiveNoWait call is never delayed.
The ReceiveNoWait call requires a message-handling
routine that is to be invoked when a message arrives.
So, when a message arrives on a port specified in a
ReceiveNoWait call, the execution of the receiving
process is halted and then its message-handling routine
is invoked. To support the sending and receiving of
complex data structures in messages, DPS provides
routines that convert a linked list into an array and vice
versa. The ipc mechanism is explained and justified in
[13].

Port Connections

Port connections are defined within a configuration
written in DICON. Permitted port connections are one-
to-one, many-to-one, one-to-many, and many-to-many.
One-to-one connection means that one out-port is
connected to one in-port. Many-to-one connection
means that many out-ports are connected to one in-port.
Here, the in-port can receive a message from any out-
port. One-to-many connection means that one out-port
is connected to many in-ports. Here, a message placed
into the out-port is delivered to all the in-ports. Many-
to-many connection combines both many-to-one and
one-to-many.

Priority. To support fast propagation of unusual
events (like too much pressure on a fingertip), port
connections have priority. Port connections between
real-time processes have the highest priority. Messages
transmitted through port connections with high priority
are delivered before messages transmitted through port
connections with low priority. The priority based port
connections and the process priorities can be used to
ensure that emergency events are handled quickly (i.e.,
in real-time). For example, guarded move for
mechanical fingers can be implemented using



ReceiveNoWait on in-ports that are connected to out-
ports defined in tactile sensor processes with a high
priority. It is a programmer’s responsibility to assign
proper port connection and process priorities when
writing the configuration of a distributed program.

Type Checking. When ports are connected, it is
desirable to ensure that actual arguments used to send
and receive messages through the connected ports have
the same type. Since type definitions among the
programming languages supported by DPS are not
compatible, the type checking of port conmnections is
based on structural equivalence. That is, a pair of in-
port and out-port ~an be connected if the internal
representation (in terms of primitive data types such as
16 bit integer, 32 bit integer, 8 bit character, etc.) of a
variable used with the out-port is the same as that used
with the in-port.

The consistency of port connection can be checked
either statically or dynamically. The advantage of
static consistency checking is the early detection of
representation mismatch. The disadvantage is that a
single port can only be used to send messages with the
same representation. The advantage of dynamic
consistency checking is that it is possible to use one port
to send messages with different representations. The
disadvantages are that inconsistent port connections
cannot be detected until run-time and that there is
execution overhead to carry out consistency checking at
run-time. Furthermore, message representation
information need to be sent with data, and therefore,
more bits have to be transmitted. DPS supports the
static consistency checking of port connections.

Overview of DPS

In DPS, the programmer builds a distributed program
and then executes it as follows: (1) construct or solicit
component programs; (2) write the configuration of a
distributed program in DICON; (3) compile the
configuration; (4) execute the compiled configuration;
(5) monitor and control the execution of processes
interactively.

As an example of how to use DPS, we will implement
a robot arm with three degrees of freedom, each of
which is manipulated by a separate motor. The arm
controller accepts the x, y, and z coordinates of the next
position. From the current and next positions of the
arm, it computes three joint movements in parallel. It
then moves the three joints in parallel. The arm
controller waits until all three joints are moved before
receiving the next set of three coordinates. The same
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robot arm system has been used to compare three
solutions for a robot arm controller using Pascal-Plus,
occam, and Edison [10]. Among the three solutions, the
structure of our solution is similar to that written in
occam as both are based on message passing.

Our implementation of the arm controller uses seven
processes written in C. The seven processes are one
controller process, three joint motion calculators, and
three joint motor drivers. The controller process
accepts the next position from the operator. It then
sends the next position to the joint motion calculators to
compute three joint motions in parallel.  As the
controller receives computed motions, they are sent to
the joint motor drivers to move the arm in parallel.
The controller waits until all three joints are moved and
then accepts the next position. To simplify our
illustration, we have omitted error handling.

Figure 1 is the outline of a program that drives a joint
motor. The arm controller will have three instances of
this program to drive the three joint motors in parallel.
Within the program, in-port NextMove is used to
receive the next motion and out-port MoveDone is used
to signal the completion of motor movement. The nil
argument of the SendWait call means that no data are
sent; the purpose of such a call is to synchronize with
other processes.

/* This program drives a joint motor. */

main () {
inport, NextMove;
outport MoveDone;
struct { float step, direction } motion;
for () {
ReceiveWait (NextMove, 0, &mobtion);
/% Move motor according to motion.step and
motion.direction */
SendWait (MoveDone, nil);
}
}

Figure 1: Outline of Joint Motor Driver Process

Figure 2 outlines a program that computes a joint
motion for the next position of the arm. The arm
controller will have three instances of this program to
compute three joint motions in parallel. When each
instance is started, an appropriate joint number is
passed as an argument to the process to tell which joint
motion it is to compute. The program receives the next
position from in-port NextPosition and sends the next
motion to out-port NextMotion.

Figure 3 outlines a program that accepts the new
coordinates of the arm from the operator and that



/* This program computes next motion. x/

main (jointno) int jointno; {
inport NextPosition;
outport NextMotion;
struct { float x.y,z } old position,new position;
struct { float step, direction } motion;
/* Set up necessary matrices for this jointno x/
/* Initialize old position */
for (53) { .
ReceiveWait (NextPosition, O, &new_position);
/* Compute next motor step and direction
from old and new positions */
SendNoWait (NextMotion, &motion);
old_position = new_position;
}
}

Figure 2: Outline of Joint Motion Compute Process

controls the joint motion calculators and motor drivers.
The SendNoWait call on ComputeJointMotion starts
the computations of three joint motions in parallel. The
three ReceiveWait calls, each preceeded by a
MsgPending call, allow messages to be received as they
arrive on three in-ports JointMotion[0..2] (that is, in
non-sequential fashion).

We now show how the above programs are combined
and executed as a distributed arm control program in
DPS. The construction and execution of the distributed
arm control program is earried out in four steps. The
first step is to write a configuration in DICON as shown
in Figure 4. The configuration consists of four parts.
The first part defines resources needed to execute the
arm controller. Two node declaration statements
specify that the controller is to run on one VAX/11 750,
call ASP, and three super-microcomputers, called
Processor0, Processorl, and Processor2. The three
super-microcomputers are to be exclusively used by the
arm controller, whereas ASP is to be shared with other
programs. Processor0, Processorl, Processor2 and ASP
are system defined names for processors in the network.
They are to be identified by Joint[0..2] and Host within
the configuration.

The second part describes the constituent processes of
the arm controller. Three program definitions identify
sequential programs that are used within the arm
controller. The first program definition says that a
program, called MotorController, is written in C and its
object code is stored at file "driver.o®. Its in-port is
NextMove and its out-port is MoveDone. The other two
program definitions specify the Calculator and
Controller programs. The process declarations define
the instances (i.e., processes) of the sequential programs
needed to implement the arm controller. There are
three instances of MotorController, three instances of
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/* This process accepts new coordinates from
the operator and moves the robot arm. */

main O {
outport ComputeJointMotion, MoveJoint[3];
inport JointMotion[3], MoveDone;
struct { float x,y,z } pos;
struct { float step, direction } motion[3];
int 1;
tor (;:) {
printf ("Next position: *);
scant ("%fRf%f", pos.x, pos.y, pos.z);
/* Compute motion for each motor in parallel =/
SendNoWait (ComputelJointMotion, &pos);
i=0;
while (i < 3) {
if (MsgPending (JointMotion[0])) {
ReceiveWait (JointMotion[0],0,&motion[0]);
SendNoWait (MoveJoint[0], &motion([0]);
i++;
if (MsgPending(JointMotion[11)) {
ReceiveWait (JointMotion[1],0,#motion[1]);
SendNoWait (MoveJoint([1], &motion[1]);
i++;
if (MsgPending (JointMotion({2])) {
ReceiveWait (JointMotion[2],0,&motion[2]);
SendNoWait (MoveJoint[2], &motion[2]);
it+;
};
for (i=0; i<3; i++) ReceiveWait(MoveDone,0,nil);
printf("Arm is at %f %f %f\n"®,pos.x,pos.y,pos.z);

Outline of Controller Process

Calculator, and one instance of Controller. The link
definitions specify how ports used within these processes
are to be connected. The first link statement connects
out-port ComputeJointMotion of the Control process to
in-port NextPosition of each Calculate process so that
the new position sent from the Control process can be
received by all three Calculate processes. The second
link statement connects out-port NextMotion of process
Calculate[i] to in-port JointMotionfi] of the Control
process for each i from 0 to 2. The remaining two link
statements should be self-explanatory.

Figure 3:

The third part specifies process assignment constraints
which should be satisfied when the arm controller is
loaded into processors for execution. The two assign
statements say that process Motorli] should be allocated
into processor Joint[i] for each i from 0 to 2 and that
the Control process should be allocated into the Host
processor. The place statement says that three
Calculate processes can be allocated into any processors
as long as they are assigned into different processors so
that they can be executed in parallel.



system RobotArmController;

node Host : shared ASP;
node Joint[0..2] :Processor0,Processori,Processor2;

program MotorController in C at "driver.o*;
out port MoveDone;
in port NextMove;

end MotorController;

program Calculator in C at “calculator.o®;
out port NextMotion;
in port NextPosition:

end Calculator;

program Controller in C at ®controller.o";
out port ComputeJointMotion, Moveloint[0..2];
in port JointMotion[0..2], MoveDone;

end Controller;

process Motor[0..2] : MotorController;
process Calculate[0..2] : Calculator;
process Control : Controller;

link ComputeJointMotion to
Calculate[0..2] .NextPosition; /# one-to-many */
link Calculate[0..2] .NextMotion to
JointMotion[0..2] one-to-one;
link MoveJoint{0..2] to
Motor[0..2] .NextMove one-to-one;
link Motor[0..2] .MoveDone to
Control.MoveDone; /* many-to-one */

assign Motor[0..2] on JointProcessor[0..2];
assign Control on Host;
place Calculate[0..2] separately;

begin
start for i := 1 to 3 do Calculate[t] (i) end for;
start Motor{0..2]1, Control;
end system;
Figure 4: Configuration for Arm Controller System
The last part of the configuration is start statements.
The three Calulate processes are started first and then
the Control and three Motor processes are started.
When a Calculate process is started, a joint number is
passed as an argument to the process so that matrices
used to compute joint motions can be initialized
properly.  Since the Calculate processes need to
initialize their matrices, they are started before the
Motor and Control processes.

After the configuration has been constructed, the next
step is to compile the configuration. Assuming that it is
in file *arm.conf®, it is compiled by the command

dcomp arm.conf
Its output is generated in file “arm.exec®. The third
step is to execute *arm.exec® to start the arm controller
by the command
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dexec arm.exec
The last step is to monitor and control the execution of
the arm controller interactively. For example, the
command

stop RobotArmController
terminates the execution of the arm controller and
releases the resources used by the arm controller.

A Distributed Configuration Language

The backbone of DPS is a distributed configuration
language, called DICON. A configuration written in
DICON provides the centralized expression of a
distributed program, which is important in presenting
and understanding the abstraction to be supported by a
distributed program. The design goals of DICON are
that it should support modular construction of a
distributed program and resource requirements, real-
time constraints and process assignment constraints in
addition to interprocess relationships should be part of
the configuration of a distributed program. This section
provides a brief overview of the language; the complete
definition can be found in [12].

The syntax of DICON is described using the BNF,
where syntactic constructs are denoted by words
enclosed with < >. In the syntax, optional clauses are
enclosed with [ 1, zero or more repetitions are indicated
with { }, and alternatives are separated by |.

Overall Structure

The configuration of a distributed system consists of a
system interface, subsystem definitions, resource
requirements, process declarations, port link definitions,
real-time constraints, process assignment constraints,
and process start statements as follows:
1:= system <id>

<gys interface>
<subsys defs>
<resource requirements>
<process decls>
<port link defs>
<real-time constraints>
<allocation constraints>
<process start statements>
end system
A system interface lists ports that are defined within the
configuration and that are to be connected with ports
defined in other configurations. Its format is as follows:
<sys interface> ::= <port list>
<port list> ::= [ out port <ids> 1 [ im port <ids> ]
If a configuration defines a stand alone distributed
system, its system interface should be empty. When
configurations are included within a configuration, out-
ports and in-ports of each configuration should be

<system>



connected to in-ports and out-ports, respectively, of
other configurations.

To support the modular construction of a distributed
program, configurations can be nested. Nested
configurations are specified by subsystem definitions,
which have the following format:

<subsys defs> ::= { system <id> at <file> <port list> }
<id> is the name of a nested configuration and <file>
identifies the file that contains the source code of the
nested configuration. Its out-ports and in-ports are
repeated to enhance readability.

Resource Requirements

Resource requirements specify processors and special-
purpose devices necessary for the execution of a
distributed program. The specified resources must be a
subset of the underlying network. They must be
acquired from the network resource manager before the
distributed program start executing. The resource
requirements should not include system resources used
by nested configurations since they are specified within
the nested configurations. The format of the resource
requirements is as follows:

<resource requirements> ::= { <node decl> }
<node decl> ::= node <node ids> : [ shared ]
[ <machine ids> ] [ <attributes> ]
::= with [ memory = <comst> ]
[ cpu = <cpu type> ]
{ device = <device id> }
We assume that there is a unique system-defined name
for each processor or device. A node declaration binds
<node ids> to processors with attached devices. If an
optional <machine 1ids> is specified, each identifier
specified within <node ids> is associated with a processor
within <machine ids>. If an optional <attributes> is
specified in addition to <machine ids>, processors included
in <pachine ids> that satisfy <attributes> are assigned. If
<machine ids> is not specified, any processors that satisfy
<attributes> are allocated.  For example, a node
declaration

<attributes>

node Joint[0..2]: Processor0,Processori,Processor2
associates Joint[0] with Processor0, Joint{l] with
Processorl, and Joint[2] with Processor2. If there are
only three Joint Motors in the system, then the
following node declaration is equivalent to the above
declaration:

node Joint[0..2]
Thus, to use a special-purpose device, the programmer
can specify the device rather than the processor on
which the device is attached. This feature will free the
programmer from having to exactly know the status of
each component of the network, which is going to vary
occasionally due to hardware failure or expansion. The

: with device = JointMotor
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possible attributes are memory size, CPU type, and
attached devices. If the keyword shared is specified,
processors can be shared by other distributed programs;
otherwise, they are used exclusively by the distributed
program.

Process Declarations

A distributed program is defined by declaring
component processes and by specifying port connections.
Process declarations consist of program definitions and
process (instance of a program) creations; that is,

<process decls> ::= { <prog def> | <proc decl> }
A program definition identifies a sequential program
that is to be used within a distributed program. It
includes in-ports, out-ports, the name of a programming
language in which the program is written, and the name
of a file containing the object code. Port names should
be identical to the ones used within the body of a
program. The format of a program definition is as
follows:
<prog def> ::= program <prog id> in <prog lang> at <file>
<port list>
end <prog id>
Instances of programs are created by process declaration
statements. The format of a process declaration
statement is as follows:
<proc decl> ::= process <proc ids> : <prog id>
[ priority <const> ]
<proc ids> is a list of simple identifiers or arrays with
constant bounds. The priority of processes can be
defined using the optional priority clause.

After processes are declared, port connections are
defined by link statements. The format of a link
statement is as follows:

<port link> ::=

link <portsi> to <ports2> [ one-to-one ]
[ priority <conmst> ]
The ports specified in <portsi> must be out-ports and
the ports specified in <ports2> must be in-ports. As
discussed before, their types should be the same. Each
port listed in <portsi> is connected to all ports listed in
<ports2> unless an optional clause ®one-to-one® is
specified.  One-to-one defines pair-wise connection;
therefore, there should an equal number of ports
included within <portsi> and <ports2> if one-to-one is
specified. Permitted port connections are one-to-one,
one-to-many, many-to-one, and many-to-many. Port
identifiers may be qualified by process names to resolve
ambiguity. The priority of port connections can be
specified using the optional priority clause.



Real-Time Constraints

When real-time processes become ready to execute,
they must be executed within their deadlines. Note that
it is not a process that is time-critical, but a task to be
carried out by the process as a response to some event
which is sent and received as a message. Since a real-
time process can be blocked only if it is waiting on a
SendWait or ReceiveWait system call, a real-time task is
declared by associating a deadline with a port. The
format of a real-time task declaration is as follows:

<task decl> ::= task <port ids>
interrupt level <const>
execution time <time>
deadline <bime>
<interval>

<interval> ::= periodic <time> | sporadic <time>
<time> ::= <const> [ sec | msec | usec ]

The interrupt level is a hardware interrupt level for the
task. The execution time is a maximum duration of
task execution; that is, once the task is started, the
process should block itself before the specified time or it
may be halted by the process scheduler. The deadline
defines the latest time the task can be executed after it
is enabled. For a periodic process, <interval> defines its
period. For a sporadic task, it defines a minimum
interval between consecutive readiness of the task. The
interrupt level, execution time, deadline and interval are
used to check the possibility of task overruns at
compile-time.

Process Allocation Constraints

To execute a distributed program, its component
processes have to be assigned and then loaded into
processors. There are two ways to specify assignment
constraints. If a process should be executed on a
particular processor, this constraint can be stated using
a processor preference statement, which is defined as
follows:

<processor preference> ::=
assign <proc ids> [on <node ids>]
[with <attributes>]
[at <location>]
As with resource requirements, processors can be
identified by its attributes. <location> can be specified if
a process should be loaded into a particular place in

Memory.

Sometimes it is useful to specify where processes can
be assigned with respect to each other. For example,
the programmer may wish to assign several processes
into the same processor to reduce ipc overhead or into
different processors so that they can be executed in
parallel. These constraints can be specified as follows:
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<process grouping> ::=
place <proc ids> together |
place <proc ids> separately
The DICON compiler computes process assignments
from the resource requirements, process specifications,
real-time constraints, and assignment constraints.

Process Start Statements

The last part of a configuration written in DICON is
process start statements. They specify the order of
process creations at run-time and arguments to be
passed when processes are started.

User Commands

A set of user commands are available to the
programmer to interactively control and monitor the
execution of processes for debugging. They are the
pause, resume, stop, trace, whereis, and status
commands. The pause command temporarily halts the
execution of processes specified in the command. A port
identifier may be included within a pause command to
halt a process when it invokes an ipc system call on a
specified port. Otherwise, processes are halted
immediately.  The resume command resumes the
execution of halted processes. The stop command
terminates some or all processes of the distributed
program. The trace command traces ipc activites by
printing a message to the terminal connected to the host
machine whenever a specified process send or receive a
message. Port names may be included to limit the
tracing to particular ports. The whereis command
returns a machine identifier on which a process is
currently loaded. The status command returns the
status of a process.

Implementation Structure

DPS consists of a set of program translaters, a DICON
compiler, a loader, a resource manager, ipc servers, and
run-time monitors. Each program translater consists of
a preprocessor and a compiler or interpreter. The
preprocessor is used to check the consistency of port
uses within a sequential program. The DICON compiler
processes the configuration specification of a distributed
program. [t ensures the consistency of port connections
and generates a port connection table for each process.
The process allocator takes the resource requirements,
real-time constraints, and process assignment constraints
of a configuration and then generates a process
assignment map, which describes how processes should
be assigned to processors. The process allocator also
ensures that all real-time constraints can be satisfied
and generates scheduling information to be used at run-
time.



When a compiled configuration is executed, the
resource manager is invoked to reserved necessary
system resources. After the required system resources
have been allocated, processes are loaded into processors
according to the process assignment map. After the
processes have been started, the ipc servers handle
transmission and delivery of messages. The run-time
monitors detect deadlock and respond to user commands
such as halt a process, resume a process, stop the
distributed program.

We are currently implementing the distributed
programming system described in this paper on a
network of three VAX 11/750s connected through
Ethernet. In the prototype system, two VAX 11/750's
will run Berkeley 4.2 and one VAX 750 will run the
DPS kernel. We plan to port the DPS kernel into
super-microcomputers (either MicroVAX or Motorola
68000 based systems).

Conclusions

.We have described a distributed programming system
that is designed to facilitate the construction and
execution of a real-time distributed program {e.g., a
multi-sensory system) from a set of sequential programs,
possibly written in different programming languages.
The distributed programming system is based on a
distributed configuration language, called DICON,
which is used to specify the resource requirements,
process declarations, real-time constraints, and process
assignment constraints of a distributed program. The
design goals of the distributed programming system are

1. to facilitate the modular construction of a
distributed  program  from  separately
constructed sequential programs;

2. to allow the programmer to specify real-time
and process assignment constraints of a
distributed program,;

3.to help the loading and execution of a
distributed program on the network; and

4. to allow the dynamic control of process
execution to aid debugging.

We feel that the distributed programming system will
make the development of a real-time distributed
program amenable to applications (versus systems)
programmers. Furthermore, the specifications of
resource requirements, real-time constraints and process
assignment constraints in addition to process
declarations and port link definitions as part of a
configuration will aid the understanding of a real-time

26

distributed program.
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