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Peer-To-Peer Backup for Personal Area Networks

Abstract
FlashBack is a peer-to-peer backup algorithm designed for power-constrained devices running in a personal
area network (PAN). Backups are performed transparently as local updates initiate the spread of backup data
among a subset of the currently available peers. Flashback limits power usage by avoiding flooding and
keeping small neighbor sets. Flashback has also been designed to utilize powered infrastructure when possible
to further extend device lifetime. We propose our architecture and algorithms, and present initial
experimental results that illustrate FlashBack’s performance characteristics
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ABSTRACT 
FlashBack is a peer-to-peer backup algorithm designed for power-
constrained devices running in a personal area network (PAN). 
Backups are performed transparently as local updates initiate the 
spread of backup data among a subset of the currently available 
peers. Flashback limits power usage by avoiding flooding and 
keeping small neighbor sets. Flashback has also been designed to 
utilize powered infrastructure when possible to further extend 
device lifetime. We propose our architecture and algorithms, and 
present initial experimental results that illustrate FlashBack’s 
performance characteristics. 

1. INTRODUCTION 
Trends in the size, speed and cost of computing elements will soon 
make it feasible to embed computation in practically all 
manufactured devices. Moreover, the growing popularity of 
networking technologies like Bluetooth will make it possible to 
inexpensively add ad-hoc wireless networking capabilities to these 
devices as well. The result is that the small electronic devices we 
traditionally carry with us such as key fobs, wrist watches, cell 
phones and MP3 players, as well as larger devices such as PDAs 
and laptops will in effect form a pool of trusted, personal 
networked components. Recent efforts have shown that low-cost, 
easy-to-build, wireless “personal area networks”  or PANs are 
already feasible [7]. These PANs will soon cease to be the domain 
of exotic wearable computing rigs, and will instead become a 
mainstream reality. 

While personal area networks hold considerable promise, the 
heterogeneity, limited power, and frequent disconnection of 
devices in the PAN environment makes it difficult to develop 
robust applications. This problem can be greatly reduced by 
middleware services tailored to the constraints of mobile 
computing in general and PANs in particular. We introduce 
FlashBack, a solution designed specifically to provide reliable 
storage for the self-managing, mobile, impoverished devices that 
will be found in PANs. FlashBack is peer-to-peer, with each device 
maintaining a limited set of preferred neighbors. Each device in 
FlashBack allocates a portion of its storage and power to backup 
the data of its peer devices.  Backups are made to nearby devices 
keeping both cost and battery use at a minimum. FlashBack was 
designed with the following goals in mind: 

• Power-Efficiency – Perhaps the biggest single factor 
influencing the design of middleware for PANs is power-
efficiency. Every element of FlashBack has been designed 
with power-efficiency in mind and communication between 
devices is minimized as much as possible. FlashBack uses 
lazy update propagation [8] to reduce the number of updates 
that need to be sent. FlashBack keeps small neighbor sets  
minimize the maintenance overhead. In addition to using 

power sparingly, FlashBack has per-device power budgets to 
provide explicit control over how much devices can be 
utilized.  

• Heterogeneity Aware – In a PAN there may be extreme 
heterogeneity among the participating devices; PAN may 
contain a wristwatch with a microcontroller and a 900MHz 
radio cooperating with PDAs and laptops with 802.11 
capabilities. This heterogeneity is both a potential pitfall and 
an opportunity. To avoid potential starvation or overload 
FlashBack communicates a device’s resources and capabilities 
to their neighbors and this information is used in our group 
formation and replication algorithms. In the event that an 
extremely capable device is present, such as fixed 
infrastructure (server class devices without power constraints), 
FlashBack will use this to the maximum advantage, both 
replicating to the device as well as using it as a proxy to push 
replicas for less capable devices. 

• Ease of Use – The most common complaint about computing 
today is that it is difficult to configure and manage even 
simple systems. PANs potentially make this worse, 
introducing a large number of interface-constrained devices. 
We designed FlashBack to add as little overhead as possible 
on both users and application developers. FlashBack does not 
require any explicit actions to invoke data replications. 
Rather, FlashBack monitors the local data updates and 
transparently replicates data. In addition, FlashBack’s 
employs very simple replication semantics known as master 
data ownership described in [8]. Devices replicate data for 
each other, but are unaware of the structure or semantics of 
the data they are holding for their peers. These replicas are 
merely used as safeguards for the host device against data-
losses. This simple model greatly simplifies the replication, 
coherency and security mechanisms in our system. While 
some PAN applications may want to do read and write sharing 
across devices, we believe that most do not, nor does 
FlashBack prevent coherent sharing of data by a higher-level 
data management service.  

The contributions of this paper are twofold. Broadly, it offers what 
we believe is the first investigation into the feasibility of providing 
peer-to-peer backup services to a collection of power-constrained 
devices. Specific, we have developed FlashBack, an easily 
implemented algorithm for doing power-aware backup across a 
dynamic collection of trusted, heterogeneous devices. 

2. FLASHBACK 
FlashBack has been designed with a broad and dynamic definition 
of a personal area network. We believe that users will own a 
collection of small, trusted computing and communication-enabled 
devices, some subset of which they have with them at any given 



time. In addition, users will also regularly interact with a number 
of other trusted devices such as car telematics, home automation 
systems, and traditional desktop computers. As users go through 
their daily lives, the set of devices in their immediate environment 
will change as they move from home to car to work and back. We 
refer to this dynamic collection of devices as the user’s PAN. We 
believe that this dynamic notion accurately reflects the mobile 
computing context in which users will operate in the future.  

Device A
{D}

Device D
{A,C}

Device B
{A,E}

Device E
{A,C}

Device C
{B,F}

Device F
{A,D}

 
Figure 1: Overview of a PAN: Each device is labeled with its 
unique device identifier , and has its neighbor set in parenthesis. 
Note that neighbor links are directional. 

We begin our discussion of FlashBack by presenting an overview 
of its architecture, and then describe its algorithms and initial 
implementation.  We assume that devices within a user’s PAN are 
trusted, and a lightweight certificate-based authentication scheme 
is used to ensure that devices only participate in PANs to which 
they are assigned. We also assume that point-to-point 
communication is taking place between devices in the PAN. While 
the presence of intermediaries performing ad-hoc routing would 
not affect the functionality of FlashBack, it would affect its 
efficiency since FlashBack assumes all communications take one 
hop. 

In FlashBack, each device sets aside a portion of its local storage to 
devote to storing replicas for other devices. Each device also 
reserves a portion of its power for FlashBack activities such as 
sending and receiving replicas and status messages. When the 
power budget is exceeded, the device no longer participates, 
causing it to effectively leave the PAN from FlashBack’s 
perspective. In FlashBack, each device has a device identifier that 
uniquely identifies itself within its PAN. This device identifier is 
assigned out-of-band during the installation of FlashBack on the 
device. If a device fails, its device identifier can be assigned to a 
new device, and the new device is introduced to the PAN to 
commence the recovery process discussed in section 2.3. 

Each FlashBack device maintains a neighbor set (see Figure 1) 
within the PAN. This neighbor set is chosen based on heuristics 
discussed in section 2.1, and represents the preferred set of devices 
to which replicas are pushed. A device with an empty set of 
neighbors can discover an initial set of neighbors by snooping the 
network for FlashBack traffic. This initial set of neighbors is 
refined by occasionally sharing neighbor status messages with its 
current neighbor set. 

The unit of replication in FlashBack is a variable-sized block of 
unstructured data. Since there is no sharing of data between 
devices, the replicating devices need not understand the data’s 
format or semantics; rather they treat the blocks as opaque data that 
may be requested at some future time. This gives devices the 
opportunity to encrypt data before it is passed to FlashBack, 
ensuring privacy. It also makes Flashback flexible, allowing it to 

work with any storage model that can be translated into block reads 
and writes. In our initial implementation, we layered a tuple-store 
on top on FlashBack, where each block of data holds a tuple. File 
systems and databases would also be good choices provided care is 
taken to keep block sizes reasonable. FlashBack provides a simple 
API with four basic procedure (See Figure 2).  

DataBlock ← Read (GUID) 

GUID ← Write(DataBlock, Priority) 

Delete (GUID) 

Recover()  

Figure 2: FlashBack API . GUID uniquely identifies a block of 
data within its local store. 

This API allows for data manipulation (read, write and delete 
function calls) in data-block granularity. The number of replicas 
created for each block of data vary based on the replication factor 
that depends on the priority level set by the application creating the 
data. Higher priority data will be replicated more aggressively. In 
the event that a device fails or is lost, a new device is introduced to 
replace the former and starts the recovery process via the recover 
function call. 

2.1 PAN Formation and Maintenance  
Device
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Figure 3: Bootstrapping and PAN Formation. F joins the PAN 
by contacting D. D responds with a set of recommended 
neighbors that include its current neighbor set and itself.  

To join a PAN, new devices must identify an existing device that is 
currently part of the PAN. Locating this bootstrap device can be 
done in two ways. First, a device discovery protocol such as UPNP 
[21] can be used identify fellow devices in the PAN. Alternately, 
the wireless network can be snooped for FlashBack traffic, 
enabling the new device to discovery other active devices. This 
latter approach works especially well when a device is joining an 
established PAN with a number of active devices.  

Once a bootstrap device is identified, a Join message is sent from 
the new device to the bootstrap device. Figure 3 shows an example 
where F sends a Join message to D. The Join message includes the 
device identifier as well as a PAN certificate. The PAN certificate 
is simply an identifier that uniquely identifies the PAN in which a 
device is participating. The bootstrap device will accept the new 
device into the PAN only if it has an identical identifier.  This 
simple authentication scheme ensures that devices only participate 
in their designated PANs. 

Upon receiving the Join message and authenticating the new 
device into the PAN, the bootstrap device returns a list of 
neighbors including itself to the new device, together with their 
advertised resources. In Figure 3, D returns the recommended 
neighbors { A,C,D}  together with their advertised metrics. The new 



device will select a subset from the recommended peers to be its 
initial neighbors. Note that neighbor links are directional. E.g., D 
considers C its neighbor but not vice versa. 

Devices will periodically send keep-alive messages to their 
neighbors who respond with their currently available power and 
storage resources. Requesting another device to be a neighbor does 
not require a special message since it is implicit from the first keep-
alive message being sent. The lack of a response alerts a device 
that a neighbor may have departed and its entry is then deleted 
from its neighbor set.  

2.1.1 Utility Function 
Ideally, a device should choose neighbors that have sufficient 
storage and power resources to support all the device’s replicas, 
and have a high probability of being in the device’s proximity if it 
should require recovery. FlashBack was written to accept a 
parameterized utility function that approximates this notion of a 
good neighbor. The higher the computed utility value, the more a 
device is valued as a neighbor. 

Given that the main resource constraint is power, a simple utility 
function based solely on a neighbor’s available power should 
provide decent overall behavior.  In Section 3 we show that while 
performing reasonably well, a utility function based only on power 
fails to take advantage of either co-locality or the benefits offered 
by devices with large amounts of available storage. Hence, we also 
include a more balanced utility function that blends the following 
factors: 

• Available Power – Devices with more power available have a 
higher chance of lasting longer in the PAN, and can support 
more replicas for other devices within the PAN. 

• Available Storage – Devices with more storage available are 
favored due to the maintenance efficiency offered by 
replicating many data blocks on a single device and batching 
keep-alive messages. To the same effect, if a device already 
has some replicas on a neighbor, that neighbor should be 
positively favored as well. 

• Pair -wise Locality – This final factor keeps track of whether 
two devices are frequently active in the same PAN at the same 
time. This metric is especially useful in tracking if devices 
tend to “cluster”  together, such as embedded devices within a 
car or a briefcase. We estimate pair-wise locality by counting 
the number of keep-alive messages exchanged with each 
device over a moving window of time.  

• PowerBudget(RD) : The advertised current power budget of 
RD. 

• StorageFactor(RD) : The ratio of the current storage size of 
RD allocated for the PAN, to the total size of data in LD. 

• ReplicaFactor(RD) : 1 + (the ratio of the size of replicas 
stored in RD on behalf of LD, to the total size of data in LD) 

• LocalityFactor(RD) : (2 – e-numMsgs), where numMsgs is the 
number of keep-alive messages exchanged with LD.  

Figure 4: Elements of the Balanced Utility Function. The 
balanced utility function is a product of above 4 proper ties of a 
remote device. LD stands for  Local Device, while RD stands for  
Remote Device. 

Given that the utility function has to be positively correlated with 
all the factors above, the actual function that we have in our 
implementation is the product of the properties of the remote 
device as shown in Figure 4. 

2.1.2 Neighbor Selection 
The aggregate utility of a device is the sum of all the utility values 
of all its current neighbors. In order to keep the FlashBack 
maintenance costs low, the maximum number of neighbors Nmax is 
limited to the number of replicas that will be created for any block 
of data.   

Periodically, each device will contact one of its neighbors 
randomly and request neighbor recommendations. That neighbor 
will return its current set of neighbors to the requestor. Based on 
the new recommendations, a device may choose to add new 
neighbors (at the expense of its low utility neighbors if Nmax is 
reached). This process of improving the neighbors is known as 
rediscovery.  

Performing rediscovery too frequently will drain the resources of 
the devices, while performing rediscovery too infrequently would 
mean that information about resource-rich devices will be 
propagated too slowly. In FlashBack, we use a simple adaptive 
approach in which a device with few neighbors will perform 
rediscovery more aggressively (based on a simple linear function) 
to ensure that it can build up to the maximum set of neighbors 
quickly.  

2.2 Replicas 
Periodically, FlashBack identifies locally written data and pushes 
their replicas lazily into the PAN. The process operates as follows: 
the device replicating the data (called the local device) sends a 
replicate message containing the data to be replicated to one of its 
neighbors (called the remote device). A greedy algorithm is used in 
selecting the remote device for replication. Among the neighbors 
with sufficient resources, the highest utility neighbor is picked as 
the candidate remote device to push each replica to. If no suitable 
neighbor is found among the neighbor set, replication is simply 
deferred. Upon receiving a replica from a neighbor, the remote 
device stores the replica, and returns an acknowledgment to the 
local device.  

To keep track of its replicas, FlashBack maintains, in persistent 
storage, a replica table that has an entry for each local data block. 
Each entry in the replica table maintains a list of replica states for 
each replica created. The replica state contains a 2-bit status 
(Active, Inactive, or Expired), the identifier of the device that 
currently stores the replica as well as a time at which the replica 
was created. A replica state is added to the list whenever the local 
device receives an acknowledgement from the remote device about 
the successful creation of a replica. 

2.2.1 Multiple Replicas for Redundancy 
Replication can be performed multiple times for redundancy, and 
the replication factor is decided on a per-data-block basis based on 
the priority assigned by the application at the time of the write. 
Having redundant replicas improves reliability and increases the 
probability that a replica is present in the PAN during the recovery 
process. FlashBack maps each priority level to a replication factor. 

FlashBack provides soft reliability guarantees as follows: at any 
point of time, the number of replicas for each data block is at most 
its replication factor. Periodically, FlashBack scans the replica 
table to identify data blocks where the designated replication factor 
is not reached, and creates replicas for these blocks. Creation of 
new replicas is tuned to be lazier (based on a linear scale) as the 
number of replicas approaches the replication factor. This achieves 
a damping effect on the creation of replicas, and places higher 
priority on data blocks that currently have no replicas. 



2.2.2 Replica State Management 
FlashBack manages replicas using a time-based management 
scheme.  When a new replica is created, a commitment is made by 
the remote device to store the replica for a lease period. During this 
period, the local device assumes that the replica is available unless 
the remote device fails.  The lease of any replica can be in any of 
the three states seen in Figure 5.  

A newly created replica is always active. The local device will 
periodically send keep-alive messages to the remote device holding 
the replicas. A replica transitions from active to inactive state 
during the disconnection phase, when the remote device storing the 
replicas no longer responds to keep-alive messages sent by the 
device. Devices that have disconnected and left the PAN leave with 
their replicas intact. Flashback avoids being too greedy in making 
more replicas when a neighbor exits a PAN, as such aggressive 
replication will not work well in a resource-constrained 
environment where devices could be entering and leaving 
frequently and network connectivity cannot be guaranteed. Inactive 
replicas are retained on devices that depart the PAN, and will 
‘decay’  over time due to the lack of updates reaching them. 
However, their replicas are still considered useful for future 
recovery purposes as the device may rejoin the PAN, and will be 
kept for the duration of the lease period. 

Active
Replica

Inactive
Replica

Expired
Replica

Renewal

Reconnection

Disconnection

Expiration or
dropped replica

 
Figure 5: State Diagram for  Replica Management 

A replica is reactivated during the reconnection phase, when two 
devices detect the presence of each other within the PAN. In the 
expired state, the lease has expired and the remote device can drop 
the data and reclaim space for new data.  

Replica renewal is done periodically by sending a renew message 
to the remote device storing the replica. When half the lifetime of a 
replica has transpired, a device will attempt to renew the duration 
of the replica on the remote device. If a replica’s lease cannot be 
renewed be due to disconnection, it expires and the replica can be 
dropped. The owner of the original data is aware of the expiration 
and will attempt to place a new replica elsewhere. In the event that 
a replica is valid but expired, the replica’s lease can be renewed 
upon reconnection. 

The lease duration should be longer than any planned 
disconnection to ensure that replicas are not dropped during 
normal usage patterns. Long lease durations also increases power 
efficiency by reducing the number of messages sent to extend 
leases. Setting lease duration to be too large, however, make the 
system less responsive by increasing the time taken to move 
replicas to resource rich devices. 

2.2.3 Deletes and Updates 
Deletes are performed by sending a message to the respective 
devices in the PAN to drop the block. If a replica is unavailable at 
delete time, it will eventually be dropped when the lease on the 
replica expires. Updates are performed as a lazy deletion of the old 
block and lazy creation of a new block. Periodically, each device 

scans the replica table for potential updates. A replica is due for an 
update when the timestamp of the base data is newer than the 
timestamp of the replica. Active replicas are updated simply by 
sending the new data to replace the existing replicas. This 
guarantees that whenever possible, replicas are updated in their 
former locations and allows the possibility of sending deltas. At the 
same time, new blocks are created lazily in the background to 
ensure that there are sufficient copies of the new block. When 
inactive replicas are reactivated during the reconnection phase, if 
there are sufficient up-to-date replicas, the inactive replicas will be 
dropped. Otherwise, these replicas are reactivated and updates 
propagated.  

2.3 Recovery Process 
During the recovery process, a new device is introduced into the 
PAN to replace a failed device. It initially sends a recovery 
message to its immediate neighbors who will then flood the 
message throughout the PAN. While flooding is power inefficient, 
recoveries should be rare and represent a situation in which power 
drain is not a central concern.  The flooded recovery message 
contains the unique device identifier of the device it is replacing, as 
well as the network address of the new device. The recovery 
message is buffered in devices for time TREC and gossiped to new 
neighbors who have not seen the message before. A longer TREC 
will ensure better recall as devices are allowed to recover their 
replicas for a longer time. However, this means that many devices 
will have to buffer recovery messages and propagate this 
information to new devices for a longer time, increasing the PAN 
overhead. 

When a device receives a recovery message, it scans its local 
storage and sends all the relevant replicas that it has directly to the 
recovering device. Since there can be multiple data blocks with 
different timestamps, the recovering device retains the newest ones. 
An open issue yet to be resolved is when a device can resume its 
applications during the recovery process.  

2.4 Initial Implementation 
To test the power efficiency and reliability of FlashBack we have 
implemented a Java version that performs FlashBack as we have 
described. In our implementation, the network layer was abstracted 
to allow for simulations as well as actual deployment. The 
experimental results in Section 3 were generated using the 
simulated network layer.  

3. EXPERIMENTS 
This section describes a series of simulation experiments designed 
to explore the performance and reliability characteristics of 
FlashBack. In Section 1, we listed power-efficiency and best effort 
reliability in the face of heterogeneity and dynamicity as our design 
goals, and we show how well we have done in each of these areas.  

3.1 Exper imental Setup 
In all of the experiments, we are running an implementation of 
FlashBack using a simulated network layer. In all cases, we are 
modeling a fixed set of devices, all of which are running 
FlashBack, and analyzing the behavior of the PAN. All data blocks 
are written with the same priority and therefore have the same 
replication factor. 

The simulated network layer uses a simple, but realistic 
communication and cost model. In our network model, each device 
can send messages to other devices within its PAN in one network 
hop. In current wireless devices, the cost of sending and receiving 
on the network is much more expensive that the cost of accessing 



memory or performing computation. Recent measurements show 
that the cost of sending a bit on an 802.11a network to be 1000 
times more power than performing an add on the Compaq Personal 
Server [2]. Since FlashBack is neither compute, no memory 
intensive, we ignore all costs other than network sends and 
receives. It is import to note that we are only modeling the 
overhead introduced by FlashBack, and not by the applications 
running on behalf of the user. This allows us to compare the impact 
that allowing FlashBack to performing backups has on the device’s 
time-to-live. The cost of receiving relative to sending varies from 
technology to technology, with some costing more to send than to 
receive and vice-versa for the others. The measurements in [2] also 
showed the energy used to transmit and receive a bit in a Compaq 
Personal Server running 802.11b to be approximately equal. In our 
simulated network, the cost per byte for both sending and receiving 
is set to 1 power unit. All messages sent and received within the 
PAN are included in the cost calculations.  

3.1.1 Device Configuration 
Device 
Type 

Percent 
Devices 

Average Storage 
Space (MB) 

Average Power 
Budget 

I 70% 64 300k 

II 10% 128 800k 

III 10% 256 1M 

IV 10% 512 2M 

Figure 6: Initial Device Configuration 

Our experiments were conducted with a collection of devices with 
varying resources (See Figure 6). The bulk of the devices (Type I) 
have the smallest storage capacity and power budget. Types II-III 
represent the minority of the devices and have increasingly more 
storage and power budget. These devices are intended to span the 
range from cell phone and 2-way pager class devices up to PDAs. 
The configurations used for these initial experiments do not 
capture any real-world configuration we measured. Rather they are 
intended as a simple starting point we are using to understand how 
our design tradeoffs have manifested themselves in both power 
usage and reliability/recall.  

At the start of each experiment, each device is initialized with the 
storage and power parameters stated above. 50% of the storage 
resources will be devoted to FlashBack. Each device is given a 
power budget that is not replenished during the duration of the 
experiments.  

Each device is initialized with an initial amount of data and is 
periodically fed with a stochastic workload. Each data block 
written is 1KB in size. The workload is a mixture of 50% writes 
and 50% updates, and is Poisson-distributed with a mean-time-
between-writes of 1 hour. Reads are ignored, as they have no effect 
on our measurements.  

Replicas are created lazily, ranging from 0.5 to 2 hours between 
the creations of new replicas. Periodic neighbor rediscovery ranges 
from 3 minutes (when it has no neighbors) to 1 hour (when it tries 
to improve its full set of neighbors).  Lease durations were set to 
480 hours.  

All of the experiments were run using three different utility 
functions: random, power-only and balanced. The random utility 
function values all neighbors equally, causing devices to choose 
neighbors randomly. The power-only utility function causes 
devices to value a neighbor higher if it has more available power. 
The balanced utility function (described in Section 2.1.1) causes 

devices to blend available power, storage and co-location when 
valuing neighbors. 

3.1.2 Experimental Metrics 
We use two metrics to measure the performance of FlashBack. 
Median Time-To-Live (TTL) is the median time when devices run 
out of their power budget and is our primary metric of power 
consumption. The higher the Median TTL is, the more efficiently 
and evenly Flashback is using the power resource available. Recall 
is the percentage of data that can be recovered at any instant in 
time from the PAN. This is our metric for the reliability achieved 
by FlashBack. Recall is measured by freezing the PAN hourly and 
examining the data stored in each device currently active in the 
PAN, and figuring out if a corresponding replica is present in 
another device within the PAN. 

3.2 Replication Factor  and Power Usage 

 
Figure 7: Median TTL (hrs) against Replication Factor  

In our first experiment, we measure the effects of increasing the 
replication factor on the lifetime of a PAN. In this experiment, we 
introduce a collection of 30 devices chosen from the distribution in 
Figure 6. These devices all start running their workload of writes 
and updates at time 0 and continue doing so until all of the devices 
have exhausted their FlashBack power budget. In this experiment 
the PAN is static and none of the device departs until they run out 
of power. Figure 7 shows the Median TTL for all three utility 
functions varying the replication factor from 1 to 7. (Recall in 
section 3 that the replication factor refers to the number of replicas 
created per data block.) 

As expected, this graph shows that increasing the replication factor 
shortens the lifetime of the PAN. This graph also shows that the 
TTL is much higher for the power-only and balanced utility 
function than the random utility function. This demonstrates that 
both are effectively utilizing the devices with more power in order 
to extend the lives of the less capable devices. The balanced utility 
function yields a median TTL around 10% larger than power-only. 
This is due to two factors. First, power-only causes the device with 
the most power to be valued above all other and produces a degree 
of churn as devices switch places in the ranking of their available 
power. Second, the balanced utility results in a device placing all 
of its replicas on a small number of peers, lowering the number of 
maintenance messages that need to be sent. Power-only does not 
have this affordance and will spread replicas out over a large 
number of peers as the power rankings change. 



Figure 8 shows another view of the same experiment by focusing 
on a configuration with replication factor is 4, and measuring the 
device drainage. During the experiment, we logged the time when 
each device exhausted their power budget. In this graph, the Y-
Axis shows the number of devices remaining in the PAN. For both 
power-only and balanced, effective use of the more capable devices 
extends the lifetime of the weaker devices. Hence, all the devices 
leave the PAN at approximately the same time. On the other hand, 
the random utility function drains each device equally causing the 
impoverished devices to exit the PAN first, followed much later by 
the more capable devices. 

 
Figure 8: Device Drainage Over Time  

Replication Factor  = 4. 

3.3 Disconnection and Recall 
Our second experiment illustrates the importance of placing 
replicas on devices that are frequently co-located. In our second 
experiment we configure the PAN with the same 30 devices 
running the same workload as the previous experiment. In this case 
15 of the devices are mobile and periodically disconnect and 
reconnect from the other 15 non-mobile devices. The mobile 
devices move independently of each other and the disconnections 
and reconnections are Poisson distributed with a mean time of 4 
hours before disconnection and 8 hours before reconnection. We 
then measure the recall of the 15 devices that remain within the 
PAN.  

Utility Function % Recall 

Balanced 98.6 % 

Power-only 64.6 % 

Figure 9: Compar ing Recall for  Different Utility Functions 
When Devices Can Disconnect 

Figure 9 shows the resulting recall for the balanced and power-
only utility functions when the replication factor is 1. This table 
shows that the blended utility function does a much better job of 
ensuring that the devices that always remain in the PAN replicate 
data among themselves. This is not a surprising result given that 
the blended function includes a factor that represents the pair-wise 
co-locality of devices. Nevertheless, this does show that to achieve 
high recall, such a factor is likely needed. 

3.4 Replication Factor  and Recall 
In our final experiment, we look at how the replication factor 
affects the recall and age of recovered data in a dynamic PAN. To 
some extent this may not actually be a terribly important issue. If a 

device fails and recovery needs to be performed, a user is probably 
willing to take the time to gather their devices in one place to 
perform a complete recovery. It may be the case, however, that 
with a reasonable replication factor, recall and recovery age can be 
sufficiently good to make this unnecessary.  To measure the effect 
that increasing the replication factor has on recall we configure the 
PAN so that all of the 30 devices join and leave the PAN at 
random intervals while executing their workloads. Each device has 
an average PAN uptime and downtime, which represent the 
amount time in which they stay active in the PAN and are not in 
the PAN, respectively. Devices that have left the PAN continue to 
be subjected to their workload. When disconnected, devices are 
alone and are not in proximity to any other devices. To change the 
volatility of the PAN, the portion of time spent away from the PAN 
was varied between 20% and 50%. This was achieved by using an 
average downtime of 2 hours and average uptimes of 2, 4 and 8 
hours. We measured the recall for every device periodically until 
the first time a device has exhausted its power budget and left the 
PAN permanently.  

 
Figure 10: The Effect of Replication Factor  on Recall 

Figure 10 shows the impact that changing the replication factor has 
on recall. This graph shows that replication factor actually has less 
of an effect on recall that volatility does. The curve for uptime=2 
hours shows considerably worse recall that the more stable 
configurations. All of the curves show that beyond a replication 
factor of 2, there is little additional recall to be gained. This 
suggests that using a modest replication factor of 2 or 3 and 
carefully identifying co-located devices is the best strategy for 
achieving high recall. It is worth noting that the highest recall 
reached by the most stable configuration is still well under 100%. 
This is largely due to the fact the FlashBack is replicating lazily 
and even when the PAN is stable some loss can occur due to data 
that has yet to be replicated. 

4. RELATED WORK 
Most backup mechanisms for mobile devices are what we call 
occasional synchronization systems. Users move around their 
environment updating state in the device, and then using local 
communication mechanisms like USB, infrared or Bluetooth, run a 
synchronization protocol such as SynchML [19] to synchronize the 
device’s data with a server. In some cases, the synchronization is 
automatic; in most cases, it is manual. While there protocols are 
easy to understand and offer basic data sharing, they have the 
significant drawback that more often than not, the user is 
wandering around with data that is not backed up. Solutions 
involving automatic synchronization usually involve a specific 



desktop machine (at home or work) that is configured for 
synchronization. When users are away from this special machine 
for long periods of time their data is vulnerable. 

A competing backup model is what we call continuous background 
synchronization in which it is assumed that one of the user’s 
devices will always be one hop from the fixed infrastructure. All 
devices are then configured to use this connection to run a 
background synchronization process. A common gateway device 
for this sort of scenario is a GPRS cell phone. In these solutions, 
devices use local networking technologies like Bluetooth to buffer 
new data on the cell phone, which then sends the data to a 
designated backup server using the cell phone’s data 
communication capabilities. This solution offers the benefit that 
the data is backed up as it is generated without any extra local 
infrastructure and without intervention on the part of the user. The 
downside is that this synchronization typically incurs a financial 
cost proportional to the amount of data sent. In addition, despite 
the promises of ubiquitous connectivity, there are lapses in 
coverage, exposing the user to potential data loss. Finally, 
connections of this type are bandwidth limited and may not 
reasonably be expected to synchronize the large amounts of data 
produced and consumed by all the devices with a PAN.  

Outside the mobile computing space, a number of P2P backup 
systems have been developed. Both Pastiche [4] and HiveCache 
[9] perform backup services for workstations by utilizing free disk 
space on other machines. Unlike FlashBack, these systems have 
not been designed with power efficiency in mind. The design of 
these systems has also been heavily influenced by the fact that a 
large percent of the data (like executables and libraries) are 
identical from machine to machine. It is unclear if these same 
assumptions apply to the varied devices found in a personal area 
network. 

There are a variety of general-purpose data management systems 
that support disconnected operation and are therefore potentially 
deployable within PANs. Bayou [20] is a system that supports 
replication in a weakly consistent fashion, thus enabling the 
sharing of data between mobile users operating in disconnected 
modes. Bayou utilizes update-anywhere replication and leverages 
application-specific rules to transparently help deal with 
reconciliations. While Bayou offers a more flexible and powerful 
data sharing model than FlashBack, Bayou requires substantial 
application modification and was not been designed with power 
efficiency in mind. Coda [16] is an update-anywhere file system 
that allows users to read and write cached files while disconnected. 
Unlike systems like Bayou that make the applications manage 
conflicts, Coda has the users themselves decide how to resolve 
conflicts between divergent versions of a file. Similar systems 
include Deno [5] and Mobisnap [12]. Like Bayou, none of these 
systems has been designed with power efficiency as a goal. 

FlashBack also shares common issues and design element with 
other P2P data management system. Microsoft Research’s Farsite 
[1] aims to provide a very high degree of reliability by replicating 
data across PCs sharing a local area network. OceanStore [10] aims 
to build a transparent and reliable peer-to-peer storage system. CFS 
[6] and OceanStore have been using distributed hash tables [13] 
[14] [17] [23] to build stable data repositories from dynamic 
collection of peers distributed across the internet. These systems 
have primarily been designed for PC-class devices performing 
traditional file-oriented workloads and as a result, are very 
different in design than FlashBack. 

The FlashBack mechanism for providing reliability is based on 
replication. Replication systems are well explored in distributed 

file systems [3] [15] and commercial database systems [11] [18]. 
These systems tend to focus on the issues of trading off consistency 
and reliability for performance. The database systems utilize log 
sniffing, which is not applicable in our environment since it does 
not deal with a write-ahead logging (WAL) transactional 
environment. On the other hand, FlashBack makes the best effort 
to replicate local data given the constraints imposed by the power 
and storage resources on these impoverished devices. Moreover, 
traditional replication systems tend to assume homogeneity among 
the participating machines, which will not hold true in our usage 
scenarios.  

5. FUTURE WORK 
As part of our future work, we intend to explore the following 
areas in detail: 

• Further  Exper imentation – While our experiments have 
been useful in demonstrating the performance characteristics 
of Flashback, they do not model exactly devices used in 
PANs. To conduct more realistic experiments, we intend to 
capture real-world device configurations, user behaviors and 
workload over time and use these traces to drive a 
measurement of Flashback. We have conducted a simple 
experiment in section 3 that shows that recall can stay 
reasonably high if each device participating in the PAN is able 
to push replicas to devices that it sees more often in the PAN. 
This is especially important as we foresee usage scenarios 
where there will be multiple PANs merging and splitting over 
time. As part of our future work, we intend to conduct 
experiments with multiple PANs periodically merging and 
splitting, and examine the effectiveness of the FlashBack 
utility. We also intend to investigate the effects of having 
different durations of lease periods on reliability and power 
consumption. 

• Adaptive Utility Function -- Our first experiment showed 
that even for a stable PAN, picking the right utility function is 
crucial. We have picked a simple utility function that is easy 
to implement and works well in our experiments. Despite our 
success, we feel that the results can be improved further by 
picking the utility function (with appropriate weights) 
adaptively at runtime. This is an interesting area of future 
research. 

• Adaptive Replication -- Different devices have different 
levels of reliability. For example, a server within the PAN is 
definitely more reliable than a small mobile device. A more 
accurate measure of replication factor would be to allocate a 
greater factor to replicas on devices that have greater 
resources, and a lesser factor to flaky devices. The replication 
factor is currently hard-coded based on the priority of the 
data. As future work, we should tune the replication factor at 
run time based on the resources of devices within a PAN.  

6. CONCLUSIONS 
FlashBack is an algorithm for performing transparent backups 
between peer devices in a personal area network. FlashBack has 
been designed to be power efficient and to require no extra work 
on the part of the user. FlashBack replicates lazily and maintains 
small neighbor sets to keep power usage as low as possible. Device 
co-locality and background neighbor improvement are used to 
achieve high recall. 

 The FlashBack system proposed in this paper is a proof-of-concept 
that such as backup system is not only viable, but can also 
potentially provide real value to end-users. We believe that the 



successful deployment of FlashBack will enable new and 
interesting applications to be possible for PANs, while diminishing 
user’s concern for the safety of application data.  Moreover, 
Flashback enables users to easily “borrow” devices, have them join 
their PANs, and quickly have their corresponding data within the 
PAN available to these borrowed devices. Thus, Flashback may 
serve as an important element in making what Mark Weiser 
described as scrap devices [22] possible. 

7. REFERENCES 
[1] ATUL ADYA, WILLIAM J. BOLOSKY, MIGUEL CASTRO, GERALD 

CERMAK, RONNIE CHAIKEN, JOHN R. DOUCEUR, JON HOWELL, 
JACOB R. LORCH, MARVIN THEIMER AND ROGER P. 
WATTENHOFER. FARSITE: Federated, Available, and Reliable 
Storage for an Incompletely Trusted Environment. In the 5th 
Symposium on Operating Systems Design and 
Implementation (OSDI ’02)  

[2] KENNETH C. BARR AND KRSTE ASANOVIC, Energy Aware 
Lossless Data Compression, The First International 
Conference on Mobile Systems, Applications, and Services, 
San Francisco, CA, May 2003.  

[3] W. J. BOLOSKY, J. R. DOUCEUR, D. ELY AND M. THEIMER. 
Feasibility of a Serverless Distributed File System Deployed 
on an Existing Set of Desktop PCs/ Proceedings of the 
international conference on Measurement and modeling of 
computer systems, 2000, pp. 34-43  

[4] LANDON P. COX, CHRISTOPHER D. MURRAY, AND BRIAN D. 
NOBLE. Pastiche : Making Backup Cheap and Easy. 5th 
Symposium on Operating Systems Design and 
Implementation. Boston, MA, December 2002.  

�����
U. CETINTEMEL, P. J. KELEHER, AND M.FRANKLIN. Support for 
Speculative Update Propagation and Mobility in Deno. In 
22nd International Conference on Distributed Computing 
Systems, 2001.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert 
Morris, and Ion Stoica, Wide-area cooperative storage with 
CFS, ACM SOSP 2001, Banff, October 2001 

[7] K. FISHKIN, L. PARTRIDGE AND S. CHATTERJEE. User Interface 
Components for Lightweight WPANs. In IEEE Pervasive 
Magazine special issue on Wearable Computers. 

[8] J. GRAY, P. HELLAND, P. O'NEIL AND D. SHASHA. The Dangers 
of Replication and a Solution. SIGMOD Conf. 1996 

[9] HiveCache: Distributed Enterprise Online Backups. 
http://www.mojonation.net/ 

[10] J. KUBIATOWICZ, D. BINDEL, Y. CHEN, S. CZERWINSKI, P. 
EATON, D. GEELS, R. GUMMADI, S.RHEA, H. WEATHERSPOON, 

W. WEIMER, C. WELLS, AND BEN ZHAO.  OceanStore: An 
Architecture for Global-Scale Persistent Storage, In 
Proceedings of the Ninth international Conference on 
Architectural Support for Programming Languages and 
Operating Systems (ASPLOS 2000), November 2000. 

[11] Microsoft SQL Server, Replication for Microsoft SQL Server 
7.0 whitepaper.  

[12] N. PREGUIÇA, C. BAQUERO, J. L. MARTIN. MobiSnap: 
Managing Database Snapshots in a Mobile Environment. In 
the Actas do 1º Encontro Português de Computação Móvel, 
November 1999. 

[13] A. ROWSTRON AND P. DRUSCHEL, Pastry: Scalable, distributed 
object location and routing for large-scale peer-to-peer 
systems.  IFIP/ACM International Conference on Distributed 
Systems Platforms (Middleware), Heidelberg, Germany, pages 
329-350, November, 2001  

[14] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP AND S. 
SHENKER. A Scalable Content-Addressable Network. In 
Proceedings of ACM SIGCOMM 2001. 

[15] G. SWART, A. BIRRELL, A. HISGEN AND T. MANN. The Echo 
Distributed File System. SRC Research Report 111.  

[16] SATYANARAYANAN, M., KISTLER, J.J., SIEGEL, E.H. Coda: A 
Resilient Distributed File System, IEEE Workshop on 
Workstation Operating Systems, Nov. 1987, Cambridge, MA. 

[17] I. STOICA, R. MORRIS, D. KARGER, F. KAASHOEK, AND H. 
BALAKRISHNAN, Chord: A Scalable Peer-to-peer Lookup 
Service for Internet Applications, ACM SIGCOMM 2001, 
San Deigo, CA, August 2001, pp. 149-160. 

[18] Replication Server: An Architecture for Distributing and 
Sharing Corporate Information. A Sybase White Paper 

[19] SyncML, http://www.syncml.org/ 

[20] D. B. TERRY, M. M. THEIMER, K. PETERSEN, A. J. DEMERS, 
M. J. SPREITZER AND C. HAUSER. Managing Update Conflicts 
in Bayou, a Weakly Connected Replicated Storage System. In 
Proceedings 15th Symposium on Operating Systems 
Principles (SOSP), 1995 

[21] Universal Plug and Play. http://www.upnp.org/. 

[22] M. WEISER. The computer for the 21st century. Sci. Amer. 
September 1991, 933--940. 

[23] B. Y. ZHAO, J. KUBIATOWICZ, AND A. JOSEPH. Tapestry: An 
Infastructure for Fault-tolerant Wide-area Location and 
Routing. Tech. Rep. UCB/CSD-01-1141, University of 
California at Berkeley, Computer Science Department, 2001. 

 


	University of Pennsylvania
	ScholarlyCommons
	May 2003

	Peer-To-Peer Backup for Personal Area Networks
	Boon Thau Loo
	Anthony LaMarca
	Gaetano Borriello
	Recommended Citation

	Peer-To-Peer Backup for Personal Area Networks
	Abstract
	Comments


	Microsoft Word - cv_02015.doc

