
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2003

Peer-To-Peer Backup for Personal Area Networks
Boon Thau Loo
University of Pennsylvania, boonloo@cis.upenn.edu

Anthony LaMarca
Intel Seattle Research

Gaetano Borriello
Intel Seattle Research

Follow this and additional works at: http://repository.upenn.edu/cis_papers

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND THE
AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY
RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE PROVISION OF THIS
DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS NOTE: At the time of publication, author Boon Thau Loo was affiliated with the University of
California at Berkeley. Currently (April 2007), he is a faculty member in the Department of Computer and Information Science at the University of
Pennsylvania

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/334
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Boon Thau Loo, Anthony LaMarca, and Gaetano Borriello, "Peer-To-Peer Backup for Personal Area Networks", . May 2003.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/334
mailto:libraryrepository@pobox.upenn.edu

Peer-To-Peer Backup for Personal Area Networks

Abstract
FlashBack is a peer-to-peer backup algorithm designed for power-constrained devices running in a personal
area network (PAN). Backups are performed transparently as local updates initiate the spread of backup data
among a subset of the currently available peers. Flashback limits power usage by avoiding flooding and
keeping small neighbor sets. Flashback has also been designed to utilize powered infrastructure when possible
to further extend device lifetime. We propose our architecture and algorithms, and present initial
experimental results that illustrate FlashBack’s performance characteristics

Comments
DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT,
OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND THE AUTHORS OF THIS
DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS
DOCUMENT. THE PROVISION OF THIS DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH
ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS NOTE: At the time of publication, author Boon Thau Loo was affiliated with the
University of California at Berkeley. Currently (April 2007), he is a faculty member in the Department of
Computer and Information Science at the University of Pennsylvania

This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/334

http://repository.upenn.edu/cis_papers/334?utm_source=repository.upenn.edu%2Fcis_papers%2F334&utm_medium=PDF&utm_campaign=PDFCoverPages

Copyright 2002, Intel Corporation, All rights reserved.

Peer-To-Peer Backup for Personal Area Networks

Boon Thau Loo, University of California, Berkeley
Anthony LaMarca, Gaetano Borriello, Intel Research Seattle

IRS-TR-02-015

May 2003

DISCLAIMER: THIS DOCUMENT IS PROVIDED TO YOU "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE. INTEL AND THE
AUTHORS OF THIS DOCUMENT DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OR IMPLEMENTATION OF INFORMATION IN THIS DOCUMENT. THE PROVISION OF
THIS DOCUMENT TO YOU DOES NOT PROVIDE YOU WITH ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS

Peer-To-Peer Backup for Personal Area Networks
Boon Thau Loo

UC Berkeley
421 Soda Hall

Berkeley, CA 94720
(510) 524-5821

boonloo@cs.berkeley.edu

Anthony LaMarca
Intel Seattle Research

1100 NE 45th Street, 6th Floor
Seattle, WA 98105

(206) 633-6555

lamarca@intel-research.net

Gaetano Borriello
Intel Seattle Research

1100 NE 45th Street, 6th Floor
Seattle, WA 98105

(206) 633-6555

borriello@intel-research.net

ABSTRACT
FlashBack is a peer-to-peer backup algorithm designed for power-
constrained devices running in a personal area network (PAN).
Backups are performed transparently as local updates initiate the
spread of backup data among a subset of the currently available
peers. Flashback limits power usage by avoiding flooding and
keeping small neighbor sets. Flashback has also been designed to
utilize powered infrastructure when possible to further extend
device lifetime. We propose our architecture and algorithms, and
present initial experimental results that illustrate FlashBack’s
performance characteristics.

1. INTRODUCTION
Trends in the size, speed and cost of computing elements will soon
make it feasible to embed computation in practically all
manufactured devices. Moreover, the growing popularity of
networking technologies like Bluetooth will make it possible to
inexpensively add ad-hoc wireless networking capabilities to these
devices as well. The result is that the small electronic devices we
traditionally carry with us such as key fobs, wrist watches, cell
phones and MP3 players, as well as larger devices such as PDAs
and laptops will in effect form a pool of trusted, personal
networked components. Recent efforts have shown that low-cost,
easy-to-build, wireless “personal area networks” or PANs are
already feasible [7]. These PANs will soon cease to be the domain
of exotic wearable computing rigs, and will instead become a
mainstream reality.

While personal area networks hold considerable promise, the
heterogeneity, limited power, and frequent disconnection of
devices in the PAN environment makes it difficult to develop
robust applications. This problem can be greatly reduced by
middleware services tailored to the constraints of mobile
computing in general and PANs in particular. We introduce
FlashBack, a solution designed specifically to provide reliable
storage for the self-managing, mobile, impoverished devices that
will be found in PANs. FlashBack is peer-to-peer, with each device
maintaining a limited set of preferred neighbors. Each device in
FlashBack allocates a portion of its storage and power to backup
the data of its peer devices. Backups are made to nearby devices
keeping both cost and battery use at a minimum. FlashBack was
designed with the following goals in mind:

• Power-Efficiency – Perhaps the biggest single factor
influencing the design of middleware for PANs is power-
efficiency. Every element of FlashBack has been designed
with power-efficiency in mind and communication between
devices is minimized as much as possible. FlashBack uses
lazy update propagation [8] to reduce the number of updates
that need to be sent. FlashBack keeps small neighbor sets
minimize the maintenance overhead. In addition to using

power sparingly, FlashBack has per-device power budgets to
provide explicit control over how much devices can be
utilized.

• Heterogeneity Aware – In a PAN there may be extreme
heterogeneity among the participating devices; PAN may
contain a wristwatch with a microcontroller and a 900MHz
radio cooperating with PDAs and laptops with 802.11
capabilities. This heterogeneity is both a potential pitfall and
an opportunity. To avoid potential starvation or overload
FlashBack communicates a device’s resources and capabilities
to their neighbors and this information is used in our group
formation and replication algorithms. In the event that an
extremely capable device is present, such as fixed
infrastructure (server class devices without power constraints),
FlashBack will use this to the maximum advantage, both
replicating to the device as well as using it as a proxy to push
replicas for less capable devices.

• Ease of Use – The most common complaint about computing
today is that it is difficult to configure and manage even
simple systems. PANs potentially make this worse,
introducing a large number of interface-constrained devices.
We designed FlashBack to add as little overhead as possible
on both users and application developers. FlashBack does not
require any explicit actions to invoke data replications.
Rather, FlashBack monitors the local data updates and
transparently replicates data. In addition, FlashBack’s
employs very simple replication semantics known as master
data ownership described in [8]. Devices replicate data for
each other, but are unaware of the structure or semantics of
the data they are holding for their peers. These replicas are
merely used as safeguards for the host device against data-
losses. This simple model greatly simplifies the replication,
coherency and security mechanisms in our system. While
some PAN applications may want to do read and write sharing
across devices, we believe that most do not, nor does
FlashBack prevent coherent sharing of data by a higher-level
data management service.

The contributions of this paper are twofold. Broadly, it offers what
we believe is the first investigation into the feasibility of providing
peer-to-peer backup services to a collection of power-constrained
devices. Specific, we have developed FlashBack, an easily
implemented algorithm for doing power-aware backup across a
dynamic collection of trusted, heterogeneous devices.

2. FLASHBACK
FlashBack has been designed with a broad and dynamic definition
of a personal area network. We believe that users will own a
collection of small, trusted computing and communication-enabled
devices, some subset of which they have with them at any given

time. In addition, users will also regularly interact with a number
of other trusted devices such as car telematics, home automation
systems, and traditional desktop computers. As users go through
their daily lives, the set of devices in their immediate environment
will change as they move from home to car to work and back. We
refer to this dynamic collection of devices as the user’s PAN. We
believe that this dynamic notion accurately reflects the mobile
computing context in which users will operate in the future.

Device A
{D}

Device D
{A,C}

Device B
{A,E}

Device E
{A,C}

Device C
{B,F}

Device F
{A,D}

Figure 1: Overview of a PAN: Each device is labeled with its
unique device identifier , and has its neighbor set in parenthesis.
Note that neighbor links are directional.

We begin our discussion of FlashBack by presenting an overview
of its architecture, and then describe its algorithms and initial
implementation. We assume that devices within a user’s PAN are
trusted, and a lightweight certificate-based authentication scheme
is used to ensure that devices only participate in PANs to which
they are assigned. We also assume that point-to-point
communication is taking place between devices in the PAN. While
the presence of intermediaries performing ad-hoc routing would
not affect the functionality of FlashBack, it would affect its
efficiency since FlashBack assumes all communications take one
hop.

In FlashBack, each device sets aside a portion of its local storage to
devote to storing replicas for other devices. Each device also
reserves a portion of its power for FlashBack activities such as
sending and receiving replicas and status messages. When the
power budget is exceeded, the device no longer participates,
causing it to effectively leave the PAN from FlashBack’s
perspective. In FlashBack, each device has a device identifier that
uniquely identifies itself within its PAN. This device identifier is
assigned out-of-band during the installation of FlashBack on the
device. If a device fails, its device identifier can be assigned to a
new device, and the new device is introduced to the PAN to
commence the recovery process discussed in section 2.3.

Each FlashBack device maintains a neighbor set (see Figure 1)
within the PAN. This neighbor set is chosen based on heuristics
discussed in section 2.1, and represents the preferred set of devices
to which replicas are pushed. A device with an empty set of
neighbors can discover an initial set of neighbors by snooping the
network for FlashBack traffic. This initial set of neighbors is
refined by occasionally sharing neighbor status messages with its
current neighbor set.

The unit of replication in FlashBack is a variable-sized block of
unstructured data. Since there is no sharing of data between
devices, the replicating devices need not understand the data’s
format or semantics; rather they treat the blocks as opaque data that
may be requested at some future time. This gives devices the
opportunity to encrypt data before it is passed to FlashBack,
ensuring privacy. It also makes Flashback flexible, allowing it to

work with any storage model that can be translated into block reads
and writes. In our initial implementation, we layered a tuple-store
on top on FlashBack, where each block of data holds a tuple. File
systems and databases would also be good choices provided care is
taken to keep block sizes reasonable. FlashBack provides a simple
API with four basic procedure (See Figure 2).

DataBlock ← Read (GUID)

GUID ← Write(DataBlock, Priority)

Delete (GUID)

Recover()

Figure 2: FlashBack API . GUID uniquely identifies a block of
data within its local store.

This API allows for data manipulation (read, write and delete
function calls) in data-block granularity. The number of replicas
created for each block of data vary based on the replication factor
that depends on the priority level set by the application creating the
data. Higher priority data will be replicated more aggressively. In
the event that a device fails or is lost, a new device is introduced to
replace the former and starts the recovery process via the recover
function call.

2.1 PAN Formation and Maintenance
Device

A

Bootstrap
Device D

Device
B

Device
E

Device
C

New
Device

F

JOIN

{A,C,D}

Newly discovered links

Existing Active Neighbors

Resource Advertisement

Figure 3: Bootstrapping and PAN Formation. F joins the PAN
by contacting D. D responds with a set of recommended
neighbors that include its current neighbor set and itself.

To join a PAN, new devices must identify an existing device that is
currently part of the PAN. Locating this bootstrap device can be
done in two ways. First, a device discovery protocol such as UPNP
[21] can be used identify fellow devices in the PAN. Alternately,
the wireless network can be snooped for FlashBack traffic,
enabling the new device to discovery other active devices. This
latter approach works especially well when a device is joining an
established PAN with a number of active devices.

Once a bootstrap device is identified, a Join message is sent from
the new device to the bootstrap device. Figure 3 shows an example
where F sends a Join message to D. The Join message includes the
device identifier as well as a PAN certificate. The PAN certificate
is simply an identifier that uniquely identifies the PAN in which a
device is participating. The bootstrap device will accept the new
device into the PAN only if it has an identical identifier. This
simple authentication scheme ensures that devices only participate
in their designated PANs.

Upon receiving the Join message and authenticating the new
device into the PAN, the bootstrap device returns a list of
neighbors including itself to the new device, together with their
advertised resources. In Figure 3, D returns the recommended
neighbors { A,C,D} together with their advertised metrics. The new

device will select a subset from the recommended peers to be its
initial neighbors. Note that neighbor links are directional. E.g., D
considers C its neighbor but not vice versa.

Devices will periodically send keep-alive messages to their
neighbors who respond with their currently available power and
storage resources. Requesting another device to be a neighbor does
not require a special message since it is implicit from the first keep-
alive message being sent. The lack of a response alerts a device
that a neighbor may have departed and its entry is then deleted
from its neighbor set.

2.1.1 Utility Function
Ideally, a device should choose neighbors that have sufficient
storage and power resources to support all the device’s replicas,
and have a high probability of being in the device’s proximity if it
should require recovery. FlashBack was written to accept a
parameterized utility function that approximates this notion of a
good neighbor. The higher the computed utility value, the more a
device is valued as a neighbor.

Given that the main resource constraint is power, a simple utility
function based solely on a neighbor’s available power should
provide decent overall behavior. In Section 3 we show that while
performing reasonably well, a utility function based only on power
fails to take advantage of either co-locality or the benefits offered
by devices with large amounts of available storage. Hence, we also
include a more balanced utility function that blends the following
factors:

• Available Power – Devices with more power available have a
higher chance of lasting longer in the PAN, and can support
more replicas for other devices within the PAN.

• Available Storage – Devices with more storage available are
favored due to the maintenance efficiency offered by
replicating many data blocks on a single device and batching
keep-alive messages. To the same effect, if a device already
has some replicas on a neighbor, that neighbor should be
positively favored as well.

• Pair -wise Locality – This final factor keeps track of whether
two devices are frequently active in the same PAN at the same
time. This metric is especially useful in tracking if devices
tend to “cluster” together, such as embedded devices within a
car or a briefcase. We estimate pair-wise locality by counting
the number of keep-alive messages exchanged with each
device over a moving window of time.

• PowerBudget(RD) : The advertised current power budget of
RD.

• StorageFactor(RD) : The ratio of the current storage size of
RD allocated for the PAN, to the total size of data in LD.

• ReplicaFactor(RD) : 1 + (the ratio of the size of replicas
stored in RD on behalf of LD, to the total size of data in LD)

• LocalityFactor(RD) : (2 – e-numMsgs), where numMsgs is the
number of keep-alive messages exchanged with LD.

Figure 4: Elements of the Balanced Utility Function. The
balanced utility function is a product of above 4 proper ties of a
remote device. LD stands for Local Device, while RD stands for
Remote Device.

Given that the utility function has to be positively correlated with
all the factors above, the actual function that we have in our
implementation is the product of the properties of the remote
device as shown in Figure 4.

2.1.2 Neighbor Selection
The aggregate utility of a device is the sum of all the utility values
of all its current neighbors. In order to keep the FlashBack
maintenance costs low, the maximum number of neighbors Nmax is
limited to the number of replicas that will be created for any block
of data.

Periodically, each device will contact one of its neighbors
randomly and request neighbor recommendations. That neighbor
will return its current set of neighbors to the requestor. Based on
the new recommendations, a device may choose to add new
neighbors (at the expense of its low utility neighbors if Nmax is
reached). This process of improving the neighbors is known as
rediscovery.

Performing rediscovery too frequently will drain the resources of
the devices, while performing rediscovery too infrequently would
mean that information about resource-rich devices will be
propagated too slowly. In FlashBack, we use a simple adaptive
approach in which a device with few neighbors will perform
rediscovery more aggressively (based on a simple linear function)
to ensure that it can build up to the maximum set of neighbors
quickly.

2.2 Replicas
Periodically, FlashBack identifies locally written data and pushes
their replicas lazily into the PAN. The process operates as follows:
the device replicating the data (called the local device) sends a
replicate message containing the data to be replicated to one of its
neighbors (called the remote device). A greedy algorithm is used in
selecting the remote device for replication. Among the neighbors
with sufficient resources, the highest utility neighbor is picked as
the candidate remote device to push each replica to. If no suitable
neighbor is found among the neighbor set, replication is simply
deferred. Upon receiving a replica from a neighbor, the remote
device stores the replica, and returns an acknowledgment to the
local device.

To keep track of its replicas, FlashBack maintains, in persistent
storage, a replica table that has an entry for each local data block.
Each entry in the replica table maintains a list of replica states for
each replica created. The replica state contains a 2-bit status
(Active, Inactive, or Expired), the identifier of the device that
currently stores the replica as well as a time at which the replica
was created. A replica state is added to the list whenever the local
device receives an acknowledgement from the remote device about
the successful creation of a replica.

2.2.1 Multiple Replicas for Redundancy
Replication can be performed multiple times for redundancy, and
the replication factor is decided on a per-data-block basis based on
the priority assigned by the application at the time of the write.
Having redundant replicas improves reliability and increases the
probability that a replica is present in the PAN during the recovery
process. FlashBack maps each priority level to a replication factor.

FlashBack provides soft reliability guarantees as follows: at any
point of time, the number of replicas for each data block is at most
its replication factor. Periodically, FlashBack scans the replica
table to identify data blocks where the designated replication factor
is not reached, and creates replicas for these blocks. Creation of
new replicas is tuned to be lazier (based on a linear scale) as the
number of replicas approaches the replication factor. This achieves
a damping effect on the creation of replicas, and places higher
priority on data blocks that currently have no replicas.

2.2.2 Replica State Management
FlashBack manages replicas using a time-based management
scheme. When a new replica is created, a commitment is made by
the remote device to store the replica for a lease period. During this
period, the local device assumes that the replica is available unless
the remote device fails. The lease of any replica can be in any of
the three states seen in Figure 5.

A newly created replica is always active. The local device will
periodically send keep-alive messages to the remote device holding
the replicas. A replica transitions from active to inactive state
during the disconnection phase, when the remote device storing the
replicas no longer responds to keep-alive messages sent by the
device. Devices that have disconnected and left the PAN leave with
their replicas intact. Flashback avoids being too greedy in making
more replicas when a neighbor exits a PAN, as such aggressive
replication will not work well in a resource-constrained
environment where devices could be entering and leaving
frequently and network connectivity cannot be guaranteed. Inactive
replicas are retained on devices that depart the PAN, and will
‘decay’ over time due to the lack of updates reaching them.
However, their replicas are still considered useful for future
recovery purposes as the device may rejoin the PAN, and will be
kept for the duration of the lease period.

Active
Replica

Inactive
Replica

Expired
Replica

Renewal

Reconnection

Disconnection

Expiration or
dropped replica

Figure 5: State Diagram for Replica Management

A replica is reactivated during the reconnection phase, when two
devices detect the presence of each other within the PAN. In the
expired state, the lease has expired and the remote device can drop
the data and reclaim space for new data.

Replica renewal is done periodically by sending a renew message
to the remote device storing the replica. When half the lifetime of a
replica has transpired, a device will attempt to renew the duration
of the replica on the remote device. If a replica’s lease cannot be
renewed be due to disconnection, it expires and the replica can be
dropped. The owner of the original data is aware of the expiration
and will attempt to place a new replica elsewhere. In the event that
a replica is valid but expired, the replica’s lease can be renewed
upon reconnection.

The lease duration should be longer than any planned
disconnection to ensure that replicas are not dropped during
normal usage patterns. Long lease durations also increases power
efficiency by reducing the number of messages sent to extend
leases. Setting lease duration to be too large, however, make the
system less responsive by increasing the time taken to move
replicas to resource rich devices.

2.2.3 Deletes and Updates
Deletes are performed by sending a message to the respective
devices in the PAN to drop the block. If a replica is unavailable at
delete time, it will eventually be dropped when the lease on the
replica expires. Updates are performed as a lazy deletion of the old
block and lazy creation of a new block. Periodically, each device

scans the replica table for potential updates. A replica is due for an
update when the timestamp of the base data is newer than the
timestamp of the replica. Active replicas are updated simply by
sending the new data to replace the existing replicas. This
guarantees that whenever possible, replicas are updated in their
former locations and allows the possibility of sending deltas. At the
same time, new blocks are created lazily in the background to
ensure that there are sufficient copies of the new block. When
inactive replicas are reactivated during the reconnection phase, if
there are sufficient up-to-date replicas, the inactive replicas will be
dropped. Otherwise, these replicas are reactivated and updates
propagated.

2.3 Recovery Process
During the recovery process, a new device is introduced into the
PAN to replace a failed device. It initially sends a recovery
message to its immediate neighbors who will then flood the
message throughout the PAN. While flooding is power inefficient,
recoveries should be rare and represent a situation in which power
drain is not a central concern. The flooded recovery message
contains the unique device identifier of the device it is replacing, as
well as the network address of the new device. The recovery
message is buffered in devices for time TREC and gossiped to new
neighbors who have not seen the message before. A longer TREC
will ensure better recall as devices are allowed to recover their
replicas for a longer time. However, this means that many devices
will have to buffer recovery messages and propagate this
information to new devices for a longer time, increasing the PAN
overhead.

When a device receives a recovery message, it scans its local
storage and sends all the relevant replicas that it has directly to the
recovering device. Since there can be multiple data blocks with
different timestamps, the recovering device retains the newest ones.
An open issue yet to be resolved is when a device can resume its
applications during the recovery process.

2.4 Initial Implementation
To test the power efficiency and reliability of FlashBack we have
implemented a Java version that performs FlashBack as we have
described. In our implementation, the network layer was abstracted
to allow for simulations as well as actual deployment. The
experimental results in Section 3 were generated using the
simulated network layer.

3. EXPERIMENTS
This section describes a series of simulation experiments designed
to explore the performance and reliability characteristics of
FlashBack. In Section 1, we listed power-efficiency and best effort
reliability in the face of heterogeneity and dynamicity as our design
goals, and we show how well we have done in each of these areas.

3.1 Exper imental Setup
In all of the experiments, we are running an implementation of
FlashBack using a simulated network layer. In all cases, we are
modeling a fixed set of devices, all of which are running
FlashBack, and analyzing the behavior of the PAN. All data blocks
are written with the same priority and therefore have the same
replication factor.

The simulated network layer uses a simple, but realistic
communication and cost model. In our network model, each device
can send messages to other devices within its PAN in one network
hop. In current wireless devices, the cost of sending and receiving
on the network is much more expensive that the cost of accessing

memory or performing computation. Recent measurements show
that the cost of sending a bit on an 802.11a network to be 1000
times more power than performing an add on the Compaq Personal
Server [2]. Since FlashBack is neither compute, no memory
intensive, we ignore all costs other than network sends and
receives. It is import to note that we are only modeling the
overhead introduced by FlashBack, and not by the applications
running on behalf of the user. This allows us to compare the impact
that allowing FlashBack to performing backups has on the device’s
time-to-live. The cost of receiving relative to sending varies from
technology to technology, with some costing more to send than to
receive and vice-versa for the others. The measurements in [2] also
showed the energy used to transmit and receive a bit in a Compaq
Personal Server running 802.11b to be approximately equal. In our
simulated network, the cost per byte for both sending and receiving
is set to 1 power unit. All messages sent and received within the
PAN are included in the cost calculations.

3.1.1 Device Configuration
Device
Type

Percent
Devices

Average Storage
Space (MB)

Average Power
Budget

I 70% 64 300k

II 10% 128 800k

III 10% 256 1M

IV 10% 512 2M

Figure 6: Initial Device Configuration

Our experiments were conducted with a collection of devices with
varying resources (See Figure 6). The bulk of the devices (Type I)
have the smallest storage capacity and power budget. Types II-III
represent the minority of the devices and have increasingly more
storage and power budget. These devices are intended to span the
range from cell phone and 2-way pager class devices up to PDAs.
The configurations used for these initial experiments do not
capture any real-world configuration we measured. Rather they are
intended as a simple starting point we are using to understand how
our design tradeoffs have manifested themselves in both power
usage and reliability/recall.

At the start of each experiment, each device is initialized with the
storage and power parameters stated above. 50% of the storage
resources will be devoted to FlashBack. Each device is given a
power budget that is not replenished during the duration of the
experiments.

Each device is initialized with an initial amount of data and is
periodically fed with a stochastic workload. Each data block
written is 1KB in size. The workload is a mixture of 50% writes
and 50% updates, and is Poisson-distributed with a mean-time-
between-writes of 1 hour. Reads are ignored, as they have no effect
on our measurements.

Replicas are created lazily, ranging from 0.5 to 2 hours between
the creations of new replicas. Periodic neighbor rediscovery ranges
from 3 minutes (when it has no neighbors) to 1 hour (when it tries
to improve its full set of neighbors). Lease durations were set to
480 hours.

All of the experiments were run using three different utility
functions: random, power-only and balanced. The random utility
function values all neighbors equally, causing devices to choose
neighbors randomly. The power-only utility function causes
devices to value a neighbor higher if it has more available power.
The balanced utility function (described in Section 2.1.1) causes

devices to blend available power, storage and co-location when
valuing neighbors.

3.1.2 Experimental Metrics
We use two metrics to measure the performance of FlashBack.
Median Time-To-Live (TTL) is the median time when devices run
out of their power budget and is our primary metric of power
consumption. The higher the Median TTL is, the more efficiently
and evenly Flashback is using the power resource available. Recall
is the percentage of data that can be recovered at any instant in
time from the PAN. This is our metric for the reliability achieved
by FlashBack. Recall is measured by freezing the PAN hourly and
examining the data stored in each device currently active in the
PAN, and figuring out if a corresponding replica is present in
another device within the PAN.

3.2 Replication Factor and Power Usage

Figure 7: Median TTL (hrs) against Replication Factor

In our first experiment, we measure the effects of increasing the
replication factor on the lifetime of a PAN. In this experiment, we
introduce a collection of 30 devices chosen from the distribution in
Figure 6. These devices all start running their workload of writes
and updates at time 0 and continue doing so until all of the devices
have exhausted their FlashBack power budget. In this experiment
the PAN is static and none of the device departs until they run out
of power. Figure 7 shows the Median TTL for all three utility
functions varying the replication factor from 1 to 7. (Recall in
section 3 that the replication factor refers to the number of replicas
created per data block.)

As expected, this graph shows that increasing the replication factor
shortens the lifetime of the PAN. This graph also shows that the
TTL is much higher for the power-only and balanced utility
function than the random utility function. This demonstrates that
both are effectively utilizing the devices with more power in order
to extend the lives of the less capable devices. The balanced utility
function yields a median TTL around 10% larger than power-only.
This is due to two factors. First, power-only causes the device with
the most power to be valued above all other and produces a degree
of churn as devices switch places in the ranking of their available
power. Second, the balanced utility results in a device placing all
of its replicas on a small number of peers, lowering the number of
maintenance messages that need to be sent. Power-only does not
have this affordance and will spread replicas out over a large
number of peers as the power rankings change.

Figure 8 shows another view of the same experiment by focusing
on a configuration with replication factor is 4, and measuring the
device drainage. During the experiment, we logged the time when
each device exhausted their power budget. In this graph, the Y-
Axis shows the number of devices remaining in the PAN. For both
power-only and balanced, effective use of the more capable devices
extends the lifetime of the weaker devices. Hence, all the devices
leave the PAN at approximately the same time. On the other hand,
the random utility function drains each device equally causing the
impoverished devices to exit the PAN first, followed much later by
the more capable devices.

Figure 8: Device Drainage Over Time

Replication Factor = 4.

3.3 Disconnection and Recall
Our second experiment illustrates the importance of placing
replicas on devices that are frequently co-located. In our second
experiment we configure the PAN with the same 30 devices
running the same workload as the previous experiment. In this case
15 of the devices are mobile and periodically disconnect and
reconnect from the other 15 non-mobile devices. The mobile
devices move independently of each other and the disconnections
and reconnections are Poisson distributed with a mean time of 4
hours before disconnection and 8 hours before reconnection. We
then measure the recall of the 15 devices that remain within the
PAN.

Utility Function % Recall

Balanced 98.6 %

Power-only 64.6 %

Figure 9: Compar ing Recall for Different Utility Functions
When Devices Can Disconnect

Figure 9 shows the resulting recall for the balanced and power-
only utility functions when the replication factor is 1. This table
shows that the blended utility function does a much better job of
ensuring that the devices that always remain in the PAN replicate
data among themselves. This is not a surprising result given that
the blended function includes a factor that represents the pair-wise
co-locality of devices. Nevertheless, this does show that to achieve
high recall, such a factor is likely needed.

3.4 Replication Factor and Recall
In our final experiment, we look at how the replication factor
affects the recall and age of recovered data in a dynamic PAN. To
some extent this may not actually be a terribly important issue. If a

device fails and recovery needs to be performed, a user is probably
willing to take the time to gather their devices in one place to
perform a complete recovery. It may be the case, however, that
with a reasonable replication factor, recall and recovery age can be
sufficiently good to make this unnecessary. To measure the effect
that increasing the replication factor has on recall we configure the
PAN so that all of the 30 devices join and leave the PAN at
random intervals while executing their workloads. Each device has
an average PAN uptime and downtime, which represent the
amount time in which they stay active in the PAN and are not in
the PAN, respectively. Devices that have left the PAN continue to
be subjected to their workload. When disconnected, devices are
alone and are not in proximity to any other devices. To change the
volatility of the PAN, the portion of time spent away from the PAN
was varied between 20% and 50%. This was achieved by using an
average downtime of 2 hours and average uptimes of 2, 4 and 8
hours. We measured the recall for every device periodically until
the first time a device has exhausted its power budget and left the
PAN permanently.

Figure 10: The Effect of Replication Factor on Recall

Figure 10 shows the impact that changing the replication factor has
on recall. This graph shows that replication factor actually has less
of an effect on recall that volatility does. The curve for uptime=2
hours shows considerably worse recall that the more stable
configurations. All of the curves show that beyond a replication
factor of 2, there is little additional recall to be gained. This
suggests that using a modest replication factor of 2 or 3 and
carefully identifying co-located devices is the best strategy for
achieving high recall. It is worth noting that the highest recall
reached by the most stable configuration is still well under 100%.
This is largely due to the fact the FlashBack is replicating lazily
and even when the PAN is stable some loss can occur due to data
that has yet to be replicated.

4. RELATED WORK
Most backup mechanisms for mobile devices are what we call
occasional synchronization systems. Users move around their
environment updating state in the device, and then using local
communication mechanisms like USB, infrared or Bluetooth, run a
synchronization protocol such as SynchML [19] to synchronize the
device’s data with a server. In some cases, the synchronization is
automatic; in most cases, it is manual. While there protocols are
easy to understand and offer basic data sharing, they have the
significant drawback that more often than not, the user is
wandering around with data that is not backed up. Solutions
involving automatic synchronization usually involve a specific

desktop machine (at home or work) that is configured for
synchronization. When users are away from this special machine
for long periods of time their data is vulnerable.

A competing backup model is what we call continuous background
synchronization in which it is assumed that one of the user’s
devices will always be one hop from the fixed infrastructure. All
devices are then configured to use this connection to run a
background synchronization process. A common gateway device
for this sort of scenario is a GPRS cell phone. In these solutions,
devices use local networking technologies like Bluetooth to buffer
new data on the cell phone, which then sends the data to a
designated backup server using the cell phone’s data
communication capabilities. This solution offers the benefit that
the data is backed up as it is generated without any extra local
infrastructure and without intervention on the part of the user. The
downside is that this synchronization typically incurs a financial
cost proportional to the amount of data sent. In addition, despite
the promises of ubiquitous connectivity, there are lapses in
coverage, exposing the user to potential data loss. Finally,
connections of this type are bandwidth limited and may not
reasonably be expected to synchronize the large amounts of data
produced and consumed by all the devices with a PAN.

Outside the mobile computing space, a number of P2P backup
systems have been developed. Both Pastiche [4] and HiveCache
[9] perform backup services for workstations by utilizing free disk
space on other machines. Unlike FlashBack, these systems have
not been designed with power efficiency in mind. The design of
these systems has also been heavily influenced by the fact that a
large percent of the data (like executables and libraries) are
identical from machine to machine. It is unclear if these same
assumptions apply to the varied devices found in a personal area
network.

There are a variety of general-purpose data management systems
that support disconnected operation and are therefore potentially
deployable within PANs. Bayou [20] is a system that supports
replication in a weakly consistent fashion, thus enabling the
sharing of data between mobile users operating in disconnected
modes. Bayou utilizes update-anywhere replication and leverages
application-specific rules to transparently help deal with
reconciliations. While Bayou offers a more flexible and powerful
data sharing model than FlashBack, Bayou requires substantial
application modification and was not been designed with power
efficiency in mind. Coda [16] is an update-anywhere file system
that allows users to read and write cached files while disconnected.
Unlike systems like Bayou that make the applications manage
conflicts, Coda has the users themselves decide how to resolve
conflicts between divergent versions of a file. Similar systems
include Deno [5] and Mobisnap [12]. Like Bayou, none of these
systems has been designed with power efficiency as a goal.

FlashBack also shares common issues and design element with
other P2P data management system. Microsoft Research’s Farsite
[1] aims to provide a very high degree of reliability by replicating
data across PCs sharing a local area network. OceanStore [10] aims
to build a transparent and reliable peer-to-peer storage system. CFS
[6] and OceanStore have been using distributed hash tables [13]
[14] [17] [23] to build stable data repositories from dynamic
collection of peers distributed across the internet. These systems
have primarily been designed for PC-class devices performing
traditional file-oriented workloads and as a result, are very
different in design than FlashBack.

The FlashBack mechanism for providing reliability is based on
replication. Replication systems are well explored in distributed

file systems [3] [15] and commercial database systems [11] [18].
These systems tend to focus on the issues of trading off consistency
and reliability for performance. The database systems utilize log
sniffing, which is not applicable in our environment since it does
not deal with a write-ahead logging (WAL) transactional
environment. On the other hand, FlashBack makes the best effort
to replicate local data given the constraints imposed by the power
and storage resources on these impoverished devices. Moreover,
traditional replication systems tend to assume homogeneity among
the participating machines, which will not hold true in our usage
scenarios.

5. FUTURE WORK
As part of our future work, we intend to explore the following
areas in detail:

• Further Exper imentation – While our experiments have
been useful in demonstrating the performance characteristics
of Flashback, they do not model exactly devices used in
PANs. To conduct more realistic experiments, we intend to
capture real-world device configurations, user behaviors and
workload over time and use these traces to drive a
measurement of Flashback. We have conducted a simple
experiment in section 3 that shows that recall can stay
reasonably high if each device participating in the PAN is able
to push replicas to devices that it sees more often in the PAN.
This is especially important as we foresee usage scenarios
where there will be multiple PANs merging and splitting over
time. As part of our future work, we intend to conduct
experiments with multiple PANs periodically merging and
splitting, and examine the effectiveness of the FlashBack
utility. We also intend to investigate the effects of having
different durations of lease periods on reliability and power
consumption.

• Adaptive Utility Function -- Our first experiment showed
that even for a stable PAN, picking the right utility function is
crucial. We have picked a simple utility function that is easy
to implement and works well in our experiments. Despite our
success, we feel that the results can be improved further by
picking the utility function (with appropriate weights)
adaptively at runtime. This is an interesting area of future
research.

• Adaptive Replication -- Different devices have different
levels of reliability. For example, a server within the PAN is
definitely more reliable than a small mobile device. A more
accurate measure of replication factor would be to allocate a
greater factor to replicas on devices that have greater
resources, and a lesser factor to flaky devices. The replication
factor is currently hard-coded based on the priority of the
data. As future work, we should tune the replication factor at
run time based on the resources of devices within a PAN.

6. CONCLUSIONS
FlashBack is an algorithm for performing transparent backups
between peer devices in a personal area network. FlashBack has
been designed to be power efficient and to require no extra work
on the part of the user. FlashBack replicates lazily and maintains
small neighbor sets to keep power usage as low as possible. Device
co-locality and background neighbor improvement are used to
achieve high recall.

 The FlashBack system proposed in this paper is a proof-of-concept
that such as backup system is not only viable, but can also
potentially provide real value to end-users. We believe that the

successful deployment of FlashBack will enable new and
interesting applications to be possible for PANs, while diminishing
user’s concern for the safety of application data. Moreover,
Flashback enables users to easily “borrow” devices, have them join
their PANs, and quickly have their corresponding data within the
PAN available to these borrowed devices. Thus, Flashback may
serve as an important element in making what Mark Weiser
described as scrap devices [22] possible.

7. REFERENCES
[1] ATUL ADYA, WILLIAM J. BOLOSKY, MIGUEL CASTRO, GERALD

CERMAK, RONNIE CHAIKEN, JOHN R. DOUCEUR, JON HOWELL,
JACOB R. LORCH, MARVIN THEIMER AND ROGER P.
WATTENHOFER. FARSITE: Federated, Available, and Reliable
Storage for an Incompletely Trusted Environment. In the 5th
Symposium on Operating Systems Design and
Implementation (OSDI ’02)

[2] KENNETH C. BARR AND KRSTE ASANOVIC, Energy Aware
Lossless Data Compression, The First International
Conference on Mobile Systems, Applications, and Services,
San Francisco, CA, May 2003.

[3] W. J. BOLOSKY, J. R. DOUCEUR, D. ELY AND M. THEIMER.
Feasibility of a Serverless Distributed File System Deployed
on an Existing Set of Desktop PCs/ Proceedings of the
international conference on Measurement and modeling of
computer systems, 2000, pp. 34-43

[4] LANDON P. COX, CHRISTOPHER D. MURRAY, AND BRIAN D.
NOBLE. Pastiche : Making Backup Cheap and Easy. 5th
Symposium on Operating Systems Design and
Implementation. Boston, MA, December 2002.

�����
U. CETINTEMEL, P. J. KELEHER, AND M.FRANKLIN. Support for
Speculative Update Propagation and Mobility in Deno. In
22nd International Conference on Distributed Computing
Systems, 2001.

[6] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica, Wide-area cooperative storage with
CFS, ACM SOSP 2001, Banff, October 2001

[7] K. FISHKIN, L. PARTRIDGE AND S. CHATTERJEE. User Interface
Components for Lightweight WPANs. In IEEE Pervasive
Magazine special issue on Wearable Computers.

[8] J. GRAY, P. HELLAND, P. O'NEIL AND D. SHASHA. The Dangers
of Replication and a Solution. SIGMOD Conf. 1996

[9] HiveCache: Distributed Enterprise Online Backups.
http://www.mojonation.net/

[10] J. KUBIATOWICZ, D. BINDEL, Y. CHEN, S. CZERWINSKI, P.
EATON, D. GEELS, R. GUMMADI, S.RHEA, H. WEATHERSPOON,

W. WEIMER, C. WELLS, AND BEN ZHAO. OceanStore: An
Architecture for Global-Scale Persistent Storage, In
Proceedings of the Ninth international Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2000), November 2000.

[11] Microsoft SQL Server, Replication for Microsoft SQL Server
7.0 whitepaper.

[12] N. PREGUIÇA, C. BAQUERO, J. L. MARTIN. MobiSnap:
Managing Database Snapshots in a Mobile Environment. In
the Actas do 1º Encontro Português de Computação Móvel,
November 1999.

[13] A. ROWSTRON AND P. DRUSCHEL, Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, pages
329-350, November, 2001

[14] S. RATNASAMY, P. FRANCIS, M. HANDLEY, R. KARP AND S.
SHENKER. A Scalable Content-Addressable Network. In
Proceedings of ACM SIGCOMM 2001.

[15] G. SWART, A. BIRRELL, A. HISGEN AND T. MANN. The Echo
Distributed File System. SRC Research Report 111.

[16] SATYANARAYANAN, M., KISTLER, J.J., SIEGEL, E.H. Coda: A
Resilient Distributed File System, IEEE Workshop on
Workstation Operating Systems, Nov. 1987, Cambridge, MA.

[17] I. STOICA, R. MORRIS, D. KARGER, F. KAASHOEK, AND H.
BALAKRISHNAN, Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications, ACM SIGCOMM 2001,
San Deigo, CA, August 2001, pp. 149-160.

[18] Replication Server: An Architecture for Distributing and
Sharing Corporate Information. A Sybase White Paper

[19] SyncML, http://www.syncml.org/

[20] D. B. TERRY, M. M. THEIMER, K. PETERSEN, A. J. DEMERS,
M. J. SPREITZER AND C. HAUSER. Managing Update Conflicts
in Bayou, a Weakly Connected Replicated Storage System. In
Proceedings 15th Symposium on Operating Systems
Principles (SOSP), 1995

[21] Universal Plug and Play. http://www.upnp.org/.

[22] M. WEISER. The computer for the 21st century. Sci. Amer.
September 1991, 933--940.

[23] B. Y. ZHAO, J. KUBIATOWICZ, AND A. JOSEPH. Tapestry: An
Infastructure for Fault-tolerant Wide-area Location and
Routing. Tech. Rep. UCB/CSD-01-1141, University of
California at Berkeley, Computer Science Department, 2001.

	University of Pennsylvania
	ScholarlyCommons
	May 2003

	Peer-To-Peer Backup for Personal Area Networks
	Boon Thau Loo
	Anthony LaMarca
	Gaetano Borriello
	Recommended Citation

	Peer-To-Peer Backup for Personal Area Networks
	Abstract
	Comments

	Microsoft Word - cv_02015.doc

