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Measurement and Analysis of Ultrapeer-based P2P Search Networks

Abstract
Unstructured Networks have been used extensively in P2P search systems today primarily for file sharing.
These networks exploit heterogeneity in the network and offload most of the query processing load to more
powerful nodes. As an alternative to unstructured networks, there have been recent proposals for using
inverted indexes on structured networks for searching. These structured networks, otherwise known as
distributed hash tables (DHTs), guarantee recall and are well suited for locating rare items. However, they may
incur significant bandwidth for keyword-based searches. This paper performs a measurement study of
Gnutella, a popular unstructured network used for file sharing. We focus primarily on studying Gnutella's
search performance and recall, especially in light of recent ultrapeer enhancements. Our study reveals
significant query overheads in Gnutella ultrapeers, and the presence of queries that may benefit from the use
of DHTs. Based on our study, we propose the use of a hybrid search infrastructure to improve the search
coverage for rare items and present some preliminary performance results.
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Abstract

Unstructured Networks have been used extensively in
P2P search systems today primarily for �le sharing.
These networks exploit heterogeneity in the network
and o�oad most of the query processing load to more
powerful nodes. As an alternative to unstructured
networks, there have been recent proposals for using
inverted indexes on structured networks for search-
ing. These structured networks, otherwise known as
distributed hash tables (DHTs), guarantee recall and
are well suited for locating rare items. However,
they may incur signi�cant bandwidth for keyword-
based searches. This paper performs a measurement
study of Gnutella, a popular unstructured network
used for �le sharing. We focus primarily on studying
Gnutella's search performance and recall, especially
in light of recent ultrapeer enhancements. Our study
reveals signi�cant query overheads in Gnutella ultra-
peers, and the presence of queries that may bene�t
from the use of DHTs. Based on our study, we pro-
pose the use of a hybrid search infrastructure to im-
prove the search coverage for rare items and present
some preliminary performance results.

1 Introduction

Gnutella [1] and Kazaa [6] have been widely used in
�le-sharing applications. These networks are often
called unstructured, because nodes are organized in
an ad-hoc fashion and queries are ooded in the net-
work. Unstructured networks are e�ective for locat-
ing highly replicated items that can be retrieved with
high probability in a small number of hops. They
are less e�ective for rare items because recall is not
guaranteed.

On the other hand, there have been proposals for
using inverted indexes on distributed hash tables
(DHTs) [13]. These networks guarantee perfect re-
call (in the absence of network failures), and are able
to locate matches within a bounded number of hops.

�This research was funded in part by NSF awards (grant
No. IIS-0205647 and grant No. IIS-0209109)

However, DHTs only provide exact-match queries,
and may incur signi�cant bandwidth for executing
more complicated keyword-based searches.

There is no consensus on the best P2P design for
searching. The contributions of this paper is as fol-
lows:

� Conduct a measurement study of Gnutella, an
open-source unstructured P2P network for �le-
sharing. The measurement study examines the
new ultrapeer-based topology, and analyzes the
search performance and recall.

� Discuss the alternative of implementing search-
ing using structured networks.

� Propose a hybrid search infrastructure which
makes use of unstructured search techniques for
popular items, and structured search techniques
for rare items.

� Deploy the hybrid search infrastructure with the
existing Gnutella network and present prelimi-
nary experimental results.

2 Measurements Methodology

In the measurement study on Gnutella, we made use
of a crawler as well as a Gnutella client instrumen-
tation software.

2.1 Gnutella Crawler

The crawler was used primarily to map out
Gnutella's topology. Given Gnutella's recent up-
grades to ultrapeers, we are interested to �gure out
the ratio of ultrapeer to leaf nodes, and the number
of neighbors maintained by both ultrapeers and leaf
nodes. The crawler works as follows: �rst, a connec-
tion is made to a bootstrapping node that is already
part of the Gnutella network. Once connected, a
ping crawl request is sent to this node. This ping
crawl request is a standard Gnutella ping message
with TTL of 2. This ping request travels one ex-
tra hop, allowing us to determine the neighbors of

1



the crawled nodes. Using the neighbors obtained,
we then proceed recursively with the crawl, building
the Gnutella topology as the crawl proceeds.

We started 30 separate crawlers, bootstrapped
from 30 ultrapeers running on Planetlab. The crawl
was performed on 11 Oct 2003 and lasted 45 minutes.

2.2 Client Instrumentation Software

The client instrumentation software was modi�ed
from Limewire's [7] implementation of the Gnutella
client software which we downloaded in July 2003.
Our modi�ed client participates in the Gnutella net-
work as an ultrapeer or leaf node, and logs all in-
coming and outgoing Gnutella messages through the
node. It also has the ability to inject queries into the
network and gather the incoming results. We used
this client in the following three setups:

� A: Single node measurement. We mea-
sured an ultrapeer and a leaf node over a period
of 72 hours from 7-10 Oct on 2 Planetlab [9]
nodes each. This allows us to measure the life-
times and number of �les shared of neighboring
nodes. The measurements were obtained from
7-10 Oct.

� B: Multiple ultrapeers measurement. We
ran the client on Gnutella ultrapeers on 75 Plan-
etlab (selected from the US, Canada and Eu-
rope) for three hours duration. The measure-
ments were repeated and averaged over 3 ex-
periments conducted on 12-13 Oct 2003. This
setup allows us to examine the query processing
overheads of di�erent ultrapeers situated at dif-
ferent locations. It also provided a global view
of the Gnutella network, and allows us to es-
timate a lower bound on the total number of
queries being executed in the network.

� C: Trace-driven ultrapeers. We ran the
client on 30 Gnutella nodes on Planetlab as
above, and injected a total of 350 queries from
each node derived from an earlier trace at 10
seconds interval. The measurements were re-
peated and averaged over 6 experiments con-
ducted on 5th, 6th, 12th and 13th Oct 2003.
This setup enables us to estimate the average
recall of a typical Gnutella query.

2.3 Improvements to Gnutella

In this section, we describe briey two recent im-
provements to the Gnutella protocol, namely the use
of ultrapeers and dynamic ooding techniques.

2.3.1 Gnutella Topology with Ultrapeers

The Gnutella search protocol works as follows: each
client searching for a �le forwards the query request
to each of its neighbors, which then forwards the
request to other neighbors for a bounded number of
hops (TTL). This ooding protocol is not scalable,
as discussed in [11]. It also poses a strain on weak
clients (such as those on modem links) who have to
handle a large portion of the search traÆc.

In an e�ort to address the scalability problems,
both Gnutella and Kazaa utilizes ultrapeers [4]. This
concept capitalizes on the excess resources of power-
ful nodes in the network, to carry the search traÆc
of less resource-rich leaf nodes.

Nodes regularly determine whether they are eligi-
ble to become an ultrapeer based on their uptime
and resources. Once decided to be an ultrapeer,
each ultrapeer will advertise itself as an ultrapeer
to other connecting nodes. Ultrapeers perform the
bulk of the query execution on behalf of a group of
leaf nodes that they support. When a regular leaf
node issues a query, it is forwarded to its one or more
assigned ultrapeer. The ultrapeer will then broad-
cast the query among its ultrapeer neighbors up to
a limited number of hops.

The ultrapeer builds an index of its leaves' con-
tents as follows: Leaf nodes connect to one or more
ultrapeers, and forward information on all shared
�les to the ultrapeer. The ultrapeer then responds
to queries on behalf of leaf nodes, shielding them
from the query traÆc 1.

The crawlers discovered a total of 114597 nodes,
out of which 22453 responded as ultrapeers2. Since
these crawlers were ran separately, there were over-
laps in the nodes they discovered. 70% of the nodes
were discovered by more than one crawler.

65% of the nodes we connected to were either Bear-
share [12] or Limewire [7] clients. 60% of nodes did
not share any �les. Ignoring nodes that reported ex-
cessive number of �les (> 500000 �les), the average
number of �les shared per node was 193. The total
number of �les shared was approximately 22 million.

Figure 1 shows the number of number of neighbors
each contacted node maintained. We did not include
nodes where we were not able to gather any neigh-
bor information. Since we performed the crawl while

1There are other variants of this basic approach, such as
the use of Query Routing Tables (QRP) [3]. The reader is
referred to the article [4] for more details.

2The ratio of ultrapeers to nodes may be overstated. If we
consider only nodes with degree � 6 as ultrapeers, the number
of ultrapeers reduces to 7000
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Figure 1: Degree of Nodes

the network was in ux, there were many nodes that
were still in the process of building up their neighbor
list, and hence the number of nodes they connect
to can range from 0 to as many as the maximum
number of nodes they can connect to. The topol-
ogy information gathered from the crawl was not a
perfect snapshot of the Gnutella network. However,
it can o�er useful insights into how the network is
organized.

37% of the leaf nodes were connected to one ul-
trapeer, while almost all of them (96%) were con-
nected to up at most 4 ultrapeers. In computing the
out-degrees of ultrapeers, we took into consideration
ultrapeers that reported at least 6 neighbor nodes
(either leaves or ultrapeers). Most ultrapeers either
had 6 ultrapeer neighbors and 75 leaf nodes, or 32
ultrapeer neighbors and 30 leaf nodes. The discrep-
ancy in the out-degree of ultrapeers is due to recent
improvements to the protocol that reduced the TTL
of queries, while allowing dynamic querying (refer
to section 2.3.2. These improvements requires an in-
crease on the number of ultrapeer neighbors to be
e�ective. The number of leaf nodes supported are
reduced, presumably to o�set the increased in ultra-
peer neighbors. The increased number of ultrapeer
neighbors from 6 to 32 also has the e�ect of reduc-
ing the likelihood of network partitions amongst the
ultrapeers.

Figure 2 shows an estimation of the diameter of
the Gnutella network of ultrapeers. We were able to
gather neighbor information on approximately 19000
ultrapeers. For each of these ultrapeers, we com-
pute the number of ultrapeers that the ultrapeer can
reach within one hop, two hops, and so on until it
connects to all possible ultrapeers that it can reach.
The number of reachable ultrapeers is then averaged
across all ultrapeers. The diameter of the network
of ultrapeers is at most 12, and almost all ultrapeers
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Figure 2: Diameter of Network

can be reached in 6 hops. We expect the diameter
of the network to be further reduced if more clients
adopt the Gnutella client that supports up to 32 ul-
trapeer neighbors.

2.3.2 Dynamic Querying
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Figure 3: Average Query Results Size against Num-
ber of Ultrapeers Visited.

In unstructured networks, queries are executed by
moving the queries towards the data. In order to lo-
cate rare items, the query would have to be ooded
to a larger number of nodes. In Limewire's imple-
mentation of dynamic querying [2], a Gnutella ul-
trapeer oods the query on a few initial connec-
tions starting from a small default TTL (e.g. 2).
If the number of results obtained from these initial
connections is small, it may choose to increase the
TTL for sending the query on subsequent connec-
tions. Dynamic querying is only e�ective if an ultra-
peer maintains a large number of ultrapeer neigh-
bors. To verify that dynamic querying has been
used on our ultrapeers, we estimated the distance
each query has traveled by observing 350 distinct
Gnutella queries issued from 30 ultrapeers in setup
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C. For each query, we counted the number of times
the queries have been seen on the ultrapeers that we
were measuring. The more ultrapeers the query had
been seen on, the higher the chances that query had
been ooded for a longer distance. We then com-
puted the average number of query results returned,
grouped by the number of ultrapeers seen. Figure 3
shows the correlation between the average number of
query results returned and the number of ultrapeers
the queries had visited. As the number of ultrapeers
visited increased, the average number of query re-
sults obtained reduced. This indicates that queries
that returned fewer results did traveled further and
visited more nodes in the Gnutella network.

2.4 Gnutella's Search Characteristics

In this section, we examine the overheads of pro-
cessing queries in an ultrapeer. We also used our
measurements to compute the average query recall,
bandwidth usage and latencies of Gnutella queries.

2.4.1 Ultrapeer Query Processing

Using query logs obtained from 70 ultrapeers in
setup B, an ultrapeer received 18 queries per sec-
ond on average. We observed a signi�cant amount
of wasted work due to the ooding-based protocol
used by Gnutella:

� 33% of queries on each ultrapeer received were
duplicate queries forwarded by more than one
neighbor.

� The ultrapeer processed 63 queries per hour on
behalf of leaf nodes. This constituted only 0.1%
of the queries that the ultrapeer had received.
This shows that a bulk of query processing load
that an ultrapeer handles are from neighboring
ultrapeers and not leaf nodes.

� Leaf nodes of the ultrapeer contributed to the
results of 6% of the distinct queries received by
the ultrapeer.

� 5% of the distinct queries forwarded by an ultra-
peer to ultrapeer neighbor received query results
from them. This shows that a large portion of
forwarded query traÆc did not perform useful
work of getting query results.

2.4.2 Search Coverage

To �gure out the average recall of a query, we would
have to take a complete snapshot of all the �les in the
network at the time when the query was issued. We
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Figure 5: Same graph as �gure 4 (� 20 results).

can approximate this by issuing the same query si-
multaneously from di�erent Gnutella ultrapeers. In
setup C, we issued a total of 350 distinct queries
from 30 ultrapeers. Each query was simultaneously
issued from all 30 ultrapeers. Hence, a total of 10500
queries were issued. In �gure 4, Average Results
shows the CDF of the number of results returned
by all 10500 queries averaged over 6 experiments.
Total Results shows for each distinct query, the to-
tal number of results returned from all 30 ultrapeers
(computed based on the union of results obtained for
each distinct query). We considered each �le unique
by �lename, IP address and reported �le size. Fig-
ure 5 shows the same graph for only queries that
returned 20 results or less.

Averaging over six experimental runs, 45% of
queries issued obtained 10 or less results, while 18%
obtained no results. Based on the union of results
from all 30 ultrapeers, the percentages reduced to
27% and 6% of queries respectively. Hence, there
were 13% of queries that should have received results
from the Gnutella network at the time the query was
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issued. In �gure 5, we show the gains in coverage us-
ing the results from 5, 15 and 25 ultrapeers. As we
increase the number of ultrapeer results used, there
would be diminishing returns in terms of additional
coverage.
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Figure 6: Query Recall CDF.

Figure 6 shows the query recall CDF of all 10500
queries averaged over 6 experiments. We de�ne the
recall of a query as the number of distinct results
returned for that query, as a percentage of the total
number of distinct results obtained from all 30 ul-
trapeers. For queries that obtained 1 or more result,
the average per query recall was 23%. In a separate
analysis of the results, we do not take into account
duplicates in the results, by counting only the num-
ber of unique �le names in the results obtained. I.e.
we assume that users are only interested in any one
copy of the �le (identi�ed by �lename), regardless of
where it is located and how large that item may be.
The average recall of queries increased to 28% under
this assumption.

We repeated the same experiments using 30 leaf
nodes to issue the queries. 13% of the queries did not
receive any query results. That percentage decreased
to 6% when we took the union of results from all 30
leaf nodes. The average query recall was 25%. The
leaf nodes that we used have better search coverage
as each of them had 4 ultrapeer parents each.

2.4.3 Per Query Bandwidth Usage

Empirically, we can estimate the average cost of
each query. First, we estimate the total query rate
that is being supported by the entire Gnutella net-
work. We made use of setup B which involved run-
ning 70 ultrapeers for 3 hours duration. Averag-
ing over 3 experimental runs, there were 96 distinct
queries being seen on all ultrapeers per second. This
means that as a lower bound, 96 queries per second
(TOTAL QUERY ) were being issued in the entire

network. We round up this value to 100 queries per
second. Each ultrapeer forwarded an average of 18
queries per second (Q FORWARD). The crawl in
section 2.3.1 revealed that there were roughly on the
order of 10000 ultrapeers in the network. The av-
erage bandwidth cost per query is hence approxi-
mated by (SIZE MSG�NUM ULTRAPEERS�
Q FORWARD)=TOTAL QUERY = (80B �
10000 � 18)=(100queries=second)� 140KB.

2.4.4 Query Latency

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  10  100  1000  10000
%

 o
f Q

ue
rie

s

Latency (s)

First Result Latency
Tenth Result Latency

Figure 7: Latency of Gnutella Results

We measured the latency of the 10800 Gnutella
queries issued from ultrapeers in setup C. Figure 7
shows the latency of these queries. The average time
to receive the �rst result is 25 seconds, and the me-
dian is 14 seconds. The average time to get the tenth
tuple is 39 seconds, and the median is 28 seconds.
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Figure 8: Correlation of Number of Query Results
and Latency

Figure 8 shows the correlation of the number of re-
sults obtained from a query against the latency of the
�rst result. This is done by grouping queries by the
number of results obtained and computing the aver-
age latency to obtain the �rst result. Queries that
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returned few results tend to have longer latencies.
For queries that received a single result, the average
latency was 71 seconds. The average latency levels
o� at around 6-8 seconds as the number of results
increases.

2.4.5 Summary

We summarize our �ndings as follows:

� Gnutella has a two-tiered topology, consisting
of more powerful ultrapeer nodes that are sup-
porting weaker leaf nodes. Most ultrapeers ei-
ther had 6 ultrapeers and 32 leaf nodes, or 32
ultrapeers and 30 leaf nodes.

� Gnutella is e�ective for highly replicated items.
Dynamic querying reduces the cost of these
queries. Our measurements showed that queries
that return many results have short response
times.

� 45% of queries returned 10 or less results, and
13% of queries did not receive any results even
though there were items that would satisfy these
queries in the network. These queries would
bene�t from the use of DHTs as recall would
be guaranteed.

� While increasing the TTL would improve the
recall of queries, this would improve bandwidth
costs per query and would clearly not scale.

3 DHT-based Keyword Search

Given that ooding-based approaches in unstruc-
tured networks incur high overheads, we examine the
use of DHTs for searching. DHT-based searching is
done by publishing traditional inverted �les indexed
by DHTs (also called inverted indexes). Boolean
search proceeds by hashing via the DHT to contact
all sites that host a keyword in the query, and execut-
ing a distributed join of the postings lists of matching
�les. DHTs guarantee full recall if there are no net-
work failures, but may use signi�cant bandwidth for
distributed joins.

In the subsequent sections, we describe our im-
plementation of DHT-based keyword search for �le
sharing, as well as address the issues of network
churn and substring queries.

3.1 Implementation using PIER

We implemented �le-sharing search using PIER
(Peer-to-Peer Information Exchange and Retrieval)
[21], a P2P relational query engine over DHTs.

Using PIER, information of each �le is pub-
lished as a FileInformation(docID, filename,

location, filesize, other fields) tuple in-
dexed by docID. The docID is a unique identi�er
of the �le. To enable searching by keyword, we con-
struct an inverted index as follows: for each keyword
in the �lename, a posting list of all the unique iden-
ti�ers of all �les containing the keyword. This is
stored as Posting(keyword, docID) tuples indexed
by keyword.

Figure 9: Query Plan of Symmetric Hash Join for a
two-term query T1 and T2.

Queries involving more than one term are exe-
cuted by intersecting the respective posting lists.
The query plan for a two-term query is shown in �g-
ure 9. The query proceeds by sending the query to
the nodes responsible for the keywords in the query.
The node that hosts for the �rst keyword in the
query plan will send the matching tuples to the node
that hosts for the next keyword. The node receiving
the matching tuples will perform a symmetric hash
join (SHJ) between the incoming tuples and its lo-
cal matching tuples and the results are sent to the
next node. The matching docIDs are sent back to
the query node, which fetches all or a subset of the
complete �le information based on the docIDs.

A slight variant of the above algorithm shown in
�gure 10 redundantly stores the �lename with each
posting tuple. This incurs publishing overheads but
makes queries cheap, by avoiding a distributed join.

3.2 Network Churn

A major disadvantage of using DHTs for indexing
�le-sharing workloads is the fact that nodes in these
networks join and leave the network at high fre-
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Figure 10: Query Plan for Join Index for a two-term
query T1 and T2.

quency, making the DHT maintenance overheads
high. To determine how severe network churn would
be, we measured the connection lifetimes of leaf
nodes and ultrapeers.
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Figure 11: Connection Lifetime of Nodes

Using setup A, we measured the connection times
of neighbors while running an ultrapeer and leaf
node over 72 hours. The connection time of a neigh-
bor node is de�ned as the time the neighbor node
stays connected to our instrumented node. It is a
lower bound on the session time (the time a node
stays on the Gnutella network), as the neighbor
nodes may have simply dropped their connections
to our instrumented node. When our instrumented
node was terminated after 72 hours, there were still
some outstanding connections. We conservatively
estimated the session lifetimes of these outstanding
connections to be the duration when the connections
was established until our experiments ended.

Figure 11 shows the connection lifetimes of ultra-

peer and leaf neighbors. The lifetimes of leaves were
observed using our instrumented ultrapeer, and the
lifetimes of ultrapeers were observed using our in-
strumented leaf node. The average session lifetimes
of a leaf node and ultrapeer measured were 58 min-
utes and 93 minutes respectively. The median ses-
sion lifetimes were 13 minutes and 17 minutes re-
spectively.

As ultrapeers have longer average session lifetimes
than leaf nodes (1.5 times more), it is conceivable
that they can be used as DHT nodes. The short
median lifetimes of both leaf nodes and ultrapeer
nodes would result the published inverted indexes
published becoming stale quickly. This problem can
be adverted by not publishing �le information from
short-lived nodes. For example, if we do not con-
sider leaf nodes whose lifetimes are less than 5 min-
utes, the average and median lifetimes of remaining
leaf nodes becomes 90 minutes and 35 minutes re-
spectively. Ignoring leaf nodes whose lifetimes are
less than 10 minutes increases the average and me-
dian lifetimes to 106 minutes and 47 minutes. This
means that for a DHT-based search engine to re-
duce the probability of indexing stale information,
�le information on short-lived leaf nodes should not
be indexed.

3.3 Substring Queries

Substring queries using DHTs are more expensive
as they would require expensive distributed joins
based on n-grams of keywords and �lenames. Re-
cent Gnutella proposals to make use of Query Rout-
ing Protocol (QRP) [10, 3] would require the com-
putation of bloom-�lter summaries (QRP tables) to
be cached at neighboring nodes. This would also
make it harder to support substring matches with-
out increasing the sizes of the QRP tables. In gen-
eral, using either QRP or indexing via DHTs would
compromise the ability to perform cheap substring
queries.

4 Hybrid Search Infrastructure

DHT-based keyword searching guarantees perfect re-
call in the absence of network failures. However, it
may incur expensive distributed joins, which can be
avoided if join indexes are built (at a higher publish-
ing costs).

Existing unstructured networks incur high ood-
ing overheads but are suÆcient for locating highly
replicated �les. Our experimental studies showed
that the existing Gnutella network failed to locate
any query results in 15% of the queries issued.
Flooding the network for these queries would be
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too expensive. Replacing all ultrapeer nodes with
a DHT-based network would increase the recall of
queries, but may be too expensive if many queries
involve the shipping of large intermediate posting
lists.

One solution would be a hybrid search infrastruc-
ture in which DHTs are used for locating rare �les at
low costs, while preserving the existing unstructured
search technologies for searching highly replicated
�les. We explore this infrastructure in the remain-
ing of this section.

Figure 12: Hybrid PIER-Gnutella

Figure 12 shows a design of the hybrid search net-
work. In such a network, a subset of the ultrapeers
are hybrid nodes. They are hybrid because they uti-
lize both structured and unstructured search tech-
niques. These hybrid nodes are organized together
using a DHT. Flooding-based schemes is used for
searching highly replicated �les, while rare �les uti-
lizes a DHT-based approach.

4.1 Preliminary Live Measurements

As a preliminary feasibility study of this system,
we deployed 50 PIER ultrapeers on Planetlab [9].
These PIER nodes participate in the Gnutella net-
work as ultrapeers. We call these nodes PIER-
Gnutella ultrapeers or PG ultrapeers in short. These
PG ultrapeers gather �le information of nodes within
their search horizon through two basic mechanisms.
Firstly, a more active probing approach which in-
volves issuing browse-host commands to leaf nodes.
Secondly, a more passive approach which involves
monitoring query results that passes through the ul-
trapeer. These PG ultrapeers then identify rare �les
based on heuristics for selective publishing. Queries
that failed to locate any �les using the regular
Gnutella network over a period of time would be
executed as a PIER query by the nearest PG ultra-
peer.

We show some preliminary results of measure-
ments obtained from these nodes over a period of one

Experiment Files Queries

SHJ 196135 225
JI 203315 315

Table 1: Experimental Setup. Total �les published
and queries issued over a one hour period.

Experiment Median Avg

SHJ 2s 6s
JI 4s 8s

Table 2: Join Algorithms Overheads

hour, where the �rst 30 minutes are used to populate
�les in the DHT, and the latter 30 minutes are used
to execute Gnutella queries while publishing was still
in progress.

Table 1 shows the experimental setup for each join
algorithm described in section 3.1. The number of
�les published and queries issued di�ered in the two
experiments because they depended on the Gnutella
load during the time the experiment was carried out.
Based on our Gnutella measurements, there is evi-
dence that queries that return few results typically
contain rare �les in their results set. Hence, as a
basic heuristic, on top of publishing the �les shared
by the immediate leaf nodes, we only published �les
that belong to queries that return fewer than 20 re-
sults. The overall publishing rate was approximately
1 �le per second per node. Queries from leaf nodes of
the PG ultrapeers that obtained no results after 60
seconds are re-executed as PIER queries. The query
duration was set to 300 seconds, and we discarded
both Gnutella and PIER results after the query du-
ration. In view of possible copyright infringements,
we did not forward results computed by PIER onto
the Gnutella network.

Re-executing the query in PIER reduced the num-
ber of queries that returned no results by 21% and
18% respectively for the SHJ and JI experiments.
The coverage can be improved by running more
nodes over a longer period of time to populate the
�les in the DHT suÆciently.

Table 2 shows the average and median latencies to
receive the �rst result for both the join algorithms.
Both join algorithms have better latency numbers
compared with that of Gnutella measured in section
2.4.4.
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Experiment Bandwidth Publish Cost

SHJ 20KB 3.8KB
JI 850B 4.3KB

Gnutella 140KB 0KB

Table 3: Join Algorithms Overheads

4.2 Bandwidth Usage

To examine the feasibility of this system as it scales
up in both data and queries, we measure the band-
width consumption per query and publishing costs
per �le.

Table 3 shows the cost of publishing a �le mea-
sured from our experiments. Storing the �lename
redundantly using the JI algorithm increased pub-
lishing overheads by 10.5%. Publshing at 1 �le per
second, each ultrapeer incurs 3.8-4.3KBps of band-
width. To compute bandwidth usage per query, we
aggregated the network messages used to compute
all matching docIDs per query. We did not take into
account the costs of shipping the result tuples back
to the query node. Since we were issuing queries for
rare �les, we expect the number of results to be small
and this overhead to be minimal.

The bandwidth usage per query was measured to
be approximately 20KB when SHJ was used. The
bulk of the bandwidth costs was dominated by ship-
ping of the Posting tuples between nodes. Currently,
we reordered the join such that keywords with fewer
posting tuples are intersected earlier. JI avoids a dis-
tributed join, and the bandwidth cost is dominated
by the query message, which is 750 bytes on aver-
age. A further 100 bytes is incurred by the DHT to
identify the node to route the query to. The band-
width cost of a JI query stays constant even as more
�les are published in the system.

An unstructured network like Gnutella incurs zero
publishing costs (if we ignore the costs of leaf nodes
sending information on their �les to the ultrapeer).
As computed in section 2.4.3, the average cost of a
Gnutella query is 140KB.

4.3 Summary

Overall, our experimental results were encouraging.
Despite publishing only 1 �le per second, and the
use of only 50 hybrid nodes, there was a 20% reduc-
tion of leaf node queries that returned no results.
On the other hand, relative to the average Gnutella
query, searching for rare �les using DHTs incur low
bandwidth costs and low latencies.

5 Related Work

There has been previous work done on analyzing
Gnutella [19, 25]. This work focuses on the behavior
of nodes inside the Gnutella �le-sharing system, and
show that there is signi�cant heterogeneity in band-
width, availability and transfer rates of nodes. This
provided motivation for the use of ultrapeers. How-
ever, this work do not take into account the latest
improvements in Gnutella. They also do not focus
on recall and search latency. The e�ects on using ul-
trapeers have been studied in previous work [5, 14].
However, none of these results are based on measure-
ments taken from an actual ultrapeer-based network.
A more recent work [18] modeled �le-sharing work-
loads based on the Kazaa P2P download traÆc, and
observed non-Zip�an distributions in the popularity
distribution of content. Their study provided several
useful insights about client births and object births
driving P2P �le sharing workload, and showed sig-
ni�cant locality in the Kazaa workload. Our work
di�ers from theirs as we do not look at actual down-
load of content but rather at the query traÆc itself.

There have been recent proposals for P2P text
search [24, 26, 20, 17] over DHTs. The most ambi-
tious known evaluation of such a system [24] demon-
strated good full-text keyword search performance
with about 100,000 documents, which is only a frac-
tion of the amount of data served on Gnutella. A
feasibility study on DHT-based P2P Web search [22]
focuses on the more demanding web corpus (3 billion
documents) and a larger query rate (1000 queries per
second).

Overnet [8] is a widely used �le-sharing system
that utilizes the Kademlia [23] DHT. To our knowl-
edge, the Overnet query execution algorithm is not
publicly available. While there has been no empiri-
cal study of how well Overnet performs in practice,
there have been a study focusing on the availability
of hosts on the Overnet �le-sharing system to un-
derstand the impact of IP aliasing on measurement
methodology [15].

Despite the recent interests in DHTs, there have
been recent proposals [16] that an unstructured in-
frastructure like Gnutella is e�ective for searching
for highly replicated content and would suÆce for a
�le-sharing environment. The hybrid search infras-
tructure to improve the coverage of queries for rare
�les is complementary to their work.

6 Future Work

As part of our future work, we would like to explore
the following:
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� Improved Hybrid Implementation. Exper-
imental results show skews in the bandwidth
consumption. This is due to the Zip�an dis-
tribution in the keyword and �lename distribu-
tion. To alleviate this problem, we will explore
di�erent load balancing strategies for both stor-
age and computation. We will also explore other
selective publishing strategies for rare �les, such
as those based on term frequencies, and histor-
ical statistics of the number of replicas per �le.
On top of issuing browse hosts to immediate
neighbors, we will also explore the use of each
PG ultrapeer to perform a crawl of nodes within
its horizon and index the rare �les.

� Network Churn. As nodes join and leave, the
index will become stale. Currently, we have fo-
cused our attention on recall. Accuracy is also
important. We intend to improve the publishing
strategies to take into account the lifetimes of
nodes in Gnutella. We will also study the e�ects
of network churn on the overheads of maintain-
ing the published index in the DHT.

� Multiple Ultrapeers per Leaf. The exper-
iments on the PG ultrapeers did not take into
account that each leaf node might have multiple
ultrapeers. Sending the leaf query to multiple
ultrapeers increases the coverage of the query
at the expense of increased query load. In a
DHT implementation, only one ultrapeer is re-
quired for coverage purposes, although this will
increase the chances of a malicious node deny-
ing a leaf node query results. We will explore
this tradeo�s as part of our future work.

7 Conclusion

In this paper, we performed a measurement study
of Gnutella, focusing on its recall and search per-
formance in view of recent improvements to the
Gnutella protocol. Our analysis revealed that a
moderate fraction of Gnutella queries would bene�t
from the use of DHTs. We described how keyword
based searching can be implemented using DHTs,
and provided an implementation using PIER, a P2P
query processor over DHTs. We deployed 50 PIER
nodes as ultrapeers on Planetlab, and used them re-
duce the number of immediate leaf node queries that
did not locate �les in Gnutella. Our preliminary
evaluation showed that executing these queries over
DHTs incur low bandwidth costs and low latency
numbers.
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