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Subtleties of Transactional Memory Atomicity Semantics

Abstract
Transactional memory has great potential for simplifying multithreaded programming by allowing
programmers to specify regions of the program that must appear to execute atomically. Transactional memory
implementations then optimistically execute these transactions concurrently to obtain high performance. This
work shows that the same atomic guarantees that give transactions their power also have unexpected and
potentially serious negative effects on programs that were written assuming narrower scopes of atomicity. We
make four contributions: (1) we show that a direct translation of lock-based critical sections into transactions
can introduce deadlock into otherwise correct programs, (2) we introduce the terms strong atomicity and weak
atomicity to describe the interaction of transactional and non-transactional code, (3) we show that code that is
correct under weak atomicity can deadlock under strong atomicity, and (4) we demonstrate that sequentially
composing transactional code can also introduce deadlocks. These observations invalidate the intuition that
transactions are strictly safer than lock-based critical sections, that strong atomicity is strictly safer than weak
atomicity, and that transactions are always composable.
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Abstract— Transactional memory has great potential for sim-
plifying multithreaded programming by allowing programmers
to specify regions of the program that must appear to execute
atomically. Transactional memory implementations then opti-
mistically execute these transactions concurrently to obtain high
performance. This work shows that the same atomic guarantees
that give transactions their power also have unexpected and
potentially serious negative effects on programs that were written
assuming narrower scopes of atomicity. We make four contribu-
tions: (1) we show that a direct translation of lock-based critical
sections into transactions can introduce deadlock into otherwise
correct programs, (2) we introduce the terms strong atomicity
and weak atomicity to describe the interaction of transactional
and non-transactional code, (3) we show that code that is correct
under weak atomicity can deadlock under strong atomicity, and
(4) we demonstrate that sequentially composing transactional
code can also introduce deadlocks. These observations invalidate
the intuition that transactions are strictly safer than lock-based
critical sections, that strong atomicity is strictly safer than weak
atomicity, and that transactions are always composable.

I. INTRODUCTION

In response to the performance and complexity challenges

of locks, researchers have proposed hardware and software

mechanisms for synchronization via transactions [2], [5]–

[9], [11], [12]: segments of code that execute atomically1

with respect to each other, i.e., each transaction executes

without interference from other transactions. Like lock-based

critical sections, transactions are a mechanism for mutual

exclusion, but transactions are simpler (specifying atomicity

without naming a lock) and more efficiently implemented

(optimistically executing concurrently, rolling back on dynam-

ically detected inter-transaction conflicts). This combination

of intuitive interface and efficient implementation has the

potential to solve many lock-related problems.

Although transactions have great potential, this work de-

scribes subtle issues and common misconceptions about their

semantics.2 In particular, we investigate the implications of

different scopes of atomicity. The scope of atomicity deter-

mines precisely what code must be atomic and with respect to

what other code it must appear atomic. Naturally, narrowing

the scope of atomicity can break a program, because a nar-

rower scope introduces additional possible interleavings that

1In the ACID properties of database transactions, it is isolation that guar-
antees non-interference, not atomicity; however, the programming languages
and software verification communities have long used the term “atomic” to
mean “in isolation”, and the transactional memory community has largely
adopted this usage.

2This manuscript is an enhanced version of our earlier workshop paper [3].

may contain data races. Conversely, we show that in several

circumstances, correct programs created assuming one scope

of atomicity (e.g., that of lock-based critical sections) can

deadlock when run on a system supporting a broader scope

of atomicity (e.g., that of transactions). This result is counter-

intuitive because broader atomic scope limits interleaving,

which we would expect to eliminate—not introduce—bugs.

We make four main contributions:

• We show that a direct translation of lock-based critical

sections into transactions can introduce deadlock into an

otherwise correct program.

• We define two models of atomicity scope for transactional

systems: strong atomicity guarantees atomicity between

transactions and non-transactional code, and weak atom-
icity guarantees atomicity among only transactions.

• We show that a program that is correct under the weak

atomicity model may deadlock under the strong atomicity

model. The intuitive view that a stronger atomicity model

will correctly execute a superset of the code that is correct

under a weaker atomicity model is fallacious.

• We demonstrate that sequential composition of transac-

tions to form a single, larger transaction can also cause

deadlock.

This work invalidates the intuitive notion that transactions

are strictly safer than lock-based critical sections, that strong

atomicity is strictly safer than weak atomicity, and that

transactions are always composable. In all of these cases,

broadening the scope of atomicity restricts the set of legal

program interleavings, which would seem to only help the

programmer by removing (potentially) buggy interleavings.

However, programmers may create programs that intentionally

or unintentionally exploit such interleavings, resulting in a

program that requires concurrent execution of these regions

to avoid deadlock.

II. CRITICAL SECTIONS �= TRANSACTIONS

Transactions are a promising replacement for lock-based

critical sections, so we would like to extend the benefits of

transactional systems to legacy lock-based programs. However,

directly transforming lock-based critical sections into transac-

tions (by replacing lock acquires and releases with transaction

begin and end operations, respectively) is not always safe. This

conversion broadens the scope of atomicity, thus changing the

program’s semantics: a critical section that was previously

atomic only with respect to other critical sections guarded
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synchronize(o1) {

...
while(!flagA) {}
flagB = true;
... � ...

}

atomic {

synchronize(o2) {

...
flagA = true;
while(!flagB) {}
... � ...

}

atomic {

Boolean flagA = false, flagB = false;
Object o1, o2;

P� P�

Fig. 1. A program with benign data races that executes correctly using
locking but deadlocks when directly converted to transactions.

by the same lock is now atomic with respect to all other

critical sections. This broadened scope of atomicity disallows

(previously legal) interleavings, and a correct program could

require one of these disallowed interleavings to make progress.

As a result, this semantic change can cause some correct lock-

based programs to deadlock.

Figure 1 presents a short (admittedly contrived) program

that has this property. When the code fragment in Figure 1

uses locks via synchronize blocks (rather than transactions

via atomic blocks), the two code fragments synchronize

on different objects (o1 versus o2), so they are guarded

by different locks. In this code, the programmer intends that

neither P1 nor P2 can reach the lines marked by � until the

other can also reach this line (i.e., effecting a barrier).3 This

program operates as intended because the code executed by P1

and P2 is protected by different locks, so their execution can

be interleaved (assuming pre-emptive thread scheduling). Sup-

pose we directly convert these critical sections to transactions

(i.e., replace each synchronize block with an atomic
block). Now the transactions executed by P1 and P2 must

execute atomically with respect to each other, meaning that

one transaction must appear to execute before the other. This

restriction allows either P1 to observe P2’s update of flagA
or P2 to observe P1’s update of flagB, but not both. As

a result, the program will deadlock because one or both of

the transactions will be unable to make progress beyond the

while loop.

The example shows that directly converting locks into trans-

actions may result in deadlock in legal lock-based programs.

This situation will persist even if the underlying implemen-

tation aborts and restarts these transactions. Schemes that

dynamically transform locks to transactions (e.g., transactional

lock removal [10]) revert to acquiring the lock after a timeout,

avoiding this problem. Although these systems improve the

performance of lock-based code, they do not provide program-

mers with the benefits of a transactional interface.

Our intent is not to exhibit a real program on which the

direct conversion is unsafe, but rather to show that it is

possible for this conversion to cause deadlock. In practice,

such a conversion may almost always be safe. Nonetheless,

3The unprotected references to flagA and flagB give rise to benign data
races; protecting these references with a lock does not change the result.

atomic {
❶ ld A

...
❷ ld A

}

P�

st A = 1

P�

atomic {
st B = 1
...
st B = 2

}

P�

❸ ld B

P�

int A = 0, B = 0; int A = 0, B = 0;

Fig. 2. A strongly atomic semantic must provide both non-interference
and containment with respect to non-transactional code. Non-interference
(left) prevents � and � from observing different values. Containment (right)
prevents � from observing the internal value 1.

any system that translates lock-based critical sections into

transactions cannot assume that this translation is always safe.

Determining when this direct translation can be safely applied

is now an open research question.

III. STRONG VERSUS WEAK ATOMICITY

Transactions should be atomic with respect to each other,

but their relationship to non-transactional code is less clear.

This ambiguity would at first appear to be merely an imple-

mentation detail; however, legal programs may contain unpro-

tected references to shared variables (i.e., outside transactions)

without creating malignant data races, so both transactional

and non-transactional code can refer to the same data.

To account for these cases, we present two models for

reasoning about scope of atomicity. We define strong atomicity
to be a semantics in which transactions execute atomically

with respect to both other transactions and non-transactional

code. Strong atomicity has two components: it requires both

non-interference and containment from non-transactional code

(see Figure 2). In essence, strong atomicity implicitly treats

each instruction appearing outside a transaction as its own

singleton transaction. We define weak atomicity to be a se-

mantics in which transactions are atomic only with respect

to other transactions (i.e., their execution may be interleaved

with non-transactional code), therefore violating either non-

interference or containment (or both).

An atomicity model for a transactional system is analogous

to a memory consistency model for a traditional shared

memory multiprocessor. A memory consistency model de-

fines the observable orderings of memory operations between

threads [1]. A strong memory consistency model, which limits

the observable reordering of memory operations, is easiest to

reason about for programmers, but it is difficult to implement

efficiently. A relaxed memory consistency model, which al-

lows for counter-intuitive reordering of memory operations,

is more complex for programmers to reason about because it

requires them to explicitly insert memory barriers to enforce

ordering. However, weak ordering models are easier to imple-

ment efficiently. Similarly, strong atomicity provides a simple

and intuitive view of transactional atomicity, which may be

more difficult to implement efficiently (especially in software-

based transactional memory systems). In contrast, weak atom-

icity provides a less intuitive model (as transactions may not

appear atomic when interleaved with non-transactional code),
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...
❶ while(!flagA) {}

❷ flagB = true;

...

atomic {
...
flagA = true;

❸ while(!flagB) {}

...
}

Boolean flagA = false, flagB = false;

P� P�

Fig. 3. A program that executes correctly under weak atomicity but deadlocks
under strong atomicity.

but it may be easier to implement efficiently. Finally, just

as a properly synchronized program will execute correctly

under a weak memory consistency model, we anticipate that

a properly synchronized transactional program will execute

correctly under a weak atomicity model. Interestingly, as

transactional systems are also shared memory systems, such

systems must define both a transactional atomicity model

and a memory consistency model, as well as any previously

unconsidered interactions between the two [4].

IV. CODE ASSUMING WEAK ATOMICITY CAN BREAK

UNDER STRONG ATOMICITY

It would appear reasonable to assume that any program

that executes correctly under weak atomicity will also execute

correctly under strong atomicity. However, this assumption is

not true; some programs that are correct under weak atomicity

will deadlock under strong atomicity. A program executing

under weak atomicity can interleave non-transactional code

arbitrarily with transactional code, and such interleavings may

be necessary for the program to make progress. If the system

actually provides strong atomicity, these interleavings are not

allowed and the program may deadlock as a result.
For example, consider the two concurrently executing

threads in Figure 3. The programmer intends that the two

threads proceed in a coordinated way through the use of

the shared variables flagA and flagB, effecting a barrier.

Under weak atomicity, the program will execute correctly: the

two threads’ reads and writes can interleave arbitrarily, and

the threads proceed as the programmer intended. However,

consider what occurs if the program is executing under strong

atomicity. The loop labeled � in P1 will terminate only

after the transaction in P2 propagates its update of flagA
when the transaction commits; however, the transaction in

P2 can commit only after the update to flagB (labeled �)

executes (because of the loop labeled �). The resulting circular

dependency causes this program to deadlock under strong

atomicity, despite correctly executing under weak atomicity.
The above example illustrates the need for transactional

memory systems to specify whether they are strongly atomic

or only weakly atomic and then implement that semantics pre-

cisely. If a programmer believes that a transactional system is

strongly atomic, but it is only weakly atomic, the programmer

may write a buggy program due to race conditions between a

transaction and non-transactional code. Conversely, if a pro-

gram is written with the assumption that a transactional system

atomic {
atomic { 

A = 1;
}
atomic (B==1) { ❸

...
}

}

atomic (A==1) { ❷
B = 1;

}

int A = 0, B = 0;
P� P�

❹
❶

Fig. 4. A program that executes correctly when the boxed atomic block is
not present but deadlocks when the atomic block is introduced to compose
the two transactions it contains (� and �).

is weakly atomic, but it in fact implements strong atomicity,

the program may deadlock because it relies on transactions

being non-atomic with respect to non-transactional code. As

such, neither atomicity model alone can serve as a safe

“least common denominator” target model for programmers.

However, it may be possible to specify such a target model

via a semantics in which there is no guaranteed behavior for

the case of simultaneous data accesses by a transaction and

non-transactional code.

V. TRANSACTIONS ARE NOT ALWAYS COMPOSABLE

One touted advantage of transactions is that they are com-

posable, whereas lock-based synchronization is not. For ex-

ample, atomically moving an element from one set to another

(i.e., the element will be observed by other processors as being

in exactly one set) requires either exposing the internal locking

of the set data structure or adding a new method for just such

an operation. With transactions, a programmer can accomplish

this behavior by sequentially composing the delete and insert

invocations by wrapping them in a single transaction. This

composability property has been identified as an important

advantage of transactions [7].

However, not all such sequential compositions preserve

program correctness. Just as broadening the scope of atomicity

led to problems when converting locks to transactions and

executing code for weak atomicity on a strongly atomic

system, broadening the scope of atomicity by sequentially

composing code within a transaction can introduce deadlocks.

Figure 4 shows a program that will deadlock when two of

its transactions are composed into a single transaction. This

example uses the conditional transaction notation in which

atomic (condition) {code} will wait until condition
is true before executing the transaction [6]. If we (for now)

ignore the boxed atomic block (labeled �), the code from P2

can be interleaved in between P1’s two transactions. Because

of the conditions on the transactions, the transactions must

execute in the order: �, �, �. If we now introduce the boxed

atomic block, P1’s two transactions are now sequentially

composed into a single larger transaction. This code now

deadlocks, because P1’s transaction can commit only once

P2 commits the assignment of B. Conversely, P2’s transaction

IEEE Computer Architecture Letters VOL. 5, NO. 2,  2006



cannot commit until P1 commits the assignment of A. Al-

though the cross-coupling in this example is straightforward,

the two inner transactions could occur deeply nested within

different code modules (or in even in library code), making

identification of such cross-coupling more difficult.

In addition to the effect on the programmer that such

non-composability may create, this issue also affects what

optimizations are allowed within the transactional memory

system. For example, static or dynamic techniques to coalesce

two or more smaller transactions into a larger transaction

to reduce per-transaction overheads may encounter problems.

Similarly, combining transactional and non-transactional code

into a larger transaction can also introduce deadlock. For

example, even if the A = 1 assignment in Figure 4 was

not within a transaction, the code in Figure 4 would still

deadlock. This result has ramifications for both static compiler

optimizations (e.g., code motion optimizations that increase

the scope of a transaction) and dynamic optimizations (e.g.,
naively expanding the scope of a transaction to simplify a

hardware implementation). To avoid these problems, static

schemes may require additional analysis to determine when

such a transformation is legal. Dynamic schemes may be

able to avoid this problem by detecting a lack of forward

progress and falling back to a more exact enforcement scheme

(analogous to how transactional lock removal [10] avoids

such problems when dynamically transforming locks into

transactions).

VI. CONCLUSIONS AND OPEN QUESTIONS

The main contribution of this paper is the counter-intuitive

observation that programs that execute correctly under one

scope of atomicity can break when executing under broader

scopes. In particular, broader scopes of atomicity restrict legal

interleavings that may be necessary for program correctness.

Further work on transactions should consider this observation

when proposing any transparent strengthening of atomicity.

We have illustrated this situation by showing three ways in

which this phenomenon can occur.

First, transactions do not strictly subsume lock-guarded crit-

ical sections in the sense that any program that works correctly

with locks will work correctly when directly converted to

transactions. The stronger guarantees that transactions provide

result in different requirements for correct execution: locks

enforce atomicity only among segments of code that are

guarded by the same lock, whereas transactions enforce atom-

icity among all concurrent transactions. Hence, a program that

depends on non-atomicity between critical sections guarded by

different locks may break when converted to transactions.

Second, introducing atomicity between non-transactional

and transactional code (strong atomicity) can break a program

that correctly executes when non-transactional code can inter-

leave with transactions (weak atomicity). Therefore, a system

should specify its atomicity model as part of its transactional

semantics. We encourage designers of transactional memory

systems to use these terms to explicitly state the semantics of

their proposals.

Third, broadening the granularity of atomicity by sequen-

tially composing a transaction with other code (transactional

or non-transactions) can also introduce deadlock.
This paper raises several questions. We have given contrived

program examples that give rise to the problems we describe,

but how often (if ever) do these types of codes arise in

practice? Is it possible to build tools that determine—either

statically or dynamically—when it is safe to broaden the scope

of atomicity (both in the context of converting lock-based

critical sections into transactions and composing transactions)?

Does expanding the scope of atomicity always preserve partial

correctness, i.e., the translated program has the property that

it will give a correct answer if it gives any answer? What are

the relative benefits and drawbacks of strong atomicity and

weak atomicity? Is a single transactional semantics appropriate

for all applications and implementations? If not, how many

different semantics are necessary? We hope that this work

inspires researchers to investigate these and other questions

of transactional semantics.
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