
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2002

SafetyNet: Improving the Availability of Shared
Memory Multiprocessors with Global
Checkpoint/Recovery
Daniel J. Sorin
University of Wisconsin

Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

Mark D. Hill
University of Wisconsin

David A. Wood
University of Wisconsin

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2002 IEEE. Reprinted from Proceedings of the 29th Annual International Symposium on Computer Architecture, 2002, May 2002, pages
123-134.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Milo Martin was affiliated with the University of Wisconsin. Currently (March 2007), he is a faculty member
in the Department of Computer and Information Science at the University of Pennsylvania.

Recommended Citation
Daniel J. Sorin, Milo Martin, Mark D. Hill, and David A. Wood, "SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery", . May 2002.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages

SafetyNet: Improving the Availability of Shared Memory Multiprocessors
with Global Checkpoint/Recovery

Abstract
We develop an availability solution, called SafetyNet, that uses a unified, lightweight checkpoint/recovery
mechanism to support multiple long-latency fault detection schemes. At an abstract level, SafetyNet logically
maintains multiple, globally consistent checkpoints of the state of a shared memory multiprocessor (i.e.,
processors, memory, and coherence permissions), and it recovers to a pre-fault checkpoint of the system and
re-executes if a fault is detected. SafetyNet efficiently coordinates checkpoints across the system in logical time
and uses "logically atomic" coherence transactions to free checkpoints of transient coherence state. SafetyNet
minimizes performance overhead by pipelining checkpoint validation with subsequent parallel execution.

We illustrate SafetyNet avoiding system crashes due to either dropped coherence messages or the loss of an
interconnection network switch (and its buffered messages). Using full-system simulation of a 16-way
multiprocessor running commercial workloads, we find that SafetyNet (a) adds statistically insignificant
runtime overhead in the common-case of fault-free execution, and (b) avoids a crash when tolerated faults
occur.

Comments
Copyright 2002 IEEE. Reprinted from Proceedings of the 29th Annual International Symposium on Computer
Architecture, 2002, May 2002, pages 123-134.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Milo Martin was affiliated with the University of Wisconsin.
Currently (March 2007), he is a faculty member in the Department of Computer and Information Science at
the University of Pennsylvania.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/318

http://repository.upenn.edu/cis_papers/318?utm_source=repository.upenn.edu%2Fcis_papers%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages

This work is supported in part by the National Science Foundation, with
grants EIA-9971256, CDA-9623632, and CCR-0105721, Intel Graduate
Fellowship (Sorin), IBM Graduate Fellowship (Martin), two Wisconsin
Romnes Fellowships (Hill and Wood), and donations from Compaq Com-
puter Corporation, Intel Corporation, IBM, and Sun Microsystems.

SafetyNet: Improving the Availability of
Shared Memory Multiprocessors with Global Checkpoint/Recovery

Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, David A. Wood
Computer Sciences Department

University of Wisconsin—Madison
{sorin, milo, markhill, david}@cs.wisc.edu

http://www.cs.wisc.edu/multifacet/

Abstract

We develop an availability solution, calledSafetyNet, that
uses a unified, lightweight checkpoint/recovery mechanism
to support multiple long-latency fault detection schemes.
At an abstract level,SafetyNetlogically maintains multi-
ple, globally consistent checkpoints of the state of a shared
memory multiprocessor (i.e., processors, memory, and
coherence permissions), and it recovers to a pre-fault
checkpoint of the system and re-executes if a fault is
detected.SafetyNet efficiently coordinates checkpoints
across the system in logical time and uses “logically
atomic” coherence transactions to free checkpoints of
transient coherence state.SafetyNet minimizes perfor-
mance overhead by pipelining checkpoint validation with
subsequent parallel execution.

We illustrateSafetyNetavoiding system crashes due to
either dropped coherence messages or the loss of an inter-
connection network switch (and its buffered messages).
Using full-system simulation of a 16-way multiprocessor
running commercial workloads, we find thatSafetyNet(a)
adds statistically insignificant runtime overhead in the
common-case of fault-free execution, and (b) avoids a
crash when tolerated faults occur.

1 Introduction

Availability has become increasingly important as internet
services are integrated more tightly into society’s infra-
structure. Availability is particularly crucial for the shared-
memory multiprocessor servers that run the application
services and database management systems that must
robustly manage business data. However, unless architec-
tural steps are taken, availability will decrease over time as
implementations use larger numbers of increasingly unre-
liable components in search of higher performance [21,
43]. The high clock frequencies and small circuit dimen-
sions of future systems will increase their susceptibility to

both transient and permanent faults. For example, higher
frequencies exacerbate crosstalk [3, 8] and supply voltage
noise [39], and smaller devices and wires suffer more from
electromigration and alpha particle disruptions [36, 49].

Decades of research in fault-tolerant systems suggest a
path toward addressing this problem. Mission-critical sys-
tems routinely employ redundant processors, memories,
and interconnects (e.g., triple-modular redundancy [26] or
pair-and-spare [45]) to tolerate a broad class of faults.
However, for many applications, the highly competitive
commercial market will seek lower overhead solutions.
For example, RAID level 5 [31] has been deployed widely
because its overhead is 1/Nth (for N data disks) rather than
the 100% overhead for mirroring. In contrast to mission-
critical systems, commercial servers aim for high avail-
ability but will accept occasional crashes to improve cost/
performance. Software-visible techniques—including
database logging and clustering—help preserve data integ-
rity and service availability in these cases.

Current servers employ a range of hardware mechanisms
to improve availability. RAID, error correcting codes
(ECC), interconnection network link-level retry [18], and
duplicate ALUs with processor retry [40] target specific,
localized faults such as transient bit flips at memory, links,
or ALUs. Computer architects seeking system-wide cover-
age currently must integrate a patchwork of localized
detection and recovery schemes.

In this paper, we seek a unified, lightweight mechanism
that provides end-to-end recovery from a broad class of
transient and permanent faults. This recovery mechanism
can be combined with a wide range of fault detection
mechanisms, including strong error detection codes (e.g.,
CRCs), redundant processors and ALUs [18, 40], redun-
dant threads [37], and system-level state checkers [9]. By
decoupling recovery from detection, our approach allows a
range of implementations with varying cost-performance.

We develop a lightweight global checkpoint/recovery
scheme calledSafetyNet, and we illustrate its abstraction
in Figure 1.SafetyNetperiodically creates a system-wide
(logical) checkpoint.SafetyNetcheckpoints can span thou-
sands or even millions of execution cycles, permitting

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

powerful detection mechanisms with long latencies. After
detecting a fault, all processors, caches, and memories
revert to and resume execution from a consistent system-
wide state, therecovery point. SafetyNetis a hardware
scheme that requires no changes to any software or the
instruction set. Moreover,SafetyNethas limited impact on
the processor, coherence protocol, and I/O subsystem.

SafetyNet’s basic approach is to log all changes to the
architected state. This presents three main challenges for a
lightweight recovery scheme. First, naively saving previous
values before every register update, cache write, and coher-
ence response would require a prohibitive amount of stor-
age. Second, all processors, caches, and memories in a
shared-memory multiprocessor must recover to a consis-
tent point. For example, recovery must ensure that all nodes
agree on the coherence ownership and data values of each
memory block. Third,SafetyNetmust determine when it is
safe to advance the recovery point (i.e., validate a new
checkpoint), without degrading performance to wait for
slow fault detection mechanisms.

SafetyNetefficiently meets these three challenges, as
described in Section 2. First, logging is reduced by check-
pointing at a coarse granularity (e.g., 100,000 cycles). Only
the first change to a piece of architectural state—register,
memory block, or coherence permission—within a check-
point interval requires a log entry, reducing the log over-
head by one or two orders of magnitude. Second,SafetyNet
efficiently coordinates checkpoint creation usingglobal
logical time and logically atomic coherence transactions,
ensuring a consistent recovery point. Third, checkpoint val-
idation is pipelined and overlapped with normal execution.
Pipelining validation allowsSafetyNetto tolerate long
latency detection mechanisms while continuing execution.

In Section 3, we develop aSafetyNetimplementation that
minimizes runtime overheads for actions in the common
case of fault-free execution, including memory operations
and coherence transactions. Figure 2 depicts the structures

necessary to maintain checkpoint state—register check-
point buffers and Checkpoint Log Buffers (CLBs)—added
to processor-memory nodes of an example system imple-
mentation. Register checkpoints, CLBs, caches, and mem-
ories are deemed “stable storage” and must be protected by
ECC, becauseSafetyNetcannot recover from uncorrectable
errors to these structures. Addressing this class of faults,
including processor-cache chip kills, is future work.

SafetyNetis a recovery mechanism that is largely decou-
pled from any specific fault detection mechanisms. How-
ever, to make the exposition more concrete, we use two
system-level faults as running examples. We focus on the
two faults presented below, and we describe their causes
and detection mechanisms in more detail in Table 1.

(1) Dropped Message: A transient fault causes the loss
of a coherence message in the interconnect.

(2) Failed Switch: A hard fault kills a switch element,
irretrievably losing all buffered messages.

In Section 4, full system simulations with commercial
workloads show that, in the common case of fault-free exe-
cution,SafetyNetdoes not increase execution time (relative
to an unprotected system) by a statistically significant
amount. Moreover,SafetyNetcontinues to run after the
injection of the two example faults. Recovery time is
reduced from a system crash/reboot to a performance
“speed bump” of less than one millisecond. We also show
that 512 kbyte CLBs are large enough, for our commercial

Figure 1.SafetyNetAbstraction. In SafetyNet,❶
processors operate on the current state of the system,
❷ the system recovers to the recovery point if a fault
is detected, and❸ some number of non-current
checkpoints can be pending validation.

Processor

Processor

Current

State of

System }

Checkpoints Waiting
To Be Validated

Recovery Point

❶

❷

❸

Checkpoint

Buffer
Log

Checkpoint

Buffer
Log

Network
Interface

Switch
Half

 Cache Memory

register
checkpoints

CPU

Switch
Half

Node

Figure 2. ExampleSafetyNet System

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

workloads, to tolerate fault detection mechanisms with
over 100,000 cycles of latency.

Section 5 expands upon the wide variety of faults and
detection mechanisms compatible withSafetyNet. Like
most prior work, we focus on tolerating all single faults,
plus coverage for many double faults.

2 SafetyNetOverview

This section presents a high-level overview ofSafetyNet,
while Section 3 describes one specific implementation.

2.1 High-Level View

SafetyNetperiodically checkpoints the system state, to
allow the system to recover its state to a consistent previous
checkpoint. If a fault is detected,SafetyNetrecovers the
state to therecovery point, the old checkpoint most recently
validated fault-free. Checkpoints between the recovery
point and the active system state are pending validation. A
system-wide checkpoint includes the state of the processor
registers, memory values, and coherence permissions.Safe-
tyNethas a small impact on the underlying cache coherence
protocol. We assume a sequentially consistent memory
model, andSafetyNetdoes not affect its implementation.

SafetyNet addresses the three challenges for logging
schemes described in Section 1. First,SafetyNetexploits a
coarse checkpoint granularity to reduce the amount of log-
ging (Section 2.2). Second,SafetyNetcreates consistent
global checkpoints (Section 2.3) such that all processors
and memories recover to a consistent recovery point upon
fault detection. Third,SafetyNetpipelines checkpoint vali-
dation off the critical path and hides the latencies of fault
detection mechanisms (Section 2.4).

2.2 Checkpointing Via Logging

Logically, SafetyNetcheckpoints contain a complete copy
of the system’s architectural state. For efficiency,SafetyNet
explicitly checkpoints registers and incrementally check-
points memory state by logging previous values and coher-
ence permissions. Conceptually, processors and memory

controllers log every change to the memory/coherence state
(i.e., save theold copy of the block) whenever an action
(i.e., a store or a transfer of ownership) might have to be
undone. To reduce storage and bandwidth requirements,
SafetyNetonly logs the block on the first such action per
checkpoint interval. By using coarse checkpoint intervals
(e.g., 100,000 cycles),SafetyNetsignificantly reduces log-
ging overhead (evaluated in Section 4.3). Checkpointing of
processor register state can be done in many ways, includ-
ing shadow copies or writing the registers into the cache.

2.3 Creating Consistent Checkpoints

All of the components (caches and memory controllers)
coordinate their local checkpoints, so that the collection of
local checkpoints represents a consistent global recovery
point. Coordinated system-wide checkpointing avoids both
cascading rollbacks [15] and an output commit problem
[16] for inter-node communication. Checkpoints are coor-
dinated across the system inlogical timeto avoid a poten-
tially costly exchange of synchronization messages.

To ensure that checkpoints reflect consistent system states,
the logical time base must ensure that all components can
independently determine the checkpoint interval in which
any coherence transaction occurs (not just its request). We
exploit the key insight that, in retrospect, a coherence trans-
action appears logically atomic once it completes. A trans-
action’spoint of atomicityoccurs when the previous owner
of the requested block processes the request. To inform the
requestor, the response includes the checkpoint number of
the point of atomicity. Figure 3 illustrates howSafetyNet
determines this point. Note that the requestor does not learn
the location of the atomicity point until it receives the
response that completes the transaction. To ensure that the
system never recovers to the “middle” of a transaction, the
requestor does not agree to advance the recovery point until
all of its outstanding transactions complete successfully.
After completion, the transaction appears atomic, so there
is no “middle.” Furthermore, by waiting for outstanding
transactions to complete,SafetyNetavoids checkpointing
transient coherence states and in-flight messages.

Table 1. Two Example Faults

Dropped Message:This example fault assumes a lost or misrouted coherence message due to a transient environmental
condition (e.g., alpha particle [28, 36, 49]). The fault may corrupt the message while it is stored in a switch buffer or by
disrupting a switch’s internal logic. The fault might be detected using an error detection code (e.g., CRC), by an end-
point receiving an illegal message, or by a request timing out. The detection latency may be large in the case of request
timeout or if longer error detection codes are used (longer codes are inherently stronger).

Failed Switch: This example fault assumes the permanent loss of an interconnect switch element (e.g., due to electromi-
gration), causing the loss of all buffered messages. We consider a 2D torus topology that prevents a single point-of-failure
by splitting each switch into two half-switches. As illustrated in Figure 2, nodes have separate paths to the north-south
and east-west half-switches, providing redundancy in case one half-switch fails. We use the same mechanisms discussed
above to detect the fault. Execution may resume after reconfiguring the interconnect to route around the lost switch [14],
but with some loss of bandwidth.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Many bases of logical time exist. A simple example in a
broadcast snooping system is for each component to count
the number of coherence requests it has processed and use
that as its logical time. If components create checkpoints
every K logical cycles, it is trivial for all components to
agree on the interval in which a transaction’s request
occurred. In this paper, we focus on systems with directory
protocols, and thus we need a different logical time base. If
we could distribute a perfectly synchronous physical clock,
we would have a viable logical time base in which logical
and physical time are the same. In Section 3, we relax this
requirement by deriving a logical time base from a loosely
synchronizedcheckpoint clock.

2.4 Validating Checkpoints

Checkpoint validation is the process of determining which
checkpoint is the recovery point. Processors and memories
coordinate checkpoint validation so that all components
recover to the same checkpoint number on a recovery.

Coordination can be pipelined and performed in the back-
ground. For example, checkpoint number k can be vali-
dated only if every component agrees that it could be the
recovery point, i.e, all execution prior to checkpoint num-
ber k was fault-free. For a checkpoint interval to be fault-
free, every transfer of ownership in that interval must com-
plete successfully, by which we mean that the data was
transferred fault-free to the requestor. Once every compo-
nent has independently declared that it has received fault-
free data in response to all of its requests in the interval
before the checkpoint, the recovery point can be advanced.
At this point, all transactions prior to this checkpoint have
had their points of atomicity determined. After validation,
state for the prior recovery point can be deallocated lazily.

Validation latency depends on fault detection latency, since
a checkpoint cannot be validated until it has been verified
fault free. For our fault examples, the detection latency is as
long as the requestor’s timeout latency. Timeout latency
can be many traversals of the interconnect, plus some slack
built in for contention delays. Adding to validation latency,
validation cannot occur until all nodes have coordinated
their validations, and this involves an exchange of mes-
sages. Since validation latency is long,SafetyNetperforms
validation in the background and off the critical path.

Checkpoint validation also determines when the system
can interact with the outside world of I/O devices. Theout-
put commit problem[16] requires that only validated, fault-
free data can be communicated outside of the sphere of
recovery. For example, the system cannot communicate
unvalidated data with the disks if the effects of this commu-
nication cannot be undone through recovery. A standard
solution is to delay all output events generated within a
checkpoint until that checkpoint is validated. A standard
solution for theinput commit problem[16] is to log incom-
ing messages so that they can be replayed after recovery.

2.5 Recovering to a Consistent Global State

If a fault is detected,SafetyNetrestores the globally consis-
tent recovery point. The recovery point represents the con-
sistent state of the system at thelogical time that this
checkpoint was taken. Recovery itself requires that the pro-
cessors restore their register checkpoints and that the
caches and memories unroll their local logs to recover the
system to the consistent global state at the pre-fault recov-
ery point. All state associated with transactions in progress
at the time of recovery is discarded, since this state is (by
definition) unvalidated state that occurs logically after the
recovery point. After recovery, the system reconfigures, if
necessary, and resumes execution from the recovery point.
For the lost switch example, reconfiguration involves rout-
ing around the faulty switch.

Processor Memory

Checkpoint #1

Checkpoint #3

Checkpoint #4

Checkpoint #5

<data,CN3>

<request B>

Checkpoint #2

Figure 3. Example of Checkpoint Coordination

In this example, physical time flows downwards, and check-
point lines in logical time are not necessarily horizontal, since
logical time is not equal to physical time. Logical time
respects causality, so a message cannot be sent in one check-
point interval and arrive in an earlier interval. At❶, the pro-
cessor requests ownership of block B from the memory, which
is currently the owner of the block. The memory processes the
request at❷ and defines the transaction’s point of atomicity,
sending checkpoint number (CN) 3 along with the data. In ret-
rospect, the transaction appears to have occurred atomically at
this point. A recovery to CN 2 or before would restore owner-
ship to the memory. A recovery to CN 3 or later would main-
tain ownership at the processor. A recovery to CN 2-5 (the
duration of the transaction) is not possible until after the trans-
action, since the processor would not validate any of these
checkpoints until the transaction completed successfully at❸.

physical
time

❶

❷

❸

point of
atomicity

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

3 A SafetyNetImplementation

In this section, we discuss one implementation of theSafe-
tyNetabstraction. Our goal is to incur low overhead in the
common case of fault-free execution, while not allocating
resources towards optimizing the rare case of recovery.

3.1 System Model

Figure 2 illustrates a single node, containing a processor, a
cache, and a portion of the system’s shared memory. A
Checkpoint Log Buffer (CLB), associated with each cache
hierarchy and each memory controller, stores logged state.
Processor register checkpoints are maintained in shadow
registers. Nodes communicate through a 2D torus intercon-
nection network. The cache coherence protocol is based on
a typical MOSI directory protocol1, andSafetyNethas only
a slight impact on it. The system also includes redundant
system service controllers (which exist in many servers,
such as the UltraEnterprise E10000’s service processors
[10]), that help coordinate advancement of the recovery
point as well as system restart after recovery.

3.2 Logical Time Base

As discussed in Section 2, checkpoints are coordinated
across the system in logical time. For our system with
directory-based coherence, we use a loosely synchronous
(in physical time) checkpoint clockthat is distributed
redundantly to ensure no single point of failure. On each
edge of this clock, each component creates a checkpoint
and increments itscurrent checkpoint number (CCN).
While it might be difficult to distribute a synchronous clock
across a system with near-zero skew, it is not nearly so dif-
ficult to distribute one with the same frequency and some
amount of skew between nodes. As long as the skew
between any two nodes is less than the minimum commu-
nication time between these nodes, the checkpoint clock is
a valid base of logical time, since no message can travel
backwards in logical time.2

We use logical time to address the primary challenge in
coordinating checkpoints across a system, which is keeping
checkpoints consistent with respect to memory and coher-
ence state. All components must agree, for every coherence
transaction, on the checkpoint interval in which that trans-
action occurred. Assigning a transaction to a checkpoint

interval is protocol-dependent, and it is the only significant
difference in implementingSafetyNeton top of different
classes of protocols (i.e., directory vs. snooping). In a
directory protocol, the point of atomicity occurs when the
block’s owner processes the request.

3.3 Logging

SafetyNetusesCheckpoint Log Buffers (CLBs)to incre-
mentally checkpoint memory and coherence state. Logi-
cally, SafetyNetwrites a memory block to a CLB whenever
anupdate-action(i.e., store or transfer of ownership) might
have to be undone in the case of a recovery. Since proces-
sors perform stores into caches and both caches and memo-
ries can transfer ownership of blocks, both caches and
memories have CLBs. Except during recovery, CLBs are
write-only and off the critical path.

SafetyNetonly logs a block on the first update-action per
checkpoint interval. To detect this case,SafetyNetadds a
checkpoint number (CN)to each block in the cache, denot-
ing to which checkpoint it belongs. On each update-action,
SafetyNet(1) compares the component’s current check-
point number (CCN) with the block’s CN, (2) logs the
block if CCN ≥ CN, (3) updates the block’s CN to CCN+1,
and (4) performs the update-action. For example, a store by
a processor with CCN=3 to a block with CN=4 need not be
logged. Blocks with null CNs have not been written or
transferred lately, and they implicitly belong to the recov-
ery point as well as all subsequent checkpoints. Having
CNs on blocks is an optimization that enables logic to
determine whether logging an update-action is redundant.
Figure 4 illustrates an example of logging at a cache.

When giving up ownership of a block, a component per-
forms logging (as described above) and then sends a
response with the blockand the updated CNto the
requestor. This policy follows from a key insight from Wu
et al. [48]: a transfer of ownership is just like a write, in that
we cannot be sure that it will not be undone by a recovery.
Consider the case where ownership is transferred with its
CN set to 3 (i.e., the sender’s CCN is 2) and the receiver
wishes to then perform a store to it while its CCN is still 2.
Logging is unnecessary, since the receiver was not the
owner at checkpoint 2. This case is the same as an owner of
a block with CN=3 overwriting it while its CCN is still 2.

The CLBs can be sized for performance and not correct-
ness, sinceSafetyNetcan avoid situations in which the CLB
fills up. Even when it appears that an entry must be logged
in the CLB, logging can be avoided at the cost of some per-
formance. In the case of store overwrites, we can throttle
requests from the CPU. For coherence ownership transfers,
we can negatively acknowledge (nack) coherence requests,
although this may require changing the protocol. Note that

1. In this paper, we assume a directory protocol and a 2D torus,
but we have also implementedSafetyNet on a system with a
broadcast snooping protocol and a totally ordered interconnect.

2. Otherwise, the following inconsistency could arise. Consider
the case where processor P1 has a CCN of 3 and sends a request
to the owner, P2, while P2’s CCN is still 2. Thus, checkpoint 3
would include the reception of the request but not its sending!

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

a stall due to a full CLB will not cause deadlock, since the
CLB will eventually either deallocate state from a check-
point that validates or recovery occurs if validation fails.

3.4 Checkpoint Creation

Checkpoint creation must be lightweight, since it is a com-
mon-case event that occurs on each edge of the checkpoint
clock. A processor checkpoints its non-memory architec-
tural state (i.e., registers) and increments its CCN.3 A
memory controller simply increments its CCN. Check-
pointing of memory and coherence state is achieved
through logging, so no checkpointing of that state is neces-
sary at checkpoint creation.

Checkpoint creation policy is simply choosing a suitable
checkpoint clock frequency,fc. As fc decreases (given a
constant number of outstanding checkpoints),SafetyNet
can tolerate longer fault detection latencies. For example,
we allow four outstanding checkpoints and choosefc equal
to 10 kHz (i.e., the checkpoint interval is 100,000 processor
cycles at a processor clock of 1 GHz) to enable 400,000
cycles (0.4 msec) of detection latency tolerance. The cost
of increasing tolerable detection latency is larger CLBs and
longer output commit delays. While decreasingfc allows
for more optimized logging, since we log only the first
update-action on a block in an interval, total CLB storage is
a function both of logging frequency and interval length.
The value offc has little effect on performance, since we
show in Section 4 thatSafetyNet adds little overhead.

3.5 Checkpoint Validation

Checkpoint validation requires that all components agree
that execution up until that checkpoint was fault-free. A
cache controller only agrees to validate a checkpoint once
every transaction it initiated in the interval before that
checkpoint completed successfully. A directory controller
only agrees to validate after every transaction for which it

forwarded a request to a processor owner (i.e., 3-hop trans-
action) completed successfully. Thus, the requestor must
send an acknowledgment to the directory after its request
has been satisfied, so that the directory can deallocate its
buffer entry for the transaction. Any lost message will pre-
vent recovery point advancement. If the recovery point can-
not be advanced after a given amount of time, the system
assumes an error has occurred (such as a lost message) and
triggers a system recovery.SafetyNetcan maintain a recov-
ery point as long as necessary, in the worst case, by stalling
execution. However, fault-free performance is best if, in the
average case, fault detection mechanisms validate check-
points fault-free in one or a few checkpoint intervals (e.g,
in 100,000 cycles or 0.1 milliseconds).

We coordinate validation with a 2-phase scheme. Once
every component has informed the service controllers that
it is ready to advance the recovery point, the service con-
trollers broadcast the newrecovery point checkpoint num-
ber (RPCN). Similar to a fuzzy barrier [22], execution does
not slow while checkpoints validate in the background.

Components deallocate a checkpoint by discarding their
now unneeded architectural checkpoints. A processor dis-
cards its register checkpoint. In the caches, a checkpoint is
deallocated by clearing the CN of all blocks that had CN
set to the newly deallocated checkpoint. Logged data at the
CLBs from this checkpoint is discarded.

3.6 System Recovery and Restart

If a component detects a fault, it triggers a recovery. The
recovery message, which includes the RPCN, is broadcast
by the service controllers, and all nodes then recover to the
recovery point. The process of recovery involves several
steps, and it leverages the insight that any transactions in
progress, by definition, belong to unvalidated checkpoints.
First, the interconnection network is drained, and all state
related to coherence transactions that were in progress at
the time of the recovery is discarded. Second, processors,
caches, and memories recover the RPCN checkpoints.
Memories sequentially undo the actions in their CLBs. Pro-
cessors restore their register checkpoints. Caches invalidate
all blocks written or sent in an unvalidated checkpoint
interval (i.e., blocks with non-null CNs) and undo the
logged actions in their CLBs.

After recovery and reconfiguration (if needed), the service
controllers broadcast a restart message to instruct the nodes
to resume operation. The restart cannot begin until every
node has finished its recovery. As with coordination to vali-
date checkpoints, we implement a 2-phase coordination
where every node informs the system service controllers
once it is ready to restart and then the service controllers
broadcast the restart message.

3. Since CNs are encoded in a finite number of bits, an imple-
mentation should not re-use a CN until its previous incarnation
has been discarded. We ensure this by setting the request timeout
latency to be less than the minimum wraparound time.

Figure 4. Logging at the Cache

Time

Store A← 10

Store A← 15

Store A← 20

CLB
A: 5

A: 10

A: 15

A: 20

Cache
CNData

null

CCN 2

CCN 1 2

2

3

A: 20 3Deallocate CN2

A: 20Deallocate CN3

null

CCN 3

A:5:CN1

A:5:CN1

A:15:CN2 A:5:CN1

A:15:CN2

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

3.7 Summary of Implementation

We have developed an implementation of theSafetyNet
abstraction that addresses the three challenges that were
raised for logging schemes. First, we exploit checkpoint
granularity to reduce the amount of logging necessary. Sec-
ond, we efficiently coordinate checkpoints across the sys-
tem in a logical time base that is loosely tied to physical
time. Third, we enable checkpoint validation to be per-
formed in the background, thus hiding the potentially
lengthy latency of fault detection. To achieve these fea-
tures, we made limited changes to the processor and the
coherence protocol.

This implementation required three changes to the proces-
sor and L1 cache. First, the processor must be able to
checkpoint its register state. This is not performance-criti-
cal, since it is infrequent, and copying out registers is
straightforward if it does not need to be fast (we will
assume 100 cycles in later results). Second, we must be
able to copy old versions of blocks out of the cache before
overwriting or transferring them. This increases cache
bandwidth, but we will show in Section 4.3 that the
increase is a small fraction. Third, we add CNs to L1 cache
blocks, to enable optimized logging.

This implementation also required three changes to the
underlying directory coherence protocol. First, we add
checkpoint numbers on data response messages, so that the
requestor knows the transaction’s point of atomicity. Sec-
ond, we allow both directories and processors to nack
coherence requests, in order to avoid filling a CLB. Third, a
three-hop transaction requires a final acknowledgment
from the requestor to the directory (to inform the directory
of the transaction’s point of atomicity).

4 Evaluation

In this section, we evaluateSafetyNet. We begin in
Section 4.1 by describing our methodology. Then, in
Section 4.2, we quantitatively determineSafetyNetperfor-
mance by running three experiments in which we compare
the performance ofSafetyNetversus that of an unprotected
system. We seek to determine the impact ofSafetyNeton
fault-free performance and to determine howSafetyNet
behaves in the presence of hard and soft faults. Lastly, in
Section 4.3, we perform sensitivity analyses on the amount
of cache bandwidth and CLB storage thatSafetyNet uses.

4.1 Methodology

We simulate a 16-processor target system with the Simics
full-system, multiprocessor, functional simulator [29], and
we extend Simics with a memory hierarchy simulator to
compute execution times. We evaluateSafetyNetwith four
commercial workloads and one scientific workload.

Simics.Simics is a system-level architectural simulator
developed by Virtutech AB. We use Simics/sun4u, which
simulates Sun Microsystems’s SPARC V9 platform archi-
tecture (e.g., used for Sun E6000s) in sufficient detail to
boot unmodified Solaris 8. Simics is a functional simulator
only, and it assumes that each instruction takes one cycle to
execute (although I/O may take longer), but it provides an
interface to support detailed memory hierarchy simulation.

Processor Model.We use Simics to model a processor
core that, given a perfect memory system, would execute
four billion instructions per second and generate blocking
requests to the cache hierarchy and beyond. We use this
simple processor model to enable tractable simulation
times for full-system simulation of commercial workloads.
While an out-of-order processor model might have an
impact on the absolute values of the results, it would not
qualitatively change them (e.g., whether a crash is
avoided). For evaluating overhead for checkpointing regis-
ter state, we model a conservative latency of 100 cycles.
We conservatively charge eight cycles for logging store
overwrites (8 bytes/cycle for 64 byte cache blocks), but
these are only about 0.1% of instructions.

Memory Model. We have implemented a memory hierar-
chy simulator that supports a MOSI directory protocol,
similar to that of the SGI Origin, with and withoutSafety-
Net support. The simulator captures all state transitions
(including transient states) of our coherence protocols in
the cache and memory controllers. We model a 2D torus
interconnection and the contention within this interconnect,
including contention due to validation coordination mes-
sages. In Table 2, we present the design parameters of our
target memory system. With a checkpoint interval of
100,000 cycles and four outstanding checkpoints,Safety-
Net can tolerate fault detection latencies up to 400,000
cycles (0.4 msec at 1GHz). To exercise the protocol imple-
mentation, we drove it for billions of cycles with a random
tester that injected faults and stressed corner cases by
exploiting false sharing and reordering messages [47].
Using a methodology described by Alameldeen et al. [2],
we simulate each design point multiple times with small,
pseudo-random perturbations of memory latencies to cause

Table 2. Target System Parameters

L1 Cache (I and D) 128 KB, 4-way set associative

L2 Cache 4 MB, 4-way set-associative

Memory 2 GB, 64 byte blocks

Miss From Memory 180 ns (uncontended, 2-hop)

Checkpoint Log Buffer 512 kbytes total, 72 byte entries

Interconnection Network 2D torus, link b/w = 6.4 GB/sec

Checkpoint Interval 100,000 cycles = 100µsec

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

alternative scheduling paths. Error bars in our results repre-
sent one standard deviation in each direction.

Workloads. Commercial applications are an important
workload for high availability systems. As such, we evalu-
ate SafetyNetwith four commercial applications and one
scientific application, described briefly in Table 3 and in
more detail by Alameldeen et al. [2].

4.2 Experiments

We perform three experiments to evaluateSafetyNetperfor-
mance and show the results in Figure 5. For each workload,
we plot five bars: two bars for systems unprotected bySafe-
tyNet and three bars for systems withSafetyNet.

Experiment 1: Fault-Free Performance.In this experi-
ment, we run two systems,SafetyNetand a similar system
that is unprotected bySafetyNet, in a fault-free environ-
ment. In Figure 5, the first and the third bars (from the left)
for each workload reflect the normalized performances of
the unprotected system andSafetyNet, respectively. We
observe that the two systems perform statistically similarly
for all workloads. Intuitively,SafetyNetdoes not impact
common case actions, such as loads and stores that do not

require logging. Overheads due to register checkpointing
(every 100,000 cycles) and stores that require logging
(0.1% of all instructions) are negligible, and back pressure
due to filling up the CLBs is rarely needed. We present sen-
sitivity analysis of CLB sizing in Section 4.3.

Experiment 2: Dropped Messages.In this experiment,
we periodically inject transient faults into the system by
dropping a message every 100 million cycles (i.e., ten
times per second). The requestor times out on its request
and triggers recovery. The second “bar” reflects the unpro-
tected system performance (crash). The fourth bar from the
right representsSafetyNetbehavior, and we see that it is
statistically similar to the fault-free scenario.4

The exact recovery latency is not critical, sinceSafetyNet’s
recovery latency is orders of magnitude shorter than the
latency of crashing and rebooting (and also preserves data
integrity). Recovery latency consists of discarding unvali-
dated checkpoint state, restoring the state from the recovery
point, re-configuring if necessary (e.g., changing the rout-
ing to avoid a dead switch), and re-executing the work that
was lost between the recovery point and the fault. Re-exe-
cuting lost work is the dominant factor, since the recovery
point can be hundreds of thousands of cycles in the past.
SafetyNetcan tolerate longer fault detection latencies with
less frequent (i.e., larger) checkpoints, at the cost of more
potential lost work. Nevertheless, even a one million cycle
recovery latency is still only one millisecond (i.e., much
shorter than a crash).

Experiment 3: Lost Switch.In this experiment, we inject
a hard fault into an interconnection network switch after
one million cycles, killing the half-switch and dropping its
buffered messages. The second “bar” reflects the crash of

Table 3. Workloads

OLTP: Our OLTP workload is based on the TPC-C v3.0 bench-
mark using IBM’s DB2 v7.2 EEE database management sys-
tem. We use a 1 GB10-warehouse database stored on five raw
disks and an additional dedicated database log disk. There are 8
simulated users per processor. We warm up for 10,000 transac-
tions, and we run for 500 transactions.

Java Server: SPECjbb2000 is a server-side java benchmark
that models a 3-tier system with driver threads. We used Sun’s
HotSpot 1.4.0 Server JVM. Our experiments use 24 threads and
24 warehouses (~500 MB of data). We warm up for 100,000
transactions, and we run for 50,000 transactions.

Static Web Server:We use Apache 1.3.19 (www.apache.org)
for SPARC/Solaris 8, configured to use pthread locks and mini-
mal logging as the web server. We use SURGE [6] to generate
web requests. We use a repository of 2,000 files (totalling ~50
MB). There are 10 simulated users per processor. We warm up
for ~80,000 requests, and we run for 5000 requests.

Dynamic Web Server: Slashcode is based on a dynamic web
message posting system used byslashdot.com . We use Slash-
code 2.0, Apache 1.3.20, and Apache’smod_perl 1.25 module
for the web server. MySQL 3.23.39 is the database engine. The
database is a snapshot ofslashcode.com , and it contains
~3,000 messages. A multithreaded driver simulates browsing
and posting behavior for 3 users per processor. We warm up for
240 transactions, and we run for 50 transactions.

Scientific Application: We usebarnes-hutfrom the SPLASH-
2 suite [46], with the 16K body input set. We measure from the
start of the parallel phase to avoid measuring thread forking.

4. The variability for the static web server and OLTP workloads
is high enough to erroneously suggest, if one considers only mean
values, thatSafetyNet performs better when faults are injected.

0.0

0.5

1.0

1.5

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

cr
as

h

cr
as

h

cr
as

h

cr
as

h

cr
as

h

Unprotected fault-free
Unprotected with fault
SafetyNet fault-free
SafetyNet with 10 transient faults per second
SafetyNet with a hard fault

jbb apache slashcode oltp barnes

Figure 5. Performance Evaluation ofSafetyNet

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

the unprotected system. The fifth bar reflectsSafetyNetper-
formance, and we observe that, most importantly,SafetyNet
avoids a crash. Performance suffers, with respect to the
fault-free case, due to restricted post-fault bandwidth.

4.3 Sensitivity Analyses

To explore SafetyNet’s sensitivity to implementation
parameters, we present analyses ofSafetyNet’s usage of
cache bandwidth and the impact of CLB sizing.

Cache Bandwidth.SafetyNet’s additional consumption of
cache bandwidth depends on the frequencies of stores that
require logging. These stores consume additional cache
bandwidth for reading out the old copy of the block. Log-
ging due to transferring cache ownership, however, does
not incur additional bandwidth, since the cache line must
be read anyway. In Figure 6, for the static web server work-
load5, we plot this frequency as a function of the check-
point interval. Both axes use log scales. Distinguishing
between all stores and only those stores that require log-
ging, we notice the drop-off in the latter as the checkpoint
interval increases. These trends are the same for the other
workloads, and the intuition is that spatial and temporal
locality reduce the number of distinct blocks touched per
interval. For an interval of 100,000 cycles, only 2-3% of
stores (less than 0.1% of all instructions) require logging.
In Figure 7, for the static web server workload, we plot the
percentage of cache bandwidth used by cache hits, cache
fills, responding to coherence requests, and logging due to
store overwrites. The additional cache bandwidth used by
SafetyNetranges from 0.3% for million cycle intervals up
to 4% for short 5,000 cycle intervals.

Storage Cost.An implementation ofSafetyNetseeks to
size the CLBs to avoid performance degradation due to full
CLBs. Total CLB storage is proportional to the number of
allowable checkpoints and the number of entries per check-
point. We allow for four checkpoints and a CLB entry is 72
bytes (8-byte address and 64-byte data block). The number
of entries per checkpoint corresponds to logging frequency
which is, in turn, a function of the frequencies of stores and
coherence requests. Figure 6 shows that, on average, only
about 100-150 CLB entries are created per 100,000 instruc-
tions (although the variance in this rate requires more stor-
age). In Figure 8, we plot the performance ofSafetyNetas a
function of CLB size. While 512 kbyte and 1 Mbyte CLBs
produce statistically equivalent performances across the
workloads, 256 kbyte CLBs degrade the performances of
jbb andapache, and 128 kbyte CLBs degrade the perfor-
mances of all of our workloads.

We do not claim that 512 kbyte CLBs are sufficient for all
workloads or all design points. These workloads are neces-
sarily scaled to enable tractable simulation times, and
larger workloads may place more pressure on the CLBs.
However, the primary determinants of CLB usage are the
checkpoint interval length and the program behavior, and
not the cache sizes. This is because logging occurs the first
time a block is overwritten or transferred outside of the
node during an interval, but not for transfers between
caches within a given node.

5 Discussion

To this point, this paper has explained howSafetyNetcan
enable a recovery after the detection of a lost message or
failed switch fault. Most generally,SafetyNetcan enable
recovery for any fault that does not corrupt ECC architec-
tural state, provided that:

• a system can be augmented with a mechanism to detect
the fault (or sign off on its absence),

• and faults are detected whileSafetyNetstill maintains a
fault-free recovery point.

5. We only present the results for the static web server, but these
results are qualitatively the same for all of our other workloads.

10000 100000 1000000
checkpoint interval (in cycles)

0

1

10

100

ev
en

ts
 p

er
 1

00
0

in
st

ru
ct

io
ns

all stores
all coherence requests
stores that use CLB
coherence requests that use CLB

checkpoint interval (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 b

an
dw

id
th

Logging
Coherence
Cache Fills
Cache Hits

10k 50k 100k 500k 1M

Figure 6. Frequencies of Stores and Coherence
Requests (Static Web Server Workload)

Figure 7. Bandwidth vs. Checkpoint Interval
(Static Web Server Workload)

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

We now discuss other faults, including those thatSafetyNet
can tolerate, those for which other schemes are sufficient,
and faults in theSafetyNethardware itself.

5.1 Tolerating Other Faults withSafetyNet

This section considers additional faults, in the interconnec-
tion network and coherence protocol, thatSafetyNetcould
tolerate. A typical interconnection network fault model
focuses on link errors, trying to detect single, double, or
burst errors. Link errors are normally detected with error
detecting codes, such as parity, SECDED, or cyclic redun-
dancy check (CRC) [14, 33]. Current systems, such as the
SGI Origin’s Spider router [18], use short codes (e.g., on 8
or 16 bytes), since the code must be checked before data is
forwarded or used.SafetyNetpermits longer, and inherently
stronger, codes because of its ability to tolerate long detec-
tion latencies.SafetyNetis also compatible with other fault
models, such as lost and misrouted messages (detected
with timeouts), corrupted internal switch state (detected
with error detecting codes), and switch controller malfunc-
tion (detected with internal consistency checks).

There are numerous soft faults in the protocol engine that
can be tolerated with global checkpoint/recovery. This
class of faults includes sending the wrong message or send-
ing duplicate messages, as well as faults in the reception of
messages.SafetyNetalso could be used to recover from
design faults in the protocol, if they could be detected reli-
ably [9, 17] and would not keep recurring after recovery
(leading to livelock).

5.2 Faults Tolerated with Existing Schemes

Processor faults can be detected with numerous schemes,
including parity, redundant ALUs, and redundant threads
[35, 37, 42]. Localized recovery schemes, including DIVA
[4], can tolerate processor faults, butSafetyNetcombined
with processor fault detection provides a unified mecha-
nism to tolerate these and other faults.

Fault tolerance schemes for memory, both SRAM and
DRAM, are already well-established, and we present the
fault model and prior detection techniques for complete-

ness. Detecting faults in storage cells can be accomplished
with error detecting codes. A system withSafetyNethas to
protect the cache hierarchy and memory with ECC, since
they contain memory blocks that could potentially be the
only valid copies in the system, so an uncorrectable fault
could be unrecoverable. Memory chip kills can be tolerated
by using a RAID-like scheme for DRAM [13].

5.3 SafetyNet Hardware Faults

The SafetyNethardware itself is also susceptible to faults,
and we target single fault instances. We ensure that the ser-
vice controller is not a single point of failure by using
redundant controllers. The other possible single point of
failure is in the communication of validation messages, but
a dropped or corrupted validation message will lead to a
timeout and recovery. Most other faults in theSafetyNet
hardware only manifest themselves during a recovery,
which implies a double fault situation.

6 Related Work

Related research exists in fault tolerance, as well as in log-
ging for speculation and versioning of data. Prior work in
fault tolerance can be classified into two broad categories:
backward error recovery (BER) and forward error recovery
(FER). Among other differences, the evaluation ofSafety-
Netalso advances previous work in fault tolerance by using
full-system simulation of commercial workloads.

Hardware Backward Error Recovery. In BER schemes,
the state of the system is checkpointed periodically (or dif-
ferences are logged), and a fault is tolerated by recovering
to a pre-fault checkpoint. IBM mainframes [23, 40] use
register checkpoint hardware and store-through caches to
recover from processor and memory system errors, respec-
tively. The CARER scheme [24] for uniprocessors uses a
normal cache with a writeback update policy to assist rapid
rollback recovery. Checkpointed system state is maintained
in main memory, and checkpoints are established whenever
a modified cache block needs to be replaced. Ahmed et al.
[1] extend CARER for multiprocessors by synchronizing
the processors whenever one needs to take a checkpoint.
Wu et al.’s [48] multiprocessor extension of CARER
allows a processor to write into its cache between check-
points. Checkpointing, which flushes all modified blocks,
is performed when ownership of a block modified since the
last checkpoint changes.SafetyNetis more efficient, since
it does not checkpoint before every ownership transfer. The
Sequoia system [7] uses caches to hold state between
checkpoints, and flushes dirty cache blocks to memory at
every checkpoint. Banâtre et al. [5] describe a Recoverable
Shared Memory module that requires a shadow copy of the
entire memory and a mechanism for maintaining the inter-
processor dependence graph.

0.0

0.5

1.0

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

1 Mbyte
512 Kbyte
256 Kbyte

jbb apache slashcode oltp barnes

Figure 8. Performance vs. CLB Size

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Software Backward Error Recovery.Software check-
pointing has also been used, but at radically different engi-
neering costs. In Tandem NonStop machines, every process
periodically checkpoints its state on another processor [38].
Work by Plank [32] and Wang and Hwang [44] uses soft-
ware to periodically checkpoint applications to aid fault
tolerance. These schemes differ in the degree of support
required from the programmer, libraries, and operating sys-
tem. At the link level, SCI [25] supports software retry of
dropped or corrupted messages.SafetyNetdiffers from
these works in that it is a hardware solution.

(Hardware) Forward Error Recovery. FER schemes use
redundant hardware to mask faults. For example, redundant
processors [4, 26, 27, 45] or redundant threads within a
processor [42] can be used to mask processor faults.
Redundant paths through adaptive networks allow packets
to be routed around faults [12, 14]. The Intel 432 [27] uses
replication of commodity parts to achieve a range of fault
tolerance needs. The Stratus [45] computer system uses
pair-and-spare processors, and the Tandem S2 [26] uses tri-
ply modular redundant (TMR) processors, for masking
faults. Slipstream [42] is a lighter-weight processor scheme
that uses redundant threads within a processor to mask
faults. DIVA [4] uses a checker processor to implement
FER on the processor (but not on the system).

Speculation and Versioning of Data.Prior research for
supporting speculation has logged changes in state that is
local to a node [19, 34].SafetyNet’s logging is similar,
although it must also log transfers of coherence ownership
in our global scheme. Speculative multithreading schemes
use versioning to implement sequential program semantics
[11, 20, 30, 41]. Our goal differs in that we superimpose
checkpoints on system execution withparallel semantics,
to support availability. We use globally consistent check-
points rather than local checkpoints at different places in a
sequential execution.

7 Conclusions

In this paper, we develop a scheme, calledSafetyNet, that
improves the availability of shared memory multiproces-
sors. We describe an implementation ofSafetyNet, and we
demonstrate that it adds little performance overhead and
has reasonable storage costs. In developingSafetyNet, this
paper makes three contributions which allowSafetyNetto
be efficient in the common case of fault free execution.

• SafetyNetadds no latency to the common case of 99.9%
of all instructions.

• SafetyNethides the latency of fault detection by pipelin-
ing the validation of checkpoints. The system can con-
tinue to execute while it determines if old checkpoints
can be validated.

• SafetyNetefficiently coordinates checkpoint creation in
logical time, without having to either quiesce the sys-
tem or exchange synchronization messages.

We see interesting avenues for future work. First, one could
useSafetyNetto tolerate many of the faults discussed in
Section 5 by developing suitable detection mechanisms.
SinceSafetyNetprovides recovery for long-latency detec-
tion mechanisms, we can focus on stronger, high-latency
codes and signatures. Second, one could useSafetyNetto
tolerate harder faults, such as the loss of architectural state
in a processor-cache chip kill. However, this alternative
design will achieve this higher level of fault-tolerance for
increased overheads in time, space, and/or cost.

Acknowledgments

We would like to thank the Wisconsin Multifacet group,
Virtutech AB, the Wisconsin Condor group, Jim Goodman,
Peter Hsu, Alain Kägi, Mikko Lipasti, Mark Oskin, Ravi
Rajwar, Kewal Saluja, Bob Zak, and Craig Zilles.

References

[1] R. E. Ahmed, R. C. Frazier, and P. N. Marinos. Cache-
Aided Rollback Error Recovery (CARER) Algorithms for
Shared-Memory Multiprocessor Systems. InProceedings of
the 20th International Symposium on Fault-Tolerant
Computing Systems, pages 82–88, June 1990.

[2] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M.
Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating
Non-deterministic Multi-threaded Commercial Workloads.
In Proceedings of the Fifth Workshop on Computer
Architecture Evaluation Using Commercial Workloads,
pages 30–38, Feb. 2002.

[3] R. Anglada and A. Rubio. An Approach to Crosstalk Effect
Analyses and Avoidance Techniques in Digital CMOS
VLSI Circuits.International Journal of Electronics, 6(5):9–
17, 1988.

[4] T. M. Austin. DIVA: A Reliable Substrate for Deep
Submicron Microarchitecture Design. InProceedings of the
32nd Annual IEEE/ACM International Symposium on
Microarchitecture, pages 196–207, Nov. 1999.

[5] M. Banâtre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin.
An Architecture for Tolerating Processor Failures in
Shared-Memory Multiprocessors.IEEE Transactions on
Computers, 45(10):1101–1115, Oct. 1996.

[6] P. Barford and M. Crovella. Generating Representative
Web Workloads for Network and Server Performance
Evaluation. InProceedings of the 1998 ACM Sigmetrics
Conference on Measurement and Modeling of Computer
Systems, pages 151–160, June 1998.

[7] P. Bernstein. Sequoia: A Fault-Tolerant Tightly Coupled
Multiprocessor for Transaction Processing.IEEE
Computer, 21(2), Feb. 1988.

[8] M. Bohr. Interconnect Scaling - The Real Limiter to High
Performance. InProceedings of the International Electron
Devices Meeting, pages 241–244, Dec. 1995.

[9] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Dynamic
Verification of Cache Coherence Protocols. InWorkshop on
Memory Performance Issues, June 2001. In conjunction
with ISCA.

[10] A. Charlesworth. Starfire: Extending the SMP Envelope.
IEEE Micro, 18(1):39–49, Jan/Feb 1998.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

[11] M. Cintra, J. Martinez, and J. Torrellas. Architectural
Support for Scalable Speculative Parallelization in Shared-
Memory Systems. InProceedings of the 27th Annual
International Symposium on Computer Architecture, June
2000.

[12] W. J. Dally, L. R. Dennison, D. Harris, K. Kan, and
T. Xanthopoulos. Architecture and Implementation of the
Reliable Router. InProceedings of 2nd Hot Interconnects
Symposium, Aug. 1994.

[13] T. J. Dell. A White Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory. IBM
Microelectronics Division Whitepaper, Nov. 1997.

[14] J. Duato, S. Yalamanchili, and L. Ni.Interconnection
Networks. IEEE Computer Society Press, 1997.

[15] E. Elnozahy, D. Johnson, and Y. Wang. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems.
Technical Report CMU-CS-96-181, Department of
Computer Science, Carnegie Mellon University, Sept. 1996.

[16] E. Elnozahy and W. Zwaenepoel. Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback,
and Fast Output Commit.IEEE Transactions on Computers,
41(5):526–531, May 1992.

[17] S. J. Frank. Tightly Coupled Multiprocessor System Speeds
Memory-access Times.Electronics, 57(1):164–169, Jan.
1984.

[18] M. Galles. Spider: A High-Speed Network Interconnect.
IEEE Micro, 17(1):34–39, Jan/Feb 1997.

[19] C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP =
RC? In Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 162–171, May
1999.

[20] S. Gopal, T. Vijaykumar, J. E. Smith, and G. S. Sohi.
Speculative Versioning Cache. InProceedings of the Fourth
IEEE Symposium on High-Performance Computer
Architecture, pages 195–205, Feb. 1998.

[21] G. Grohoski. Reining in Complexity.IEEE Computer,
pages 41–42, Jan. 1998.

[22] R. Gupta. The Fuzzy Barrier: A Mechanism for High Speed
Synchronization of Processors. InProceedings of the Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, pages
54–63, Apr. 1989.

[23] R. Gustafson and F. Sparacio. IBM 3081 Processor Unit:
Design Considerations and Design Process.IBM Journal of
Research and Development, 26:12–21, Jan. 1982.

[24] D. Hunt and P. Marinos. A General Purpose Cache-Aided
Rollback Error Recovery (CARER) Technique. In
Proceedings of the 17th International Symposium on Fault-
Tolerant Computing Systems, pages 170–175, 1987.

[25] IEEE Computer Society.IEEE Standard for Scalable
Coherent Interface (SCI), Aug. 1993.

[26] D. Jewett. Integrity S2: A Fault-Tolerant UNIX Platform. In
Proceedings of the 21st International Symposium on Fault-
Tolerant Computing Systems, pages 512–519, June 1991.

[27] D. Johnson. The Intel 432: A VLSI Architecture for Fault-
Tolerant Computing.IEEE Computer, pages 40–48, Aug.
1984.

[28] T. Juhnke and H. Klar. Calculation of the Soft Error Rate of
Submicron CMOS Logic Circuits.IEEE Journal of Solid-
State Circuits, 30(7):830–834, July 1995.

[29] P. S. Magnusson et al. Simics: A Full System Simulation
Platform.IEEE Computer, 35(2):50–58, Feb. 2002.

[30] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S.
Lam, and K. Olukotun. Software and Hardware for
Exploiting Speculative Parallelism with a Multiprocessor.
Technical Report CSL-TR-97-715, Stanford University,
May 1997.

[31] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for
Redundant Arrays of Inexpensive Disks (RAID). In
Proceedings of 1988 ACM SIGMOD Conference, June
1988.

[32] J. S. Plank, K. Li, and M. A. Puening. Diskless
Checkpointing. IEEE Transactions on Parallel and
Distributed Systems, 9(10):972–986, Oct. 1998.

[33] D. K. Pradhan.Fault-Tolerant Computer System Design.
Prentice-Hall, Inc., 1996.

[34] P. Ranganathan, V. S. Pai, and S. V. Adve. Using
Speculative Retirement and Larger Instruction Windows to
Narrow the Performance Gap between Memory
Consistency Models. InProceedings of the Ninth ACM
Symposium on Parallel Algorithms and Architectures, pages
199–210, June 1997.

[35] S. K. Reinhardt and S. S. Mukherjee. Transient Fault
Detection via Simultaneous Multithreading. InProceedings
of the 27th Annual International Symposium on Computer
Architecture, pages 25–36, June 2000.

[36] J. Robertson. Alpha Particles Worry IC Makers as Device
Features Keep Shrinking.Semiconductor Business News,
October 21, 1998.

[37] E. Rotenberg. AR-SMT: A Microarchitectural Approach to
Fault Tolerance in Microprocessors. InProceedings of the
29th International Symposium on Fault-Tolerant
Computing Systems, pages 84–91, June 1999.

[38] O. Serlin. Fault-Tolerant Systems in Commercial
Applications.IEEE Computer, pages 19–30, Aug. 1984.

[39] K. Seshan, T. Maloney, and K. Wu. The Quality and
Reliability of Intel’s Quarter Micron Process.Intel
Technology Journal, Sept. 1998.

[40] L. Spainhower and T. A. Gregg. IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective.IBM Journal of Research and Development,
43(5/6), September/November 1999.

[41] J. G. Steffan and T. C. Mowry. The Potential for Using
Thread-Level Data Speculation to Facilitate Automatic
Parallelization. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture,
Feb. 1998.

[42] K. Sundaramoorthy, Z. Purser, and E. Rotenberg.
Slipstream Processors: Improving both Performance and
Fault Tolerance. InProceedings of the Ninth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[43] M. Tremblay. Increasing Work, Pushing the Clock.IEEE
Computer, pages 40–41, Jan. 1998.

[44] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and
C. Kintala. Checkpointing and Its Applications. In
Proceedings of the 25th International Symposium on Fault-
Tolerant Computing Systems, pages 22–31, June 1995.

[45] D. Wilson. The Stratus Computer System. InResilient
Computer Systems, pages 208–231, 1985.

[46] S. C. Woo et al. The SPLASH-2 Programs: Characterization
and Methodological Considerations. InProceedings of the
22nd Annual International Symposium on Computer
Architecture, pages 24–37, June 1995.

[47] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a
Multiprocessor Cache Controller Using Random Test
Generation.IEEE Design and Test of Computers, Aug.
1990.

[48] K. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in
Shared Memory Multiprocessors Using Private Caches.
IEEE Transactions on Parallel and Distributed Systems,
1(2):231–240, Apr. 1990.

[49] J. Ziegler et al. IBM Experiments in Soft Fails in Computer
Electronics.IBM Journal of Research and Development,
40(1):3–18, Jan. 1996.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	University of Pennsylvania
	ScholarlyCommons
	May 2002

	SafetyNet: Improving the Availability of Shared Memory Multiprocessors with Global Checkpoint/Recovery
	Daniel J. Sorin
	Milo Martin
	Mark D. Hill
	David A. Wood
	Recommended Citation

	SafetyNet: Improving the Availability of Shared Memory Multiprocessors with Global Checkpoint/Recovery
	Abstract
	Comments

	Safetynet: improving the availability of shared memory multiprocessors with global checkpoint/recove - Computer Architecture, 2002. Proceedings. 29th Annual International Symposium on

