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Distributed Spatial Control and Global Monitoring of Mobile Agents

Abstract

In this paper, we combine two frameworks in the context of an important application. The first framework,
called "artificial physics”, is described in detail in a companion paper by Spears and Gordon (1999). The
purpose of artificial physics is the distributed spatial control of large collections of mobile physical agents. The
agents can be composed into geometric patterns (e.g., to act as a sensing grid) by having them sense and
respond to local artificial forces that are motivated by natural physics laws. The purpose of the second
framework is global monitoring of the agent formations developed with artificial physics. Using only limited
global information, the monitor checks that the desired geometric pattern emerges over time as expected. If
there is a problem, the global monitor steers the agents to self-repair. Our combined approach of local control
through artificial physics, global monitoring, and "steering” for self-repair is implemented and tested on a
problem where multiple agents from a hexagonal lattice pattern.
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Distributed Spatial Control, Global Monitoring and Steering of Mobile
Physical Agents®

Diana Gordon and William Spears

Navy Center for Applied Research in AT
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Washington, D.C. 20375
gordon@aic.nrl.navy.mil
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Abstract

In this paper, we combine two frameworks in the con-
text of an important application. The first framework,
called “artificial physics,” is described in detail in a
companion paper by Spears and Gordon (1999). The
purpose of artificial physics is the distributed spatial
control of large collections of mobile physical agents.
The agents can be composed into geometric patterns
(e.g., to act as a sensing grid) by having them sense
and respond to local artificial forces that are motivated
by natural physics laws. The purpose of the second
framework is global monitoring of the agent formations
developed with artificial physics. Using only limited
global information, the monitor checks that the desired
geometric pattern emerges over time as expected. If
there is a problem, the global monitor steers the agents
to self-repair. Our combined approach of local con-
trol through artificial physics, global monitoring, and
“steering” for self-repair is implemented and tested on
a problem where multiple agents form a hexagonal lat-
tice pattern.

Introduction

The objective of this research is the distributed con-
trol of large numbers of mobile physical agents to form
regular geometric configurations, e.g., to act as sensing
grids. During formation, the configurations are mon-
itored by a global observer to detect whether there
is a significant increase in the number of pattern vi-
olations over time. Our combined approach of dis-
tributed local control and global monitoring enables
spatio-temporal coordination of the agents. The agents
may range in scale from neurons, nanobots, or micro-
electromechanical systems (MEMS) to micro-air vehi-
cles (MAVs) and satellites. The example considered
here is that of a swarm of MAVs whose mission is to
form a hexagonal lattice, which creates an effective sens-
ing grid. Essentially, such a lattice will create a virtual
antenna or synthetic aperture radar to improve the res-
olution of radar images. A virtual antenna is expected

*This research was supported in part by NSF CCR-
9619910, ARO DAAG55-98-1-0393, ARO DAAG55-98-1-
0466, and ONR N00014-97-1-0505 as well as ONR N00014-
99-WR20010 as part of the Semantic Consistency MURI.
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to be an important future application of MAVs.! Cur-
rently, the technology for MAV swarms (and swarms of
other micro-vehicles such as micro-satellites) is in the
early research stage. Nevertheless we are developing the
control software now so that we will be prepared.

We assume agents can only sense and affect nearby
agents; thus the problem is one of “local” control. The
method for local control should be based on principles
such as self-assembly, fault-tolerance, and self-repair.
These principles are precisely those exhibited by nat-
ural systems. This leads us to look at the laws of
physics for ideas on distributed control. To explore this,
we have developed a general framework for distributed
control in which “artificial physics” (AP) forces control
agents. We use the term “artificial” because although
we are motivated by natural physical forces, we are not
restricted to only natural physical forces. The agents
aren’t really subject to real forces, but they can act as if
the forces are real. Thus the agent’s sensors will have to
be able to see enough to allow it to compute the forces
to which it is reacting. The agent’s effectors should al-
low it to respond to this perceived force. For details on
this approach, see Spears and Gordon (1999).

We see at least two advantages to AP. First, in the
real physical world, collections of small entities yield
surprisingly complex behavior from very simple inter-
actions between the entities. Thus there is a prece-
dent for believing that complex control can be achieved
through simple local interactions. This is required for
very small agents (such as nanobots), since their sen-
sors and effectors will necessarily be primitive. Two,
since the approach is largely independent of the size
and number of agents, the results should scale well to
larger agents and larger sets of agents.

AP addresses the problem of distributed agent con-
trol via local rules. This approach, which also includes
fault-tolerance and local self-repair mechanisms (Spears
& Gordon 1999), may be inadequate for handling major
unanticipated events. For example, if a swarm of MAVs
is flying in formation, fault-tolerance and/or local self-
repair capabilities could enable recovery from minor air

!Rick Foch, Head of the NRL Vehicle Research Section
(personal communication).



turbulence. On the other hand, intentional or unin-
tentional corruption of the MAVs’ control software, se-
vere environmental conditions, or widespread mechani-
cal failures could conceivably result in an unrecoverable
problem maintaining the desired geometric formation.
Therefore, we also include a global observer that moni-
tors the progress of the formation, using the Monitoring
and Checking (MaC) framework, which is described in
detail in Kim et al. (1999). We do not make the strong
assumption that the global observer can see the pattern
— because this assumption may be infeasible for large
numbers of widely distributed agents. We only assume
that the observer can receive communication from the
individual agents. Each agent sends an alert if it fails
to satisfy its local evaluation measure. The global ob-
server collects these alerts, and issues a general alarm if
the local alerts are too frequent for too long. The gen-
eral alarm might be sent to people nearby to persuade
them to intervene and manually solve the problem by
sending commands to the agents. Here, we assume that
the general alarm suggests the need for “steering” (i.e.,
self-repair to recover from problems). In our approach
to steering, the global observer broadcasts to the agents
a global parameter change for self-repair. This restores
progress toward the desired geometric configuration.

The novelties of this paper are: (1) the combination
of AP with MaC, (2) the introduction of a steering
method for self-repair when MaC detects a failure, and
(3) experimental results that validate the usefulness of
this combined approach in the context of hexagonal lat-
tice formations. The paper begins by presenting the
artificial physics framework. This is followed by a de-
scription of how AP can be used to generate hexagonal
lattices. We then describe the MaC framework, and
apply it to monitor the progress of forming hexagonal
lattices. Finally, we present a method for steering that
adjusts global parameters for self-repair. The paper
concludes with some initial results, followed by related
work and ideas for future research.

Artificial Physics: A Framework for
Distributed Multiagent Control

Our artificial physics approach treats agents as physi-
cal particles, though their actual size may range from
nanobots to satellites. A simple but realistic physical
simulation of the particles’ behavior was built. Parti-
cles exist in two dimensions (we see little difficulty in
generalizing to three dimensions) and are considered to
be point-masses. Each particle ¢ has position p = (x,y)
and velocity v = (v,,vy). We use a discrete-time ap-
proximation to the continuous behavior of the particles,
with time-step At. At each time step, the position of
each particle undergoes a perturbation Ap. The pertur-
bation depends on the current velocity Ap = vAt. The
velocity of each particle at each time step also changes
by Awv. The change in velocity is controlled by the force
on the particle Av = FAt/m, where m is the mass of
that particle and F' is the force on that particle. An ad-

ditional simple frictional force is also always included,
for self-stabilization.

Given the initial conditions and some desired global
behavior, we must define what sensors, effectors, and
force F' laws are required such that the desired behavior
emerges. We explore this for hexagonal lattices.

Creating Hexagonal Lattices

This subsection explains the construction of hexagonal
lattices, e.g., for MAV sensor grids. For MAVs, the ini-
tial conditions are assumed to be similar to those of
a “big bang” — the MAVs are released from a canister
dropped from a plane, then they spread outwards until
a desired geometric configuration is obtained (based on
ideas from LtCol Takehara, personal communication).
This is simulated by using a two-dimensional Gaussian
random variable to initialize the positions of all parti-
cles (MAVs). Velocities of all particles are initialized to
be 0.0, and masses are all 1.0 (although the framework
does not require this). An example initial configuration
for 150 particles is shown in Figure 1.

Figure 1: The initial creation of the universe at ¢ = 0.

Since MAVs (or other small agents such as nanobots)
have simple sensors and primitive CPUs, our goal is to
provide the simplest possible control rules that require
minimal sensors and effectors. At first blush, creating
hexagons would appear to be somewhat complicated,
requiring sensors that can calculate range, the num-
ber of neighbors, their angles, etc. However, it turns
out that only range information is required. To un-
derstand this, recall an old high-school geometry lesson
in which six circles of radius R can be drawn on the
perimeter of a central circle of radius R (the fact that
this can be done with only a compass and straight-edge
can be proven with Galois theory). Figure 2 illustrates
this construction. Notice that if the particles (shown as
small circular spots) are deposited at the intersections
of the circles, they form a hexagon.

Figure 2: How circles can create hexagons.

The construction indicates that hexagons can be cre-
ated via overlapping circles of radius R. To map this
into a force law, imagine that each particle repels other
particles that are closer than R, while attracting par-
ticles that are further than R in distance. Thus each



particle can be considered to have a circular “potential
well” around itself at radius R — neighboring particles
will want to be at distance R from each other. The
intersection of these potential wells is a form of con-
structive interference that creates “nodes” of very low
potential energy where the particles will be likely to
reside (again these are the small circular spots in the
previous figure). Thus the particles serve to create the
very potential energy surface they are responding to!?

With this in mind we defined a force law F =
Gm;mj/r?, where F is the magnitude of the force be-
tween two particles ¢ and j, and r is the range between
the two particles. The “gravitational constant” G is set
at initialization. The force is repulsive if r < R and at-
tractive if » > R. Each particle has one sensor that can
detect the range to nearby particles. The only effector
is to be able to move with velocity v. To ensure that
the force laws are local in nature, particles can not even
see or respond to other particles that are greater than
1.5R in distance. 3

The initial universe of 150 particles (as shown in Fig-
ure 1) is now allowed to evolve, using this very simple
force law. For a radius R of 50 we have found that
a gravitational constant of G = 1200 provides good re-
sults (these values for R, G, and the number of particles
remain fixed throughout this paper). Figure 3 shows
the system after 35 time steps.

Figure 3: The 150 particles form a good hexagonal lat-
tice by t = 35.

There are a couple of important observations to make
about Figure 3. First, a reasonably well-defined hexag-
onal lattice has been formed from the interaction of
simple local force laws that involve only the detection of
distance to nearby neighbors. Also, the perimeter is not
a perfect hexagon, although this is not surprising, given
the lack of global constraints. However, many hexagons
are clearly embedded in the structure and the overall
structure is quite hexagonal. The second observation is
that each node in the structure can have multiple par-
ticles (i.e., multiple particles can “cluster” together).
Clustering is an emergent property that provides in-
creased robust (fault tolerant) behavior, because the

21t is important to note that the entire potential energy
surface is never actually computed. Particles only compute
force vectors for their current location.

3The constant 1.5 is not chosen randomly. In a hexagon,
if a nearby neighbor is further than R away, it is > /3R
away. We wanted the force laws to be as local as possible.

disappearance of individual agents from a cluster will
have minimal effect.

Discussion

The artificial physics framework offers a number of ad-
vantages. For one, it enables large numbers of agents
to self-assemble into geometric lattices. Here, we have
shown the method for assembling hexagonal lattices.
With a minor extension (the introduction of a “spin”
attribute), agents can also self-assemble into square lat-
tices, “open” hexagonal lattices (i.e., without an agent
in the center of the hexagon), and an approximation
to lattices of pentagons.? Furthermore, as mentioned
above, fault-tolerance is a result of the emergent re-
dundancy at nodes of the lattice. In Spears and Gor-
don (1999), it is shown that there is an effective of-
fline evaluation measure of lattice quality that averages
the angular error throughout the lattice. This is useful
during program development. Furthermore, Spears and
Gordon (1999) present effective local self-repair meth-
ods that can fill gaps in the lattice (empty nodes) and
reduce the angular error.

Although AP has the desirable attributes of enabling
self-assembly, fault-tolerance, and local self-repair, it
cannot address all problems that the agents might en-
counter. In particular, although the offline measure
of lattice quality provides assistance during program
development, it relies on measuring angles and mak-
ing geometric comparisons between agents that are far
apart in the lattice. As stated earlier, we do not want
agents to have to measure angles, and we cannot assume
sensors that detect other agents beyond the visibility
range. Therefore we require a simpler online measure
of lattice quality. Furthermore, although the local self-
repair methods are effective for repairing empty nodes
and global flaws in angles (such as those detected by the
angular error measure), they are not capable of restor-
ing the lattice after severe disturbances that distort the
shape of the perimeter. An example of a potential haz-
ard for an MAV is air turbulence. MAVs are expected
to be small (less than six inches in length, width, and
height), slow (traveling 22-45 miles per hour), and light
(50-70 grams). This translates into a low Reynolds
number, which implies that for practical purposes iner-
tia can be ignored and the MAVs will be especially vul-
nerable to air turbulence. (McMichael & Francis 1997).
Our solution is to add Monitoring and Checking.

A Framework for Global Monitoring

The Monitoring and Checking (MaC) framework (see
Figure 4) aims at run-time assurance monitoring of real-
time systems. The current implementation is in Java,
though the framework is generic and can apply to any
language. The framework includes two main phases:
(1) before the system is run, its implementation and
requirement specification are used to generate run-time

It is an approximation because it’s impossible to gener-
ate a tiling with regular pentagons.
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Figure 4: Overview of the MaC framework.

monitoring components; (2) during system execution,
information about the running system is collected and
matched against the (user-generated) requirements.

During the first phase, MaC provides a mapping be-
tween high-level events used in the requirement speci-
fication and low-level state information extracted dur-
ing execution. They are related explicitly by means
of a monitoring script, which describes how events at
the requirements level are defined in terms of moni-
tored states of an implementation. For example, in the
requirements we may want to express the event that
the agents are tooClose. The implementation, on the
other hand, stores the information about proximity in
a variable distance. In an execution state, this vari-
able has a particular value. The monitoring script in
this case can define the event tooClose as (distance >
0.25*%R) && (distance < 0.75%R). This definition of
tooClose captures the notion that if neighboring par-
ticles are < 0.25R apart then we permit this because
they are in the same cluster (node); however, if they
are not in the same cluster then we want them to be
approximately R apart.

The monitoring script is used to automatically gen-
erate a filter and an event recognizer for run-time moni-
toring. The filter is a set of program fragments that are
inserted into the implementation to instrument the sys-
tem. Instrumentation is performed statically directly
on the code (bytecode in the case of Java). Instrumen-
tation is automatic, which is made possible by the low-
level description in the monitoring script. The essential
functionality of the filter is to keep track of changes to
monitored objects and send pertinent state information
to the event recognizer.

The monitoring script is also used to automatically
generate the event recognizer. The event recognizer de-
tects, according to the monitoring script, occurrences of
high-level events from the data received from the filter.
The purpose of the event recognizer is to deliver events

to a run-time checker, which is described shortly.

Also, during the first phase the system requirements
are formalized in a requirements specification, which
specifies the behavior that the user expects of the sys-
tem. The requirements in this specification are defined
in terms of events (which are defined in the monitoring
script). A run-time checker is produced automatically
from the requirements specification. The purpose of the
run-time checker is to determine at run-time whether
the system is satisfying the user’s desired requirements.

In summary, during the first phase the user defines
a requirements specification and a monitoring script.
The requirements specification defines what the user
expects of the system. The monitoring script provides
event definitions necessary for the requirements speci-
fication. From the monitoring script, a filter and event
recognizer are automatically generated, and from the
requirements specification, a run-time checker is auto-
matically generated.

During the second (run-time) phase, the instru-
mented implementation is executed while being moni-
tored. The filter sends relevant state information to the
event recognizer, which detects events. These events
are then relayed to the run-time checker, which checks
adherence to the user-desired requirements.

The Monitoring Language

We give a very brief overview of two languages: one to
describe monitoring scripts (i.e., what to observe in the
program), and the other to describe the requirements
specification (i.e., the requirements that the program
must satisfy). For more details on the logical framework
of these languages, see Kim et al. (1999).

The language for monitoring scripts is called the
Primitive Event Definition Language (PEDL). Re-
quirement specifications are written in the Meta Event
Definition Language (MEDL). The primary reason for
having two separate languages in the MaC framework is



Requirement Specification HexagonPattern
import event MAValert, startPgm;
Auxiliary Variables :
var long currlnterval;
var int countO, countl, count2;
var int prevAverage, currAverage;
Alarm Definition :
property NoPattern =
(currAverage > prevAverage*1.15 + 100) &&
(prevAverage != -1);

Auxiliary Variable Definitions:

event startPeriod = (time(MAValert) -
currInterval > 10000);

startPgm -> {
currInterval = time(startPgm);

count0 = 0;
prevAverage = -1;
currAverage = -1; }

startPeriod -> {
currlnterval = currlnterval + 10000;
prevAverage = currAverage;
currAverage (countO+countl+count?2)/3;
count2 = countl;
countl countO;
countO 0; }

MAValert -> {
count0 = count0 + 1; }

Figure 5: MEDL requirement specification.

to separate implementation-specific details of monitor-
ing from the requirements specification. This separa-
tion ensures that the framework is portable to different
implementation languages and specification formalisms,
while providing a clean interface to the designer of mon-
itors. For example, if we wish to retarget our system
from programs written in Java to C++, then all we
would need to modify is the syntax of PEDL, leaving
MEDL unchanged.

The design of PEDL, the language for writing moni-
toring scripts, is based on the following two principles.
First, we encapsulate all implementation-specific details
of the monitoring process in PEDL scripts. Second, we
want event recognition to be as simple as possible. The
name of the language reflects the fact that the main
purpose of PEDL scripts is to define primitive events
that can be referenced in requirement specifications.

The requirements that need to be monitored are writ-
ten in MEDL. Like PEDL, MEDL is based on a logic of
events. This logic has a limited expressive power. For

Monitoring Script MAVpattern
export event MAValert, startPgm;
Monitored Entities :

monobj int Hexagon.R;
monmeth void EmulateMAV.main(String[]);
monobj double Mav.run().distance;

Event Definitions :

event startPgm =

startM( EmulateMAV.main(String[]) );
event tooClose =

(Mav.run() .distance > 0.25*Hexagon.R) &&

(Mav.run() .distance < 0.75*Hexagon.R);
event tooFar =

(MAV.run() .distance > 1.25%Hexagon.R) &&

(MAV.run() .distance < 1.5%Hexagon.R);
event MAValert = tooClose || tooFar;

Figure 6: PEDL script.

example, one cannot count the number of occurrences
of an event, or talk about the ith occurrence of an event.
Because we need additional expressive capabilities such
as counting for the requirements specifications, MEDL
allows the user to define auxiliary variables. Updates of
auxiliary variables are triggered by events. For exam-
ple, MAValert -> countO = count0 + 1 can be inter-
preted as stating that the occurrence of event MAValert
triggers the system to increment the auxiliary variable
count0. MEDL also allows the definition of complex
events using expressions of primitive events and auxil-
iary variables.

The correctness of the system is described in terms
of alarms. Alarms are events that should never occur.
Alarms are defined in terms of events and sometimes
also in terms of auxiliary variables.

Global Monitoring and Steering of
Hexagonal Lattice Formations

Our approach assumes that one agent acts as a global
observer to monitor the formation. The observer might
be the plane that dropped the canister of MAVs. This
global observer uses MaC to determine whether the de-
sired pattern of agents is forming as expected. We do
not make the strong assumption that the global ob-
server can see the pattern. This assumption may be in-
feasible for large numbers of widely distributed agents.
Instead, we only assume that the observer can receive
communication from the individual agents.

This approach to monitoring is based on the obser-
vation that in the hexagonal lattice, each neighbor of
an MAV is either at a fixed distance R that is the pa-
rameter of the pattern (adjacent node), or very close

3

to the MAV in question (same node). If the pattern



is not fully formed, there are MAVs that have neigh-
bors in other locations, and this can be detected as a
violation of the pattern. Intuitively, we should expect
that as the pattern forms, the number of such violations
should decrease.

We call the requirement being specified a property.
An implementation-independent MEDL specification of
the property just described is shown in Figure 5. The
primitive event MAValert (abbreviated “alert”) denotes
a spatial misplacement of some neighbor of an MAV.
For the purpose of counting alert events, time is di-
vided into intervals. Auxiliary variable count0 is used
to count the number of violations (alerts) of the pattern
in the current interval. When an interval elapses, the
number of alerts over this interval and the previous two
are averaged. In other words, averaging is done over a
sliding window of size three. The reason for averaging
is to reduce the variance in alert numbers. This average
is compared with the average obtained at the end of the
previous interval. If a significant increase in the number
of violations is detected (measured as currAverage >
prevAveragex*1.15 + 100, which is an empirically de-
termined threshold), then an alarm NoPattern is sent
as notification of a pattern formation problem.

The AP-MaC combination has been implemented in
Java. Monitoring is applied to a distributed emulator
of MAV deployment. Each MAV is represented as a
separate instance of class MAV, based on the standard
Java class Thread. When the thread in an MAV is run,
it continuously executes the positioning algorithm and
queries its neighbors for their positions. A local vari-
able MAV.run() .distance in the run() method of the
MAV class is used to hold the distance from the cur-
rently queried neighbor. Hexagon.R is the variable for
the desired hexagon radius R. The monitoring script in
PEDL for this implementation is shown in Figure 6. It
defines event MAValert in terms of the value of the vari-
able MAV.run() .distance. Event MAValert is defined
to occur if a neighbor MAV is tooClose or tooFar. By
declaring the variable as a monitored entity, the script
instructs the filter to report all updates of this variable
so that they can be compared with the acceptable range
of values described in the script.

Experimental Results

We tested the combined AP-MaC implementation with
150 MAVs. AP was used to form the agents into a
hexagonal lattice, and MaC determined whether the
frequency of MAValerts (alerts) was increasing. When-
ever the number of alerts increased significantly, a
NoPattern alarm was issued. The requirements specifi-
cation and monitoring script used were those shown in
Figures 5 and 6, respectively.

Under normal conditions, the number of alerts grad-
ually decreases as the hexagonal lattice is formed, and
no alarms are issued. Now that we have a method
for monitoring, to test this method we need to subject
the MAVs to an unexpected yet severe environmental

Figure 7: Formation after a blast.
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Figure 8: Alerts and alarms over time, with blast.

condition that disrupts the formation. We have imple-
mented this as a blast (i.e., an explosion that causes a
gust of wind), which is applied to one side of the lat-
tice after it has been formed. The effect of the blast on
an MAV is inversely proportional to the square of the
MAV’s distance from the center of the blast. In par-
ticular, this force is F' = 100Gm;/r;%, where m; is the
mass of MAV i and r; is its distance from the center of
the blast. Figure 7 shows the formation after a blast
has been injected. Figure 8 shows the profile of alerts
and alarms resulting from a blast. The number of alerts
decreases as the hexagonal lattice is formed. However
after the blast, injected around time 80, the number of
alerts increases enough to set off an alarm. This profile
is typical. In this figure, if an alarm is absent its mag-
nitude is 0; if an alarm is issued, its magnitude is 6000.
This is done for graphical convenience. In reality, alarm
NoPattern has no magnitude; it is binary-valued.

Figure 9: Formation after steering.

Although the number of alerts decreases after a suffi-
ciently long time following the blast, in fact, from visual
inspection we often find that the formation is not a well-
defined hexagonal lattice. Although local flaws can be
fixed with local self-repair methods, the concavity in
the overall shape resulting from the blast typically per-



mean
Sorig — Spre 1.8
Sorig — Spost 0.6

Table 1: Shape improvement from steering.

sists. Therefore, steering is required. Steering consists
of global parameter adjustment to compensate for the
blast. In particular, the blast occurs, which sets off
an alarm. After issuing an alarm, the global monitor
broadcasts a global command to all MAVs to temporar-
ily suspend repulsion. In other words, for a very brief
period of time all MAVs are told to assume that the
force F' is attractive only. During this time all of the
MAVs gravitate toward each other. Also during this
time alarms are suppressed. After the specified time
period (in our experiments this lasted three intervals,
i.e., one window of time), repulsion is resumed. The
alarms are suppressed for another three intervals, how-
ever, to give the multiagent system time to settle down.
Figure 9 shows the formation after steering.

A typical profile of alerts and alarms with a blast fol-
lowed by steering looks the same as in Figure 8 with no
steering. To evaluate the effectiveness of steering, a use-
ful offline measure of the quality of the overall shape
is s = the size of (number of nodes per side in) the
largest perfect embedded regular hexagon in the forma-
tion. This measure is applied to the original formation
(Sorig), the post-blast pre-steering formation (spye), and
the post-blast post-steering formation (spest). Table 1
shows the differences s,rig — Spre and sorig — Spost, av-
eraged over 10 independent experiments. Smaller dif-
ferences are better. Using an exact Wilcoxon rank-sum
test, we find that there is a statistically significant dif-
ference between the two means (p < 0.001). There-
fore the experimental results indicate that steering is
an effective method for recovering a good lattice. In
conclusion, our method of global monitoring and error
recovery appears quite promising.

Related Work

Others have examined physical simulations of self-
assembly. Schwartz et al. (1998) have investigated
the self-assembly of viral capsids in a 3D solution, us-
ing a kinetics model to simulate the binding of pro-
teins. Winfree (1996; 1998) has investigated the self-
assembly of DNA double-crossover molecules on a 2D
lattice, using a thermodynamic and kinetic model to de-
scribe the binding of the molecules. Both Schwartz et
al. and Winfree are restricted to using plausible mod-
els of natural physics, since they are investigating the
self-assembly of small natural particles. AP, however,
is not bound by this restriction.

AP is also closely related to the work of Carlson et
al. (1997), which investigates techniques for control-
ling miniature agents such as micro-electromechanical
agents and nanobots. Their work relies heavily on the

use of a global controller that can impose an external
potential field that agents can sense. Since we rely pri-
marily on local force interactions, the work by Carlson
et al. could be complementary to our work.

AP bears some similarity to work in robotics, such
as “potential field” and “behavior based” approaches.
Potential field (PF) approaches (IKhatib 1986; Kim &
Khosla 1991) are used for robot navigation and obstacle
avoidance. In a manner similar to AP, PF approaches
model a goal position as an attractive force, while ob-
stacles are modeled with repulsive forces. PF computes
force vectors by taking the gradient of an entire poten-
tial field. In AP, however, each particle directly com-
putes the force vector that applies to its current position
— the potential field is never computed. AP thus has
lower computational overhead.

Behavior based approaches (e.g., (Balch & Arkin
1998; Matari¢ 1995)) derive vector information in a
fashion similar to AP. However, behavior based ap-
proaches do not make use of potential fields and forces.
Rather, they deal directly with velocity vectors. This
distinction is significant for two reasons. First, AP
can mimic natural physics phenomena more easily since
it deals directly with forces. Second, unlike behavior
based approaches, AP has the potential of being ana-
lyzable with conventional physics techniques.

There is also research related to MaC. Although most
research in verification does not address correctness at
execution time, recently several research efforts have
begun to address run-time monitoring. Yet they all
differ from the MaC framework used here. For ex-
ample, (Diaz, Juanole, & Courtiat 1994; Savor & Se-
viora 1997), where only the bus activity can be moni-
tored. In our opinion, instrumentation of a variety of
key points in the system allows us to detect violations
faster and more reliably, without sacrificing too much
performance. Several monitoring approaches concen-
trate on a reduced class of properties, e.g., (Sankar &
Mandal 1993; Mok & Liu 1997). By contrast, MaC can
monitor all safety properties. In Liao and Cohen (1992),
an elaborate language for the specification of monitored
events based on relational algebra is proposed. The goal
of Liao and Cohen goes beyond run-time monitoring.
For our purposes, the simpler and easier to interpret
event description language of MaC appears to be more
appropriate. Another novelty of our work is that it
addresses properties with spatial constraints. Previous
system verification methods have focused almost exclu-
sively on verifying temporal properties.

Finally, our combined approach, which includes local
rules for self-assembly of distributed agents into a for-
mation and global monitoring and steering, is unique.
We were motivated to use decentralization (local rules)
as the basis of our approach because agents, such as
MAVs, may have severe cost and weight limitations,
thereby posing extreme restrictions on the range and
number of sensors and the processing power. The pri-
mary disadvantage of our approach over purely decen-
tralized approaches is the requirement of a global ob-



server. Nevertheless, it is not possible to recover from
severe disturbances to a formation without some cen-
tral repository of information. To minimize the amount
of global information, we only require that the global
observer collect alerts from the agents. Furthermore,
our approach includes a novel and successful method
for formation repair.

Conclusions and Future Work

In this paper, we have combined two frameworks. The
first, called artificial physics, is used for distributed spa-
tial control of large collections of mobile agents via lo-
cal artificial forces. The second framework is for global
monitoring of the agent formations. Furthermore, we
have added a steering capability for self-repair. From
our experimental results, we can see that the combined
approach is effective and potentially useful. We plan to
explore a wide variety of methods for steering.

Another future direction will be to explore alterna-
tive geometric configurations (e.g., continue the direc-
tion of Spears and Gordon (1999)) and alternative re-
quirements specifications and monitoring scripts. The
current property being monitored (i.e., that the MAVs
must not be between 0.25R and 0.75R or between 1.25R
and 1.5R) does not necessarily enforce a hexagonal lat-
tice. Therefore, the exploration of more sophisticated
property requirements would be valuable. Also, as
PEDL scripts become more sophisticated, we will need
to address issues related to the expression of qualitative
spatial relations, such as those in Mukerjee (1998).

In conclusion, we have presented an approach to dis-
tributed spatial control, global monitoring, and steering
of collections of agents that is independent of the num-
ber and size of the agents. This combined framework
has potential applicability to a wide range of problems,
including geometric formations for MAV sensing grids,
a virtual space telescope, nanotechnology for MEMS,
fleets of autonomous underwater vehicles, and config-
uring micro-satellites for better reception and trans-
mission. This approach enables self-assembly of com-
plex multiagent systems through artificial physics along
with monitoring and self-repair to handle unanticipated
events. Therefore, our novel combined approach takes
us one step closer to the autonomous coordination of
spatially distributed multiagent systems. When the
technology for MAVs and other physical agents ripens
to the extent that we have swarms of micro-agents, we
would like to test our method on the actual vehicles.
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