
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

September 2006

PATAXÓ: A Framework to Allow Updates
Through XML Views
Vanessa P. Braganholo
Universidade Federal do Rio de Janeiro

Susan B. Davidson
University of Pennsylvania, susan@cis.upenn.edu

Carlos A. Heuser
Universidade Federal do Rio Grande do Sul

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Postprint version. Copyright ACM, 2006. The is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in ACM Transactions on Database Systems (TODS), Volume 31, Issue 3, September 2006, Pages: 839
- 886.
Publisher URL: http://doi.acm.org/10.1145/1166074.1166078

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/291
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Vanessa P. Braganholo, Susan B. Davidson, and Carlos A. Heuser, "PATAXÓ: A Framework to Allow Updates Through XML Views", .
September 2006.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/291
mailto:libraryrepository@pobox.upenn.edu

PATAXÓ: A Framework to Allow Updates Through XML Views

Abstract
XML has become an important medium for data exchange, and is frequently used as an interface to (i.e., a
view of) a relational database. Although a lot of work has been done on querying relational databases through
XML views, the problem of updating relational databases through XML views has not received much
attention. In this work, we map XML views expressed using a subset of XQuery to a corresponding set of
relational views. Thus, we transform the problem of updating relational databases through XML views into a
classical problem of updating relational databases through relational views. We then show how updates on the
XML view are mapped to updates on the corresponding relational views. Existing work on updating relational
views can then be leveraged to determine whether or not the relational views are updatable with respect to the
relational updates, and if so, to translate the updates to the underlying relational database.

Keywords
Relational databases, updates, XML views

Comments
Postprint version. Copyright ACM, 2006. The is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
ACM Transactions on Database Systems (TODS), Volume 31, Issue 3, September 2006, Pages: 839 - 886.
Publisher URL: http://doi.acm.org/10.1145/1166074.1166078

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/291

http://repository.upenn.edu/cis_papers/291?utm_source=repository.upenn.edu%2Fcis_papers%2F291&utm_medium=PDF&utm_campaign=PDFCoverPages

PATAXÓ: a framework to allow updates through XML views

VANESSA P. BRAGANHOLO

COPPE, Universidade Federal do Rio de Janeiro, Brazil

SUSAN B. DAVIDSON

CIS, University of Pennsylvania

CARLOS A. HEUSER

Instituto de Informática, Universidade Federal do Rio Grande do Sul, Brazil

Abstract

XML has become an important medium for data exchange, and is frequently used as an interface

to - i.e. a view of - a relational database. Although a lot of work has been done on querying

relational databases through XML views, the problem of updating relational databases through

XML views has not received much attention. In this work, we map XML views expressed using a

subset of XQuery to a corresponding set of relational views. Thus, we transform the problem of

updating relational databases through XML views into a classical problem of updating relational

databases through relational views. We then show how updates on the XML view are mapped

to updates on the corresponding relational views. Existing work on updating relational views can

then be leveraged to determine whether or not the relational views are updatable with respect to

the relational updates, and if so, to translate the updates to the underlying relational database.

1 Introduction

XML is frequently used as an interface to relational databases. In this scenario, XML documents
(or views) are exported from relational databases and published, exchanged, or used as the internal
representation in user applications. This fact has stimulated much research in exporting and querying
relational data as XML views [29, 44, 43, 18]. However, the problem of updating a relational database
through an XML view has not received as much attention: Given an update on an XML view of a
relational database, how should it be translated to updates on the relational database?

There are many applications in which the need to update through an XML view of a relational
database arises, from manufacturing to finance to general administration. As an example, Supplier
Relationship Management (SRM) systems are used in companies which purchase large amounts of
supplies from a variety of suppliers. Due to the size of the purchases, each supplier works almost
exclusively with the company. The company can therefore specify how orders are to be managed;
in particular, it typically requires suppliers to make their stock available in a specific XML format
conformant with their SRM so that purchases can be planned in an automated manner. The XML file
is a view of the supplier’s underlying (relational) product management database. The company then
notifies each supplier of the quantity of each product it intends to purchase next so that the supplier
can begin production and be ready for immediate delivery when the order is placed. Currently, the
notification and ordering is done outside of the supplier’s XML stock view. However, discussions with
developers in at least one such company have revealed the desire to provide notification and ordering by
updating the stock XML view directly, since this would considerably simplify the current transaction
process.

The approach we take to solving this problem is to take advantage of the well studied problem of
updating through relational views, and present a solution by mapping from XML views to relational

1

vendors

vendor

@id

“01”

vendorname

“Amazon”

address

state

“WA”

1

2

3 4 5

76
country

“US”

@price

“38”

products

book

btitle

“Unix
Network
Programming”

isbn

“1111”

@price

“29”

products

book

btitle

“Computer
Networks”

isbn

“2222”

dvd

dtitle

“Friends”

asin

“D1111”

vendor

@id

“02”

vendorname

“Barnes
and Noble”

address

state

“NY”

country

“US”

@price

“38”

products

book

btitle

“Unix
Network
Programming”

isbn

“1111”

book

btitle

“Computer
Networks”

isbn

“2222”

8

9
10

11 12

13

14 15

16 17

18

19 20

21

22

23 24

25 26

27

28
29

30 31

32

33 34

Figure 1: XML view containing vendors, books and dvds

views. Specifically, we (i) map an XML view query to a set of relational view queries; (ii) map updates
over the XML view to updates over the corresponding relational views; and (iii) use existing work
on updating through relational views to map the updates to the underlying relational database. The
starting point of this mapping is a formalism that we call query trees. In the relational case, work on
updating through views has focused on select-project-join views since they represent a common form
of view that can be easily reasoned about using key and foreign key information. Similarly, query trees
represent a common form of XML views that allow nesting, composed attributes, heterogeneous sets
and repeated elements. However, query trees were conceived as an internal query representation and
are not well-suited for end-users. To specify how an XML view is constructed from a relational source,
we therefore use the UXQuery [11] view definition language. UXQuery is expressive enough to capture
the XML views that we have encountered in practice yet is simple to understand and manipulate. It
is a subset of XQuery [5], and equivalent in expressive power to DB2 DAD files [19]. Throughout the
paper, we will use the term “XML view” to mean those produced by UXQuery.

In summary, in this paper we will focus on the interactions between UXQuery and query trees, as
well as the architecture and algorithms of the system that implements them, PATAXÓ1.

1.1 Running Example and Overview

An example of an XML view is shown in Figure 1. In this example, and in every example of this
paper, we use the database shown in Figure 2. Its schema consists of six tables: Vendors, Warehouse,
Book, DVD, SellBook and SellDVD. Table SellBook establishes a relationship between tables Vendor
and Book, registering prices of books sold by a given vendor. The table SellDVD plays the same role
for dvds and vendors. A vendor has several warehouses in which products are stored. In the XML
view of Figure 1, data was extracted from tables Vendor, Book, DVD, SellBook and SellDVD. Note
that the products for a vendor are grouped by price.

The strategy we adopt is to map an XML view query to a set of underlying relational view queries.
Similarly, we map an update against the XML view to a set of updates against the underlying relational
views. It is then possible to use any existing technique on updating through relational views to both
translate the updates to the underlying relational database and to answer the question of whether or
not the XML view is updatable with respect to the update.

In preliminary work [10], we used the nested relational algebra (NRA) as the view definition
language. In this approach, each XML view query is mapped to a single relational view query. However,
NRA views are not capable of handling heterogeneous sets, which arise frequently in practice. Thus,

1PATAXÓ is the name of a native Brazilian tribe (there are still a few living in Bahia) and stands for ”Permitindo
ATualizações Através de visões Xml em bancos de dados relaciOnais”, which is loosely translated as permitting updates
on relational databases through XML views.

2

Vendor SellBook
vendorId vendorName url state country vendorId isbn price
01 Amazon www.amazon.com WA USA 01 1111 38
02 Barnes and Noble www.barnesandnoble.com NY USA 01 2222 29
 02 1111 38
 02 2222 38

Warehouse
wId vendorId address city state country
D1 01 1245, Bourbom Street Seatle WA USA
D2 02 1478, 25th Avenue New York NY USA
D3 01 4545, 15th Avenue Seatle WA USA

Book Dvd
isbn title publisher year asin title genre nrDisks
1111 Unix Network Programming Prentice Hall 1998 D1111 Friends Comedy 4
2222 Computer Networks Prentice Hall 1996

 SellDvd
 vendorId asin price

 01 D1111 29

Constraints:
On table Vendor:

- primary key(vendorId)
On table Warehouse

- primary key(wId)
- foreign key(vendorId)

references Vendor
On table Book

- primary key(isbn)
On table Dvd

- primary key(asin)

On table SellBook

- primary key(vendorId, isbn)
- foreign key(vendorId)

references Vendor
- foreign key(isbn) references

Book

On table SellDvd
- primary key(vendorId, asin)
- foreign key(vendorId) references

Vendor
- foreign key(asin) references Dvd

Figure 2: Sample Database

vendors

vendor

@id

“01”

vendorName

“Amazon”

1

2

3 4

6
price

“38”

btitle

“Unix Network
Programming”

isbn

“1111”

9

7

book

price

“29”

btitle

“Computer
Networks”

isbn

“2222”

11

book

vendor

...

5

8 10 12

book

...

Figure 3: XML view showing books and vendors

the NRA is capable of representing the XML view of Figure 3 but not that of Figure 1. To make this
clearer, in this context heterogeneity means distinct DTD types for repeating children. In the example
of Figure 1, the node products has heterogeneous children – that is, it has repeating children of types
book and dvd. In contrast, in Figure 3 there are no heterogeneous nodes.

Since views such as the one in Figure 1 are very common in practice, we have decided to adopt a
more general view definition language – UXQuery. We then map a query in UXQuery to an extended
query tree2, and use the results of [12] to map the resulting XML view to a set of relational views.
The extension to query trees presented here allows the grouping of tuples that agree on a given value.
For example, the products in Figure 1 represents grouping by price.

As mentioned before, a single XML view produced by a query tree can be mapped to a set of
relational views. The reason why there may be more than one underlying relational view for an XML
view expressed by a query tree is the presence of heterogeneous sets. For example, the XML view of
Figure 1 is mapped to two corresponding relational views: one for vendors and books (ViewBook),
and another one for vendors and DVDs (ViewDVD). We must then identify to which relational views
an XML update should be mapped.

2This paper extends the query trees of [12] to support grouping of tuples.

3

As a concrete example, suppose we wish to insert a new book

<book>

<btitle>Birding in North America</btitle>

<isbn>5555</isbn>

</book>

at the point in the XML view of Figure 1 specified by the following update path expression: /vendors/

vendor[@id="01"]/products[@price="29"] (node 13). Using the techniques of this paper, this update
would be mapped to the following SQL insert statement over ViewBook :

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("01", "Amazon", "WA", "US", 29, "5555", "Birding in North America");

Using existing relational techniques (in particular, that of [24]), we would then map the update on
the relational view to a set of updates against the underlying relations.

We also address the problem of checking if an update respects the schema of the XML view. As
an example, the DTD of the XML view of Figure 3 is shown below:3

<!ELEMENT vendors (vendor*)> <!ELEMENT vendorname (#PCDATA)>

<!ELEMENT vendor (book*)> <!ELEMENT isbn (#PCDATA)>

<!ATTLIST vendor id CDATA #REQUIRED> <!ELEMENT title (#PCDATA)>

<!ELEMENT book (vendorname, isbn, title, price)> <!ELEMENT price (#PCDATA)>

If a user tries to insert the XML tree <bike>Giant</bike> using the update path /vendors/vendor[@id=

"01"], we would determine that the update is not correct with respect to the schema of the XML view,
and would not attempt to map it to the underlying relational database.

1.2 Contributions

In summary, the main contributions of this paper are:

• A notion of query trees which captures a common form of XML views that allows nesting,
composed attributes, heterogeneous sets and repeated elements.

• A subset of XQuery, to define XML views over relational databases.

• An architecture of a system that implements the ideas of this paper.

• Algorithms to map an XML view query to a set of corresponding relational views queries, and
to map updates over the XML view to updates over the relational views.

The chief contribution of this paper is a complete and novel treatment of updating relational
databases through XML views, a problem that has not been addressed in previous literature.

1.3 Organization of the text

The outline of this paper is as follows: Section 2 presents related work. Section 3 shows the architecture
of the PATAXÓ System and discusses its main modules. The view definition language (UXQuery) and
query trees are presented in Section 4. Section 5 presents a simple language for updating XML views
and shows how to detect whether or not an update is correct with respect to the XML view DTD.
An algorithm for mapping an XML view to a set of underlying relational views is given in Section 6,
along with an algorithm for mapping insertions, modifications and deletions on XML views to updates
on the underlying relational views. Section 7 presents an evaluation of our view definition algorithm.
We conclude in Section 8 with a summary of the paper’s main contributions and a discussion of future
work.

3We use DTDs because their syntax is succinct. Our implementation actually uses XSD.

4

2 Related Work

The closest work on updates through XML views is that of [51, 52]. In [51], the XML views considered
are XML documents stored in relational databases and reconstructed using XQuery. For this class of
views, it is proven that it is always possible to correctly translate the updates back to the database.
However, they do not give details of how such translations are made. This approach differs from ours
since we deal with XML views constructed over legacy databases. The approach in [52] presents an
extension to the notion of clean source of Dayal and Bernstein [24]. They use this extended notion
to study the updatability of XQuery views published over relational databases. Their results are
analogous to the results of our previous work [10]. Neither of these papers discuss how updates are
translated to the underlying relational database.

Work on data provenance (or data lineage) is also relevant, since one of the concerns is knowing
where a piece of data that is in a given view came from. In the literature, this is called where provenance
[15]. The solution adopted in [15] is to syntactically analyze the view definition query. Why provenance,
on the other hand, deals with knowing why a piece of data is in the view, i.e. what tuples were used
to generate a given piece of information in the view [23]. In our work, we also need to know where
data came from, so we can map updates over this data to the database. As in [15], our approach uses
view definition analysis to solve this problem.

Another area related to our work is data mapping, which is studied in data integration. The main
goal in this area is to integrate autonomous data sources so they can be viewed as an integrated
repository where queries can be posed. Most of the work in this area [30, 16, 4, 41, 36] use a mediated
architecture that defines a global view of the data sources and maps each local source to the global
view. While the XML files we consider are views of a (single) relational database, we are primarily
concerned with updating through the view rather than the simpler problem of querying the view.
Furthermore, systems that allow updates over the global view [16, 36] do not specify how to map an
XML update to the underlying systems.

2.1 Building XML views over Relational Databases

Several papers explore the subject of building and querying XML views over relational databases
[29, 43, 6, 18, 44]. Most approach the problem by building a default XML view from the relational
source and then using an XML query language to query the default view [29, 43, 6, 18].

Each of the existing approaches uses a different technique to construct the XML view using a
relational engine to retrieve data. Some transform the XML view definition into extended SQL [44,
43, 18]; others use internal representations to map the XML view to several SQL queries [29, 6]. In
our approach, views are built using an extension of XQuery, but the goal is to update the resulting
views rather than to query them.

Other approaches focus on extracting XML documents from relational databases; querying the
resulting document is not the goal. Some of these approaches apply a default mapping over an SQL
query specified by the user [49]. Others allow the user to specify an XML template, together with SQL
instructions that will be used to generate the resulting XML document [31].

Commercial relational databases also offer support for extracting XML views over relational databases.
IBM DB2 XML Extender [19] uses a mapping file called DAD (Data Access Definition) to specify how
a given SQL query is mapped to XML. This mapping file is very complex, and is generally built using
a wizard. Oracle 9i release 2 uses SQL/XML [28]. SQL Server extends SQL with a directive called
FOR XML [22]. It also provides an alternative way of expressing XML views, which can be done using
an annotated XML Schema. The schema reflects the view structure that the user wants to construct,
and is augmented by annotations that tell where the element must come from (i.e. database table and
column name). The XML instance is not generated from the schema. The user must specify an XPath
query over the view in order to get the instance (or portions of it).

As we can see, most commercial databases have their own way of dealing with XML, which makes
it difficult to use them for accessing and updating legacy databases. DB2, which allows the creation

5

UXQuery
Processor

RDBMSRDBMS

UXQuery
(view definition query)

XQuery
XQuery
parser

SQL

Source XML
documents

Result Set

XML view

XML View Update

SQL Insert, delete and update

query tree
+ XML view
+ View schema
+ Relational view definitions (schemas)

Update
Manager

Legend:

Data flow
External Module

Temporary Storage

Figure 4: PATAXÓ System architecture

of XML documents from relational tables, requires that updates be issued directly to the relational
tables. In SQL Server an XML view generated by an annotated XML Schema can be modified using
updategrams. Instead of using INSERT, UPDATE or DELETE statements, the user provides a before
image of what the XML view looks like and an after image of the view [21]. The system computes the
difference between these images and generates corresponding SQL statements to reflect changes on the
relational database. Oracle offers the option of specifying an annotated XML Schema, but the only
possible update operation is to insert XML documents that agree with an annotated XML Schema.

Native XML databases like XIndice [2], Timber [32] and Tamino [45, 42] also support updates.
However, the goal of all these systems differs from ours since they do not update through views, nor
is the source data relational.

3 Architecture

In our approach, the user is presented with an XML document which is an UXQuery view of an
underlying relational database. The user performs updates directly on this document; the system then
determines how to translate the updates to the underlying relational database so that the updated
view remains correct. Thus there is no need for the XML document to be regenerated by re-executing
the view query over the relational database.

PATAXÓ implements an UXQuery processor and maps each UXQuery view definition to a set of
SQL view definitions over the underlying relational database. To do this, an UXQuery view definition
query is transformed into an internal representation called a query tree [12], which is then manipulated
by our system and mapped to a set of corresponding relational view definitions. When an update is
performed on the UXQuery view document, it is mapped to a set of updates over the relational views.

The overall architecture of PATAXÓ is shown in Figure 4, and consists of two main modules: the
UXQuery Processor and the Update Manager. The UXQuery Processor is responsible for processing the
UXQuery view definition and generating the XML view instance (document). The Update Manager
receives updates over this document from users and maps them to updates over the corresponding
relational views. A sub-module called Relational View Updater then translates the relational view
updates to the underlying relational database. We do not cover details of this module in this paper.

We now present each of these modules in detail.

6

UXQuery
Processor

UXQuery
(view definition query)

UXQuery Parser

parsed tree

XQuery
generatorXQuery

XQuery
parser

XML
extractor

Relational
tables
referenced
in the
query

SQL

Source XML
documents

Result
Set

Auxiliary Query
Tree

Generator

XML
view

XML View

parsed
tree

Relational View
Mapper

query tree

Relational view definitions
+ query tree

XML
view

XSD
generator

RDBMSRDBMS View schema

UXQuery
Processor

Figure 5: UXQuery Processor

3.1 UXQuery Processor

The UXQuery processor (Figure 5) is the module responsible for processing a view definition query
expressed in UXQuery and producing the corresponding XML view instance. To do this, it translates
a query in UXQuery to a query using pure XQuery syntax (see Section 4.1.1 for details on this
translation).

From the parsed UXQuery query, the UXQuery Processor generates the XQuery query (which is
executed by an external XQuery processor), the query tree and the XML schema of the XML view.
(See Section 4.1.1 for the transformation rules for translating UXQuery queries into XQuery, and
Section 4.3 for the translation of UXQuery queries to query trees.)

The generated query tree is used by the Relational View Mapper to generate the relational view
queries that correspond to the XML view query (Section 6.1). Notice that we do not create the
relational views in the underlying relational database. We just store the SQL view definition queries
in PATAXÓ and use them in the Relational View Updater Module. The query tree is also used by the
XSD Generator to generate the schema of the XML view (Section 4.2.4).

Relevant portions of the relational source data are translated to XML by a submodule called XML
Extractor. The XML Extractor encodes a relational table in XML using an element row as a tuple
delimiter. For example, the Vendor table of Figure 2 is represented in XML as:

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>

<country>USA</country>

</row>

<row>

...

</vendor>

Since SQL does not distinguish between lower- and uppercase, we have adopted the convention
that element names in the extracted XML documents are all in lowercase (notice that our example
of Figure 2 uses mixed case). In this way, XML elements representing tables/attributes in UXQuery
queries must also be referenced in lowercase.

7

Figure 6: Update Manager

Rather than extracting the entire table, the XML Extractor uses selection conditions specified
in the UXQuery (where conditions) to eliminate unnecessary tuples, and projects only the columns
specified in the query. In this way, we avoid extracting data that would be discarded by the XQuery
processor when processing the query. Notice that the extracted XML documents are used as input to
process the UXQuery query.

After extracting the XML files that represent relevant portions of the underlying relational tables
(XML Extractor) and producing the XQuery query (XQuery Generator), an external XQuery processor
(Saxon [33]) is used to process the query. The result of this processing is the XML view document
over which updates are then made by users.

3.2 Update Manager

The Update Manager (Figure 6) is the module responsible for receiving update requests and mapping
the updates to the underlying relational database. In order to do so, it first checks whether or not the
update conforms to the view schema and rejects updates that do not conform (Section 5.1).

Using the query tree, the Relational View Update Generator takes the requested update and trans-
lates it to updates over the corresponding relational views (as specified in Section 6.2). The Relational
View Updater then uses existing techniques for mapping updates over the relational views to updates
over the base tables. Our current version of PATAXÓ uses the translation algorithm of [24] to pro-
duce updates over the base tables; updates that cause side-effects are rejected (for details please see
[12]). However, this module could be replaced by many other options [35, 3, 38], many of which allow
side-effects that would then have to be propagated back to the view. Details are beyond the scope of
this paper.

4 View Definition Language

4.1 UXQuery

Due to its wide-spread acceptance, we would ideally adopt XQuery [5] as the view definition language.
However, it contains a number of features that are not consistent with the underlying relational nature
of the data, as well as others that create new values that do not appear in the underlying relational
database. In particular, order related operators affect only the layout of the resulting XML view
document rather than the contents of the underlying relational database, in which tuples are inherently
unordered. Thus while ordering is allowed in UXQuery, it is not considered in the translation of updates

8

to the relational database. Furthermore, aggregate operators create ambiguity when mapping a given
view tuple to the underlying relational database. We therefore outlaw aggregate operators. This
means that the use of let in our subset of XQuery must be very carefully controlled, and for this
reason we will allow it only as expanded by a new macro called xnest. To evaluate the effect of these
restrictions, we have analyzed the use of let in the queries of the XQuery Use Cases (Relational) [17],
and have concluded that the only places let cannot be replaced by a for is when aggregate operations
or function applications are used. We therefore feel that these restrictions are reasonable and do not
overly limit the expressiveness of our language.

The subset we have chosen is called UXQuery (Updatable XQuery), and contains the following:

• FWOR for/where/order by/return expressions (note that we do not allow let expressions).

• Element and attribute constructors.

• Comparison expressions.

• An input function table, which binds a variable to tuples of a relational table that is specified
as a parameter to the function.

• A macro operator called xnest, which facilitates the construction of heterogeneous nested sets.

It is important to notice that UXQuery is a view definition language rather than an update language.
Our update language will be introduced in Section 5.

In this section we assume the reader is familiar with XQuery, its syntax and semantics, and will
not get into details that UXQuery “inherits” from XQuery. For further details on XQuery, please refer
to [5]. The XQuery use cases are also an easy way to understand XQuery [17].

As a first example, we show a very simple UXQuery view definition query which retrieves vendors
and their warehouses. The query is shown in Figure 7 (left hand side). The only difference between
this query and one in XQuery is the table input function (lines 2 and 6), which takes as input the
name of the relational table and produces a set of tuples. The XML view resulting from this query is
also shown in Figure 7 (right hand side).

The EBNF of UXQuery is shown in Figure 8. It is based on the EBNF of the XQuery Core [5],
and has been simplified to remove operators not allowed by UXQuery. We have also added the xnest

operator and the table input function. In the EBNF we use a set of grammar definitions available in
the XML documentation. The basic tokens Letter and Digit are defined in [14]. The identifier QName

is defined in [13]. Literals and numbers are defined in [5].
The formal semantics of UXQuery matches the semantics of XQuery [27] with the exception of the

new input function table and the macro xnest, which we discuss next.

Semantics of table(). XQuery has two input functions: collection and doc [39]. In UXQuery, the
only input function available to the user is table. This function takes as input a table from a relational
database and returns a set of tuples of the following form:

<row> <!-- tuple attributes -->

<attribute-1> value of attribute 1</attribute-1>

...

<attribute-n> value of attribute n</attribute-n>

</row>

<row>

...

</row>

...

Following SQLX [28], we translate this input function to pure XQuery as follows.

define function table($tableName as xs:string) as node*

{ let $tuples := doc(concat($tableName,".xml"))//row

return $tuples }

9

1. <vendors>

2. {for $v in table(’Vendor’)
3. return
4. <vendor id=’{$v/vendorid/text()}’>

5. {$v/vendorname}
6. {for $w in table(’Warehouse’)

7. where $v/vendorid=$w/vendorid
8. return

9. <warehouse>
10. <idWarehouse>{$w/wid/text()}</idWarehouse>
11. <address>

12. <street>{$w/address/text()}</street>
13. {$w/city}

14. {$w/state}
15. {$w/country}
16. </address>

17. </warehouse>
18. }

19. </vendor>
20. }

21. </vendors>

<vendors>

<vendor id="01">
<vendorname>Amazon</vendorname>

<warehouse>
<idWarehouse>D1</idWarehouse>
<address>

<street>1245, Bourbom Street</street>
<city>Seatle</city>

<state>WA</state>
<country>USA</country>

</address>

</warehouse>
<warehouse>

<idWarehouse>D3</idWarehouse>
<address>

<street>4545, 15th Avenue</street>
<city>Seatle</city>
<state>WA</state>

<country>USA</country>
</address>

</warehouse>
</vendor>
<vendor id="02">

<vendorname>Barnes and Noble</vendorname>
<warehouse>

<idWarehouse>D2</idWarehouse>
<address>

<street>1478, 25th Avenue</street>
<city>New York</city>
<state>NY</state>

<country>USA</country>
</address>

</warehouse>
</vendor>

</vendors>

Figure 7: Example of a simple query that retrieves vendors and warehouses and its result

For this input function to work, the relational table used as the parameter in the function call must
be represented in XML. As an example, the function call shown in line 2 of Figure 7 assumes that
table Vendor is available in a file named vendor.xml which has the following structure:

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>

<country>USA</country>

</row>

<row>

...

</vendor>

The extraction of relational tables to XML is done by the XML Extractor in PATAXÓ (see Section
3.1).

Semantics of xnest. The xnest operator is used to specify a possibly heterogeneous set of nested
tuples that agree on the value of one or more attributes. The tuples are grouped according to the value
of these attributes, which we call nesting attributes. A simple (non-heterogeneous) example of such a
query is shown in Figure 9 (lines 1-23). The query specifies a join of tables Vendor, Book and SellBook.
For each vendor, it shows the vendor name, the vendor Id, and the books sold by that vendor grouped
by price. The xnest operator is shown in lines 6-20. It is responsible for grouping books by price. The
nesting attribute in this case is price (line 8).

10

[1] UXQuery ::= QueryBody

[2] QueryBody ::= ElmtConstructor
[3] ElmtConstructor ::= "<" QName AttList "/>" | "<" QName AttList? ">" ElmtContent+ "</" QName ">"

[4] ElmtContent ::= ElmtConstructor | EnclosedExpr+
[5] AttList ::= ((QName "=" AttValue)?)+
[6] AttValue ::= (’"’ AttValueContent ’"’) | ("’" AttValueContent "’")

[7] AttValueContent ::= "{" PathExprAtt "}"
[8] PathExprAtt ::= "$" VarName "/" QName "/" NodeTest

[9] VarName ::= QName
[10] EnclosedExpr ::= "{" (FWRExpr | PathExpr | Nest) "}"
[11] Expr ::= AndExpr

[12] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*
[13] FWRExpr ::= ((ForClause)+ WhereClause? OrderByClause? "return")* ElmtConstructor

[14] ComparisonExpr ::= ValueExpr (GeneralComp ValueExpr)?
[15] ValueExpr ::= PathExpr | PrimaryExpr

[16] PathExpr ::= "$" VarName "/" QName ("/" NodeTest)?
[17] NodeTest ::= TextTest
[18] TextTest ::= "text" "(" ")"

[19] ForClause ::= "for" "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*
[20] TableExpr ::= "table (" ’"’ QName ’"’ ")" | "table (" "’" QName "’" ")"

[21] WhereClause ::= "where" Expr
[22] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="
[23] OrderByClause ::= "order" "by" OrderSpecList

[24] OrderSpecList ::= OrderSpec ("," OrderSpec)*
[25] OrderSpec ::= PathExpr

[26] PrimaryExpr ::= Literal | ParenthesizedExpr
[27] Literal ::= NumericLiteral | StringLiteral

[28] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral
[29] ParenthesizedExpr ::= "(" Expr? ")"
[30] Nest ::= NestClause ByClause WhereClause "return" Header

[31] NestClause ::= "xnest "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*
[32] ByClause ::= "by" "$" VarName "in" UnionExpr ("," "$" VarName "in" UnionExpr)*

[33] Header ::= "<" QName (QName "=" NestAttValue)+ ">" ("{" ElGroup "}")+ "</" QName ">"
| "<" QName ">" (("{" "$" VarName "}") | ("<" QName ">" "{" "$" VarName "/" TextTest "}"

"</" QName ">"))+ ("{" ElGroup "}")+ "</" QName ">"

[34] NestAttValue ::= "’" "{" "$" VarName "/" TextTest "}" "’"
| ’"’ "{" "$" VarName "/" TextTest "}" ’"’

[35] ElGroup ::= ElmtConstructor
[36] UnionExpr ::= "(" "$" VarName "/" QName (("union" | "|") "$" VarName "/" QName)* ")"

Figure 8: EBNF of UXQuery

The xnest operator consists of four parts:

1. The nesting attribute (line 8). The variable bound to this attribute is called the nesting variable
($price in the example);

2. The source tables, which contains the data that will be returned by the xnest operator. In the
example, the source tables are Book and SellBook (lines 6-7).

3. The header element, which is the element that encloses the XML fragment returned by the xnest

operator. In this example, the header element is books (line 12). The nesting attribute must
appear either as an attribute of the header element or as a subelement of it.

4. One or more element groups (ElGroup), which are XML fragments that will be grouped according
to the nesting attribute. The code in lines 13-18 of Figure 9 is an element group. This element
group specifies books that will be returned according to their prices.

The XML view resulting from this example query is as follows:

...

<vendor id="2">

...

<books price="38">

11

1.<vendors>
2. {for $v in table("Vendor")

3. return
4. <vendor id="{$v/vendorid/text()}">
5. {$v/vendorname}

6. {xnest $b in table("Book"),
7. $sb in table("SellBook")

8. by $price in ($sb/price)
9. where $v/vendorid=$sb/vendorid

10. and $sb/isbn=$b/isbn
11. return
12. <books price="{$price/text()}">

13. {
14. <book>

15. {$b/isbn}
16. {$b/title}
17. </book>

18. }
19. </books>

20. }
21. </vendor>

22. }
23.</vendors>

24.<vendors>

25. {for $v in table("Vendor")
26. return
27. <vendor id="{$v/vendorid/text()}">

28. {$v/vendorname}
29. {let $b’ := table("Book"),

30. $sb’ := table("SellBook")
31. for $price in distinct-values($sb’/price)
32. return

33. <books price="{$price/text()}">
34. {for $b in table("Book"),

35. $sb in table("SellBook")
36. where $v/vendorid=$sb/vendorid

37. and $sb/isbn=$b/isbn
38. and $sb/price=$price
39. return

40. <book>
41. {$b/isbn}

42. {$b/title}
43. </book>
44. }

45. </books>
46. }

47. </vendor>
48. }

49.</vendors>

Figure 9: Example of a query that uses the xnest operator (lines 1-23) and its translation to regular
XQuery syntax (lines 24-49)

<book>

<isbn>1111</isbn>

<title>Unix Network Programming</title>

</book>

<book>

<isbn>2222</isbn>

<title>Computer Networks</title>

</book>

</books>

...

The need for a way of specifying groups in XQuery has been extensively discussed over the past few
years. Following our xnest proposal in 2003 [11], the groupby operator was proposed in 2004 [25, 26].
They propose an algorithm that translates XQuery queries using pure XQuery syntax into equivalent
queries that use groupby. Notice that they are going in the opposite direction from us: they start
with a general XQuery query and produce another with groupby with the goal of query amelioration.
Since our goal is to simplify query specification for the user and limit “bad” uses of let, we start with
queries using xnest and produce pure XQuery queries. The approach proposed by [26] also requires a
special XQuery processor which understands groupby. In 2004, BEA Systems proposed an extension
to XQuery which allows grouping through a group by operator [8]. The motivation is the same as
ours: to facilitate query specification. The difference between group by and xnest is that xnest allows
the specification of heterogeneous groups (see Figure 10). With group by, groups are homogeneous.
There was also a submission to W3C of a grouping extension to XQuery, authored by well known DB
researchers; unfortunately, this submission is not yet available online. However, the Working Draft
of XSLT 2.0 [34] now has a for-each-group operator which is also similar in purpose to xnest. The
difference is that in XSLT, when grouping by a set of values, the same item may appear in more than
one group. In xnest, each item will belong to exactly one group, thus avoiding update problems. XSLT
2.0 also allows grouping by patterns, which xnest does not. Due to the differences discussed above,
we believe xnest allows the types of grouping that are useful in XML views (i.e. heterogeneous sets)
while avoiding potential problems when updating.

12

4.1.1 Normalization to XQuery

A query containing xnest can be normalized to one using pure XQuery syntax. The normalized query
corresponding to the query in Figure 9 (lines 1-23) is shown in Figure 9 (lines 24-49). The normalization
process ensures that the nesting variable (in the example, $price) appears in the Header element (in
the example, books) as an attribute or a sub-element. Notice that in the normalized query, we still use
the input function table.

Continuing with the example, the xnest operation (lines 6-20) is normalized to the expression shown
in lines 29-46. The expression consists of a let/for (lines 29-31) and an additional for (lines 34-44)
for each element group (ElGroup) (lines 13-18) specified in the query.4 In the normalization process,
we introduce new variables in the let clause. These variables are primed (’), and correspond to the
variables bound to source tables in the xnest operator. There will be one primed variable in the let

clause for each source variable specified in the xnest operator5.
The normalization process also makes sure that nested elements are related to the nesting variable.

This is done by adding a new condition in the where clause. In the example (line 38) we added a
condition requiring that the book is sold at the price specified by $price.

Note that this example shows a nesting over a single attribute, but that it is possible to specify
nests over more than one attribute. As an example, we could group books over price and year as
follows:

...

{xnest $b in table("Book"), $sb in table("SellBook")

by $price in ($sb/price), $year in ($b/year)

where $v/vendorid=$sb/vendorid and $sb/isbn=$b/isbn

return

<books price="{$price/text()}" year="{$year/text()}">

{

<book>

{$b/isbn}

{$b/title}

</book>

}

</books>

}

...

The query of Figure 9 has a single element group (ElGroup) (lines 13-18). In this example, it is
not necessary to separate the conditions and variable bindings that appear in the xnest operator over
the corresponding fors in the normalized query. We now show an example of where this is necessary.

Figure 10 shows a query that has two element groups (lines 21-26 and 27-32). In this case, the
normalized query will have two fors, one for each of the element groups (lines 54-64 and 65-75). The
variable bindings and where conditions must then be carefully analyzed in order to identify which of the
fors they belong to. This is done by functions fs:SubVariable(i) and fs:SubExpr(i) in the normalization
process shown below.

The normalization process described through the above examples can be formally stated as:

[xnest Variable1 in TableExpr1, . . . , Variablen in TableExprn

by NestVariable1 in (Variable11/QName11 | . . . | Variable1m
/QName1m

),

. . . , NestVariablek in (Variablek1
/QNamek1

| . . . | Variablekm
/QNamekm

)

where Expr return

<ElName AttName1=”{NestVariable1/text()}” . . . AttNamek=”{NestVariablek/text()}”>

{ElGroup1} . . . {ElGroupm} </ElName>]xnest

==

let Variable′
1

:= TableExpr1, . . . , Variable′
n

:= TableExprn

4See Figure 8 for the definition of ElGroup.
5XQuery does not accept variable names with (’). However, we use them here for ease of explanation.

13

1. <vendors>

2. {for $v in table("Vendor")
3. return

4. <vendor id="{$v/vendorid/text()}">
5. {$v/vendorname}
6. <address>

7. {$v/state}
8. {$v/country}

9. </address>
10. {xnest $b in table("Book"),

11. $sb in table("SellBook"),
12. $d in table("DVD"),
13. $sd in table("SellDVD")

14. by $price in
($sb/price | $sd/price)

15. where $v/vendorid=$sb/vendorid
16. and $v/vendorid=$sd/vendorid
17. and $sb/isbn=$b/isbn

18. and $sd/asin=$d/asin
19. return

20. <products price="{$price/text()}">
21. {

22. <book>
23. {$b/isbn}
24. {$b/btitle}

25. </book>
26. }

27. {
28. <dvd>
29. {$d/asin}

30. {$d/dtitle}
31. </dvd>

32. }
33. </products>

34. }
35. </vendor>
36. }

37. </vendors>

38. <vendors>

39. {for $v in table("Vendor")
40. return
41. <vendor id="{$v/vendorid/text()}">

42. {$v/vendorname}
43. <address>

44. {$v/state}
45. {$v/country}
46. </address>

47. {let $b’ := table("Book"),
48. $sb’ := table("SellBook"),

49. $d’ := table("DVD"),
50. $sd’ := table("SellDVD")

51. for $price in
distinct-values($sb’/price|$sd’/price)

52. return

53. <products price="{$price/text()}">
54. {for $b in table("Book"),

55. $sb in table("SellBook")
56. where $v/vendorid=$sb/vendorid
57. and $sb/isbn=$b/isbn

58. and $sb/price=$price
59. return

60. <book>
61. {$b/isbn}

62. {$b/btitle}
63. </book>
64. }

65. {for $d in table("DVD"),
66. $sd in table("SellDVD")

67. where $v/vendorid=$sd/vendorid
68. and $sd/asin=$d/asin
69. and $sd/price=$price

70. return
71. <dvd>

72. {$d/asin}
73. {$d/dtitle}

74. </dvd>
75. }
76. </products>

77. }
78. </vendor>

79. }
80. </vendors>

Figure 10: Example of a query with two element groups (lines 1-37) and its translation to regular
XQuery syntax (lines 38-80)

for NestVariable1 in distinct-values(Variable11/QName11 | . . . | Variable1m
/QName1m

),

. . . , NestVariablek in distinct-values(Variablek1
/QNamek1

| . . . | Variablekm
/QNamekm

)

return

<ElName AttName1=”{NestVariable1/text()}”, . . . , AttNamek=”{NestVariablek/text()}”>

{for fs:SubVariable(1), fs:IsolatedTables()

where fs:SubExpr(1) and (Variable11 = NestVariable1 and . . . and Variablek1
= NestVariablek)

return ElGroup1 }

. . .

{for fs:SubVariable(m), fs:IsolatedTables()

where fs:SubExpr(m) and (Variable1m
= NestVariable1 and . . . and Variablekm

= NestVariablek)

return ElGroupm }

</ElName>

The notation for the normalization process is the same as that in [27]. The process assumes that:

• {Variable11
, ..., Variable1m

, ..., Variablek1
, ..., Variablekm

} ⊆ {Variable1, ..., Variablen}

14

• The auxiliary function fs:SubVariable(i) returns all variables Vx referenced in ElGroupi and also
all variables Vy appearing in a condition of the form:
“Vx/QNamex cmp Vy/QNamey” or “Vy/QNamey cmp Vx/QNamex” in Expr in the where

clause of the xnest operator (cmp ∈ {=, <, >, ! =, <=, >=}).

• The auxiliary function fs:IsolatedTables() returns all variables Vx not referenced in any ElGroup
of the xnest operation, or in any where condition. Such variables reference what we call isolated
tables, and they must be added to all fors of the normalized query (excluding the first for, which
defines the nesting variables). An example of this situation follows the function definitions.

• The auxiliary function fs:SubExpr(i) returns every expression specified in Expr in the where

clause of the xnest operator that references a variable returned by the function fs:SubVariable(i).

Returning to the example of Figure 10, the first element group (ElGroup) (lines 21-26) references
variable $b. Additionally, there is a where condition that uses $b and references $sb ($sb/isbn=$b/isbn,
line 17). Hence the function fs:SubVariable(1) returns $b and $sb. These variables are used in the for

clause corresponding to this element group (lines 54-55). The where conditions for this element group
are found by function fs:SubExpr(1), which analyzes the where condition of the xnest expression and
takes all such conditions that references variables $b and $sb. A condition requiring that each book
is sold by the price specified by $price is also added. The resulting where condition is shown in lines
56-58. The same process is done with the second element group (the one that builds the dvd element
– lines 27-32).

When there are isolated tables in the xnest, i.e. tables which are not referenced in an element
group and for which there are no where conditions, the tables are added in each for produced by
the normalization process. As an example, suppose that there is an additional binding using a new
variable $w to the Warehouse table in line 13a of Figure 10, and that no where condition is specified for
$w. In this case, this instance of Warehouse is an isolated table, and the normalization process would
add $w to the two fors under the products element (lines 55a and 66a). The semantics in this case is
a cartesian product of table Warehouse with the joined tables Book and SellBook, and also with the
joined tables DVD and SellDVD.

The normalized query is the one used by PATAXÓ to produce the XML view, as mentioned in
Section 3.1. The XML view resulting from the sample query of Figure 10 is shown in Figure 1.

4.1.2 Expressive Power

UXQuery can express everything in the XQueryCore [5] except for: queries that refer to element order;
recursive functions; is/is not operators; if/then/else expressions; sequences of expressions; disjunctions;
function applications; and arithmetic and set operations. The restriction on sequences of expressions
is due to the fact that the result of a query must be a single XML document, and the restriction on
disjunctions relates to restrictions imposed by the algorithm we use to translate the view updates to
the relational database [24]. Input functions are also limited to single relations, whereas in XQuery
variables can be bound to the results of expressions.

Even with such limitations, UXQuery is capable of expressing most real world views we encountered
in practice [12], and its expressive power is equivalent to that of DB2 DAD files [19].

4.2 Query Trees

Query trees are used as an internal representation of the XML view extraction query. This abstract
representation enables reasoning about updates and the updatability of an XML view, using the struc-
ture of the XML view and the source of each XML element/attribute. These are syntax independent
features, which allow us to work on a syntax independent level. Other systems in the literature, such
as SilkRoute [29], XPERANTO (XQGM) [43] and Rainbow [52], also use internal structures (view

15

name = ‘@id’
value = $v/vendorid

name = ‘@price’
value = GROUP ($sb/price | $sd/price)

name = ‘products’

name = ‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘book’
[$sb := table(“SellBook”)]

[$b := table(“Book”)]
[where $sb/vendorid=$v/vendorid

and $b/isbn=$sb/isbn]

name = ‘dtitle’
value = $d/title

name = ‘asin’
value = $d/asin

name = ‘dvd’
[$sd := table(“SellDVD”)]

[$d := table(“DVD”)]
[where $sd/vendorid=$v/vendorid

and $d/asin=$sd/asin]

name = ‘vendorname’
value = $v/vendorname

name = ‘country’
value = $v/country

name = ‘state’
value = $v/state

name = ‘address’

τ

τS

*

* *

τS τC

τS τS

τG

τS

τS τS τS τS

τN τN

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

τT

*

Figure 11: Query tree with grouped values

forests, XQGM and view relationship graph, respectively) which are easier to manipulate than a user
level language.

Query trees were first introduced in [12]. Here, we present an extension which adds a new type
of node called a group node. These nodes are used to represent nodes whose children are grouped
according to a given value, and correspond to nodes returned by the UXQuery xnest operator.

After defining query trees, we introduce a notion which will be used to describe the mapping to
relational queries: the abstract type of a query tree node. We use this notion of typing to define the
semantics of query trees, and then present their result type DTD.

4.2.1 Query Trees Defined

An example of a query tree can be found in Figure 11 (ignore for now the types τ associated with
nodes). This query tree retrieves vendors, and for each vendor, its @id, vendorname, address and a
set of books and dvds grouped by price within products. The query tree resembles the structure of the
resulting XML view. The root of the tree corresponds to the root element of the result. Leaf nodes
correspond to attributes of relational tables, and interior nodes whose incoming edges are starred
capture repeating elements (an incoming edge of a node n is an edge that connects n to its parent).
The UXQuery corresponding to this query tree is shown in Figure 10, and the resulting XML instance
is shown in Figure 1.

Query trees are very similar to the view forests of [29] and schema-tree queries presented in [6].
The difference is that, instead of annotating all nodes with the relational queries that are used to build
the content model of a given node, we annotate interior nodes in the tree using only the selection
criteria (not the entire relational query).

An annotation can be a source annotation or a where annotation. Source annotations bind variables
to relational tables, and where annotations impose restrictions on the relational tables making use of
the variables that were bound to the tables.

In the definitions that follow, we assume that D is a relational database over which the XML view
is being defined. T is the set of table names of D. AT is the set of attributes of a given table T ∈ T.

16

Definition 4.1 A query tree defined over a database D is a tree with a set of nodes N and a set of
edges E in which: Edges are simple or starred (“*-edge”). An edge is simple if, in the corresponding
XML instance, the child node appears exactly once in the context of the parent node (regardless of the
database content), and starred otherwise. Nodes are as follows:

1. All nodes have a name that represents the tag name of the XML element associated with this
node in the resulting XML view.

2. Leaf nodes have a value, which is either projected or grouped. Names of leaf nodes that start
with “@” are considered to be XML attributes.

3. Starred nodes (nodes whose incoming edge is starred) may have one or more source annotations
and zero or more where annotations. An exception is made for starred nodes with group children,
which must have no source annotation.

4. A Group node (one that has a grouped value) must have siblings that are starred nodes or group
nodes of a restricted form (see Definition 4.4).

Since we map XML view queries to relational view queries, nodes with the same name in the query
tree may cause ambiguities in the mapping (a relation cannot have two attributes with the same name
[50]). For simplicity, in this paper we will ignore this problem and use unique names for nodes in
the query trees, and as a consequence, in element constructors in UXQuery. In [9], we present a very
simple solution to this problem. When we build the query tree, we append a numeric suffix (generated
according to the Global Order Encoding [47]) to each node name. This way, the relational views are
generated with unique attribute names. This numbering schema is used only internally, and the user
is not aware of it.

Returning to the example in Figure 11, there is a *-edge from the root (named vendors) to its
child named vendor, indicating that in the corresponding XML instance there may be several vendor
subelements of vendors. There is a simple edge from the node named vendor to the node named
vendorname, indicating that there is a single vendorname subelement of vendor. The node named @id
will be mapped to an XML attribute instead of an element.

Before giving an example of how values are associated with nodes, we define source and where
annotations on nodes of a query tree.

Definition 4.2 A source annotation s within a starred node n is of the form [$x := table(T)], where
$x denotes a variable and T ∈ T is a relational table. We say that $x is bound to T by s.

Definition 4.3 A where annotation on a starred node n is of the form [where $x1/A1 op Z1 AND
... AND $xk/Ak op Zk], k > 1, where Ai ∈ ATi

and $xi is bound to Ti by a source annotation on n
or some ancestor of n. The operator op is a comparison operator {=, 6=, >, <, 6, >}. Zi is either a
literal (integer, string, etc.) or an expression of the form $y/B, where B ∈ AT and $y is bound to T
by a source annotation on n or some ancestor of n.

Continuing with the example of Figure 11, the vendor node is annotated with a binding for $v (to
table Vendor), and has several children at the end of simple edges (@id, vendorname, and address).
The value of its id attribute is specified by the path $v/vendorid, indicating that the content of the
XML view attribute id will be generated using column vendorid of the table Vendor. The value
of vendorname is specified by the path $v/vendorname. The node address is more complex, and is
composed of state and country subelements.

The node products has two *-edge children, book and dvd, and a group child, @price. Source anno-
tations on the book node include bindings for $b (Book) and $sb (SellBook), and its where annotations
connect tuples in SellBook to tuples in Book, and tuples in SellBook with tuples in Vendor (join con-
ditions). Node dvd has source annotations for $d (DVD) and $sd (SellDVD). Its where annotation
connects tuples in SellDVD to tuples in DVD and tuples in SellDVD with tuples in Vendor.

Definition 4.4 The value of a node n can be projected or grouped.
A projected value is of form $x/A, where A ∈ AT and $x is bound to table T by a source annotation
on n or some ancestor of n.

17

A grouped value is of form GROUP($x1/A1 | ... | $xm/Am), where m > 1 and Ai ∈ ATi
and $xi

is bound to Ti by a source annotation on a sibling node of n. The domains of A1, ...Am in D must
be the same. Group nodes with the same parent must be defined over the same set of variables x1, ...,
xm, and must have m siblings b1, ...bm whose incoming edges are starred6. Furthermore, the parent of
node n must be starred, and it must have no source annotations.

Still in the example of Figure 11, the @price node has a grouped value which references variables
$sb (declared on its sibling node book) and $sd (declared on its sibling node dvd). The XML instance
resulting from this query tree will take values from both tables SellBook and SellDVD, grouping by
their price.

From now on, we assume UXQuery queries are non-empty, and consequently, their corresponding
query trees are non-empty.

4.2.2 Abstract Types

In our mapping strategy, it will be important to recognize nodes that play certain roles in a query tree.
In particular, we identify six abstract types of nodes: τ , τT , τN , τC , τS and τG. We call them abstract
types to distinguish them from the type or DTD of the XML view elements.

Nodes in the query tree are assigned abstract types as follows:

1. The root has abstract type τ .

2. Each leaf node has abstract type τS (Simple).

3. Each non-leaf node with an incoming simple edge has abstract type τC (Complex).

4. Each starred node which is either a leaf node or whose subtree has only simple edges has an
abstract type of τN (Nested).

5. Each starred node with one or more children with a grouped value has an abstract type τG (with
Grouped children).

6. All other starred nodes have abstract type τT (Tree).

Note that each node has exactly one type unless it is a starred leaf node, in which case it has types
τS and τN .

As an example of this abstract typing, consider the query tree in Figure 11, which shows the type
of each of its nodes. Since book and dvd are repeating nodes whose descendants are non-repeating
nodes, their types are τN rather than τT . Also, since products has a child @price with grouped value,
its abstract type is τG.

The motivation behind abstract types is as follows. To map updates in the XML view to updates
in the underlying relational database, we must be able to identify a mapping from the column of a
tuple in the relational database to an element or attribute in the XML view. Ideally, this mapping is
1:1, i.e. each attribute of a tuple occurs at most once in the XML view and can therefore be updated
without introducing side-effects into the view. In general, however, it may be a 1:n mapping. The
class of views allowed by our query trees and its associated abstract type views captures this mapping
intrinsically.

Specifically:

• τT /τN/τG identifies potential tuples in the underlying relational database. Nodes of type
τT /τN/τG are mapped to tuples, and the node itself serves as a tuple delimiter. A node of type
τT may have children of type τT , i.e. nesting is allowed.

6Notice that we do not require that ($x1/A1 | ... | $xm/Am) in the group operation be in the same order as b1, ...bm.

18

• τS identifies relational attributes (columns). A node of type τS must have a node of type τT ,
τN or τG as its ancestor. Starred leaf nodes are an exception to this rule: they need not to have
such ancestor.

• τC identifies complex XML elements. Since they do not carry a value, this type of node is not
mapped to anything in the relational model. Nodes of type τC are present in our model to allow
more flexible XML views, but are not important in the mapping process.

XML views produced by query trees and their associated abstract types can be easily mapped to
a set of corresponding relational views, as we will show in Section 6. However, before turning to the
mapping we prove two facts about query trees that will be used throughout the paper.

Proposition 4.5 There is at least one τN node in the abstract type of a query tree qt.

Proof : Since query trees are assumed to be non-empty, qt must have at least one leaf. This means
that qt must have at least one starred node n, since the leaf node has a value which involves at least
one variable which must be defined in some source annotation attached to a starred node. Since the
tree is finite, at least one of these starred nodes is either a leaf node or has a subtree of simple edges,
i.e. the starred node is a τN node.

Proposition 4.6 There is at most one τN node along any path from a leaf with projected value to the
root in the abstract type of a query tree qt.

Proof : Suppose there are two τN nodes, n1 and n2, along the path from some leaf with projected
value to the root of qt. Without loss of generality, assume that n1 is the ancestor of n2. By definition
of τN , n2 must be a starred node. Therefore n1 has a *-edge in its subtree, a contradiction.

We will refer to the abstract type of an element by the abstract type that was used to generate it
followed by the element name. As an example, the abstract type of the element dvd in Figure 11 is
referred to as τN (dvd), and its type (DTD) is <!ELEMENT dvd (dtitle, asin)>.

4.2.3 Semantics of Query Trees

The semantics of a query tree follows the abstract type of its nodes, and can be found in Algorithm
1. The algorithm constructs the XML view resulting from a query tree qt recursively, and starts with
n being the root of the query tree. The basic idea is that the source and where annotations in each
starred node n are evaluated in the database instance d, producing a set of tuples. The algorithm then
iterates over these tuples, generating one element corresponding to n in the output for each of these
tuples and evaluating the children of n once for each tuple.

The bindings{} hash array keeps the values of variables taken from the underlying relational
database. We assume that values in bindings{} are represented as $x/A = 1, $x/B = 2, where $x is a
variable bound to a relational table T , A and B are the attributes of T and 1 and 2 are the values of
attributes A and B in the current tuple of T .

4.2.4 View Schema

Query tree views defined over a relational database have a well-defined schema that is easily derived
from the tree. Given a query tree, its DTD is generated as follows:

1. For each attribute leaf node named @A with parent named E, create an attribute declaration
<!ATTLIST E @A CDATA #REQUIRED>

2. For each non-attribute leaf node named E, create an element declaration
<!ELEMENT E (#PCDATA)>

19

3. For each non-leaf node named E, create an element declaration
<!ELEMENT E (E1, . . . , Ek)>, where E1, ..., Ek are non-attribute child nodes of E connected
by a simple or starred edge. In case Ei is connected to E by a starred edge, add a ”*” after Ei.
In case k = 0, then create an element declaration <!ELEMENT E EMPTY>

As an example, the DTD of the view produced by the query tree shown in Figure 11 is:

<!ELEMENT vendors (vendor*)> <!ATTLIST products

<!ELEMENT vendor (vendorname, address, products)> price CDATA #REQUIRED>

<!ATTLIST vendor id CDATA #REQUIRED> <!ELEMENT book (btitle, isbn)>

<!ELEMENT vendorname (#PCDATA)> <!ELEMENT btitle (#PCDATA)>

<!ELEMENT address (state, country)> <!ELEMENT isbn (#PCDATA)>

<!ELEMENT state (#PCDATA)> <!ELEMENT dvd (dtitle, asin)>

<!ELEMENT country (#PCDATA)> <!ELEMENT asin (#PCDATA)>

<!ELEMENT products (book*,dvd*)> <!ELEMENT dtitle (#PCDATA)>

Note that all (#PCDATA) elements are required. When the value of a relational attribute is null,
we produce an element with a distinguished null value. This makes it easier for the user to distinguish
between a value which is not known (null) and a value which is known to be the empty string.

We could also have chosen to omit the element tag when the value of that element is null. However,
using a distinguished null value has several advantages. First, it facilitates modifying a null value to
some other value: if tag t is omitted from the view, the user must know whether or not an element with
tag t can be added at a particular point in the XML view. Second, it makes our update translation
easier: If modifying a null value required inserting a new tag in the view, then this insertion in the
view would translate to a modification in the underlying relational database. Similarly, changing from
some known value to null would require a deletion in the view but would be mapped to a modification
in the underlying relational database. Our strategy is to map an update (e.g. insertion, deletion or
modification) in the XML view to the same type of update in the underlying relational database.

In our implementation, we use XML Schema instead of DTDs since it supports data types, thus
making the schema checking more accurate. The generation of the schema is analogous to the DTD
generation shown above. The data types are taken from the database metadata. We use a type
conversion table that maps SQL types to XML Schema simple types (string, integer, float, etc.). We
use DTDs in this paper for ease of explanation.

4.3 From UXQuery to Query Trees

As mentioned before, query trees are used as an intermediate representation of the view definition
query. We must therefore define how a view definition query expressed in UXQuery is translated to
its corresponding query tree. To illustrate the mapping process, we start with the query of Figure 7.
For clarity, the query is presented again in Figure 12 together with its query tree.

Each XML element specified in the query is represented by a node in the query tree. Each node
in the query tree needs a name, and possibly a value (if it is a leaf node). Since XML elements and
attributes can be constructed in three distinct ways in UXQuery, we analyze each case separately:

• The leaf element is generated by an expression {$x/A}: in this case, the corresponding node in
the query tree has name A and value $x/A.

• The leaf element is constructed by an expression
<tagName> {$x/A/text()} </tagName>: in this case, the corresponding node in the query tree has
name tagName and value $x/A.

• The leaf is an attribute constructed by an expression attName="{$x/A/text()}": in this case, the
node in the query tree has name @attName and value $x/A.

20

1. <vendors>

2. {for $v in table(’Vendor’)
3. return
4. <vendor id=’{$v/vendorid/text()}’>

5. {$v/vendorname}
6. {for $w in table(’Warehouse’)

7. where $v/vendorid=$w/vendorid
8. return
9. <warehouse>

10. <idWarehouse>
{$w/depid/text()}

</idWarehouse>
11. <address>

12. <street>{$w/address/text()}</street>
13. {$w/city}
14. {$w/state}

15. {$w/country}
16. </address>

17. </warehouse>
18. }
19. </vendor>

20. }
21. </vendors>

name = ‘@id’
value = $v/vendorid

name = ‘idWarehouse’
value = $w/wid

name = ‘street’
value = $w/address

name = ‘warehouse’
[$w := table(“Warehouse”)]

[where $v/vendorid=$w/vendorid]

name = ‘vendorname’
value = $v/vendorname

name = ‘country’
value = $w/country

name = ‘state’
value = $w/state

name = ‘address’

*

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

*

name = ‘city’
value = $w/city

Figure 12: Example of an UXQuery query that joins two relations, and its query tree

As an example, the expression $v/vendorname in the query of Figure 12 is mapped to a node named
vendorname in the query tree. As an example of mapping of an attribute, see node @id.

An exception to the above rules is an element or attribute which uses a nesting variable to specify
its content. For example, attribute price in the query of Figure 10 is constructed using variable $price

as its content (line 20). The variable $price was specified as $price in ($sb/price | $sd/price) (line
14). In this case, the rules for the node name are the same as above (in this example, the node will be
named price), but its value is GROUP($sb/price | $sd/price). The rule for this case can be specified
as:

• The leaf element tagName is specified by a nesting variable $y, and is constructed as <tagName>{$y}</tagName>.
Variable $y is in turn specified as $y in ($x1/A1 | ... | $xn/An). The corresponding node will
be named tagName and its value will be GROUP($x1/A1 | ... | $xn/An).

• The attribute attName is specified by a nesting variable $y, and is constructed as attName

="{$y/text()}". Variable $y is in turn specified as $y in ($x1/A1 | ... | $xn/An). The cor-
responding node will be named @attName and its value will be GROUP($x1/A1 | ... | $xn/An).

Non-leaf elements can only be constructed with an expression of type <tagName> {content} </tagName>,
where content are other element constructors, fors and/or xnests. In this case, the corresponding node
in the query tree will have name tagName, but no value. As an example, the XML element address

in the query of Figure 12 is a non-leaf element whose content is four element constructors. Its corre-
sponding node in the query tree is named address, and it has no value.

Nodes in the query tree are connected to represent the parent/child relationship of XML elements
in the view definition query. As an example, the node address is connected to nodes street, city, state
and country in the query tree of Figure 12. In the view definition query, elements street, city, state
and country are children of address. We will explain how starred edges are identified later.

Source and where annotations are identified as follows. Each for expression in the view definition
query has variable bindings, optional where conditions and a return clause followed by an element
constructor. Suppose this element is named e. The variable bindings are placed as source annotations
in the node e that represents element e in the query tree. A variable binding of type $x in table("X")

becomes a source annotation of type [$x := table(”X”)]. The where conditions (if any) are placed
in node e as where annotations (where x becomes [where x]). After this, we change the edge that

21

connects e to its parent to a *-edge. As an example, the query of Figure 12 has a for expression at
line 2. The expression has an element constructor after the return clause that constructs the element
vendor (line 4). As a consequence, the node vendor in the query tree is a starred node, and it has a
source annotation [$v := table(”Vendor”)].

When a query has an xnest operation, the source and where annotations are identified using the
functions fs:SubVariable(i) and fs:SubExpr(i), shown in Section 4.1.1. The Header element is mapped
to a node that has a *-edge, but no source annotation. In the query of Figure 10, the Header element
is products, and the corresponding node is shown in the query tree of Figure 11. After this query tree
is typed, this node will receive a type τG.

The root element of each element group in the query receives a *-edge. The source annotations are
selected using the functions fs:SubVariable(i) and fs:IsolatedTables() to identify the relevant variables
for that node. In the same way, the function fs:SubExpr(i) is used to identify the where annotations
for the node. As an example, node book in Figure 11 has source annotations [$b := table(”Book”)] and
[$sb := table(”SellBook”)]. Similarly, its where annotation is [where $v/vendorid=$sb/vendorid AND
$b/isbn=$sb/isbn].

The order by clause of UXQuery does not have a corresponding construction in query trees. This
is not a problem, since the purpose of query trees is to drive the mapping to relational views and from
there to the underlying relational database, which does not have a concept of order.

5 Update Language

In this section, we present a simple update language for XML views, and describe how we check for
schema conformance after updates.

Although no standard has been established for an XML update language, several proposals have
appeared [1, 46, 7, 37]. The language described below is much simpler than any of these proposals
and in some sense can be thought of as an internal form for one of these richer languages (assuming a
static translation of updates [7]). The simplicity of the language allows us to focus on the key problem
we are addressing.

Updates are specified using path expressions to point to a set of target nodes in the XML tree at
which the update is to be performed. For insertions and modifications, the update must also specify
a ∆ containing the new values.

Definition 5.1 An update operation u is a triple <t, ∆, ref>, where t is the type of operation (insert,
delete, modify); ∆ is the XML tree to be inserted, or (in case of a modification) an atomic value; and
ref is a simple path expression in XPath [20] which indicates where the update is to occur.

Definition 5.2 An update path ref is of the form p1/p2/.../pn where pi is either a label li or a qualified
label li[c1 and c2 and ... cm]. Each pi is called a step of P . Each ci is a qualification of the form
A = x, where A is a label and x is an atomic value (string, integer, etc).

The path expression ref is evaluated from the root of the tree and may yield a set of nodes which
we call update points. In the case of modify, it must evaluate to a set of leaf nodes. We restrict the
filters used in ref to conjunctions of comparisons of attributes or leaf elements with atomic values, and
call the expression resulting from removing filters in ref the unqualified portion of ref. For example,
the unqualified portion of /vendors/vendor[@id="01"] is /vendors/vendor.

Definition 5.3 An update path ref is valid with respect to a query tree qt iff the unqualified portion
of ref is non-empty when evaluated on qt.

For example, /vendors/vendor[@id="01"]/vendorname is a valid path expression with respect to the
query tree of Figure 11, since the unqualified path /vendors/vendor/vendorname is non-empty when
evaluated on that query tree.

22

The semantics of insert is that ∆ is inserted as a child of the nodes indicated by ref ; the semantics
of modify is that the atomic value ∆ overwrites the values of the leaf nodes indicated by ref ; and the
semantics of a delete is that the subtrees rooted at nodes indicated by ref are deleted.

The following examples refer to Figure 1:

Example 5.1 To insert a new book with title “New Book” and isbn “9999” selling for $38 under the
vendor with id=“01” we specify:
t = insert,
ref = /vendors/ vendor[@id= "01"] /products[@price= "38"] ,

∆ = {<book>
<btitle>New Book</btitle><isbn>9999</isbn>

</book>}.

Example 5.2 To change the vendorname of the vendor with id = “01” to Amazon.com we specify:
t = modify,
ref = /vendors/ vendor[@id= "01"] /vendorName ,
∆ = {Amazon.com}.

Example 5.3 To delete all vendors of state WA we specify:
t= delete,
ref = /vendors/ vendor/ [state= "WA"] .

5.1 Schema conformance

Note that not all insertions and deletions make sense since the resulting XML view may not conform
to the schema of the query tree (for details, see Section 4.2.4). For example, the deletion specified by
the path /vendors/vendor/vendorname would not conform to the DTD of the query of Figure 11 since
vendorname is a required subelement of vendor. We must also check that ∆’s inserted and subtrees
deleted are correct.

Definition 5.4 An update <t,∆,ref> against an XML view specified by a query tree qt is correct iff

• ref is valid with respect to qt, according to Definition 5.3;

• if t is a modification, then the unqualified portion of ref evaluated on qt arrives at a node whose
abstract type is τS ;

• if t is an insertion, then the unqualified portion of ref extended with the root of ∆ evaluated on
qt arrives at a node whose incoming edge is starred (equivalently, its abstract type is τT , τG or
τN);

• if t is a deletion, then the unqualified portion of ref evaluated on qt arrives at a node whose
incoming edge is starred;

• if nonempty, then ∆ conforms to the DTD of the element arrived at by ref.

For example, the deletion of Example 5.3 is correct since vendor is a starred subelement of vendors.
However, the deletion specified by the update path /vendors/vendor/vendorname is not correct since
vendorname is of abstract type τS . The deletion specified by the invalid update path /vendors/vendor/

dvd is also incorrect.
As another example, the insertion of Example 5.1 is correct since book (arrived at by /vendors/

vendor/products) is a starred subelement of products, the DTD for book is <!ELEMENT book (btitle,
isbn)>, and ∆ conforms to this DTD. However, the following insertion would not be correct for the up-
date path /vendors/vendor[@id="01"]/products[@bprice="38"] and ∆ = <book><rating>Children</rating></book>,
since the isbn and btitle subelements are missing, and book does not have a rating subelement.

23

6 Mapping

In our approach, updates over an XML view are translated to SQL update statements on a set of
corresponding relational view expressions. Existing techniques such as [24, 35, 38, 3, 48] can then be
used to accept, reject or modify the proposed SQL updates.

In order to do so, it is first necessary to map an XML view query to a relational view query. As
we will show later in this section, there are cases where a single XML view query must be mapped to
a set of relational view queries.

The proofs for the theorems presented in this section are available at the Appendix.

6.1 Mapping to Relational Views

In this section, we discuss how an XML view constructed by a query tree is mapped to a set of
corresponding relational view expressions. There are two main steps in the mapping process: map and
split. The map process maps a query tree with a single τN node to a relational view query, and the
split process deals with query trees that have more than one node of type τN . It splits the query tree
into several split trees, so that each of them has a single node of type τN . Then, the map process can
be applied.

We start by showing the map process, and then we discuss the split process in detail.

6.1.1 Map

Given a query tree qt with only one τN node, the corresponding SQL view statement is generated as
follows:

• Join together all tables found in source annotations (called source tables) in a given node n
in qt, using the where annotations that correspond to joins on source tables in n as inner join
conditions. If no such join condition is found then use “true” (e.g. 1=1) as the join condition,
resulting in a cartesian product. Call these expressions source join expressions.

• Use the hierarchy implied by the query tree to left outer join source join expressions in an
ancestor-descendant direction, so that ancestors with no children still appear in the view. The
conditions for the outer joins are captured as follows: If node a is an ancestor of n and a where
annotation in n specifies a join condition on a table in n with a table in a, then use this annotation
as the join condition for the outer join. As with inner joins, if no condition for the outer join is
found, then use “true” as the join condition so that if the inner relation is empty, the tuples of
the outer will still appear.

• Use the remaining where annotations (the ones that were not used as inner or outer join
conditions) in an SQL where-clause and project the values of leaf nodes. The resulting SQL view
statement represents an unnested version of the XML view.

According to the above procedure, source join expressions are as follows:

<source table> AS <source variable> INNER JOIN

<source table> AS <source variable> INNER JOIN ...

ON <inner joincond>

The complete SQL expression resulting from the mapping process is:

SELECT <leaf value> AS <leaf name>, ...,

<leaf value> AS <leaf name>

FROM (<source join expression> LEFT JOIN

<source join expression> ON <outer joincond>) LEFT JOIN ...

WHERE <remaining "where" annotation> AND ...

AND <remaining "where" annotation>

24

For example, the relational view query corresponding to the query tree in Figure 12 is:

SELECT v.vendorid AS id, v.vendorname AS vendorname, w.depid AS idWarehouse,

w.address AS street, w.city AS city, w.state AS state, w.country AS country

FROM (Vendor AS v INNER JOIN Warehouse AS w ON v.vendorid=w.vendorid)

The mapping algorithm is shown in Algorithm 2. The auxiliary functions used in this algorithm
have obvious meanings. The one that is not so obvious is function variable(n), which returns the
variable used in the value of a leaf node (without the $ symbol). For example, if the value of node n
is $x/A, then variable(n) returns x. When the parameter is a source annotation s, then the function
returns the variable referenced in this source annotation without the $ (e.g. with s = $x in table(“X”),
function variable(s) returns x). Function attribute(n) returns the relational attribute that was used to
specify the value of a leaf node. Using the example of value of leaf node n above, attribute(n) returns
A.

6.1.2 Split

For a query tree with more than one τN node, the process shown above is incorrect. As an example,
consider the query tree of Figure 11 which has two τN nodes (book and dvd). If we follow the mapping
process described above, the tables DVD and Book will be joined, resulting in a cartesian product.
In this expression, a book is repeated for each DVD, violating the semantics of the UXQuery query
that corresponds to this query tree (Figure 10 (lines 1–33)). We must therefore split a query tree into
sub-query trees containing exactly one τN node each before generating the corresponding relational
view queries. After the splitting process, each sub-query tree produced is mapped to a relational view
query as explained above.

The splitting process consists in isolating a node n of type τN in the query tree qt, and taking its
subtree as well as its ancestors and their non-repeating descendants (types τC and τS) to form a new
tree qti. Recall that qt must have at least one τN node by Proposition 4.5.

The first step to generate qti is to copy qt to qti. Then, delete from qti all subtrees rooted at nodes
of type τN , except for the subtree rooted at n. Observe that deleting a subtree r may change the
abstract type of the ancestors of r. Specifically, if r has an ancestor a with type τT , and r is a’s only
starred descendant, then the type of a becomes τN after the deletion of r. Continue to delete subtrees
rooted at nodes of type τN in qti and retype ancestors until n is the only node of type τN in qti. The
process is repeated for every node of type τN in qt and results in exactly one τN node per split tree.

Also, it is necessary to remove parts of the value of group nodes so that variable references are
correct in each split tree. As an example, the query tree of Figure 11 has a group node price whose
value is GROUP($sb/price | $sd/price). The two split trees generated by the split algorithm will have
a node price referencing just one of the variables each ($sb or $sd).

Formally, the split algorithm (Algorithm 3) splits a query tree qt producing one split tree qti for
each node of type τN in qt.

The result of this process for the query tree of Figure 11 is shown in the Electronic Appendix.
Using these split trees, the corresponding relational view queries ViewBook and ViewDVD are:

CREATE VIEW VIEWBOOK AS

SELECT v.vendorId AS id, v.vendorname AS vendorname, v.state AS state,

v.country AS country, sb.price AS price, b.isbn AS isbn, b.title AS btitle

FROM (Vendor AS v LEFT JOIN (SellBook AS sb INNER JOIN

Book AS B ON b.isbn=sb.isbn) ON v.vendorId=sb.vendorId);

CREATE VIEW VIEWDVD AS

SELECT v.vendorId AS id, v.vendorname AS vendorname, v.state AS state,

v.country AS country, sd.price AS price, d.asin AS asin, d.title AS dtitle

FROM (Vendor AS v LEFT JOIN (SellDVD AS sd INNER JOIN

DVD AS d ON d.asin=sd.asin) ON v.vendorId=sd.vendorId)

As described above, split takes as input the original query tree qt and produces as output a set of
query trees {qt1, ..., qtn}, each of which has one τN node; map takes {qt1, ..., qtn} as input and produces

25

id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US 38
Unix Network Pro-

gramming
1111 NULL NULL

t2 1 Amazon WA US 29
Computer Net-
works

2222 NULL NULL

t3 1 Amazon WA US 29 NULL NULL Friends D1111

t4 2
Barnes and
Noble

NY US 38
Unix Network Pro-
gramming

1111 NULL NULL

t5 2
Barnes and
Noble

NY US 38
Computer Net-
works

2222 NULL NULL

Figure 13: Tuples resulting from evalRel(eval(qt, d)) for the query tree of Figure 11

a set of relational view expressions {V1, ..., Vn}, where each Vi is produced from qti as described above.
It follows directly from these algorithms that:

Proposition 6.1 The number of relational view expressions in map(split(qt)) is the number of τN

nodes in qt.

6.1.3 Correctness

The correctness of the set of relational view expressions resulting from map and split can be understood
in the following sense: Each tuple in the bindings relations (generated during the execution of the eval
algorithm (Algorithm 1)) for the XML view is in one or more instances of the corresponding relational
views. Of course, this bindings relation is not materialized during the execution of eval, so we now show
how to capture it using the query tree and its resulting XML view as source to materialize a relation
that we call evalRel, which in some sense corresponds to the bindings relation mentioned above. To
be more precise, we define the following:

Definition 6.2 The evaluation schema S of a query tree qt is the set of all names of leaf nodes in qt.

As an example, the evaluation schema of the query tree of Figure 11 is S = (id, vendorname, state,
country, price, btitle, isbn, dtitle, asin).

Definition 6.3 Let x be an XML instance of a query tree qt with evaluation schema S, in which the
instance nodes are annotated by the query tree type from which they were generated. Let {n1, ..., nk} be
the set of all deepest τN or τT instance nodes for some root to leaf path in x. Let pi be the set of nodes
in the path from ni to the root of x. An evaluation tuple of x is created from each ni by associating
the value of each leaf node l that is a descendant of ni or of some node in pi with the attribute in S
corresponding to the name of l, and leaving the value of all other attributes in S null.

The multi-set7 of all evaluation tuples of x is called its evaluation relation and is denoted evalRel(x).

For example, Figure 13 shows the result of evalRel(x) for the query tree qt of Figure 11 and the
XML view x of Figure 1. Recall that x is actually the evaluation of query tree qt over the database
instance d using algorithm eval (Algorithm 1), which produces the XML view x as a result. Thus,
evalRel(eval(qt, d)) = evalRel(x).

The evaluation relation evalRel carries all data that is in the leaves of the XML view. To prove the
correctness of our approach, we must show that this data corresponds to data in the relational views
generated by our mapping process (map and split). Since a single XML view can be mapped to more
than one relational view, we first collect the relational views together using outer union and call the
resulting relation relOuterUnion.

Definition 6.4 Let {V1, ..., Vn} be defined over a relational schema D, and d be an instance of D.
Let evalV(V ,d) denote the instantiation of view definition V over the database instance d. Then
relOuterUnion({V1, ..., Vn}, d) denotes the set of relational instances that result from taking the outer

7Note that SQL queries may return repeated tuples, and therefore we can have repeated evaluation tuples in evalRel.
Thus, evalRel is a multi-set instead of a set.

26

id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US 38
Unix Network Pro-

gramming
1111 NULL NULL

t2 1 Amazon WA US 29
Computer Net-
works

2222 NULL NULL

t3 2
Barnes and
Noble

NY US 38
Unix Network Pro-
gramming

1111 NULL NULL

t4 2
Barnes and
Noble

NY US 38
Computer Net-
works

2222 NULL NULL

t5 1 Amazon WA US 29 NULL NULL Friends D1111

t6 2
Barnes and
Noble

NY US NULL NULL NULL NULL NULL

Figure 14: Tuples resulting from relOuterUnion({ViewBook,ViewDVD}, d)

id vendorname state country price btitle isbn

t1 1 Amazon WA US 38 Unix Network Programming 1111

t2 1 Amazon WA US 29 Computer Networks 2222

t3 2 Barnes and Noble NY US 38 Unix Network Programming 1111

t4 2 Barnes and Noble NY US 38 Computer Networks 2222

Figure 15: Tuples on ViewBook

union of the evaluation of each Vi over d: relOuterUnion({V1, ..., Vn}, d) = evalV(V1, d)
⋃

...
⋃

evalV(Vn, d), where
⋃

denotes outer union.

For example, relOuterUnion({ViewBook, ViewDVD}, d) is the result of the outer union of evalV (ViewBook,
d) and evalV (ViewDVD, d), which is shown on Figure 14. The evaluations evalV (ViewBook, d) and
evalV (ViewDVD, d) are shown in Figures 15 and 16, respectively.

It is now possible to compare the data in the XML view (evalRel) with data in the relational views
generated by the mapping process (relOuterUnion). The correctness of the set of relational views
resulting from map and split can now be understood in the following sense:

Theorem 6.5 Given a query tree qt defined over a database D and an instance d of D, then: evalRel(eval(qt,
d)) ⊆ relOuterUnion(map(split(qt)), d).

Note that the set of tuples in Figures 13 and 14 are not exactly the same (and that Theorem 6.5
uses “⊆” instead of “=”). For instance, tuple t6 of relOuterUnion (Figure 14) is not in evalRel (Figure
13). This is because the XML instance of Figure 1 does not have any dvd sold by vendor Barnes and
Noble, thus there is a tuple [2, Barnes and Noble, NY, US, null, null, null] in ViewDVD which was
added by the LEFT join. This is correct, since vendor is in a common part of the view query, so its
information appears both in ViewBook and ViewDVD. However, t6 is not in Figure 13, since when the
entire view is evaluated, this vendor joins with a book. We call t6 a stub.

Tuples in relOuterUnion that are not in evalRel are stubs. Stubbed tuples represent starred nodes
with an empty evaluation. This situation is denoted by
relOuterUnion(map(split(qt)), d) − evalRel(eval(qt, d)). More precisely:

Definition 6.6 Let x be an XML instance of a query tree qt with evaluation schema S, and n be a
τN or τT instance node in x. A stubbed tuple of x is created from n by associating the value of each
leaf node l that is an ancestor of n with the attribute in S corresponding to the name of l, and leaving
the value of all other attributes in S null. The set of all stubbed tuples of x is denoted stubs(x).

The set stubs(x) for the XML view of Figure 1 is shown in Figure 17.

Theorem 6.7 Given a query tree qt defined over a database D and an instance d of D, then every
tuple t in relOuterUnion(map(split(qt)), d) − evalRel(eval (qt, d)) ⊆ stubs(x).

Note that the statement of correctness is not that the XML view can be constructed from instances
of the underlying relational views. The reason is that we do not know whether or not keys of relations
along the path from τN nodes to the root are preserved, and therefore do not have enough information

27

id vendorname state country price dtitle asin

t1 1 Amazon WA US 29 Friends D1111

t2 2 Barnes and Noble NY US NULL NULL NULL

Figure 16: Tuples on ViewDVD

id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US NULL NULL NULL NULL NULL

t2 2 Barnes and Noble NY US NULL NULL NULL NULL NULL

Figure 17: The stubs(x) relation for the XML view x of Figure 1

to group tuples from different relational view instances together to reconstruct the XML view. When
keys at all levels are preserved, then the query tree can be modified to a form in which the variables
iterate over the underlying relational views instead of base tables (see [9]).

6.2 Mapping Updates over XML views to updates over Relational Views

We now discuss how correct updates to an XML view are translated to SQL updates on the corre-
sponding relational views produced in the previous section.

Throughout this section, we will use the XML view of Figure 1, produced by the query tree of
Figure 11, as an example. The relational views ViewBook and ViewDVD corresponding to this XML
view were presented in Section 6.1.2.

The translation algorithm for insertions, deletions and modifications, translateUpdate, is given in
Algorithm 4. What it does is to check the type of update operation and call the corresponding algorithm
to translate the update. All the three algorithms (translateInsert, translateDelete and translateModify)
assume that the update specification u was already checked for schema conformance (see Section 5.1
for details on how update operations are checked against the view schema).

6.2.1 Insertions

To translate an insert operation on the XML view to the underlying relational views we do the following:
First, the unqualified portion of the update path ref is used to locate the node in the query tree under
which the insertion is to take place. Together with ∆, this will be used to determine which underlying
relational views are affected. Second, ref is used to query the XML instance and identify the update
points. Third, SQL insert statements are generated for each underlying relational view affected using
information in ∆ as well as information about the labels and values in subtrees rooted along the path
from each update point to the root of the XML instance.

Observe that by Proposition 4.6 there is at most one node of type τN along the path from any
node to the root of the query tree and that insertions can never occur below a τN node, since all nodes
below a τN node are of type τS or τC by definition.

For example, to translate the insertion of Example 5.1, we use the unqualified update path
/vendors/vendor/products on the query tree of Figure 11, and find that the type of the update point
is τC(products). Continuing from τC(products) using the structure of ∆, we discover that the only
τN node in ∆ is its root, which is of type τN (book). The underlying view affected will therefore be
ViewBook. We then use the update path ref = /vendors/vendor[@id="01"]/products[@price="38"] to
identify update points in the XML document. In this case, there is one node (8). Therefore, a single
SQL insert statement against view ViewBook will be generated.

To generate the SQL insert statement, we must find values for all attributes in the view. Some
of these attribute-value pairs are found in ∆, and others must be taken from the XML instance by
traversing the path from each update point to the root and collecting attribute-value pairs from the
leaves of trees rooted along this path. In Example 5.1, ∆ specifies btitle= “New Book” and isbn=
“9999”. Along the path from the node 8 to the root in the XML instance of Figure 1, we find id=“01”,

28

vendorname=“Amazon”, state=“WA”, country=“US”, and price=“38”. Combining this information,
we generate the following SQL insert statement:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("01","Amazon","WA","US",38,"9999","New Book")

As another example, consider the following insertion against the view of Figure 1: t = insert, ref
= /vendors,

∆={<vendor id="03">

<vendorname>New Vendor</vendorname>

<address>

<state>PA</state>

<country>US</country>

</address>

<products price="30">

<book>

<btitle>Book 1</btitle><isbn>9111</isbn></book>

<book>

<btitle>Book 2</btitle><isbn>9222</isbn></book>

<dvd>

<dtitle>DVD 1</dtitle><asin>D9333</asin></dvd>

</products>

</vendor>}.

The unqualified update path ref evaluated against the query tree of Figure 11 yields a node
τ(vendors), which is the root. Continuing from here using labels in ∆, we discover two nodes of
type τN : τN (book) and τN (dvd). We will therefore generate SQL insert statements to ViewBook as
well as ViewDVD.

Evaluating ref against the XML instance of Figure 1 yields one update point, node 1. Traversing
the path from this update point to the root yields no label-value pairs (since the update point is
the root itself). We then identify each node of type τN in ∆, and generate one insertion for each of
them. As an example, traversing the path from the first τN (book) node in ∆ yields label-value pairs
btitle=“Book 1”, and isbn=“9111”. Going up to the root of ∆, we have id=“03”, vendorname=“New
Vendor”, state=“PA”, country=“US” and price=“30”. This information is therefore combined to
generate the following SQL insert statement:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9111","Book 1");

In a similar way, information is collected from the remaining two τN nodes in ∆ to generate:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9222","Book 2");

INSERT INTO VIEWDVD (id, vendorname, state, country, price, asin, dtitle)

VALUES ("03","New Vendor","PA","US",30,"D9333","DVD 1");

Notice that in the above example, information about vendors is redundantly collected since there are
multiple relational views to which the update is mapped. To improve efficiency, in our implementation
of the translation algorithm the collected values and values in ∆ are cached and reused when specifying
the INSERT SQL statements. These cached values may be flushed before processing the next update
point.

The algorithm translateInsert is presented in the Appendix.

6.2.2 Modifications

By definition, modifications can only occur at leaf nodes. To process a modification, we do the
following: First, we use the unqualified ref against the query tree to determine which relational views
are to be updated. This is done by looking at the first ancestor of the node specified by ref which has

29

type τT or τN , and finding all nodes of type τN in its subtree. (At least one τN node must exist, by
definition.) If the leaf node that is being modified is of type τN itself, then it is guaranteed that the
update will be mapped only to the relational view corresponding to this node.

Second, we generate the SQL modify statements. The qualifications in ref are combined with the
terminal label of ref and value specified by ∆ to generate an SQL update statement against the view.
The corresponding algorithm is presented in the Appendix.

For example, consider the update in Example 5.2. The unqualified ref is /vendors/vendor/vendorname.
The τN nodes in the subtree rooted at vendor (the first τT or τN ancestor of vendorname) are τN (book)
and τN (dvd), and we will therefore generate SQL update statements for both ViewBook and ViewDVD.
We then use the qualification id = ”01” from ref = /vendors/vendor[@id="01"]/vendorname together
with the new value in ∆, to yield the following SQL modify statements:

UPDATE VIEWBOOK SET vendorname="Amazon.com" WHERE id="01";

UPDATE VIEWDVD SET vendorname="Amazon.com" WHERE id="01"

6.2.3 Deletions

Deletions are very simple to process. First, the unqualified portion of the update path ref is used
to locate the node in the query tree at which the deletion is to be performed. This is then used
to determine which underlying relational views are affected by finding all τN nodes in its subtree.
Second, SQL delete statements are generated for each underlying relational view affected using the
qualifications in ref. The corresponding algorithm is presented in the Appendix.

As an example, consider the deletion in Example 5.3. The unqualified update path expression is
/vendors/vendor. The τN nodes in the subtree indicated by this path in the query tree are τN (book)
and τN (dvd). This means that the deletion will be performed in both ViewBook and ViewDVD.
Examining the update path /vendors/vendor[state="WA"] yields the label-value pair state=“WA”.
Thus the deletion on the XML view is translated to SQL delete statements as:

DELETE FROM VIEWBOOK WHERE state="WA"

DELETE FROM VIEWBOOK WHERE state="WA"

It is important to notice that if a tuple t in one relation “owns” a set of tuples in another relation
via a foreign key constraint (e.g. a vendor “owns” a set of books), then deletions must cascade in
the underlying relational schema in order for the deletion of t specified through the XML view to be
allowed by the underlying relational system.

6.2.4 Correctness

Since we are not focusing on how updates over relational views are mapped to the underlying relational
database, our notion of correctness of the update mappings is their effect on each relational view treated
as a base table.

Let x = eval(qt, d) be the initial XML instance, u be the update as specified in Definition
5.1, and apply(x, u) be the updated XML instance resulting from applying u to x. The function
translateUpdate(x, qt, u) translates u to a set of SQL update statements {U11, ..., U1m1

, ..., Un1, ...,
Unmn

}, where each Uij is an update on the underlying view instance vi = evalV(Vi,d) generated by
map(split(qt)).

We use the notation v′i = applyR(vi, {Ui1, ..., Uimi
}) to denote the application of {Ui1, ..., Uimi

}
to vi, resulting in the updated view v′i. If the set of updates for a given vi is empty, then v′i = vi.

Theorem 6.8 Given a query tree qt defined over database D, then for any instance d of D and correct
update u over qt, evalRel(apply(x, u)) ⊆ v′1

⋃
...

⋃
v′n, where

⋃
denotes outer union.

Theorem 6.9 Given a query tree qt defined over a database D and an instance d of D, then v′1
⋃

...⋃
v′n − evalRel(apply(x, u)) ⊆ stubs(apply(x, u)).

30

Figure 18: Experimental Results for Mondial (left-hand side) and TPC-H (right-hand side) Databases

Note that a correctness definition like apply(eval(qt,d), u) ≡ eval(qt, d′), where d′ is the updated
relational database state resulting from the application of the translated view updates {U11, ..., U1m1

,
..., Un1, ..., Unmn

} to updates on d, does not make sense due to the fact that we do not control the
translation of view updates to the underlying relational database. Therefore we cannot claim that
they are side-effect free. In [9, 12] we present a scenario where this claim can be made.

7 Experimental Evaluation

In our approach, we have adopted a naive solution for constructing the XML views. We have opted
to use an existing XQuery engine (SAXON), and extract the relational tuples in XML format to use
as input to SAXON. We have measured the performance of our solution, and, as expected, the results
could be improved by leveraging more efficient XML query processing techniques such as those in
[29, 44, 43, 18]. In future work, we plan to adapt these ideas in our architecture.

However, since the focus of our work is translating updates to relational updates, the total cost of
performing the update is less relevant than the overhead of our solution. The Overhead Time of our
solution is measured as: time to parse the UXQuery + time to extract the relations as XML files +
time to transform the UXQuery into XQuery. We have compared the Overhead Time with the time
to execute the corresponding XQuery using SAXON (the Query Execution Time) and find that it is
not large.

We have evaluated the overhead of our view construction solution on two different databases:
Mondial [40] and TPC-H. The evaluation results are shown in Figure 18, where the left-hand side of
the figure shows the results for the Mondial Database, and the right-hand side shows the results for
the TPC-H database.

In the Mondial database experiment, we varied the number of joins (source tables) in the view from
2 to 26 (shown on the X axis). Some of the views have the same number of joins; for instance, we had
2 views with 2 joins each. What varies, in this case, is the number of tuples in the resulting view. Thus
the graph in Figure 18 is ordered according to the number of tuples involved in the view construction.
As an example, the first view has 2 joins and 390 tuples, and the last view has 26 joins and 15384
tuples involved in the view construction (the number of tuples is not shown in the graph). The number
of tuples was obtained by counting the number of tuples that were extracted by the XML Extractor.
The Y axis uses logarithmic scale and shows the time to construct the view – the overhead time and
the query execution time, as explained above. With this data set, our overhead as a percentage of
total execution time was always low, no matter how many joins were in the view. The largest overhead
was 4.27% of the total time (first view), and the smallest was 0.0005% of the total time (third view).
It is also important to state that the views in Mondial have varying depths.

31

The TPC-H database was used to measure the data volume our approach is capable of handling.
We used the same view definition query in each experiment, varying the number of tuples that were
involved in each view. The view contains data about Orders and LineItems, and we varied the number
of orders in each view. The first view has Orders with OrderKey = 1 (that is, it has a single order and
its line items). The second view has Orders with OrderKey < 10. We increased this progressively to
50, 100, 200, 500, 1000, 5000, 10000 and 50000; after this point, the performance became unnaceptable.
For the TPC-H graph, we show on the X axis the number of tuples involved in each view, and on the
Y axis, the time in seconds (logarithmic scale). Our tests with the TPC-H views show that when
very few tuples are involved the overhead as a percentage of total cost is large. For instance, in the
first view, we take 0.13s executing the corresponding XQuery, and the overhead of our solution takes
an additional 0.11s. The total execution time in this case is 0.24s, and the overhead of our solution
represents 46.43% of this time. However, since the times are small, this overhead is not a performance
problem. When the number of tuples involved increases, and consequently the query execution time
increases, the overhead as a percentage of total cost diminishes drastically. In the last view (the one
with 62695 tuples), our overhead represents only 0.11% of the total execution time.

These results show that the overhead of our solution is low, but that the overall performance of the
system could be improved by using an XQuery engine that takes advantage of the underlying relational
DBMS engine. We plan to address this issue in future work.

8 Remarks and Future Work

In this paper, we have presented a solution to the problem of updates through XML views over
relational databases. The proposed solution takes advantage of existing work on updates through
relational views. The XML views are constructed using UXQuery, which allow nesting as well as
heterogeneous sets of tuples, and can be used to capture most of the features we encountered in real
views.

One of the main contributions of this paper are algorithms to map XML views to a set of underlying
relational views, and to map updates on an XML view instance to a set of updates on the underlying
relational views. By providing these mappings, the XML update problem is reduced to the relational
view update problem and existing techniques on updates through relational views [24, 35, 3, 38] can
be leveraged. As an example, in [9] we show how to use the approach of [24] to produce side-effect free
updates on the underlying relational database.

Another benefit of our approach is that query trees are agnostic with respect to a query language.
Query trees represent an intermediate query form, and any (subset of an) XML query language that
can be mapped to this form could be used as the top level language. In particular, we have implemented
our approach in a system called PATAXÓ that uses a subset of XQuery to build the XML views and
translates XQuery expressions into query trees as an intermediate representation.

Similarly, our update language represents an intermediate form that could be mapped into from a
number of high-level XML update languages. In our implementation, we use a graphical user interface
which allows users to click on the update point or (in the case of a set oriented update) specify the
path in a separate window and see what portions of the tree are affected.

The contributions of this paper are:

A notion of query trees which supports grouping of tuples We add a new type of node (τG)
into the query trees of [12] to group tuples that agree on a given value. Query trees can be used
as an intermediate representation of a top-level query language, making our approach syntax
independent. Any language that can be mapped to query trees can be used to specify the XML
views. In [9], we evaluate the expressive power of query trees and show that query trees are
expressive enough to be used in practice.

Mapping from XML views to relational views Given an XML view specified by a query tree,
we provide algorithms to map it to a set of corresponding relational view expressions. We also

32

provide algorithms to translate updates over the XML view to updates over the corresponding
relational views. We thus transform an open problem – that of updating relational databases
through XML views – into an existing problem – that of updating relational databases through
relational views.

A subset of XQuery to specify XML views over relational databases We have proposed and
implemented a subset of XQuery which is capable of constructing XML views over relational
databases [11]. UXQuery uses query trees as an intermediate representation to map the resulting
XML view to relational views.

PATAXÓ We have implemented our ideas in the PATAXÓ system to show the feasibility of our
approach. PATAXÓ uses UXQuery as the view definition language and the approach of [24] to
translate updates from the relational views to the underlying relational database.

In this paper, we do not deal with the correctness of the translation of updates to the underlying
relational database, since we do not control how they are performed. In our implementation, we use
the algorithms of [24] to translate updates to the relational views to the relational database; updates
which can potentially cause side-effects are rejected, thus the definition of correctness is “side-effect
free”. In [12], we use these algorithms to present an updatability study of query trees without group
nodes. The extensions of query trees we make in this paper, however, require some changes to the
updatability study as shown in [9]. As an example of the side-effects that may be caused by group
nodes, suppose we specify a modification over the view in Figure 1 by ref = /vendor/vendor[@id=‘‘1"]

/products[@price=‘‘38"]/@price and ∆ = {29}. The evaluation of ref yields node 9. Although it
seems fine to modify the value of this node, the reconstructed XML view would collapse the subtree
rooted at node 13 with the subtree rooted at node 8. This happens because we are changing the value
of node 9 to a value that was already in the view, and the semantics of GROUP requires that nodes
that agree in the value of price should be collected together. As a consequence, the XML view modified
by the user will be different from the reconstructed view – a side-effect.

As another example, consider a deletion over the view in Figure 1 with update path ref = /vendor/

vendor[@id=‘‘1"]/products[@price=‘‘38"]/book, which evaluates to node 10. The deletion of this book
will also make the subtree rooted at node 8 (products) to disappear. This is because node 10 was the
only book being sold by this price under this vendor.

Our implementation of PATAXÓ prevents these situations by adding two more restrictions on
correct updates (Definition 5.4). The first one prohibits modifications on group nodes, and the second
one prohibits deletions of starred children of τG nodes. Other options for dealing with the problem
of updating group nodes include: (1) performing instance analysis to catch exactly those cases that
produce side- effects; or (2) allowing side-effects in these special cases, or re-defining side-effects to
exclude empty groups or groups which collapse. We leave this for future research.

In future work, we also plan to improve the feedback given to users when an update is rejected.
Currently, there is a mismatch between what a user sees (and how he understands the system – XML
views), and how updates are being managed (translated to relational views). As an example, suppose
the user wants to delete a subtree t in the XML view. This update is translated to a deletion over
the corresponding relational view V . Suppose that this update fails because the translation procedure
detects that there would be a side-effect. The side-effect was detected using the relational views and
its constraints, which the user is not aware of. The question is: how can we explain to the user why
the update was rejected? This becomes even more complicated in our scenario, since any translation
process of updates through relational views can be used. Consequently, different notions of correctness
can be adopted, and different error messages can happen.

Another important issue regards the view generation process. As shown in our evaluation (Section
7), our view generation process is not efficient. We plan to adapt one of the existing proposals in
literature [29, 44, 43, 18] to PATAXÓ, so views are constructed more efficiently, taking advantage of
the underlying DBMS query engine.

33

We also plan to extend the language to include other features such as aggregates, and to extend
the model to include order.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library. The appendix
contains the proofs of the theorems of Section 6 as well as algorithms and the partitioned query trees
corresponding to the application of algorithm split.

ACKNOWLEDGEMENTS

Research supported in part by CNPq, Capes (BEX 1123-02/5) and FAPERJ Brazil, the Fulbright
Program, as well as NSF IIS 0415810. This research was conducted while Vanessa was at UFRGS.

References

[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet Wiener. The Lorel
Query Language for Semistructured Data. International Journal on Digital Libraries, 1(1):68–88,
1997.

[2] Apache Software Foundation. Apache Xindice, 2002. 2002. Available at: <http://xml.apache.

org/xindice>.

[3] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions on
Database Systems, TODS, 6(4):557–575, December 1981.

[4] Chaitan Baru, Amarnath Gupta, Bertram Ludaesher, Richard Marciano, Yannis Papakonstanti-
nou, Velikhov Pavel, and Vincent Chu. Xml-based information mediation with mix. In SIGMOD,
pages 597–599, Philadelphia, PA, USA, 1999.

[5] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu, Jonathan Robie, and Jérôme
Siméon. XQuery 1.0: An XML query language, September 2005. 2005. Available at: <www.w3.org>.
W3C Working Draft.

[6] P. Bohannon, S. Ganguly, H.F. Korth, P.P.S. Narayan, and P. Shenoy. Optimizing view queries
in ROLEX to support navigable result trees. In VLDB, Hong Kong, China, August 2002.

[7] Angela Bonifati, Daniele Braga, Alessandro Campi, and Stefano Ceri. Active XQuery. In ICDE,
San Jose, California, February 2002. IEEE Computer Society.

[8] Vinayak Borkar and Michael Carey. Extending XQuery for grouping, duplicate elimination, and
outer joins. In XML 2004 Conference and Exibition, pages 1–11, Washington, D.C., U.S.A.,
November 2004.

[9] Vanessa Braganholo. From XML to Relational View Updates: applying old solutions to solve a
new problem. PhD thesis, UFRGS, Porto Alegre, RS, Brazil, November 2004.

[10] Vanessa Braganholo, Susan B. Davidson, and Carlos A. Heuser. On the updatability of XML
views over relational databases. In WebDB, San Diego, CA, June 2003.

[11] Vanessa Braganholo, Susan B. Davidson, and Carlos A. Heuser. UXQuery: building updatable
XML views over relational databases. In Simpósio Brasileiro de Banco de Dados, SBBD, pages 26–
40, Manaus, AM, Brasil, 2003. Belo Horizonte: Departamento de Ciência da Computação/UFMG.

34

[12] Vanessa Braganholo, Susan B. Davidson, and Carlos A. Heuser. From XML view updates to
relational view updates: old solutions to a new problem. In VLDB, pages 276–287, Toronto,
Canada, September 2004.

[13] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML, January 1999. 1999.
Available at: <www.w3.org>. W3C Recommendation.

[14] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. Extensible
markup language (XML) 1.0 (third edition), February 2004. 2004. Available at: <www.w3.org>.
W3C Recommendation.

[15] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A characterization
of data provenance. In Jan Van den Bussche and Victor Vianu, editors, ICDT, volume 1973 of
Lecture Notes in Computer Science, pages 316–330, London, UK, 2001. Springer.

[16] Michael J. Carey, Laura M. Haas, Peter M. Schwarz, Manish Arya, William F. Cody, Ronald Fagin,
Myron Flickner, Allen W. Luniewski, Wayne Niblack, Dragutin Petkovic, John Thomas, John
Williams, and Edward L. Wimmers. Towards heterogeneous multimedia information systems:
The garlic approach. In RIDE: Distributed Object Management, pages 124–131, Taipei, Taiwan,
March 1995.

[17] Don Chamberlin, Peter Fankhauser, Daniela Florescu, Massimo Marchiori, and Jonathan Robie.
XML query use cases, September 2005. 2005. Available at: <www.w3.org>. W3C Working Draft.

[18] Surajit Chaudhuri, Raghav Kaushik, and Jeffrey Naughton. On relational support for XML
publishing: Beyond sorting and tagging. In SIGMOD, San Diego, CA, June 2003. ACM.

[19] J. Cheng and J. Xu. XML and DB2. In ICDE, San Diego, CA, 2000. IEEE Computer Society.

[20] James Clark and Steve DeRose. XML path language (XPath) version 1.0, November 1999. Avail-
able at: <www.w3.org>. W3C Recomendation.

[21] Andrew Conrad. Interactive microsoft SQL Server & XML online tutorial, 2001. 2001. Available
at: <www.topxml.com/tutorials/main.asp?id=sqlxml>.

[22] Andrew Conrad. A survey of Microsoft SQL Server 2000 XML features, 2001. MSDN Library. July
2001. Available at: <http://msdn.microsoft.com/library/en-us/dnexxml/html/xml07162001.asp>.

[23] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data warehouses. In ICDE, pages
367–378, San Diego, CA, USA, 2000.

[24] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update operations on
relational views. ACM Transactions on Database Systems, TODS, 8(2):381–416, September 1982.

[25] Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. Minimization and group-by detection for
nested XQueries. In ICDE, page 839, Boston, USA, March 2004. IEEE Computer Society.

[26] Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. The NEXT framework for logical XQuery
optimization. In VLDB, pages 168–179, Toronto, Canada, September 2004.

[27] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristoffer Rose, Michael
Rys, Jérôme SimÉon, and Philip Wadler. XQuery 1.0 and XPath 2.0 formal semantics, September
2005. 2005. Available at <www.w3.org>. W3C Working Draft.

[28] A. Eisenberg and J. Melton. SQL/XML is making good progress. SIGMOD Record, 31(2):101–108,
2002.

35

[29] Mary Fernández, Yana Kadiyska, Dan Suciu, Atsuyuki Morishima, and Wang-Chiew Tan.
Silkroute: A framework for publishing relational data in XML. ACM Transactions on Database
Systems, TODS, 27(4):438–493, December 2002.

[30] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V. Vas-
salos, and J. Widom. The tsimmis approach to mediation: Data models and languages. Journal
of Intelligent Information Systems, 8(2):117–132, 1997.

[31] Intelligent System Research. Odbc2xml: Merging ODBC data into xml documents, 2001. 2001.
Available at: <www.intsysr.com/odbc2xml.htm>.

[32] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V.S. Lakshmanan, Andrew Nierman,
Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana, Yuqing Wu, and
Cong Yu. TIMBER: A native XML database. The VLDB Journal, 11(4):274–291, 2002.

[33] Michael Kay. Saxon XSLT and XQuery processor, 2001. 2001. Available at: <http://sourceforge.

net/projects/saxon>.

[34] Michael Kay. XSL Transformations (XSLT) Version 2.0, September 2005. 2005. Available at:
<www.w3.org>. W3C Working Draft.

[35] Arthur M. Keller. Algorithms for translating view updates to database updates for views involving
selections, projections, and joins. In PODS, pages 154–163, Portland, Oregon, March 1985. New
York: ACM.

[36] Sasivimol Kittivoravitkul and Peter McBrien. Integrating unnormalised semi-structured data
sources. In CAiSE, pages 460–474, Porto, Portugal, 2005.

[37] Andreas Laux and Lars Martin. XUpdate WD, September 2000. Sept. 2000. Available at: <http:

//xmldb-org.sourceforge.net/xupdate/xupdate-wd.html>. XML:DB Working Draft.

[38] Jens Lechtenbörger. The impact of the constant complement approach towards view updating.
In PODS, pages 49–55, San Diego, CA, June 2003. ACM.

[39] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath 2.0 functions and
operators, September 2005. 2005. Available at: <www.w3.org>. W3C Working Draft.

[40] Wolfgang May. Information extraction and integration with florid: The Mondial case study. Tech-
nical Report Technical Report 131, Universität Freiburg, Institut für Informatik, 1999. Available
at: <http://dbis.informatik.uni-goettingen.de/Mondial/>.

[41] Ronaldo Santos Mello and Carlos Heuser. BInXS: A process for integration of XML Schemata.
In CAiSE, pages 151–166, Porto, Portugal, 2005.

[42] Harald Schöning. Tamino – a DBMS designed for XML. In ICDE, pages 149–154, Germany, April
2001.

[43] Jayavel Shanmugasundaram, Jerry Kiernan, Eugene Shekita, Catalina Fan, and John Funderburk.
Querying XML views of relational data. In VLDB, Roma, Italy, September 2001.

[44] Jayavel Shanmugasundaram, Eugene J. Shekita, Rimon Barr, Michael J. Carey, Bruce G. Lind-
say, Hamid Pirahesh, and Berthold Reinwald. Efficiently publishing relational data as XML
documents. In VLDB, pages 65–76, Cairo, Egypt, 2000.

[45] Software AG. Tamino XML server, 2002. 2002. Available at: <www.softwareag.com/tamino/

details.htm>.

36

[46] I. Tatarinov, Z. Ives, A. Halevy, and D. Weld. Updating XML. In SIGMOD, Santa Barbara, CA,
May 2001. ACM.

[47] I. Tatarinov, E. Viglas, K. Beyer, J. Shanmugasundaram, and E. Shekita. Storing and querying
ordered XML using a relational database system. In SIGMOD, Madison, Wisconsin, June 2002.

[48] Luiz Tucherman, Antonio L. Furtado, and Marco A. Casanova. A pragmatic approach to struc-
tured database design. In VLDB, pages 219–231, Florence, Italy, October 1983.

[49] Volker Turau. Db2xml 1.4: Transforming relational databases into XML documents, October
2001. Oct., 2001. Available at: <www.informatik.fh-wiesbaden.de/~turau/DB2XML>.

[50] Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems. Prentice Hall, 1997.

[51] Ling Wang, Mukesh Mulchandani, and Elke A. Rundensteiner. Updating XQuery views published
over relational data: A round-trip case study. In XML Database Symposium, Berlin, Germany,
September 2003.

[52] Ling Wang and Elke A. Rundensteiner. On the updatability of XML Views Published over
Relational Data. In ER, Shanghai, China, November 2004.

A Theorem Proofs

In this section, we present the proofs of theorems 6.5, 6.7, 6.8 and 6.9.

Theorem 6.5 Given a query tree qt defined over a database D and an instance d of D, then: evalRel(eval(qt,
d)) ⊆ relOuterUnion(map(split(qt)), d).

Proof : The ⊆ operation needs the two multi-sets being compared to be union compatible. By
definition, the schema of evalRel is the evaluation schema S, which is composed of all leaf node names
in qt. The execution of map(split(qt), d) results in a set of relational views {V1, ..., Vn}. Each view Vi

is a schema composed of names of leaf nodes in qti (which is produced by split(qt)). By definition of
split, each split tree qti contains a single τN node ni: the subtrees rooted at τN nodes different from
ni are deleted from qti. However, nodes deleted in qti are preserved in qtj , so that each node n in qt
is in at least one of the qt1, ...qtn. Consequently, the schema of V1

⋃
...

⋃
Vn equals S.

Assume t is in evalRel(eval(qt, d)), but not in relOuterUnion(map(split(qt)), d). Let x be the XML
view resulting from eval(qt, d). Since t is in evalRel(eval(qt, d)), it was constructed by taking values
from the leaf nodes in a given path p. The path p starts in a node n which is the deepest node of
type τN or τT in a given subtree and goes up to the root of x. If n is of type τN , and Vi is the view
corresponding to n, then t is in evalV(Vi,d), and consequently, t is in relOuterUnion(map(split(qt)),
d), a contradiction. If n is of type τT , then the node that originated n in the query tree has at
least one node of type τN in its subtree. Assume Vj , ..., Vk are the relational views corresponding to
those τN nodes. Consequently, t is in Vj

⋃
...

⋃
Vk, and thus in relOuterUnion(map(split(qt)), d), a

contradiction.

Theorem 6.7 Given a query tree qt defined over a database D and an instance d of D, then every
tuple t in relOuterUnion(map(split(qt)), d) − evalRel(eval (qt, d)) ⊆ stubs(x).

Proof : Tuples in relOuterUnion(map(split(qt)), d) that are not in evalRel(eval(qt, d)) are those
resulting from left outer joins with no match in a given relational view Vi ∈ map(split(qt), d). Since
stubs(x) contains tuples that has nulls in attributes related to descendant nodes, and a LEFT JOIN
always keeps information of the ancestor, then:
relOuterUnion(map(split(qt)), d) − evalRel(eval(qt, d)) ⊆ stubs(x).

37

Theorem 6.8 Given a query tree qt defined over database D, then for any instance d of D and correct
update u over qt, evalRel(apply(x, u)) ⊆ v′1

⋃
...

⋃
v′n, where

⋃
denotes outer union.

Proof : Since the update u does not change the view schema, and the application of an update Uij

over view vi also does not change vi’s schema, by Theorem 6.5 we have that evalRel(apply(x, u)) and
v′1

⋃
...

⋃
v′n have the same schema (are union compatible).

Insertions, Suppose t is a tuple in evalRel(apply(x, u)), resulting from a insertion of a subtree in x.
Assume t is not in v′1

⋃
...

⋃
v′n, and that update Uij is the translation of u.

Consider a tuple t′ which was inserted by update Uij in vi. Since Uij is the translation of u, t′ has
the values of one of the subtrees that were inserted in x by u, and also the values of x that were above
the update point ref of u. As a consequence, t = t′ and t is in v′1

⋃
...

⋃
v′n, a contradiction.

The same applies for the insertion of a more complex subtree. It will generate several tuples t1, ...,
tn to appear in evalRel(apply(x, u)). Each of these tuples will be inserted in the relational views by a
set of updates Uij , ..., Ukl. So evalRel(apply(x, u)) ⊆ v′1

⋃
...

⋃
v′n holds for insertions.

Modifications. Suppose t is a tuple in evalRel(apply(x, u)), resulting from a modification of a leaf
value in x. Assume t is not in v′1

⋃
...

⋃
v′n, and that update Uij is the translation of u.

Consider a tuple t′ which was modified by update Uij in vi. Since Uij is the translation of u, t′ had
a single attribute modified - the one that was updated in x. As a consequence, t = t′ and t is in v′1

⋃

...
⋃

v′n, a contradiction.
The same applies for modifications that affect more than one leaf in x, that is, when ref in

u evaluates to more than one update point. For every node affected by the modification, will be
generated one modification Uij . Since by Theorem 6.5 all tuples in evalRel(x) are in v1

⋃
...

⋃
vn,

then evalRel(apply(x, u)) ⊆ v′1
⋃

...
⋃

v′n.

Deletions. Following the inverse reasoning for insertions, every subtree deleted from x makes a tuple
disappear from evalRel(apply(x, u))s. Analogously, the translation Uij of u will make that tuple
disappear from v′1

⋃
...

⋃
v′n, so evalRel(apply(x, u)) ⊆ v′1

⋃
...

⋃
v′n holds.

Theorem 6.9 Given a query tree qt defined over a database D and an instance d of D, then v′1
⋃

...⋃
v′n − evalRel(apply(x, u)) ⊆ stubs(apply(x, u)).

Proof : Insertions of incomplete subtrees or deletions of incomplete subtrees may cause tuples to be
filled in with nulls because of the LEFT JOINS in some v′i. These tuples, however, will be in stubs.
The reasoning is the same as in proof of Theorem 6.7.

B Algorithms to translate updates

This section presents algorithms to translate insertions, deletions and modifications from the XML
view to updates over the corresponding relational views. Such algorithms are mentioned in Section
6.2.

B.1 Insertions

translateInsert(V, qt, ref, ∆)

//Inserts ∆ in the XML view V using ref as insertion point. ∆ must be inserted under every node
resulting from the evaluation of ref in V. qt is the query tree.

//Assumes that view(n) returns the name of the rel. view associated with node n

Let p be the unqualified portion of ref concatenated with the root of ∆

Let m be the node resulting from the evaluation of p against qt
Let N be the set of nodes resulting from the evaluation of ref in V

for each n in N
if abstract type(m) = τN

generateInsertSQL(view(m), root(∆), n, V)

else Let X be the set of nodes of abstract type τN in ∆

38

for each x in X
generateInsertSQL(view(x), x, n, V)

end for
end if

end for

generateInsertSQL(RelView, r, InsertionPoint, V)

//Inserts the subtree rooted at r into RelView
sql = "INSERT INTO" + RelView + getAttribuelView)

sql = sql + " VALUES ("
for i = 0 to getTotalNumberAttributes(RelView) - 1

att = getAttribute(RelView, i)
if att is a child n of r

sql = sql + getValue(n)

else Find att in V, starting from InsertionPoint examining the leaf nodes
until V’s root is found

Let the node found be m
sql = sql + getValue(m)

end if

if i < getTotalNumberAttributes(RelView) - 1
sql = sql + ", "

else sql = sql + ")"
end if

enf for

B.2 Modifications

translateModify(V, qt,ref,∆)

Let p be the unqualified portion of ref
Let m be the node resulting from the evaluation of p against qt

if abstract type(m) = τN

r = m

else Let r be the ancestor of m whose abstract type is τT , τG or τN

end if
if abstract type(r) = τN

generateModifySQL(view(r), ∆, ref)
else Let X be the set of nodes with abstract type τN under r

for each x in X
generateModifySQL(view(x), ∆, ref)

end for

end if

generateModifySQL(RelView, ∆, ref)

sql = "UPDATE " + RelView + " SET "
Let t be the terminal node in ref
sql = sql + t + "=" + ∆

for each filter f in ref
if f is the first filter in ref

sql = sql + " WHERE " + f
else sql = sql + " AND " + f
end if

end for

B.3 Deletions

translateDelete(V, qt,ref)

//Deletes the subtree rooted at ref from V

Let p be the unqualified portion of ref concatenated with the root of ∆
Let m be the node resulting from the evaluation of p against qt

if abstract type(m) = τN

generateDeleteSQL(view(m), ref)
else Let X be the set of nodes of abstract type τN under m

for each x in X
generateDeleteSQL(view(x), ref)

end for
end if

generateDeleteSQL(RelView, ref)

sql = "DELETE FROM " + RelView
for each filter f in ref

39

if f is the first filter in ref
sql = sql + + " WHERE " + f

else sql = sql + " AND " + f
end if

end for

C Partitioned Query Trees

In this section, we present the partitioned query trees corresponding to the application of algorithm
split to the query tree of Figure 11.

Partitioned query tree for τN (book):

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘products’

name = ‘btitle’
value = $b/title

name = ‘ isbn’
value = $b/isbn

name = ‘book’
[$sb := table(“SellBook”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/countr

name = ‘state’
value = $v/state

name = ‘address’

τ

τT

τS

*

*

τS τC

τS τS

τG

τS τS

τN

name = ‘@price’
value = GROUP ($sb/price)

*

τS

Partitioned query tree for τN (dvd):

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘products’

name =‘btitle’
value = $b/title

name = ‘ isbn’
value = $b/isbn

name = ‘dvd’
[$sd:= table(“SellDVD”)]

[$d := table(“DVD”)]
[where $sd/vendorId=$v/vendorId

and $d/asin=$sd/asin]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/countr

name = ‘state’
value = $v/state

name = ‘address’

τT

τS

*

*τS τC

τS τS

τG

τS τS

τN

τ

name = ‘@price’
value = GROUP ($sb/price)

*τS

40

eval(qt, d)

evaluate(root(qt, d))

evaluate(n ,d)

let bindings{} be a hash array of bindings of variable attributes to values, initially empty.
case abstract type(n)

τ | τC: buildElement(n)
τT | τN: table(n)
τG: group(n)

τS: print "<name(n)>value(n)</name(n)>"
end case

buildElement(n)
let tag = "name(n)"

for each attribute c in children(n)
add "name(c) = value(c)" to tag;

print "<tag>"
for each non-attribute c in children(n)

eval(c);
print "</name(n)>"

table(n)
let w be a list of conditions in sources(n)

for each w[i]
if w[i] involves a variable v in bindings{}

substitute the value binding{v} for v;

calculate the set B of all bindings for variables in sources(n) that makes the
conjunction of the modified w[i]’s true

for each b in B
add b to bindings{}
buildElement(n)
remove b from bindings{}

end for

group(n)

let g1, ..., gs be the GROUP children of n
let w be a list of conditions in sources(m), for all starred nodes m that are children of n
for each w[i]

if w[i] involves a variable v in bindings{}
substitute the value binding{v} for v;

calculate the set B of all bindings for variables in sources(m) (for all starred nodes m
that are children of n) that makes the conjunction of the modified w[i]’s true

let V1 =
⋃

i
values of i’th group term in g1, taken from B

let ...
let Vs =

⋃
i
values of i’th group term in gs, taken from B

for each v1 in V1

add variable bindings xi/p=value(g1) for each group variable xi to bindings{}
for each vs in Vs

add variable bindings xi/p=value(gs) for each group variable xi to bindings{}
buildElement(n)

remove variable bindings xi/p=value(gs) for each group variable xi in bindings{}
end for

remove variable bindings xi/p=value(g1) for each group variable xi in bindings{}
end for

Alg. 1: Algorithm eval

41

map(qt[])

Let sql[] be an empty array of strings; Let numberqt be the number of split trees in qt[]
for k from 1 to numberqt
{ Let n be the node of type τN in qt[k]

sql[k] = "CREATE VIEW " + name(n) + " AS "; sql[k] = sql[k] + "SELECT "
Let N be the list of leaf nodes in qt[k]

for i from 1 to size(N)
{ get next n in N

if i > 1

sql[k] = sql[k] + "," + variable(n) + "." + attribute(n) + " AS " + name(n)
else sql[k] = sql[k] + variable(n) + "." + attribute(n) + " AS " + name(n);

i = i + 1 }
sql[k] = sql[k] + " FROM "; Let from = ""; Let N be the set of starred nodes in qt[k]

for each n in N
{ Let join = "";

Let S be the list of source annotations in n; Let W be the list of where annotations in n

for i = 1 to size(S)
{ get next s in S

join = join + table(s) + " AS " + variable(s)
if i < size(S)

join = join + " INNER JOIN ";

i = i + 1 }
Let count = 0

for i = 1 to size(W)
{ get next w in W

if (w has the form $x/A op $y/B AND $x is bound to table X by a source annotation s ∈ S
AND $y is bound to table Y by a source annotation s’ ∈ S)

if count = 0

join = join + " ON " + x.A op y.B
else join = join + " AND " + x.A op y.B;

i = i + 1; count = count + 1 }
if count = 0

join = join + " ON (1=1) ";

if size(S) > 1
join = "(" + join + ")";

Let A be the set of starred ancestors of n; Let count = 0
if n has a starred ancestor

join = " LEFT JOIN " + join
for i = 1 to size(W)
{ get next w in W

if (w is of the form $x/A op $y/B AND
(($x is bound to table X on node n AND $y is bound to table Y on a node a in A)

OR ($x is bound to table X on a node a in A AND $y is bound to table Y on node n)))
if count = 0

join = join + " ON " + x.A op y.B
else join = join + " AND " + x.A op y.B;

i = i + 1; count = count + 1 }
if count = 0

join = join + " ON (1=1) ";

from = "(" + from + join + ")"
else if abstract type(n) != τG

from = from + join ;

}
sql[k] = sql[k] + from; Let W’ be the set of all where annotations on nodes of qt[k].

Let count = 0
for each w’ in W’

{ if w’ is of the form $x/A op Z AND Z is an atomic value
if count = 0

sql[k] = sql[k] + " WHERE " + x.A op Z

else sql[k] = sql[k] + " AND " + x.A op Z;
}

}
return sql[]

Alg. 2: The map algorithm

42

split(qt)

Let t[] be an array of query trees, initially empty
Let i = 0

Let N be the set of nodes of type τN in qt
for each node n in N

inc i

//initialize t[i] with qt
t[i] = qt

repeat
delete from t[i] all subtrees rooted at a node z of type τN, where z 6= n

retype the ancestors of the deleted nodes
until n is the only node of type τN in t[i]
for each group node g in t[i]

delete from g all the variable references not declared as source annotations
in its starred sibling

end for
end for
return t[]

Alg. 3: The split algorithm

translateUpdate(x, qt, u)
case u.t

insert: translateInsert(x, qt, u.ref, u.∆)
delete: translateDelete(x, qt, u.ref)
modify: translateModify(x, qt, u.ref, u.∆)

end case

Alg. 4: The translateUpdate algorithm

43

	University of Pennsylvania
	ScholarlyCommons
	September 2006

	PATAXÓ: A Framework to Allow Updates Through XML Views
	Vanessa P. Braganholo
	Susan B. Davidson
	Carlos A. Heuser
	Recommended Citation

	PATAXÓ: A Framework to Allow Updates Through XML Views
	Abstract
	Keywords
	Comments

	z:/Documentos/Artigos/aceitos/2006-TODS/camera-ready-sem-headings-acm/Journal.dvi

