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An Automated Procedure to Identify Biomedical Articles that Contain
Cancer-associated Gene Variants

Abstract
The proliferation of biomedical literature makes it increasingly difficult for researchers to find and manage
relevant information. However, identifying research articles containing mutation data, a requisite first step in
integrating large and complex mutation data sets, is currently tedious, time-consuming and imprecise. More
effective mechanisms for identifying articles containing mutation information would be beneficial both for
the curation of mutation databases and for individual researchers. We developed an automated method that
uses information extraction, classifier, and relevance ranking techniques to determine the likelihood of
MEDLINE abstracts containing information regarding genomic variation data suitable for inclusion in
mutation databases. We targeted the CDKN2A (p16) gene and the procedure for document identification
currently used by CDKN2A Database curators as a measure of feasibility. A set of abstracts was manually
identified from a MEDLINE search as potentially containing specific CDKN2A mutation events. A subset of
these abstracts was used as a training set for a maximum entropy classifier to identify text features
distinguishing "relevant" from "not relevant" abstracts. Each document was represented as a set of indicative
word, word pair, and entity tagger-derived genomic variation features. When applied to a test set of 200
candidate abstracts, the classifier predicted 88 articles as being relevant; of these, 29 of 32 manuscripts in
which manual curation found CDKN2A sequence variants were positively predicted. Thus, the set of
potentially useful articles that a manual curator would have to review was reduced by 56%, maintaining 91%
recall (sensitivity) and more than doubling precision (positive predictive value). Subsequent expansion of the
training set to 494 articles yielded similar precision and recall rates, and comparison of the original and
expanded trials demonstrated that the average precision improved with the larger data set. Our results show
that automated systems can effectively identify article subsets relevant to a given task and may prove to be
powerful tools for the broader research community. This procedure can be readily adapted to any or all genes,
organisms, or sets of documents.

Keywords
p16, database, bioinformatics, genomics, CDKN2A, text mining, conditional random fields, relevance ranking

Comments
Postprint version. Published in Human Mutation, Volume 27, Issue 29, September 2006, pages 957-964.
Publisher URL: http://dx.doi.org/10.1002/humu.20363

Author(s)
Ryan McDonald, Raymond Scott Winters, Claire K. Ankuda, Joan A. Murphy, Amy E. Rogers, Fernando C.N.
Pereira, Mark S. Greenblatt, and Peter S. White

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/279

http://repository.upenn.edu/cis_papers/279?utm_source=repository.upenn.edu%2Fcis_papers%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages


An automated procedure to identify biomedical articles that contain cancer-

associated gene variants

Ryan McDonald1, R. Scott Winters2, Claire K. Ankuda3, Joan A. Murphy3, Amy E.

Rogers3, Fernando Pereira1, Marc S. Greenblatt3 and Peter S. White2, 4

1Department of Computer and Information Science, University of Pennsylvania,

3330 Walnut Street, Philadelphia PA 19104 USA

2Division of Oncology, The Children's Hospital of Philadelphia, 34th St and

Civic Center Blvd, Philadelphia, PA 19104, USA

3Vermont Cancer Center, University of Vermont College of Medicine,

Burlington VT 05401

4Department of Pediatrics, University of Pennsylvania School of Medicine,

Philadelphia, PA 19104, USA

Correspondence to: Peter S. White, Division of Oncology, Rm 1407 CHOP

North, The Children's Hospital of Philadelphia, 34th St. and Civic Center Blvd,

Philadelphia, PA 19104-4318, USA

Tel: 215-590-5241

Fax: 215-590-5245

Email: white@genome.chop.edu



Running Title: Classifying text for cancer mutations



Abstract

The proliferation of biomedical literature makes it increasingly difficult for

researchers to find and manage relevant information. However, identifying

research articles containing mutation data, a requisite first step in integrating

large and complex mutation data sets, is currently tedious, time-consuming and

imprecise. More effective mechanisms for identifying articles containing mutation

information would be beneficial both for the curation of mutation databases and

for individual researchers. We developed an automated method that uses

information extraction, classifier, and relevance ranking techniques to determine

the likelihood of MEDLINE abstracts containing mentions of genomic variation

data suitable for inclusion in mutation databases. We targeted the CDKN2A (p16)

gene and the procedure for document identification currently used by CDKN2A

Database curators as a measure of feasibility. A set of abstracts was manually

identified from a MEDLINE search as potentially containing specific CDKN2A

mutation events. A subset of these abstracts was used as a training set for a

maximum entropy classifier to identify text features distinguishing “relevant” from

“not relevant” abstracts. Each document was represented as a set of indicative

word, word pair, and entity tagger-derived genomic variation features. When

applied to a test set of 200 candidate abstracts, the classifier predicted 88

articles as being relevant; of these, 29 of 32 manuscripts in which manual

curation found CDKN2A sequence variants were positively predicted. Thus, the

set of potentially useful articles that a manual curator would have to review was



reduced by 56%, maintaining 91% recall (sensitivity) and more than doubling

precision (positive predictive value). Subsequent expansion of the training set to

494 articles yielded similar precision and recall rates, and comparison of the

original and expanded trials demonstrated that the average precision improved

with the larger data set. Our results show that automated systems can effectively

identify article subsets relevant to a given task and may prove to be powerful

tools for the broader research community. This procedure can be readily adapted

to any or all genes, organisms, or set of documents.
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Introduction

Recent acceleration in research activities have produced challenges for

researchers to identify, synthesize, and utilize published information. The semi-

structured nature of biomedical text is not readily amenable to systematic

approaches for information retrieval and management. Public repositories of

biomedical research articles such as MEDLINE (Bodenreider, 2004), and

interfaces to query these document sets such as PubMed (McEntyre and

Lipman, 2001) and OVID (http://www.ovid.com), play critical roles in allowing

identification of relevant articles through user-directed queries. However,

MEDLINE provides only shallow semantic and no syntactic annotation of its

content, with the result that document retrieval and relevance ranking capabilities

are limited. More sophisticated automated techniques to extract information from

text hold great promise in assisting in the identification and management of this

wealth of research information (Cohen and Hersh, 2005; Krallinger and Valencia,

2005).

The current limitations of biomedical text retrieval capabilities can be illustrated

by mutation databases that collect global mutation events, such as OMIM,

COSMIC, and the Human Gene Mutation Database (Forbes, et al., 2006;

Stenson, et al., 2003; Wheeler, et al., 2006), as well as specialized locus-specific

databases (LSDBs), which record disease-causing gene mutations and neutral



variants for single genes, malignancies, or disease types (Horaitis and Cotton,

2004). LSDBs in particular have become valuable resources in the study and

clinical management of cancer and many other genetic diseases. Over 200

publicly available LSDBs have been created in recent years. Many LSDBs now

integrate large and complex mutation data sets with clinical and biological

features of gene function. For example, we have created and continue to curate

a LSDB for the tumor suppressor gene CDKN2A (Murphy, et al., 2004). CDKN2A

(OMIM:600160) encodes the cell cycle regulatory protein p16(Ink4A), which is

frequently mutated in a variety of cancers (Kamb, et al., 1994; Sharpless, 2005).

The CDK2NA Database is a compendium of germline and somatic CDKN2A

sequence variants associated with cancer.

However, compiling and maintaining a mutation database is labor intensive. The

first step in this process, the identification of research articles that contain

mutation data from the vast biomedical literature, is especially tedious, time-

consuming and imprecise. As part of our efforts to improve the CDKN2A

Database curation process, we have recently explored automated methods for

the efficient identification of appropriate research articles that contain mutation

data. We sought to develop an automated information extraction technique that

would predict manuscripts that contain variation data suitable for inclusion in the

CDK2NA Database, but that would be readily adaptable to any document set

potentially describing genomic variation information of particular interest. Here,



we describe a methodology for predicting and relevance ranking articles of

interest. This process combines 1) a named entity recognition algorithm to

identify mentions of genomic variation from free text, and 2) a text-feature

classifier that performs similarity analysis of potentially interesting documents to

predict likely relevance. This method was successfully employed to predict with

high precision which articles were most likely to contain mentions of CDKN2A

genomic variation events. The overall procedure is directly applicable to any task

requiring the identification of articles describing genomic variations.



Materials and Methods

Literature Search

For Version 1.0 of the CDKN2A Database, PubMed queries were performed in

August 2000, November 2002, and February 2003 to identify manuscripts of

potential relevance published through December 2002. Search parameters were:

p16, mutation, cancer, human. Together, the queries identified 419 manuscripts

published between January 2000 and December 2002. This set was labeled as

Dataset 1. An expert curator manually read abstracts looking for variants

reported in human tumors or cell lines and/or mention of one of the common

techniques used to detect mutations. The expert scanned articles sequentially,

considering first the article title, then the abstract, and then the full text of the

article only if the expert considered there to be a likelihood of relevant information

after each successive determination. Variants were included only if genomic DNA

or cDNA sequencing was performed. In each case the article was marked as

“true” if it contained at least one CDKN2A variation instance; otherwise, it was

marked as “false”. A second data set (Dataset 2) comprising the full collection of

Dataset 1 along with an additional 267 documents represented all identified

articles from January 2000 through June 2004. These additional articles were

identified (in August 2004 and January 2005) and marked for relevance with the

identical query and evaluation procedures employed for Dataset 1. The use of a

2nd training set that entirely encompassed the first was employed to mimic how



the classifier would likely be applied, where a user would wish to maximize the

machine-learning benefit by including all possible documents suitable for training.

Document Classifier

In the natural language processing and machine learning communities, there has

been a flurry of research on the problem of document classification and ranking

(Crammer and Singer, 2003; Joachims, 2002; Nigam, et al., 1999). Our model

uses the maximum entropy classification principle (Nigam, et al., 1999); such

models are equivalent to multi-nomial logistic regression (Berger, et al., 1996). A

maximum entropy classifier defines the probability that a document, x, is

classified by the label, y, as shown in Figure 1. As per this formula, the probability

of a document being relevant is proportional to a weighted linear sum over a set

of features, fi. The denominator in this term is present merely to insure that the

probability distribution is properly normalized.

The CDKN2A document classification task requires only binary classification. In

other words, only one of two labels for each document is possible: either it is

relevant (y=1) or it is not relevant (y=-1). Maximum entropy classification relies

on the definition of a set of indicative features, fi, to help guide classification. Our

model uses two kinds of features.



1) Word features indicate the presence of a word or word pair in the

document. For instance the feature “fi(x,y) = 1.0 if document x contains the

word CDKN2A” may be created. Conjunctions, such as, “fi(x,y) = 1.0 if

document x contains the word-pair point mutation”, may also be created.

Frequency of mention, but not location within a document, was considered

in the model. Word triplets were not considered due to the likelihood of

feature over-fitting for the document set. Character-based features did not

significantly increase performance of the model.

2) The second class of features, genomic variation features, indicate the

presence of a specific component of a genomic variation. For instance, the

feature “fi(x,y) = 1.0 if document x contains the location codon 12” may be

created. In order to determine the presence or absence of genomic

variation components, a named entity tagger for identifying text mentions

of genomic variation that was previously developed by our group was

applied (McDonald, et al., 2004). Specifically, this tagger identifies and

distinguishes between text mentions of genomic variation type (e.g., point

mutation, deletion), location (e.g., base pair 25, exon 2), and nucleic acid

and protein state (e.g., A to T, AlaVal). All CDKN2A document abstracts

under consideration were used as input for the genomic variation tagger.

The tagger annotated each abstract for genomic variation mention



predictions, and these annotations were used as input for feature

evaluation by the classifier.

After defining the set of relevant features for classification, the weight, wi, for

each feature is determined. If a set of training data is available, this can be done

automatically by finding the weights that maximize the likelihood of the training

data (Berger, et al., 1996). The Dataset 1 and 2 training sets consisted of 219

and 494 documents, respectively. All documents had been manually labeled as

either relevant (contains CDKN2A mutation data) or not. Once the classifier was

trained, it was then run on a set of evaluation documents comprising the

remaining articles in the trial set (200 for Dataset I; 192 for Dataset 2). The

MALLET implementation of maximum entropy was used to construct the system

(http://mallet.cs.umass.edu/).

Since automatically trained classifiers cannot guarantee that all relevant

documents are classified correctly, a useful method would return a ranking of

documents with the more relevant documents nearer the top. Maximum entropy

provides a natural mechanism for ranking the documents. In particular, maximum

entropy defines a probability P(y=1 | x), which is the probability that the

document, x, is relevant. Using this probability score, a ranking of the documents

was determined in each trial.



Evaluation

To evaluate the metric, the ranking criterion of average precision was used.

Average precision measures the average accuracy of the rank over each

possible rank cut-off. For instance, in Figure 2, if the cut-off between “considered

relevant” and “considered not relevant” was established as being before position

5, the result would yield 4 documents, three that are actually relevant and 1 that

is not (as assessed by the expert evaluator). The accuracy at this cut-off is 75%.

The average precision metric sums this calculation (true positives/all documents),

performed for all cut-offs. Intuitively this metric represents the likelihood of seeing

a relevant document in the ranking at an arbitrary cut-off. For each trial, the cutoff

yielding the highest maximum average precision was used for evaluation of

performance. For determination of classifier performance relative to manual

curation, the standard text mining measures of precision and recall were used.

Precision was calculated as the number of articles correctly classified as relevant

divided by the number of articles classified as relevant. Recall was calculated as

the number of articles classified as relevant divided by the number of articles

determined as relevant by the expert evaluator.



Results

A set of 419 biomedical articles published between 1/2000 and 6/2002 were

identified from MEDLINE using a query of several keywords associated with

CDKN2A, malignancy, and genomic variation (see Methods). This set was

named Dataset 1. These articles were then evaluated manually by a domain

expert to determine whether they described CDKN2A mutation instances suitable

for inclusion in Version 1.0 of the CDKN2A Database. Articles were manually

scored as either containing or not containing CDKN2A mutation data. Seventy of

the 419 manuscripts [16.7% precision (specificity)] were found by the expert to

contain relevant variation data. This set was then randomly divided into a training

set of 219 articles and an evaluation set of the remaining 200 articles.

The training data were used to estimate a maximum entropy classifier that

distinguished relevant from not relevant abstracts. As described in the Methods,

our classifier defines the probability that a document, x, is classified by the label,

y, based on weighting of syntactic and semantically-derived word features. Each

document was represented as a set of indicative word, word pair, and entity

tagger-derived genomic variation features (McDonald, et al., 2004). The model

established by the training set was then evaluated on the remaining 200 articles.

Article titles and abstracts in the evaluation set were subjected to the classifier,

and each document was accorded an overall probability score indicating the

likelihood that the document contained CDKN2A mutation information. An



average precision metric was then calculated, which measures the average

accuracy of the rank over each possible rank cut-off (Figure 2).

The domain expert manually determined that 32 of the 200 evaluation articles

actually contained CDKN2A mutation information (precision of the PubMed

search was 32/200=16.0%). The classifier determined that 88 of the 200 articles

(44%) likely contained mutation information. Twenty-nine of the 32 articles

considered positive by the domain expert were included in the 88 articles

predicted by the classifier (precision of 29/88=33.0%; recall of 29/32=90.6%).

Predictions for each article are shown in Supplemental Figure S1. Application of

the classifier more than doubled precision (33% vs. 16%), which would reduce

expert evaluation efforts by 56% (88 articles to consider versus 200).

To confirm these findings and to determine whether a larger training set would

improve performance, a second evaluation (Dataset 2) was performed on a set of

686 CDKN2A documents identified in MEDLINE between 1/2000 and 6/2004 by

using the same initial query strategy. For this evaluation, all 419 documents used

in Dataset 1 and an additional 75 documents (total of 494 documents) were used

as a training set for the classifier. A separate set of 192 new articles was used for

evaluation. Within the evaluation set, 27 were considered as positive for

CDKN2A mutation instance data by the domain expert (precision of

27/192=14.1%). The classifier determined that 69 of the 192 articles (35.9%)



likely contained mutation information. Twenty-three of the 27 articles considered

positive by the domain expert were included in the 67 articles predicted by the

classifier (precision of 23/69=33.3%; recall of 23/27=85.2%). In this trial,

application of the classifier improved precision 2.4-fold (33.3% vs. 14.1%) over

that obtained by expert evaluation, which would in turn reduce expert evaluation

efforts by 64% (69 articles to consider rather than 192). An average precision plot

of the results is shown in Figure 3. Comparison of the Dataset 1 and Dataset 2

results demonstrates an overall higher performance for the larger trial (Figure 4).

Finally, the eight mutation-containing articles that the classifier failed to identify

were analyzed in greater detail to determine possible causes. Article

PMID:11058911 (Moore, et al., 2000) describes in detail a specific germline

mutation of CDKN2A, but while this information is apparent in the article’s title,

there is no abstract body. Article PMID:14507338 (Godfraind, et al., 2003)

focuses upon chromosomal deletions. This abstract has only four non-standard

references to mutation: “CDKN2A alterations” (one instance) and “(epi)genetic

modifications” (three instances). Similarly, articles PMID: 12898359 (Ohtsubo, et

al., 2003) and PMID: 12721243 (Schneider-Stock, et al., 2003) both mention

“mutation(s)” and either “homozygous deletion” or “loss of heterozygosity”

sporadically, but each usually instead refers to “abnormalities”, and the focus of

the articles are on methylation status and immunohistochemical analysis of

tumors. PMID:11159196 (Schraml, et al., 2001), specifically mentions “mutation



analysis” and “24-bp deletion” as the only two direct instances of mutation

mentions, while most of the abstract describes results of a chromosomal deletion

analysis. Importantly, 9p allelic loss and LOH instances are not considered as

entries for inclusion in the CDKN2A Database. Article PMID: 15128789 (Huang,

et al., 2004) frequently discusses a “mutated” product rather than a mutation, and

this word would likely be missed by the tagger (stemming is not currently

employed as a feature set) and not considered as similar to standard mentions

such as “mutation” or “mutations” by the similarity analysis. Similarly, article

PMID:15173226 (Goldstein, et al., 2004) mentions “mutations” but provides no

specificity as to mutation types or locations, or the state of the DNA or protein.

Thus, the tagger did not identify any mentions of genomic variation in this

abstract, as it is trained to identify instances rather than generalized terms. The

final false negative article, PMID:10942797 (Tsuchiya, et al., 2000)  has five

standard mentions of specified mutation phrases identified by the tagger. This

abstract is written in an unusual style with many gene abbreviations and

frequencies, and it uses an unusual form of the p16 gene name (p16INK4). As

the classifier measures text feature similarity of documents to positive articles, is

likely that these unusual elements makes this abstract sufficiently dissimilar to

the positive training instances to be unrecognized.



Discussion

Efforts by several groups to provide portals to genomic variation information,

including Online Mammalian Inheritance in Man, the Human Genome Variation

Database, and the Human Genome Variation Society, have assisted with

consolidation and more effective retrieval of mutation instances for particular

diseases (Fredman, et al., 2004; Hamosh, et al., 2005; Horaitis and Cotton,

2004). Similarly, ongoing genome-wide mutation screening and data curation

projects are generating sizable numbers of mutation instances for particular

malignancies (Bamford, et al., 2004; Gottlieb, et al., 2004; Murphy, et al., 2004;

Van Dreden, et al., 1989). However, many mutation instances are reported in the

scientific literature, and attributing functional significance of identified mutation

events requires specialized curation. As a result, LSDBs such as the CDKN2A

Database have proved to be important resources for cancer and other genetic

disorders, as they commonly provide data critical for linking molecular causes of

disease with biological and clinical outcome. However, the level of effort required

to initiate and maintain LSDBs is high. Also, because LSDBs target relatively

specialized audiences, support for these resources is often limited. Despite these

obstacles, over 200 separate LSDBs have been established (Horaitis and Cotton,

2004), and this number is expected to increase as the human genome becomes

more fully annotated in functional terms. Our classification method is readily

adaptable to assist with literature curation for many of these databases, as well



as for more general applications to populate biomedical datasets with mutation

information.

The results reported here suggest that use of a specialized document classifier

can substantially assist with the time-consuming task of filtering relevant

documents from a larger initial set. Collectively, our system was able to positively

identify 51 of 59 articles (86.4% recall) mentioning CDKN2A mutation instances

while reducing the number of articles under consideration from 419 to 157).  This

reduction of over 60% translates to a saving of many person-hours of effort in

curation each year. Interestingly, this procedure used only article titles and

abstract texts, indicating that in most cases the article summaries provide

sufficient clues regarding the presence or absence of desired mutation instances

in the full text. Analysis of the articles missed indicate that these abstracts often

mentioned mutation events in unusual ways, such as using non-standard terms

for describing the genomic variations. Our genomic variation tagger includes a

specialist lexicon of commonly used synonyms for mutation and genomic

alteration text mentions (McDonald, et al., 2004). Expansion of this list to include

the mentions used in the missed articles, or inclusion of additional feature sets

specific to these exceptional cases, would likely assist with identification of these

articles. It would also be interesting to see if a similar approach using full-length

articles as input would yield higher performance, or whether the documents

would be more dissimilar due to a greater proportion of divergent and extraneous



text, differences in article formatting, and variation in writing style.

Comparison of the results of the original and expanded datasets showed modest

improvement in precision and a marginal decline in recall, suggesting the

possibility that larger training sets will positively influence performance. It is

reasonable to expect that continued utilization of the classifier would provide

more accurate results over time. However, determination of the significance and

optimal size of the training set, as well as the iterative impact of the machine

learning component, will require additional training data and analysis.

While term-based queries of MEDLINE are effective for many information

retrieval tasks, use of this procedure for identifying specific text content that is

often mentioned in various ways is inefficient, and to our knowledge, tools to

assist with this process are not readily available to bioinformatics-limited groups

at this time. For example, the MEDLINE web interface PubMed has a “Related

articles” feature that pre-computes a word feature-based similarity for all

MEDLINE documents, allowing a user to identify articles similar to a selected

individual abstract (McEntyre and Lipman, 2001). However, this tool does not

allow similarity to be performed within a selected set of documents. To determine

how well the PubMed tool performs for our task, we determined the frequency

with which a CDKN2A mutation-positive article in Dataset 1 was present in the

“Related Articles” set for each CDKN2A-positive article in Dataset 2. The overall



precision (# of Dataset 1 positive articles identified/# of Dataset1-positive articles)

and recall (# of Dataset 1 positive articles identified/# of articles in the “Related

Articles set) for this feature were 11.4% and 13.1%, respectively. Because the

“Related Articles” feature is calculated against all MEDLINE articles rather than a

smaller set of likely candidates, a lower performance is expected. However, this

result indicates that many CDKN2A-related articles are likely sufficiently

dissimilar to require more domain-targeted approaches such as our method

provides.

Machine learning-based document classification is a mechanism in wide use in

other application domains, such as Internet searching and email spam detection

(Robinson, 2004; Zhang, et al., 2004). However, for biomedical tasks, only a few

groups have reported the use of classifiers to identify document subsets

(Bartling, et al., 2003; Chapman, et al., 2005; Chapman, et al., 2003; Rubin, et

al., 2005), and these systems do not utilize advanced natural language

processing methods. Dobrokhotov and colleagues (Dobrokhotov, et al., 2005)

successfully used a combination of lemmatization, morpho-syntactic pattern

recognition, and either Support Vector Machine- or Probabilistic Latent-based

classifiers to classify and relevance rank MEDLINE articles suitable for

annotating protein sequences. In contrast, our approach combined a natural

language processing technique that was trained specifically upon the domain of

interest with a generalized classifier in order to improve performance. The high



recall from our method indicates that this approach is suitable as a convenient

filtering step prior to manual assessment and retrieval of relevant CDKN2A

mutation data. In addition, as our classifier provides a ranking function for each

document, database curators can begin with the articles deemed most relevant

and establish their own imposed cutoffs.

An advantage of our system over the Dobrokhotov approach is that tailoring the

NLP-based retrieval component to a specialized domain of interest provides an

opportunity for increased performance. However, specialization requires

additional effort for each new domain encountered. Our genomic variation entity

tagger is built upon a probabilistic model that can operate with high performance

in the absence of domain-specific features, but which also requires specialized

feature sets for optimal performance, as well as a moderate amount of hand-

annotated text specific to the domain of interest. A more comprehensive tagging

procedure which incorporates part-of-speech tagging and sentence-level

syntactic parsing would likely improve the quality of the genomic variation

features employed by the classifier. As mentioned above, additional lexicons and

regular expressions specific to genomic variation would undoubtedly improve

performance; analysis of false negatives from a larger set of documents could

assist in identifying recurrent patterns to exploit. Alternatively, additional syntactic

and semantic approaches could be applied to the text independently and their

outputs incorporated as feature sets for the classifier. Moreover, pre-tagging the



entirety of MEDLINE with the genomic variation tagger to generate an exhaustive

lexicon of genomic variation mentions would likely be a valuable classifier feature

set. It would also be expected that training of a classifier such as the one

described here on full-text articles would improve performance, especially as

many variation events are described in detail only in manuscript tables.

While our classifier assists with document ranking, it does not assist with the

identification of specific text sections relevant to curation and annotation tasks. A

possible use of our classifier would be to utilize it in combination with a

specialized biomedical literature indexing tool for extraction of sentences and

phrases relevant to genomic variation. For example, Textpresso is a tool that

provides advanced indexing capabilities that incorporate Gene Ontology terms,

to allow a user to immediately identify sections of text matching pre-defined

biological attributes (Muller, et al., 2004). Textpresso has been implemented in

several model organism domains as an effective literature curation tool. Our

classifier could be used to define and relevance rank the document set of

interest, whereupon relevant  contextual strings could be extracted or annotated

using Textpresso or a similar tool. Furthermore, as our classifier utilizes a tagger

that identifies short phrases describing genomic variation, a slight modification of

the application would allow output to be marked up (e.g. by color-coded HTML

tags) for phrases representing genomic variation.



Our classifier was designed specifically to be readily adaptable to a wide domain

of knowledge. For the identification of articles potentially mentioning genomic

variations or mutations of a specific gene, the system requires only 1) the

classifier; 2) a set of training articles or abstracts that contain both positive and

negative instances of the type of genomic mention of interest; and 3) our

genomic variation tagger. Preliminary results have shown that performance is

slightly but not substantially improved with the addition of the tagger.

Furthermore, the classifier can be trained upon any set of documents in which a

contextual distinction can be made, although the performance will likely vary

depending upon how precisely the distinction between positive and negative

instances can be defined.

In summary, specialized document classification is a powerful technique for

assisting with the growing need for curation of biological and biomedical text.

Automated systems can effectively identify article subsets relevant to a given

task. Opportunities for specialized high-performance document classifiers exist

for database population and curation, but also for data integration tasks such as

the alignment of molecular and clinical objects with biomedical text records. The

combination of a generalized classifier with a feature-based and domain-trained

NLP engine provides a potential way to streamline curation and annotation tasks

considerably.
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Figure Legends

Figure 1. Equation used to define the probability that a document, x, is classified

by the label, y. This equation states that the probability of a document being

classified as “relevant” is proportional to a weighted linear sum over a set of

features, f.

Figure 2. Average precision for Dataset 1. This Figure plots the average

percentage of relevant documents returned as a function of the number of

documents in total. Our system is compared to a baseline in which a relevance

ranking of documents is randomly created.

Figure 3. Average precision for Dataset 2. This Figure plots the average

percentage of relevant documents returned as a function of the number of

documents in total. Our system is compared to a baseline in which a relevance

ranking of documents is randomly created.

Figure 4. Comparison of the average precisions for Datasets 1 and 2. This Figure

plots the average percentage of relevant documents returned as a function of the

number of documents in total.
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