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Abstract
Languages with rich type systems are beginning to employ a blend
of type inference and type checking, so that the type inference en-
gine is guided by programmer-supplied type annotations. In this
paper we show, for the first time, how to combine the virtues of
two well-established ideas: unification-based inference, and bidi-
rectional propagation of type annotations. The result is a type sys-
tem that conservatively extends Hindley-Milner, and yet supports
both higher-rank types and impredicativity.

Categories and Subject Descriptors D.3.3 [PROGRAMMING
LANGUAGES]: Language Constructs and Features—abstract data
types, polymorphism

General Terms Languages, Theory

Keywords impredicativity, higher-rank types, type inference

1. Introduction
Consider the following function:

f get = (get [1,2], get [’a’,’b’,’c’])

The argument get is applied to a list of Int and to a list of Char,
so get would have to be polymorphic for this program to type-
check. The Hindley-Milner type system [13] rejects this program
because it requires that function arguments have monomorphic
types. However, suppose we add a type annotation:

f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get [’a’,’b’,’c’])

Then it is plain as a pikestaff what polymorphic type to attribute
to get! This observation leads to the following simple idea: exploit
type annotations to guide a simple inference algorithm to find types
for programs that would be untypeable by Hindley-Milner.

We have two particular extensions in mind. The first is higher-
rank types; that is, types with ∀ quantifiers nested inside function
types. They have already proved to be extremely useful in practice:
not many programs need them, but when they are needed they are
absolutely indispensable (e.g. [8, 22]).
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However, higher-rank types are not enough! Consider the fol-
lowing variation:

g :: Maybe (forall a. [a] -> a) -> (Int, Char)
g Nothing = (0, ’0’)
g (Just get) = (get [1,2], get [’a’,’b’,’c’])

Here, the polymorphic function is wrapped in a Maybe type, an
ordinary algebraic data type whose declaration looks like this:

data Maybe a = Nothing | Just a

In the Hindley-Milner system, type variables range only over mono-
types, but to allow function g we must allow a type variable—a, in
the definition of Maybe—to be instantiated with a polytype. In the
jargon, we need an impredicative type system, whereas Hindley-
Milner is predicative.

In this paper we show how to support both higher-rank types
and impredicativity, using programmer type annotations to guide
unification-based type inference. Specifically:

• We give a type system for source programs that include type
annotations, higher rank types, and impredicativity (Section 3).
Its key innovation is the notion of a boxy type, which expresses
the direction of information flow in an inference algorithm.

• Our type system is a conservative extension of the Hindley-
Milner type system (Section 4.5). It is also expressive: any
System F program can be written in our language, through the
addition of type annotations (Section 4.3).

• The type system has a relatively simple inference algorithm,
namely a modest extension of the well-known Damas-Milner
type inference algorithm (Section 5). We have proven that this
algorithm is sound and complete.

• To significantly reduce the burden of type annotations for prac-
tical programming, we present a refinement of our basic type
system, in Section 6.

We believe that this paper is the first to combine the virtues of
unification-based type inference with bidirectional propagation of
known types. The idea of combining the two has been around in the
folklore for a few years, but formalising it is tricky, and constitutes
our main contribution. We discuss related work in Section 8.

We have concrete evidence that our inference algorithm is, as
claimed, a modest extension of the conventional Damas-Milner
algorithm: we have fully implemented it in the Glasgow Haskell
Compiler (GHC), the world’s leading Haskell compiler. The
changes required were modest and non-invasive, even though GHC
already embodies an extremely complicated type system that in-
cludes higher-kinded type variables, multi-parameter type classes,
functional dependencies, overlapping instances, implicit param-
eters, template meta-programming, and more. In particular, we
found no difficulty in combining the boxy types of this paper with



the wobbly types of our companion paper about type inference for
GADTs [18].

2. The key ideas of this paper
In this section we briefly introduce the main ideas of the type
system. Section 3 follows immediately, and fills in the missing
details.

Our “gold standard” for expressiveness is System F, whose
types have the form:

σ :: = a | σ1 → σ2 | ∀a . σ | [σ1] | Int

Here we extend classical System F with list and integer types, the
former being written with square brackets. Unlike the Hindley-
Milner system, a ∀ quantifier can be nested inside a function type.
Furthermore, in System F a polymorphic function can be called at
a polymorphic type. For example, if

length :: ∀a.[a] → Int
ids :: [∀c.c → c]

then the term (length (∀c.c → c) ids) instantiates length at
the polymorphic type ∀c.c → c. This, too, is not permitted by the
Hindley-Milner system.

Why does Hindley-Milner prohibit these constructs? Because
the System F is an explicitly-typed language, whereas Hindley-
Milner is implicitly typed. Specifically, in System F (i) every binder
is annotated with its type and (ii) type abstractions and applications
are explicit. In contrast, in the Hindley-Milner type system, binders
are not required to be typed, and type abstractions and applications
are simply omitted. One can regard type inference as the process
of inferring the missing annotations, type abstractions and type
applications.

2.1 Higher rank types

The restrictions of the Hindley-Milner system make type inference
tractable. Recall the example from the Introduction:

f get = (get [1,2], get [’a’,’b’,’c’])

Without assistance, it is hard to figure out what type to attribute to
get. Should it be ∀a.[a] → a? Or ∀a.[a] → Int? Or some
other type? There is no most general type, so we cannot perform
modular type inference; that is, we cannot infer a single type for f
to use throughout its scope. Choosing either of the above types for
the argument is sound, but once we commit to one we cannot apply
f to arguments with the other type.

It is very hard to “guess” a suitable type for get by looking
at its occurrences. Yet, that is exactly how unification-based type
inference works—but it only works because the “guessed” types,
such as function arguments, are all monotypes. This observation is
so important that we elevate it to a design principle:

Principle 1 (Guessing) Type inference can “guess” a monotype,
but should not “guess” a polytype.

There are more sophisticated type-inference algorithms that can, in
some cases, guess polytypes (e.g. [7]). However, if we can arrange
that only monotypes need to be guessed, then a relatively simple
type inference algorithm might—indeed, does—suffice.

In particular, the need for “guessing” is obviated if the program-
mer supplies a type signature:

f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get [’a’,’b’,’c’])

Now, the problem reduces to type checking. The programmer has,
in effect, supplied the type for get, and that allows us to check

the body of f without difficulty. That suggests our first main (well-
known) technique:

Idea 1: propagate contextual type information inwards, to give
polymorphic types to binders.

The standard way to express this idea is called local type inference
[19]. In local type inference there are two judgements forms instead
of one: Γ `⇑ t : τ and Γ `⇓ t : τ . The former means “infer the
type of t”, while the latter means “check that t has the known type
τ”. Operationally, we think of τ as an output of the first judgement,
but as an input to the second.

The separation between checking mode and inference modes
allows us to assign higher-rank types to functions while still satis-
fying Principle 1. The idea is that the bound variable of a lambda
can be given a polytype if we are in checking mode, but only a
monotype in inference mode:

Γ, x : σ1 `⇓ t : σ2

ABS1
Γ `⇓ (\x . t) : σ1 → σ2

Γ, x : τ `⇑ t : σ
ABS2

Γ `⇑ (\x . t) : τ → σ

Reading the ABS2 rule from bottom to top, to infer the type of
a lambda expression, we need to guess the argument type τ to add
to the context and infer the type of the body. However, in ABS1,
because we are checking that the lambda expression has a function
type, we do not need to guess what type to add to the environment.

During type inference, where do the input types for checking
mode come from? One source is from programmer annotations.
If the language allows the programmer to annotate term t with a
specified type τ , (t::τ), then we could have the following rule
that switches between inference and checking modes.

Γ `⇓ t : τ
SIG

Γ `⇑ (t::τ) : τ

Furthermore function applications are another rich source of
contextual type information. For example, if

f : ((∀a.a → a) → Int) → Int

then in the application (f (\x.t)), we should be able to give x
the polytype ∀a.a → a , in t .

2.2 Impredicativity

A similar line of reasoning applies to impredicativity. In Haskell,
programmers do not write type applications, so the type arguments
of a polymorphic function must be inferred. Consider again the
function length of type ∀a . [a] → Int. How can we figure out
the type argument of length in the application (length ids)?
The conventional Damas-Milner algorithm instantiates length’s
type with fresh type variables—these are the guessed types—and
then uses unification to elaborate them. But, as we have mentioned,
unification should not guess a polytype.

In this case, though, a much easier approach suggests itself.
Given that ids has type [∀c.c → c], what instantiation of a will
make the type [a] match? Easy: instantiate a to ∀c.c → c! So the
second idea is:

Idea 2: use locally known information at a function call to instan-
tiate a polymorphic function.

2.3 Partial type information

There is a sharp tension between Idea 1 and Idea 2. The former
suggested a rule for typing applications which inferred the func-
tion (instantiating it in the process) and checked the type of the
argument. But Idea 2 suggests instead that we should infer the type
of the argument, so that we know how to instantiate the type of the
function.



— Terms —
t , u ::= ν | \x.t | t u

| let x = u in t
| let x::σ = u in t

ν ::= x | C

— Vanilla types —
τ ::= a | τ1 → τ2 | T τ
ρ ::= τ | σ → σ | T σ
σ ::= ∀a.ρ

— Boxy types —
ρ′ ::= τ | σ′ → σ′ | T σ′ | ρ
σ′ ::= ∀a.ρ′ | σ

— Environments —
Γ ::= · | Γ, a | Γ, (x :σ)

Figure 1: Syntax of the source language and types

But this tension is more apparent than real. Consider again our
example (length ids). Intuitively, we would like to type check
it in the following way:

1. Examine the type of length : ∀a . [a] → Int.
2. Check the type of the argument, expecting it to have type

[something]. The list part of this type—denoted by the
brackets—is determined by the function; but the “something”
is discovered from the argument itself.

3. Use the “something” to instantiate the type of length.

This approach suggests the third main idea:

Idea 3: combine the two judgement forms, `⇓ and `⇑, into a single
judgement Γ ` t : τ ′ where τ ′ is like τ except that it may
contain “holes” that correspond to the inferred part of the type.

We denote these “holes” using boxes. For example:

Γ ` t : Bool → Int

This judgement checks that t has a type of form something →
Int; and infers that the something is Bool. The earlier inference
and checking judgements are now just special cases:

Γ `⇓ t : τ is written Γ ` t : τ
Γ `⇑ t : τ is written Γ ` t : τ

Beyond resolving the tension between Ideas 1 and 2, boxes allow us
to type more programs than with bidirectional judgments—we will
see an example when we discuss the application rule in Section 3.2.
However, although boxes appear in the structure of types, we do not
mean for them to have any logical interpretation, such as under the
Curry-Howard isomorphism. Instead, their purpose is to make sure
that all derivations in the specification of our type system have a
corresponding algorithmic interpretation.

The idea of using the structure of a type, rather than a judge-
ment, to describe information flow is not new. Odersky, Zenger &
Zenger [16] coined the term “Colored Local Type Inference” to de-
scribe a type inference system for F≤ that uses red and blue colours
to describe which parts of the type are checked and which are in-
ferred. Although the motivating ideas are very similar, the details
are entirely different, as we discuss in Section 8.

3. Type system specification
We next present the specification of our type system. Although
its design was guided by the practicalities of our type inference
algorithm, and its rules are directed by the syntax of the term. It is
not an algorithm and leaves details such as first-order unification
implicit. We describe the inference algorithm in Section 5.

3.1 Syntax

The syntax of our source language, and of its types, is given in Fig-
ure 1. The language is just large enough to demonstrate all the in-
teresting features of the type system. It includes type constructors,
denoted with T , and data constructors, denoted with C . Other fa-
miliar features, such as recursive let and pattern-matching, could
be easily added.

The source language allows the programmer to annotate a let
binding with a type σ. This annotation need not be closed—it may
refer to type variables in the enclosing context. Thus we support
a form of lexically-scoped type variables [23], an extension that
is essential to the expressiveness of our language, but otherwise
does not interact with our type system. We defer the details of the
lexically-scoped type variables to Section 3.3.

Types come in two forms. Vanilla types are stratified into mono-
types, τ , and polytypes, ρ and σ. Monotypes have no ∀’s anywhere,
whereas polytypes may have ∀’s. A ρ-type has no ∀’s at the top, but
may contain polytypes. The notation a denotes a sequence of zero
or more distinct type variables. We often implicitly coerce between
sequences and sets in the usual manner.

A boxy type, written with a prime (ρ′, σ′), is a type containing
zero or more boxes, each box containing a vanilla type (Figure 1).
Boxy types ρ′ and σ′ are stratified in exactly the same way as
their vanilla counterparts. However note that inside a box is a
vanilla type; that is, boxes are not nested. The intuition here is
that a boxy type has an outer structure of “checked” information,
which switches at the boxes to an inner structure of “inferred”
information.

Boxy types also satisfy a non-syntactic invariant: in a type
∀a.ρ′, none of the quantified variables a may appear inside a box
in ρ′. This invariant allows us to instantiate a polymorphic type
∀a.ρ′ with boxy types σ′, and still obtain a syntactically well-
formed type [a 7→ σ′]ρ′. In the absence of the invariant, the instan-
tiated type might have nested boxes. This invariant is maintained
by our typing rules.

The type inside a box may, nevertheless, have free type vari-
ables. For example, the rules validate the following:

Γ ` u : a → a Γ, x : ∀a.a → a ` t : ρ′

LET-I
Γ ` let x = u in t : ρ′

Here, the type of u is a → a , in which a appears free inside
the box. Intuitively, we can think of this rule as performing two
steps: First, the type of u is inferred to be a → a . Second, the
type a → a is extracted from the box, generalized, and then placed
in the context when we check t . It is an invariant of our algorithm
that all boxes will be filled in after type checking. Therefore, the
type a → a is known type information after looking at u .

Environments Γ attribute vanilla types to term variables and also
bind lexically-scoped type variables. We use the notation ftv(σ′)
to refer to the free type variables of a type (both in and out of
boxes) and we extend this notation to environments, so that ftv(Γ)
refers to all the free variables appearing anywhere in the types of
the environment, including the bindings for lexical type variables.
We use the notation dom(Γ) for the collection of term and type
variables bound in Γ. We write # for the binary set-disjointness
operator.

The notation σ′ denotes sequences of σ′-types, not necessarily
distinct. We write [a 7→ σ′] for the capture-avoiding substitution
with domain the set a that maps each a ∈ a to the corresponding
type σ′ ∈ σ′. We often abbreviate ∀∅.ρ′ as ρ′ (and similarly for
vanilla types).



Γ ` t : ρ′

ν:σ ∈ Γ ` σ ≤ ρ′
VAR

Γ ` ν : ρ′

Γ ` t : σ → ρ′

Γ `
poly

u : σ APP
Γ ` t u : ρ′

` σ′
1
∼ σ1

Γ, x :σ1 `
poly

t : σ′
2

ABS1
Γ ` (\x.t) : σ′

1 → σ′
2

Γ ` (\x.t) : σ1 → σ2

ABS2
Γ ` (\x.t) : σ1 → σ2

Γ ` u : ρ
a = ftv(ρ) − ftv(Γ)
Γ, x :∀a.ρ ` t : ρ′

LET-I
Γ ` let x = u in t : ρ′

ftv(∀a.ρ) ⊆ dom(Γ) a#ftv(Γ)
Γ, a ` u : ρ

Γ, x :∀a.ρ ` t : ρ′

LET-S
Γ ` let x::∀a.ρ = u in t : ρ′

Γ `
poly

t : σ′

Γ ` t : ρ′ a#ftv(Γ) a not inside boxes in ρ′

GEN
Γ `

poly
t : ∀a.ρ′

Figure 2: Type system specification

3.2 The core rules

The main type system is given in Figure 2. The main judgement
has the familiar form

Γ ` t : ρ′

However, notice that the type attributed to t is a boxy type ρ′. Our
operational understanding of the judgement is that we type check
t , checking ρ′ outside boxes, and inferring inside boxes. The boxes
are like var parameters in Pascal: they are the “holes” in which the
results are returned.

Because an environment Γ attributes a vanilla type σ to each
variable x that it binds, the only place that boxes may appear is in
the result type of the judgement. One could also imagine allowing
boxy types in Γ, as we discuss in Section 7.

The rules for this type system are syntax-directed, with type
instantiation being inferred at variable occurrences and generalisa-
tion at let bindings.1 Specifically, rule VAR deals with variable or
data constructor occurrences by invoking an instantiation relation
` σ ≤ ρ′, which we discuss in Section 3.4. The rule for unanno-
tated let expressions (LET-I) is completely straightforward: it infers
the type of the right-hand side u , generalises it in the usual Hindley-
Milner way, and type checks the body t .

Now consider the rules for lambda abstractions. Rule ABS1
has a familiar form, except for two points. First, we must use an
auxiliary judgement `

poly
(also in Figure 2) to type check the body

of the abstraction because the type to the right of the arrow, σ′
2, is

not necessarily a ρ′-type. In rule GEN note that in pure inference
mode — when there is a box around the complete result type —
we do no generalisation. Second, in ABS1 one might be tempted to
extend Γ with the boxy typing x :σ′, but that would invalidate our
invariant that Γ contains only vanilla types. The premise ` σ′

1 ∼

1 We have not explored what a logical, rather than syntax-directed, presen-
tation of our type system would look like.

` σ′
1
≤ σ′

2

σ′
1
6= σ b#ftv(σ′

1
)

` σ′
1
≤ ρ′

2
SKOL

` σ′
1 ≤ ∀b.ρ′2

` [a 7→ σ ]ρ′
1
≤ ρ′

2

SPEC
` ∀a.ρ′1 ≤ ρ′2

MONO
` τ ≤ τ

` σ ∼ σ′

SBOXY
` σ ≤ σ′

BMONO
` τ ≤ τ

` T σ′ ∼ σ′

CON
` T σ′ ≤ σ′

` σ′
3
∼ σ′

1
` σ′

2
≤ σ′

4

F1
` σ′

1 → σ′
2 ≤ σ′

3 → σ′
4

` σ′
1 → σ′

2 ≤ σ3 → σ4

F2
` σ′

1 → σ′
2 ≤ σ3 → σ4

` σ′
1
∼ σ′

2

` σ′
2 ∼ σ′

1

SYM
` σ′

1 ∼ σ′
2

BBEQ
` τ ∼ τ

MEQ1
` τ ∼ τ

MEQ2
` τ ∼ τ

` σ′
1 → σ′

2 ∼ σ1 → σ2

AEQ1
` σ′

1 → σ′
2 ∼ σ1 → σ2

` σ′
1 ∼ σ′

3 σ′
2 ∼ σ′

4

AEQ2
` σ′

1 → σ′
2 ∼ σ′

3 → σ′
4

` T σ′
1
∼ T σ2

CEQ1
` T σ′

1
∼ T σ2

` σ′
1
∼ σ′

2

CEQ2
` T σ′

1
∼ T σ′

2

` ρ′1 ∼ ρ2

SEQ1
` ∀a.ρ′1 ∼ ∀a.ρ2

` ρ′1 ∼ ρ′2
SEQ2

` ∀a.ρ′1 ∼ ∀a.ρ′2

Figure 3: Subsumption and boxy matching

σ1 finds a vanilla type σ1 obtained from σ′
1 by filling in the boxes

in σ′
1 with monotypes. This judgement is called boxy matching and

we discuss it further in Section 3.5.
The second rule for lambda abstractions, ABS2, deals with the

pure inference case; that is, when there is a box around the entire
result type. In this case we “push down the box” and try again,
thereby dispatching to ABS1. Operationally, if the result type is a
hole, then we make two new holes for argument and body types,
and type check the function; then read out the results from the
holes, form these results into a function type, and write it into
the result hole. (Incidentally, although the box is filled in with
σ1 → σ2 , these types can only be of the form ρ1 → ρ2 in all valid
typing derivations.)

Turning now to application, consider rule APP. It type checks
the function with the result type σ → ρ′. This type asks to infer
the type of the function argument, while the result type is inferred
or checked as specified by ρ′. Once we know the argument type,
σ, we can use `

poly
to type check the argument itself, so that

information from the function’s type is pushed into the argument,
just as discussed in Section 2.1. However, unlike the all-or-nothing
approach of local type inference, boxy types support a mixture of
inference and checking. For example, we can type the following:

` (\x.\g. (g True, g 3)) 4 : (∀a.a → b) → (b, b)



Using the APP rule, the function is typed as follows; note that the
judgement infers the argument type while checking the result type:

` (\x.\g. (g True, g 3)) : Int → (∀a.a → b) → (b, b)

3.3 Type annotations and lexically scoped type variables

The rule LET-S allows the programmer to specify the type of the
right-hand side of a let binding instead of inferring that type. This
is why in LET-S there is no box around ρ when u is checked,
whereas in LET-I there is. An unusual feature is that the quantified
variables a of the user-specified type ∀a.ρ scope over other type
annotations inside u as well as over ρ; this is specified in LET-
S by extending the environment Γ with the type variables a . For
example, the type signature on the declaration of y below mentions
the variable a that is bound by the type signature for id:

let id :: forall a. a -> a
id = \x . let y :: a = x in y

Scoped type variables, such as a, are “rigid”—they may not unify
with any other types2.

The side condition ftv(∀a.ρ) ⊆ dom(Γ) in LET-S ensures that
the type annotation only mentions type variables that are in scope,
while a#ftv(Γ) ensures that the new type variables are fresh.

Occasionally, we will use the annotation form (t :: σ), which
is syntactic sugar for let x :: σ = t in x .

3.4 Subsumption

The variable rule, VAR, must check the compatibility between a
vanilla type σ found in the environment and the boxy type ρ′ that
is the result of the judgement. This compatibility check, called
subsumption and generalised to two boxy polytypes, is performed
by the judgement ` σ′

1 ≤ σ′
2 shown in Figure 3. This judgment

holds if a value of type σ′
1 is acceptable in a context needing a σ′

2;
that is, if σ′

1 is at least as polymorphic as σ′
2. Most of the action in

our type system is in the definition of subsumption, and we devote
the rest of this section to it.

A key principle guiding the design of our subsumption relation
is that if we know (a) the type of a polymorphic function f, and (b)
the type of f’s instance at a call site, then we should be able to work
out the types at which f is instantiated, even if they are polytypes.
More precisely:

Principle 2 (Arbitrary instantiation) ` ∀a.ρ ≤ [a 7→ σ]ρ for
any box-free polytypes σ.

For example, say that σid abbreviates the type ∀a.a → a . It
must be that ` σid ≤ σid → σid , by instantiating a to σid . Obeying
Principle 2 means that the programmer can, if all else fails, specify
the instantiation of a polymorphic function by specifying the type
of the result of the instantiation.

Our definition of subsumption is based on that of the Hindley-
Milner type system. There, polytypes are of the form ∀a.τ and
subsumption is specified by three rules. The first two rules cover in-
stantiation: guess monotypes to instantiate top-level type variables
of the left-hand type and make sure that the resulting monotypes
are equal.

` [a 7→ τ ]τ1 ≤ τ2
HM-SPEC

` ∀a.τ1 ≤ τ2
HM-MONO

` τ ≤ τ

2 We have also explored the alternative of “flexible” scoped type variables,
that stand for an arbitrary type rather than a variable. With this extension,
the system remains tractable but becomes slightly more complicated.

The final rule allows a polytype on the right-hand side by adding a
rule to “skolemise” that type variable (see for example [15]):

a#ftv(σ) ` σ ≤ τ
HM-SKOL

` σ ≤ ∀a.τ

In our system, we generalise this subsumption relation to support
impredicative and higher-rank polymorphism in several ways.

The key difference from HM-SPEC is that the instantiation rule,
SPEC in Figure 3, instantiates the type on the left with boxy poly-
types, rather than monotypes. Algorithmically, we are trying to in-
fer what polytypes should be used to instantiate the type variables,
so we allocate a new box for each type variable, and recursively
call the subsumption judgement to fill the boxes in. Pleasingly, the
very same mechanism that allows us to propagate type information
in support of higher-rank polymorphism (Section 3.2) is the key to
impredicativity3.

The rule for skolemisation, SKOL, is the same as HM-SKOL
except for the side condition σ′

1 6= σ , which prevents overlap with
rule SBOXY. We will discuss SBOXY shortly.

The rule for monotypes, MONO, is the same as HM-MONO.
Our relation also includes a number of rules that have no coun-

terpart in the Hindley-Milner system. These rules explain how to
deal with boxes and with polytypes that occur within function types
and as the arguments to type constructors.

The rule CON deals with data types T , such as lists. We do not
perform subsumption on the type arguments; instead we require
that the argument types have compatible boxes, using the same
boxy-matching judgement (` σ′

1 ∼ σ′
2) that we encountered in rule

ABS1. We discuss boxy matching in Section 3.5, but the idea is that
it performs no instantiation or skolemisation. Thus, 6` [∀a.a →
a] ≤ [Int → Int]. This is a design choice—allowing covariant
subsumption for some type constructors would be compatible with
our system, but not with GHC. In the GHC core language, based on
System F, performing such an instantiation would require mapping
a type application down the list, and that is hard to do for arbitrary
data types. Furthermore, such a mapping operation carries a run-
time cost; sometimes it may be eliminated by type erasure, but even
that is not true in the dictionary-passing implementation of Haskell
type classes. In short, we require invariance in the type arguments
of data types.

We allow a little more flexibility for functions, as rule F1 shows:
it is covariant in the result type, but invariant in the argument type.
Result covariance allows us to check the application f 2 True,
where f : ∀a.a → (∀b.b → b), by instantiating the type of f
to Int → Bool → Bool. This is also a design choice; covariance
for function return types buys us some extra functionality with little
cost at run-time. However, making return types invariant would not
destroy the essential properties of the system. The reader might
wonder why we do not use contravariance in the argument type, as
previous work has done, a question that we discuss in Section 7.
The companion rule F2 pushes down a box on the right, just as
ABS2 did.

Now consider rule SBOXY. Principle 2 requires that, for exam-
ple, ` ∀a . Int → a ≤ Int → (∀b.b → b). Applying SPEC, we
have ` Int → ∀b.b → b ≤ Int → (∀b.b → b). Now applying
F1 we need that ` ∀b.b → b ≤ ∀b.b → b, and that motivates
rule SBOXY. It says that when the type on the left is a box, we
should simply fill in the box with type σ′ on the right, but, just as
in ABS1, we use boxy matching to extract a vanilla type from σ′.
Note that there is no corresponding rule that fills in a box on the
right with a polytype on the left. Instead, a box on the right can

3 Incidentally, by instantiating with boxy types, rule SPEC gives rise to a
boxy type on the left of the ≤, which is why we must allow the judgement
to have boxy types on both sides.



only contain a monotype that appears on the left (see rule BMONO).
In Section 7 we discuss why this is the case.

3.5 Boxy matching

Boxy matching, ` σ′
1 ∼ σ′

2, ensures that two types have “compati-
ble boxes”. Its rules are given in Figure 3.

The key rule is the innocuous-looking BBEQ. This rule says that
when a box meets a box, we must fill them both in with a monotype.
Alternatively, if one type or the other has structure outside a box,
then that structure is “known” and can be used to fill in the other
box; that is what is happening in rules MEQ1, AEQ1, CEQ1, and
SEQ1. These rules together may derive ` σ ∼ σ for any polytype.
The rule SYM ensures that MEQ1, AEQ1 etc. also apply when
the box is on the left. If both types have known structure outside
the box, then matters are even more straightforward (rules MEQ2,
AEQ2, CEQ2, and SEQ2.) In rule CEQ2, the notation ` σ′

1
∼ σ′

2
is

the pointwise application of boxy matching to the elements of σ′
1

and σ′
2
. If on the other hand neither type has known structure then

BBEQ must simply “guess”, and simple inference can only guess a
monotype.

The “box meets box” situation implies 6` a → σid ∼ a → σid ,
because otherwise we need ` σid ∼ σid . On the other hand,
` σid → σid ∼ σid → σid because the boxes are matched up
against box-free types.

Algorithmically, boxy matching can be thought of as a “super-
unifier” for boxy types: the two structures are unified, with the
known structure of each filling the holes in the other.

4. Properties of the type system
Having presented the basic syntax and inference rules, we now
elaborate on the properties of this type system. All the results we
mention are presented with detailed proofs in an accompanying
technical report [26].

4.1 Reflexivity and transitivity

By design, boxy matching is not an equivalence relation. It is
not reflexive, for example 6` σid ∼ σid because this would
require guessing polytype information. Likewise, it is not transitive:
` σid ∼ σid and ` σid ∼ σid but 6` σid ∼ σid . For
the same reason, subsumption is not reflexive or transitive. For
example, 6` σid ≤ σid . Also, ` σid → Int ≤ σid → Int and
` σid → Int ≤ σid → Int but 6` σid → Int ≤ σid → Int.
For box-free types, both matching and subsumption are reflexive
because no guessing is required. Likewise, boxy matching is also
transitive for box-free types.

However, subsumption is not transitive for box-free types
because the SPEC rule introduces boxes. For example,
` σid ≤ σid → σid and ` σid → σid ≤ σid → σid → σid but
6` σid ≤ σid → σid → σid . Intuitively, once a box has been filled
in with a type, that type cannot be further instantiated.

This restriction implies, for example, that we can check that the
id function has type σid , and σid → σid , but not σid → σid →
σid . In general it is not true that:

Γ ` t : ρ′1 and ` ρ′1 ≤ ρ′2 implies Γ ` t : ρ′2

However, the loss of transitivity has no impact on type infer-
ence. The completeness of our algorithm only requires a restriction
of box-free transitivity, a point we discuss further in the technical
report [26].

4.2 Dropping and expanding boxes

Providing additional (correct) type information should not make
programs untypeable, cause subsumption not to hold, nor make

types fail to match. Technically, one way to provide more infor-
mation is to remove boxes from types in judgements. For exam-
ple, if the derivation ` σ → σ ≤ σ → σ holds, we should be able
to derive ` σ → σ ≤ σ → σ. Another way to make more type in-
formation checkable is to push a box down the syntax of a type.
For example, if ` σ → σ ≤ σ → σ, it should also be the case that
` σ → σ ≤ σ → σ. In general, if inference succeeds with partial
type information, it should succeed when some of that inferred type
information becomes checkable.

To formalise this property, we define the following relation
between types. We say that σ′

2 is the unboxing of σ′
1, written

` σ′
1 I σ′

2, if σ′
2 can be constructed from σ′

1 by eliminating boxes
or pushing the boxes down the abstract syntax of the type.4 For
example, ` a I a and ` σid → σid I σid → σid .

We can then prove that unboxing types preserves boxy match-
ing, subsumption, and typability.

Lemma 4.1 (Unboxing)

1. If ` σ′
1 ∼ σ′

2 and ` σ′
1 I σ′

3 and ` σ′
2 I σ′

4 then ` σ′
3 ∼ σ′

4.
2. If ` σ′

1 ≤ σ′
2 and ` σ′

1 I σ′
3 and ` σ′

2 I σ′
4 then ` σ′

3 ≤ σ′
4.

3. If Γ ` t : ρ′1 and ` ρ′1 I ρ′2 then Γ ` t : ρ′2.

Conversely, sometimes it is acceptable to box parts of types
or expand boxes up the tree. For example, the judgement
` σid ≤ Int → Int holds, and so does ` σid ≤ Int → Int and
σid ≤ Int → Int . However, boxing and box expansion is only
valid for monotype information. Recall that boxes in types repre-
sent “guessed” information, and only monotypes may be arbitrarily
guessed. For example, even though ` σid ≤ σid → σid , it is not the
case that ` σid ≤ σid → σid or ` σid ≤ σid → σid .

Consequently, we can add or expand boxes—as long as we do
not put a box around a polytype that was not originally boxed. In
this case, we define σ′

2 to be the monotype boxing of σ′
1, written

` σ′
1 / σ

′
2, when ` σ′

2 I σ′
1 and the quantifiers of σ′

2 appear
inside a box only if the corresponding quantifiers in σ′

1 do. For
example, ` a / a but 6` σid → σid / σid → σid . Like unboxing,
monotype boxing preserves boxy matching, subsumption and typ-
ing.

Lemma 4.2 (Monotype Boxing)

1. If ` σ′
1 ∼ σ′

2 and ` σ′
1 / σ

′
3 and ` σ′

2 / σ
′
4 then ` σ′

3 ∼ σ′
4.

2. If ` σ′
1 ≤ σ′

2 and ` σ′
1 / σ

′
3 and ` σ′

2 / σ
′
4 then ` σ′

3 ≤ σ′
4.

3. If Γ ` t : ρ′1 and ` ρ′1 / ρ
′
2 then Γ ` t : ρ′2.

Lemmas 4.1 and 4.2 confirm the intuition that boxes do not
matter for monotype information. Monotypes may be arbitrarily
boxed or unboxed without destroying the validity of a judgment.

4.3 Embedding of System F

We began by taking System F as our “gold standard”, so it is natu-
ral to ask whether every System F program can be expressed in our
language. Happily, this is the case, provided that the programmer
adds sufficient type annotations. The guideline for programmers to
write any System F program is that it is enough to put annotations
(a) on functions that take polymorphic arguments, (b) on impred-
icative type instantiations, and (c) on type lambdas that bind type
variables that appear in other annotations. Of course, in many situ-
ations, we expect that fewer annotations will be necessary.

Figure 4 shows the type-directed embedding of System F terms.
In the figure, note that the translation of type abstractions often re-
quires a type annotation. The reason is that the bound type variable

4 The formal definition of this relation can be found in the technical report.



[[tF ]]ΓF = t

[[x ]]Γ = x

[[λx.t ]]Γ = \x.[[t ]]Γ,x :τ where Γ, x :τ `F t : σ2

[[λx.t ]]Γ = (\x.[[t ]]Γ,x :σ1
)::σ1 → σ2

where Γ, x :σ1 `F t : σ2

[[t1 t2]]Γ = [[t1]]Γ [[t2]]Γ
[[Λa.t ]]Γ = [[t ]]Γ,a where a 6∈ ftv([[t ]]Γ,a)
[[Λa.t ]]Γ = [[t ]]Γ,a::σ where Γ `F Λa.t : σ
[[t τ ]]Γ = [[t ]]Γ
[[t σ]]Γ = [[t ]]Γ::σ1 where Γ `F t σ : σ1

Figure 4: Embedding of System F

may appear inside the translated body, if for example it is part of a
higher-rank annotation. The annotation merely brings that variable
in scope5. The typing relation of System F (Γ `F t : σ) is standard
and we omit it for reasons of space.

Theorem 4.3 (Embedding of System F) If Γ `F t : σ then
Γ `

poly
[[t ]]Γ : σ and Γ `

poly
[[t ]]Γ : ρ where prenex (σ) = ∀a.ρ.

The first part of the theorem states that we can check that the
translated term indeed is typeable with the System F type. The
second part states that we can we can infer an equivalent type.6

4.4 Type Soundness

We define the dynamic semantics of this language through a
straightforward translation to System F, written Γ ` t : σ′

; t ′.
This translation—omitted due to lack of space—is essentially the
identity plus type coercions whose behavior is that of the identity
function. These coercion functions are induced by the translation
of the subsumption judgement, ` σ′

1 ≤ σ′
2 ; t . Therefore, we

prove the type soundness of our language with respect to this se-
mantics by showing that this translation is type-preserving. Below,
the function strip(·) merely removes the boxes from a type.

Lemma 4.4 (Term translation)

1. If ` σ′
1 ≤ σ′

2 ; t then `F t : strip(σ′
1 → σ′

2).

2. If Γ ` t : ρ′ ; t ′ then Γ `F t ′ : strip(ρ′).

3. If Γ `
poly

t : σ′
; t ′ then Γ `F t ′ : strip(σ′).

Defining the dynamic semantics through translation is conve-
nient for two reasons. First, this translation semantics is the se-
mantics that GHC actually implements—we would have to show
that any other semantics is equivalent to this one to argue that
GHC actually implements this language. Indeed, our translation
demonstrates that our type system is suitable for compilers, such
as GHC, that use intermediate languages based on System F. Sec-
ond, this translation simplifies the proof that our type system is
type sound. The standard way to show type safety with a direct
semantics is to show that it satisfies the properties of subject re-
duction and progress. Unsurprisingly for a language that relies
on type annotations, subject reduction fails with a straightforward
substitution-based semantics. For example, take σ = (∀a.a →

5 With “existential” annotations [20, 21], we would not need to annotate
type abstractions.
6 The prenex form of a type is one where all the quantifiers on the right hand
sides of arrows have been pulled to the top in a capture-avoiding way.

a) → (Int, Bool). We have

` let f ::σ = (\g.(g 3, g True)) in f (\x.x ) : (Int, Bool)

but 6` (\g.(g 3, g True)) (\x.x ) : (Int, Bool)
since the annotation required to give \g.(g 3, g True) a higher-
rank type is no longer present. Instead, to prove type soundness,
we would have to cleverly devise a reduction relation that preserves
type annotations. Such a semantics would be useful to explain to
programmers how to transform their code while retaining typabil-
ity. However, we leave that as future work (see Section 9) and stick
with the simpler, transformation-based semantics for now.

4.5 Extension of Hindley-Milner

We have proved that the type system presented in Section 3 is
a conservative extension of Hindley-Milner. In particular, if an
expression type checks in Hindley-Milner with no user annotations,
then our type system will infer its type. Conversely, derivations
in the subset of our language that does not use annotations or
higher-rank types in environments correspond to derivations in the
Hindley-Milner system. The proofs of these theorems crucially rely
upon the boxing and unboxing lemmas (4.2 and 4.1).

Theorem 4.5 (Conservative extension of HM) Assume that Γ
contains no higher-rank types and t contains no type annotations.
Then Γ `HM t : τ iff Γ ` t : τ .

5. Type inference
The type system that we presented in Section 3 has an inference
algorithm that is a modest elaboration of the classic Damas-Milner
Algorithm W [2]. The details of the algorithm can be found in the
technical report [26].

The algorithm distinguishes between ordinary unification vari-
ables, denoted with α, β, which can range only over monotypes,
and boxy unification variables, denoted with ζ, ξ which can range
over arbitrary types. Boxes appearing in the specification corre-
spond to boxy unification variables in the algorithm. Ordinary uni-
fication variables force boxes to contain (perhaps unknown yet)
monotypes. Unifiers, denoted with S , are idempotent substitutions
from unification variables (boxy or not) to box-free types. Addi-
tionally, the algorithm makes use of an infinite sequence of sym-
bols, denoted A, for unification variables or skolem constants.

The main algorithm is presented as a deterministic relation:

(S0,A0)�Γ ` t : ρ′�(S1,A1)

The judgement should be read as: “given an initial unifier S0 and
symbol supply A0, check that t has the type ρ′ under Γ, returning
an extended unifier S1 and remaining symbol supply A1”. Boxy
matching and subsumption can also be presented as deterministic
relations:

(S0,A0)�` σ′
1 ≤ σ′

2�(S1,A1)
(S0,A0)�` σ′

1 ∼ σ′
2�(S1,A1)

The syntax of types ρ′ and σ′ appearing in algorithm judgements
is different than the syntax of the specification—namely they are
allowed to contain ordinary and boxy unification variables, but no
boxes. Type variables appearing in such types correspond to skolem
constants. The free type variables (ftv ) of such a type include both
unification and normal type variables.

A crucial operational invariant is this: every invocation of the
inference algorithm fills in all the holes (i.e. boxy unification vari-
ables) in its input. We think of the holes as the out-parameters of
the algorithm. More precisely:

Theorem 5.1 If (S0,A0) � Γ ` t : ρ′ � (S1,A1) then the free
boxy unification variables of ρ′ are in dom(S1).



It follows that, after the invocation of the algorithm, we can
safely read-off the boxy variables from the returned unifier. As an
example, consider the algorithm rule for let:

(S0,A0)�Γ ` u : ζ�(S1,A1)
X = ftv(S1ζ) − ftv(S1Γ)

(S1,A1)�Γ, x :∀a.[X 7→ a]S1ζ ` t : ρ′�(S2,A2)
ALET-I

(S0,A0aζ)�Γ ` let x = u in t : ρ′�(S2,A2)

First, a new boxy variable ζ is extracted from the top of the initial
supply A0aζ, and u is type checked with the initial unifier. Then
we can safely read off the value S1ζ, generalise this type over S1Γ,
and check the body of the expression. Note that we do not in general
apply the substitution to the environment, but rather thread it lazily
through our judgements.

We have proven that the algorithm is sound and complete with
respect to the specification given in Section 3. Soundness asserts
that if the algorithm succeeds, then there exists a corresponding
derivation in the specification.

Theorem 5.2 (Soundness) If A0 is a fresh symbol supply and
(∅,A0)�` t : ρ′�(S ,A1) then ` t : [[ρ′]]S .

The operation [[·]]S applies the substitution S to an algorithmic type
(which can contain unification variables, but not boxes) to obtain
a specification type (which has boxes instead of boxy unification
variables). Completeness asserts that if there is a derivation in
the specification, then the algorithm succeeds and returns a most
general unifier.

Theorem 5.3 (Completeness) If ` t : [[ρ′]]S and A0 is a fresh
symbol supply then (∅,A0) � ` t : ρ′ � (S0,A1) such that
∃R.S = (R · S0)\A0−A1

.

The notation S = (R · S0)\A0−A1
states that S and the

composition of R and S0 may disagree only on meta variables
coming from the set A0 − A1. Theorem 5.3 implies that in pure
inference mode, that is, when [[ρ′]]S is just a box, ρ , we can simply
initialise the algorithm with a fresh boxy variable ζ.

Soundness and completeness of the algorithm give us a princi-
pal types property for our specification. The theorem below states
that for a given amount of checked information there exists a “best”
amount of inferred information for a given term.

Theorem 5.4 (Principal Types) Suppose that ` t : ρ′. Then there
exists a ρ′0 such that ` t : ρ′0, and for all ρ′1 that differ from ρ′ only
inside boxes and ` t : ρ′1 it is the case that ρ′1 = Rρ′0 for some
substitution R.

6. Reducing type annotations
The type system of Section 3 is sufficient to type all programs in-
volving impredicative and higher-rank polymorphism, but the type
annotations can sometimes be tedious. In this section we describe
some extensions to the type system that help eliminate some of
these annotations. Except where noted, all of these extensions sat-
isfy the properties discussed in Sections 4 and 5.

For example, consider the expression tail ids, where ids :
[σid], and tail : ∀b.[b] → [b] (recall that σid = ∀a.a → a).
Even if we know the result type, we cannot produce a derivation:

6` ∀b.[b] → [b] ≤ [σid] → [σid]

VAR
Γ ` tail : [σid] → [σid] Γ `

poly
ids : [σid]

APP
Γ ` tail ids : [σid]

We run into trouble at the VAR rule because no derivation exists for
the instantiation of tail. Rule SPEC cannot guess a polymorphic
instantiation in the judgment

` ∀b.[b] → [b] ≤ [σid] → [σid]

because that requires the derivation ` [σid ] ∼ [σid] . The
only way to make this example type check is to add an explicit
annotation to tail, forcing the impredicative instantiation:

Γ ` (tail :: [σid] → [σid]) id : [σid]

The trouble arises because APP and VAR are done separately. If
we combine them into a single rule, all is well:

ν:∀a.σ → σ ∈ Γ

Γ `
poly

ui : [a 7→ σ ]σi ` [a 7→ σ ]σ ≤ ρ′

SMART-APP
Γ ` ν u : ρ′

Notice that VAR is just a special case of SMART-APP with zero argu-
ments. The type system of Figure 2 could be recast by completely
dropping VAR and replacing it with rule SMART-APP.

6.1 Exploiting flow in application nodes

We can do better! SMART-APP fails for Γ ` sing id : [σid] where
Γ = sing : ∀b.b → [b], id : σid . The reason is that type
checking the argument requires Γ ` id : σid , and that fails.

This failure is frustrating, because once the result type of the call
to sing id is fixed, we know its instantiation. That suggests the
following variant of SMART-APP—use knowledge about the result
type of the call to fix at least part of the instantiation of the function:

ν:∀a.σ → σ ∈ Γ
ac = a ∩ ftv(σ) arest = a − ac

` [ac 7→ σc ]σ ≤ ρ′

Γ `
poly

ui : [arest 7→ σr , ac 7→ σc ]σi

SA-RES
Γ ` ν u : ρ′

First we find ac , the type variables that are mentioned in the result
type of the function, σ. Then, we use the subsumption judgement
to compare σ with the context type ρ′, to produce the instantiation
types σc . These types can then be used, sans-box, to instantiate
the argument types, while the remaining instantiations σr remain
boxed. In this way we can take advantage of shape information in
the result type, and push that information into the arguments. In
particular, SA-RES can type sing id:

` [σid ] ≤ [σid] Γ `
poly

id : σid

SA-RES
Γ ` sing id : [σid]

Rule SA-RES is useful, but not entirely satisfactory. For example
it fails to check Γ `

poly
head ids : ∀a.a → a. In general, because

rule GEN performs skolemisation (here for the type ∀a.a → a),
the system fails to check applications where ν has a type of the
form ∀a.σ → a , and a is instantiated with a polytype.

To solve this problem, we could work the other way around, so
that we use the argument types to instantiate the function instead of
the result type, thus:

ν:∀a.σ → σ ∈ Γ
aarg = a ∩ ftv(σ) arest = a − aarg

Γ `
poly

ui : [aarg 7→ σa ]σi

` [aarg 7→ σa , arest 7→ σr ]σ ≤ ρ′

SA-ARG
Γ ` ν u : ρ′

This variant is incomparable to SA-RES. For example, SA-ARG can
type Γ `

poly
head ids : σid , which SA-RES cannot; and SA-RES

can type Γ ` cons (\x.x ) ids : [σid], that SA-ARG cannot.



6.2 Unbiased smart application

Both SA-RES and SA-ARG fail for some relatively simple programs,
so it is not clear which rule to use. In this section we show how to
combine their virtues. The idea is this: in a typing judgement of the
form Γ ` ν u : ρ′ we may be able to draw information about the
instantiation of ν’s type from the context type ρ′ and the types of
the arguments.

This indicates our approach: As a first step, a simple match-
ing procedure, which we call pre-subsumption, draws information
from the context type to be used in checking the arguments. Subse-
quently, the information gained from checking the arguments fills
in boxes back in the context type.

However, during the first matching step, we must be careful
to match type variables exclusively with the invariant parts of the
context type. The reason is that covariant parts are subject to further
instantiation, or skolemisation, as the following example indicates:

Γ ` ((head ids)::σid) : Int → Int

The type of head is ∀a.[a] → a and we would have to match the
variable a with the skolemised type of σid , b → b, which would
lead to the wrong instantiation of a to b → b, instead of the desired
instantiation of a to σid .

Concretely, the rule is the following:

ν:∀a.σ → σ ∈ Γ a ` σ ≤ ρ′ ⇒ ψ0

ψ = ψ0 t [a 7→ σ ] Γ `
poly

ui : ψ(σi)

ψu = [aarg 7→ strip(ψ(aarg))] t ψ
aarg = a ∩ ftv(σ) ` ψu(σ) ≤ ρ′

SA-UNB
Γ ` ν u : ρ′

In this rule, we first try to match the variables of a that appear in
the result type σ with invariant parts of ρ′ using pre-subsumption
a ` σ ≤ ρ′ ⇒ ψ0. This judgement produces a substitution ψ0

than maps some of the variables in a to boxy types. The details of
pre-subsumption are in Figure 5, which we discuss shortly. Next,
we create a substitution ψ for the entire a using ψ0 plus guesses
for any variables about which ψ0 is silent. (For example, some
a may not appear in the return type σ, or, even if they do, pre-
subsumption may provide no information about them). Next, we
check each argument ui against the appropriate type ψ(σi). These
checks fill the boxes in ψ that correspond to variables that appear
in the argument types σ. Next, we create a new substitution, ψu ,
that propagates information from the arguments to the result type.
This substitution is the same as ψ, except for the variables aarg .
Because these variables appear in the argument types we know that
their boxes were filled in. So we can “read-off” those types and add
them to ψu sans-box. Finally, we perform the subsumption check
` ψu(σ) ≤ ρ′.

It remains to explain how the pre-subsumption of Figure 5
works. The intuition behind the judgement a ` σ′

1 ≤ σ′
2 ⇒ ψ

is that ψ is a substitution for a ∈ ftv(σ′
1) that maps them to

“parts” of σ′
2 that contain known polymorphic information—that

is, polymorphic information outside boxes. For example,

a ` (a, a) ≤ (σid → σid , σid → σid) ⇒ [a 7→ (σid → σid)]

Pre-subsumption is straightforward—it traverses the structure
of types, in the same manner as the subsumption judgment, iden-
tifying the invariant parts and in those places deferring to the
pre-matching judgment (also in Figure 5) to create the substitu-
tion. Multiple substitutions are joined together with the operation
ψ1 t ψ2 that creates a new substitution containing as much infor-
mation as possible.

Pre-substitution and pre-matching are nondeterministic opera-
tions and many different substitutions may result for a given input.

Least boxy type σ′
1 t σ

′
2 = σ′

LBT1
σ1 t σ′

2 = σ′
2

LBT2
σ′

1 t σ2 = σ′
1

LBT3
σ1 t σ2 = σ2

σ′
1 t σ

′
3 = σ′

13 σ′
2 t σ

′
4 = σ′

24

LBT4
σ′

1 → σ′
2 t σ

′
3 → σ′

4 = σ′
13 → σ′

24

ρ′1 t ρ
′
2 = ρ′

LBT5
∀a.ρ′1 t ∀a.ρ′2 = ∀a.ρ′

Least boxy substitution ψ1 t ψ1

ψ = ψ1 t ψ2 when

ψ(a) = ψ1(a) a /∈ dom(ψ2)
ψ(a) = ψ2(a) a /∈ dom(ψ1)
ψ(a) = ψ1(a) t ψ2(a) a ∈ dom(ψ1) ∧ a ∈ dom(ψ2)

Pre-matching a ` σ′
1 = σ′

2 ⇒ ψ1

M-ANY
a ` σ′

1 = σ′
2 ⇒ ·

a ∈ a
M-VAR

a ` a = σ′ ⇒ [a 7→ σ′]

a ` σ′
1 = σ′

3 ⇒ ψ1 a ` σ′
2 = σ′

4 ⇒ ψ2

M-FUN
a ` σ′

1 → σ′
2 = σ′

3 → σ′
4 ⇒ (ψ1 t ψ2)

a ` σ′
1i = σ′

2i ⇒ ψi i = 1..n
M-CON

a ` T σ′1..n
1 = T σ′1..n

2 ⇒ (t1..nψi)

a ` ρ′1 = ρ′2 ⇒ ψ b # (a ∪ range(ψ))
M-ALL

a ` ∀b.ρ′1 = ∀b.ρ′2 ⇒ ψ

Pre-subsumption a ` σ′
1 ≤ σ′

2 ⇒ ψ

S-ANY
a ` σ′

1 ≤ σ′
2 ⇒ ·

σ′
1 6= σ

a ` σ′
1 ≤ ρ′2 ⇒ ψ b#(a ∪ range(ψ))

S-SKOL
a ` σ′

1 ≤ ∀b.ρ′2 ⇒ ψ

a ` [b 7→ σ ]ρ′1 ≤ ρ′2 ⇒ ψ
S-SPEC

a ` ∀b.ρ′1 ≤ ρ′2 ⇒ ψ

a ` σ′
1 = σ′

3 ⇒ ψ1 a ` σ′
2 ≤ σ′

4 ⇒ ψ2

S-FUN
a ` σ′

1 → σ′
2 ≤ σ′

3 → σ′
4 ⇒ (ψ1 t ψ2)

a ` σ′
1i = σ′

2i ⇒ ψi i = 1..n
S-CON

a ` T σ′1..n
1 ≤ T σ′1..n

2 ⇒ (t1..nψi)

Figure 5: Pre-matching and Pre-substitution



For example, S-ANY shows that pre-subsumption can always re-
turn the empty substitution. However, if the program type checks,
there will always be some “best” substitution that contains the most
information, and that is what our algorithm uses.

Even if the program does not type check, pre-subsumption still
returns a substitution, but in this case, there is no “best” substitu-
tion. For example, both judgements

a ` (a, a) ≤ (σid , Int) ⇒ [a 7→ σid ]

a ` (a, a) ≤ (σid , Int) ⇒ [a 7→ Int]

are derivable. This behavior is not problematic—even though pre-
subsumption does not detect the discrepancy between the types, the
final subsumption check (` ψu(σ) ≤ ρ′) will fail. Specifying the
system in this manner is slightly simpler than eagerly detecting type
errors during pre-substitution. Furthermore, this decision simplifies
the implementation of our algorithm: pre-subsumption and pre-
matching can be easily implemented as pure functions that do not
interfere with unification or box filling.

Concerning expressiveness, the rules SA-ARG, SA-RES and
SA-UNB all are strictly better than the original smart-application
rule, SMART-APP. These rules provide more checked information
(through unboxing) when examining the arguments ui or the re-
sult type ρ′. However, although SA-UNB appears more powerful
SA-ARG and SA-RES, it is not a complete win—there are obscure
terms that are typeable with SA-ARG or SA-RES that are not ty-
peable with SA-UNB. But because we believe that SA-UNB behaves
better in the common cases, and we find its lack of bias attractive,
we have included this rule in our implementation.

6.3 Recovering completeness

Somewhat surprisingly, our algorithm extended with SA-UNB is
not complete. The problem arises because, at a let-binding, the
specification allows the let-bound identifier to be given its most
general type, but it also allows it to be given a less general type.
Unfortunately, with SA-UNB, there exist programs that will type
check with the less general type (according to the subsumption
relation), but not with the more general one! For example:

` let f = \x.[]
in f (\g.(g 3, g True)) : [(∀a.a → Int) → (Int, Int)]

If f is assigned its most general type, ∀b1b2.b1 → [b2], the body
of the let-binding is untypeable. On the other hand the specification
can assign the type ∀a1.a1 → [a1] to the function, match a1 with
the polymorphic context type (via ψ0 in SA-UNB), and succeed in
checking the argument against the known type (∀a.a → Int) →
(Int, Int).

The cause of the completeness problem is that a less-general
type may induce a different “sharing” of variables between argu-
ment and result types, leading to more possibilities for unboxing
polymorphic information. Since the distinction between variables
appearing in the argument and the result types appears in SA-UNB,
SA-RES and SA-ARG but not in SMART-APP, the first three rules
have this problem but not the last. One could, in principle, imagine
a more elaborate algorithm to fix this problem, but such an algo-
rithm would certainly be more involved than ours.

Now that we understand the problem, there is an obvious solu-
tion: modify the typing rules to specify that let generalisation must
infer the most general type (in the Hindley-Milner sense). Such a
solution is not new in type inference systems: similar ideas were
used by Leroy and Mauny for the typing of dynamics in ML [12],
and by Garrigue and Rémy in their extension of ML with semi-
explicit first-class polymorphism [3]. In particular, one would re-

place LET-I in Figure 2 with the following rule:

Γ ` u : ρ Γ, x :Γ(ρ) ` t : ρ′

∀ρ0 . If Γ ` u : ρ0 then ` Γ(ρ) ≤HM Γ(ρ0)
LET-IP

Γ ` let x = u in t : ρ′

where Γ(ρ) is just a shorthand for the generalisation of ρ over its
free type variables that do not occur in Γ. Rule LET-IP has the
effect that all bindings in the environment have unique types for
any possible typing derivation. However, we have not yet carried
out proofs for this solution but we believe that our algorithm (which
remains exactly the same) is complete for this specification.

7. Discussion
Contravariance and subsumption Why did we choose invari-
ance when performing subsumption on function types (rule F1)?
Suppose we had used contravariance. Now recall that Principle 2
requires that ` ∀a.a → Int ≤ σ → Int. To form this judge-
ment, SPEC instantiates the left-hand type with σ , and consid-
ers ` σ → Int ≤ σ → Int. If F1 required contravariance for the
function argument, we would need ` σ ≤ σ , which would in turn
require the following rule:

` σ′ ∼ σ
SBOXY-WRONG

` σ′ ≤ σ

Alas, SBOXY-WRONG is incompatible with the simple inference
algorithm we have in mind, because it overlaps with rule SPEC. In
some situations the “right” thing is to apply SBOXY-WRONG, while
in others one must apply SPEC. To see an example of the latter,
consider that it must definitely be the case that ` ∀a . a ≤ Int !

In short, to obtain complete type inference with a syntax-
directed, search-free algorithm, we cannot use SBOXY-WRONG,
and that in turn means that we cannot have both Principle 2 and
contravariance on function arguments. In practice, argument con-
travariance does not seem very important, whereas Principle 2
seems vital; hence our choice.

Abstraction In our system, the environment Γ contains only
vanilla types, not boxy types. This choice means that η-expansion
may render a typeable program untypeable. For example:

f : (Int → σid) → Int 6` \x.f x : (Int → σid) → Int

because it would require x to enter the environment with a boxy
type. In general, boxes in the environment would allow information
from the occurrences of a variable to propagate to the type of the
abstraction that binds that variable.

There is no fundamental obstacle to allowing Γ to contain boxy
types, provided that we ensure that the boxes are filled in. For
example, the ABS1 rule should be replaced by two rules:

x ∈ fv(t)

Γ, x : σ′
1
`
poly

t : σ′
2

ABS1A
Γ ` (\x.t) : σ′

1 → σ′
2

x /∈ fv(t) ` σ′
1
∼ σ1

Γ `
poly

t : σ′
2

ABS1B
Γ ` (\x.t) : σ′

1 → σ′
2

Our η-expanded example is typeable with ABS1A. But, note
the condition x ∈ fv(t). If x occurs in t (ABS1A), then we can
figure out x ’s type from its occurrences in t . However, if x is not
mentioned in t (in rule ABS1B), then any boxes in x ’s type, which
represent its inferred parts, should be filled in with monotypes, as
in the normal ABS1 rule.

8. Related work
Extensions to Hindley-Milner type inference This paper follows
a series of papers that augment the HM type system with higher-
rank and impredicative polymorphism, while remaining based on



first-order unification. Many systems [17, 15, 6] retain the stratifi-
cation between monotypes τ and polytypes σ. They support first-
class polymorphism by embedding polymorphic types inside type
constructors. Constructor introductions and eliminations mark the
locations where type abstraction and application is necessary. In
contrast, our vanilla types are the full types of System F.

Garrigue and Rémy’s extension of ML with higher-rank poly-
morphism [3] embeds polytypes inside monotypes, eliminating the
need to predeclare type schemes. Their types mark whether poly-
types are annotated or inferred. Other than type signatures, they do
not use any contextual information. Only annotated polytypes are
allowed to be instantiated, at only marked locations.

The impressive MLF language of Le Botlan and Rémy [9] sup-
ports impredicativity by extending polytypes with equality and gen-
eralization constraints. Their language of types is richer than Sys-
tem F or our language. Consequently, their language includes prin-
cipal types for terms that have no principal type in System F. Fur-
thermore, we are aware of some situations that require fewer an-
notations in MLF than in our language. For example, MLF has the
property that if t1 t2 type checks, then apply t1t2 type checks with-
out annotation—but this property is not true here.

However, there are two reasons one might prefer our system to
MLF. We believe that our system is easier to add to existing compil-
ers, in particular, those that use typed intermediate languages based
on System F [24]. Although Leijen and Löh [11] have developed a
translation from MLF to System F, our translation (stripping boxes)
is far simpler. Furthermore, because all of our types have a simple
correspondence to System F types, we believe that our system is
easier for current ML and Haskell programmers to understand.

Stratified type inference In parallel with our efforts, Rémy de-
signed a two-phase approach to type inference for higher-rank and
impredicative polymorphism called F?

ML [21]. The first phase in-
fers the “shape” of the type of each variable in the program, where
“shape” means the exact location of all quantifiers and the type vari-
ables they bind. Once shapes are known, only monotypes need be
“guessed” by the second phase, which is done using ordinary uni-
fication. This division separates the mechanisms for propagating
local type information (which must be done in a syntax-directed
way) from the underlying first-order type inference. As a result, the
two separate components of the type system may be thought about
independently—but of course, both must be understood together to
understand whether a program should type check.

Regarding expressivity, our system more aggressively propa-
gates known polytype information than F?

ML, for two reasons. First,
boxy types and the unbiased smart application rule can more pre-
cisely express the local flow of polytype information than the shape
inference algorithm of F?

ML, although it is possible that a more so-
phisticated shape inference algorithm could capture this behavior.
Second, the separation between shape propagation and type infer-
ence in F?

ML means that shape propagation can not take advantage
of polymorphic types inferred by type inference (through gener-
alization). In contrast, our system adds the inferred polymorphic
type of the right-hand side of the let into the context as known type
information before checking the body of the let (see rule LET-I).
Therefore, our system includes a significant source of known poly-
type information that F?

ML does not. As a result, Rémy proposes in-
cremental elaboration: the type of each top level definition is com-
pletely determined before continuing to the next one. However, this
strategy treats top-level definitions differently than internal binding.

Another, more subtle difference between the systems is that F?

ML

better supports a relation between polytypes called type contain-
ment [14]. In F?

ML, shape propagation infers impredicative instan-
tiations, while the subsumption relation used during type inference
is a predicative version of type containment. (Full type containment

is known to be undecidable [25].) In contrast, our system must do
both simultaneously, so it infers impredicative instantiation at the
expense of type containment. (Recall that we use invariance instead
of contravariance for the argument component of function types.)
However, it is not clear how much of an advantage this is to F?

ML.
Rémy remarks that even though MLF does not support type con-
tainment, it has not been a problem in practice [21].

Because of these differences, there are many programs that
type check in one system but not the other. We regard stratified
type inference and boxy types as two alternative approaches to the
question of how to exploit programmer-supplied type annotations.
The two approaches feel different, but their expressive power is
similar; it is too early to say which is superior, if indeed either is.

Local type inference Pierce and Turner [19] coined the term “Lo-
cal Type Inference” to refer to a partial inference technique for a
language with bounded, impredicative quantification and higher-
rank types. (They attribute the original idea to John Reynolds.)
They rejected unification entirely and based their type system on
two ideas: local type argument synthesis and bidirectional propaga-
tion. Similar to our SMART-APP, local type argument synthesis in-
fers the type argument to a polymorphic function by examining the
types of its arguments. Bidirectional type checking operates in one
of two modes: inference and checking. A subsequent development,
Colored Local Type Inference (CLTI), by Odersky and Zenger [16],
reformulated bidirectional checking for F≤ so that the type and not
the judgment form describes the direction in which type informa-
tion flows. Their colours are an inspiration for our “boxy” types,
although our system has many major differences from theirs.

Most importantly, the distinction between “synthesized” and
“inherited” type information—the colours in CLTI—is different
from the distinction made between “inferred” and “checked” type
information by our boxes. In CLTI, the colours trace the flow of
information, either from the leaves to the root of the derivation or
vice versa. So variables always have “synthesized” types, whereas
in our system, they have “checked” types. Another difference is that
the colours in CLTI types may nest, but our boxes do not.

Although type argument synthesis and bidirectional propaga-
tion provide an impressive amount of type inference, the resulting
language is difficult for ML and Haskell programmers to use, be-
cause the lack of unification means that many programs require
type annotations. Hoysoya and Pierce [4] note a few such situ-
ations. Although there is folklore about combining bidirectional
propagation with HM inference, there is relatively little published
work that describes such systems [1, 10].

9. Conclusions and further work
We have presented the first type system for impredicative poly-
morphism that is a conservative extension of the standard Hindley-
Milner system, and can be implemented using a modest extension
of classical unification-based type inference. Against these advan-
tages, there are two obvious criticisms one could make. First, the
system is somewhat complex. Second, although the type system is
not an algorithm, it is carefully designed with an algorithm in mind:
boxy types have no logical role, and instead serve to constrain the
typeable programs to ones that are also inferable.

Although the system is guided by algorithmic intuitions, it is
much simpler than the algorithm itself. Furthermore, although the
system can be implemented using the algorithm we give, it could
perhaps also be implemented in other ways, such as constraint
generation. There is a real gain from separating specification (even
an algorithmically-guided one) from implementation.

The type system is arguably too complicated for Joe Program-
mer to understand, but that is true of many type systems, and per-
haps it does not matter too much: in practice, Joe Programmer usu-



ally works by running the compiler repeatedly, treating the com-
piler as the specification of the type system. Indeed, a good deal
of the complexity of the type system (especially Section 6) is there
to accommodate programs that “ought” to work, according to our
understanding of Joe’s intuitions. Nevertheless, a precise specifi-
cation, such as the one we give, is very valuable because it tells
compiler writers what to do. Even if Joe does not fully understand
the type system, it is reasonable to expect compiler writers to do so.

We have a complete, downloadable implementation of the sys-
tem described in this paper, including SA-UNB described in Sec-
tion 6.2, embodied in the Glasgow Haskell Compiler. We have had
no reports of unexpected behaviour, which suggests that the en-
hancements do not trip up programmers who do not employ them.
We do not have sufficient experience to report one way or the other
on the claims about programmer intuitions. However, we hope to
better gauge the trade offs between the burden of user annotations
and user predictability. Some users may prefer to write more an-
notations in exchange for a simpler specification of where they are
necessary. To that end, we also hope to determine more properties
of programs that do and do not need annotation.

In particular, we plan to explore how local transformations af-
fect the typability of terms. For example, we have already discussed
how η-expansion can have beneficial and detrimental effects. How-
ever, even if a local transformation causes a term to fail to type
check, typability may always be recovered through annotation. The
System F embedding in Section 4 provides a simple specification
of annotations that are guaranteed to be sufficient. We also intend to
explore variations of this type system, some of which we mentioned
in Sections 6 and 7. Other variations follow from the nontrivial in-
teraction between our system and ML-style references.

More generally, we believe that type systems will increasingly
embody a blend of type inference and programmer-supplied type
annotations: higher-rank types and impredicativity are examples
of this trend, and there are plenty of others, such as polymorphic
recursion, GADTs [18] or subtyping. Giving a precise, predictable
and implementable specification of these blended type systems is a
new challenge. Boxy types are a powerful tool in this respect and
one that we hope to use again.
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