
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

October 2005

Formal Verification and its Impact on the Snooping
versus Directory Protocol Debate
Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2005 IEEE. Reprinted from Proceedings of the 2005 International Conference on Computer Design (ICCD’05), pages 1-7.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/263
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Milo Martin, "Formal Verification and its Impact on the Snooping versus Directory Protocol Debate", . October 2005.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/263
mailto:libraryrepository@pobox.upenn.edu

Formal Verification and its Impact on the Snooping versus Directory
Protocol Debate

Abstract
This invited paper argues that to facilitate formal verification, multiprocessor systems should (1) decouple
enforcing coherence from enforcing a memory consistency model and (2) decouple the interconnection
network from the cache coherence protocol (by not relying on any specific interconnect ordering or
synchronicity properties). Of the two dominant classes of cache coherence protocols — directory protocols
and snooping protocols — these two desirable properties favor use of directory protocols over snooping
protocols. Although the conceptual simplicity of snooping protocols is seductive, aggressive implementations
of snooping protocols lack these decoupling properties, making them perhaps more difficult in practice to
reason about, verify, and implement correctly. Conversely, directory protocols may seem more complicated,
but they are more amenable to these decoupling properties, which simplify protocol design and verification.
Finally, this paper describes the recently-proposed token coherence protocol’s adherence to these properties
and discusses some of its implications for future multiprocessor systems.

Comments
Copyright 2005 IEEE. Reprinted from Proceedings of the 2005 International Conference on Computer Design
(ICCD’05), pages 1-7.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/263

http://repository.upenn.edu/cis_papers/263?utm_source=repository.upenn.edu%2Fcis_papers%2F263&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Verification and its Impact on the Snooping versus Directory Protocol Debate

Milo M. K. Martin
Department of Computer and Information Science

University of Pennsylvania
milom@cis.upenn.edu

Abstract

This invited paper argues that to facilitate formal ver-
ification, multiprocessor systems should (1) decouple
enforcing coherence from enforcing a memory consis-
tency model and (2) decouple the interconnection net-
work from the cache coherence protocol (by not rely-
ing on any specific interconnect ordering or synchronic-
ity properties). Of the two dominant classes of cache
coherence protocols—directory protocols and snooping
protocols—these two desirable properties favor use of
directory protocols over snooping protocols. Although
the conceptual simplicity of snooping protocols is seduc-
tive, aggressive implementations of snooping protocols
lack these decoupling properties, making them perhaps
more difficult in practice to reason about, verify, and im-
plement correctly. Conversely, directory protocols may
seem more complicated, but they are more amenable to
these decoupling properties, which simplify protocol de-
sign and verification. Finally, this paper describes the
recently-proposed token coherence protocol’s adherence
to these properties and discusses some of its implica-
tions for future multiprocessor systems.

1 Introduction
After years as an exotic and exclusively high-end

technology, shared-memory multiprocessors are now
solidly mainstream. Even low-end servers routinely
have at least two processors, and high-end systems of-
ten have dozens of processors. With the performance
and power advantages of multi-core chips, multiproces-
sors are expanding beyond servers into desktops, lap-
tops, handhelds, game consoles, and embedded devices.
If current trends continue, multi-core systems will be-
come so ubiquitous that in a few years it may not be
possible to purchase a uniprocessor system.

Cache coherence protocols. These shared-memory
multiprocessor systems use a cache coherence protocol
to coordinate the caches and memories as part of provid-
ing the processors with a consistent view of the contents
of a single shared address space. The exact definition
of this “consistent view” of memory is defined by the
system’s memory consistency model [2], which is com-
monly specified as part of the instruction set architecture
of the system. As part of enforcing a consistency model,

invalidation-based cache coherence protocols conceptu-
ally maintain a global invariant: for each block of shared
memory either (1) zero or more processors are allowed
to read the block or (2) exactly one processor is allowed
to write and read the block.

Snooping versus directory protocol debate. Al-
though multiprocessors are now common, there is not
a clear consensus on the design of cache coherence
protocols. Whereas other areas of computer architec-
ture have slowly gravitated to canonical designs (e.g.,
processor microarchitecture), multiprocessor system de-
signs are still widely varied. In fact, a debate on design-
ing such systems has raged for decades. Much of the
debate has centered around two classes of cache coher-
ence protocols: snooping protocols and directory proto-
cols. Snooping protocols use a totally-ordered intercon-
nect (e.g., a bus) to broadcast request to all processors,
allowing all system components to transition between
coherence states in a consistent fashion. In contrast, di-
rectory protocols send all requests to a directory at the
memory, which forwards requests to other processors
as needed. Directory protocols avoid broadcast and a
totally-ordered interconnect in exchange for adding in-
direction latency to some misses.

The debate revisited. This invited paper contains
thoughts and opinions on this debate based on expe-
rience with developing and enhancing protocols in an
academic research environment, limited industrial expe-
rience, conversations with system designers, and dab-
bling in formal verification of such protocols. Instead
of focusing exclusively on the performance or scala-
bility of cache coherence protocols, this paper revisits
the snooping versus directory protocol debate by explic-
itly considering the impact of formal verification on de-
sign complexity and design verification of multiproces-
sor systems. This paper describes the impact of formal
verification on the cache coherence protocol design pro-
cess (Section 2), distills two desirable decoupling prop-
erties for formal modeling and implementing coherence
protocols (Section 3), revisits the snooping versus direc-
tory debate in this context (Section 4), and reflects on
the creation of token coherence [16, 18, 19], a recently-
proposed alternative approach to cache coherence (Sec-
tion 5). This paper concludes that formal verification

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

considerations favor choosing either a directory proto-
col or a token coherence protocol over all but the sim-
plest implementations of snooping-based cache coher-
ence protocols.

2 Impact of Formal Verification

In addition to simulation and other forms of tradi-
tional design verification, formal verification plays as in-
creasingly important role in the design of today’s digital
systems. Formal verification includes techniques such
as model checking via state space exploration and auto-
mated theorem proving techniques. Using formal veri-
fication methods has become almost routine for enhanc-
ing confidence (and finding bugs) in cache coherence
protocols [1, 5, 6, 8, 12, 25, 26].

2.1 Explicit Role of Formal Verification

The explicit role of formal verification is finding bugs
and improving confidence in the correctness of a design.
These methods can either be applied after the high-level
design has been completed or during the high-level de-
sign phase.

Post-design verification. If formal verification is
thought of as part of traditional design verification ef-
forts (e.g., simulation-based techniques), formal verifi-
cation will likely be applied later in the design and im-
plementation of a system. Although late application of
formal verification is still effective at finding bugs, it
suffers from first finding many “false bugs” caused by
incomplete documentation, design specification errors,
and real bugs that were already fixed by the designers
[12]. Bugs that are encountered late may also be more
difficult to fix cleanly or the fix may have a significant
impact on the performance or complexity of the design.

During-design verification. In contrast, if formal
verification is thought of as an integral part of the de-
sign process, formal verification will likely be applied
early in the design process and have a more perva-
sive impact on the actual design. Formal verification is
most effective when used during the initial design phases
[8, 12]. Instead of relying on incomplete specifications,
the modeling processes can be part of the specification
process (or the model may even be part of the actual
specification). Bugs found early can be fixed more easily
and at the appropriate level of the design. For example,
instead of adding a localized timing-sensitive kludge to
fix a subtle coherence protocol race, early detection of
such a bug could have resulted in a higher-level design
change that would have been simpler, cleaner, and eas-
ier. In addition, a set of bugs discovered early may ac-
tually cause the designers to rethink or adjust the high-
level design.

2.2 Implicit Role of Formal Verification

If verification is an integral part of the high-level
design process, formal verification has several implicit
benefits—benefits that arise not from the actual compu-
tational verification of the model, but from the creation
of the model itself. Creating a model requires one or
more engineers to think systematically about the correct-
ness of the design and the accuracy of its specification.1

In addition, the designers themselves may be influenced
by the knowledge that whatever the designers propose,
someone will need to model it.2 This subtle effect can
influence the designers to create a more modular design
with clearer abstraction layers and better specification
and documentation. Knowing that a design is going to
be formally verified may encourage designers to actu-
ally document their designs and employ “principles of
good design” that they otherwise might not be disci-
plined enough to self-enforce. In essence, placing the
extra design constraint of “verifiability” on the design-
ers in some cases may produce a better design.

3 Two Desirable Properties of Cache Coher-
ence Protocols

This section describes two properties found in some
coherence protocols that give them advantages in terms
of tractability of formal verification, design complexity,
and ability to be modified for future design iterations.

3.1 Decouple Coherence from Consistency

The definition of correctness of a multiprocessor
memory system is its memory consistency model [2].
Informally, coherence refers only to the behavior of
a single memory location, whereas the memory con-
sistency model encompasses the ordering and interac-
tion of memory operations to multiple memory loca-
tions. Because individually verifying either a consis-
tency model or simple coherence properties is a difficult
task, we advocate clearly decoupling these two aspects
of a multiprocessor memory system to simplify verifica-
tion. To enable this decoupling, the coherence protocol
should provide a coherence interface sufficient to pro-
vide a serializable view of memory. The processor core
should interact with that interface to provide whatever
memory consistency model the processor design team

1For example, when talking with a verification engineer about one
specific verification effort, I was told that the only critical bug found
during the formal verification process was encountered during con-
struction of the model; the automated checking of the model did verify
the bug and its fix, but it did not discover any other significant bugs.

2For example, after suggesting a specific cache coherence protocol
proposal to one industrial designer, the designer’s face went pale, and
he said something like “the verification team would never let us get
away with that”.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

deems necessary (using prefetching and various specu-
lative techniques to aggressively implement the consis-
tency model [3, 9]).

In such a system, the only role of the coherence pro-
tocol is to inform the processor when it can read a block
and when it can write a block. This notion closely corre-
sponds with the multiple-reader-single-writer coherence
invariant described in the introduction. Such a coher-
ence protocol (1) provides a simple interface to the pro-
cessor and (2) allows the processor to aggressively im-
plement the desired consistency model. To clarify these
points, consider the implementation of memory barrier
operations (used to establish memory ordering). A sys-
tem that follows the above decoupling property can effi-
ciently handle memory barriers entirely within the pro-
cessor core, freeing the coherence protocol from provid-
ing special-purpose operations with complicated seman-
tics.

Although some systems have at least partially adopted
a decoupled consistency and coherence philosophy (e.g.,
[4, 7, 13]), many systems have not (e.g., [10, 27]). Those
systems intertwine coherence and consistency through-
out the system, often relying on a patchwork of special
ordering properties of processor queues and a total or-
dering of requests via a totally-ordered interconnect to
carefully and delicately orchestrate the desired consis-
tency model (discussed further below).

3.2 Decouple Interconnect from Protocol
The interconnect is the communication mechanism

that reliably delivers messages between the caches and
memories of a multiprocessor system. A cache co-
herence protocol might rely on an interconnect that
provides (1) point-to-point ordering, (2) totally-ordered
message delivery, (3) no special ordering properties. We
contend that to ease verification, the coherence protocol
should not depend upon any special ordering properties
of the interconnect. To support this position, this section
discusses some of the difficulties of designing and ver-
ifying coherence protocols that rely on these two types
of interconnect orderings.

Avoid point-to-point ordered interconnects. Of the
two types of interconnect ordering properties, point-to-
point ordering is less problematic than totally-ordered
interconnects. However, point-to-point ordering is un-
desirable because (1) it constrains interconnect design
(e.g., by precluding or limiting adaptive routing) and (2)
it complicates formal verification by encumbering the
model and increasing the state space by reducing sym-
metry (as compared with modeling an unordered inter-
connect) [12]. Fortunately, many protocols—especially
directory protocols—do not rely on any sort of inter-

connect ordering (e.g., [24]). However, some protocols
require at least point-to-point ordering (e.g., [28]), and
many protocols require the even more onerous totally-
ordered interconnect (as discussed next).

Avoid totally-ordered interconnects. Relying on a
totally-ordered interconnect has pervasive design ram-
ifications. Depending on such an interconnect is unde-
sirable because it intertwines the processing of differ-
ent addresses. An interconnect provides a total ordering
of messages if all messages are delivered to all destina-
tions in some order. A total ordering requires an order-
ing among all the messages (even those from different
sources or sent to different destinations). For example,
if any processor receives message A before message B,
then no processor receives message B before A. Many
protocols (e.g., most snooping protocols and some di-
rectory protocols [10]) require an interconnect that pro-
vides a total ordering of requests. Unfortunately, estab-
lishing a total ordering of requests can add complexity,
increase cost, and increase latency. For example, totally-
ordered interconnects commonly use some centralized
root switch or arbitration mechanism, and such mecha-
nisms are not a good match for direct interconnects.

In protocols that do not rely on a total ordering of
requests—e.g., traditional directory protocols [14, 24,
28] and AMD’s Opteron protocol [4]—requests and re-
sponses for different blocks have no need to unduly in-
fluence each other. Only when a processor decides to
commit a read or write to a block does the processor
need to consider the interactions of reads and writes
to other blocks. In contrast, in systems that rely on a
total ordering of requests, requests (and sometimes re-
sponses) for different addresses must be kept in order
with respect to each other throughout the system.3 This
requirement forces cache controllers to process all re-
quests in order, making banking of coherence controllers
to increase bandwidth difficult. To use a uniprocessor
analogy, relying on a total ordering of requests intro-
duces “dependences” (both true and false dependencies)
between requests for various blocks.

3.3 Discussion and Implications
The decoupling of coherence and consistency and

the decoupling of protocol and interconnect results in
a much more modular design. Such a design has sim-
pler interfaces between the various system components,
which should substantially simplify verification (both
formal verification and traditional verification). For ex-
ample, each component can be designed and verified in

3For further discussion of the subtle implications and interactions
of memory consistency models and totally-ordered interconnects, see
chapters 2 and 10 of Martin [16].

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

isolation, and a high-level model can be used to verify
many of their interactions.

In addition, such a design is more amenable to in-
cremental improvements for future product generations
based on the same basic design. Because of the huge
effort to fully design, verify, and performance debug a
high-performance design, a design will often be used
for several product generations. For example, the initial
“P6” core design of the Pentium Pro has been improved
and adapted over many years to be used in desktop chips
(Pentium II and Pentium III), server chips (Xeon), and
most recently in low-power mobile chips (Pentium M).
Similar derivations occur with multiprocessor systems.
A multiprocessor that adheres to these two decoupling
properties will be easier to adapt over time, because an
individual component (e.g., the interconnect or cache
controller) can be improved with fewer global interac-
tions than in a less modular design.

As an example of non-localized cascading changes,
consider a first-generation design with an interconnect
that does not implement adaptive routing (and thus im-
plicitly provided point-to-point interconnect ordering);
if the coherence protocol exploits that point-to-point or-
dering, the second-generation system cannot implement
adaptive routing in the interconnect unless the coherence
protocol is also redesigned. However, if the system de-
signers had decoupled the interconnect ordering from
the protocol, such a change to the interconnect would
be a purely local change.

Although these two decoupling properties seem like
laudable and desirable properties, they also may be con-
troversial, as some proposals have explicitly argued the
opposite approach [10], and systems such as IBM’s
Power4 [27] and AlphaServer GS320 [10] designs have
neither property. Both of these systems use an or-
dered interconnect and intermingle coherence and con-
sistency. For example, Power4 relies on ordering in
the interconnect and requires broadcasting of certain
memory-ordering barrier operations. In contrast, the Al-
pha 21364/GS1280 and AMD Opteron protocols both
appear to exhibit both decoupling properties described
above (based on the limited published descriptions of
the protocols [4, 7, 24]).

4 Revisiting Snooping vs. Directory Protocols
The choice of coherence protocol is as subtle and con-

troversial today as it has ever been. Instead of focusing
primarily on performance or scalability, this section re-
visits the snooping versus directory protocol debate by
considering the impact of formal verification and the two
desirable decoupling properties described in the last sec-
tion. Although any high-performance implementation
of a multiprocessor memory system is complicated, we

contend that directory protocols are preferable from a
complexity and formal verification viewpoint, because
directory protocols are more amenable to decoupling co-
herence from consistency and decoupling the intercon-
nect from the coherence protocol.

Snooping protocols. Although snooping is seduc-
tively simple from a conceptual viewpoint, as snoop-
ing implementations have evolved over time they
have become anything but simple. Real-world high-
performance implementations are not simple because
they use many advanced techniques such as snoop
response combining, split-transaction protocols, split
request/response interconnects, and multiple totally-
ordered switched interconnects. These enhancements
tightly couple the timing and ordering of the intercon-
nect with the protocol, and they couple coherence and
consistency. In essence, aggressive snooping proto-
cols are complex and difficult to verify because they do
not exhibit the two desirable decoupling properties de-
scribed in the last section.

Directory protocols. In contrast, even the simplest
directory protocol may seem complicated (e.g., because
of the number of request and writeback races that can
occur). However, these situations are exactly the sort of
high-level protocol issues that formal verification meth-
ods can help overcome, especially if applied early in
the design. Directory protocols are more amenable to
formal verification techniques because they often ex-
hibit these two decoupling properties. These properties
also confer such protocols better “complexity scalabil-
ity” over time. That is, as a directory protocol imple-
mentation becomes more aggressive—faster intercon-
nects, more outstanding requests, more protocol states
and optimizations—the changes are more localized.

Why then have directory protocols not been used
more frequently? One possible explanation is that di-
rectory protocols were promoted—both in academic re-
search and in industrial designs—primarily for being
scalable (i.e., support hundreds or thousands of proces-
sors).4 In fact, the term “scalable cache coherence” is
synonymous with a directory protocol. Such emphasis
on scalability and their first-glance complexity may have
given directory protocols a reputation as an exotic and
expensive technology. Perhaps this reputation has led
designers to be more comfortable evolving their exist-
ing snooping-based system over the years, especially as
most systems sold—even of “scalable” systems—have a
modest number of processors [23]. Transitioning to a di-
rectory protocol represents a more radical design change

4See Hill [11] for an early skeptical view of scalability.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

than just evolving an existing snooping system.5 In ad-
dition, many early directory systems were hierarchical
multiprocessors built from snooping-based multiproces-
sor building blocks (e.g., [14, 15, 28]), resulting in a rep-
utation of substantial complexity and large latency over-
head from bridging between the two protocols. Finally,
performance issues may have played a role (discussed
briefly in the next section).

5 A New Alternative: Token Coherence
Although we encourage designers to consider direc-

tory protocols over snooping protocols for complexity
and design verification reasons, directory protocols have
an important performance disadvantage that must be ad-
dressed: directory protocols add indirection latency to
cache-to-cache misses. To resolve races, a directory pro-
tocol sends all requests to a home node that then for-
wards the request (if needed) or responds with the data
from memory. In contrast, a snooping protocol avoids
indirection by broadcasting all requests to all nodes and
relying on interconnect ordering to help resolve races.
Although the additional indirection latency of a direc-
tory protocol can be partially mitigated by using a di-
rectory cache, an extra interconnect traversal remains on
the critical path of some cache misses.

The recently-proposed token coherence protocol [16,
18, 19] can eliminate the constraint of directory indirec-
tion without sacrificing either decoupling of the the in-
terconnect from the coherence protocol or decoupling of
coherence from consistency. Token coherence uses to-
ken counting to resolve races without requiring a home
node or an ordered interconnect. Token coherence em-
braces even further levels of decoupling by separating
the correctness substrate from the system’s performance
policy. The correctness substrate is further decoupled
into enforcing safety and avoiding starvation.

Enforcing safety. Token coherence’s correctness
substrate provides safety by counting tokens for each
block of memory in the system. Each block in the sys-
tem has a fixed number of tokens (T). If a processor’s
cache has all T tokens for the block, it is allowed to read
and write the block. If a processor’s cache has at least
one token, it can read the block (but not write it). If
a processor’s cache holds no tokens, it can neither read
nor write the block. These token counting rules directly
ensure that while one processor is writing the block, no
other processor is reading or writing it. In essence, it di-
rectly enforces the multiple-reader-single-writer coher-

5In fact, some of my earlier research took this evolutionary ap-
proach to trying to enhance snooping protocols to mitigate their disad-
vantages (e.g., [20, 21]). However, I now believe the disadvantages of
directory protocols are perhaps more easily mitigated than the disad-
vantages of snooping protocols.

ence invariant suitable for allowing the processor to en-
force the desired memory consistency model. Such sim-
ple rules allow for reasoning about protocol safety in a
much simpler fashion, and by its nature, token coher-
ence does not rely upon complicated ordering properties
of the interconnect or the use of a directory home node
to resolve races.

Avoiding starvation. Although token counting en-
sures safety, it does not ensure that a request is even-
tually satisfied. Thus the correctness substrate provides
persistent requests to prevent starvation. When a proces-
sor detects possible starvation (such as via a time-out), it
initiates a persistent request. The substrate then activates
at most one persistent request per block, using a fair ar-
bitration mechanism. Each system node remembers all
activated persistent requests (for example, in a table at
each node) and forwards all tokens for the block—those
tokens currently present and received in the future—to
the request initiator. Finally, when the initiator has suffi-
cient tokens, it performs a memory operation (a load or
store instruction) and deactivates its persistent request.

Performance policies. The correctness substrate pro-
vides a foundation for implementing many performance
policies. These performance policies focus on making
the system fast and bandwidth-efficient, but have no cor-
rectness responsibilities, because the substrate is respon-
sible for correctness. This decoupling of responsibil-
ity between the correctness substrate and performance
policy enables the development of performance policies
that capture many of the desirable attributes of snoop-
ing and directory protocols. For example, token co-
herence performance policies have been developed [16]
to approximate an unordered broadcast-based protocol
(inspired by snooping protocols), a bandwidth-efficient
performance policy that emulates a directory protocol,
and a predictive hybrid protocol that uses destination-set
prediction [17].

Ramifications on design verification. As token co-
herence’s use of decoupling goes beyond the two de-
coupling properties described in Section 3, it perhaps
has some additional verification advantages. For exam-
ple, Marty et al. [22] used a single-level token coher-
ence protocol to approximate the performance charac-
teristics of a two-level hierarchical coherence protocol.
That is, the protocol is flat for correctness but hierar-
chical for performance. Using token coherence in this
fashion allows for the performance benefits of a hierar-
chical protocol combined with the ease of verification of
a single-level protocol. Marty et al. [22] also show that
the difficulty of verifying the token coherence correct-
ness substrate is comparable to verifying a single-level
directory protocol. In addition, the flexibility provided

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

by the performance policy should allow a system using a
token coherence protocol to be enhanced over time with-
out substantial changes to the correctness substrate.

6 Conclusions
In this paper, we reflected on the impact of the in-

creasing use of formal design verification methods dur-
ing the early stages of multiprocessor system design. We
identified two desirable decoupling properties for reduc-
ing the complexity and enhancing the verifiability of the
system: decoupling coherence from consistency and de-
coupling the interconnect ordering properties from the
cache coherence protocol. We used these properties to
revisit the snooping versus directory protocol debate,
and we argued that these decoupling properties point to
directory protocols as being more attractive that snoop-
ing protocols from a verifiability and modifyability point
of view. Finally, we identified token coherence as a pos-
sible approach for (1) further simplifying the verifiabil-
ity of coherence protocols and (2) overcoming the in-
direction performance penalty found in directory proto-
cols. As multi-core designs are becoming ubiquitous,
we encourage the designers of these systems to look be-
yond simple bus-based snooping-based designs and to
consider directory protocols and token coherence as ap-
proaches to creating more verifiable and adaptable de-
signs.

Acknowledgments
The author thanks Rajeev Alur, Sebastian Burckhardt,

Jesse Bingham, Mark Hill, Alan Hu, and David Wood
for helpful discussions leading up to this paper. This
work is funded in part by a gift from Intel Corporation.

References
[1] D. Abts, D. J. Lilja, and S. Scott. Toward Complexity-

Effective Verification: A Case Study of the Cray
SV2 Cache Coherence Protocol. In 1st Workshop on
Complexity-Effective Design held in conjunction with the
27th International Symposium on Computer Architec-
ture, June 2000.

[2] S. V. Adve and K. Gharachorloo. Shared Memory Con-
sistency Models: A Tutorial. IEEE Computer, 29(12):
66–76, Dec. 1996.

[3] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent Ad-
vances in Memory Consistency Models for Hardware
Shared Memory Systems. Proceedings of the IEEE, 87
(3):445–455, Mar. 1999.

[4] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD
Opteron Shared Memory MP Systems. In Proceedings
of the 14th HotChips Symposium, Aug. 2002.

[5] H. Akhiani, D. Doligez, P. Harter, L. Lamport, J. Scheid,
M. Tuttle, and Y. Yu. Cache Coherence Verification with
TLA+. In FM’99—Formal Methods, Volume II, volume

1709 of Lecture Notes in Computer Science, page 1871.
Springer Verlag, 1999.

[6] E. M. Clarke and J. M. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
28(4):626–643, Dec. 1996.

[7] Z. Cvetanovic. Performance analysis of the Alpha
21364-based HP GS1280 multiprocessor. In Proceedings
of the 30th Annual International Symposium on Com-
puter Architecture, pages 218–229, June 2003.

[8] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Proto-
col Verification as a Hardware Design Aid. In 1992 IEEE
International Conference on Computer Design: VLSI in
Computers and Processors, pages 522–525, 1992.

[9] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Tech-
niques to Enhance the Performance of Memory Consis-
tency Models. In Proceedings of the International Con-
ference on Parallel Processing, volume I, pages 355–
364, Aug. 1991.

[10] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS320. In Pro-
ceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, pages 13–24, Nov. 2000.

[11] M. D. Hill. What is Scalability? Computer Architecture
News, 18(4):18–21, 1990.

[12] A. J. Hu, M. Fujita, and C. Wilson. Formal Verification of
the HAL S1 System Cache Coherence Protocol. In Pro-
ceedings of the International Conference on Computer
Design, pages 438–444, Oct. 1997.

[13] J. Laudon and D. Lenoski. The SGI Origin: A cc-
NUMA Highly Scalable Server. In Proceedings of the
24th Annual International Symposium on Computer Ar-
chitecture, pages 241–251, June 1997.

[14] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber,
A. Gupta, J. Hennessy, M. Horowitz, and M. Lam. The
Stanford DASH Multiprocessor. IEEE Computer, 25(3):
63–79, Mar. 1992.

[15] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA
Computer System for the Commercial Marketplace. In
Proceedings of the 23th Annual International Symposium
on Computer Architecture, May 1996.

[16] M. M. K. Martin. Token Coherence. PhD thesis, Univer-
sity of Wisconsin, 2003.

[17] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill,
and D. A. Wood. Using Destination-Set Prediction to Im-
prove the Latency/Bandwidth Tradeoff in Shared Mem-
ory Multiprocessors. In Proceedings of the 30th An-
nual International Symposium on Computer Architec-
ture, pages 206–217, June 2003.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

[18] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Co-
herence: A New Framework for Shared-Memory Multi-
processors. IEEE Micro, November-December 2003.

[19] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Co-
herence: Decoupling Performance and Correctness. In
Proceedings of the 30th Annual International Symposium
on Computer Architecture, pages 182–193, June 2003.

[20] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R.
Alameldeen, R. M. Dickson, C. J. Mauer, K. E. Moore,
M. Plakal, M. D. Hill, and D. A. Wood. Timestamp
Snooping: An Approach for Extending SMPs. In Pro-
ceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, pages 25–36, Nov. 2000.

[21] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A.
Wood. Bandwidth Adaptive Snooping. In Proceedings of
the Eighth IEEE Symposium on High-Performance Com-
puter Architecture, pages 251–262, Feb. 2002.

[22] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu,
M. M. K. Martin, and D. A. Wood. Improving Multiple-
CMP Systems Using Token Coherence. In Proceedings
of the 11th IEEE Symposium on High-Performance Com-
puter Architecture, Feb. 2005.

[23] J. R. Mashey. NUMAflex Modular Design Approach:
A Revolution in Evolution. Posted on comp.arch news
group, Aug. 2000.

[24] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and
D. Webb. The Alpha 21364 Network Architecture. In
Proceedings of the 9th Hot Interconnects Symposium,
Aug. 2001.

[25] F. Pong, M. Browne, A. Nowatzyk, and M. Dubois. De-
sign Verification of the S3.mp Cache-Coherent Shared-
Memory System. IEEE Transactions on Computers, 47
(1):135–140, Jan. 1998.

[26] F. Pong and M. Dubois. Verification Techniques for
Cache Coherence Protocols. ACM Computing Surveys,
29(1):82–126, Mar. 1997.

[27] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sin-
haroy. POWER4 System Microarchitecture. IBM Jour-
nal of Research and Development, 46(1), 2002.

[28] W.-D. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki,
and W. Wilcke. The Mercury Interconnect Architecture:
A Cost-Effective Infrastructure for High-Performance
Servers. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, June 1997.

Proceedings of the 2005 International Conference on Computer Design (ICCD’05)
0-7695-2451-6/05 $20.00 © 2005 IEEE

	University of Pennsylvania
	ScholarlyCommons
	October 2005

	Formal Verification and its Impact on the Snooping versus Directory Protocol Debate
	Milo Martin
	Recommended Citation

	Formal Verification and its Impact on the Snooping versus Directory Protocol Debate
	Abstract
	Comments

	24510543.pdf

