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Abstract
This paper considers the specification-based testing in which the requirement is given in the linear temporal
logic (LTL). The required LTL property must hold on all the executions of the system, which are often infinite
in size and/or in length. The central piece of our framework is a property-coverage metric. Based on
requirement mutation, the metric measures how well a property has been tested by a test suite. We define a
coverage criterion based on the metric that selects a finite set of tests from all the possible executions of the
system. We also discuss the technique of generating a test suite for specification testing by using the
counterexample mechanism of a model checker. By exploiting the special structure of a generated test, we are
able to reduce a test with infinite length to an equivalent one of finite length. Our framework provides a
model-checking-assisted approach that generates a test suite that is finite in size and in length for testing linear
temporal properties on an implementation.
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Specification-based Testing with Linear Temporal Logic ∗

Li Tan Oleg Sokolsky Insup Lee

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA
{tanli, sokolsky, lee}@ saul.cis.upenn.edu

ABSTRACT
This paper considers the specification-based testing in which
the requirement is given in the linear temporal logic (LTL).
The required LTL property must hold on all the executions
of the system, which are often infinite in size and/or in
length. The central piece of our framework is a property-
coverage metric. Based on requirement mutation, the metric
measures how well a property has been tested by a test suite.
We define a coverage criterion based on the metric that se-
lects a finite set of tests from all the possible executions of
the system. We also discuss the technique of generating a
test suite for specification testing by using the counterex-
ample mechanism of a model checker. By exploiting the
special structure of a generated test, we are able to reduce a
test with infinite length to an equivalent one of finite length.
Our framework provides a model-checking-assisted approach
that generates a test suite that is finite in size and in length
for testing linear temporal properties on an implementation.

1. INTRODUCTION
Recent years observe an increasing demand on reliable

software and hardware systems. Software engineering com-
munity response to such demands by introducing an array
of new techniques into software development cycles. One of
such examples is the use of formal methods, which facilities
the precise formulation of the requirement and the formal
proof of an system. A formal specification provides the pre-
cise description of the requirement that facilities the auto-
matic verification techniques, for example, model checking,
in which the system is checked algorithmically against the
requirement encoded in a temporal logic. A consequence of
the use of formula method is that high quality formal spec-
ifications become increasingly available. These high quality
specifications are also a valuable asset to other elements in
software development processes. As Stocks and Carrington
found in their case study [11], “A formal software specifica-
tion is (also) one of the most useful documents to have when
testing software”. Despite the major limitation of testing
that it can only show the presence of error and never their
absence [5], testing plays an indispensable role in developing
reliable software and hardware systems. It can work where
automatic verification stops short. For instance, it doesn’t
suffer from the state explosion problem which renders state-
of-the-art model checkers intractable for even moderate real-
world software applications, and testing can be applied to an

∗This research was supported in part by NSF CCR-0086147,
NSF CCR-0209024, and ARO DAAD19-01-1-0473

implementation directly. An important paradigm in testing
is specification-based testing, in which test cases are gener-
ated from the behavioral and/or requirement specifications
of a system. In this paper, we consider the specification-
based testing in which the system requirement is formally
specified in linear temporal logic (LTL).

Linear temporal logic is a widely-accepted and very ex-
pressive logic that can specify safety, fairness, and liveness
properties. LTL is supported by popular model checkers like
SMV [10] and SPIN [6]. An LTL formula specifies a property
which must hold on all the paths, and such paths may be
infinite both in number and in length. Restricted by the re-
sources, a test suite must be finite. Our first and uttermost
question is, how a finite test suite can be selected to test
an LTL property on an implementation? We developed the
following techniques to solve the discrepancy between the
infinite paths on which the LTL property must hold and the
reality that a tractable test suite must be finite in number
and in length.

• Property-coverage Metrics and Criteria. To limit the
number of test cases to finite, we start with a cov-
erage metric that measures how well an LTL prop-
erty is tested by a test suite. Based on mutations on
the requirement, the property-coverage metric checks
the subformulae of the LTL property covered by a set
of tests. The precise definition of property-coverage
metric is given in Section 4. We propose a coverage
criterion based on property-coverage metric. In com-
parison to the traditional structural-based coverage,
the property-coverage criterion we advocate selects a
finite set of test cases with respect to the system re-
quirement. We also discuss the issue of test generation
under the property-coverage criterion: we show that a
property-coverage test suite can be characterized by
a set of ∃LTL formulae that are formally transformed
from the target LTL formula, hence a model checker
with counterexample mechanism like SMV and SPIN
can be used to generate witnesses for ∃LTL formulae
from which the test suite will form.

• Test-truncating Strategy. Although tests selected by
the property-coverage criterion is finite in number, they
may be still infinite in length. Our second step is to re-
duce the length of a test to finite. Indeed, the witnesses
generated by model checkers for ∃LTL formulae have
a special structure known as “lasso-shaped” structure
[4]. By exploiting this special structure, we are able to
replace an infinite test by a finite equivalent one. This
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Figure 1: Property coverage test generation

approach is discussed in Section 5 in both a white-box
test setting and a black-box test setting.

Our technique is inspired by the techniques from model
checking in following sense: first, the requirement is encoded
in linear temporal logic LTL; second, we use the notion
of nonvacuity [2, 8] in model checking to explain the im-
plications of property-coverage metric and criterion; finally,
model checkers are used to automate the test generation.

The rest of paper is organized as follows: we outline the
testing framework in Section 2 with the illustration of a mo-
tivating example. Section 3 prepares notations and defini-
tions; Section 4 defines the property-coverage metric and cri-
terion. Section 5 introduces test-truncating strategy, which
reduces an infinite test to a finite equivalence one in either a
black-box setting or a white-box setting. Section 6 shows our
experiment on test generation using SMV; Finally, we sum-
marize the results in Section 7. Proofs have been removed
from the paper to save space. The full paper is available at
[13].

2. TESTING FRAMEWORK
Figure 1 shows the workflow of our approach. The re-

quired property of a system is given as an LTL formula.
We also assume that the specification (model) of the sys-
tem is available. Test generation proceeds in three phases.
In the first phase, each LTL property is transformed to a
set of ∃LTL formulae called trapping formulae. The trap-
ping formulae characterize test suites that satisfy property-
coverage criterion. In the second phase, a lasso-shaped test
is produced using model checkers for each ∃LTL property. A
lasso-shaped test is a potentially infinite sequence, defined
precisely in Section 3, represented as a finite sequence of
steps leading to a loop. A lasso-shaped trace captures one
possible way for the system to satisfy the property. In the
last phase, a lasso-shaped test is truncated into a finite test
case. The exact length of the resulting test case is deter-
mined by the targeted test setting. Our approach works on
both white-box testing and black-box testing. As we will
see shortly, less information revealed about the structure of
the implementation means that longer tests for the same
properties need to be generated and executed.

A motivational example. The example in Figure 2 il-
lustrates our motivation. The specification used in this ex-
ample is the Dekker’s software solution to mutual exclusion
problem. The specification is presented as the parallel com-
position of two extended finite state machines (EFSMs), as
shown in Figure 2. Note that variables grant0 and grant1
are not required by the original algorithm. They are intro-
duced to mark the granted accesses to critical sections.

The property of interest is encoded as an LTL formula
fmux = Aφmux, where

φmux = G((try1 = 1) → F(grant1 = 1))

try0:=0,grant0:=0

P0

turn=1?

turn=0? turn=1?

P1

non-critical section 0

critical section 0

non-critical section 1

critical section 1

turn=0?

turn�=1? turn�=0?

try0:=1

try1=1?

try0 := 0
try0:=1

try1 �=1?

try1:=1

try0=1?

try1 := 0
try1:=1

try0 �=1?

turn:=1 turn:=0

try1:=0,grant1:=0

grant1:=1grant0:=1

Figure 2: Tdek: the EFSM specification of Dekker’s
algorithm

Note that try1 = 1 only if P1 makes its request to access the
critical section 1, and hence the property φmux states that
every request for the critical section 1 is eventually granted.
The system being tested is an implementation of Dekker’s
algorithm. We assume that we may observe its behaviors via
a predefined interface. In this example, the interface consists
of the variables turn, try0, try1, grant0, and grant1.

There are two obstacles in testing fmux. First, fully estab-
lishing fmux on the implementation requires to check all its
possible executions, which are potentially infinite in number.
This renders testing infeasible. We instead aim at selecting
nontrivial executions that fmux is likely to fail. Clearly the
property holds trivially if no requests to the critical section 1
has ever been made, hence we should check the executions in
which such request is made at least once. The characteristic
of such executions is captured by the following ∃LTL,

f ′
1 = E(F(try1 = 1) ∧ φmux)

An sample test satisfying this property may be,

ρ1 =
∅{try0}{try0, try1}{try0, try1, grant0}{try1}
{try1, turn}{try1, grant1, turn}{turn} · ∅ω

We present a test as a sequence of sets of variables whose
values are 1 in each step. In ρ1 both processes make the
request to the critical sections. Both processes have been
granted the access sequentially and make further request
afterwards.

Another nontrivial case is that the access is by “invitation
only”, that is, we want to make sure that if there is no access
made after a time t, then no request is made after t. This is
captured by the following ∃LTL formula:

f ′
2 = E(FG(grant1 �= 1) ∧ φmux)

An sample test satisfying this requirement may be

ρ2 =
∅{try0}{try0, try1}{try0, try1, grant1}{try0}
{try0, grant0}∅{turn}
· {try0, turn}{try0, grant0, turn}{turn} ω

In ρ2 each process makes a request and is granted an ex-
clusive access to its critical section, and afterwards only P1

makes requests to access its critical section.
Having selected ρ1 and ρ2, our next problem is that both

of them are infinite in length; To be practical a test must be



finite. Note that ρ1 and ρ2 have a so-called “ lasso-shaped”
structure; that is, they start with a finite prefix and end with
a loop. Our strategy is to run ρ2 for a finite number of times
till the future behavior of a system can be projected. We
consider two test settings: if the implementation is a white
box, i.e., its structural is visible to the tester, we may end the
test ρ2 with a positive result if same states are encountered
twice at the same position of the test, say, at {try0, turn}
in ρ2, because we are certain that ρ2 can be extended from
{try0, turn} to its full length by following the path already
being tested; if the implementation is a black box but the
number of its states is bounded by n, we only need to test
the loop for at most n times since by then we are sure that
the same states at the same position on the test has been
encountered twice and the implementation passes ρ2 in its
full length.

The intuitions we just follow will be formalized in the rest
of the paper: the notion of selecting non-trivial cases will be
captured by “property-coverage criterion.” In Section 4, we
will extract the ∃LTL properties characterizing non-trivial
test cases syntactically from the original LTL properties; the
reason we are able to truncate ρ1 and ρ2 is their special lasso-
shaped structures. In fact, such structures are possessed by
the tests generated using model checkers to the ∃LTL formu-
lae. Section 5 generalizes this test-truncating strategy in the
context of white-box and the bounded black-box testings.

3. PRELIMINARIES

3.1 Kripke structures, traces, and test
In this paper systems are modeled as Kripke structures.

Definition 3.1 (Kripke structure). Given a set of
atomic proposition A, a Kripke structure is a tuple 〈S, s0,→
,V〉, where S is the set of states, s0 ∈ S is the start state,
→⊆ S × S is the transition relation and V : A → 2S is an
evaluation for atomic propositions.

We write s → s′ in lieu of 〈s, s′〉 ∈→. We use a, b, · · · to
range over A. We also denote A¬ for the set of atomic propo-
sitions proceeding by the negation. Together, L = A ∪ A¬
defines the set of literals. We let l, l1, · · · and L, L1, L2, · · ·
range over L and 2L, respectively. We may abuse the use of
V so that V(l) = S−V(a) if l = ¬a, and V(L) =

T {V(l) | l ∈
L}.

We will also use the following notations: Let β = p0p1 · · ·
be a sequence, we refer to β[i] = pi as i-th element of β,

β(i,j) as the subsequence pi · · · pj , and β(i) = pi · · · as the
i-th suffix of β. A trace of a Kripke structure 〈S, s0,→,V〉
is defined as a maximal sequence of states starting with s0

which respects the transition relation →, i.e., P [0] = s0 and
P [i − 1] → P [i] for every i < |P |.

Definition 3.2 (lasso-shaped sequence). A sequence
β is lasso-shaped if it has the form α1(α2)

ω, where α1 and
α2 are finite sequences. |α2| is called the repetition factor
of β. The length of β is a vector 〈|α2|, |α1|〉 with |α2| as the
most significant bit.

Definition 3.3 (Test and Test Suite). A test is a
sequence defined on 2L, where L is the set of literals. A test
case is a finite test. A test suite Ξ is a finite set of test cases.
A system Ti = 〈S, s0,→,V〉 passes a test case ξ if Ti has a
trace R such that R[i] ∈ V(ξ[i]) for i ≤ |ξ|. A system T ′

conforms to T if every test passed by T must also be passed
by T ′.

We define a function Π that extracts a test from a trace
by projecting R on atomic propositions, that is, (Π(R))[i] =
{l | R[i] ∈ V(l)}.
3.2 LTL model checking

System requirements are given in Linear Temporal Logic
(LTL) . The definition of LTL and its dual logic ∃LTL relies
on the notion of path formula, which is defined recursively
as below,

φ ::= a | ¬φ | φ ∧ φ | X φ | φ U φ

LTL formulae and ∃LTL formulae have the form Aφ 1 and
Eφ, respectively. A and E are called path quantifiers, and X,
U are path modalities. A formula is said simple if it is a path
formula without path modality. f is a state formula if f is
an ∃LTL formula, or an LTL formula, or a simple formula.
In what follows, we use f, g, · · · to range over state formulae
and φ, ψ, · · · to range over path formulae. We allow the
syntactic sugaring of LTL formula: We write Gφ and Fφ in
lieu of false R φ and true U φ, respectively, and we use R
as the dual of U.

LTL and ∃LTL are interpreted with respect to a Kripke
structure T = 〈S, s0,→,V〉. Formally, the semantics of a
path formula φ is defined as follows, where R is a trace of
T ,

1. R |=T a iff R[0] ∈ V(a).

2. R |=T ¬φ iff R �|=T φ

3. R |=T Xφ iff R[1] |= φ.

4. R |=T ϕUψ iff ∃i ∈ ω such that R(i) |= ψ and R(j) |= ϕ
for all j < i.

5. R |=T ϕ ∧ ψ iff R |= ϕ and R |= ψ.

The semantics for LTL or ∃LTL associate formulae with a
set of states that satisfy the formula: s |=T Aφ if R |=T φ
for every path R from s, and s |=T Eφ if R |=T φ for some
path R from s. We will write T |= f in lieu of s0 |=T f . It
can be shown that ∧ and ∨, U and R, A and E are dual to
each other, and X is self-dual. Apparently, the negation of
a LTL formula falls into ∃LTL, and vice versa.

By the definition, the holding of a ∃LTL formula or the
refusal of a LTL formula may be evidenced by a single trace.
This observation induces the notion of linear witness and
counterexample (cf. [3]).

Definition 3.4. Let Eφ be a ∃LTL formula and T =
〈S, s0,→,V〉 be a Kripke structure, if P is a trace of T such
that P |=T φ, then P is a linear witness for the ∃LTL model-
checking problem 〈Eφ, T 〉 and a linear counterexample for the
LTL model-checking problem 〈A¬φ, T 〉.

Theorem 3.5. Given a finite Kripke structure T , for ev-
ery LTL property f such that T �|= f , there exists a lasso-
shaped counterexample for model-checking problem 〈f, T 〉;
for every ∃LTL property g such that T |= g, there exists
a lasso-shaped witness for 〈g, T 〉.
1We explicitly write the primary path quantifier A in a LTL
formula to distinguish it from ∃LTL formulae



3.3 Vacuity
The notion of vacuity [2] in model checking is introduced

to capture the problem that properties may be trivially sat-
isfied. Since its introduction, the problem inspires much in-
terests on how well a system is checked on a property. Later
in Section 4 the results from the vacuity research help us
develop the notion of “property coverage” metric and crite-
rion. We use f [φ ← ψ] to denote the formula obtained by
replacing a designated occurrence of the formula φ by ψ. 2

Definition 3.6 (Affect). A sub-formula φ of f af-
fects f in model T if there is a formula ψ such that the truth
value of f and f [φ ← ψ] are different with respect to T .

Definition 3.7 (Vacuity). T satisfies f vacuously with
respect to a subformula φ if T |= f and φ doesn’t affect f
in T . T satisfies f vacuously if there exists a subformula φ
such that T satisfies f vacuously with respect to φ.

By Definition 3.7, we have to check all the possible re-
placement of each subformula to decide the non-vacuity of
the formula, which is practically impossible. Nevertheless,
Theorem 3.9 shows that one only needs to check the occur-
rences of atomic propositions by replacing them by true or
false depending their polarities.

Definition 3.8 (Polarity of Sub-formula). The po-
larity of f ’s sub-formula is recursively defined on the struc-
ture of f as follows: let ψ be a sub-formula of φ, then ψ has
the positive (negative polarity) if it is nested in even (odd)
number of negation.

Theorem 3.9. [8] A Kripke structure T satisfies the for-
mula f vacuously if and only if T |= ¬f [a ← �(a)] for some
(occurrence of) atomic proposition a, where �(a) = false if
a has positive polarity in f and �(a) = true otherwise.

4. PROPERTY-COVERAGE CRITERIA
Now we consider the test generation for LTL properties.

An LTL formula describes a property that holds on all the
paths of the system and hence fully establishing an LTL
property on an implementation requires checking all the pos-
sible executions, which is potentially infinite. We instead
concentrate on those tests that provide the sufficient cover-
age on the property being tested. Intuitively, the property-
coverage metric in Definition 4.1 describes how well the dif-
ferent mutations of an LTL property can be excluded by
tests. We consider a general notion of mutation defined as
replacing some subformula φ of an LTL property f with an
arbitrarily different formula ψ, written as f [φ ← ψ].

Definition 4.1 (Property-coverage Metrics). Given
an LTL property f , a test t covers a subformula φ of f if
there is a mutation f [φ ← ψ] such that every Kripke struc-
ture T that passes t will not satisfy the formula f [φ ← ψ].
The property-coverage metrics for the LTL property f is a
preorder �f such that for every test suites ST0 and ST1,
ST0 �f ST1 iff every subformula φ of f covered by a test
t ∈ ST1 is also covered by some test t′ ∈ ST0.

2Vacuity may also be defined based on the replacement of all
occurrences of a subformula. For a comparison of different
notions of vacuity, readers may refer to [8]

Think Ts in Definition 4.2 as the model of the system, a
test suite satisfying the property-coverage criteria shall be
passed by the model, just as other test suites generated from
the model for specification-based testing, and in addition,
it also achieves the maximal coverage on the target LTL
property.

Definition 4.2 (Property-coverage criteria). ST
is a property-coverage test suite for a system Ts and an LTL
property f if Ts passes ST and ST covers every subformula
of f .

As stated before, an LTL property can hardly be estab-
lished on an implementation by tests alone because one has
to check all the possible executions of the implementation,
which is potentially infinite. Nevertheless we consider a set
of tests nontrival if it can exclude some unwanted types
of implementations, in case of property-coverage criterion,
those implementations that satisfies some mutation of the
LTL requirement. To better understand the implication of
property-coverage criterion, we contrast it with the notion of
non-vacuity in model checking. Both of them are introduced
to measure how well a logic property (requirement) captures
the system (implementation). The different is that property
coverage does it by testing, while non-vacuity analysis uses
model checking. Lemma 4.3 links property coverage with
the notion of affect assuming that the property holds on
the system model, and Theorem 4.4 links property-coverage
criterion with the notion of non-vacuity under the same con-
dition.

Lemma 4.3. A subformula φ of f affects f in the system
Ti if Ti |= f and Ti passes a test that covers the subformula
φ of f .

Theorem 4.4. A system Ti satisfies a property f non-
vacuously if Ti |= f and the system Ti passes a property-
coverage test suite for some system Ts and the property f .

Now we need to find a way to generate a property-coverage
test suite from the specification and the property: we turn
to the witness (counterexample) generation mechanism of
model checkers for help.

Lemma 4.5. Given a system T and an LTL formula f , if
a subformula ψ of f affects f on T , then,

1. there is a lasso-shaped witness for the model checking
problem 〈¬f [ψ ← �(ψ)], T 〉.

2. For every witness R for 〈¬f [ψ ← �(ψ)], T 〉, the test
Π(R) is a test which covers the subformula ψ of f .

Test generation using model checker has been studied be-
fore [1, 7]. The idea is to use model checkers to generate
witnesses as tests for a set of properties characterizing cov-
erage criteria. Lemma 4.5 lays out the path one may follow
to generate a property-coverage test suite: to obtain a test
that covers a subformula ψ of f on T , we model check T
on an ∃LTL property ¬f [ψ ← �(ψ)], the mutation of f in
which ψ is replaced by true or false depending on its polar-
ity; the test can be obtained by projecting the witness on
atomic propositions. Furthermore, by Lemma 4.6 we only
need to generate tests for every atomic proposition in the
target property.



PropertyCoverage(f ≡ Aφ, T)
for every atomic proposition a ≺ f

〈result, witness〉:= ModelCheck(E(φ ∧ ¬φ(a ← �(a))),
T)

if result=true then
% Project the witness on atomic propositions
test:=Π(witness)
ST :=ST

S {test}
return ST

Figure 3: Generating a property-coverage test suite
for T and f

Lemma 4.6. Let ψ′ ≺ ψ ≺ φ, a test that covers the sub-
formula ψ′ of φ also covers the subformula ψ of φ.

To generate a property-coverage test suite for the spec-
ification T and an LTL formula f , we first define a set of
trapping properties for f as follows,

G(f, T ) = {E(φ ∧ ¬φ[ψ ← �(ψ)] | ψ is a subformula of f }
then we generate a witnesses set WG(f,T ) for G(f, T ) such
that for each g ∈ G(f, T ), there is a R ∈ WG(f,T ) that is
a witness for g. By Theorem 4.7, Π(WG(f,T )), the set of
tests projected from the the witness set forms a set of tests
covering LTL formula f on the specification T . Figure 3
shows the algorithm for computing a set of tests covering f
on T .

Theorem 4.7. Given a Kripke structure T and an LTL
formula f such that T satisfies f nonvacuously, the set of
tests Π(WG(f,T )) covers f on T .

Finally, we consider the practical meaning of property-
coverage testing by revisiting the motivational example in
Section 2. Recall that in the motivational example the re-
quirement is fmux ≡ A(φmux) and the specification is Tdek

in Figure 2. As the first step, we extract a set of trapping
properties G(fmux, Tdek) from fmux that characterizes the
property-coverage criteria,

G(fmux, Tdek)
= {E(φmux ∧ ¬(φmux[(grant1 = 1) ← false])),

E(φmux ∧ ¬(φmux[(try1 = 1) ← true]))}
= {E(F(try1 = 1) ∧ φmux), E(FG(grant1 �= 1) ∧ φmux)}
The first formula E(F(try1 = 1)∧φmux) in G(fmux, Tdek)

characterizes a test in which a request to access the criti-
cal section 2 is made. This is equivalent to the first crite-
ria for non-trivial test we draw in Section 2; the second
formula E(FG(grant1 �= 1) ∧ φmux) characterizes a test
on which eventually no access to the critical section 2 is
made (and hence no request should be made afterwards).
This is equivalent to the second criteria in Section 2. Fur-
thermore, model-checking G(fmux, Tdek) produces two lasso-
shaped tests similar to the tests in Section 2. Instead of
relying on our intuitions, now we obtain ”nontrivial” test
cases by an automated formal reasoning.

5. TEST-TRUNCATING STRATEGY

Property-coverage criterion limits the number of tests to
finite. By Theorem 3.5 such witnesses are lasso-shaped, po-
tentially infinite in length. Next we will showshow that a
lasso-shaped test may be reduced to a finite equivalent one
in either a black-box or a white-box test settings.

5.1 Black-box testing
In black-box testing the detail of the implementation be-

ing tested is unknown, but just like other black-box test-
ing paradigms such as conformance testing (cf. [9]) we as-
sume the knowledge of the uppper-bound n on the number
of states. With the known upperbound n, it is possible to
test only a finite prefix of the lasso-shaped test to project the
future behavior of the implementation. The idea is that, if
we repeat the loop part of the test for enough times, for ex-
ample, n times, then the same states must be encountered
twice at the same position on the loop, therefore, an infi-
nite trace extended by repeating same configuration at end
should also pass the test in its full length. More specifically,
let’s assume that a black-box implementation Ti passes the
finite test t = α(β)n and the finite trace of Ti in response
to t is R, then the same state must be repeated at the be-
ginning of some iterations on β, i.e., there are i, j < n such
that R[|α|+ |β| · i] = R[|α|+ |β| ·j]. Therefore, Ti has a trace

R(0,|α|+|β|·j) · (R(|α|+|β|·i+1,|α|+β|·j))ω and clearly such trace
will pass the infinite test α(β)ω. Thus, it is sufficient that
we test only a truncated finite test α · (β)n instead of the
infeasible job of testing α(β)ω in its full length. Theorem
5.1 shows that the cut for lasso-shaped tests is also tight.

Theorem 5.1. For a black-box system Ti with at most n
states and a lasso-shaped test t = α(β)ω, n is the least num-

ber such that Ti passes t if and only if Ti passes t(0,|α|+n).

5.2 White-box Testing
In white-box testing, we assume that the detail of im-

plementation is visible to a tester. For white-box testing a
tester can track the states traversed and terminate whenever
the same state has been visited twice at the same position
on the loop. The following procedure outlines the strategy
for applying a lasso-shaped test α · (β)ω to an white-box
implementation Ti,

1. Apply α[0], α[1], · · · to Ti.

2. Start with i := 0 and then repeat the following steps
till Ti fails.

(a) apply βi to Ti. Let sk be the current state of Tlmp

(b) if sk ∈ Si then test terminates with the report
that Ti passes the test.

(c) add sk to Si and i := (i + 1)mod|β|
Clearly there are only two ways out under the above strat-
egy: either Ti fails in test or the same state are encountered
twice in the same position on the loop part. For the lat-
ter, we can project from this finite testing that Ti has an
infinite trace which can pass α(β)ω in its full length. Such
the infinite trace can be constructed from the finite path
R in response to the truncated test: assume that s is the
state that causes the termination of testing, i.e., there is a
position i on the loop such that R[(i)] = R[|R| − 1] = s,
i ≥ |α|, and (|R| − 1 − i) mod (|β|) = 0, then the infinite

trace R · (R(i+1,|R|−1))ω obtained by repeating the tail of R



P1 : G(φ0) P2 : G(φ0 → G(φ1))
# of Atom. Prop. 5 4
Interesting Prop. P11 P12 P13 P14 P15 P21 P22 P23 P24

# of BDD nodes 781168 66630 76524 75922 75922 134749 103576 110160 204701
Time (sec.) 0.77 0.45 1.18 1.26 0.99 13.02 8.92 12.03 28.54

|α| 5 6 12 6 6 34 19 8 22
|β| 7 11 15 11 11 15 26 8 8

Table 1: Test suite generated for a digital shuttle
controller

P1 : G(φ0 → φ1Uφ2) P2 : G(φ0 → φ1)
# of Atom. Prop. 5 2
Interesting Prop. P11 P12 P13 P14 P15 P21 P22

# of BDD nodes 325026 345204 315076 416876 350898 124483 121910
Time (sec.) 101.83 145.35 103.98 198.20 194.53 8.89 7.73

|α| 0 0 0 6 6 0 0
|β| 1 10 10 11 11 1 11

Table 2: Test suite generated for PCI bus protocol

from i + 1 will also pass the test α · (β)ω in its full length.
The truncated test may be as short as |α| + |β|, but in any
case the truncated test is at most |α|+|β|·n in length, where
n is the number of states in the implementation.

6. EXPERIMENT
To assess the feasibility of our approach, we use the model

checker SMV to generate tests under property-coverage cri-
terion. The examples we chose are from the benchmark
applications collected by Bwolen Yang [14]. In these exam-
ples, we choose a variety of properties, including safety and
liveness properties. Each property is translated to a set of
interesting properties characterizing property-coverage cri-
terion, and then SMV is used to generate tests for these
properties. All the experiments are done on 1.2 GHz Mobile
Pentinum III machine with 512 MB memory. We use the
Cadence SMV release 10-11-02p36 for the Windows.

The first example is a digital shuttle controller. In Table 1
we present two properties, where each φi represents a state
formula. A set of trapping properties are extracted from
these properties under property-coverage criteria. A prop-
erty Pki is obtained from Pk by replacing its i-th atomic
proposition with true or false, depending on the proposi-
tion’s polarity. The second example is a PCI bus protocol.
We choose a safety property P1 and a liveness property P2.
We report the length of tests in term of the finite prefix as
well as the loop part.

7. CONCLUSIONS
Model-checking-assisted test generation recently receives

much attention. In this work we consider specification-based
testing in which the requirement is encoded in linear tempo-
ral logic, a popular temporal logic supported by many model
checkers and the variants of which are widely adopted in in-
dustry today. We proposed an framework for testing linear
temporal (LTL) properties. We are not trying to establish
the correctness using testing. Instead, we want to provide
a practical approach to enable the testing of linear tempo-
ral properties on the implementation. For such purpose, we
propose the property-coverage criteria that limits the tests
to those non-trivial ones. Under the property-coverage cri-
terion, the property being tested are transformed to a set of
∃LTL properties characterizing non-trivial tests, which are
in turn used by model checkers for generating tests via wit-
ness (counterexample) generation mechanism. We use the
notion of nonvacuity in model checking to interpret the im-

plication of property-coverage testing. Moreover, we argue
that by exploiting their “lasso-shaped” structure the gener-
ated tests can be reduced to finite equivalent ones in either
a white-box or a black-box testings.

The work presented in this paper can be extended in sev-
eral ways. For instance, it is possible to further reduce the
length of an test by minimizing proof structure for ∃LTL
formulae. The techniques presented here for LTL may also
be generalized to more expressive logics such as CTL∗ or µ-
calculus. Finally, the approach can also utilize more generic
proof structures such as support sets [12].
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