
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

November 2004

Model-Based Testing and Monitoring for Hybrid
Embedded Systems
Li Tan
University of Pennsylvania, tanli@seas.upenn.edu

Jesung Kim
University of Pennsylvania

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2004 IEEE. Reprinted from Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, 2004, pages 487-492.
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/260
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Li Tan, Jesung Kim, Oleg Sokolsky, and Insup Lee, "Model-Based Testing and Monitoring for Hybrid Embedded Systems", . November
2004.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/260
mailto:libraryrepository@pobox.upenn.edu

Model-Based Testing and Monitoring for Hybrid Embedded Systems

Abstract
We propose an integrated framework for testing and monitoring the model-based embedded systems. The
framework incorporates three components: 1) model-based test generation for hybrid system, 2) run-time
verification, and 3) modular code generation for hybrid systems. To analyze the behavior of a model-based
system, the model of the system is augmented with a testing automaton that represents a given test case, and
with a monitoring automaton that captures the formally specified properties of the system. The augmented
model allows us to perform the model-level validation. In the next step, we use the modular code generator to
convert the testing and monitoring automata into code that can be linked with the system code to perform the
validation tasks on the implementation level. The paper illustrates our techniques by a case study on the Sony
AIBO robot platform.

Comments
Copyright 2004 IEEE. Reprinted from Proceedings of the 2004 IEEE International Conference on Information
Reuse and Integration, 2004, pages 487-492.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/260

http://repository.upenn.edu/cis_papers/260?utm_source=repository.upenn.edu%2Fcis_papers%2F260&utm_medium=PDF&utm_campaign=PDFCoverPages

Model-based Testing and Monitoring for Hybrid Embedded
Systems ∗

Li Tan Jesung Kim Oleg Sokolsky Insup Lee

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA
{tanli, jesung, sokolsky, lee}@ saul.cis.upenn.edu

ABSTRACT
We propose an integrated framework for testing and moni-
toring the model-based embedded systems. The framework
incorporates three components: 1) model-based test gen-
eration for hybrid system, 2) run-time verification, and 3)
modular code generation for hybrid systems. To analyze the
behavior of a model-based system, the model of the system
is augmented with a testing automaton that represents a
given test case, and with a monitoring automaton that cap-
tures the formally specified properties of the system. The
augmented model allows us to perform the model-level vali-
dation. In the next step, we use the modular code generator
to convert the testing and monitoring automata into code
that can be linked with the system code to perform the
validation tasks on the implementation level. The paper il-
lustrates our techniques by a case study on the Sony AIBO
robot platform.

1. INTRODUCTION
An embedded system is a system that reacts to its en-

vironment and whose behavior is subject to the physical
constraints imposed by the environment. Although em-
bedded systems are increasingly becoming pervasive, the
development of responsive embedded systems still remains
challenging. To mitigate development difficulties, there has
been a spate of model-based design efforts in recent years.
The promise of the model-based design paradigm is to de-
velop design models and subject them to analysis, simula-
tion, and validation prior to implementation. Performing
analysis early in the development cycle allows one to detect
and fix design problems sooner and at a lower cost.

Tools have been developed both in academia [5, 10, 2] and
in industry [12] to facilitate the model-based system design.
These tools support the limited ability of validation, usu-
ally in form of invariant checking. Other more advanced
validation and verification techniques such as hybrid system
model checking are also being studied, but the scalability of
these state-of-art techniques does not yet match the needs
of embedded system design. For example, model checking
of hybrid systems can be carried out only for very small
systems because of the complexity of model checking algo-
rithms. So, to use such model checkers, embedded system
models need to be heavily abstracted, and it is not easy to
establish that assumptions made in the abstraction process

∗This research was supported in part by NSF CCR-0086147,
NSF CCR-0209024, ARO DAAD19-01-1-0473

are always valid in the target system. It is therefore highly
desirable to obtain a verification and validation technique
that is capable of checking properties beyond simple invari-
ants, can handle system models of realistic size, and can be
applied both on the model and implementation levels.

The approach we propose in this paper is to integrate the
testing and runtime verification into the model-based hy-
brid embedded system design. We generate the tests using
a simulation-based test generator, but the focus of our ap-
proach is how to apply such tests to a system model as well
as to an implementation, and verify the safety properties
during the testing using the runtime verification. We pro-
pose the techniques to generate a model-based monitor from
a formal specification of the system properties and a model-
based tester by the test requirement. Our approach applies
to both the design level and the implementation level. For
the former, we compose the model-based monitor and tester
with the instrumented system model to form a self-testing
and self-monitoring model. For the latter, we use the exist-
ing model-based code generation mechanism to convert the
composed model to executable code, including the code for
the tester and the monitor. The salient aspect of our frame-
work is that the design model and the implementation can
be evaluated under the same test and runtime monitor. We
believe that our framework is necessary in helping to narrow
the gap between designs and implementations.

Figure 1 illustrates the overview of our framework. Em-
bedded systems are modeled as hybrid automaton [17] in
our framework. For model-based testing, we start with a
nondeterministic hybrid automaton that emulates an envi-
ronment under which the embedded system is to operate.
The environment automaton supplies inputs to the system
model. The goal of test generation is to fix a subset of
environment behaviors, or in terms of environment automa-
ton, a subset of its traces which satisfies the given testing
criteria. For a particular test, our framework generates a
testing automaton from the environment automaton. Un-
like the environment automaton, the testing automaton is
deterministic and its only trace is the prescribed test case.
Model-based runtime verification is introduced to check in
real time whether the execution of a model violates given
properties.

We describe the details of our framework in context of
Charon. Charon is a visual language for modeling hi-
erarchical hybrid automaton. Charon toolkit has a model
simulator and a code generator which can translate Charon
to C++ code. In our framework, system properties are en-

environment
constraints

+
testing goal

coverage
checker

simulator
code

generator

.cc .cc .cc

codetester monitor

model
testing

automata
monitor
automata

property
specification

Figure 1: The framework for testing and monitoring
model-based generated code

coded in MEDL, a linear temporal logic for specifying safety
properties [15]. We provide an algorithm and a tool M2IST
that can synthesize a hybrid automaton as a model-based
monitor from the MEDL specification. It is then composed
with the instrumented system model to check the execution
of the system model against the MEDL specification.

The rest of the paper is organized as follows. Section 2
introduces the notations and definitions used in the paper.
It also includes a brief introduction to Charon. Section 3
covers the issue of generating a model-based tester. Sec-
tion 4 discusses techniques related to model-based runtime
verification. It also explains our toolkit M2IST for model
instrumentation and model-based monitor synthesis. Sec-
tion 5 illustrates how this framework can be used for both
design-level and implementation-level validation with a case
study on a SONY AIBO robot. The last section concludes
the paper with discussions on future directions.

Related work. Our work on synthesizing monitors is in-
spired by the previous research on runtime verification based
on formal methods, for instance, MaC [15] and Java PathEx-
plorer [8]. Both tools work on the code level. They are
capable of instrumenting Java bytecode, observing events
emitted by a running program, and comparing them with
formal specification. The approach described in this paper
can work at both the model level and the code level; that is,
our approach may also combine the monitor model with the
system model and run the composed model on a simulator
for design-level validation in addition to code-level run-time
validation. In [9], the authors show how to synthesize a mon-
itor program directly from formal specification. In contrast,
our approach is to synthesize monitors as hybrid automaton
and then leave the generation of actual monitor programs
to the automatic code generator [4, 13]. In [6] and [7], the
authors show how to synthesize automaton-based monitors
(test oracle) from temporal logics for systems with discrete
events, while we are more interested in handling continuous
dynamics of hybrid systems.

2. PRELIMINARIES

2.1 Modeling language CHARON

Charon is a formal language for modeling hybrid sys-
tems [2]. Charon builds upon the formalism of hybrid au-
tomaton [1, 17], extending it in several ways. Hybrid sys-
tems are modeled as hierarchical collections of concurrent
agents, that is, each agent can contain a number of con-
current sub-agents. Each agent is a hierarchical collection
of modes. A mode is a hybrid state machine made of sub-
modes connected by transitions. Sub-modes can, in turn,
contain further levels of hierarchy. In addition, agents and
modes contain I/O interfaces similar to hybrid I/O automa-
ton of [16]. Interfaces allow us to model open systems and
ensure compositionality of the semantics. Precise definition
of Charon and its formal semantics can be found in [3].
For simplicity, in this paper we will identify an agent with
its top-level mode and refer to both as a hybrid automa-
ton. For the purpose of this paper, we will use the following
definition of a hybrid automaton.

A hybrid automatonA is a tuple {S, X, T, G, W, D, Inv, h0},
where S is a set of locations. Locations, in turn can contain
automata. X is a set of real-valued variables. X is parti-
tioned into sets I, O, P of input, output, and internal vari-
ables, respectively. T ⊆ S×S is a set of transitions. The set
of guards G assigns to each transition t ∈ T a guard, denoted
as G(t). A guard is a predicate over X. A transition t ∈ T
is enabled when G(t) is true. The set of resets W assigns
to each t ∈ T a reset function. W (t) is a partial function
from X to R, specifying how variables of the automaton are
changed when a transition is taken. G and W collectively
define discrete behavior of A. The set of flow constraints
D assigns each location a set of differential equations in the
form of ẋ = f(X)1. D defines the continuous trajectories
for the automaton variables while the automaton stays in a
given location. The set of invariants Inv assigns each loca-
tion a set of predicates over X. The automaton can stay in
location s as long as Inv(s) is true. A state is defined by
a location and a valuation of the variables. h0 = 〈s0, V0〉 is
the initial state, where s0 ∈ S is the initial location and is
the initial valuation of the variables. We require that the
automaton cannot control its input variables neither by its
resets, nor by flow constraints. We also require that for each
variable x ∈ X − I, each location defines a flow constraint
for x.

An execution of a hybrid automaton A is given by its flow
constraints and resets. While A stays in one location s, con-
tinuous trajectories for output variables satisfy the flow con-
straints in s, while input variables may follow an arbitrary
piecewise-continuous function. When A takes transition t
from one location to another, W (t) specifies the change of
some output variables, while all other retain their values.
Two automata may be composed in parallel, in which case
they synchronize with each other via the shared variable
during continuous steps, while discrete transitions can be
taken by the automata independently of each other.

Figure 2 shows a hierarchical hybrid automaton modeling
a robot dog tracking an object. The variable θ indicates the
angle between the head and the red ball, and the variable
β is the degree of visibility of the ball. On the top level
the automaton has two locations. When the visibility of
the ball is greater than the threshold 10, the control jumps
to the right top location. The movement of the dog head

1Charon also allows algebraic constraints to be used in
defining flows, however this feature is not used here.

x = 10
x ≤ 46

. x = -10
x ≥ -46

.
x = k⋅θ.

x ≥ 45

x ≤ -45

x θ

10>β

10≤β

Figure 2: Hierarchical hybrid automaton modeling
a robot dog tracking an object.

is controlled by a differential equation ẋ = k × θ, which
forces the dog to move its head towards the ball; When β
is below the threshold 10, the control jumps to the left top
location. This model will be revisited as a simple case study
to illustrate our framework step by step.

The Charon tool set includes a simulator, a code genera-
tor, and a simulation-based test generator. Code generation
is modular, which allows each component automaton in the
model to be translated separately and be linked at the com-
pilation time. In our case study, the model in Figure 2 has
been used to generate the controlling program for the Sony
AIBO dog.

2.2 Runtime Verification
To check the execution of system models and their imple-

mentations, we use a novel formal technique called runtime
verification. Runtime verification was initially proposed to
check whether an execution of a software program violates
its safety requirement [15, 8]. A typical runtime verification
framework contains three stages. First, a requirement to
be checked is formally expressed, for example, in some tem-
poral logic. Second, the program is instrumented to send
relevant information to the runtime checker. Finally, when
the program is running, the checker will detect any violation
of the requirement and raise alarms. In this paper, we build
upon a framework for runtime verification that we have pre-
viously developed and successfully used in a number of case
studies [15]. In particular, we use Meta Event Definition
Language (MEDL) as the temporal logic to encode safety
requirements.

MEDL defines properties in terms of events and condi-
tions. Intuitively, conditions hold for a certain duration
during the execution, while events occur instantaneously.
Each event is labeled with the time of its occurrence. Prim-
itive events are supplied by the system during its execution.
Complex events and conditions are defined in terms of prim-
itive events. Predicates over event time stamps form prim-
itive conditions and allow us to express real-time require-
ments. If e1 and e2 are events, then time(e2) - time(e1)

< 5 is a condition that is true if the last occurrence of e2

was within 5 time units after the last occurrence of e1. Two
distinct events, e1 and e2, can define a condition [e1,e2),
which is true from an occurrence of e1 until the next occur-
rence of e2. Similarly, any condition c defines two events,
start(c) and end(c), which occur when c becomes true and
stops being true, respectively. Any event can be designated
as an alarm, so that an occurrence of this event can be re-
ported to the user as a violation of a requirement during an
execution. The formal semantics of MEDL define the out-

�����β���	���

�����
�
���
�����
�
��

�����������������������

��������������

1

)sin(

20
2

=
⋅+⋅⋅=

=

t

tbtad
�

θ
β

�������������

0

0

=
=

θ
β

Figure 3: The environment automaton for testing
Sony AIBO dog

come of the evaluation of a MEDL formula over a stream of
primitive events. A precise definition of MEDL syntax and
its formal semantics are defined in [15]. A sample MEDL
formula used in our case study can be seen in Section 4.

We use an auxiliary language, Primitive Event Definition
Language (PEDL), to define the relationship between low-
level run-time observations such as variable assignments and
primitive events used in a MEDL formula. PEDL is depen-
dent on the way the system is specified. In Section 4, we
will discuss mPEDL, a variant of PEDL suitable for defin-
ition of primitive events in the model-based setting, when
the system model is defined in Charon.

3. GENERATING MODEL-BASED TESTERS
The first step of model-based testing is to generate a test

suite. For an open system, we will close it by providing an
environment automaton that specifies “reasonable” behavior
for the environment. The automaton has all input variables
of the system model as its output variables.

Consider an environment automaton for the system of Fig-
ure 2, shown in Figure 3. In our case study, the environ-
ment is essentially the movement of a red ball. The ball
may change its visibility as well as its position in the space.
The environment automaton models a chaotic environment
with some degree of control: the red ball may switch be-
tween visible and invisible at any time; the red ball swings
before the dog when it is visible. Its speed and acceleration
are controlled by random variable a, b, and d, which can
change while the ball is invisible, but remain constant once
it appears.

A test suite is defined as a finite set of executions of the
environment model. We implemented a simulation-based
test case generator for Charon. It simulates the behav-
ior of the automaton starting with the initial valuation V0

and the initial location s0. During the simulation, the test
generator tries to achieve the desired coverage by resolving
the non-determinism in the model in different ways using a
randomized algorithm. A test case is obtained from the sim-
ulation trace by projecting it on the input variables of the
system model. The framework of this paper, however, does
not depend on a particular test generation approach, so that
we may be able to use other available test case generators
for hybrid systems such as [11].

Once the test suite is chosen, we create a testing automa-
ton for each test case in the suite. The purpose of the testing
automaton is to supply the test case during the execution
of the system model and later its implementation. Given a
test case, the testing automaton is the result of restricting
the environment automaton to the behavior exhibited by the
test case. Interested readers may refer to [18] for a descrip-
tion of the algorithm for constructing a testing automaton
from the environment automaton.

One of the generated test cases for the AIBO case study

ball
vision

-80

-60

-40

-20

0

20

40

60

80

0 10 20 30 40 50 60 70 80

Time (in seconds)

V
a
l
u
e

Figure 4: The movement of a red ball: a generated
test case

1

)sin(

20
2

=
⋅+⋅⋅=

=

t

tbtad
�

θ
β

�����β��������	��
�������
�����

1

10

0

0

=
<
=
=

u

u

�

θ
β

Figure 5: The testing automaton for Sony dog

is shown in Figure 4, where vision and ball are the names of
variables in the Charon models representing the visibility
β and the position θ of the red ball. The movement of
the ball has two phases. Initially, it is invisible; after 10
seconds, it starts to be visible and waves in front of the dog.
This test covers all the locations in the Sony AIBO model.
The initial invisible phase tests the dog’s behavior when the
ball is invisible, and the second phase tests how well the
dog tracks the ball. Figure 5 shows the testing automaton.
The new clock variable u ensures that the transition from
invisible location to visible location is taken at precisely 10
seconds. The only run of the testing automaton is the test
case in Figure 4.

4. SYNTHESIZING MODEL-BASED MON-
ITOR

To apply the runtime verification concept in the model-
based design, we need to change the last two stages in the
standard runtime verification framework. The instrumen-
tation is performed on the system model instead of on the
code, and instead of constructing a stand-alone checker, we
represent the checker as a hybrid automaton, encoded in the
same modeling language as the system model.

Figure 6 presents a MEDL formula used in the AIBO case
study. It describes a requirement for object tracking. When
an object is visible, the alarm is raised if the dog loses track
of the ball 50 seconds after the ball becomes visible. Events
isVisible and isInvisible denote changes in visibility of
the object, and event lost when the dog’s head cannot fol-
low the ball closely enough. Precise definition of these prim-
itive events in terms of the variables of the system model is
discussed below.

4.1 Model Instrumentation and mPEDL
MEDL formulas are evaluated over sequences of prim-

itive events, which are emitted during the executions of

ReqSpec dogVision
import event isVisible, isInvisible, lost;
condition visible = [isVisible, isInvisible);
event becameTruelost = lost when visible;
alarm lostTrack = start (time(becameTruelost)

-time(isVisible)>50);
End

Figure 6: MEDL script for monitoring SONY Dog

MonScr Dog
/* Export section */
export event isVisible, isInvisible, lost;
/* Monitored objects */
monobj real dog.beta, dog.theta, dog.x;
/* Predicate definition */
condition close=|dog.theta-dog.x|<10;
/* Event definition */
event isVisible= start (dog.vision>10);
event isInvisible= end (dog.vision>10);
event lost = end (close);

End

Figure 7: mPEDL script for monitoring Sony AIBO
Dog

monitored object, or in our case, in an execution of a hy-
brid automaton. In our framework primitive events are de-
fined in model-based Primitive Event Definition Language,
or mPEDL. mPEDL is a variant of PEDL which has been
introduced in the tool Java-MaC [14] for defining primitive
events on Java programs. Primitive events in mPEDL are
defined as the changes on predicates over the variables of
the monitored automaton. Figure 7 gives a sample mPEDL
script which defines primitive events for MEDL script in
Figure 6 with respect to the hybrid automaton in Figure 2.

A mPEDL script specifies primitive events that are ex-
ported to the checker. The monitored object section defines
the variables which are used for defining primitive events.
Consider the script in Figure 7. The script defines two prim-
itive events that denote visibility of the ball, isVisible and
isInvisible. The script also defines event lost, which oc-
curs when the angular difference between the direction to-
wards the ball (θ) and the position of the head (x) becomes
too large.

To monitor the hybrid automaton, the original model
needs to be instrumented to emit primitive events. Events
are implemented as shared variables: for each primitive event
we introduce a variable that records the time of the most re-
cent occurrence of the event. In addition, a variable newEvent
is used to signal to the checker that an event has been de-
tected. An observer automaton is introduced for each pred-
icate used in the mPEDL script. Each of such automaton
has two locations: in one state the predicate is true and in
the other location it is false. A transition between these lo-
cations occurs happen when the predicate changes its value
and manipulates the time variables for the respective events.

4.2 Generating model-based monitor from MEDL
In our approach a hybrid automaton is synthesized to

monitor the system w.r.t. the given MEDL script. This
monitoring automaton is composed with the instrumented
system automaton and reacts to the events emitted by the
system via shared variables. Each event E in the MEDL for-

Term Automaton 1
P = n + 1?P := 0

P = 0
newEvent = −1

Engine Automaton Term Automaton n

· · ·

newEvent := −1, P := 1
newEvent = 1?

Figure 8: The Monitoring Automaton

mula has a variable VE in the monitoring automaton record-
ing the last time E occurs. Each expression Q also has a
variable VQ to store its current value. Each condition C has
two variables: VC records the current value of C and VCl
records the last time C changes its value. The synthesiz-
ing process is modular: each term in the formula (condi-
tion, expression, or non-primitive event) is translated to a
separate automaton which processes the related variables.
The automata then synchronize with each other by passing
around a token that ensures that each term automaton ex-
ecutes only after all its input variables have been processed
by other term automata. The engine automaton is triggered
by each primitive event and passes the token to the first term
automaton. The monitoring automaton is the parallel com-
position of the term automata and the engine automaton, as
shown in Figure 8. The rules to generate the term automata
from a given MEDL formula are given in [18].

5. VALIDATING MODEL-BASED EMBED-
DED SYSTEMS

In this section we describe in more detail the case study
on the SONY AIBO Robotic dog, in which we performed
validation of the object tracking code generated from the
model in Figure 2. The robot consists of both analog de-
vices for inputs and outputs and a digital control system.
The control system is an embedded computer based on a
MIPS microprocessor running at 384 MHz, and equipped
with 32 MB main memory and 16 MB flash memory. The
operating system is Sony’s proprietary object-oriented real-
time operating system known as Aperios. The dog has a
two-dimension light sensor and two step motors, which con-
trol the head’s vertical and horizontal movement. The two-
dimensional light sensor can measure the relative angle be-
tween head and a bright object, in our case, a red ball. Input
variables in the Charon model are mapped to platform sen-
sors, and output variables are mapped to motor actuators.

5.1 Design-level Validation
We validate the system model using the Charon simu-

lator. We concurrently compose the instrumented model
with the generated tester (Figure 5) and monitor. An alarm
may be detected by observing the value changes on its event
variable. Note that the instrumentation introduced into the
model passively observes the values of model variables and
do not constrain the execution of the system model. Thus
an execution of the instrumented model, projected to the
variables of the system model, is an execution of the system
model.

The Charon model for the hybrid automaton in Figure
2 has 221 lines of code. The model is instrumented by
the tool P2C. P2C generates an observer from the mPEDL

ball-vision
lostTrack

-40

-20

0

20

40

60

0 10 20 30 40 50 60 70 80

(a)

lost
isVisible

track
isInvisible

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

(b)

Figure 9: Design-level validation for the SONY
AIBO dog

script in Figure 7 and adds the observer to the right place in
the Charon model. The instrumented model contains 240
lines of code. The monitor is synthesized from the MEDL
script in Figure 6 using the tool M2C, also a part of the
M2ISTtoolkit. The monitor has 295 lines of Charon code.
The generated tester has 81 line of Charon code. The size
of the composed self-testing and self-monitoring model has
622 lines of Charon code.

Figure 9 shows the result of the design-level validation.
Figure 9 (a) shows the simulation trace of the composed
model: during the initial 10 seconds, the dog swings its
head because the ball invisible. After 10 seconds the dog
starts to chase the ball. With the speed of the ball increas-
ing, the dog has increasing difficulty in chasing the ball, as
indicated by the growing angle between the dog head and
the ball (ball − vision in Figure 9), and finally the jump
on the event variable lostTrack at time 70 indicates the oc-
currence of the alarm lostTrack. Figure 9 (b) shows the
primitive events emitted during the simulation. Again, each
jump on event variables indicates the occurrence of an event,
and their values indicate when the event occurs.

5.2 Implementation-level Validation
The code generator [13] we are using supports modular-

ity compilation, which allows each component automata in
a Charon model to be compiled separately and linked as
needed. Instead of the straightforward way to generate em-
bedded code from the aforementioned self-testing and self-
monitoring model, we generate the system code, the mon-
itor code, and the tester code separately from the instru-

Controller +Tester +Tester+Monitor
CHARON (lines) 221 303 622
C++ code (lines) 873 1278 3969
Binary (bytes) 470,886 485,327 544,259

Table 1: The size of the generated codes

mented system model, the synthesized monitor model, and
the tester. They can be linked according to the validation
plan. We may link the monitor code with the system code
for a self-monitoring code. This self-monitoring code per-
forms the same as the original system, except that the mon-
itor is constantly checking the execution of the program and
raises the alarm lostTrack if necessary. Or we may link all
of three together to check the reaction of the dog on test
inputs. Figure 1 gives the size of programs in different con-
figurations.

On the design-level simulation, events are observed as the
changes on the corresponding event variables; On the im-
plementation level, we do not usually have the access to the
values of variables in an embedded program. Nevertheless,
we can do something more creative: the changes of event
variables may be used to trigger some visible actions on the
tested platform. In our case study event variable lostTrack
has been used to activate the “play” function which makes
the dog bark when event lostTrack occurs. We have loaded
the generated self-testing and self-monitoring code to Sony
AIBO dog. The dog moves its head as predicted by Figure
9 (a) and starts to bark at 70 seconds, just as expected.

6. CONCLUSIONS
We have proposed an integrated framework to test and

monitor model-based hybrid embedded programs. Our ap-
proach works directly on models, hence it does not require
changes to the existing design tools. We discuss the set of
techniques necessary for supporting this new approach: in
model-based testing we generate a model-based tester which
supplies a test case to the system model; in model-based
monitoring we instrument the system model and synthesize
a model-based monitor from the MEDL specification of the
safety properties. Our framework provides both design-level
and implementation-level validations for hybrid embedded
programs. For the design-level validation, we compose the
instrumented model with the synthesized monitor and run
the composed self-monitoring model on a simulator. For the
implementation-level validation, the existing code genera-
tion mechanism is deployed to generate the self-monitoring
executable code from the aforementioned model. Our ap-
proach yields a hardware-specific tester and runtime verifier
which can run on the targeted hardware platform for “on-
board” validation. Last but not least, we also provide the
tools support for model-based runtime verification.

Our work may be extended in several ways. For exam-
ple, it would be interesting to see how our approach works
on some industrial model-based design tools like Simulink
and Stateflow. We are also trying to optimize the tester-
generating algorithm to produce smaller testing automata.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger,

P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić,
V. Kumar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky.
Hierarchical modeling and analysis of embedded systems.
Proceedings of the IEEE, 91(1):11–28, 2003.

[3] R. Alur, R. Grosu, I. Lee, and O. Sokolsky. Compositional
refinement for hierarchical hybrid systems. In Proceedings
of Hybrid Systems: Computation and Control, volume 2034
of Lecture Notes in Computer Science, pages 33–48.
Springer-Verlag, March 2001.

[4] R. Alur, F. Ivančić, J. Kim, I. Lee, and O. Sokolsky.
Generating embedded software from hierarchial hybrid
models. In Proceedings of the ACM SIGPLAN Conference
on Languages, Compilers, and Tools for Embedded Systems
(LCTES’03), 2003.

[5] A. Chutinan and B.K. Krogh. Verification of
polyhedral-invariant hybrid automata using polygonal flow
pipe approximations. In Hybrid Systems: Computation and
Control, Second International Workshop, LNCS 1569,
pages 76–90, 1999.

[6] L. K. Dillon and Y. S. Ramakrishna. Generating oracles
from your favorite temporal logic specification. In the
Fourth ACM SIGSOFT Symposium on the Foundation of
Software Engineering, 1996.

[7] D. Giannakopoulou and K. Havelund. Automata-based
verification of temporal properties on running programs. In
Automated Software Engineering. IEEE Computer Society,
2001.

[8] K. Havelund and G. Rosu. Monitoring Java programs with
JavaPathExplorer. In Proceedings of the Workshop on
Runtime Verification, volume 55 of Electronic Notes in
Theoretical Computer Science. Elsevier Publishing, 2001.

[9] K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. In Proceedings of International Conference on
Tools and Algorithms for Construction and Analysis of
Systems, 2002.

[10] T.A. Henzinger, P. Ho, and H. Wong-Toi. HyTech: a
model checker for hybrid systems. Software Tools for
Technology Transfer, 1, 1997.

[11] Reactive Systems Inc. Reactis.
http://www.reactive-systems.com, 2003.

[12] The MathWorks Inc. Simulink, stateflow, and real-time
workshop. http://www.mathworks.com.

[13] J. Kim and I. Lee. Modular code generation from hybrid
automata based on data dependency. In Proceedings of the
9th IEEE Real-Time and Embedded Technology and
Application Symposium (RTAS 2003), 2003.

[14] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky,
and Mahesh Viswanathan. Java-MaC: a run-time assurance
tool for Java programs. In Proceedings of Workshop on
Runtime Verification (RV’2001), volume 55 of Electronic
Notes in Theoretical Computer Science, July 2001.

[15] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and
M. Viswanathan. Runtime assurance based on formal
specifications. In Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications, 1999.

[16] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O
automata. In Hybrid Systems III: Verification and Control,
Proceedings of the DIMACS/SYCON Workshop, volume
1066 of Lecture Notes in Computer Science. Springer, 1995.

[17] O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid
systems. In Real-Time: Theory in Practice, REX
Workshop, LNCS 600, pages 447–484. Springer-Verlag,
1991.

[18] Li Tan. Model-based self-monitoring embedded programs.
In submitted for publication, 2004.

	University of Pennsylvania
	ScholarlyCommons
	November 2004

	Model-Based Testing and Monitoring for Hybrid Embedded Systems
	Li Tan
	Jesung Kim
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Model-Based Testing and Monitoring for Hybrid Embedded Systems
	Abstract
	Comments

	tmp.1159468594.pdf.2c3eE

