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Radon-based Structure from Motion Without Correspondences

Abstract
We present a novel approach for the estimation of 3Dmotion directly from two images using the Radon
transform. We assume a similarity function defined on the crossproduct of two images which assigns a weight
to all feature pairs. This similarity function is integrated over all feature pairs that satisfy the epipolar
constraint. This integration is equivalent to filtering the similarity function with a Dirac function embedding
the epipolar constraint. The result of this convolution is a function of the five unknownmotion parameters
with maxima at the positions of compatible rigid motions.

The breakthrough is in the realization that the Radon transform is a filtering operator: If we assume that
images are defined on spheres and the epipolar constraint is a group action of two rotations on two spheres,
then the Radon transform is a convolution/correlation integral. We propose a new algorithm to compute this
integral from the spherical harmonics of the similarity and Dirac functions. The resulting resolution in the
motion space depends on the bandwidth we keep from the spherical transform. The strength of the algorithm
is in avoiding a commitment to correspondences, thus being robust to erroneous feature detection, outliers,
and multiple motions. The algorithm has been tested in sequences of real omnidirectional images and it
outperforms correspondence-based structure from motion.
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Radon-based Structure from Motion Without Correspondences
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Abstract

We present a novel approach for the estimation of 3D-
motion directly from two images using the Radon trans-
form. We assume a similarity function defined on the cross-
product of two images which assigns a weight to all feature
pairs. This similarity function is integrated over all feature
pairs that satisfy the epipolar constraint. This integration
is equivalent to filtering the similarity function with a Dirac
function embedding the epipolar constraint. The result of
this convolution is a function of the five unknown motion pa-
rameters with maxima at the positions of compatible rigid
motions.

The breakthrough is in the realization that the Radon
transform is a filtering operator: If we assume that im-
ages are defined on spheres and the epipolar constraint is
a group action of two rotations on two spheres, then the
Radon transform is a convolution/correlation integral. We
propose a new algorithm to compute this integral from the
spherical harmonics of the similarity and Dirac functions.
The resulting resolution in the motion space depends on
the bandwidth we keep from the spherical transform. The
strength of the algorithm is in avoiding a commitment to
correspondences, thus being robust to erroneous feature de-
tection, outliers, and multiple motions. The algorithm has
been tested in sequences of real omnidirectional images and
it outperforms correspondence-based structure from mo-
tion.

1 Introduction

Estimation of 3D-motion from two calibrated views
has been exhaustively studied in the case where optical

∗The authors are grateful for support through the following grants:
NSF-IIS-0121293, NSF-EIA-0324977, NSF-CNS-0423891, NSF-IIS-
0431070, and ARO/MURI DAAD19-02-1-0383.

†The author is grateful for the support through the following grants:
DAAD-19-02-1-0383, Boeing sub-contract Z40705R of DARPA funded
SEC program managed by AFRL, and NSF-IIS-0122599.

flow or feature correspondences are given and the scene is
rigid. Algorithms working over multiple frames yield high-
quality motion trajectories and reconstructions when fea-
ture matches are cleaned through outlier rejection and mo-
tions independent of the camera are excluded. These outlier
rejection and segmentation steps are subject to the funda-
mental problem of data association and estimation: to es-
timate 3D motion we must consider only correspondences
induced by that motion, but to segment we must know the
correspondences. Outlier rejection and independent motion
segmentation pose severe practical limitations to the wide
application of structure from motion as a navigation tool,
visual GPS, or a camera tracker.

In this paper, we propose a novel approach for structure
from motion applicable in the presence of many outliers and
multiple motions. It is based on the naive principle that
an exhaustive search over all possible correspondence con-
figurations for all motion hypotheses would yield all 3D-
motions compatible with these two views. Such a search
is intractable when we use a large field of view in an arbi-
trary, possibly unstructured environment with thousands of
features.

The contribution of this paper is in the re-formulation of
such a Hough-reminiscent approach as a filtering problem:
Assuming a similarity function between any two features in
the first and second view, we convolve this function with
a kernel that checks the compatibility of a correspondence
pair with the epipolar constraint for a given motion hypothe-
sis. The resulting integral is a Radon transform known from
computer tomography where a material density is integrated
over a ray path. In our case, this path is the subset of the
cross product of all features that satisfies the epipolar con-
straint.

The question is: Can we efficiently compute this integral
avoiding the combinatorially infeasible summation over all
correspondences compatible with the epipolar constraint?
The answer is yes, because this is a convolution integral
and we can compute it through multiplication in the Fourier
domain. While we are familiar with convolution as an inner
product with a shifted kernel, here it is not obvious what
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the domain is and what is shifted. Abstract harmonic anal-
ysis tells us that convolutions can be generalized to other
domains on which groups (similar to shifts) act. In our case
the domain is the cross-product of two rotated spheres and
we will show that the acting group is a cross-product of ro-
tations. After applying a modulation-like theorem to the
spherical Fourier transform, the final motion space is ob-
tained through a five dimensional inverse rotational Fourier
transform on the motion parameters. An exhaustive search
finds the maxima corresponding to rigid motions. The num-
ber of spherical harmonic coefficients preserved determines
the resolution of the motion space. Obviously, the approach
can work on arbitrarily large motions.

We have built an end-to-end system, from images to mo-
tion parameters. We extracted hundreds of SIFT features
[11] for which we defined their similarity function propor-
tional to the Euclidean norm of the attribute vectors and we
computed the spherical harmonics of the similarity function
as the input to the correlation integral. The only thresh-
old of the approach is the cut-off frequency of the harmonic
coefficients which determines the resolution of the motion
space. This “low-pass” operation has the appealing prop-
erty of quantizing the motion space and allowing rough but
faster estimates. In the experiments, we use as input hemi-
spherical omnidirectional images. We should point out to
the reader that this is not an omnidirectional structure from
motion approach. A projective plane can always be mapped
to the sphere and the field of view has to be large for any
structure from motion algorithm to succeed [14, 2]. The re-
sults on real sequences are compared to a robust estimation
of the Essential Matrix using RANSAC.

Before continuing with the related work we summarize
the main contributions of this paper:

• We propose a new integral transform that maps a sim-
ilarity function between two calibrated images to the
strength of a motion hypothesis without assuming any
correspondences.

• We show that this Radon transform can be written as
a convolution/correlation integral which can be com-
puted from the spherical harmonic coefficients of the
image similarity function.

• In real experiments, we compare our algorithm to
a RANSAC-based approach in the presence of hun-
dreds of outliers. In simulated experiments, we show
how multiple motions are detected as maxima of the
strength function in motion space.

The approach paves the way for several other motion es-
timation problems where the constraints can be written as
convolution kernels. Currently, the main drawback is the
computation time which allows the algorithm to be applied
only “after action.”

In the next subsection we will discuss related ap-
proaches. Then we will motivate the Radon transform by
explaining how the well-known Hough line detection can
be written as a Radon integral [3]. In section 2 we elaborate
on the Radon transform which is known in harmonic anal-
ysis to be written as a convolution. We extend this to incor-
porate the epipolar geometry and we show how to compute
the Radon transform in the frequency domain. We describe
the algorithm in a form that can be easily replicated and we
finish with experiments.

1.1 Related Work

Structure from motion without correspondences has a
history since the 80’s. Most of the approaches, called direct
motion computation, assumed a temporally dense sequence
so that computation of spatio-temporal derivatives is fea-
sible. When assuming the projection of a plane [13, 17],
the eight optical flow parameters can be estimated directly
from the brightness change constraint equation. When no
assumption about structure is made, several computation
schemes have been proposed [8]. The main constraint used
is depth-positiveness and usually a variational problem is
solved where depth is the unknown function over the image.
Direct approaches based on normal optical flow or even just
its direction have been thoroughly studied by Fermuller et
al. [6] who also established formal conditions for ambigu-
ity and instability of solutions. Jin et al. [9] have applied
a direct method for simultaneous matching of regions and
3D-motion estimation over time by exploiting photometric
constraints.

Among the approaches which do not use spatiotemporal
derivatives and thus can afford any amount of motion, the
closest to ours is the ones by Dellaert et al. [4], Antone
and Teller [1], and Roy and Cox [15]. In [4], all possible
assignments of 3D-points to image features are considered
and the correct correspondence is established through an it-
erative expectation-maximization scheme where the E-step
computes assignment weights and the M-step structure and
motion parameters. In [1], images are already de-rotated
using vanishing point correspondences and the translation
is initialized via a Hough transform over all possible fea-
ture correspondences. Antone and Teller are the only ones
who use the epipolar constraint and address the complexity
of such a Hough transform. They propose ways to prune
the search space through feature similarity as well as lim-
its in the parameter space. In [15], an exhaustive search in
the 5D parameter space is performed where for each mo-
tion hypothesis a cost function between points in the first
image and segments of the corresponding epipolar line in
the second image is computed. Our approach is also related
to the learning of the epipolar geometry [19] though ours
is not data-driven but requires a calibrated camera. Our ap-
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proach is superior to [4] and [1] because it is not based on
an iterative process which can possibly run through all as-
signments. While we use an exhaustive search in parameter
space, the computation of the associated “likelihood” is ac-
complished without iteration but directly from the spherical
harmonic coefficients. Our approach is superior to Roy and
Cox only in the efficient computation of each motion hy-
pothesis. We have not described here work on motion seg-
mentation given correspondences. The reader is referred to
the application of normalized cuts [16] and the generalized
PCA [18] among tens of other papers on the subject.

2 Radon transform

We begin with an introduction to the traditional Hough
transform as it applies to finding lines in images. In this
setting the data points are image pixels and the discrete pa-
rameter space is a set of lines. Conceptually, for each im-
age pixel, the Hough transform contributes a vote to all the
lines it lies along. This vote is weighted by the likelihood
that the point under consideration is indeed an edge pixel
(e.g. the gradient magnitude). Equivalently, we could de-
scribe this computation as a traversal through the parameter
space instead of the data space. The vote total for each line
can be generated by counting the number of image pixels
the line goes through, weighted by the likelihood that each
pixel is an edge pixel. In the continuous case, this compu-
tation could be written as the following integral

G(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)δ(ρ − x cos θ − y sin θ)dxdy

Here g(x, y) is a weighting function which could store the
gradient lengths of each pixel and δ is a soft characteristic
function which measures how close the edge pixel (x, y)
is to the line given by (ρ, θ). This integral transformation
from data space to parameter space is often referred to as
the Radon transform. We would like to use similar intuition
to formulate a transform which will identify the unknown
motion parameters.

Consider a camera moving rigidly in space. Assuming
the intrinsic calibration parameters of the camera are known
(meaning we can associate with each image pixel a ray in
space), we can assume that the camera model is spherical
perspective projection. This is useful since many single-
viewpoint camera systems ranging from traditional CCD
cameras to fish-eye lenses and even omnidirectional cam-
eras can be treated with this spherical projection model. In
this setting, points P ∈ R

3 in the world project to image
points p ∈ S

2, where p = P/||P ||. If a camera under-
goes a rigid motion described by (R, T ) ∈ SE(3)(R ∈
SO(3), T ∈ R

3), it is well known that the projections p and
q obey the epipolar constraint:

(Rp × q)T t = 0 (1)

Figure 1. Concept: Instead of searching for corresponding points
between images, we consider all feature pairs. The motion which
is satisfied by the largest subset of feature pairs (weighted by a
similarity measure) is considered to be the true camera motion.
In the example above a weighting could be generated from the
similarity between local blob structure

If we were to follow the blueprint of the integral transform
described earlier, we would define our parameter space to be
the group of all possible rigid camera motions and our data
space to be the set of all point pairs between two images.
Our integral transform would look like

G(R, t) =

Z
p∈S2

Z
q∈S2

g(p, q)∆(Rp, q, t)dpdq (2)

Here the soft characteristic function ∆(Rp, q, t) = δ(Rp×
q)T t), measures how close the feature pair (p, q) comes to
satisfying the motion constraint (1), and g(p, q) is a mea-
sure of how likely the points p, q are the projections of the
same scene point. For each motion given by (R, t), the in-
tegral (2) counts the number of point pairs which satisfy the
motion constraint, weighted by the likelihood that the point
pair represents the same scene point (see figure 1). Take a
moment to imagine a discretized evaluation of Radon the in-
tegral. Assuming an image has n pixels, the number of pos-
sible point pairs considered would be n2, of which clearly
no more than n pairs can represent true correspondences.
With such a miniscule percentage of inlying point pairs, it is
essential that we construct a discriminating weighting func-
tion g(p, q). In our setting it is clear a simple image-based
neighborhood similarity will not suffice. Instead of using
intensity information directly, we perform feature extrac-
tion in the image. Thus, instead of considering all the pixel
locations in an image, we only use the positions where fea-
tures can been detected. We have chosen to use the popular
SIFT features [11], which histogram neighborhood gradient
orientations at peaks and valleys of difference-of-gaussians.
These histograms typically make up a 128-dimensional vec-
tor, which allows us to create a very simple weighting func-
tion based on the Euclidean distance between two such vec-
tors:

g(p, q) = e−||p−q||2 (3)
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The two functions g, ∆ have now been concretely defined.
We could generate a solution to the ego-motion problem by
computing G(R, t) directly. Computationally, if we assume
the number of samples in each dimension of our parameter
space is N, and the number of features identified in each im-
age is M, then the complexity of this direct approach would
be on the order of O(N5M2). This is an unacceptable load
for almost any practical application. For a rigorous look at
the combinatorics of this problem, see the Appendix of [1].
In the following sections we will demonstrate an efficient
algorithm to generate the values of G(R, t).

3 Motion estimation as correlation

A cursory glance at our formulation of G(R, t) reveals
g(p, q) is independent of the motion. Thus we can focus our
attention on ∆. So far we have identified camera motions
with an R ∈ SO(3), and a unit vector t. Since t ∈ S

2, we
can represent t with a rotation so that t = Rte3, where e3

is the standard Euclidean basis vector associated with the
Z axis. This allows us to parameterize the space of camera
motions with a rotation pair (R, Rt) ∈ SO(3) × SO(3).
∆(Rp, q, t) can now be written as

∆(Rp, q, Rt) = δ((Rp × q)T Rte3)
= δ((RT

t Rp × RT
t q)T e3) (4)

We will write Rc = RT Rt for the composite rotation em-
bedding the rotational and translational terms. We have con-
veniently written ∆ in the form of (4) to highlight it as a
function defined on the space S

2 × S
2:

∆(RT
c p, RT

t q) = δ((RT
c p × RT

t q)T e3)

In this setting, the canonical camera motion, defined by
Rc = Rt = I , is represented by ∆(p, q) = ((p × q)T e3),
which represents a translation along the Z axis and a rota-
tion of either 0◦ or 180◦ about the Z axis.

Define the rotation of spherical functions with the op-
erator Λ(R1,R2)f(p, q) ≡ f(RT

1 p, RT
2 q). We see that the

∆ for any camera motion (Rc, Rt) can be generated from
the rotation of the canonical ∆ : Λ(Rc,Rt)∆(p, q) =
∆(RT

c p, RT
t q). Revisiting our transform (2), we can write

G(Rc, Rt) =
∫

p

∫
q

g(p, q)Λ(Rc,Rt)∆(p, q)dpdq (5)

Instead of recomputing ∆ for every motion, we only need
to understand how the canonical ∆ rotates. In the follow-
ing section, we will use this crucial fact to explore a spec-
tral correlation technique which will enable us to compute
G(Rc, Rt) directly without traversing the space of all pos-
sible camera motions.

4 Harmonic analysis

The inner product computed in (5) measures the correla-
tion between two functions g, ∆ ∈ L2(S2×S

2). Remember
that g is a function on the set of feature pairs and ∆ embeds
the epipolar constraint. In some sense we are computing
the overlap or intersection between point pairs in g with
epipolar great circles in ∆. In fact, we are searching for
the rotation pair which maximizes this overlap. The gen-
eral problem of signal correlation has been approached suc-
cessfully in other domains. The convolution properties of
functions on various groups and homogeneous spaces have
shown that it is often easier to compute the spectral compo-
nents of a correlation function like G(Rc, Rt) than it is to
generate the function samples directly in the spatial domain.
To get a clearer understanding of how we can compute our
integral in such a fashion, we can explore the simpler prob-
lem of maximizing the correlation between two functions
defined on the unit sphere S

2. In this setting we will com-
pute

G(R) =
∫

f(p)ΛRh(p)dp, f, h ∈ L2(S2) (6)

by generating the spectral coefficients of G(R). This ap-
proach naturally gives rise to three questions: (1) How can
we compute the Fourier transform of f ∈ L2(S2)? (2) How
does the spectrum of f change under a rotation ΛRf? (3)
How can we compute the Fourier transform of G(R) effi-
ciently using the answers to questions 1 and 2? To answer
these questions we will present a minimal introduction to
spherical and rotational signal processing. Readers are re-
ferred to [5] for a comprehensive exposition of the spherical
Fourier transform.

As the solution to the Laplacian restricted to the cir-
cle generates a basis for periodic functions on the line, the
spherical harmonic functions Y l

m form an orthonormal basis
for spherical functions. There exist (2l+1) such harmonics
for each degree l (m = −l . . . l), and they are defined as

Y l
m(p(θ, φ)) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
P l

m(cos θ)eimφ

where P l
m(cos θ) are associated Legendre polynomials.

This basis gives rise to the Spherical Fourier Transform
(SFT):

f(p) =
∑
l∈N

∑
|m|≤l

f̂ l
mY l

m(p) (7)

f̂ l
m =

∫
p

f(p)Y l
m(p)dp (8)

Two very important properties of the spherical harmonic
functions are their orthogonality and their relationship un-
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der rotations:∫
p

Y l
m(p)Y n

k (p)dp = δlnδmk (9)

ΛRY l
m(p) =

∑
|k|≤l

Y l
k(p)U l

km(R) (10)

The U l are the unitary matrix representations of the trans-
formation group SO(3). This last relationship (10) is im-
portant because it helps answer our second question. We
will write f̂ l, Y l without the subscript m to denote the vec-
tor of (2l+1) orders for a given degree l. With this notation
we can express the inverse SFT (7) for functions undergoing
a rotational shift:

ΛRf(p) =
∑

l

(ΛRY l(p))T f̂ l

=
∑

l

Y l(p)T U l(R)f̂ l (11)

As the unitary matrices U l are the group representations of
SO(3), they form a basis for a Fourier transform on the
rotation group:

f(R) =
∑

l

∑
|m,k|≤l

f̂ l
mkU l

mk(R) (12)

f̂ l
mk =

∫
R

f(R)U l
mk(R)dR (13)

The matrix elements of U l are given as

U l
mk(R) = e−imαP l

mk(cosβ)e−ikγ , (14)

where P l
mk are the generalized Legendre polynomials.

We now have the mechanisms in place to answer our
third question. Replacing f(p) and ΛRh(p) with their
Fourier transforms we have

G(R) =
∑

l

∑
|m,k|≤l

f̂ l
mĥl

kU l
mk(R) (15)

From the orthogonality property∫
R

U l1
m1k1

(R)U l2
m2k2

(R)dR = δl1l2δm1m2δk1k2

the SO(3) Fourier transform of G(R) is simply

Ĝl = f̂ l(ĥl)T (16)

In conjunction with the inverse SO(3) Fourier transform
(12), this last equation shows that we can obtain the samples
of G(R) directly from the pointwise multiplication of the
Fourier coefficients of f and h.

As expected, this theory extends directly to functions on
S

2×S
2, where the “rotation” comes from the product group

INPUT

1. A pair of spherical images I1, I2

OFFLINE

1. Compute the Fourier transform ∆̂ of ∆ from (18).

ONLINE

1. Detect SIFT feature sets p, q from images I1, I2.

2. From the cross product of the feature sets generate the
similarity function g.

3. Compute the Fourier transform ĝ of g from (18).

4. Generate the 5D coefficient space Ĝl1l2
m1m2k1−m2

from

ĝ and ∆̂ as described in (19).

5. Using inverse Fourier transforms (12) obtain
G(Rc, Rt). Note: only a partial 2D inverse transform
is needed for Rt = R(0, β, γ).

6. Locate (Rc, Rt) at the maxima of G

7. Relative orientation between cameras is R = RtR
T
c .

8. Direction of translation is T = Rte3.

Figure 2. The full motion estimation algorithm.

SO(3) × SO(3). The Fourier transform for any function
f ∈ L2(S2 × S

2) is given as

f(p, q) =
∑

l1l2m1m2

f̂ l1l2
m1m2

Y l1
m1

(p)Y l2
m2

(q) (17)

f̂ l1l2
m1m2

=
∫

p

∫
q

f(p, q)Y l1
m1(p)Y l2

m2(q)dpdq (18)

The spectrum of G(Rc, Rt) from (5) can be obtained from
the Fourier transforms of g, ∆:

Ĝl1l2
m1m2k1k2

= f̂ l1l2
m1k1

∆̂l1l2
m2k2

(19)

Up to this point we have treated camera motions with
rotation pairs (Rc, Rt) ∈ SO(3) × SO(3). However, the
direction of translation obtained from t = Rte3 is inde-
pendent of the first applied rotation from Rt, so we fix
Rt = R(0, β, γ). In effect, the rotation Rt is explicitly a
two-parameter rotation. This characteristic is reflected in
our formulation since Ĝ is nonzero only if m2 = −k2. We
are only interested in the coefficients Ĝl1l2

m1m2,k1,−m2
, which

constitute the five-dimensional Fourier space of our camera
motions. The resulting inverse Fourier transform required
to obtain the samples of G is also only five dimensional.
A summary of the full ego-motion estimation algorithm is
presented in figure (2).

5 Experiments

In this section we will present the results of the motion
estimation algorithm on real image sequences as well as a

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 



simulated result for detecting multiple motions in the scene.
Before presenting the results we will address some prac-
tical considerations regarding spherical image acquisition
and discrete Fourier transforms.

5.1 Spherical image acquisition

One of the benefits of choosing to model our camera with
a spherical perspective projection is that it enables us to
unite a number of single-viewpoint camera systems. The
projection model of a central catadioptric system is equiva-
lent to a spherical projection followed by a projection onto
the plane [7]. If calibrated, such a sensor enables us to
interpolate spherical perspective images. Our system con-
sisted of a Canon Powershot G2 digital camera fastened to
a parabolic mirror attachment from RemoteRealityTM[12].
The mirror’s field-of-view is 212◦ so the camera captures
slightly more than a hemisphere of information. The im-
ages from this system are mapped to a uniformly sampled
polar grid. Figure (3) shows a sample catadioptric image
obtained from a parabolic mirror and its corresponding pro-
jection onto the sphere.

Figure 3. Top Left: a parabolic catadioptric image. Bottom: the
corresponding spherical image on a uniformly sampled polar grid.
Top Right: the spherical image as it would appear on the surface
of the sphere

5.2 Discrete Fourier transforms

Until now we have only discussed the spherical and
SO(3) Fourier transforms in regards to continuous func-
tions. However, our spherical images and Radon space
G(Rc, Rt) are discrete functions. In order to compute the
SFT of a spherical image residing on a uniformly sampled
polar grid, we can use a fast O(L2log2L) algorithm devel-
oped by Driscoll and Healy [5], where L is the bandlimit

of the signal being transformed. A similar separation-of-
variables approach exists for a fast SO(3) Fourier transform
in O(L3log2L) [10].

5.3 Results

We proceed to show experimental results of our algo-
rithm tested on a sequence of real omnidirectional images.
For our tests, we assumed a function bandwidth of L = 32,
which left us with a spatial resolution of 2L = 64 sam-
ples in each of the five dimensions of our motion space.
For comparison, we employed RANSAC to estimate the Es-
sential matrix. Although it seems natural to use RANSAC
in the presence of outliers, there are two immediate issues
which would prevent a naive implementation from being
operative. First is the volume of outliers. As the outliers in
the set of feature pairs between two typical images is over
99%, the likelihood of selecting a minimal set of true corre-
spondences is negligible. To this end, we discarded all but
the best matching pairs during the random sampling stage.
The second issue is in determining the termination thresh-
old of the RANSAC algorithm. In order to perform a proper
evaluation of our algorithm, we implemented a best-case
RANSAC which does not have a termination threshold but
rather iterates 50, 000 times. The Essential matrix which
satisfies the most feature pairs (weighted with g(p, q)) is se-
lected as the motion. This ensures that a manual selection
of the termination threshold may not be set too low to allow
termination for an inferior motion.

We begin with a pure translational sequence of images.
By fixing and sliding our camera along a rigid beam, we
were able to generate two sequences of translational motion
along the X and Z axes of the camera frame. Fixing the
magnitude of motion between each frame, we were able to
plot the estimated camera trajectory in figure (4). Notice in
the figure that the translational slice shown depicts a peak
at Rt(0, π

2 , π)e3 = −X . Although it is clear that trans-
lation along both ±X will satisfy the epipolar constraint,
what may be surprising is that there is not also a peak at
+X . This happens because Rc is a composite rotation of
both rotational and translational terms, and so (Rc, Rt) and
(Rc,−Rt) do not represent the same motion.

A similar experiment was performed with the camera
moving along the Z axis. The motion was recovered from
pairs of consecutive images, with the estimated camera path
shown in figure (5). Our Radon estimation has a smaller
deviation from the observed ground truth Z axis than the
RANSAC estimation.

In order to test both rotations and translations while
recording ground-truth observations, we positioned the
camera at the outside edge of a turntable. This allowed us
to capture images from the camera moving around in a cir-
cle. There was a 45◦ rotation between each of the images in
this sequence, and the estimated camera positions are shown
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in figure (6). Although the Radon’s trajectory estimate de-
viates slightly from the plane, the positions as seen from
the overhead view coincide with the recorded ground truth
more accurately than the RANSAC estimation. After 6 pair-
wise tests, there was little error accumulation in the Radon’s
motion estimation.
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Figure 4. Top: the estimated trajectory of the camera. In blue
(light) is the Radon estimation, in red (dark) is the RANSAC com-
putation, and the yellow circle marks the starting position. Bottom
Left: An Z-Y slice showing the deviation of the estimated posi-
tions from the X axis. Bottom Right: the Rt slice of the grid G
where the maxima was found.

5.4 Multiple motions

One aspect of our algorithm we have only briefly touched
upon is the significance of treating feature pairs indepen-
dently. This is critical because while outlying feature pairs
may contribute to incorrect solutions, they cannot detract
from or perturb the value of the integral at the position of
the correct solution. The effect, besides making our algo-
rithm robust to outliers, is that if there are multiple moving
objects in a scene, the feature matches from the individual
objects will contribute to their respective motions. Thus,
our algorithm, without having to be altered, can detect mul-
tiple motions of moving objects in a scene.

We simulate two moving objects in an otherwise static
scene. Figure (7) shows a caricature of the types of scenes
we considered for this simulation. The two objects each
have 150 features. These features project onto the spherical
image as gaussian blobs. A simple sum-of-squared differ-
encing is used to generate the similarity function g. We in-
crementally deform the features by randomly replacing the
σ with a new one from the existing pool (this simulates in-
troducing erroneous feature matches while simultaneously
reducing correct matches). Figure (7) shows on the bot-
tom one of the two translational slices of the motion space.
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Figure 5. Left: the estimated trajectory of the camera. In blue
(light) is the Radon estimation, in red (dark) is the RANSAC com-
putation, and the yellow circle marks the starting position. Top
Right: An X-Y slice showing the deviation of the estimated posi-
tions from the Z axis. Bottom Right: the Rt slice of the grid G
where the maxima was found (notice the peak is locate at θ ≈ 0,
which corresponds to the correct translation along Z).

Although both motions are correctly estimated when 20%
of the features are deformed, the peaks are clearly disinte-
grated by the time 30% of the features have been affected.

6 Conclusion

We have presented a novel approach for the compu-
tation of 3D-motion from two views without correspon-
dences. It is based on a 5D-search in the motion param-
eter space. Given today’s computing power it is not the
search but rather the combinatorial explosion of all possi-
ble correspondences that is intractable. Instead of travers-
ing all possible correspondence assignments, our method
computes for each motion hypothesis a correlation function
which considers only feature pairs satisfying the epipolar
constraint. Such a function can be written as a Radon-
transform which is known to become a convolution integral
if the integration path can be written as a group action over
the domain of integration. In this case, the integral can be
computed as an inner-product in the Fourier domain. The
bandwidth limitation affects directly the resolution of the
parameter space and it is indeed our future work to estab-
lish a “space localization” using wavelets. Such a localiza-
tion in the parameter space would also allow a constrained
search when prior distributions of motion are established
causally through time. In that case, we could also achieve
near real-time performance which right now is impossible
in all correspondence-less approaches. Naturally, our ap-
proach can handle both outliers and multiple rigid motions.
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Figure 6. A camera moving along a circular path. Top Left: In blue
(light) is the Radon estimation, in red (dark) is the RANSAC. Top
Right: The X-Z slice showing the deviation from the plane of the
turntable. Bottom Left: An overhead view. The yellow circles are
the observed ground truth positions of the camera. Bottom Right:
four images from the sequence. Even though the dominant motion
is rotation, the translation is still effectively detected by the Radon.

It can be easily cast in a maximum likelihood framework.
Our approach can be modified to incorporate a normaliza-
tion of the epipolar constraint that removes the bias in trans-
lation direction.
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