
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

June 2005

Spectral Segmentation with Multiscale Graph
Decomposition
Timothée Cour
University of Pennsylvania

Florence Bénézit
Ecole Polytechnique

Jianbo Shi
University of Pennsylvania, jshi@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2005 IEEE. Reprinted from Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005 (CVPR
2005), Volume 2, pages 1124-1131.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/218
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Timothée Cour, Florence Bénézit, and Jianbo Shi, "Spectral Segmentation with Multiscale Graph Decomposition", . June 2005.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/218
mailto:libraryrepository@pobox.upenn.edu

Spectral Segmentation with Multiscale Graph Decomposition

Abstract
We present a multiscale spectral image segmentation algorithm. In contrast to most multiscale image
processing, this algorithm works on multiple scales of the image in parallel, without iteration, to capture both
coarse and fine level details. The algorithm is computationally efficient, allowing to segment large images. We
use the Normalized Cut graph partitioning framework of image segmentation. We construct a graph encoding
pairwise pixel affinity, and partition the graph for image segmentation.We demonstrate that large image graphs
can be compressed into multiple scales capturing image structure at increasingly large neighborhood. We
show that the decomposition of the image segmentation graph into different scales can be determined by
ecological statistics on the image grouping cues. Our segmentation algorithm works simultaneously across the
graph scales, with an inter-scale constraint to ensure communication and consistency between the
segmentations at each scale. As the results show, we incorporate long-range connections with linear-time
complexity, providing high-quality segmentations efficiently. Images that previously could not be processed
because of their size have been accurately segmented thanks to this method.

Comments
Copyright 2005 IEEE. Reprinted from Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2005 (CVPR 2005), Volume 2, pages 1124-1131.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/218

http://repository.upenn.edu/cis_papers/218?utm_source=repository.upenn.edu%2Fcis_papers%2F218&utm_medium=PDF&utm_campaign=PDFCoverPages

Spectral Segmentation with Multiscale Graph Decomposition

Timothée Cour1 Florence Bénézit2 Jianbo Shi3
1,3Computer and Information Science 2Applied Mathematics Department

University of Pennsylvania Ecole Polytechnique
Philadelphia, PA 19104 91128 Palaiseau Cedex, FRANCE

timothee@seas.upenn.edu florence.benezit@polytechnique.org

Abstract

We present a multiscale spectral image segmentation al-
gorithm. In contrast to most multiscale image processing,
this algorithm works on multiple scales of the image in par-
allel, without iteration, to capture both coarse and fine level
details. The algorithm is computationally efficient, allowing
to segment large images. We use the Normalized Cut graph
partitioning framework of image segmentation. We con-
struct a graph encoding pairwise pixel affinity, and parti-
tion the graph for image segmentation. We demonstrate that
large image graphs can be compressed into multiple scales
capturing image structure at increasingly large neighbor-
hood. We show that the decomposition of the image seg-
mentation graph into different scales can be determined by
ecological statistics on the image grouping cues. Our seg-
mentation algorithm works simultaneously across the graph
scales, with an inter-scale constraint to ensure communi-
cation and consistency between the segmentations at each
scale. As the results show, we incorporate long-range con-
nections with linear-time complexity, providing high-quality
segmentations efficiently. Images that previously could not
be processed because of their size have been accurately seg-
mented thanks to this method.

1. Introduction

There are two things you could do to make image seg-
mentation difficult: 1) camouflage the object by making its
boundary edges faint, and 2) increase clutter by making
background edges highly contrasting, particularly those in
textured regions. In fact, such situations arise often in natu-
ral images, as animals have often evolved to blend into their
environment.

Several recent works have demonstrated that multiscale
image segmentation can produce impressive segmentation
results under these difficult conditions. Sharon, et. al. [9]

uses an algebraic multi-grid method for solving the normal-
ized cut criterion efficiently, and uses recursive graph coars-
ening to produce irregular pyramid encoding region based
grouping cues. Yu [11] constructs a multiple level graph en-
coding edge cues at different image scales, and optimizes
the average Ncut cost across all graph levels. Zhu et. al. [1]
explicitly controls the Markov chain transitions in the space
of graph partitions by splitting, merging and re-grouping
segmentation graph nodes.

We argue that there are in fact three orthogonal issues
in multiscale image segmentation: 1) multiscale signal pro-
cessing to enhance faint contours [6, 2]; 2) image region
similarity cues at multiple scales provides texture/shape
cues for larger regions; 3) propagation of local grouping
cues across multiple ranges of spatial connections allows us
to detect coherent regions with faint boundary.

Sharon [9], Zhu [1]’s approaches focus on the last two is-
sues, and Yu [11] focuses on the first and third. The primary
motivation underlying all these approaches is that local in-
formation propagates faster with long range connections
across image regions, and computation converges faster
both in graph partitioning and MRF probabilistic formu-
lation. Both Sharon and Zhu advocated data driven adap-
tive coarsening of an image region/segmentation graph as
an essential step in multiscale segmentation. This conclu-
sion is partly justified by the failure of most multiscale seg-
mentation algorithms [8, 7, 4] which use simple geometric
coarsening of images: typically fine level details along ob-
ject boundaries are lost due to coarsening error.

We focus on the third issue of multiscale propagation of
grouping cues in isolation. We show that simple geomet-
ric coarsening of the image region/segmentation graph can
work for multiscale segmentation. The key principle is that
segmentation across different spatial scales should be pro-
cessed in parallel. We specify the constraint that segmen-
tation must be self-consistent across the scales. This con-
straint forces the system to seek an “average” segmentation
across all scales. We show our multiscale segmentation al-
gorithm can precisely segment objects with both fine and

coarse level object details.
The advantage of graphs with long connections comes

with a great computational cost. If implemented naively,
segmentation on a fully connected graph G of size N would
require at least O(N2) operations. This paper develops an
efficient computation method of multiscale image segmen-
tation in a constrained Normalized cuts framework. We
show that multiscale Normalized cuts can be computed in
linear time.

This paper is organized as follows. In section 2, we re-
view the basics of graph based image segmentation. In sec-
tion 3 and 4, we show how to compress a large fully con-
nected graph into a multiscale graph with O(N) total graph
weights. In section 5, 6, we demonstrate efficient optimiza-
tion of multiscale spectral graph partitioning with O(N)
running time. We conclude with experiments in section 7.

2. Graph based image segmentation

Given an image I, we construct a graph G = (V, E, W),
with the pixels as graph nodes V , and pixels within dis-
tance ≤ Gr are connected by a graph edge in E. A weight
value W (i, j) measures the likelihood of pixel i and j be-
longing to the same image region. Partitioning on this graph
provides image regions segmentation.

2.1. Encoding Graph Edges

The overall quality of segmentation depends on the pair-
wise pixel affinity graph. Two simple but effective local
grouping cues are: intensity and contours.

Intensity Close-by pixels with similar intensity value are
likely to belong to one object:

WI(i, j) = e−||Xi−Xj ||2/σx−||Ii−Ij ||2/σI (1)

where Xi and Ii denote pixel location and intensity. Con-
necting pixels by intensity is useful to link disjoint object
parts. But because of texture clutter, the intensity cue alone
often gives poor segmentations.

Intervening Contours Image edges signal a potential object
boundary. It is particularly useful when background clut-
ter has similar intensity value with object body. We evalu-
ate the affinity between two pixels by measuring the magni-
tude of image edges between them:

WC(i, j) = e−maxx∈line(i,j)||Edge(x)||2/σC (2)

where line(i, j) is a straight line joining pixels i and j, and
Edge(x) is the edge strength at location x. Fig. 1 shows
graph weights W (i, :) for a fixed pixel i. At coarse image
scales, texture edges tend to be blurred out and suppressed,
while at fine image scales faint elongated edges are more

likely to be detected, together with texture edges. To de-
fine the affinity between two pixels i and j we look at the
edges across multiple scales.

We can combine the two cues with WMixed(i, j) =√
WI(i, j) × WC(i, j) + αWC(i, j).

Figure 1: Column 1 and 2: image and image edges. Column 3
and 4: segmentation graph encoding intervening contour group-
ing cue. Two pixels have high affinity if the straight line connect-
ing them does not cross an image edge. Column 3 displays one
row WC(i, :) of the graph connection matrix reshaped as an im-
age, for the central pixel i. The row corresponds to the red line on
column 4.

2.2. Computing Optimal Normalized Cuts

For a bipartition of the graph V = A
⋃

B,
the Normalized Cuts [10] cost is defined as:
Ncut(A, B) = Cut(A,B)

V olume(A)×V olume(B) . We can rewrite it

using binary group indicator function Xl ∈ {0, 1}N ,
with Xl(i) = 1 iff pixel i belongs to segment l.
Let X = [X1, X2], D be a diagonal matrix where
D(i, i) =

∑
j W (i, j). The segmentation criterion amounts

to the following:

maximize ε(X) =
1
2

2∑
l=1

XT
l WXl

XT
l DXl

(3)

subject to X ∈ {0, 1}N×2 and X12 = 1N (1N is a vector
of N ones). A generalized K-way Ncut cost function can be
similarly defined using X = [X1, . . . , XK]. Finding the op-
timal Ncut graph partitioning is NP hard. A spectral graph
partitioning technique allows us to solve this problem us-
ing a continuous space solution by computing the K eigen-
vectors corresponding to the K largest eigenvalues in:

WV = λDV (4)

To discretize V into X , we first normalize the rows of V
into V ′, and then search for the rotation R that brings V ′

the closest possible to a binary indicator vector X .

3. How large of a graph connection radius?

The construction of our image segmentation graph thus
far has focused on encoding grouping cues to compute the
graph weights W (i, j). We turn our attention to the graph

topology. Recall that two pixels are connected in a graph if
they are within distance Gr. How big should the graph con-
nection radius Gr be ?

A larger graph radius Gr generally makes segmentation
better. Long range graph connections facilitate propagation
of local grouping cues across larger image regions. This ef-
fect allows us to better detect objects with faint contours in
a cluttered background, as shown in fig. 2.

Figure 2: The Ncut segmentation eigenvector of the left image for
increasingly large graph connection radius Gr. With larger Gr , the
squirrel with faint contours pops out more clearly, but the graph
affinity matrix becomes denser. The bottom row shows zoomed
out versions of the affinity matrices.

Smaller Gr generally makes segmentation faster. The
graph weight matrix grows rapidly with rate of O(G2

r). In
computing the Ncut eigenvectors, the overall running time
is dominated by two factors: 1) the cost of matrix-vector
multiplication y := Wx (which can be thought of as a lo-
cal anisotropic diffusion on partitioning function x), and 2)
the number of iterations, or number of matrix-vector mul-
tiplications until convergence. For faster computation, we
want to minimize the number of iterations and make each it-
eration faster. However, as the following experiment (fig. 3)
shows, setting Gr small does not necessarily make the over-
all Ncut optimization faster. As we see in fig. 3, there is a
tradeoff between the number of eigensolver iterations, and
the size of Gr. It appears there is a minimum required con-
nection radius. A graph with a too small connection radius
requires a lot of diffusion operations y := Wx to propa-
gate local grouping cues across larger neighborhood.

4. Compression of long range connection
graphs

The ideal graph connection radius Gr is a tradeoff be-
tween the computation cost, and segmentation result. We
will show that we can alleviate this tradeoff by providing an
efficient segmentation algorithm which can effectively have
a very large Gr. We do so by decomposing the long range
connection graph into independent subgraphs.

Figure 3: We compute Ncut segmentation eigenvectors for graphs
with increasing connection radius Gr for the squirrel image in
Fig. 2. The number of eigensolver iterations and total running
time (sec) as a function of graph radius Gr . The number of eigen-
solver iterations is high for small Gr , and decreases steadily until
Gr = 7. The total running time remains constant until Gr = 5 de-
spite rapid increase in the cost of y := Wx.

4.1. Statistics of Segmentation Graph Weights

Consider the following experiment. We extract 60 × 60
patches from 200 randomly selected images. For each im-
age patch Pk, we use the intervening contour cue to com-
pute WPk(i, j) = WPk

C (i, j) for the central pixel i and all
possible j. We estimate the following statistical measures:

1) Average of graph weights across images:
Ave[W (i, j)] = 1

N

∑N
k=1 WPk(i, j), shown in Fig. 4(a).

As expected, the average affinity between two pixels i
and j at distance rij = ||Xi − Xj|| decreases exponen-
tially fast as a function of rij . This can be explained.
If pedge is the probability that an edge does not fall be-
tween two adjacent pixels, the probably that i and j are not
separated by an image edge is theoretically p

rij

edge.
2) Variance of graph weights across images:

V ar[W (i, j)] = 1
N

∑N
k=1 |WPk(i, j) − Ave[W (i, j)]|2,

shown in Fig. 4(b). Overall, as a function of rij , the graph
variance approximates a Laplacian. For short range con-
nections (rij ≤ 3), the pair-wise affinity has low variance
across image patches. As pair-wise pixel separation rij in-
creases, the variance in graph affinity increases quickly
until rij = 13. For long range connections, the vari-
ance drops back to zero. This implies that for very short
and very long range connections, the W (i, j) are more pre-
dictable between the images, than those of mid-range
connections. Therefore, the mid-range connections con-
tain most information of the image structure.

3) Variance of graph weights across small neighborhood.
For a pair of pixels i, j with r pixels apart, we take two
balls of radius R, Bi and Bj around i and j. We measure
the variance of graph weights WPk(i′, j′) for all (i′, j′) ∈
Bi × Bj , denoted as V arWPk (Bi, Bj), and average it
across all image patches and all i, j with r pixels apart:
V arW (r) = 1

N

∑N
k=1 Avei,j:rij=rV arWPk (Bi, Bj), as

Li
i'

j
j'

Image Edge W(icenter,j)

(a) Ave[W(i,j)] (b) Var[W(i,j)] (c) VarW(r) (e) Graph Coarsing

Image Edge W(icenter,j)

0 15 30 45
0.005

0.025

0.04

R=16

R=9

R=4

0 15 30 45

10
 2

10
 1

(d) Log(VarW(r))

Image Edge W(icenter,j)

Figure 4: Statistics of graph weights on natural images. Top row: we use intervening contour cue to compute graph weights for randomly
selected image patches across 200 images. For a fixed pixel i, we estimate average graph weight W (i, j) in (a), variance of W (i, j) across
images in (b), and variance of each graph edge W (i, j) across a small neighborhood R of the edge as a function of spatial separation
r = rij , in (c), (d). Distant pixels are more likely to be disconnected by an image contour far from both pixels. Together, these facts allow
us to create a multiscale decomposition of large radius graph connections by “condensing” close-by edge weights (i, j) and (i′, j′), (e).

shown in Fig. 4(c,d). V arW (r) decreases exponentially fast
as a function of spatial separation r! For short range graph
edges, it is hard to predict neighboring affinities around
graph edge (i, j) from a particular affinity W (i, j). As
spatial separation increases, the affinity variations decrease
quickly, indicating one can potentially predict graph edge
weights in its neighborhood using one representative edge
connection.

In summary, statistical measurements of the interven-
ing contour image segmentation graph reveal three facts: 1)
graph edge weights decrease exponentially fast with pair-
wise pixel separation; 2) across the images, the mid-range
graph edges are most un-predictable, therefore contain most
relevant grouping information; 3) the variations in graph
weights across a small neighborhood of graph edge (i, j)
decrease exponentially fast with the pixel separation rij ,
implying that longer range graph connections have more re-
dundant information with their nearby connections, there-
fore can be compressed.

4.2. Decomposition of graph into multiple scales

Our empirical estimation of Graph mean and Graph
variance indicates that at different ranges of spatial sepa-
rations rij , the graph affinity W (i, j) exhibits very different
characteristics. Therefore, we can separate the graph links
into different scales according to their underlying spatial
separation:

W = W1 + W2 + ... + WS , (5)

where Ws contains affinity between pixels with certain spa-
tial separation range: Ws(i, j) �= 0 only if Gr,s−1 < rij ≤

Gr,s. This decomposition allows us to study behaviors of
graph affinities at different spatial separations.

Furthermore, affinity variation V arW (r) decreases
quickly, implying that, at a given scale, one can poten-
tially “condense” pixels in a small neighborhood into
representative pixels, and store only the affinity be-
tween those pixels. More importantly, the exponential de-
cay of V arW (r) implies we can condense pixels very ag-
gressively, at exponential rate, as we increase the graph
connection radius. Therefore even though the non-zero el-
ements in Ws grow quadratically with s, we can represent
Ws more efficiently with fewer representative connec-
tions.

How do we determine representative pixels at graph
scale Ws? For the first graph scale W1, we take every pixel
as graph node, and connect pixels within r distance apart
by a graph edge. For the second graph scale W2, there are
no short graph connections, we can sample pixels at dis-
tance 2r + 1 apart in the original image grid as represen-
tative nodes. Applying this procedure recursively, at scale
s, we sample representative pixels at (2r + 1)s−1 distance
apart on the original image grid, as shown in Fig. 5. We will
denote the representative pixels in each scale by Is, and de-
note W c

s as a compressed affinity matrix with connections
between the representative pixels in Is. The different scales
of the graph are defined on different layers of the image
pyramid, each a sub-sample of the original image.

Note we create W c
s by simply sub-sampling the orig-

inal graph Ws which encodes combined intervening-
contour/brightness cues. There are several alternatives:
one can average the graph connections within the sam-
pled image region, or use region based grouping cues to

define the graph weights between the representative pix-
els. We choose not to use these alternatives, and focus on
purely the effect of multiscale graph decomposition it-
self.

Scale 3:

Scale 2:

Scale 1:

W (i,j)
1

W (i,j)
2

W (i,j)
3

Figure 5: 1D view of multiple-scale graph decomposition with
r = 1. Large radius graphs can be decomposed into different
scales, each containing connections with specific range of spatial
separation: W = W1 +W2 + ...+WS . At larger scales, the graph
weights vary slowly in a neighborhood, we can sample them us-
ing representative pixels at (2 · r + 1)s−1 distance apart.

Figure 6: Multiscale graph compression. With a maximal graph
connection radius Gr , the affinity matrix WF ull probably doesn’t
fit in memory. We can decompose it into short-range and long-
range connections: WF ull = W1 + W2, and compress W2 with
a low-rank approximation: W2 ≈ CT

1,2W
c
2 C1,2. W c

2 can be com-
puted either directly on a sub-sampled image, or by sampling val-
ues from W1. The interpolation matrix C1,2 from scale 2 to scale
1 will be introduced later on to couple segmentations at each scale.

Computational saving. Using the above mentioned mul-
tiscale graph decomposition and compression, at com-
pressed graph scale s we have N/ρ2(s−1) nodes, where
N is the number of pixels, and ρ is the sampling fac-
tor, in our case ρ = 2r + 1. Summing across all the
scales, we have a total of N/(1 − 1

ρ2) nodes. Since at

each scale nodes are connected with only (2r + 1)2 near-

est neighbors, we can compress a fully connected graph
with N(2r + 1)2/(1 − 1

ρ2) graph weights. Take a typi-
cal value of ρ = 3, r = 1, the total number of multiscale
graph connections is about 10N which is a very small frac-
tion of the original N2 connections. As Fig. 6 illustrates,
such a small number of connections can have virtu-
ally the same effect as a large fully connected graph.

In summary, we have proposed a decomposition of a seg-
mentation graph W into disjoint scales: (Ws)s=1..S , where
each Ws can be compressed using a recursive sub-sampling
of the image pixels. This compression of W is not perfect,
compared to more accurate data-driven graph compression
schemes such as algebraic multi-grid. However, as we will
explain in the following section, we can still achieve pre-
cise and efficient graph partitioning using this simple mul-
tiscale graph decomposition.

5. Multiscale Graph Segmentation

Principle We process the multiscale graph in parallel so
that information propagates from one scale to another. We
achieve this by specifying constraints on the multiscale
graph partitioning criterion. This is in contrast to most ex-
isting multiscale segmentation algorithms where the differ-
ent scales are processed sequentially. The main difficulty is
in specifying information flow across scales, which is the
topic of the next section.

5.1. Parallel segmentation across scales

Let Xs ∈ {0, 1}Ns×K be the partitioning matrix at scale
s, Xs(i, k) = 1 iff graph node i ∈ Is belongs to partition k.
We form the multiscale partitioning matrix X and the bloc
diagonal multiscale affinity matrix W as follows:

X =

X1

...
XS

 , W =

W c
1 0

. . .
0 W c

S

 (6)

We seek a multiscale segmentation optimizing the Ncut
criterion on W defined in Sec. 2.2.

Direct partitioning of graph W gives the trivial seg-
mentation, grouping all the nodes in a given scale as one
segment. For multiscale segmentation, we need segmenta-
tion costs to propagate across the different scales. At the
finest graph scale, the segmentation should take into ac-
count graph links at all coarser levels. We need to seek one
consistent segmentation across all scales. The cross-scale
consistency we seek is simple: the coarse-scale segmenta-
tion (Xs+1) should be locally an average of the fine-scale
segmentation (Xs). This is done by constraining the multi-
scale partitioning vector X to verify: for all node i in layer
Is+1, Xs+1(i) = 1

|Ni|
∑

j∈Ni
Xs(j). The neighborhoodNi

Figure 7: Left: 2D view of a three-layer graph with connection ra-
dius r = 1. The three scales communicate through cross-scale in-
terpolation matrices C1,2 and C2,3. Middle: cross-scale constraint
between scale 1 and scale 2 for partitioning vector X. X2(i) is the
average of X1(j) for nodes j below i. Stacking those equations
together, we get the cross-scale constraint CX = 0, here for two
scales. We see the upper triangular structure of C = [C1,2,−I2].

specifies the projection of i ∈ Is+1 on the finer layer Is,
and is simply defined on a regularly spaced grid of size ρ,
the sampling factor.

Define matrix Cs,s+1 (of size Ns+1 × Ns) as the cross-
scale interpolation matrix between nodes in layer Is and
those in coarser layer Is+1, as shown in Fig. 7:

Cs,s+1(i, j) =
{ 1

|Ni| if j ∈ Ni,

0 else
(7)

We define the cross-scale constraint matrix C:

C =

C1,2 −I2 0
. . .

. . .
0 CS−1,S −IS

 , (8)

and the cross-scale segmentation constraint equation:

CX = 0 (9)

As illustrated in Fig.7, the cross-scale constraint is a key
concept in our multiscale segmentation algorithm. With this
constraint, the segmentation cost is forced to propagate
across the scales to reach a consistent segmentation at all
scales.

Multiscale segmentation criterion The segmentation
criterion we will use is the constrained multiscale Normal-
ize Cut:

maximize ε(X) =
1
K

K∑
l=1

XT
l WXl

XT
l DXl

(10)

subject to CX = 0, X ∈ {0, 1}N∗×K
, X1K = 1N∗ , (11)

where N∗ =
∑

s Ns. The problem being set, we will now
show how to handle it in an efficient way.

6. Computational solution and running time

We transform this NP-complete combinatorial problem
into its counter part in a continuous space. After some alge-

bra, the problem becomes:

maximize ε(Z) =
1
K

tr(ZT WZ) (12)

subject to CZ = 0, ZT DZ = IK , (13)

This constrained optimization problem has been ad-
dressed in [12], we adapt the main result below. Let
P = D− 1

2 WD− 1
2 be the normalized affinity ma-

trix, and Q be the projector onto the feasible solution
space:

Q = I − D− 1
2 CT (CD−1CT)−1CD− 1

2 . (14)

Let V = (V1, ..., VK) be the first K eigenvectors of matrix
QPQ. Then the solutions to (12) are given by scaling any
rotation of the K eigenvectors V = (V1, ..., VK):

argmax
Z

ε(Z) = {D− 1
2 V R : R ∈ O(K)}. (15)

The proof, given in [12], uses Lagrange multipliers to
get rid of the constraint. The optimal solution is a sub-
space spanned by the K largest eigenvectors, but this time
the matrix is QD− 1

2 WD− 1
2 Q instead of D− 1

2 WD− 1
2 .

The final algorithm is summarized in the box below.
1. Given a p×q image I , for s = 1..S (S=# scales):

(a) sample p
ρ × q

ρ pixels i ∈ Is from Is−1 on
a regular grid, where ρ is the sampling fac-
tor.

(b) compute constraint Cs−1,s(i, j) = 1
|Ni|

∀j ∈ Ni sampling neighborhood of i.

(c) compute affinity W c
s on Is with small ra-

dius r, using image edges at scale s.

2. compute W, C from (W c
s , Cs,s+1)s as in (6),(8)

3. Compute Q using (14), compute V , the first K
eigenvectors of QD− 1

2 WD− 1
2 Q. Compute V =

D− 1
2 V and discretize.

6.1. Running time analysis

We show that the complexity of this algorithm is lin-
ear in the number of pixels. Fix the sampling factor ρ be-
tween the scales, and the connection radius r to compute
Ws at each scale s. Suppose we use all possible scales, i.e.
S = logρ(max(p, q)) for a N = p × q image. Denoting
nnz(A) the number of non-zero elements of a matrix A, we
have nnz(W) =

∑
s nnz(Ws) =

∑
s

N
ρ2(s−1) (2r + 1)2 =

O(N).
We show the constrained multiscale Ncut can also be

computed in O(N) time. The complexity of the eigen-
solver is dominated by the running time of the matrix-
vector multiplication y := QPQx, where Q defined in
(14) could be full. Instead of computing Q explicitly, we

expand out the terms in Q, and apply a chain of smaller
matrix-vector operations. The only time consuming term is
computation of y := (CD−1CT)−1x, which has O(N3)
running time. However, because we chose non-overlapping
grid neighborhoods, we can order the graph nodes to make
C (and hence CD− 1

2) upper triangular. We then compute
y := (CD−1CT)−1x by solving 2 triangular systems with
nnz(C) = O(N) elements. Overall, the complexity of
y := QPQx is O(N). We verified empirically this linear
running time bound, and the results in Fig. 8 show a dra-
matic improvement over state of the art implementations.

0 512^2 768^2 1024^2
0

500

1000

1500

2562

1282

Original Ncut

Multiscale Ncut

(a) (b)
40^2 90^2 140^2 185^
0

40

80

Original Ncut

Multiscale Ncut

Figure 8: Running time in seconds of original Ncut vs. Multi-
scale Ncut as a function of image pixels N . In original Ncut, we
scale connection radius with image size:Gr =

√
N

20
, and running

time is ≥ O(NG2
r) = O(N2). In Multiscale Ncut, we construct

a multiscale graph with same effective connection radius. Its run-
ning time is O(N).

6.2. Comparison with other multi-level graph cuts

It is important to contrast this method to two other suc-
cessful multilevel graph partitioning algorithms: METIS [5]
and Nystrom approximation [3]. In both cases, one adap-
tively coarsens the graph into a small set of nodes, and com-
pute segmentation on the coarsened graph. The fine level
segmentation is obtained by interpolation. Both algorithms
require correct initial graph coarsening [3]. Nystrom works
quite well for grouping cues such as color. However for in-
tervening contour grouping cues, graph weights have abrupt
variations making such precise graph coarsening infeasible.

7. Results

Sanity check. We verify Multiscale Ncut segmentation with
a simple “tree” image shown in Fig. 9. We create two scales,
with sampling rate = 3. The first level graph has radius =1,
the second level has radius = 9. We test whether Multi-
scale Ncut is able to segment coarse and fine structures at
the same time: the large trunk as well as the thin branches.

For comparison, we computed Ncut eigenvectors of coarse
and fine level graphs in isolation. As we see in Fig.9, mul-
tiscale segmentation performs correctly, combining benefits
of both scales.

Figure 9: Top middle: fine level segmentation fails in cluttered re-
gion; Bottom left, coarse level segmentation alone fails to provide
detailed boundary; Bottom middle multiscale segmentation pro-
vides correct global segmentation with detailed boundary. Right:
zoom portion of the segmentation in fine level (a), coarse level (b),
and multiscale (c).

Effect of sampling error in coarse graph construction. We
purposely kept construction of multiscale graph extremely
simple with geometric sampling. This sampling could have
a bad effect on pixels near an object boundary. We study if
Multiscale Ncut can overcome this sampling error. Fig. 10
shows the final segmentation can overcome errors in coarse
grid quantization, with a small decrease in boundary sharp-
ness (defined as eigenvector gap across the object bound-
ary) in worst case.

Effect of image clutter and faint contours We argue multi-
scale segmentation can handle image clutter and detect ob-
jects with faint contours. Such a problem is particularly im-
portant for segmenting large images. Fig. 11 provides one
such example with a 800× 700 image. The segmentation is
both accurate (in finding details), robust (in detecting faint
but elongated object boundary), and fast.

We have experimented with the multiscale Ncut on a
variety of natural images, shown in Fig. 12. We observed
that compressed long range graph connections significantly
improve running time and quality of segmentation. More
quantitative measurement is currently underway.

References

[1] Adrian Barbu and Song-Chun Zhu. Graph partition by
swendsen-wang cuts. In Int. Conf. Computer Vision, pages
320–327, Nice, France, 2003.

Figure 10: Non-adaptive grid can produce precise object bound-
aries and recover from errors in grid quantization. Top: a two level
graph, with coarse nodes spaced on a regular grid (boundaries in
red). An object boundary (in blue) specifies two regions (green vs.
blue) with low mutual affinity. Its location d (as % of grid size)
w.r.t. the grid varies from d = 0% (best case, grid and object
boundaries agree) to d = 50% (worst case, object boundary cuts
the grid in half). The central coarse node is linked either to left or
right coarse nodes depending on d. Bottom: multiscale Ncut eigen-
vector for d = 0%, 25%, 50%. In all cases, multiscale segmenta-
tion recovers from errors in coarse level grid. Notice that the gap
in Ncut eigenvector across the object boundary remains high even
in worst case.

[2] Peter J. Burt and Edward H. Adelson. The laplacian pyramid
as a compact image code. COM-31(4):532–540, April 1983.

[3] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral
grouping using the nystrom method. 2003.

[4] J-M. Jolion and A. Rosenfeld. A Pyramid Framework for
Early Vision. Kluwer Academic Publishers, Norwell, MA,
1994.

[5] George Karypis and Vipin Kumar. Multilevel k-way parti-
tioning scheme for irregular graphs. 1995.

[6] T. Lindeberg. Edge detection and ridge detection with auto-
matic scale selection. pages 465–470, 1996.

[7] M. Luettgen, W. Karl, A. Willsky, and R. Tenney. Multiscale
representations of markov random fields. pages 41:3377–
3396, 1993.

[8] Patrick Perez and Fabrice Heitz. Restriction of a markov
random field on a graph and multiresolution image analysis.
Technical Report RR-2170.

[9] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale
image segmentation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 70–7, 2000.

[10] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8):888–905, 2000.

[11] Stella X. Yu. Segmentation using multiscale cues. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 70–7, 2004.

[12] Stella X. Yu and Jianbo Shi. Grouping with bias. In Ad-
vances in Neural Information Processing Systems, 2001.

1

2

3

4

5

6

7

8

9

10

11

12

13

Edge

EdgeEdge

Ncut Eigenvector Ncut Eigenvector

Ncut Eigenvector

Ncut Eigenvector

Segmentation

Figure 11: Multiscale Ncut segmentation of a 800 × 700 image.
Top left, image with detected object boundary. Top right, segmen-
tation and input edge map. Bottom: zoom in details. Note the faint
roof boundary is segmented clearly.

Figure 12: Multiscale Ncut prevents braking large uniform im-
age regions into smaller parts due to its efficient use of long range
graph connections.

	University of Pennsylvania
	ScholarlyCommons
	June 2005

	Spectral Segmentation with Multiscale Graph Decomposition
	Timothée Cour
	Florence Bénézit
	Jianbo Shi
	Recommended Citation

	Spectral Segmentation with Multiscale Graph Decomposition
	Abstract
	Comments

	tmp.1140710524.pdf.vA4Oe

