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Abstract
In his 2001 monograph Tonal Pitch Space, Fred Lerdahl defined a distance function over tonal and post-tonal
harmonies distilled from years of research on music cognition. Although this work references the toroidal
structure commonly associated with harmonic space, it stops short of presenting an explicit embedding of this
torus. It is possible to use statistical techniques to recreate such an embedding from the distance function,
yielding a more complex structure than the standard toroidal model has heretofore assumed. Nonlinear
techniques can reduce the dimensionality of this structure and be tuned to emphasize global or local anatomy.
The resulting manifolds highlight the relationships inherent in the tonal system and offer a basis for future
work in machine-assisted analysis and music theory.
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VISUALIZATION OF LOW DIMENSIONAL STRUCTURE
IN TONAL PITCH SPACE

J. Ashley Burgoyne and Lawrence K. Saul
Department of Computer and Information Science

University of Pennsylvania
{burgoyne,lsaul}@cis.upenn.edu

ABSTRACT

In his 2001 monograph Tonal Pitch Space, Fred Ler-
dahl defined a distance function over tonal and post-tonal
harmonies distilled from years of research on music cog-
nition. Although this work references the toroidal struc-
ture commonly associated with harmonic space, it stops
short of presenting an explicit embedding of this torus. It
is possible to use statistical techniques to recreate such an
embedding from the distance function, yielding a more
complex structure than the standard toroidal model has
heretofore assumed. Nonlinear techniques can reduce the
dimensionality of this structure and be tuned to emphasize
global or local anatomy. The resulting manifolds highlight
the relationships inherent in the tonal system and offer a
basis for future work in machine-assisted analysis and mu-
sic theory.

1. INTRODUCTION

Since Gottfried Weber introduced the chart in Figure 1
early in the nineteenth century [12], music theorists have
acknowledged two pivotal axes controlling the relation-
ships among the major and minor keys of the diatonic
tonal system in Western art music: the cycle of fifths, rep-
resented on the vertical axis of the figure, and the cycle of
thirds, represented on the horizontal. 1 Capital letters des-
ignate major keys and lowercase minor, as is traditional.
These axes are most often considered to be periodic, defin-
ing a topological space isomorphic to S1×S1, and by the
end of the twentieth century, Carol Krumhansl’s pioneer-
ing psychological experiments had demonstrated a cogni-
tive basis for this toroidal structure [4]. Krumhansl’s work
also explored topological relationships among harmonies
and pitch classes within each key [5], which Fred Ler-
dahl integrated into the framework of A Generative The-
ory of Tonal Music [7], his 1983 monograph coauthored
with Ray Jackendoff, in a 2001 monograph entitled Tonal
Pitch Space [6].

Although Lerdahl makes much of Krumhansl’s data
and the toroidal topology of harmonic space, he defines
that torus only implicitly, by way of a distance function
over harmonies. No other research to date has attempted

1 Vial had organized the keys in a similar fashion three decades earlier,
but Weber’s treatise proved to be more influential.
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Figure 1. Gottfried Weber’s diagram of regions (keys)
in tonal space. The cycles of fifths run vertically and the
cycles of minor thirds horizontally in all directions.

to embed it explicitly. David Temperley used a MIDI-
based approach to implement many components of the
theory [11] but has not yet treated its topology. The Math-
ematical Music Theory Group at the Technical Univer-
sity of Berlin uncovered some inconsistencies in Lerdahl’s
theory while developing their HarmoRubette software tool
[9] but did so strictly in terms of distance functions; Gue-
rino Mazzola’s monograph has treated the topic in more
detail [8]. Elaine Chew’s spiral model [1, 2] is an explicit
representation of tonal space that has aided the develop-
ment of intelligent musical systems, most notably for key
finding and pitch spelling, but it is founded on music the-
oretical principles (the Riemannian Tonnetz) that, despite
the apparent similarities, are incompatible with Lerdahl’s
and Krumhansl’s.

In this paper, we use statistical techniques to produce
explicit embeddings based on Lerdahl’s harmonic topol-
ogy. The visualizations of tonal pitch space presented
complement Chew’s model and should be especially use-
ful for machine-assisted harmonic and hierarchical analy-
sis.

2. LERDAHL’S DISTANCES

One of the distinguishing features of Lerdahl’s model is
that it treats pitch classes, chords, and regions (keys) as
unified and inseparable. There is no well defined notion of
distance between pitch classes qua pitch classes or chords
qua chords. Pitch classes have meaning only as elements
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(a) Dimensions 1 and 2: A circle of fifths.
Only harmonies from major keys are plotted,
each key given its own shade of gray and la-
belled outside the circle.

(b) Dimensions 3 and 4: An inner spiral. The
circle from the previous figure has been bro-
ken at C major and straightened to form the
long axis here. Lines connect neighbors.
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(c) A regional Tonnetz. Both pairs of dimen-
sions have been broken and unfolded here and
tonic chords plotted only. The shades of gray
match 2(a).

Figure 2. Tonal pitch space as viewed with multidimensional scaling

of the sets that define chords and regions, and chords are
always understood as functioning within some region. An
important corollary is that there is always a nonzero dis-
tance, albeit usually small, between two instances of the
same nominal chord when these instances are heard in dis-
tinct regions: C/C is not the same as C/F and certainly
not the same as C/D[[[. 2 This corollary gives Lerdahl’s
model more nuance than most alternatives.

For two harmonies x = C1/R1 and y = C2/R2, the sim-
ple distance is given by the equation

δ(x → y) = i+ j + k (1)

where i is the smallest number of steps along the circle
of fifths between R1 and R2 (or their relative majors in
case one or both is minor), j is is the smallest number
of steps along the circle of fifths between the roots of C1
and C2 within each region, and k is a specially weighted
Hamming distance between the sets of pitch classes that
define each chord and region. Lerdahl’s formulation of
the k parameter is asymmetric, and so to create a sym-
metric distance function, we have taken the average of the
two directions. Lerdahl restricts δ to prevent implausible
modulations, allowing it to be defined only when either x
and y are in the same region or at least one of C1 and C2
is a tonic chord and R1 and R2 are in each other’s set of
“pivot regions,” {i, ii, iii,IV,V,vi} for major keys and for
minor keys {I, [[[III, iv,v, [[[VI, [[[VII}. The general distance
function is

∆(C1/R1 → C2/R2) = δ1(C1/R1 → I/P1)
+δ2(P1 → P2)+δ3(P2 → P3)+ · · ·

+δn(I/Pn → C2/R2) (2)

where δ(Pi → Pj) is shorthand for δ(I/Pi → I/Pj), and
the chain of regions P1,P2, . . . ,Pn is chosen to minimize
∆ within the constraint that δ1,δ2, . . . ,δn are defined.

2 Lerdahl uses Roman type for chords and boldface type for regions,
and we follow the convention here, e.g., ii/G for the minor supertonic
chord in G major or E[/F for an E[ major chord understood in the key
of F major.

3. MULTIDIMENSIONAL SCALING

Metric multidimensional scaling (MDS) is a linear statis-
tical technique that produces an explicit geometric map of
a set of objects given a complete matrix of distances be-
tween any pair of them. This map replicates the distances
as closely as possible in a space of arbitrary dimension-
ality. For most data, there is a trade-off between keeping
the number of dimensions low and preserving the original
distances; normal practice is to apply the technique over a
range of possible dimensionalities and then select an op-
timum for the task at hand. If only some of the pairwise
distances are available, the remainder can be estimated by
computing the shortest paths through a graph with a ver-
tex for each of the original objects and weighted edges
connecting every pair of points for which the distance is
known; this technique is analogous to the Isomap algo-
rithm for nonlinear dimensionality reduction, which delib-
erately discards and recomputes distance measurements
for all but the closest neighbors [10].

We used MDS to analyze the matrix of Lerdahl dis-
tances among a set of common harmonies. These har-
monies were restricted to the major and minor triads of
each of the 24 major and minor keys and the chromat-
ically altered major and minor triads that can be reached
via simple, secondary, or double mixture. The set includes
22 triads per key (every triad except the major and minor
triads rooted a tritone away from the tonic) for a total of
528 harmonies. The constraints on Equation 1 define a
partial distance matrix on this set, and the generalized dis-
tance in Equation 2 is precisely the shortest path algorithm
described above.

While two, three, or even four dimensions of the re-
sult are insufficient to represent the distances well – fif-
teen would be required to capture even 75 percent of the
information in Lerdahl’s model – we can still use them
for visualization. Figure 2(a) is a plot of major-key har-
monies in the leading two dimensions. Each tonal region
is colored in its own shade of gray and labeled with capi-
tal letters. The pattern is a tightly organized regional circle
of fifths, which confirms that Lerdahl’s model conforms in
at least one regard to the Weber-Krumhansl model it seeks
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(a) Dimensions 1 and 2: A circle of fifths.
Compare with Figure 2(a).

(b) Histogram for dimension 3. The set of
harmonies is bimodal in this dimension.

(c) Histogram for dimension 4. The set of
harmonies is also bimodal in this dimension.
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(d) A new regional Tonnetz. Compare with
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(e) The harmonies of C major in dimension
3 versus their angles on the regional circle of
fifths. Major and minor chords are plotted.
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(f) The harmonies of C major in dimension
4 versus their angles on the regional circle of
fifths. Major and minor chords are plotted.

Figure 3. Tonal pitch space as viewed with maximum variance unfolding

to emulate. 3 One thus would expect the second and third
dimensions to trace a cycle of thirds, but the structure is
more complicated than that. Figure 2(b) unwraps the cir-
cle from Figure 2(a) by converting the first two dimen-
sions to polar coordinates and plots the third and fourth
dimensions of the embedding with respect to the polar an-
gle. These dimensions form a spiral with three periods
to the first dimension’s one. Figure 2(c) attempts to clar-
ify the relationship between these structures by convert-
ing the third and fourth dimensions to polar coordinates
as well and plotting their angular component against the
angular component of the first two dimensions, scaled in
each case to the average radius. Here, the cycles of thirds
emerge. Crisscrossing the spiral in a form that looks much
like a Riemannian Tonnetz, the traditional cycles of minor
thirds in regional space travel from the top left to the bot-
tom right of the figure and cycles of major thirds move
horizontally.

The presence of the circle of fifths and the cycles of
thirds is sufficient for isomorphism to the toroidal regional
model of the psychological literature. The remaining two
dimensions, the radial components of the two sets of po-
lar coordinates, distinguish our model. Together, they or-

3 If space had permitted the minor keys to be plotted in the form of
2(a), they would be interspersed with the major keys but form their own
circle of fifths corresponding to the lowercase labels. In contrast to both
the Krumhansl model and most theory textbooks, major keys are paired
with neither their relative or parallel minors but the minor key a whole
tone higher. This relationship arose early in harmonic theory with David
Heinichen’s General-Bass in der Composition [3]. It arises as a neutral
statistical compromise between the parallel and relative key relationships
so as to allow the third and fourth dimensions to account for them prop-
erly.

ganize the chords within each region around the toroidal
structure of the regions themselves. Weber first presented
the regional structure, Krumhansl and Kessler assigned an
embedding to it, Lerdahl developed a theory to incorpo-
rate inter-regional relationships, and our work derives a
new embedding for them. It should allow machine analy-
sis systems to synthesize key finding and harmonic analy-
sis more smoothly.

4. MAXIMUM VARIANCE UNFOLDING

The inter-regional structures in this embedding are less
consistent than the intra-regional ones. This shortcoming
is tied to MDS, which must optimize over the global struc-
ture of its input data. There are nonlinear algorithms, how-
ever, that can shift the emphasis to local structures. One
very effective such technique is maximum variance un-
folding (MVU) [10]. Like MDS, this algorithm produces
an embedding from a matrix of pairwise distances, but
while mazimizing the variance of the output embedding,
it seeks to preserve only the distances between nearest
neighbors. This subset of distances is locked, and a non-
linear optimization technique is used to expand the data as
much as possible given these locks, analogous to stretch-
ing a ball-and-stick model in which the balls correspond
to harmonies and the sticks correspond to the locked dis-
tances. By tuning the size of the neighborhoods, one can
control the level of structure in the output embedding.
Large neighborhoods yield more global structures and be-
have comparably to algorithms like MDS, while smaller
neighborhoods preserve local structure and can provide
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Figure 4. Dimensionality-accuracy trade-offs. Each seg-
ment of the bars represents the additional accuracy af-
forded by an additional dimension.

much better dimensionality reduction.
MVU is not designed to analyze non-Euclidean dis-

tances, and as Noll and Garbers note, Equation 2 is not a
true distance function because its special handling of pivot
regions causes it to violate the triangle inequality. For
our experiments, we Euclideanized the ∆-derived distance
matrix before computing neighborhoods by converting it
to a Gram matrix of inner products, replacing all negative
eigenvalues with zeros, and converting back.

Figure 3(a) presents the leading two dimensions of the
MVU embedding. As in the linear case, they form a cir-
cle of fifths. The third and fourth dimensions, however,
serve different purposes. The histograms in Figures 3(b)
and 3(c) show that the data is bimodal in each of these di-
mensions. The third dimension separates regions into two
isomorphic planes a semitone apart; the fourth dimension
separates the major keys from the minor keys. These pat-
terns are evident in Figure 3(d) and form a very different
regional network than the one from the MDS embedding
in Figure 2(c). These dimensions also preserve consis-
tent chordal structures across the regional structure. As
seen in Figures 3(e) and 3(f), dimension 3 keeps tonics
with the tonics of their relative keys while dimension 4
puts them closer to the dominant and subdominant. No-
tably absent from the nonlinear embedding are the cycles
of thirds. Instead, the MVU embedding prioritizes cycles
of major seconds and binary oppositions between parallel
and relative region pairs. This unexpected result calls for
experimentation on corpuses of real music to see which
model is more successful.

MVU has a strong advantage over MDS when it comes
to dimensionality reduction, however; Figure 4 illustrates
the difference. The top bar represents the distribution of
information after using MVU on the Euclideanized dis-
tance matrix with neighborhoods including the four near-
est neighbors to each harmony; the leading four dimen-
sions account for 98 percent of the distance information.
After MDS, represented in the lower bar, the leading four
dimensions account for only 57 percent. Thus, the struc-
ture shown in Figure 3 should be a much better represen-
tation of the structure of Lerdahl’s space than Figure 2,
further challenging the notion of a cycle of thirds.

5. SUMMARY AND FUTURE WORK

Linear and nonlinear statistical methods can produce em-
beddings that emphasize the global or local structure of

data defined by pairwise distances and can help visual-
ize models of tonal pitch space, including structures more
complex than the three-dimensional toroidal model com-
monly cited in psychological literature. These higher di-
mensional embeddings incorporate more subtle details of
the harmonic system that are helpful to visualize and can
serve as foundational models for machine-assisted analy-
sis. They free analysis from the finite set of harmonic la-
bels, replacing them instead with four continuous parame-
ters that can encode more nuanced musical concepts. The
labeling or classification problem becomes one of spatial
localization; ambiguous tonalities can be assigned explicit
locations between more stable regions. Moreover, Ler-
dahl’s theory includes extensions for hexatonic, octatonic,
and other non-diatonic tonal models that we hope to in-
corporate into our existing framework.
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	University of Pennsylvania
	ScholarlyCommons
	September 2005

	Visualization of Low Dimensional Structure in Tonal Pitch Space
	J. Ashley Burgoyne
	Lawrence K. Saul
	Recommended Citation

	Visualization of Low Dimensional Structure in Tonal Pitch Space
	Abstract
	Comments


	tmp.1132072300.pdf.NUGjE

