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RT-MaC: Runtime Monitoring and Checking of Quantitative and
Probabilistic Properties

Abstract
Correctness of a real-time system depends on its computation as well as its timeliness and its reliability. In
recent years, researches have focused on verifying correctness of a real-time system during runtime by
monitoring its execution and checking it against its formal specifications. Such verification method is called
Runtime Verification. Most existing runtime verification tools verify computation correctness using
qualitative property specifications but do not verify timeliness nor reliability correctness. In this paper, we
investigate the verification on timeliness and reliability correctness by offering quantitative and probabilistic
property specifications and implementing efficient verifiers.
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Abstract

Correctness of a real-time system depends on its compu-
tation as well as its timeliness and its reliability. In recent
years, researches have focused on verifying correctness of
a real-time system during runtime by monitoring its execu-
tion and checking it against its formal specifications. Such
verification method is called Runtime Verification. Most ex-
isting runtime verification tools verify computation correct-
ness using qualitative property specifications but do not ver-
ify timeliness nor reliability correctness. In this paper, we
investigate the verification on timeliness and reliability cor-
rectness by offering quantitative and probabilistic property
specifications and implementing efficient verifiers.

1 Introduction

Correctness of a real-time system depends on its compu-
tation as well as its timeliness and its reliability. The need
to consider all computation, timeliness, and reliability cor-
rectness is an additional obstacle to the design of correct and
reliable real-time systems. In recent years, researches have
been focusing on verifying the correctness of a real-time
system during runtime by monitoring its runtime execu-
tion and checking it against its formal specifications. Such
verification method, called Runtime Verification [5, 6, 10],
is more practical than other verification methods such as
model checking and testing. Runtime verification verifies
directly on the implementation of the system rather than on
the system model as done in model checking. It is also
based on formal logics and provides formalism in which
testing is lacking. Runtime verification can be used both
online to ensure property correctness of a given application
or during development to find bugs.

In this paper, we explore the use of runtime verification
tools to verify real-time systems. Most existing runtime ver-
ification tools verify computation correctness of a system

using qualitative property specifications but do not provide
verification on timeliness nor reliability correctness. One of
such tools is MaC (Monitoring and Checking) [9, 10]. MaC
verifies computation correctness of a system by providing
qualitative property specification based on Linear Temporal
Logic (LTL) [15]. During runtime, it extracts necessary ob-
servations from the system’s runtime execution, and checks
the observations against the system properties. In this paper,
we extend MaC with the capability to verify timeliness and
reliability correctness by providing quantitative and prob-
abilistic property specifications and call the extension RT-
MaC. The additional quantitative and probabilistic property
specification is achieved by introducing time-bound tempo-
ral operators and probabilistic operators, respectively. The
time-bound temporal operators can specify a time limit in
which a property must hold, and therefore is more appropri-
ate for specifying quantitative properties. The resulting lan-
guage is similar to Continuous Stochastic Logic (CSL) [2].

There exist a few runtime verification works aiming at
timeliness correctness, but their implementation fails to de-
tect a timeliness violation as soon as it occurs. Computa-
tion correctness depends on changes only in system com-
putation while timeliness correctness depends on changes
both in system computation and in time. The existing works
evaluate properties in response to only computation changes
but not time changes. We call the evaluation in response to
computation changes and time changes as “event-driven”
and “time-driven”, respectively. In this paper, we propose a
solution to correctly implement time-driven evaluation. For
probabilistic properties, RT-MaC uses statistical analysis to
provide confidence intervals in verifying probabilistic prop-
erties. Such confidence intervals are not included in most
runtime verification systems.

The paper is organized as follows. Section 2 provides
background on MaC. Section 3 describes the RT-MaC lan-
guage, which provides additional operators for quantitative
and probabilistic properties. Section 4 describes implemen-
tation and its overhead. Section 5 provides related work.
Section 6 concludes the paper and presents future work.
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Figure 1. Overview of the MaC architecture

2 MaC Overview

2.1 MaC Architecture

MaC has been developed to ensure that a program runs
correctly with respect to its formal specification. Fig. 1
shows the overall MaC architecture. It works as follows. A
user specifies a specification of a target program in a formal
MaC language. Given the target program and the specifica-
tion, MaC inserts probes or a filter into the program to ex-
tract observations such as assignments to program variables
and method calls and returns. The specification is compiled
into a MaC verifier specialized for the program.

During runtime, the execution of the probed program
is verified by the MaC verifier. An event recognizer de-
tects primitive events and changes to primitive conditions
from low-level information received from the filter. Prim-
itive events are variable updates, method calls and re-
turns. Primitive conditions are predicates over program
variables. These events and conditions are then sent to
a runtime checker, which determines whether or not the
events and conditions satisfy the program’s specification. If
the checker detects any violation, it notifies the user.

2.2 Meta-Event Definition Language (MEDL)

MaC provides two languages, PEDL and MEDL, shown
in Fig. 1. The requirement specification or Meta-Event Def-
inition Language (MEDL), based on a linear temporal logic
(LTL) [15], allows one to express qualitative properties. A
monitoring script or Primitive Event Definition Language
(PEDL), defines which application-dependent information
is extracted, and how it is transformed into events and con-
ditions used in MEDL. PEDL is tied to a particular imple-
mentation while MEDL is independent of any implementa-
tion. We do not discuss PEDL here. See [9] for details.

Events and Conditions. The underlying foundation for
MEDL is the logic of events and conditions [9]. Events
occur instantaneously during a system execution, whereas

conditions represent system states that hold for a duration
of time. For example, an event denoting a call to method
init occurs at the instant the control is passed to the method,
while a condition v <5 holds as long as the value v does not
exceed 5. The syntax of events and conditions is shown be-
low where e and c represent primitive events and conditions.

E ::= e | E&&E | E||E | start(C) | end(C) | E when C

C ::= c | !C | C&&C | C||C | C → C |defined(C)| [E, E)

The boolean connectives used in events and conditions are
defined in the usual way. start(c) and end(c) events oc-
cur when a condition c becomes true and false, respectively.
e when c event occurs if e occurs at the time when c is
true. defined(c) condition is true when a condition c is
defined. [e1, e2) is true from the time of an occurrence of
e1 until the first occurrence of e2 after that. This condi-
tion [e1, e2) is a variant of an until operator in LTL [15].
MEDL distinguishes special events and conditions denoting
application-level requirements. Safety properties are condi-
tions that must be always true whereas alarms are events
that must never be raised.

The model M for a MEDL formula is a time-stamped
trace of observations, that is, a tuple 〈S, τ, LC , LE〉, where
S = {s0, s1, . . .} is a set of states, τ is a mapping from S
to an absolute discrete time domain, LC is a total function
from S × C to {true, false, Λ} where C denotes a set of
primitive conditions and Λ denotes undefined, and LE is a
partial function from S × E to a value domain where E de-
notes a set of primitive events. M specifies, for each time
instance, the value of each condition and the set of events
that occur at that moment. The semantic definition is given
in a form of the function M, t |= φ, where φ is an event or
condition and t is a time instance. The function |= relies on
a mutually recursive (but well-defined) definition of a deno-
tation for conditions Dt

M (c) that assigns to a condition c a
value drawn from the set {true, false, Λ}. For formal se-
mantics of events, conditions, see [10]. In the next section,
we describe the RT-MEDL extension of MEDL.

3 RT-MEDL Extension

3.1 Quantitative Specification

3.1.1 Syntax

RT-MEDL provides time-bound conditions [E, E){≤d},
[E, E){<d}, and [E, E){=d} for quantitative properties.
[e1, e2){≤d} indicates an event e2 must occur after an event
e1 within d time units. [e1, e2){<d} and [e1, e2){=d} have
similar meanings. Here, d is a non-negative constant. With
these quantitative operators, the language is similar to Met-
ric Temporal Logic (MTL) [11]. MTL has a time-bound
until operator allowing one to specify a time bound where
a given temporal property must hold. Just as the condition
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[e1, e2) is a variant of an until operator in LTL [15], the
conditions [e1, e2){≤d}, [e1, e2){<d}, and [e1, e2){=d} are
variants of a time-bound until operator in MTL [11].

3.1.2 Semantics

The semantics of the quantitative conditions uses the model
presented in Section 2. A model M models a condition c
when the value of Dt

M (c) is true. Dt
M (c) represents a value

of a condition c at time t. Formally, M, t |= c iff Dt
M (c) =

true. Dt
M (c) for the new conditions is presented below.

Dt
M ([e1, e2){≤d}) =




Λ if � ∃t′ < t s.t. M, t′ |= e1

false if M, t − d |= e1 and ∀t′

t − d ≤ t′ ≤ t s.t. M, t′ �|= e2

true otherwise

Dt
M ([e1, e2){<d}) =




Λ if � ∃t′ < t s.t. M, t′ |= e1

false if M, t − d |= e1 and ∀t′

t − d ≤ t′ < t s.t. M, t′ �|= e2

true otherwise

Dt
M ([e1, e2){=d}) =

{
Λ if � ∃t′ < t s.t. M, t′ |= e1

false if M, t − d |= e1 and M, t �|= e2

true otherwise

[e1, e2){≤d} is undefined when e1 has never occurred.
When e1 occurs, it stays true unless e2 does not occur within
d. If e1 occurs but e2 does not occur within d time units,
[e1, e2){≤d} becomes false. [e1, e2){<d} and [e1, e2){=d}
are defined similarly. An example, “real-time tasks must ex-
ecute within time limits”, can be expressed using a quantita-
tive condition as [startT, endT ){≤ 80}. The events startT
and endT are events indicating the start and the end of an
execution of a task T . The condition indicates endT must
occur after startT within 80 time units.

3.2 Probabilistic Properties

Probabilistic correctness is another important aspect of
reliable real-time systems. Verifying probabilistic proper-
ties in model checking can be done using numerical or sta-
tistical techniques [22]. The numerical technique needs a
complete probabilistic model of a system to verify prob-
abilistic properties. However, in runtime verification, we
have no such information and thus cannot use such tech-
nique. Instead, we adopt the statistical technique which
simulates, samples execution paths, and calculates proba-
bilities from the paths. One difference between statistical
probabilistic checking in model checking and in runtime
verificaition is runtime verification uses execution paths
from an actual target system and hence has no control over
its samples whatsoever. The statistical probabilistic model
checking, on the other hand, can control simulation to pro-
duce execution paths as needed.

Another difference is instead of collecting hundreds dif-
ferent execution paths as in statistical probabilistic model
checking, we only have one execution path. In order to col-
lect multiple samples from one execution path, it requires a
target system with repeating or periodic behaviors such as
soft real-time schedulers, network protocols or web servers.
Each repeated behavior is used as a sample execution, called
an experiment. Experiments, for example, are flipping a
coin or executing a soft real-time task. The probability
of experiments being successful are defined by a ratio of
successful experiments and a total number of experiments.
Successful experiments, for example, are a coin being head
when flipped or a soft real-time task finishing within its
deadline. Such successful experiments can be thought of
as a property being satisfied. The ratio however cannot be
used as is but needs statistical analysis to support its result.

Given a set of experiments and a probabilistic property,
RT-MaC statistically determines whether a system satisfies
the property by using statistical hypothesis testing. Statisti-
cal hypothesis testing provides a systematic procedure with
an adequate level of confidence in determining a probability
of successful experiments. Because RT-MaC observes ex-
periments online, a particular statistical hypothesis testing
called sequential hypothesis testing [20] is appropriate since
it determines a decision in real-time as we observe data and
provides answers quickly within a given error bound. The
sequential hypothesis testing depends on an outcome of pre-
vious testing. After each experiment, the testing can say
the probabilistic property is either satisfied, not satisfied, or
needing more experiments. In case of early termination,
the verifier would say satisfied or not satisfied, both with a
quantitative measure of confidence in the answer.

3.2.1 Syntax

RT-MEDL adds one probabilistic event e prob(�p, eexp)
and one probabilistic condition c prob(�p, cexp) where
� ∈ {<, >,≤,≥, =, �=} and p is a probability. eexp and
cexp are experiments for the probabilistic event and the
probabilistic condition, respectively. eexp and cexp are nec-
essary because we need to identify repeated behaviors and
collect them as experiments from one arbitrary execution
path. For example, a probabilistic alarm “a soft real-time
task must not miss a deadline of 80 time units with prob-
ability ≥ 0.2” can be written as end([startT, endT ){≤
80})prob(≥ 0.2, startT ). The formula states an alarm
should be raised when a task misses its deadline with a prob-
ability ≥ 0.2 where an event startT is an experiment. An-
other example is “a car velocity must be less than 50mph
with probability ≥ 0.9 in work zones, and otherwise must
be less than 50mph with probability≥ 0.8” and can be writ-
ten as a property (v < 50)prob(≥ 0.9, work)&&(v <
50)prob(≥ 0.8, true). The condition work is true only
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when a car is in a work zone. The formula states when work
is true, (v < 50) must hold true with probability ≥ 0.9, and
at all times, (v < 50) with probability ≥ 0.8. This syntax
with time-bound conditions, a probabilistic event and con-
dition is similar to Continuous Stochastic Logic (CSL) [2].

3.2.2 Semantics

We describe semantics for probabilistic properties by first
introducing a model for experiments and successful experi-
ments, and then, laying out how to use sequential hypothesis
testing to statistically determine satisfiability.

Model. Let a probabilistic property we want to verify is
φ prob (�p0, X) where � ∈ {<,≤, >,≥, =, �=}, φ is ei-
ther an event or a condition, p0 is a probability, and X is
an experiment. When an event φ is satisfied, it means φ oc-
curs. When a condition φ is satisfied, it means φ is true. Let
n be a number of experiments performed during execution.
Let X = X1 + X2 + ... + Xn be a random variable rep-
resenting a number of successful experiments. Let Xi be a
random variable representing a result of the ith experiment
where Xi = 1 when the ith experiment satisfies φ (success-
ful experiment), and Xi = 0 otherwise. Thus, each Xi has a
Bernoulli distribution with an unknown parameter p ∈ [0, 1]
where Pr(Xi = 1) = p, meaning the probability of the ith

experiment being successful is equal to p. X , therefore, has
a Binomial distribution with parameters n and p. This value
p is the probability of φ being satisfied and is what we want
to test against p0. Finally, let p̄ = ΣXi

n be an experimental
probability obtained from the observed experiments.

Sequential Hypothesis Testing. To statistically check
probabilistic properties, we use the experimental probabil-
ity p̄ to approximate the actual Binomial probability p based
on a mathematically founded procedure of sequential hy-
pothesis testing. The first step, done before running ex-
periments, is to set up two hypotheses H0 and H1. H0,
called null hypothesis, is what we want to disprove, and
H1, called alternative hypothesis, is an alternative to H0.
The next step, done after m experiments, is to make one of
the following three decisions: 1) accept H0, 2) reject H0,
and 3) continue observing experiments. In our case, accep-
tance of H0 means M, t �|= φ prob (�p0, X) and rejection
of H0 means M, t |= φ prob (�p0, X). Thus, the number
of experiments n is not determined in advance but depends
on an outcome of the previous test analysis. This character-
istic of sequential hypothesis testing ensure that we have a
decision quickly.

Approximation of Binomial Probability. To accept or re-
ject hypotheses, we calculate how far apart p̄ is from p0 and
in what direction, whether greater or less than p0. The z-
score is a value that statisticians use for this purpose. The

following equation is used to calculate the z-score for p̄ [21].

z =
p̄ − p0√

p̄(1−p̄)
n

In this case, p̄ is greater than p0 iff z is positive, and p̄ is
less than p0 iff z is negative. When z is close to zero, there
are two interpretations: 1) p̄ is close to p0, or 2) we do not
have a sufficient number of experiments to decide, and we
cannot differentiate between them. To differentiate between
the two interpretations, we determine the minimum number
of observations n0 based on an error bound d. If the num-
ber of experiments is greater than n0, then we can ensure
that the value of z close to zero means that the value of p̄
is close to p0, not that we have an insufficient number of
experiments. A confidence interval d indicates an indiffer-
ent zone. If p̄ is between p0 − d% and p0 + d%, it can be
considered as either successful or unsuccessful because p̄ is
so close to p0 and the result is considered indifferent. Let δ
be a confidence level. If Pr(|p̄ − p0| = d) ≥ δ, then n0 is
given as follows [4].

n0 =
z2

δp0(1 − p0)
d2

Error Bound. The probabilistic checking is done within
error bounds of α and β. α is the largest acceptable prob-
ability of incorrectly verifying a true property and β is
the largest acceptable probability of incorrectly verifying a
false property. Formally, α = Pr{reject H0|H0 is true}
and β = Pr{reject H1|H1 is true}. The bounds α and β
are used to calculate the z-score corresponding to α and β
written as zα and zβ , respectively. zα and zβ provide thresh-
olds of the z-score for p̄ to make one of the three decisions
in the sequential hypothesis testing.

Next, we present how to set up hypotheses and make a
decision. Since inequality symbols are more or less sym-
metric, we consider φ prob (< p0, X) and φ prob (=
p0, X).

1. φ prob (< p0, X) : We set up hypotheses as fol-
lows. H0 : p ≥ p0 and H1 : p < p0. We accept H0 iff
z ≥ zβ . We accept H1 iff z < zα. We need more sample iff
zα ≤ z < zβ . If the program terminates before accepting
any hypotheses, we return either accept or reject H0 with
a probability of error called p-value (a statistical term de-
scribed in [7]). If after n0 experiments have been performed
and zα < z < zβ , then we are indifferent between accept-
ing H0 and H1 because approximately p̄ = p0. Saying the
property is satisfied would produce an error less than the
bound and therefore, we accept H1.

2. φ prob (= p0, X) : We set up hypotheses as fol-
lows. H0 : p �= p0 and H1 : p = p0. After we perform
n0 experiments, we make following decisions. Accept H0

if z < zα or z > zβ . Accept H1 if zα < z < zβ . If we have
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performed at least n0, we can decide because the number of
n0 already guarantees for error bounds. If we have not per-
formed at least n0, we return the decision with p-value [7].
This rule in making a decision between acceptance and re-
jection, therefore, ensures that the decision is within error
bounds.

4 Implementation and Overhead

4.1 Implementation

The checker for RT-MEDL is obtained by extending the
existing checker for MEDL implemented in Java. We add
time-driven evaluation for quantitative properties and a ma-
chinery to perform statistical analysis testing for probabilis-
tic properties. The MEDL checker evaluates without stor-
ing a trace of observations. Its algorithm works as follows.
A target system, an event recognizer, and a checker com-
municate via TCP/IP sockets1. The target system sends its
observation with an absolute timestamp in milliseconds to
the event recognizer, which then transforms the observation
to an abstract form of events and conditions and forwards
them to the checker. Upon receiving, the checker updates
the values of conditions and event timestamps. If properties
become false or alarms occur, the checker notifies viola-
tions to users. Then, the observation can be discarded and
the algorithm proceeds to the next observation.

For RT-MaC, the checker provides a machinery to per-
form statistical analysis for probabilistic properties. It keeps
track of the number of all experiments and successful exper-
iments, calculates z-scores and error bounds, and evaluates
probabilistic events and conditions accordingly.

For quantitative properties, in addition to evaluating
upon receiving a new observation, the RT-MEDL checker
also evaluates in response to a timeout from time-bound
conditions. Such timeout is necessary when the next obser-
vation comes much later causing the time-bound conditions
to be evaluated much later than when their values change.
A simple timeout signal can initiate the evaluation and up-
date the values of these conditions as soon as their values
change. One way to signal a timeout is to use a timer.
We set a delay in which we want the timer to run. This de-
lay is a time bound specified in the quantitative conditions.
When the delay expires, the timer would send a signal to the
checker and initiate the evaluation. Setting a timer, how-
ever, is not as easy when the target system and the checker
reside on different machines. The differences in their clock
speeds and the message delay between them can complicate
the process of setting a timer.

Quantitative conditions specify that two events must oc-
cur within time bounds with respect to the clock where the

1See[9] for the reasons why we choose to run the MaC system on a
different machine.

events occur. Thus, the timer must run at the same clock
speed as the target system. Since the checker cannot pro-
vide such guarantee, we run the timer on the target sys-
tem machine. We describe our solution using an example
of evaluating a condition [e1, e2){≤d}. After an event e1

occurs with an absolute timestamp t, the checker sends a
message telling the target system to set a timer with an ab-
solute deadline of t+d. When the target system receives the
message, it sets a timer with a deadline of t + d. When the
deadline is met, it sends a message with its current times-
tamp to the checker. Upon receiving, the checker evaluates
the property as follows. When an event e2 occurs with a
timestamp ≤ t+d, the condition remains true. On the other
hand, when an event e2 occurs with a timestamp > t + d,
the condition becomes false. When no e2 occurs and the
checker receives a timeout signal with a timestamp > t+d,
the condition also becomes false.

One might question that the overhead of communicat-
ing via TCP/IP can delay the message and the target sys-
tem might receive the deadline message that is less than its
current time. However, this does not cause the checker to
incorrectly evaluate quantitative properties. When the ab-
solute deadline is less than the target system current time,
the target system would send a message back to the checker
right away with the timestamp of its current time. The de-
layed timeout signal only causes the checker to delay its
evaluation but it does not alter any evaluation results.

4.2 Overhead

The overhead of our implementation depends on com-
munication cost, and cost of running timers. For each ex-
periment, we use three different machines. All of them have
1GB memory and are operated using SunOS 5.8.

Machine 1: Sun Enterprise 3000 with four 250Mhz Ul-
traSPARC processor and 20% utilization.

Machine 2: Sun Blade 1000 with one 750Mhz Ultra-
SPARC III processor and 10% utilization.

Machine 3: Sun Ultra Enterprise 4000 with eight
167Mhz UltraSPARC processors and 20 % utilization.

Experiment I: Communication Cost The only overhead
that RT-MaC adds to the communication cost is the deadline
messages exchanging between the checker and the filter. To
get the pure communication cost, we set the time bound on
a quantitative condition to 1, ensuring that once the filter re-
ceives the deadline message, it must send a reply back right
away. At checker, we measure in milliseconds its round-
trip traveling (rrt) time by taking the difference between
the time right before the checker sends the message and the
time when the checker receives the reply message. We run
four experiments on different machine setups as shown in
Fig. 1. We repeat the test 200 times and take the average
for each experiment. As expected, when all are running on
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Target System Event Recognizer Checker Avg rrt
on Machine on Machine on Machine Time

1 1 1 80.5 ms
1 2 2 213 ms
1 3 3 241 ms
1 2 3 244 ms
1 3 2 218 ms

Table 1. Average rrt times

the same machine, its rrt time is the least. However, even
when running on different machines, the rrt times are still
very small, only about 0.2 second. Therefore, if no events
occur but the value of a quantitative condition changes due
to a timeout, the checker would evaluate the condition after
only at most 0.2 second delay. It seems insignificant for a
system where events do not occur frequently. For a system
where events occur frequently, this delay would not matter
because the condition would have been evaluated already in
response to other event occurrences. For any messages from
the checker with a deadline greater than the filter’s current
time, the delay would have been only half of the rrt time
shown in the table. The reason is that the timer would be set
with the difference between the message deadline and its
current time, and thus, the overhead is only a one-way trav-
eling time of sending an expiring message from the filter to
the checker.

Experiment II: Instrumentation Overhead We evaluate
the cost of extracting information from the target program
by comparing the execution time of the program with and
without RT-MaC. The experiment is measured in millisec-
onds where all components are on Machine 1. The rea-
son is that we want the worst-case execution time when
all the components are competing for CPU utilization. The
test program is written such that it is extracted at different
frequencies by letting program sleep for specified millisec-
onds. For tests with no timers, we set the time bound to 1
so that the target system would send the reply message back
right away without setting a timer. For tests with timers, we
set the time bound to 200 to ensure that the target system
would run a timer. The overhead is the percentage that the
instrumentation poses to the target program. The result in
Fig. 2 shows that the instrumentation and the execution of
timers pose very little execution time overhead to the target
system.

5 Related Work

There are a few existing works for runtime verification of
quantitative and probabilistic properties. Mok and Liu [17]
present an efficient runtime monitoring mechanism to de-
tect violations for timing constraints using graph theories.

Freq. of RT-MaC Run Timer Avg Exec. Overhead
Extracting Time

50 ms No - 598 ms -
50 ms Yes No 604 ms 1.003%
50 ms Yes Yes 607 ms 1.505%

100 ms No - 1095 ms -
100 ms Yes No 1100 ms 0.457%
100 ms Yes Yes 1104 ms 0.822%

Table 2. Intrumentation cost

The successors of the paper [16, 14] present the monitor-
ing of timing constraints on time intervals and timing con-
straints with confidence threshold requirements. Thati and
Rosu [19] studied the monitoring algorithms for MTL [11].
Their algorithms evaluate by transforming MTL formulae
into a “canonical form” after each occurrence of events.
The transformed formulae specify what need to be held on
the next state. The evaluation algorithm of EAGLE spec-
ification by Barringer et al. [3] is similar. Their specifi-
cation language allows one to express temporal logic, ex-
tended regular expression, quantitative properties, and re-
cursive language among others. The runtime verifications
of quantitative properties by Thati and Rosu [19] and by
Barringer et al. [3] implement only the event-driven eval-
uation, not the time-driven one. While the works by Mok
and Liu [17] and Thati and Rosu [19] provide no support for
probabilistic properties, the work by Barringer et al. [3] al-
lows probabilistic properties but its evaluation is not based
on statistical analysis.

Other runtime checking of quantitative properties are
studied by Jayaputera et al. [8] and by Kristoffersen et
al. [13]. Jayaputera et al. [8] provides quantitative and
probabilistic property checking using Windows Manage-
ment Instrumentation and .NET. The work by Kristoffersen
et al. [13] is similar to Thati and Rosu [19]. To evalu-
ate properties, they also transform timing properties based
on Timed-LTL [1] into a canonical form called disjunctive
normalized equation. Both of these works take a differ-
ent approach. They evaluate properties every time step.
In practice, predicates do not usually change every time
step, and therefore, it is considered redundant and ineffi-
cient. Kristoffersen et al. [12]’s following work improves
and allows both event-driven and time-driven evaluations.
Their timers however are set and run by a verifier. Assum-
ing that their implementation is done on a single machine,
it is acceptable. However, if the program and the verifier re-
side on different machines, their timer might not be correct
because clock speed on different machines can be different.
The work by Kristoffersen et al. [13, 12] focuses only the
quantitative properties but not probabilistic properties. The
work by Jayaputera et al. [8] allows probabilistic properties
but its evaluation is not based on statistical analysis.
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There are works for probabilistic model checking us-
ing statistical analysis [23, 18] that are closely related to
our probabilistic property checking based on statistics. The
general idea is to use a simulator to generate different ex-
ecution paths and analyze them using statistical hypothe-
sis testing. Younes and Simmons [23] simulate execution
paths and apply sequential hypothesis testing to analyze
data. Their work is very similar to ours because they use
sequential hypothesis testing. However, they can control
the simulated execution paths while we observe online exe-
cutions that cannot be controlled. In addition, because they
can control data, they can ensure that their decision is within
a given error bound. In our case, when a system some-
how terminates before we have enough samples, we cannot
assure the error bound but return the decision along with
the probability of errors. Sen et al. [18] present a similar
method except that they assume the generated sample paths
cannot be controlled and their method is not sequential hy-
pothesis testing. Because their number of observations is
fixed and uncontrolled, they cannot assure an error bound
and have to return their decision with the probability of er-
rors. In our case, if the answer is undecided, we can still
wait for new samples except in the case that the system ter-
minates early, which we return answers with the probability
of errors. The two works also assume prior knowledge of a
system model while we assume no prior knowledge of such
model.

6 Conclusion

The contributions of the paper are twofold. First, we ex-
tend MaC language to support quantitative and probabilistic
properties. Second, we efficiently implement time-driven
evaluation for quantitative properties. Probabilistic proper-
ties are evaluated using statistical analysis testing to provide
confidence interval. The experiments show that RT-MaC
poses minimal overheads to the system being verified. Fu-
ture works include using first-order temporal logics to pro-
vide better expressiveness in addition to the propositional
one used in this paper. We also would like to port our cur-
rent implementation from Java to Real-Time Java for more
accurate monitoring and checking real-time properties.
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