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Approximation Algorithms for Data Placement on Parallel Disks

Abstract
We study an optimization problem that arises in the context of data placement in multimedia storage systems.
We are given a collection of M multimedia data objects that need to be assigned to a storage system consisting
of N disks d1,d2,...,dN. We are also given sets U1,U2,...,UM such that Ui is the set of clients requesting the ith
data object. Each disk dj is characterized by two parameters, namely, its storage capacity Cj which indicates the
maximum number of data objects that may be assigned to it, and a load capacity Lj which indicates the
maximum number of clients that it can serve. The goal is to find a placement of data objects on disks and an
assignment of clients to disks so as to maximize the total number of clients served, subject to the capacity
constraints of the storage system.

We study this data placement problem for two natural classes of storage systems, namely, homogeneous and
uniform ratio. Our first main result is a tight upper and lower bound on the number of items that can always be
packed for any input instance to homogeneous as well as uniform ratio storage systems. We show that an
algorithm given in [11] for data placement, achieves this bound. Our second main result is a polynomial time
approximation scheme for the data placement problem in homogeneous and uniform ratio storage systems,
answering an open question of [11]. Finally, we also study the problem from an empirical perspective.
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Approximation Algorithms for Data Placement on Parallel Disks

L� Golubchik � S� Khanna y S� Khuller z R� Thurimella x A� Zhu �

Abstract
We study an optimization problem that arises in the context
of data placement in multimedia storage systems� We are
given a collection of M multimedia data objects that need
to be assigned to a storage system consisting of N disks
d�� d����� dN � We are also given sets U�� U�� ����UM such
that Ui is the set of clients requesting the ith data object�
Each disk dj is characterized by two parameters� namely� its
storage capacity Cj which indicates the maximum number of
data objects that may be assigned to it� and a load capacity
Lj which indicates the maximum number of clients that it
can serve� The goal is to �nd a placement of data objects on
disks and an assignment of clients to disks so as to maximize
the total number of clients served� subject to the capacity
constraints of the storage system�

We study this data placement problem for two natural
classes of storage systems� namely� homogeneous and uni�
form ratio� Our �rst main result is a tight upper and lower
bound on the number of items that can always be packed for
any input instance to homogeneous as well as uniform ratio
storage systems� We show that an algorithm given in ����
for data placement� achieves this bound� Our second main
result is a polynomial time approximation scheme for the
data placement problem in homogeneous and uniform ratio
storage systems� answering an open question of ����� Finally�
we also study the problem from an empirical perspective�

� Introduction

We study a data placement problem that arises in
the context of multimedia storage systems� In this
problem� we are given a collection of M multimedia
data objects that need to be assigned to a storage
system consisting of N disks d�� d����� dN� We are also
given sets U�� U�� ���� UM such that Ui is the set of
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clients requesting the ith data object� Each disk dj
is characterized by two parameters� namely� its storage
capacity Cj which indicates the maximum number of
data objects that may be assigned to it� and its load
capacity Lj which indicates the maximum number of
clients that it can serve simultaneously� The goal is
to �nd a placement of data objects on disks and an
assignment of clients to disks so as to maximize the
total number of clients served� subject to the capacity
constraints� We can view each data object simply as
a color� and each client as a unit size item with a
color corresponding to the data object in which they
are interested� Each disk dj can hold at most Lj items�
with the additional constraint that the total number of
distinct colors of the items in dj does not exceed Cj�

The data placement problem described above arises
naturally in the context of storage systems for multime�
dia objects where one seeks to �nd a placement of the
data objects� e�g�� movies� on a system of disks� These
and other issues related to the design of multimedia stor�
age systems are discussed in ���� We study this data
placement problem for the following two natural types
of storage systems�

Homogeneous Storage Systems� In a homogeneous stor�
age system� all disks are identical� We denote by k and
L the storage capacity and the load capacity� respec�
tively� of each disk and refer to this variant as k�HDP
�homogeneous data placement	�

Uniform Ratio Storage Systems� In a uniform ratio
storage system� the ratio Lj�Cj of the load to the
storage capacity is identical for each disk� We denote by
Cmin and Cmax the minimumand the maximum storage
capacity of any disk in such a system and refer to this
variant as URDP �uniform ratio data placement	� Notice
that homogeneous storage systems are a special case of
uniform ratio storage systems�

In the remainder of this paper� we assume that �i	
the total number of clients does not exceed the total
load capacity� i�e��

PM
i�� jUij �

PN
j��Lj � and �ii	 the

total number of data objects does not exceed the total
storage capacity� i�e�� M �PN

j��Cj �

��� Related Work

The data placement problem described above bears
some resemblance to the classical multi�dimensional



knapsack problem �
� ��� �� We may view each
disk as a knapsack with a load as well as a storage
dimension� and each client as a unit size item with
a color associated with it� However� in our problem�
the storage dimension of a disk behaves in a non�
aggregating manner in that assigning additional items
of an already present color does not increase the load
along the storage dimension� It is this particular aspect
of our problem that makes it di�cult to adapt known
techniques for multi�dimensional packing problems�

Shachnai and Tamir ���� studied the above data
placement problem� they refer to it as the class con�
strained multiple knapsack problem� The authors gave
an elegant algorithm� called the sliding window algo�
rithm� and showed that this algorithm packs all items
whenever

PN
j��Cj � M � N � � for URDP� An easy

corollary of this result is that one can always pack a
�� � �

��Cmin

	�fraction of all items for URDP� �This is
seen by increasing the capacity of each disk by �� pack�
ing all the items� and then from each disk dropping the
color with the fewest items�	 The authors showed that
the problem is NP�hard when each disk has an arbitrary
load capacity� and unit storage� Recently� Shachnai and
Tamir ��� study a variation of the data placement prob�
lem above where in addition to having a color� each item
u has a size s�u	 and a pro�t p�u	 associated with it� For
the special case when s�u	 � p�u	 for each item� and the
total number of di�erent colors M is constant� the au�
thors give a dual approximation scheme whereby for any
� � �� they give a polynomial time algorithm to obtain a
������	�approximate solution provided the load capac�
ity is allowed to be exceeded by a factor of ��� �	� The
paper by Dawande� Kalagnanam and Sethuraman ���
deals with a related bin�packing problem� where there
are n items� each with a color and size� and m distinct
bin sizes� The objective is to pack all items into bins
such that no bin contains items of more than p colors�
The objective is to minimize the total capacity of the
bins that are used� For the case where the total number
of colors is constant they give a polynomial time ap�
proximation scheme �PTAS	� The authors also describe
some practical heuristics for the problem which give a
constant approximation guarantee�

��� Our Results

Our �rst main result is a tight upper and lower bound on
the number of items that can always be packed for any
input instance to homogeneous as well as uniform ratio
storage systems� It is worth noting that in the case of
completely arbitrary storage systems no such absolute
bounds are possible�

Theorem ���� �Section �	 It is always possible to
pack a �� � �

���
p
k��

	�fraction of items for any instance

of k�HDP� or more generally� a ��� �
���

p
Cmin��

	�fraction

of items can always be packed for any instance of URDP�
Moreover� there exists a family of instances for which it
is infeasible to pack any larger fraction of items�

The upper bounds above are constructive as they
are achieved by the sliding window algorithm of �����
A side�result of our proof technique here is a simple
alternate proof of the result that all items can be packed
whenever

PN
j��Cj �M �N � ��

Our second main result is a polynomial time ap�
proximation scheme for the data placement problem in
uniform ratio storage systems� answering an open ques�
tion of �����

Theorem ���� �Section �	 For any �xed � � ��
one can obtain in polynomial time a ����	�approximate
solution to the data placement problem for any instance
of URDP�

We also strengthen the NP�hardness results of ����
by showing that the data placement problem is NP�
hard even for very special cases of homogeneous storage
systems�

Theorem ���� �Appendix A	 The k�HDP problem
is NP�complete for homogeneous disks with storage ca�
pacity k �  and strongly NP�hard for k � ��

Both reductions above are from NP�hard partition�
ing problems and illustrate how item colors can e�ec�
tively encode large non�uniform sizes arising in the in�
stances of these partitioning problems� even though each
item in our problem is of unit size itself� We also note
here that the case k � � is easily solvable in polynomial
time�

Finally� we also study the problem from an empir�
ical perspective� We study the homogeneous case on
instances generated by a Zipf distribution ��� �this cor�
responds tomeasurements performed in ��� for a movies�
on�demand application	 and compare the actual perfor�
mance of the sliding window algorithm with the bounds
obtained above as well as the bounds in ����� The re�
sults of this study are presented in Section ��� We also
show how to implement the sliding window algorithm
so that it runs in O��N � M 	 log�N �M 		 steps� im�
proving on the O�NM 	 running time of ���� �details of
this implementation will be provided in the full version
of the paper	� Note that the input size for our problem
is measured by N and M and not the total number of
items �which can be much larger	� The algorithm will
output the subset of data objects assigned to each disk
and the number of items of each color assigned to each
disk�

We next describe in some detail the motivating
application for our data placement problem�



��� Motivational Application

Recent advances in high speed networking and compres�
sion technologies have made multimedia services� such
as video�on�demand �VOD	 servers� feasible� The enor�
mous storage and bandwidth requirements of multime�
dia data necessitates that such systems have very large
disk farms� One viable architecture is a parallel �or
distributed	 system with multiple processing nodes in
which each node has its own collection of disks and
these nodes are interconnected� e�g�� via a high�speed
network�

We note that disks are a particularly interesting re�
source� Firstly� disks can be viewed as �multidimen�
sional� resources � the dimensions being storage ca�
pacity and load capacity� Based on the application one
or the other resource can be the bottleneck� Secondly�
all disk resources are not equivalent since a disk�s utility
is determined by the data stored on it� It is this �par�
titioning� of resources �based on data placement	 that
contributes to some of the di�culties in designing cost�
e�ective parallel multimedia systems� and I�O systems
in general� In a large parallel VOD system improper
data distribution can lead to a situation where requests
for �popular	 videos cannot be served even when the
overall load capacity of the system is not exhausted be�
cause these videos reside on highly loaded nodes� i�e��
the available load capacity and the necessary data are
not on the same node�

One approach to addressing the load imbalance
problem is to partition each video across all the nodes
in the system and thus avoid the problem of �splitting
resources�� e�g�� as in the staggered striping technique
���� However� this approach su�ers from a number of
implementation�related shortcomings that are detailed
in ���� An alternate system is described in ���� where the
nodes are connected in a shared�nothing manner �����
Each node j has a �nite storage capacity� Cj �in units
of continuous media �CM� objects	� as well as a �nite
load capacity� Lj �in units of CM access streams	� These
nodes are constructed by combining groups of disks into
disk clusters� In fact� in this paper we will mostly view
nodes as �logical disks�� For instance� consider a server
that supports delivery of MPEG� video streams where
each stream has a bandwidth requirement of � Mbits�s
and each corresponding video �le is ��� mins long� If
each node in such a server has � MBytes�s of load
capacity and �
 GB of storage capacity� then each such
node can support Lj � �� simultaneous MPEG� video
streams and store Cj � � MPEG� videos� In general�
di�erent nodes in the system may di�er in their storage
and�or load capacities�

In our system each CM object resides on one or
more nodes of the system� The objects may be striped

on an intra�node basis but not on the inter�node basis�
For example� objects that require more than a single
node�s load capacity �to support the corresponding
requests	 are replicated on multiple nodes� The number
of replicas needed to support requests for a CM object
is a function of the demand� This should result in a
scalable system which can grow on a node by node basis�

The di�culty here is in deciding on� ��	 how many
copies of each video to keep� which can be determined
by the demand for that video� e�g�� as in ����� and �	
how to place the videos on the nodes so as to satisfy
the total anticipated demand for each video within the
constraints of the given storage system architecture�
Our data placement problem tries to capture these
issues�

��� Organization

We start with an overview of the sliding window algo�
rithm in Section � In Section �� we present a tight
analysis of the sliding window algorithm to derive the
upper bounds of Theorem ���� We also present here a
family of instances that give the matching lower bound
as well as numerical results� Finally� in Section � we
present our approximation schemes for homogeneous as
well as uniform ratio storage systems and thus estab�
lish Theorem ��� A proof of Theorem ��� appears in
Appendix A�

� Sliding Window Algorithm

For sake of completeness� we describe here the sliding
window algorithm of Shachnai and Tamir �����

We maintain a list R���� � � �� R�m�� � � m � M of
colors where R�i� denotes the number of items of color
i that remain� The list R is sorted in non�decreasing
order� At step j� we assign items to disk dj� For the
sake of readability� R�i� always refers to the number of
currently unassigned items of a particular color �i�e��
we do not explicitly indicate the current step j of the
algorithm in this notation	� Assume that the disks are
numbered in a non�decreasing order of their capacities�
i�e�� C� � C� � � � � � CN � We assign items and remove
from R the colors that are packed completely� and we
move the partially packed colors to their updated places
�in the sorted set	 according to the remaining number
of unpacked items of that color�

The assignment of colors to a disk dj follows the
general rule that we select the �rst consecutive sequence
of Cj or less colors� R�u�� � � �� R�v�� whose total number
of items either equals to or exceeds the load capacity
Lj � We then assign colors R�u�� � � �� R�v� to dj� In
order to not exceed the load capacity� we will split the
items of the last color R�v�� It could happen that no
such sequence of colors is available� i�e�� all colors have
relatively few items� In this case� we greedily select



the colors with the largest number of items to �ll the
current disk� The selection procedure is as follows� we
�rst examine R���� which is the color with the smallest
number of items� If these items exceed the load capacity�
we will assign R��� to the �rst disk and re�locate the
remaining piece of R��� �which for R��� will always be
the beginning of the list	� If not� we then examine the
total number of items in R��� and R��� and so on until
either we �nd a sequence of colors with a su�ciently
large number of items �� Lj	� or the �rst Cj colors have
a total number of items � Lj � In the latter case� we go
on to examine the next Cj colors R��� � � � � R�Cj � ��
and so on� until either we �nd Cj colors with a total
number of items at least Lj or we are at the end of the
list� in which case we simply select the last sequence of
Cj colors which has the greatest total number of items�

We note that the Sliding Window algorithm can
be implemented to run in O��N � M 	 log�N � M 		
steps� where N is the number of disks and M is
the number of colors� Note that this is a signi�cant
improvement on the running time in ����� The reason
for the improvement is that we do not have to start the
�window�� of length Cj� from the beginning of the list
R in each iteration j� At the end of iteration i� after we
have determined the colors R�m�� � � � � R�n� to place in
disk di� we know that R�j� � Li

Ci
� r for all j � m � ��

This indicates that all �windows� ending with R�j�� for
all j � m � � will under��ll the load of any disk� Thus
the right end of the �window� will always monotonically
move to the right� We need to use a �� tree data
structure to implement this algorithm� �Skip�lists can
be used as well to get the same expected worst case
running time� with a simpler implementation�	 Details
are defered to the full version�

� Analysis

We now show that the Sliding Window Algorithm
guarantees to pack ��� �

���
p
k��

	 fraction of all items in

the homogeneous case� We assume each disk has load
capacity L and storage capacity k� The Sliding Window
Algorithm guarantees to pack ��� �

���
p
Cmin��

	 fraction

of items in the uniform ratio case� where the minimum
capacity of a disk is denoted by Cmin� We also show
that these bounds are tight�

We �rst discuss the homogeneous case� Note that
if there are any unpacked items� then every disk is
�lled to the maximum either on the number of items
it can hold or on the number of colors that can be
stored� We will call the former as load saturated and
the latter �the rest	 as storage saturated� �Therefore�
if a disk is storage saturated� then it still has some
un�lled load capacity�	 Denote the number of load�
saturated disks and the number of storage�saturated

disks by NL and NS � respectively� It is easy to see that
R���� � � � � R�NL� are load�saturated disks� and the rest
are storage�saturated disks� Let mj denote the number
of colors assigned to disk dj� Obviously for storage�
saturated disks� mj � k� Let c be the smallest fraction
of load to which a storage�saturated disk is �lled� Note
that this disk must store a color with a number of items
of that color being at most c�L�k� �Minimumis at most
the average�	 Now every color on the unassigned list
has no more than c�L�k remaining items of that color�
�Otherwise� the Sliding�Window algorithm would have
put this color on the lightest�loaded disk and increased
greedily the total number of packed items�	

Lemma ���� Using the Sliding Window Algorithm�
the number of unpacked items is at most c�L�NL

k �

Proof� The main thing we need to prove is that
there are at mostNL colors left after we run the Sliding�
Window algorithm� For each left over color we know
that the number of items is at most c�L

k � so the total

number of unpacked items is at most c�L�NL

k �
We examine the number of colors stored in the load�

saturated disks� If there is a load�saturated disk dj with
mj � k colors� then there are no colors left when the
algorithm terminates� i�e�� all items are packed� which
can be explained as follows� The reason that less than
k colors are packed into dj is due to the fact that at
step j

Pmj

i��R�i� � L� Since we sort the colors in a non�
decreasing order� at this point any consecutive sequence
of k � � colors in the list has the total size � L� Since
at step j� we �split� at most one color�� which is always
added to the beginning of R� at any step t � j we have
a guarantee that� for the new list R�

Pk
i��R�i� � L�

unless we have less than k colors� This implies that we
�ll the disks to their load capacity until we run out of
colors� Hence we can pack all items�

We can now assume that all the load�saturated disks
have k colors� The storage�saturated disks have k colors
as well� We start with M � N � k colors� During
the process� we can split at most NL colors� i�e�� we
can generate at most NL new �instances� of originally
existing colors� This is because only �lling disks that are
load�saturated can result in generating new �instances�
of colors� So the number of new �instances� of colors
generated is upper bounded by the number of load�
saturated disks� Thus the number of colors left is
�M � NL � N � k � NL� �

�By splitting a color we mean that� in the current iteration of

the algorithm� only some of the items of that color are packed into

the current disk� the remaining items might be packed in future

iterations of the algorithm� Hence� this color might be packed

into multiple disks�



Corollary ���� For �uniform ratio� disks� ifPN
j��Cj � M � N � �� then all colors can be packed

using the Sliding Window algorithm�

Proof� This is an alternate proof for the claim in
����� Our analysis of the algorithm makes the proof
simpler�

Let r � Lj
Cj

� denote the uniform ratio� Since the

ratios� Lj
Cj

are uniform� once any disk becomes storage�

saturated� the rest of the disks will be storage�saturated
as well� The main claim we need to prove is that after
we �ll disk dN��� we have at most CN colors left� We
will prove this shortly� If dN�� is storage�saturated�
then we can safely assign the remaining CN colors to
dN � If dN�� is load�saturated� then all previous disks
are load�saturated� Since the total number of items does
not exceed the total load capacity� we will not exceed
the load capacity�

We argue that if there is a load�saturated disk dj
with mj � Cj� then all the items will be packed� At

this stage� R��� � Lj
mj

� Cj
Cj�� � r � Ct

Ct�� � r for all

� � mj and all t � j� Recall that disks are sorted in
non�decreasing order of Ci� Thus we have the following
result� at any step t � j�

PCt
i��R�i� �

PCt
i��R�i� �

Ct� r � Lt� and so all items are packed without sliding
the window�

Since all load�saturated disks have Cj colors� after
we �ll disk dN��� we have generated at most N �� new
�instances� of colors� The total number of colors left is
�M � N � ��PN��

i�� Ci � CN � �

Lemma ���� Using the Sliding Window Algorithm�
the number of unpacked items is at most ���c	�L�NS �

Proof� At least L�NL�c�L�NS items are packed�
Subtracting this quantity from an upper bound on the
total number of items N � L gives NS � L�NL � L�
L� NL � c � L �NS � which yields the claim� �

Theorem ���� The Sliding Window Algorithm
guarantees to pack �� � �

���
p
k��

	 fraction of items in

the homogeneous case�

Proof� The above two lemmas give us two upper
bounds on the number of unpacked items� Hence the
number of unpacked items is at most min� c�L�NL

k � ���
c	 � L � NS	� The number of packed items is at least
L� NL � c� L �NS � Hence the ratio of unpacked�U	
to packed�S	 items is at most

U

S
� min� c�L�NL

k � ��� c	� L� NS	

L� NL � c � L �NS
�

This yields
S

U � S
� �� �

�� �
p
k	�

which proves the claim� �The details of this derivation
are given in Appendix B�	 �

This proof can also be extended to the uniform�ratio
case� The motto in the homogeneous case is that the
bigger the disk the better the performance of the Sliding
Window Algorithm� So in a uniform�ratio system one
should expect the algorithm to do at least as well as the
homogeneous case where all disks assume the smallest
disk size in the uniform�ratio system� The following
theorem formally proves this intuition�

Theorem ���� The Sliding Window Algorithm
guarantees to pack �� � �

���
p
Cmin��

	 fraction of items

in the uniform ratio case where Cmin denotes the mini�
mum capacity of a disk in our system�

Proof� Let r � Lj
Cj

for j � � � � �N denote the

uniform ratio� From the proof of Corollary ��� above�
if there is a load�saturated disk dj with mj � Cj� then
all items will be packed� Thus we will focus on the
case where for all j we have mj � Cj � Let ML denote
the total number of colors �we count the same colors
in di�erent disks as di�erent multiple colors	 in the

load�saturated disks �� � � � � NL� so ML �
PNL

j��mj �PNL

j�� Cj� Let MS denote the total number of colors in
the storage�saturated disks NL � �� � � � � N � so MS �PN

j�NL��
mj �

PN
j�NL��

Cj� Again let c be the
smallest fraction of load to which a storage�saturated
disk is �lled� Thus we have the following similar results�
� For each left over color we know that the number
of items is at most c� r�

� There are at most NL colors left unassigned� We
have NL � ML

mmin
� ML

Cmin

�
� The number of unpacked items is at most c � r �

ML

Cmin

�
� At least r �ML � c� r �MS items are packed�
� The number of unpacked items is at most r�ML�
r�MS � r�ML� c� r�MS � ��� c	� r�MS �

Hence the ratio of the unpacked�U	 to packed�S	 items
is at most

U

S
� min� c�r�ML

Cmin
� ��� c	� r �MS 	

r �ML � c � r �MS
�

Let y � ML

ML�MS
and thus MS

ML�MS
� �� y� Simplifying

the upper bound for this expression� we obtain

min� cy
Cmin

� ��� c	��� y		

y � c��� y	
�

Note that this is the same expression as in Theorem ���
for the homogeneous system� Optimizing this expres�
sion gives the same bound as in Equation ��� �Appendix
B	 with k replaced by Cmin� This proves the claim� �



��� Tight Example

We now give an example to show that the bound of
��� �

���
p
k��

	 is tight� In other words� there are instances

for which no solution will pack more than ��� �
���

p
k��

	

fraction of items�
Assume that k� the storage capacity of a disk is

a perfect square� and k � � �When k��� the tight
example is trivial�	 Let N � the number of disks� be
� �

p
k� and let L � k �

p
k� There are

p
k colors

with a large number of items each� U�� � � � � Upk with

jUij �  �
p
k for � � i � p

k� we will refer to these as
�large colors�� And� there are �k��	���

p
k	�� colors

with a small number of items each� Upk��� � � � � Uk���
p
k�

with jUij � � for
p
k � � � i � k�� �

p
k	� we will refer

to these as �small colors��
We will show that there are always at least

p
k items

that do not get packed� In this case� the fraction of items

that are not packed is at least
p
k

���
p
k��k�

p
k�

which is

exactly �
���

p
k��

� This proves the claim�

We �rst consider the
p
k large colors� An unsplit

set Ui has all its items packed in a single disk� A
split set Ui has its items packed in several disks� For
a disk that contains at least one large unsplit color� the
available load capacity left is at most k� � �Note that
after packing one large unsplit color� the available load
capacity is smaller than the storage capacity�	 We can
exchange any of the remaining colors with j �  items
of the same color� with any j small �distinct color	 items
in any other disk� while still packing the same number
of items� These disks now have one large unsplit color�
and at most k �  small colors� The remaining disks
have only large split colors� In fact� assume that there
are exactly p �� � p �

p
k	 large colors that do not get

split U�� � � � � Up� with disk di containing Ui�
Now consider the remaining N � p disks� we are

left with at least k � N � p�k � �	 � k � �N � p	 � p
colors� but we only have k � �N � p	 storage capacity
left� Since the remaining

p
k � p large colors are all

split� this generates an additional
p
k�p �instances� of

colors� Thus we have at least k� �N � p	� p �
p
k� p

colors� This will create an excess of
p
k items that we

cannot pack�

��� Numerical Results

We have implemented the Sliding Window algorithm
and compared its performance to the theoretical results
developed in this section� Refer to Figs� ��� for plots
of the fraction of unassigned items given by our worst
case bound �i�e�� �

���
p
k��

	� the bound corresponding to

�When k is not a perfect square we can get arbitrarily close to

the bound by modifying this family of examples�

the corollary of the result in ���� �i�e�� �
��k 	� as well as

the Sliding Window algorithm�
The results presented here are for the homogeneous

case only� For the purposes of this comparison we
generated the test cases using the Zipf distribution to
determine the skewness in the number of items of each
color� The Zipf distribution is de�ned as follows ����

Prob�item of color i� �
c

i�����
� i � �� � � � �M

and � � � � �

where c �
�

H
�����
M

and H
�����
M �

MX
j��

�

j�����

where � determines the degree of skewness� For in�
stance� � � ��� corresponds to the uniform distribution
whereas � � ��� corresponds to the skewness in access
patterns often attributed to movies�on�demand type ap�
plications� e�g�� similar to the measurements performed
in ����

We experimented with di�erent values of � and
computed the percentage of items that can be packed
by the Sliding Window algorithm as a function of k� the
load capacity of a disk� The results of these experiments
are given in Figs� ���� In all cases L � ��� and N � ��
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We can draw the following conclusions from these
�gures�
� the theoretical bound is reasonably tight when the
the number of items of each color is fairly skewed
�as in Figs�  and �	� as is the case in a VOD server�
which is our motivational application� furthermore�
the performance of the SlidingWindow algorithm is
very close to the theoretical bound for inputs which
are �similar� to the tight example given in Section
� �as in Fig� 	�



0

10

20

30

40

50

60

5 10 15 20 25 30

%
 o

f u
na

ss
ig

ne
d 

ite
m

s

k -- # of colors/disk

��� �
�

� � k

sliding window algorithm

��� �
�

�� �
p
k��

Figure � � � ����

0

10

20

30

40

50

60

5 10 15 20 25 30

%
 o

f u
na

ss
ig

ne
d 

ite
m

s

k -- # of colors/disk

��� �
�

� � k

sliding window algorithm

��� �
�

�� �
p
k��

Figure �� � � ����

� the performance of the Sliding Window algorithm
can be signi�cantly better than the theoretical
bound when the number of items of each color
is approximately the same and each disk has a
relatively small storage capacity �as in Fig� �	�
however� the theoretical bound is reasonably tight
for larger values of k �which again� is reasonable for
our motivational application	�

� Polynomial Time Approximation Schemes

We now present an approximation scheme our data
placement problem� We �rst present the approximation
scheme for homogeneous storage systems and then
brie�y sketch the ideas used to get an approximation
scheme for uniform ratio systems�

��� Homogeneous Storage Systems

We design an algorithm that for any �xed � � �� gives
a �� � �	�approximation in polynomial time� If the
error parameter � � ���� �

p
k	�� then we can simply

use the Sliding Window algorithm to obtain a �� � �	�

approximation� In the rest of this section� we focus on
the case when � � ���� �

p
k	�� In other words� k can

be assumed to be a constant when � is a �xed constant�
Our approximation scheme involves the following steps�

�� First we show that any given input instance can be
approximated by another instance I � such that no
color class in I � contains �too many� items�

� Next we show that for any input instance there ex�
ists a near�optimal solution that satis�es certain
structural properties concerning how items are as�
signed to the disks�

�� Finally� we give an algorithm that in polynomial
time �nds the near�optimal solution referred to in
step �	 above� provided that the input instance is
as determined by step ��	 above�

We now describe in detail each of these steps� In
what follows� we use OPT�I	 to denote an optimal
solution to the instance I and 	 to denote ���� Also�
for any solution S� we use jSj to denote the number of
items packed by it�

����� Preprocessing the Input Instance

We say that an instance I is B�bounded if the size of
each color class is at most B�

Lemma ���� For any instance I� we can construct
in polynomial time another instance I� such that

� I� is �	L	�bounded�

� any solution S� to I� can be mapped to a solution S
to I of identical value� and

� jOPT�I�	j � ��� �	jOPT�I	j�
Proof� Consider a color cj in the instance I such

that jUjj � 	L� Replace cj with a new set of colors
c�j � c

�
j � ���� c

s
j where s � djUj j��	L	e� Let U i

j denote the

set of items with color cij where � � i � s� Then

jU�
j j � ��� � jU s��

j j � 	L and jU s
j j � jUjj��s��		L�

Repeat this procedure for any color class that has more
than 	L items in I� We now have our instance I��

It is easy to see that any feasible solution to I� gives
a feasible solution of same value to I� simply replace
each color cij with cj �

Now consider a solution S for instance I� We show
that it can be mapped to a solution S� of size ��� �	jSj
for I�� If jUjj � 	L for � � j �M � then clearly S is also
a feasible solution of the same value for I�� Otherwise�
�x a color class Uj in I such that jUj j � 	L� Label
the occurrences of the items of color cj as �� � ��� as
we move from d� to dN in solution S� Replace the ith
occurrence of a color cj item with an item of color clj
where l � di�	Le� The resulting solution may no longer
be a feasible solution for I�� A disk may now contain
items of two di�erent colors� say clj and cl��j � in place



of a single color cj and hence the total number of colors
in the disk may become k � �� We simply discard all
the items in any disks where this event occurs� Repeat
this procedure for every color class with more than 	L
items in I� We claim that we have discarded no more
than an ��fraction of packed items� The reason is that
we throw away at most L items from a color class at a
crossover disk but this event occurs only once in every
	L occurrences of items packed from a color class� Thus
what we discard is at most an ��fraction of what is
packed� �

����� Structured Approximate Solutions

Let us call a color class Uj small if jUjj � �L�k� and
large otherwise� Also� for a given solution� we say that
a disk is light if it contains less than �L items� and it
is called heavy otherwise� The lemma below shows that
there exists a �� � �	�approximate solution where the
interaction between light disks and large color classes�
and between heavy disks and small color classes� obeys
some nice properties�

Lemma ���� For any instance I� there exists a
solution S satisfying the following properties	

� at most one light disk receives items from any large
color class�

� a heavy disk is assigned either zero or all items in
a small color class� and

� S packs at least ��� �	OPT�I	 items�

Proof� Let ni denote the number of items assigned
to the ith disk in the solution OPT�I	� Relabel the
disks � through N such that n� � n���� � nN � Assume
w�l�o�g� that OPT�I	 is a lexicographically maximal
solution in the sense that among all optimal solutions�
OPT�I	 is one that maximizes the sums

Pi
j�� nj for

each i � ����N ��
It is easy to see that the �rst property follows from

the maximal property of OPT�I	� To establish that a
heavy disk in OPT�I	 receives either zero or all items
from a small color class in the solution S� we may need
to discard some items from the heavy disks in OPT�I	�
Let X be the set of heavy disks that contain at most
�� � �	L items from large color classes� Consider any
disk di � X that receives some but not all items from
a small color class Uj � Simply move all items of Uj to
di� Repeat this process till no disk in X violates this
property� Since a small color class has at most �L�k
items� clearly the capacity of no disk is violated in this
process� Finally� for the remaining disks� simply discard
any items from small color classes� Clearly� the resulting
solution is ��� �	�approximate� �

For a given solution S� a disk is said to be 
�integral
w�r�t� a color class Uj if it is assigned �d
Le items from

Uj � where � � 
 � � and � is a non�negative integer�

Lemma ���� Any solution S can be transformed
into a solution S� such that

� each heavy disk in S is ����k	�integral in S� w�r�t�
each large color class� and

� S� packs at least �� � �	jSj items�

Proof� To obtain the solution S� from S� in each
heavy disk� round down the number of items assigned
from any heavy color class to the nearest integral
multiple of d����k	Le� Then the total number of items
discarded from any heavy disk in this process is at most

k

��
�
��

k
	L

�
� �

�
� k

�
�
��

k
	L

�
� ���L	�

Since each heavy disk contains at least �L items�
the total number of items discarded in this process can
be bounded by �jSj� Thus S� satis�es both properties
above� �

����� The Approximation Scheme

We start by preprocessing the given input instance I so
as to create an �	L	�bounded instance I� as described in
Lemma ���� We now give an algorithm to �nd a solution
S to I� such that S satis�es the properties described in
Lemmas �� and ��� and packs the largest number of
items� Clearly�

jSj � ��� �	�jOPT�I�	j � ��� �	�jOPT�I	j�

Let O be an optimal solution to the instance I� that
is lexicographically maximal� Assume w�l�o�g� that we
know the number of heavy disks in O� say N �� Let
H be the set of disks d� through dN � and let L be
the remaining disks� dN ��� through dN � The algorithm
consists of two steps� corresponding to the packing of
items in H and L respectively�

Packing items in H� We �rst guess a vector
hl�� l�� ���� lN �i such that li denotes the number of small
color classes to be assigned �completely	 to a disk
di � H� Since all disks are identical� we can guess
such a vector in O�Nk��	 time by guessing a compact
representation of the following form� We guess a vector
hq�� q�� � � � � qki such that

Pk
i�� qi � N � and qi denotes

the number of disks in H that are assigned i small
color classes �completely	� It is easily seen that any
such vector can be mapped to a vector of the form
hl�� l�� ���� lN �i and vice versa� Now proceeding from �
through N �� we assign to a disk di the largest size li
small color classes that remain�

Next we use a dynamic program by moving across
the disks from � through N � so as to �nd an optimal
����k	�integral solution for packing the largest number
of items from the large color classes� For the purpose of



this packing� the capacity of each heavy disk is restricted
to be �� � �	L and the number of color classes allowed
in disk di is given by k � li� Let � � k��� and
q � d���L	�ke� The dynamic programming solution is
based on maintaining a ��tuple �v � hv�� v�� ���� v�i where
vi denotes the number of large color classes that have
i � q elements available in them� Proceeding from i � �
through N �� we compute a table entry T ��v� i� for each
possible state vector �v� The entry indicates the largest
number of items that can be packed in the disks d�
through di subject to the constraint that the resulting
state vector is �v� Since there are at most Nk color
classes� the total number of state vectors is bounded by
�Nk	k��

�

� which is polynomial for any �xed ��
Packing items in L� We know that our solution

need not assign items from a large color class to more
than one disk in L� Moreover� at most �L items from
any large color class are packed in a disk in L� So at
this stage we can truncate down the size of each large
color class to b�Lc� We now construct an instance of
the b�matching problem on a weighted bipartite graph
G � �X 	Y�E	 where X has a vertex for each disk in L
and Y has a vertex for each remaining color class� For
each x � X and y � Y � there is an edge �x� y	 � E whose
weight is equal to the number of items remaining in the
color class corresponding to y� Now we �nd a maximum
weight matching such that the degree of each vertex in
X is restricted to be k while the degree of each vertex in
Y is restricted to be �� Clearly� such a matching gives
a feasible solution of maximumweight� This completes
our approximation scheme�

��� Uniform Ratio Storage Systems

We now brie�y sketch how the PTAS result above can
also be extended to the case of uniform ratio storage
systems� If � � ���� �

p
Cmin	� then we can use

the Sliding Window algorithm to obtain a �� � �	�
approximation� On the other hand� if Cmin as well as
Cmax are bounded by a constant �parameterized by �	�
the approach of the preceding subsection easily extends
to give a PTAS�

The di�culty thus lies in the case when Cmin is
small but Cmax is relatively large� In other words� our
system contains disks of widely varying storage capaci�
ties� We handle this case by showing that every �large�
disk can be approximately represented by a collection of
disks with bounded storage capacity such that we loose
at most an ��fraction of items due to this approximate
representation� Once this transformation is made� we
can once again use the approach of the preceding sub�
section to obtain a PTAS� We defer the details to the
full version�
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Appendix A� NP�hardness proof

In this appendix we give our proof of Theorem ���� We
�rst de�ne the PARTITION problem� and then describe
a polynomial time reduction from it to the homogeneous
data placement problem�

PARTITION� Given a �nite set A� with a size s�a	
for each element a � A� is there a subset A� 
 A such
that X

a�A�

s�a	 �
X

a�A�A�

s�a	�



This remains NP�complete even if we require jA�j �
jAj� � �� Let n � jAj�

Proof� The problem is easily seen to be in NP �
since a proposed solution can be trivially checked in
polynomial time�

We now show a polynomial time reduction from
PARTITION� Let amax be the maximum size item� For
the reduction� de�ne K � n�C� s�amax	 where C is a
large constant� Let L � �

�K and N � n� So there are n
disks with k �  �storage capacity	 and a large L value�
Let D �

Pn
i���K � s�ai		 � n � K �

Pn
i�� s�ai	� Let

M � n � � with xi �
�
�K � s�ai	 for � � i � n and

xn�� �
�
�D and xn�� �

�
�D�

Note that
Pn��

i�� xi �
Pn

i�� xi�D � �
�n�K which

is exactly NL� the storage capacity�
We claim that if there is a solution to the partition

problem with jA�j � jAj� and with s�A�	 � s�A � A�	
then there is a way to pack all items into the N disks�
The items are packed as follows� Put xi items of color
i in disk i� Disk i now has space for one new color�
and exactly �

�K � ���K � s�ai		 items� This is exactly
K � s�ai	� If item ai � A� then add items of color
n� � to disk i� otherwise add items of color n�  to
disk i� Since each disk can hold two colors� this does
not violate the color� Note that the number of items of
color n�� that we pack is exactly

P
ai�A� �K�s�ai		 �

n
� � K � s�A�	 � �

�D� The calculation is identical for
items of color n � � and this concludes the proof that
all items are packed�

We now argue that if there is a solution to �HDP
where all items get packed� then there is a solution to
the PARTITION problem� We �rst claim that if all
items are packed� then items of colors i and j� with
� � i� j � n cannot be packed into the same disk� This
is the case since� �a	 only two colors can be packed in a
disk and hence no other color can go into that disk� and
�b	 the total capacity used up by items of color i and
j� � � i� j � n� would not exceed K� which is much less
than the capacity of the disk� If we cannot saturate the
disk to full load capacity� then we cannot pack all items
�since the number of items exactly equals the total load
capacity	� If each items of color i is in a distinct disk�
then without loss of generality we pack items of color
i in disk i and now we are left with items of only two
colors that we need to split equally between the disks�
and each disk can only take an item of one color� with
K � s�ai	 items of that color� Since K �� s�ai	 we
must pack items of color n � � in exactly n� disks�
and the items of color n� in the remaining n� disks�
Let A� � faijitems of color n� � are packed in disk ig�
As said earlier jA�j � n

� � and s�A�	 � s�A � A�	� This
completes the proof� �

When k � �� the problem can be seen to be strongly

NP�hard for even the homogeneous case by a simple
reduction from ��PARTITION � ��

Appendix B� Details of Proof of Theorem ���

Given that the ratio of unpacked�U	 to packed�S	 items
is at most

U

S
� min� c�L�NL

k � ��� c	� L �NS 	

L �NL � c� L� NS

let y � NL

N
and thus NS

N
� �� y� Simplifying the upper

bound for the number of unpacked to packed items� we
obtain

min� cyk � ��� c	�� � y		

y � c��� y	
�����	

This is the same as

min�
cy
k

y � c��� y	
�
��� c	��� y	

y � c��� y	
	�

We can simplify the two functions to the following

min�
�

k � ��c �
��y
y 	

�
��� c	�� � y	

�� ��� c	��� y	
	�

The �rst term is strictly increasing as c or y increases�
while the second term is strictly decreasing as c or y
increases� So in order to maximize the expression� we
need to set the two terms equal� which means

cy

k
� ��� c	�� � y	�

This gives
y �

�� c

�� c� c
k

�

Substituting for y gives us that the upper bound for this
ratio is at most

c� c�

k � kc� c�
�

This achieves its maxima when c � ��� �
��
p
k
	�

The fraction of all items that are packed is

S

U � S
�

�

� � U
S

�

Replacing the bound that we derived for c we get that

U

S
� �

k � 
p
k
�

This yields
S

U � S
� �� �

�� �
p
k	�

�
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