
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

June 2001

Logical Relations for Encryption (Extended
Abstract)
Eijiro Sumii
University of Pennsylvania

Benjamin C. Pierce
University of Pennsylvania, bcpierce@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2001 IEEE. Reprinted from Proceedings of the 14th IEEE Computer Security Foundations Workshop 2001, pages 256-259.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/154
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Eijiro Sumii and Benjamin C. Pierce, "Logical Relations for Encryption (Extended Abstract)", . June 2001.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/154
mailto:libraryrepository@pobox.upenn.edu

Logical Relations for Encryption (Extended Abstract)

Abstract
The theory of relational parametricity and its logical relations proof technique are powerful tools for reasoning
about information hiding in the polymorphic λ-calculus. We investigate the application of these tools in the
security domain by defining a cryptographic λ-calculus -- an extension of the standard simply typed λ-calculus
with primitives for encryption, decryption, and key generation -- and introducing logical relations for this
calculus that can be used to prove behavioral equivalences between programs that rely on encryption.

We illustrate the framework by encoding some simple security protocols, including the Needham-Schroeder
public-key protocol. We give a natural account of the well-known attack on the original protocol and a
straightforward proof that the improved variant of the protocol is secure.

Comments
Copyright 2001 IEEE. Reprinted from Proceedings of the 14th IEEE Computer Security Foundations Workshop
2001, pages 256-259.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/154

http://repository.upenn.edu/cis_papers/154?utm_source=repository.upenn.edu%2Fcis_papers%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages

Logical Relations for Encryption
(Extended Abstract)*

Eijiro Sumiit Benjamin C. Pierce
University of Tokyo University of Pennsylvania

sumii@saul.cis.upenn.edu bcpierce@cis.upenn.edu

Abstract

The theory of relational parametricity and its logical rela-
tions proof technique are powerful tools for reasoning about
information hiding in the polymorphic A-calculus. We in-
vestigate the application of these tools in the security do-
main by dejining a cryptographic A-calculus-an extension
of the standard simply typed A-calculus with primitives for
encryption, decryption, and key generation-and introduc-
ing logical relations for this calculus that can be used to
prove behavioral equivalences between programs that rely
on encryption.

We illustrate the framework by encoding some simple se-
curity protocols, including the Needham-Schroeder public-
key protocol. We give a natural account of the well-known
attack on the original protocol and a straighgorward proof
that the improved variant of the protocol is secure.

1 Introduction

Information hiding is a central concern in both program-
ming languages and computer security. In the security
community, encryption is the fundamental means of hid-
ing information from outsiders. In programming languages,
mechanisms such as abstract data types, modules, and para-
metric polymorphism play an analogous role. Each com-
munity has developed a rich set of mathematical tools for
reasoning about the hiding of information in applications
built using its chosen primitives. Given the intuitive similar-
ity of the notions of hiding in the two domains, it is natural
to wonder whether some of these techniques can be trans-
ferred from the programming language setting and applied
to security problems, or vice versa.

As a first step in this direction, we investigate the ap-
plication of one well established tool from the theory of

*A full version including the proofs of the theorems is available at:
http:Nwww.yl.is.s.u-tokyo.ac.jp/~sumii/pub/infohide2.ps.gz

tThe present work was carried out while the first author was visiting
the University of Pennsylvania.

programming languages-the concept of relational para-
metricity [23] and its accompanying logical relations proof
method-in the domain of security protocols.

We begin by defining a cryptographic A-calculus, an ex-
tension of the ordinary simply typed A-calculus with primi-
tives for encryption, decryption and key generation. (One
can imagine a large family of different cryptographic X-
calculi, each based on a different set of encryption primi-
tives. For the present study, we use the simplest member
of this family-the one where the primitives are assumed to
provide perfect shared-key encryption.) This calculus offers
a suitable mix of structures for our investigation: encryp-
tion primitives, since our goal is to reason about programs
from the security domain, together with the type structure
on which logical relations are built. We now proceed in
three steps:

1. We show how some simple security protocols can
be modeled by expressions in the cryptographic X-
calculus. The essence of the encoding lies in regard-
ing principals as pairs of the message values they send
and functions representing new principals waiting for
their next message. Our main example is the Needham-
Schroeder public-key protocol [191. The encoding of
this protocol gives a clear account both of the well-
known attack on the original protocol and of the re-
silience of the improved variant of this protocol to the
same attack [141.

2. We formalize desired secrecy properties in terms of be-
havioral equivalence. Suppose, for instance, that we
would like to prove that a program keeps some integer
secret against all possible attacks. Let pi be an instance
of the program with the secret integer being i. If we
encode each attacker as a function f that takes the pro-
gram as an argument and returns an observable value
(a boolean, say), then we want to show the equality
f(pi) = f(pj) for i # j. Since such a function is it-
self an expression in the cryptographic A-calculus, we
can use the same language to reason about the attacker
and the program.

1063-6900/01$10.00 0 2001 IEEE
256

mailto:sumii@saul.cis.upenn.edu
mailto:bcpierce@cis.upenn.edu

3. We introduce a proof technique for behavioral equiva-
lence based on logical relations. The technique gives a
method of “relating” (in a formal sense) two programs
that differ only in their secrets and that behave equiva-
lently in every other respect. In particular, in its original
form in the polymorphic A-calculus, it gives a method of
showing behavioral equivalence between different im-
plementations of the same abstract type-so-called re-
lational parametricity. We adapt the same ideas to the
cryptographic A-calculus, which enables us to prove the
equivalence of pi and p j from the point of view of an
arbitrary attacker f , without quantifying explicitly over
all such attackers.

To illustrate these ideas, let us consider a simple system
with two principals A and B sharing a secret key z , where
A encrypts a secret integer i with z and sends it to B, and
B replies by returning i mod 2. In the standard informal
notation, this protocol can be written as:

1. A - B : { i I z
2. B - A : i m o d 2

In the cryptographic A-calculus, this system can be encoded
as a pair p of the ciphertext {i},, which represents the prin-
cipal A sending the integer i encrypted with 2, and a func-
tion A{z},.z mod 2 representing the principal B, which
publishes z mod 2 on receiving an integer 5 encrypted by
z . Let p z be an instance of the program with the secret inte-
ger being i.

pi = newzin({z},, A{z},.zmod2)

Here, the key generation construct new z i n . . . guarantees
that z is fresh, that is, different from any other keys and
unknown to the attacker.

The network, scheduler, and attackers for this system
are encoded as functions operating on this pair. We as-
sume a standard model of a “possible” attacker [8], who
is able to intercept, forge, and forward messages, encrypt
and decrypt them with any keys known to the attacker,
and-in addition-schedule processes arbitrarily. (The last
point is not usually emphasized, but generally assumed by
considering any possible scheduling when verifying proto-
cols.) In short, it has full control of the network and pro-
cess scheduler-or, to put it extremely, “the attacker is the
network and scheduler.” Then, the properties to prove are:
(i) the system accomplishes its goal under a “good” net-
worWscheduler and (ii) the system does not leak its secret
to any possible attacker.

The “good” networkkcheduler for this system can be
represented as a function f that takes a pair p as an ar-
gument and applies its second element #z(p), which is a
function representing a principal receiving a message, to its

first element #1 (p) , which is a value representing a princi-
pal sending the message.

f = X P . # 2 (P) # l (P)

The correctness of this networkkcheduler can be checked
by applying f to p , which yields i mod 2 as expected. (Of
course, this networWscheduler is designed to work with
this particular system only. It is also possible to encode
a generic networWscheduler that will work with a range of
protocols, by including the intended receiver’s name in each
message and delivering messages accordingly.)

On the other hand, the property that the system keeps the
concrete value of i secret against any possible attacker, can
be stated as a claim of behavioral equivalence between, say,
p3 and p5. That is, f (p 3) and f (p 5) give the same result for
any function f returning an observable value.

Why is this? The point here is that p3 and p5 differ
only in the concrete values of the secret integers and behave
equivalently in any other respect. That is, the correspon-
dence between values encrypted by a secret key-i.e., the
integers 3 and 5 encrypted by the key z-is preserved by
every part of both programs. Indeed, the first elements of
the pairs are { 3) , and { 5) ,, and the second elements of the
pairs are functions that, given the arguments { 3 } = and {5}=,
return the same value 1. Since the key z itself is kept secret,
no other values can be encrypted by it.

Our logical relation formalizes and generalizes this argu-
ment. It demonstrates behavioral equivalence between two
programs which differ only in the concrete values of their
secrets, i.e., the values encrypted by secret keys. It is de-
fined as follows:

0 Two integers are related iff they are equal.

0 Two pairs are related iff their elements are related.

0 Two functions are related iff they return related values
when applied to related arguments.

0 Two values encrypted by a secret key k are related iff
they are related by cp(k), where the relation environment
ip gives the relations between values encrypted by each
secret key.

The soundness theorem for the logical relation now tells us
that, in order to prove behavioral equivalence of two pro-
grams, it suffices to find some ip such that the logical rela-
tion based on ip relates the programs we are interested in.

For instance, in the example above, take p(z) =
{ (3 , 5) } . Then:

0 The first elements of p3 and p5 are related by the defini-
tion of ip.

0 The second elements of p3 and p5 are related since they
return related values (i.e., 1) for any related arguments
(i.e., { 3 } z and { 5 } *) .

257

0 Therefore, the pairs p3 and p5 are related since their el-
ements are related.

Thus, p3 and p5 are guaranteed to be behaviorally equiva-
lent.

In this way, the logical relation allows is to prove the be-
havioral equivalence of programs-which amounts to prov-
ing secrecy-in a compositional manner.

The contributions of this work are twofold: theoreti-
cally, it clarifies the intuitive similarity between two forms
of information hiding in different domains, namely, encryp-
tion in security systems and type abstraction in program-
ming languages; practically, i t offers a systematic method
of proving secrecy properties of programs using encryption.

The structure of the rest of this paper is as follows. Sec-
tion 2 presents the syntax and intuitive semantics of the
cryptographic A-calculus and Section 3 demonstrates the
use of our framework through examples. Section 4 shows
the operational semantics, Section 5 gives a simple type
system-which is prerequisite for formalizing the logical
relation-and Section 6 defines the logical relation and its
variants. Section 7 discusses related work and Section 8
mentions future work.

2 Syntax and Intuitive Semantics

The cryptographic A-calculus extends a standard A-calculus
with keys, fresh key generation, encryption, and decryption
primitives. The formal syntax of the calculus is given in
Figure 1. A key k is an element of the countably infinite
set of keys K . The key generation form new x i n e gen-
erates a fresh key, binds it to the variable z, and evaluates
the expression e (in which z may appear free). For exam-
ple, the program new z i n new y i n (2, y) generates two
fresh keys and gives the pair of them. The encryption ex-
pression {el}e2 encrypts the value obtained by evaluating
the expression el with the key obtained by evaluating the
expression e2. The decryption form l e t {x}el = e2 i n e3
e l s e e4 attempts to decrypt the ciphertext obtained by eval-
uating e2, using the key obtained by evaluating el. If the de-
cryption succeeds, it binds the plaintext thus obtained to the
variable x and evaluates the expression e3. If the decryption
fails, it instead evaluates e4. For example, the program l e t
{ x } k r = { l } k i n x + 2 e l s e 0 encrypts the integer 1 with
the key k , tries to decrypt it with another key k’-which
fails because the keys are different-and therefore gives 0.
On the other hand, the program l e t {z}k = { l } k i n z + 2
e l s e 0 gives 3 because the decryption succeeds.

Several abbreviations are used in examples. We use a
tuple with no elements (i.e., n = 0) to represent a dummy
value, written (). We write t r u e for inl(()) , f a l s e for
inz(()), and i f e then el e l s e e2 for case e of inl(-)
+ el 1 in2(-) + e2, respectively, to represent booleans

as a disjoint sum of dummy values.’ We use the “option
values” Some(e), abbreviating in1 (e), and None, abbreviat-
ing inZ(()), to represent the return values of functions that
may or may not actually return a meaningful value because
of errors such as decryption failure. We use the “pattern
matching” function syntax A { Z } ~ , . e2 to abbreviate Ay. l e t
{ x } ~ ~ = y i n e2 e l s e None (where y does not appear free
in el and e2), representing functions accepting arguments
encrypted by a particular key only. For example, the func-
tion X{z}k . Some(s + 1) returns Some(i + 1) when applied
to an integer i encrypted by the key k , and None for any
argument not encrypted by k . Finally, we use integer arith-
metic in the examples, although we have not included it in
the formal definition of the calculus.

Example 1. The expression A{x}k. Some(x mod 2), which
is an abbreviation of the expression Ay. l e t { x } k = y i n
in l (z mod 2) e l s e in2(()), represents a function f that
accepts an integer x encrypted by the key k and returns its
remainder when divided by 2, with the tag Some to denote
success. For instance, the application f ({ 3 } k) gives the re-
sult Some(1) while f ({ i } k !) returns None for any k’ # k
and any i.

Example 2. For some integer i, let p , = new z i n ({i}z,
A { X } ~ . Some(z mod 2)) and f = Ap. #z(p)#l(p). Then,
f(p,) gives Some(i mod 2). This can be seen as a run of an
encoding of the following simple system, where two prin-
cipals A and B share a key z (to be precise, a key bound
to the variable z) : first, A encrypts and sends i; then, B
receives and decrypts it, and publishes its remainder when
divided by 2. Here, the function f plays the role of a “good”
network and scheduler for this system.

Our cryptographic primitives directly model only
shared-key encryption, but they can also be used to obtain
the effect of public-key encryption: for any key k , the en-
cryption function Ax. {z}k and decryption function A{x}k.
Some(z) can be passed around by themselves and used as
encryption and decryption keys.

This trick raises one subtle issue: when we pass the func-
tion Ax. { x } k to the attacker to use as an encryption key, we
are implicitly assuming that the attacker is unable to “dis-
assemble” this function and discover the embedded key k .
Although this is true if the attacker is itself a A-context, in
general it would be foolish to send out code strings with
embedded secret keys. In practice, we need to choose a dif-
ferent representation for this function--e.g., as an integer
constituting the public part of a public/private key pair, or
as a pointer that the attacker can use to call a function phys-
ically located in the principal-a representation that can be
used by the attacker only for the purposes we intend, and

’ h i () denotes the i-th injection (“tagging”) into a disjoint sum.

258

e ::= z 1 X z . e I elez I (el ? . . . , e n) 1 # i (e) 1 ini(e) I caseeof inl(z1) * e l I . . . 1 inn(z,) + e n I
k I new z i n e I {el},, I l e t { I C } ~ ~ = e2 i nes e l se e4

Figure 1. Syntax

that does not give away information we desire to keep se-
cret. Our framework abstracts away from such choices of
representation, simply assuming that a suitable one can be
found.

3 Applications

Now we demonstrate the use of our framework on some
larger examples, in which concurrent principals communi-
cate with one another by using encryption. Although the
cryptographic X-calculus has no built-in primitives for con-
currency or communication, i t can emulate a concurrent,
communicating system by encoding it as follows. (Recall
the example in Section 1 .)

The system as a whole is encoded as a tuple of the pro-
cesses and their public keys (if any).

An output process is encoded as the message itself.

An input process is encoded as a function receiving a
message.

A networWscheduler/attacker for the system is encoded
as a function that applies the input functions to the out-
put messages in a certain order, possibly manipulating
the messages using the keys that it knows.

Then, the following two properties are desired in general.

Under a “correct” network and scheduler, i.e., a function
applying appropriate messages to appropriate functions
in some appropriate order, the program gives some cor-
rect result (soundness).

Under any possible attacker, the program does not do
anything “wrong” such as leaking a secret (safety).

3.1 A Program Based on the Needham-Schroeder
Public-Key Protocol

Consider the following system using the Needham-
Schroeder public-key protocol [19] in a network with a
server A, a client B, and an attacker E. (1) B sends its own
name B to A. (2) A generates a fresh nonce N,, pairs it
with its own name A, encrypts it with B’s public key, and
sends it to B. (3) B generates a fresh nonce Nb, pairs it with
N,, encrypts i t with A s public key, and sends it to A. (4)

A encrypts Nb with B’s public key and sends it to B. (5) B
encrypts some secret integer z with Nb and sends it to A.*

1. B - + A : B
2 . A + B : {N , ,A}kb
3. B -+ A : {Na,Nb}k ,
4. A -+ B : {Nb}kb
5 . B + A : { i } ~ ~

Let us encode this system as an expression of the cryp-
tographic X-calculus. (The result is somewhat complex,
because several actions implicitly assumed in the infor-
mal definition above-such as identity check of names and
keys-are made explicit in the encoding process.)

Recall that we encode such a concurrent, communicating
system as a tuple of the principals and the public keys. So
we begin the encoding by generating the system’s keys and
publishing their public portions, that is, A’s encryption key,
B’s encryption key, and E’s key:

new 2, i n new zb i n new ze i n
(X ~ . { ~ } z ~ , X ~ . { ~ } z ~ , z e , . . . , . . .)

Let us now encode B as the fourth element of the tuple. B
publishes its own name B. (We assume that names are just
integers for the sake of simplicity.) The difference from the
previous expression is underlined.

new zo i n new z h i n new zp i n

Next, let us encode A as the fifth element of the tuple. A
receives a name X , encrypts the pair of a freshly generated
nonce N, and its own name A with X’s key, and publishes
it.

new z , i n new zb i n new 2, i n
{ X } z a , { Z } 2 b > ‘ € 1 (B>‘ ”)>

XX.new N, in({(iVa,A)}zr,.. .))

Here, zz abbreviates i f X = A then z , e l s e i f X = B
then 26 e l s e 2, . The next action of B is to receive the
pair of N, and a name A’ encrypted by Zb, assert A’ = A,
encrypt the pair of N, and a freshly generated nonce Nb
with z,, and publish it:

new z , innew zb innew ze i n

’A reader familiar with security protocols may think this fifth message
problematic in practice, because it uses a random nonce as a secret key. We
introduced it just for a technical purpose: to state the secrecy of the nonce
Nb in terms of the secrecy of the integer i, which is easier to deal with.

259

Here, A{(N,, A)}zb. . . . abbreviates Ay. l e t { P } ~ , = y i n
(i f # z (p) = A then (AN,. . . .)#I@) e lse None) e l s e
None. Next, A receives the pair of a nonce NL and Nb,
asserts NL = N,, encrypts Nb with Zb, and publishes it:

new z, i n new zb i n new z , i n
(Ax. {x}z,, , Ax. {x}Zbl ze,
(B , A { (Na , A)}zb. new Nb in Some(({ (Na 7 Nb)}z,, 3 . . .))) 7

(AX.newNa i n ({(Na,A)}z&,
A {Na , Nx 12,’ . some ({Nx } zf, 1)))

Here, A{N,, N3C}Z,L. . . . abbreviates Ay. l e t { P } ~ , , = y i n
(l e t = { O } N , , i n (ANz. . . .) # 2 (p) e l s e None)
e l se None. Last, B receives a nonce NL encrypted by Zb,
asserts NL = Nb, encrypts i with Nb, and publishes it:

Let N s , be the expression above. Here, A{Nb}zb. . . . ab-
breviates Ay. l e t {NL}zf, = y i n (l e t {-}N; = { O } N ~ i n
. . . e l s e None) e l s e None.

A correct run of this system can be expressed by evalu-
ation of this expression under the following function Good,
which represents a “good” networklscheduler for this sys-

l e t Some((m2, cb)) = C b m l i n
l e t Some(m3) = c,mz i n
l e t Some(m4) = cim3 i n
Some (m4)

Here, l e t (X, cb) = . . . i n . . . etc. are syntactic sugar
that tries pattern matching and returns None if it fails, as are
the abbreviations above. Good (N S i) indeed evaluates to
Some({z}Nb) for some fresh Nb, which means a successful
execution of the system.

It is well known that a use of the Needham-Schroeder
public-key protocol such as the system above-namely, let-
ting the server A accept a request not only from the friendly
client B but also from the malicious attacker E-is vulnera-
ble to the following man-in-the-middle attack, which allows
E to impersonate A with respect to B [141. (1) B sends its
own name B to A, but E intercepts it. (1’) E sends its own
name E to A. (2’) A generates a fresh nonce N,, pair it with
A, encrypt it with E’s public key, and send it to E. (2) E en-
crypts the pair of N , and A with B’s public key and send
it to B, pretending to be A. (3,3’) B generates a fresh nonce
Nb, pair it with N,, encrypt it with A’s public key, and send
it to A. (4’) A encrypts Nb with E’s public key and send it

to E. (4) E encrypts Nb with B’s public key and send it to B,
pretending to be A. (5) B encrypts i with Nb and send it to
A, but E intercepts and decrypts it.

1.
1’.
2’.
2.
3 , 3 ‘ .
4‘.
4.
5 .

B -t E (A)
E - t A
A - t E
E (A) -+ B
B - + A
A - t E
E (A) -t B
B -+ E(A)

This attack can be expressed in the cryptographic A-calculus
by the following function Evil for the expression NSi
above.

Again, l e t ({ (N,, A) } + L ~ (~) , c,) = . . . i n . . . etc. are syn-
tactic sugar for pattern matching. Evil(NS i) indeed evalu-
ates to Some(i), which leaks the secret. In other words, if
i # j, then Ewil(NSi) and Ewil(NS,) evaluate to differ-
ent observable values, so NSi and NSj are not behaviorally
equivalent, and therefore non-interference fails.

3.2 A Program Based on the Improved Needham-
Schroeder Public-Key Protocol

Consider the following variant of the system above, using
an improved version of the Needham-Schroeder public-key
protocol [14]. (The difference from the original version is
underlined.) (1) B sends its own name B to A. (2) A gener-
ates a fresh nonce N,, pair it with its own name A, encrypts
it with B’s public key, and sends it to B. (3) B generates a
fresh nonce Nb, tuples it with N , and B, encrypts it with
A’s public key, and sends it to A. (4) A encrypts Nb with
B’s public key and sends it to B. (5) B encrypts some secret
integer i with Nb and sends it to A.

1. B - + A : B
2. A -t B : {N,,A}kf,
3 . B -+ A : {N,,Nb,B}k,,
4. A -+ B : {Nb}kf,
5. B -+ A : { i } ~ ~

260

Following the same lines as the encoding of the original
system, this improved system can be encoded as follows.

Let NS: be the expression above. Here, X{N,, N 3 3 , X } z , , .
. . . abbreviates A y . l e t { P } ~ ,
= {o }~ , , i n (i f # 3 (p) = X then (AN,. . . .)
z (p) e l s e None) e l s e None) e l s e None.

How does this change prevent the attack? Recall that
Evil was the following function.

= y i n (l e t

Xp. l e t (B , Cb) = # 4 (p) i n
l e t ({ (Na, A)}#3(p), cu) = #5(p)E i n
l e t some((m,cb)) = Cb(#Z(p)(Na>A)) i n
l e t Some((Nb}#,(,)) = cam i n
l e t Some({i}N,) = cb(#Z(P)Nb) i n
Some (i)

When the attacker forwards the message m = { (N a , Nb,
B) } Z b (which is encrypted by B’s secret key and cannot be
decrypted by the attacker) from B to A, A tries to match B
against X = E , which fails. Thus, Evil(NS’,) reduces to
None for any i and fails to leak the secret. (In Section 6, we
formally prove this secrecy property against any possible
attackers, using our logical relation.)

3.3 A Program Based on the ffgg Protocol

The ffgg protocol is an artificial protocol with an intentional
flaw, which is secure as long as only one process runs for
each principal, but insecure when more than one process
runs for a principal [17]. Although the cryptographic A-
calculus is sequential, it is actually expressive enough to
encode this so-called “parallel attack” by interleaving.

To see this, let us encode the following system with two
principals A and B using the ffgg protocol. (1) A sends its
own name A to B. (2) B generates two fresh nonces NI and
Nz and sends them to A. (3) A tuples NI, N2, and some
secret value M , encrypts them with a shared secret key k,
and sends them to B. However, B does not check the identity
of NZ and lets 3: and y be the second and third elements of
the tuple, respectively. (4) B tuples x , y and N I , encrypts
them with k, and sends them to A with N1 and x.

This system can be encoded as follows.

new z i n
((A , A w l , Nz). {Wl, Nz, W I Z) ,

((Nl,N2),X{Nl,~,Y}z. (Nl,Z, {(Z,Y,Nl)}z)))

AA. new NI i n new N2 i n

Again, for the sake of brevity, we used syntactic sugar for
pattern matching.

The attack to this system is as follows. (1) A sends its
own name A to B. (1‘) Pretending to be A, the attacker E
sends A to another process B‘ running for B. (2a) B gener-
ates two fresh nonces N1 and N2, and send them to A, but
E intercepts them. (2’) B’ generates other two fresh nonces
Ni and Ni, and send them to A, but E again intercepts them.
(2b) E sends N I and Ni to A, pretending to be B. (3) A tu-
ples NI, Ni and M , encrypts them with k, and sends them
to B. (4) B tuples Ni, M and N I , encrypts them with k,
and send them to A with NI and Ni, but E intercepts them.
(3’) E forwards the tuple of Ni, M and N1 encrypted by
k to B’, pretending to be A. (4’) B’ tuples M , NI and Ni,
encrypts them with k, and send them to A with Ni and Ad,
but E intercepts them.

1. A - + B : A
1’. E(A) -+ B’ : A
2 ~ . B + E (A) : N1,Nz
2’. B’-+ E (A) : Ni ,N;
26. E (B) - + A : N1,Ni
3. A + B : {NI, N;, M } k
4. B -+ E (A) : NI, N:, {N;, &I, Ni}k
3’. E(A) 4 B’ : { N { , M , N i } k
4’. B’ -+ E(A) : Ni, M , {M, NI, N i } k

This attack can be encoded as the following function on the
expression above.

Xp. l e t
l e t
l e t
l e t
l e t
l e t
Some (M)

This function indeed reveals the secret value M in the ex-
pression above. Note that the function representing the prin-
cipal B did not have to be replicated explicitly, because
functions in A-calculus can be applied any times by default.

By the way, in this encoding, there actually exists an even
simpler function which leaks the secret.

Xp. l e t (A , c,) = # 1 (p) i n
l e t ((NI, N Z) ~ C b) = # 2 (p) A i n
l e t m = ca(N1, N2) i n
l e t (Nil N2, m’) = cbm i n
l e t (N z , M, m”) = Cbm‘ i n
Some(Ad)

261

This attack is usually considered impossible in reality, be-
cause it applies the “continuation” function cb twice, which
means exploiting one state of (a process running for) the
principal B more than once. This kind of false attacks could
perhaps be excluded in our framework by using linear types
for continuation functions like cb. See Section 8 for details.

4 Operational Semantics

In this section and the two that follow, we present the cryp-
tographic A-calculus, its type system, and the logical rela-
tions proof technique more formally.

The semantics of the calculus is defined by an evalua-
tion relation mapping terms to results. For the ordinary A-
calculus, the evaluation relation has the form e J.l u , read
“evaluation of the (closed) expression e yields the value
21.’’ However, since the cryptographic A-calculus includes
a primitive for key generation, we need to represent “the set
of keys generated so far” in some rigorous fashion. We do
this by annotating the evaluation relation with a set s, rep-
resenting the keys that have already been used when eval-
uation begins, and a set s’, representing the keys that have
been used when evaluation finishes. To be precise, we de-
fine the relation (.)e $ V where V is either of the form
(s’)w or Error (signalling a run-time type error). We main-
tain the invariant that (s) e $ (s’)u implies s s s’, that is,
s’ \ s is the set of fresh keys generated during the evaluation
of e. The evaluation relation is defined inductively by the
rules in Figure 2.

Most of the evaluation rules are standard and straightfor-
ward; we explain just a few important points. In the rule for
key generation, k is guaranteed to be “freshly generated”
because s s. (Here, s kJ s’
is defined as s U s’ i f s n s‘ = 8, and undefined otherwise.)
This is the rule that increases the set of keys. In the rule for
decryption, we first evaluate el to obtain the decryption key
k l , then e2 is evaluated to obtain a ciphertext of the form
{u}k2 . If el does not evaluate to a key or e2 does not eval-
uate to a ciphertext, then a type error occurs. Otherwise,
if the two keys match (IC1 = k2), the body e3 is evaluated,
with z bound to the decrypted plaintext u. Otherwise, the
else clause e4 is evaluated.

The following theorem and corollary state that the result
of evaluating an expression is unique, modulo the names of
freshly generated keys. (We write Keys(e) for the set of
keys syntactically appearing in e.)

{ k } is defined and therefore k

Theorem 3. Let S I 2 Keys(e) and let 0 be a one-to-one
substitution from S I to another set of keys s 2 . If (sl)e 4)
(s1kJsi)u1 and (s2)Oe $ V, then V has the form (s ~ u s ~) u 2
and there exists some one-to-one substitution 8’ from si to
si such that wz = (0 u 8 ’) ~ ~ .

Corollary 4 (Uniqueness of Evaluation Result). Let s 2
Keys(e). If (s)e J.l (s si)‘u~ and(s)e J.l V, then V has the
form (3 kd s;)u2 and there exists some one-to-one substitu-
tion 8’ from si to sh such that ‘u2 = 8 ’ ~ .

5 DpeSystem

In this section, we define a simple type system for the cryp-
tographic &calculus. Types in this setting play not only the
traditional role of guaranteeing the absence of run-time type
errors (a well-typed term cannot evaluate to Error), but,
more importantly, provide a framework for the reasoning
method we consider in the next section. (The fundamental
definition of the logical relation proceeds by induction on

In addition to the values found in the ordinary A-
calculus, the cryptographic A-calculus has keys and cipher-
texts. Therefore, besides the usual function, product, and
sum types of the simply typed A-calculus, we introduce a
key type key[r], whose elements are keys that can be used
to encrypt values of type T , and a ciphertext type bi ts[r] ,
whose elements are ciphertexts containing a plaintext value
of type r. Thus, keys of a given type cannot be used to en-
crypt values of different types, and ciphertexts of a given
type cannot contain plaintext values of different types. This
restriction is not particularly bothersome, since values of
(finitely many) different types can always be injected into a
common sum type. (Actually, to guarantee type safety, we
do not need to annotate both key types and ciphertext types
with their underlying plaintext types, but doing so simplifies
the definition of the logical relations in Section 6.)

The typing judgment has the form r, A /- e : T , read
“under the type environment r for variables and the type
environment A for keys, the expression e has the type T , i.e.,
e evaluates to a value of type r.” The typing rules (which
are straightforward) are given in Figure 3. Here, f kJ f‘ for
two mappings f and f’ is defined as (f f‘) (z) = f (z) for
z E d o m (f) and (f W f’)(y) = f’(y) for y E dom(f ’) if
dom(f)ndom(f’) = 8, and undefined otherwise. Note that
the type environment A for keys is used in the rule (Key) in
the same way the type environment I‘ for variables is used
in the rule (Var). For the sake of readability, we often write
boo1 for u n i t + u n i t and opt ion[r] for r + u n i t , where
u n i t is the type of a tuple with no elements.

In what follows, we often abbreviate a sequence of
the form XI, . . . , X, as X and a proposition of the form
Alii<m P(Yl,-, . . . ,Y,j) as P(p1,. . . ,p,). For example,

E S abbreviates (k l E S I) A . . . A (IC , E s,).
The following theorem and corollary state that the eval-

tY pes.)

uation of a well-typed program never causes a type error.

Theorem 5. Suppose I?, A t- e : r and 8, A V : 7 for
r = { 2 H 7} . If (s) [f i / Z] e $ V for s = dom(A), then

262

‘U ::= Xs.e 1 (V I , . . .,‘U,) 1 ini(.) I k 1 { ~ } k

V ::= (s) ‘ ~ 1 Error

(s)let {x},, = e2 i n e3 else e4 U V

(%)e l 4 (sl)z,1 . . . (sz- l)e t U Error (3). U Error (s)e U (s’)z, z, # (. . . , w,, . . .) (s)e U Error
(so) (e l , . . . ,e,) U Error (s)#i(e) U Error (s)#z(e) U Error (s) in i (e) 4 Error

[$)e U Error

Figure 2. Semantics

263

I ’ , A t e 1 : r 1 ... r , A t - e , : r , r , A t e : r1 x . . . x ri x . . . x 7,
r, A t- (el,. . . ,e,) : r1 x . . . x r, (Pair) (Proj) r , A b #i(e) : ri

(In)
r , A t e : ri

r, A l- ini(e) : r1 + . . . + ri + . . . + r,

r , A t- e : + . . . +rn r‘u {xl H r l} ,A F e l : r . . . I?u {x, H T,),A t e, : r
(Case) r , A t case e of inl(x1) * el 0 . . . 0 in,(x,) + e, : r

r Uj {z H key[r’]}, A t- e : r
I-, A I- new x i n e : r

r, A t- e l : r rl A t- e2 : key171 (Eric)
(New) r, A t {el},, : bits[^] I?, A t- k : key[A(k)] (Key)

r, A t el : key[r’] I?, A t- e2 : bits[r’] Uj {x H T ’ } ; A t- e3 : T I‘, A t e4 : r
(Dee> r, A t- l e t {z} ,~ = e2 i n e3 e l se e4 : r

Figure 3. Type System

there exist some w and A’ such that V = (s

0, A

Corollary6(TypeSafety). If 0,8 I- e : 7, then (@) e $!
Error.

s’)w and
A’ t- Y : r fors’ = dom(A‘).

One subtle point deserves mention, concerning the rela-
tion between types and the modeling of security protocols.
Since we intend to represent both principals and attackers
as terms of the cryptographic A-calculus, if we restrict our
attention to only well-typed terms, we seem to run the risk
of artificially (and unrealistically) restricting the power of
the attackers we can model. In particular, since the cal-
culus under this type system is strongly normalizing (i.e.,
every well-typed program terminates), the attackers are not
Turing-complete.

However, we believe that the present simple type system
is flexible enough to allow typical attacks: indeed, all of
the attacks we have seen so far are well-typed in the type
system. As for so-called “type attacks,” which make prin-
cipals confuse values of different types, they are either (1)
actually well-typed in the present type system, which does
not distinguish nonces from keys, or (2) easily prevented by
standard dynamic type checking.

6 Logical Relations for Encryption

Recall the family of expressions p , from Example 2:

pz = new z i n ({z }= , A{z},. Some(z mod 2))

Suppose we want to argue that each p , keeps its concrete
value of i secret from any possible attacker. Intuitively, this

is so because the only capabilities p i provides to an attacker
(at least, if that attacker can be represented as an expression
of the cryptographic A-calculus) are a ciphertext encrypting
i under a key that the attacker cannot learn plus a function
that will return just the least significant bit of a number en-
crypted with this key.

The intuition that the concrete value of i is kept secret
can be formulated more precisely as a non-interference con-
dition: for any i and j such that i mod 2 = j mod 2 (i.e., such
that the part of the information that we do allow p z and p j
to reveal is the same), we want to prove that p , and p j are
behaviorally equivalent, in the following sense.

Definition 7 (Extensional Equivalence). We say that t e
= e‘ : r , pronounced “the expressions e and e’ are exten-
sionally equivalent at type 7,’’ iff, for any f with 8,8 t- f :
T --f bool, there exist some s and s’ such that (0)fe 4
(s) t rue and (8)fe’ $ (s’)true or (0)fe .U- (s) f a l s e and
(0)fe’ (s’)f a l se .

Although extensional equivalence is defined for closed ex-
pressions only, i t can be used to prove the more general
property of contextual equivalence for open expressions as
follows. Take any expressions e and e’ of type r and any
context C [] of type bool with a hole of type 7. Let 5 be
the free variables of e and e’, and let f = Azo .C[~oZ] ,
eo = AZ.e, and eh = X5.e‘. Then f eo = feb implies
C[e] = C[e’]. Thus, contextual equivalence of e and e’ fol-
lows from extensional equivalence of eo and eh.

In the following subsections, we define three variants of
the logical relation proof technique for extensional equiva-
lence. The first one shows the basic ideas, but i t is not pow-

264

erful enough to prove secrecy properties of realistic pro-
grams, such as (the encoding of the system based on) the
improved Needham-Schroeder public-key protocol in Sec-
tion 3. The second and third are extensions of the basic
logical relation, one for addressing the issue of “a key en-
crypting another key” and the other for accommodating dis-
crepancies in the number of keys used in the programs being
compared.

6.1 Basic Logical Relation

Extensional equivalence is difficult to prove directly be-
cause it involves a quantification over all functions f of type
r + bool, which are infinitely many in general. Instead,
we would like prove it in a compositional manner, by show-
ing that each part of two programs behave equivalently.
However, this approach will not suffice to prove any inter-
esting case of extensional equivalence if we do not consider
the correspondence between ciphertexts. Consider, for ex-
ample, the expressions e = new z i n ({ true}, , {false}, ,
X{z},.Some(z)) and e’ = new z i n ({false},, {true},,
X{z}, . Some(not (x))). Although these tuples are equiva-
lent, it can not be shown, say, that the third elements X{x}k.
Some(z) and X{z}k. Some(not(z)) are equivalent for any
freshly generated key k , without knowing (1) the fact that
k is kept secret throughout the whole programs and (2) the
relation between values encrypted by k .

Thus, we generalize t e FZ e’ : r to the logical relation
cp k e - e’ : r , where the parameter cp is a relation environ-
ment: a mapping from keys to relations, associating to each
secret key k a relation p(k) between the values that may be
encrypted by k . Given cp, the family of relations cp k e - e’
: r is defined by induction on r as follows:

0 Two functions are related iff they map any related argu-
ments to related results.

0 Two pairs are related iff their corresponding elements
are related.

0 Two tagged values are related iff their tags are equal and

0 Two keys are related iff they are identical and not secret.
Here, the set of secret keys is identified with the domain

their bodies are related.

of cp.

0 Two ciphertexts {w}k and { w ’ } ~ ~ are related iff IC = IC’
and either:

- k is secret and (w , ‘U’) E cp(k), or else
- k is not secret and w and U’ are related.

Intuitively, cp k ‘U - U’ : r means “under any possible
attackers, the values ‘U and U’ behave equivalently and fur-
thermore preserve the invariant that values encrypted by any

secret key k are related by p(k).” It is this invariant which
makes the logical relation work at all: as is often the case
in inductive proofs, requiring this extra condition helps us
in proving the final goal, i.e., extensional equivalence. Note
that, in the definition above, secret keys are not related even
if they are identical, because if they were related, an attacker
would be able to encrypt arbitrary values under the keys and
break the invariance.

As for expressions, arbitrary expressions are related iff
they evaluate to values that, in turn, are related under a re-
lation environment extended with the fresh keys that were
generated during evaluation. The formal definition of the
logical relation is given in Figure 4. cp k-:::, U N U’ : T

and cp k;:: e - e’ : 7 are logical relations for values and
expressions, respectively. The sets s and s’, respectively,
denote the keys generated so far in the left and right hand
sides.

Example 8. For the e and e’ in the previous example, let
r = bits[bool] x bits[bool] x (bi ts[bool] ---f option
[bool]). Then, 8 k;:; e N e’ : r. To prove this, let t = t’ =

{ k } and 7,b = { k H {(true, f a l s e) , (fa l se , true)}} in
the definition of 8 e - e’ : r.

Example 9. For the p , in Example 2, let r = b i t s [i n t] x
(b i t s [i n t] + option[int]) . Then, 8 ti:: p , - p , : r
for any i and j with i mod 2 = j mod 2. (Here, we define
cp kz;:, i - i’ : i n t i = i ’ .) To prove this, let
t = t’ = { k } and $(k) = { (i , j) } in the definition of 0

The following theorem and corollary state that the logi-
cal relation indeed implies extensional equivalence.

Theorem 10. Let r, A k e : r where r = (5 H T } . Let
furthermore cp k-I$.ii - V’ : f where dom(cp)ndom(A) =
0 and s , s’ 2 dom(cp) M dom(A). Then, cp kz:: [V /g]e -
[C ’ / 2] e : r. That is, any expression is related to itself when
its free variables are substituted with related values.

Corollary 11 (Soundness of Logical Relation). If 0 kiyi
e - e‘ : r , then t e M e’ : r.

6.2 Extended Logical Relation

In the basic logical relation above, a relation between values
encrypted by each secret key k is given by the relation envi-
ronment cp. However, cp gives up no information about the
relations that should be associated with fresh keys that are
still to be generated in the future. As a result, the basic logi-
cal relation technique fails to prove the equivalence of some
important examples that are, in fact, equivalent: in particu-
lar, we cannot prove the security of the improved version of

265

I $5 t:;, f - f’ : 7 1 + 7-2 1 f = Ax. e and f‘ = Ax. e’ for some x, e , e‘ such that
cp w $J tzL:,s,wl, [w/x]e - [w’/x]e’ : r 2 for any w . U’, t , t’, $J such that
p k~ + k;&s,w,t, t~ - U’ : T~ with dam($) C t n t’
p = (w1 , w,) and p’ = (vi, . . . , vh) for some V, 6’ such that

t = in,(.) and t’ = in2(w’) for some z,v, U’ such that

k = k‘ where k E s n s‘ with k @ dom(cp)
c = { w } k and c’ = { d } k for some U , w’, k such that
k E dom(p) with k E s n s’ and (w,v’) E y (k) , or
k # dom(cp) with k E s n s’ and cp t::, w - w’ : r

(s) e .V (s
p w $J E$t.s,wt, v - v’ : r with dom(1c,)

p k;ai, p - p’ : TI x . . . x T,

p E;:;, t - t’ : r1 + . . . + r,

cp t-za;, k - k’ : key[^]
p t-;a:, c - c’ : b i t s [r]

p E;;;, v - 6’ : -T

p E:;, v - U’ : r,
I

m

p t-zr: e - e‘ : r t) v and (s’)e’ 4 (s’ W t’)v‘ for some t , w, t’, U’, 1c, such that
t n t’

Figure 4. Basic Logical Relation

the Needham-Schroeder public-key protocol from Section
3.2.

For a simpler example showing where the proof tech-
nique goes wrong, consider a program y2 = new x i n (A-.
new y i n { Y } ~ , X{y’},. Some({i}yt)) for some secret inte-
ger i. Since the key x (to be precise, the key bound to the
variable 5) is kept secret, the key y = y’ is also kept se-
cret, so i is kept secret. Therefore, 43 and y5, say, should
be equivalent. But in order to prove this by using the ba-
sic logical relation above, we would have to give a relation
between values encrypted by the key k bound to x . Since
the key k’ that will be bound to y is not yet determined, we
cannot specify a relation like p (k) = { (k’, k’)}. Thus, y3
and 45 cannot be related.

This problem can be addressed by refining the definition
of the logical relation a little, i.e., parameterizing the rela-
tion environment p with respect to sets s and s’ of keys-
representing the sets of keys that will have been generated
at some point of interest in the future-as well as the rela-
tion environment 11, that will be in effect at that time. (The
definition of “a relation environment parametrized by an-
other relation environment” is recursive, but such entities
can be constructed inductively, just as elements of a re-
cursive type can be.) Then, in the example above, for in-
stance, we can specify the needed relation as p:,,(k) =
{(k’ ,k’) I lc,t,tl(k’)x = {(3 ,5)} fo rany t , t ’ andx} . Ac-
cordingly, we extend the definition of the logical relation
for ciphertext types to:

cp k$, c - c’ : bits[^] +
c = {v }k and c’ = {v’}k for some ‘U, U’, k such that
k E dom(p) with k E s n s’ and (U , U’) E p;,,, (k) , or
k # dom(cp) with k E s n s’ and cp k;;:, ‘U - U’ : T

Interestingly, even after this extension, the propositions
in Section 6.1 (and their proofs!) continue to hold with-

out change-as long as we impose the condition that cp
in p!,s,(k) is monotonic with respect to extension of s,
s’, and I$. Intuitively, the condition guarantees that val-
ues related once do not become unrelated as fresh keys are
generated in the future. This is not the case if we take
p:,, (k) = { (k’, k’) I k’ # s U s’}, for example. The mono-
tonicity condition excludes such anomalies. Formally, we
require that each p satisfies

* *wx
P S , d (k) c (Pswt,s’wt’(k)

for any s, s‘, t and t’ with s n t = 8 and s‘ n t‘ = 0, and for
any 1c, and x with dam(+) G s n s’ and dom(x) C t n t’.
We refer to this condition as “p is monotonic.”

Example 12. For the previous q,, let r = (unit --+ b i t s
[key[i n t]]) x (b i t s [key[i n t]] --+ o p t i o n [b i t s [in t]]) .
Then, 8 k;:: y2 - y3 : r for any i and j. To prove this,
let t = t’ = { k } and

lc ,zs , (k) = { (k ’ , k ’) I cp$(k’) = { (i , j) } f o r a n y t , t ’ a n d x }

in the definition of 8 ti:: 42 - q3 : T . It is straightforward
to check that q!~ is monotonic. Hence t- y2 M y3 : T .

Example 13. Let us see how to prove the correctness of the
system in Section 3.2, which is based on the improved ver-
sion of the Needham-Schroeder public-key protocol, using
the extended logical relation.

First, in order for the encoding NS: to be well-typed
at all, values encrypted by the keys z b and z , need to be
tagged. (The tags are underlined.)

new z, i n new 21, i n new ze i n
{z)z,, 1 { x) z t , , z e ,

Some(({ (Na 7 Nb, B) }zc . 3 X{%(Nb) } = b . Some({ ~ } N I ,)))) 1

(B .X{~((N, ,A))} , , . new Nb i n

(A X . new NLl i n ({*((Na, A))) z , ,
X { N a , Nx. X}Z<, . Some({*(Nz));,))))

266

Call this expression NSY. It can be given the type

(71 -+ b i t s [q]) x (7 2 ---f b i t s [q]) x key[rz]x
(nam x (b i t s [r ~] -+ op t ion [b i t s [q]x

(bits[r2] -+ opt ion[b i t s [in t]])])) x
(nam -+ (bits[r2] x (b i t s [q] --t opt ion[b i t s [~2]])))

where nam is actually just i n t and

71 = key[o] x key[int] x nam
~2 = key[o] x nam f key[int]

for some g. Call this type r.
Now, NS; and NSY can be related (and are therefore

extensionally equivalent) for any i and j by letting t = t’ =
{ka, kbr he} and

4&,(ka) = { (v , ~ ’) I cpl-:;:, V N I J ’ : ~ ~)

U { ((Nar N b r B) , (N a t N b r B)) 1
cpf t f (Na) = r and cpttt(Nb) = {i,j}
for any t t‘ and x}

‘$cs,(kb) =
U

U { (in?_(Nb), in,(Nb)) I

{(‘U,’U’) 1 cp k$, 2) - ‘U’ : 7 2)

{ (in l (Wa, A)) , i n l (Wal 4)) I
cp&, (N a) = r for any t , t‘ and x}

cp& (Nb) = {i, j } for any t , t‘ and x}
for some r in the definition of 8 ti$‘ NS‘,‘ - NSY : r.

It is straightforward, by the way, to check that
Good(NS:) evaluates to Some({i}N,) for some fresh Nb.

So this system is indeed both safe (from attacks that can be
modeled in our setting) and sound.

6.3 Another Extended Logical Relation

Another way of extending the logical relation is to let a re-
lation environment cp map apair of secret keys-rather than
one secret key-to a relation between values encrypted by
those keys. Consider, for example, the following two ex-
pressions.

e = new 5 i n

e’ = new J: innew y i n ({3}z, {4}y,

{ 2 } z 1
Az. l e t { z } z = z i n Some(z mod 2) e l s e None}

Az. l e t { z } z = z i n Some(i mod 2) e l s e
l e t {j}y = z i n Some(j mod 2) e l s e None)

They should be extensionally equivalent because, in both
expressions, the keys x and y are kept secret, and there-
fore the only way to use the first and second elements of
the tuples is to apply the third elements, which return the
same value. However, this extensional equivalence cannot
be proved by using either of the logical relations above, be-
cause the second elements are encrypted by different keys.

This problem can be solved by letting a relation environ-
ment cp take apair of secret keys, like cp(lc,, k z) = { (1 ,3)}
and cp(kz, k p) = { (2 ,4)} for example, and extending the
definition of the logical relation accordingly, letting

9 k$, c - C’ : bits[?-]
c = {w}k and c’ = {v’}p for some v, w’, k, k’ such that
(I C : k’) E dom(cp) with (k, k’) E s x s‘ and (v, U’) E cp(k), or
(k: k’) 6 dom(cp) with (k, k’) E s x s‘ and cp k?:, w - v‘ : ?-

cp kz$ k - k’ : key[?-] e+
k = k’ where (IC, IC) E s x s‘ with
(k , k’’) dom(p) and (k”, k) dom(p) for any k”

and so forth. Again, it is straightforward to adapt the re-
sults in Section 6.1 for this extension. (It may seem some-
what surprising that the results in Section 6.1 are so easily
adapted to different definitions of logical relations. This
stems from the fact that the proofs of the propositions do
not actually depend on the internal structure of relation en-
vironments.)

7 Related Work

Numerous approaches to formal verification of security pro-
tocols have been explored in the literature [l I , 13, 15, 16,
etc.]. Of these, the spi-calculus [3] is one of the most power-
ful; it comes equipped with useful techniques such as bisim-
ulation [2 ,6] for proving behavioral equivalences and static
typing for guaranteeing secrecy [1 J and authenticity [lo].
We are not in a position yet to claim that our approach is su-
perior to the spi-calculus (or any other existing approach);
rather, our goal has been to demonstrate that standard tech-
niques for reasoning about type abstraction can be adapted
to the task of reasoning about encryption, in particular about
security protocols. For this study, A-calculus offers a better
starting point than name-passing process calculi, where re-
lational parametricity does not actually work very well be-
cause of aliasing [21]. Of course, the cost of this choice
is that we depend on the ability of the A-calculus to en-
code communication and concurrency by function applica-
tion and interleaving. Since this encoding is not fully ab-
stract (processes are linear by default while functions are
not), a process that is actually secure is not always encoded
as a secure A-term. Any attacks that we discover for the
encoded term must be reality-checked against the original
process (cf. the false attack on the program using the ffgg
protocol in Section 3). However, if the encoding of a pro-
cess can be proved secure, then the process itself is also
secure (cf. the proof of the secrecy property of the program
using the improved Needham-Schroeder public-key proto-
col in Section 3).

Formalizing and proving secrecy as non-interference-
i.e., equivalence between instances of a program with dif-

267

ferent secret values-has been a popular approach both in
the security community and in the programming language
community. Non-interference reasoning in protocol verifi-
cation can be found in [9,24,26], among others.

Since the cryptographic A-calculus has a key genera-
tion primitive, we must be able to reason about generative
names. We adopted Pitts and Stark’s work on A-calculus
with name generation [25] in formulating both the seman-
tics in Section 4 and the logical relation in Section 6.1.

Encryption is similar to type abstraction in that both re-
strict access to secrets (the former dynamically obfuscates
their values, while the latter statically hide their types). To
define the logical relation in Section 6.1, we also referred
to the logical relation for the polymorphic A-calculus, also
known as the theory of relational parametricity [23]. While
the latter assigns each type variable a relation between val-
ues implementing the abstract type, the former assigns each
secret key a relation between values encrypted by the key.

There also exist many proposals for using techniques
in programming languages-in particular, static typing-
to guarantee security of programs. For example, Heintze
and Riecke [121 proposed a typed A-calculus with informa-
tion flow control, and proved a non-interference property-
that a value of high security does not leak to any context
of low security-using a logical relation. Most of those ap-
proaches aim to statically exclude attackers coming into a
system, rather than to dynamically protect a program from
attackers outside the system. (An exception is the work
cited above on static typing for secrecy and authenticity in
spi-calculus.)

Lillibridge and Harper [personal communication, July
20001 have independently developed a typed seal calculus
that is closely related to our cryptographic A-calculus. Their
work mainly focuses on encoding sealing [181 primitives in
terms of other mechanisms such as exceptions and refer-
ences (and vice versa), rather than establishing techniques
for reasoning about secrecy properties of programs using
sealing.

8 Future Work

Recursive Functions and Recursive wpes It can be
shown (from Theorem 10 and the definition of cp k::: e - e’ : T) that under our simple type system, evaluation
of a well-typed expression always terminates. Therefore,
recursive functions cannot be written. Indeed, introducing
recursive functions breaks the soundness proof of the log-
ical relations. Also, introducing recursive types breaks the
well-definedness of the logical relations. We expect that
these limitations can be removed by incorporating the the-
ory of logical relation for A-calculus with recursive func-
tions and/or recursive types (e.g., [5,7]).

State and Linearity Although real programs often have
some kind of state or linearity (in the sense of linear logic),
our framework does not take them into account. Thus, it
cannot prove the security of a program depending on them.

For example, consider an expression p i = new z i n Ax.
l e t { - } z = x i n in l (i) e l s e inz(z) for some secret inte-
ger i.,Although this program leaks the secret integer i under
the attacker f = Ap. l e t inz(z) = p { O } k i n l e t in l (i) =
p{O}, i n Some(i), it is actually secure if the function Ax.
. . . is linear (i.e., applied only once). A similar example can
also be given by using an ML-like reference cell.

Although we have not yet come across a realistic pro-
gram whose security depends on its state or linearity in a
crucial manner (maybe because such a “dangerous” design
is avoided a priori by engineering practice?), we expect that
this issue can be addressed, too, by incorporating the the-
ory of logical relation for A-calculus with state or linearity
14,221.

Type Abstraction via Encryption Although we focused
on adapting the theory of type abstraction into encryption,
it is also interesting to think of using the technique of en-
cryption for type abstraction. Specifically, it may be possi-
ble to implement type abstraction by means of encryption,
in order to protect secrets not only from well-typed pro-
grams, but also from arbitrary attackers-in other words, to
combine polymorphism with dynamic typing without los-
ing the abstraction. That would enable us to write programs
in a high-level language using type abstraction and trans-
late them into a lower-level code using encryption. Then,
the problem is whether and how such translation is possi-
ble, preserving the abstraction. In an earlier version of this
work, we suggested one possibility of such translation [20,
Section 41 but proved nothing about it. The results in the
present paper-in particular, the logical relations in Section
6-would help better understanding of this issue.

Acknowledgements

We would like to thank many people including Martin
Abadi, Naoki Kobayashi, the members of Akinori Yone-
zawa’s group in the University of Tokyo, the members
of the Logic and Computation Seminar-especially Andre
Scedrov-and the Programming Language Club in the Uni-
versity of Pennsylvania, and anonymous reviewers for use-
ful advice on earlier versions of this work.

This work was supported by the National Science Foun-
dation under NSF Career grant CCR-9701826 and by the
Japan Society for the Promotion of Science.

268

References

[1 J M. Abadi. Secrecy by typing in security protocols. Joumal
of the ACM, 46(5):749-786, 1999.

[2] M. Abadi and A. D. Gordon. A bisimulation method for
cryptographic protocols. Nordic Joumal of Computing,

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation,

[4] G . M. Bierman, A. M. Pitts, and C. V. Russo. Operational
properties of Lily, a polymorphic linear lambda calculus
with recursion. In Higher Order Operational Techniques
in Semantics, volume 41 of Electronic Notes in Theoretical
Computer Science. Elsevier Science, 2000.

[5] L. Birkedal and R. Harper. Relational interpretations of
recursive types in an operational setting. Information and
Computation, 155(1-2):3-63, 1999.

[6] M. Boreale, R. De Nicola, and R. Pugliese. Proof
techniques for cryptographic processes, 1999. Available
at ftp://rap.dsi.unifi.it/pub/papers/spi.
ps . gz. An extended and revised version of the paper that
appeared in 14th Annual IEEE Symposium on Logic in Com-
puter Science, pp. 157-1 66.

[7] K. Crary and R. Harper. Syntactic logical relations over
polymorphic and recursive types. Draft, 2000.

[8] D. Dolev and A. C. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2): 198-
208, 1983.

[9] A. Durante, R. Focardi, and R. Gorrieri. CVS: A compiler
for the analysis of cryptographic protocols. In 12th IEEE
Computer Securiry Foundations Workshop, pages 203-2 12,
1999.

[IO] A. D. Gordon and A. Jeffrey. Authenticity by typing for
security protocols. In 14th IEEE Computer Security Foun-
dations Workshop, 2001. To appear.

[111 N. Heintze and E. Clarke, editors. Workshop on Formal
Methods and Security Protocols, 1999. http : / /cm.
bell-labs.com/cm/cs/who/nch/fmsp99/.

[I21 N. Heintze and J. G. Riecke. The slam calculus: Program-
ming with secrecy and integrity. In Proceedings of the 25th
ACM SICPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1998.

[I31 IEEE computer security foundations workshop. h t t p : /
/www2.csl.sri.com/csfw/index.html.

[141 G. Lowe. An attack on the needham-schroeder public-key
authentication protocol. Information Processing Letters,

[I51 C. Meadows. Formal verification of cryptographic proto-
cols: A survey. In Advances in Cryptology - Asiacrypt '94,
volume 917 of Lecture Notes in Computer Science, pages
133-150. Springer-Verlag, 1995.

[16] C. Meadows. Open issues in formal methods for crypto-
graphic protocol! analysis. In DARPA Information Surviv-
ability Conference and Exposition, pages 237-250. IEEE
Computer Society, 2000.

[171 J. K. Millen. A necessarily parallel attack. In Workshop
on Formal Methods and Security Protocols, 1999. Avail-
able at http: P/www.cs.bell-labs.com/who/nch
/fmsp99/program.html.

51267-303, 1998.

148(1): 1-70, 1999.

56(3): 13 1-133, 1995.

[181 J. H. Moms Jr. Protection in programming languages. Com-
munications ofthe ACM, 16(1):15-21, 1973.

[I91 R. Needham and M. Schroeder. Using encryption for au-
thentication in large networks of computers. Communica-
tions of the ACM, 21(12):993-999, 1978,

[20] B. Pierce and E. Sumii. Relating cryptography and
polymorphism, 2000. Manuscript. Available at http :
//w.yl.is.s.u-tokyo.ac.jp/-sumii/pub
/infohide.ps.gz.

[21] B. C. Pierce and D. Sangiorgi. Behavioral equivalence in the
polymorphic pi-calculus. Journal of the ACM, 47(3):53 1-
586,2000.

[22] A. Pitts and I. Stark. Operational reasoning for functions
with local state. In Higher Order Operational Techniques
in Semantics, pages 227-273. Cambridge University Press,
1998.

[23] J. C. Reynolds. Types, abstraction and parametric polymor-
phism. In Information Processing 83, Proceedings of the
IFIP 9th World Computer Congres, pages 513-523, 1983.

[24] P. Ryan and S. Schneider. Process algebra and non-
interference. In 12th IEEE Computer Security Foundations
Workshop, pages 214-227, 1999.

[25] I. Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, 1994. Available at http: /
/www.dcs.ed.ac.uk/home/stark/publica-
tions/thesis.html.

[26] D. Volpano. Formalization and proof of secrecy proper-
ties. In 12th IEEE Computer Security Foundations Work-
shop, pages 92-95, 1999.

269

ftp://rap.dsi.unifi.it/pub/papers/spi

	University of Pennsylvania
	ScholarlyCommons
	June 2001

	Logical Relations for Encryption (Extended Abstract)
	Eijiro Sumii
	Benjamin C. Pierce
	Recommended Citation

	Logical Relations for Encryption (Extended Abstract)
	Abstract
	Comments

	Logical relations for encryption - Computer Security Foundations Workshop, 2001. Proceedings. 14th IEEE

