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Logical Relations for Encryption 
(Extended Abstract)* 

Eijiro Sumiit Benjamin C. Pierce 
University of Tokyo University of Pennsylvania 

sumii@saul.cis.upenn.edu bcpierce@cis.upenn.edu 

Abstract 

The theory of relational parametricity and its logical rela- 
tions proof technique are powerful tools for reasoning about 
information hiding in the polymorphic A-calculus. We in- 
vestigate the application of these tools in the security do- 
main by dejining a cryptographic A-calculus-an extension 
of the standard simply typed A-calculus with primitives for 
encryption, decryption, and key generation-and introduc- 
ing logical relations for this calculus that can be used to 
prove behavioral equivalences between programs that rely 
on encryption. 

We illustrate the framework by encoding some simple se- 
curity protocols, including the Needham-Schroeder public- 
key protocol. We give a natural account of the well-known 
attack on the original protocol and a straighgorward proof 
that the improved variant of the protocol is secure. 

1 Introduction 

Information hiding is a central concern in both program- 
ming languages and computer security. In the security 
community, encryption is the fundamental means of hid- 
ing information from outsiders. In programming languages, 
mechanisms such as abstract data types, modules, and para- 
metric polymorphism play an analogous role. Each com- 
munity has developed a rich set of mathematical tools for 
reasoning about the hiding of information in applications 
built using its chosen primitives. Given the intuitive similar- 
ity of the notions of hiding in the two domains, it is natural 
to wonder whether some of these techniques can be trans- 
ferred from the programming language setting and applied 
to security problems, or vice versa. 

As a first step in this direction, we investigate the ap- 
plication of one well established tool from the theory of 

*A full version including the proofs of the theorems is available at: 
http:Nwww.yl.is.s.u-tokyo.ac.jp/~sumii/pub/infohide2.ps.gz 

tThe present work was carried out while the first author was visiting 
the University of Pennsylvania. 

programming languages-the concept of relational para- 
metricity [23] and its accompanying logical relations proof 
method-in the domain of security protocols. 

We begin by defining a cryptographic A-calculus, an ex- 
tension of the ordinary simply typed A-calculus with primi- 
tives for encryption, decryption and key generation. (One 
can imagine a large family of different cryptographic X- 
calculi, each based on a different set of encryption primi- 
tives. For the present study, we use the simplest member 
of this family-the one where the primitives are assumed to 
provide perfect shared-key encryption.) This calculus offers 
a suitable mix of structures for our investigation: encryp- 
tion primitives, since our goal is to reason about programs 
from the security domain, together with the type structure 
on which logical relations are built. We now proceed in 
three steps: 

1. We show how some simple security protocols can 
be modeled by expressions in the cryptographic X- 
calculus. The essence of the encoding lies in regard- 
ing principals as pairs of the message values they send 
and functions representing new principals waiting for 
their next message. Our main example is the Needham- 
Schroeder public-key protocol [ 191. The encoding of 
this protocol gives a clear account both of the well- 
known attack on the original protocol and of the re- 
silience of the improved variant of this protocol to the 
same attack [ 141. 

2. We formalize desired secrecy properties in terms of be- 
havioral equivalence. Suppose, for instance, that we 
would like to prove that a program keeps some integer 
secret against all possible attacks. Let pi be an instance 
of the program with the secret integer being i. If we 
encode each attacker as a function f that takes the pro- 
gram as an argument and returns an observable value 
(a boolean, say), then we want to show the equality 
f(pi) = f(pj)  for i # j. Since such a function is it- 
self an expression in the cryptographic A-calculus, we 
can use the same language to reason about the attacker 
and the program. 
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3. We introduce a proof technique for behavioral equiva- 
lence based on logical relations. The technique gives a 
method of “relating” (in a formal sense) two programs 
that differ only in their secrets and that behave equiva- 
lently in every other respect. In particular, in its original 
form in the polymorphic A-calculus, it gives a method of 
showing behavioral equivalence between different im- 
plementations of the same abstract type-so-called re- 
lational parametricity. We adapt the same ideas to the 
cryptographic A-calculus, which enables us to prove the 
equivalence of pi and p j  from the point of view of an 
arbitrary attacker f , without quantifying explicitly over 
all such attackers. 

To illustrate these ideas, let us consider a simple system 
with two principals A and B sharing a secret key z ,  where 
A encrypts a secret integer i with z and sends it to B, and 
B replies by returning i mod 2. In the standard informal 
notation, this protocol can be written as: 

1. A - B : { i I z  
2. B - A  : i m o d 2  

In the cryptographic A-calculus, this system can be encoded 
as a pair p of the ciphertext {i},, which represents the prin- 
cipal A sending the integer i encrypted with 2, and a func- 
tion A{z},.z mod 2 representing the principal B, which 
publishes z mod 2 on receiving an integer 5 encrypted by 
z .  Let p z  be an instance of the program with the secret inte- 
ger being i. 

pi = newzin({z},, A{z},.zmod2) 

Here, the key generation construct new z i n  . . . guarantees 
that z is fresh, that is, different from any other keys and 
unknown to the attacker. 

The network, scheduler, and attackers for this system 
are encoded as functions operating on this pair. We as- 
sume a standard model of a “possible” attacker [8], who 
is able to intercept, forge, and forward messages, encrypt 
and decrypt them with any keys known to the attacker, 
and-in addition-schedule processes arbitrarily. (The last 
point is not usually emphasized, but generally assumed by 
considering any possible scheduling when verifying proto- 
cols.) In short, it has full control of the network and pro- 
cess scheduler-or, to put it extremely, “the attacker is the 
network and scheduler.” Then, the properties to prove are: 
(i) the system accomplishes its goal under a “good” net- 
worWscheduler and (ii) the system does not leak its secret 
to any possible attacker. 

The “good” networkkcheduler for this system can be 
represented as a function f that takes a pair p as an ar- 
gument and applies its second element #z(p), which is a 
function representing a principal receiving a message, to its 

first element #1 ( p ) ,  which is a value representing a princi- 
pal sending the message. 

f = X P . # 2 ( P ) # l ( P )  

The correctness of this networkkcheduler can be checked 
by applying f to p ,  which yields i mod 2 as expected. (Of 
course, this networWscheduler is designed to work with 
this particular system only. It is also possible to encode 
a generic networWscheduler that will work with a range of 
protocols, by including the intended receiver’s name in each 
message and delivering messages accordingly.) 

On the other hand, the property that the system keeps the 
concrete value of i secret against any possible attacker, can 
be stated as a claim of behavioral equivalence between, say, 
p3 and p5. That is, f ( p 3 )  and f ( p 5 )  give the same result for 
any function f returning an observable value. 

Why is this? The point here is that p3 and p5 differ 
only in the concrete values of the secret integers and behave 
equivalently in any other respect. That is, the correspon- 
dence between values encrypted by a secret key-i.e., the 
integers 3 and 5 encrypted by the key z-is preserved by 
every part of both programs. Indeed, the first elements of 
the pairs are { 3) , and { 5) ,, and the second elements of the 
pairs are functions that, given the arguments { 3 } =  and {5}=, 
return the same value 1. Since the key z itself is kept secret, 
no other values can be encrypted by it. 

Our logical relation formalizes and generalizes this argu- 
ment. It demonstrates behavioral equivalence between two 
programs which differ only in the concrete values of their 
secrets, i.e., the values encrypted by secret keys. It is de- 
fined as follows: 

0 Two integers are related iff they are equal. 

0 Two pairs are related iff their elements are related. 

0 Two functions are related iff they return related values 
when applied to related arguments. 

0 Two values encrypted by a secret key k are related iff 
they are related by cp(k), where the relation environment 
ip gives the relations between values encrypted by each 
secret key. 

The soundness theorem for the logical relation now tells us 
that, in order to prove behavioral equivalence of two pro- 
grams, it suffices to find some ip such that the logical rela- 
tion based on ip relates the programs we are interested in. 

For instance, in the example above, take p(z) = 
{ ( 3 , 5 ) } .  Then: 

0 The first elements of p3 and p5 are related by the defini- 
tion of ip. 

0 The second elements of p3 and p5 are related since they 
return related values (i.e., 1) for any related arguments 
(i.e., { 3 } z  and { 5 } * ) .  
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0 Therefore, the pairs p3 and p5 are related since their el- 
ements are related. 

Thus, p3 and p5 are guaranteed to be behaviorally equiva- 
lent. 

In this way, the logical relation allows is to prove the be- 
havioral equivalence of programs-which amounts to prov- 
ing secrecy-in a compositional manner. 

The contributions of this work are twofold: theoreti- 
cally, it clarifies the intuitive similarity between two forms 
of information hiding in different domains, namely, encryp- 
tion in security systems and type abstraction in program- 
ming languages; practically, i t  offers a systematic method 
of proving secrecy properties of programs using encryption. 

The structure of the rest of this paper is as follows. Sec- 
tion 2 presents the syntax and intuitive semantics of the 
cryptographic A-calculus and Section 3 demonstrates the 
use of our framework through examples. Section 4 shows 
the operational semantics, Section 5 gives a simple type 
system-which is prerequisite for formalizing the logical 
relation-and Section 6 defines the logical relation and its 
variants. Section 7 discusses related work and Section 8 
mentions future work. 

2 Syntax and Intuitive Semantics 

The cryptographic A-calculus extends a standard A-calculus 
with keys, fresh key generation, encryption, and decryption 
primitives. The formal syntax of the calculus is given in 
Figure 1. A key k is an element of the countably infinite 
set of keys K .  The key generation form new x i n  e gen- 
erates a fresh key, binds it to the variable z, and evaluates 
the expression e (in which z may appear free). For exam- 
ple, the program new z i n  new y i n  (2, y) generates two 
fresh keys and gives the pair of them. The encryption ex- 
pression {el}e2 encrypts the value obtained by evaluating 
the expression el with the key obtained by evaluating the 
expression e2. The decryption form l e t  {x}el = e2 i n  e3 
e l s e  e4 attempts to decrypt the ciphertext obtained by eval- 
uating e2, using the key obtained by evaluating el. If the de- 
cryption succeeds, it binds the plaintext thus obtained to the 
variable x and evaluates the expression e3. If the decryption 
fails, it instead evaluates e4. For example, the program l e t  
{ x } k r  = { l } k  i n  x + 2 e l s e  0 encrypts the integer 1 with 
the key k ,  tries to decrypt it with another key k’-which 
fails because the keys are different-and therefore gives 0. 
On the other hand, the program l e t  {z}k = { l } k  i n  z + 2 
e l s e  0 gives 3 because the decryption succeeds. 

Several abbreviations are used in examples. We use a 
tuple with no elements (i.e., n = 0) to represent a dummy 
value, written (). We write t r u e  for inl( ( ) ) ,  f a l s e  for 
inz(()), and i f  e then el e l s e  e2 for case e of inl(-) 
+ el 1 in2(-) + e2, respectively, to represent booleans 

as a disjoint sum of dummy values.’ We use the “option 
values” Some(e), abbreviating in1 (e), and None, abbreviat- 
ing inZ(()), to represent the return values of functions that 
may or may not actually return a meaningful value because 
of errors such as decryption failure. We use the “pattern 
matching” function syntax A { Z } ~ ,  . e2 to abbreviate Ay. l e t  
{ x } ~ ~  = y i n  e2 e l s e  None (where y does not appear free 
in el and e2), representing functions accepting arguments 
encrypted by a particular key only. For example, the func- 
tion X{z}k .  Some(s + 1) returns Some(i + 1) when applied 
to an integer i encrypted by the key k ,  and None for any 
argument not encrypted by k .  Finally, we use integer arith- 
metic in the examples, although we have not included it in 
the formal definition of the calculus. 

Example 1. The expression A{x}k. Some(x mod 2),  which 
is an abbreviation of the expression Ay. l e t  { x } k  = y i n  
in l (z  mod 2) e l s e  in2(()), represents a function f that 
accepts an integer x encrypted by the key k and returns its 
remainder when divided by 2, with the tag Some to denote 
success. For instance, the application f ( { 3 } k )  gives the re- 
sult Some(1) while f ( { i } k ! )  returns None for any k’ # k 
and any i. 

Example 2. For some integer i, let p ,  = new z i n  ({i}z, 
A { X } ~ .  Some(z mod 2)) and f = Ap. #z(p)#l(p). Then, 
f(p,) gives Some(i mod 2). This can be seen as a run of an 
encoding of the following simple system, where two prin- 
cipals A and B share a key z (to be precise, a key bound 
to the variable z ) :  first, A encrypts and sends i; then, B 
receives and decrypts it, and publishes its remainder when 
divided by 2. Here, the function f plays the role of a “good” 
network and scheduler for this system. 

Our cryptographic primitives directly model only 
shared-key encryption, but they can also be used to obtain 
the effect of public-key encryption: for any key k ,  the en- 
cryption function Ax. {z}k and decryption function A{x}k. 
Some(z) can be passed around by themselves and used as 
encryption and decryption keys. 

This trick raises one subtle issue: when we pass the func- 
tion Ax. { x } k  to the attacker to use as an encryption key, we 
are implicitly assuming that the attacker is unable to “dis- 
assemble” this function and discover the embedded key k .  
Although this is true if the attacker is itself a A-context, in 
general it would be foolish to send out code strings with 
embedded secret keys. In practice, we need to choose a dif- 
ferent representation for this function--e.g., as an integer 
constituting the public part of a public/private key pair, or 
as a pointer that the attacker can use to call a function phys- 
ically located in the principal-a representation that can be 
used by the attacker only for the purposes we intend, and 

’ h i ( )  denotes the i-th injection (“tagging”) into a disjoint sum. 
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e ::= z 1 X z . e  I elez I (el ? . . . , e n )  1 # i ( e )  1 ini(e) I caseeof  inl(z1) * e l  I . . .  1 inn(z,) + e n  I 
k I new z i n e  I {el},, I l e t  { I C } ~ ~  = e2 i nes  e l se  e4 

Figure 1. Syntax 

that does not give away information we desire to keep se- 
cret. Our framework abstracts away from such choices of 
representation, simply assuming that a suitable one can be 
found. 

3 Applications 

Now we demonstrate the use of our framework on some 
larger examples, in which concurrent principals communi- 
cate with one another by using encryption. Although the 
cryptographic X-calculus has no built-in primitives for con- 
currency or communication, i t  can emulate a concurrent, 
communicating system by encoding it as follows. (Recall 
the example in Section 1 .) 

The system as a whole is encoded as a tuple of the pro- 
cesses and their public keys (if any). 

An output process is encoded as the message itself. 

An input process is encoded as a function receiving a 
message. 

A networWscheduler/attacker for the system is encoded 
as a function that applies the input functions to the out- 
put messages in a certain order, possibly manipulating 
the messages using the keys that it knows. 

Then, the following two properties are desired in general. 

Under a “correct” network and scheduler, i.e., a function 
applying appropriate messages to appropriate functions 
in some appropriate order, the program gives some cor- 
rect result (soundness). 

Under any possible attacker, the program does not do 
anything “wrong” such as leaking a secret (safety). 

3.1 A Program Based on the Needham-Schroeder 
Public-Key Protocol 

Consider the following system using the Needham- 
Schroeder public-key protocol [19] in a network with a 
server A, a client B, and an attacker E. (1) B sends its own 
name B to A. (2) A generates a fresh nonce N,, pairs it 
with its own name A, encrypts it  with B’s public key, and 
sends it to B. (3) B generates a fresh nonce Nb, pairs it with 
N,, encrypts i t  with A s  public key, and sends it  to A. (4) 

A encrypts Nb with B’s public key and sends it to B. (5 )  B 
encrypts some secret integer z with Nb and sends it to A.* 

1. B - + A  : B 
2 .  A + B : {N , ,A}kb  
3. B -+ A : {Na,Nb}k ,  
4. A -+ B : {Nb}kb 
5 .  B + A  : { i } ~ ~  

Let us encode this system as an expression of the cryp- 
tographic X-calculus. (The result is somewhat complex, 
because several actions implicitly assumed in the infor- 
mal definition above-such as identity check of names and 
keys-are made explicit in the encoding process.) 

Recall that we encode such a concurrent, communicating 
system as a tuple of the principals and the public keys. So 
we begin the encoding by generating the system’s keys and 
publishing their public portions, that is, A’s encryption key, 
B’s encryption key, and E’s key: 

new 2, i n  new zb i n  new ze i n  
( X ~ . { ~ } z ~ , X ~ . { ~ } z ~ , z e , . . . , . . . )  

Let us now encode B as the fourth element of the tuple. B 
publishes its own name B. (We assume that names are just 
integers for the sake of simplicity.) The difference from the 
previous expression is underlined. 

new zo i n  new z h  i n  new zp i n  

Next, let us encode A as the fifth element of the tuple. A 
receives a name X ,  encrypts the pair of a freshly generated 
nonce N,  and its own name A with X’s  key, and publishes 
it. 

new z ,  i n  new zb i n  new 2, i n  
{ X } z a ,  { Z } 2 b >  ‘ € 1  (B>‘ ”)> 

XX.new N, in({(iVa,A)}zr,.. .)) 

Here, zz abbreviates i f  X = A then z ,  e l s e  i f  X = B 
then 26 e l s e  2, .  The next action of B is to receive the 
pair of N, and a name A’ encrypted by Zb, assert A’ = A,  
encrypt the pair of N,  and a freshly generated nonce Nb 
with z,, and publish it: 

new z ,  innew zb innew ze i n  

’A reader familiar with security protocols may think this fifth message 
problematic in practice, because it uses a random nonce as a secret key. We 
introduced it just for a technical purpose: to state the secrecy of the nonce 
Nb in terms of the secrecy of the integer i, which is easier to deal with. 
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Here, A{(N,, A)}zb. . . . abbreviates Ay. l e t  { P } ~ ,  = y i n  
( i f  # z ( p )  = A then (AN,. . . . )#I@) e lse  None) e l s e  
None. Next, A receives the pair of a nonce NL and Nb, 
asserts NL = N,, encrypts Nb with Zb, and publishes it: 

new z, i n  new zb i n  new z ,  i n  
(Ax. {x}z,, , Ax. {x}Zbl  ze, 
( B ,  A {  (Na , A)}zb. new Nb in Some( ( {  (Na 7 Nb)}z,, 3 . . .))) 7 

(AX.newNa i n  ({(Na,A)}z&, 
A {Na , Nx 12,’ . some ( {Nx } zf, 1) ) ) 

Here, A{N,, N3C}Z,L. . . . abbreviates Ay. l e t  { P } ~ , ,  = y i n  
( l e t  = { O } N , ,  i n  (ANz. . . . ) # 2 ( p )  e l s e  None) 
e l se  None. Last, B receives a nonce NL encrypted by Zb, 
asserts NL = Nb, encrypts i with Nb, and publishes it: 

Let N s ,  be the expression above. Here, A{Nb}zb. . . . ab- 
breviates Ay. l e t  {NL}zf, = y i n  ( l e t  {-}N; = { O } N ~  i n  
. . . e l s e  None) e l s e  None. 

A correct run of this system can be expressed by evalu- 
ation of this expression under the following function Good, 
which represents a “good” networklscheduler for this sys- 

l e t  Some((m2, cb)) = C b m l  i n  
l e t  Some(m3) = c,mz i n  
l e t  Some(m4) = cim3 i n  
Some (m4) 

Here, l e t  (X, cb) = . . . i n  . . . etc. are syntactic sugar 
that tries pattern matching and returns None if it fails, as are 
the abbreviations above. Good ( N S i )  indeed evaluates to 
Some({z}Nb) for some fresh Nb, which means a successful 
execution of the system. 

It is well known that a use of the Needham-Schroeder 
public-key protocol such as the system above-namely, let- 
ting the server A accept a request not only from the friendly 
client B but also from the malicious attacker E-is vulnera- 
ble to the following man-in-the-middle attack, which allows 
E to impersonate A with respect to B [ 141. (1) B sends its 
own name B to A, but E intercepts it. (1’) E sends its own 
name E to A. (2’) A generates a fresh nonce N,, pair it with 
A, encrypt it with E’s public key, and send it to E. ( 2 )  E en- 
crypts the pair of N ,  and A with B’s public key and send 
it to B, pretending to be A. (3,3’) B generates a fresh nonce 
Nb, pair it with N,, encrypt it with A’s public key, and send 
it to A. (4’) A encrypts Nb with E’s public key and send it 

to E. (4) E encrypts Nb with B’s public key and send it  to B, 
pretending to be A. (5) B encrypts i with Nb and send it to 
A, but E intercepts and decrypts it. 

1. 
1’. 
2’. 
2.  
3 , 3 ‘ .  
4‘. 
4. 
5 .  

B -t E ( A )  
E - t A  
A - t E  
E ( A )  -+ B 
B - + A  
A - t E  
E ( A )  -t B 
B -+ E(A) 

This attack can be expressed in the cryptographic A-calculus 
by the following function Evil for the expression NSi 
above. 

Again, l e t  ({ (N,, A ) } + L ~ ( ~ ) ,  c,) = . . . i n  . . . etc. are syn- 
tactic sugar for pattern matching. Evil( NS i )  indeed evalu- 
ates to Some(i), which leaks the secret. In other words, if 
i # j, then Ewil(NSi) and Ewil(NS,) evaluate to differ- 
ent observable values, so NSi and NSj  are not behaviorally 
equivalent, and therefore non-interference fails. 

3.2 A Program Based on the Improved Needham- 
Schroeder Public-Key Protocol 

Consider the following variant of the system above, using 
an improved version of the Needham-Schroeder public-key 
protocol [14]. (The difference from the original version is 
underlined.) (1) B sends its own name B to A. (2) A gener- 
ates a fresh nonce N,, pair it with its own name A, encrypts 
it with B’s public key, and sends it to B. (3) B generates a 
fresh nonce Nb, tuples it with N ,  and B,  encrypts it with 
A’s public key, and sends it to A. (4) A encrypts Nb with 
B’s public key and sends it to B. (5) B encrypts some secret 
integer i with Nb and sends it to A. 

1. B - + A  : B 
2. A -t B : {N,,A}kf, 
3 .  B -+ A : {N,,Nb,B}k,, 
4. A -+ B : {Nb}kf, 
5. B -+ A : { i } ~ ~  
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Following the same lines as the encoding of the original 
system, this improved system can be encoded as follows. 

Let NS: be the expression above. Here, X{N,, N 3 3 , X } z , , .  
. . . abbreviates A y .  l e t  { P } ~ ,  
= {o }~ , ,  i n  ( i f  # 3 ( p )  = X then (AN,. . . .) 
# z ( p )  e l s e  None) e l s e  None) e l s e  None. 

How does this change prevent the attack? Recall that 
Evil was the following function. 

= y i n  ( l e t  

Xp. l e t  ( B ,  Cb)  = # 4 ( p )  i n  
l e t  ({ (Na, A)}#3(p), cu) = #5(p)E i n  
l e t  some((m,cb)) = Cb(#Z(p)(Na>A)) i n  
l e t  Some((Nb}#,(,)) = cam i n  
l e t  Some({i}N,) = cb(#Z(P)Nb) i n  
Some (i) 

When the attacker forwards the message m = { ( N a ,  Nb, 
B ) } Z b  (which is encrypted by B’s secret key and cannot be 
decrypted by the attacker) from B to A, A tries to match B 
against X = E ,  which fails. Thus, Evil(NS’,) reduces to 
None for any i and fails to leak the secret. (In Section 6, we 
formally prove this secrecy property against any possible 
attackers, using our logical relation.) 

3.3 A Program Based on the ffgg Protocol 

The ffgg protocol is an artificial protocol with an intentional 
flaw, which is secure as long as only one process runs for 
each principal, but insecure when more than one process 
runs for a principal [17]. Although the cryptographic A- 
calculus is sequential, it is actually expressive enough to 
encode this so-called “parallel attack” by interleaving. 

To see this, let us encode the following system with two 
principals A and B using the ffgg protocol. (1) A sends its 
own name A to B. (2) B generates two fresh nonces NI and 
Nz and sends them to A. (3) A tuples NI, N2, and some 
secret value M ,  encrypts them with a shared secret key k, 
and sends them to B. However, B does not check the identity 
of NZ and lets 3: and y be the second and third elements of 
the tuple, respectively. (4) B tuples x ,  y and N I ,  encrypts 
them with k, and sends them to A with N1 and x.  

This system can be encoded as follows. 

new z i n  
( ( A ,  A w l ,  Nz). {Wl, Nz, W I Z ) ,  

((Nl,N2),X{Nl,~,Y}z. (Nl,Z, {(Z,Y,Nl)}z)))  

AA. new NI i n  new N2 i n  

Again, for the sake of brevity, we used syntactic sugar for 
pattern matching. 

The attack to this system is as follows. (1) A sends its 
own name A to B. (1‘) Pretending to be A, the attacker E 
sends A to another process B‘ running for B. (2a) B gener- 
ates two fresh nonces N1 and N2, and send them to A, but 
E intercepts them. (2’ )  B’ generates other two fresh nonces 
Ni and Ni, and send them to A, but E again intercepts them. 
(2b) E sends N I  and Ni to A, pretending to be B. (3) A tu- 
ples NI, Ni and M ,  encrypts them with k, and sends them 
to B. (4) B tuples Ni, M and N I ,  encrypts them with k, 
and send them to A with NI and Ni, but E intercepts them. 
(3’) E forwards the tuple of Ni, M and N1 encrypted by 
k to B’, pretending to be A. (4’) B’ tuples M ,  NI and Ni, 
encrypts them with k, and send them to A with Ni and Ad, 
but E intercepts them. 

1. A - + B  : A  
1’. E(A)  -+ B’ : A 
2 ~ .  B + E ( A )  : N1,Nz 
2’. B’-+ E ( A )  : Ni ,N;  
26. E ( B )  - + A  : N1,Ni 
3. A + B  : {NI, N;, M } k  
4. B -+ E ( A )  : NI, N:, {N;, &I, Ni}k 
3’. E(A)  4 B’ : { N { , M , N i } k  
4’. B’ -+ E(A)  : Ni, M ,  {M, NI, N i } k  

This attack can be encoded as the following function on the 
expression above. 

Xp. l e t  
l e t  
l e t  
l e t  
l e t  
l e t  
Some (M) 

This function indeed reveals the secret value M in the ex- 
pression above. Note that the function representing the prin- 
cipal B did not have to be replicated explicitly, because 
functions in A-calculus can be applied any times by default. 

By the way, in this encoding, there actually exists an even 
simpler function which leaks the secret. 

Xp. l e t  ( A ,  c,) = # 1  ( p )  i n  
l e t  ((NI, N Z ) ~  C b )  = # 2 ( p ) A  i n  
l e t  m = ca(N1, N2) i n  
l e t  (Nil N2, m’) = cbm i n  
l e t  ( N z ,  M, m”) = Cbm‘ i n  
Some( Ad) 
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This attack is usually considered impossible in  reality, be- 
cause it  applies the “continuation” function cb twice, which 
means exploiting one state of (a process running for) the 
principal B more than once. This kind of false attacks could 
perhaps be excluded in our framework by using linear types 
for continuation functions like cb. See Section 8 for details. 

4 Operational Semantics 

In this section and the two that follow, we present the cryp- 
tographic A-calculus, its type system, and the logical rela- 
tions proof technique more formally. 

The semantics of the calculus is defined by an evalua- 
tion relation mapping terms to results. For the ordinary A- 
calculus, the evaluation relation has the form e J.l u ,  read 
“evaluation of the (closed) expression e yields the value 
21.’’ However, since the cryptographic A-calculus includes 
a primitive for key generation, we need to represent “the set 
of keys generated so far” in some rigorous fashion. We do  
this by annotating the evaluation relation with a set s, rep- 
resenting the keys that have already been used when eval- 
uation begins, and a set s’, representing the keys that have 
been used when evaluation finishes. To be precise, we de- 
fine the relation (.)e $ V where V is either of the form 
(s’)w or Error (signalling a run-time type error). We main- 
tain the invariant that ( s ) e  $ (s’)u implies s s s’, that is, 
s’ \ s is the set of fresh keys generated during the evaluation 
of e. The evaluation relation is defined inductively by the 
rules in Figure 2. 

Most of the evaluation rules are standard and straightfor- 
ward; we explain just a few important points. In the rule for 
key generation, k is guaranteed to be “freshly generated” 
because s s. (Here, s kJ s’ 
is defined as s U s’ i f s  n s‘ = 8, and undefined otherwise.) 
This is the rule that increases the set of keys. In the rule for 
decryption, we first evaluate el to obtain the decryption key 
k l ,  then e2 is evaluated to obtain a ciphertext of the form 
{u}k2 .  If el does not evaluate to a key or e2 does not eval- 
uate to a ciphertext, then a type error occurs. Otherwise, 
if the two keys match (IC1 = k2), the body e3 is evaluated, 
with z bound to the decrypted plaintext u. Otherwise, the 
else clause e4 is evaluated. 

The following theorem and corollary state that the result 
of evaluating an expression is unique, modulo the names of 
freshly generated keys. (We write Keys(e) for the set of 
keys syntactically appearing in e.) 

{ k }  is defined and therefore k 

Theorem 3. Let S I  2 Keys(e) and let 0 be a one-to-one 
substitution from S I  to another set of keys s 2 .  If (sl)e 4) 
(s1kJsi)u1 and (s2)Oe $ V, then V has the form ( s ~ u s ~ ) u 2  
and there exists some one-to-one substitution 8’ from si to 
si such that wz = (0 u 8 ’ ) ~ ~ .  

Corollary 4 (Uniqueness of Evaluation Result). Let s 2 
Keys(e). If (s)e J.l ( s  si)‘u~ and(s)e J.l V, then V has the 
form ( 3  kd s;)u2 and there exists some one-to-one substitu- 
tion 8’ from si to sh such that ‘u2 = 8 ’ ~ .  

5 DpeSystem 

In this section, we define a simple type system for the cryp- 
tographic &calculus. Types in this setting play not only the 
traditional role of guaranteeing the absence of run-time type 
errors (a well-typed term cannot evaluate to Error), but, 
more importantly, provide a framework for the reasoning 
method we consider in the next section. (The fundamental 
definition of the logical relation proceeds by induction on 

In addition to the values found in the ordinary A- 
calculus, the cryptographic A-calculus has keys and cipher- 
texts. Therefore, besides the usual function, product, and 
sum types of the simply typed A-calculus, we introduce a 
key type key[r], whose elements are keys that can be used 
to encrypt values of type T ,  and a ciphertext type bi ts[r] ,  
whose elements are ciphertexts containing a plaintext value 
of type r. Thus, keys of a given type cannot be used to en- 
crypt values of different types, and ciphertexts of a given 
type cannot contain plaintext values of different types. This 
restriction is not particularly bothersome, since values of 
(finitely many) different types can always be injected into a 
common sum type. (Actually, to guarantee type safety, we 
do  not need to annotate both key types and ciphertext types 
with their underlying plaintext types, but doing so simplifies 
the definition of the logical relations in Section 6.) 

The typing judgment has the form r, A /- e : T ,  read 
“under the type environment r for variables and the type 
environment A for keys, the expression e has the type T ,  i.e., 
e evaluates to a value of type r.” The typing rules (which 
are straightforward) are given in Figure 3. Here, f kJ f‘ for 
two mappings f and f’ is defined as ( f  f‘) (z) = f (z) for 
z E d o m ( f )  and (f W f’)(y) = f’(y) for y E dom( f ’ )  if 
dom(f)ndom(f’) = 8, and undefined otherwise. Note that 
the type environment A for keys is used in the rule (Key) in 
the same way the type environment I‘ for variables is used 
in the rule (Var). For the sake of readability, we often write 
boo1 for u n i t  + u n i t  and opt ion[r]  for r + u n i t ,  where 
u n i t  is the type of a tuple with no elements. 

In what follows, we often abbreviate a sequence of 
the form XI, . . . , X, as X and a proposition of the form 
Alii<m P(Yl,-, . . . ,Y,j) as P(p1,. . . ,p,). For example, 

E S abbreviates ( k l  E S I )  A . . . A ( IC ,  E s,). 
The following theorem and corollary state that the eval- 

tY pes.) 

uation of a well-typed program never causes a type error. 

Theorem 5. Suppose I?, A t- e : r and 8, A V : 7 for 
r = { 2  H 7} .  If ( s ) [ f i / Z ] e  $ V for s = dom(A), then 
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‘U ::= Xs.e 1 ( V I , .  . .,‘U,) 1 ini(.) I k 1 { ~ } k  

V ::= ( s ) ‘ ~  1 Error 

(s)let {x},, = e2 i n  e3 else e4 U V 

(%)e l  4 (sl)z,1 . . . (sz- l )e t  U Error (3). U Error (s)e U (s’)z, z, # (. . . , w,, . . .) (s)e  U Error 
( so) (e l , .  . . ,e,) U Error (s)#i(e)  U Error (s)#z(e) U Error ( s ) in i (e )  4 Error 

[$)e U Error 

Figure 2. Semantics 
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I ’ , A t e 1 : r 1  ... r , A t - e , : r ,  r , A  t e :  r1 x . . .  x ri x . . .  x 7, 
r, A t- (el,.  . . ,e,) : r1 x . . . x r, (Pair) (Proj) r , A  b #i(e) : ri 

(In) 
r , A  t e :  ri 

r, A l- ini(e) : r1 + . . . + ri + . . . + r, 

r , A  t- e : + . . .  +rn r‘u {xl H r l} ,A F e l  : r . . . I?u {x, H T,),A t e, : r 
(Case) r , A  t case e of inl(x1) * el 0 . . . 0 in,(x,) + e, : r 

r Uj {z H key[r’]}, A t- e : r 
I-, A I- new x i n  e : r 

r, A t- e l  : r rl A t- e2 : key171 (Eric) 
(New) r, A t {el},, :  bits[^] I?, A t- k : key[A(k)] (Key) 

r, A t el : key[r’] I?, A t- e2 : bits[r’] Uj {x H T ’ } ;  A t- e3 : T I‘, A t e4 : r 
(Dee> r, A t- l e t  {z} ,~ = e2 i n  e3 e l se  e4 : r 

Figure 3. Type System 

there exist some w and A’ such that V = (s 

0, A 

Corollary6(TypeSafety). If 0,8 I- e : 7, then ( @ ) e  $! 
Error. 

s’)w and 
A’ t- Y : r fors’ = dom(A‘). 

One subtle point deserves mention, concerning the rela- 
tion between types and the modeling of security protocols. 
Since we intend to represent both principals and attackers 
as terms of the cryptographic A-calculus, if we restrict our 
attention to only well-typed terms, we seem to run the risk 
of artificially (and unrealistically) restricting the power of 
the attackers we can model. In particular, since the cal- 
culus under this type system is strongly normalizing (i.e., 
every well-typed program terminates), the attackers are not 
Turing-complete. 

However, we believe that the present simple type system 
is flexible enough to allow typical attacks: indeed, all of 
the attacks we have seen so far are well-typed in the type 
system. As for so-called “type attacks,” which make prin- 
cipals confuse values of different types, they are either (1) 
actually well-typed in the present type system, which does 
not distinguish nonces from keys, or (2)  easily prevented by 
standard dynamic type checking. 

6 Logical Relations for Encryption 

Recall the family of expressions p ,  from Example 2:  

pz  = new z i n  ( {z }= ,  A{z},. Some(z mod 2)) 

Suppose we want to argue that each p ,  keeps its concrete 
value of i secret from any possible attacker. Intuitively, this 

is so because the only capabilities p i  provides to an attacker 
(at least, if that attacker can be represented as an expression 
of the cryptographic A-calculus) are a ciphertext encrypting 
i under a key that the attacker cannot learn plus a function 
that will return just the least significant bit of a number en- 
crypted with this key. 

The intuition that the concrete value of i is kept secret 
can be formulated more precisely as a non-interference con- 
dition: for any i and j such that i mod 2 = j mod 2 (i.e., such 
that the part of the information that we do allow p z  and p j  
to reveal is the same), we want to prove that p ,  and p j  are 
behaviorally equivalent, in the following sense. 

Definition 7 (Extensional Equivalence). We say that t e 
= e‘ : r ,  pronounced “the expressions e and e’ are exten- 
sionally equivalent at type 7,’’ iff, for any f with 8,8 t- f : 
T --f bool, there exist some s and s’ such that (0)fe 4 
( s ) t rue  and (8)fe’ $ (s’)true or (0)fe .U- ( s ) f a l s e  and 
(0)fe’ (s’)f a l se .  

Although extensional equivalence is defined for closed ex- 
pressions only, i t  can be used to prove the more general 
property of contextual equivalence for open expressions as 
follows. Take any expressions e and e’ of type r and any 
context C [ ]  of type bool  with a hole of type 7. Let 5 be 
the free variables of e and e’, and let f = Azo .C[~oZ] ,  
eo = AZ.e, and eh = X5.e‘. Then f eo  = feb implies 
C[e] = C[e’]. Thus, contextual equivalence of e and e’ fol- 
lows from extensional equivalence of eo and eh. 

In the following subsections, we define three variants of 
the logical relation proof technique for extensional equiva- 
lence. The first one shows the basic ideas, but i t  is not pow- 
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erful enough to prove secrecy properties of realistic pro- 
grams, such as (the encoding of the system based on) the 
improved Needham-Schroeder public-key protocol in Sec- 
tion 3. The second and third are extensions of the basic 
logical relation, one for addressing the issue of “a key en- 
crypting another key” and the other for accommodating dis- 
crepancies in the number of keys used in the programs being 
compared. 

6.1 Basic Logical Relation 

Extensional equivalence is difficult to prove directly be- 
cause it involves a quantification over all functions f of type 
r + bool, which are infinitely many in general. Instead, 
we would like prove it in a compositional manner, by show- 
ing that each part of two programs behave equivalently. 
However, this approach will not suffice to prove any inter- 
esting case of extensional equivalence if we do not consider 
the correspondence between ciphertexts. Consider, for ex- 
ample, the expressions e = new z i n  ({ true}, , {false}, , 
X{z},.Some(z)) and e’ = new z i n  ({false},, {true},, 
X{z}, . Some(not (x))). Although these tuples are equiva- 
lent, it can not be shown, say, that the third elements X{x}k. 
Some(z) and X{z}k.  Some(not(z)) are equivalent for any 
freshly generated key k ,  without knowing ( 1 )  the fact that 
k is kept secret throughout the whole programs and (2) the 
relation between values encrypted by k .  

Thus, we generalize t e FZ e’ : r to the logical relation 
cp k e - e’ : r ,  where the parameter cp is a relation environ- 
ment: a mapping from keys to relations, associating to each 
secret key k a relation p(k) between the values that may be 
encrypted by k .  Given cp, the family of relations cp k e - e’ 
: r is defined by induction on r as follows: 

0 Two functions are related iff they map any related argu- 
ments to related results. 

0 Two pairs are related iff their corresponding elements 
are related. 

0 Two tagged values are related iff their tags are equal and 

0 Two keys are related iff they are identical and not secret. 
Here, the set of secret keys is identified with the domain 

their bodies are related. 

of cp. 

0 Two ciphertexts {w}k and { w ’ } ~ ~  are related iff IC = IC’ 
and either: 

- k is secret and ( w ,  ‘U’) E cp(k), or else 
- k is not secret and w and U’ are related. 

Intuitively, cp k ‘U - U’ : r means “under any possible 
attackers, the values ‘U and U’ behave equivalently and fur- 
thermore preserve the invariant that values encrypted by any 

secret key k are related by p(k).” It is this invariant which 
makes the logical relation work at all: as is often the case 
in inductive proofs, requiring this extra condition helps us 
in proving the final goal, i.e., extensional equivalence. Note 
that, in the definition above, secret keys are not related even 
if they are identical, because if they were related, an attacker 
would be able to encrypt arbitrary values under the keys and 
break the invariance. 

As for expressions, arbitrary expressions are related iff 
they evaluate to values that, in turn, are related under a re- 
lation environment extended with the fresh keys that were 
generated during evaluation. The formal definition of the 
logical relation is given in Figure 4. cp k-:::, U N U’ : T 

and cp k;:: e - e’ : 7 are logical relations for values and 
expressions, respectively. The sets s and s’, respectively, 
denote the keys generated so far in the left and right hand 
sides. 

Example 8. For the e and e’ in the previous example, let 
r = bits[bool]  x bits[bool]  x (bi ts[bool]  ---f option 
[bool]). Then, 8 k;:; e N e’ : r. To prove this, let t = t’ = 

{ k }  and 7,b = { k  H {(true,  f a l s e ) ,  ( fa l se ,  true)}} in 
the definition of 8 e - e’ : r.  

Example 9. For the p ,  in Example 2,  let r = b i t s [ i n t ]  x 
( b i t s [ i n t ]  + option[int]) .  Then, 8 ti:: p ,  - p ,  : r 
for any i and j with i mod 2 = j mod 2. (Here, we define 
cp kz;:, i - i’ : i n t  i = i ’ .) To prove this, let 
t = t’ = { k }  and $(k) = { ( i , j ) }  in the definition of 0 

The following theorem and corollary state that the logi- 
cal relation indeed implies extensional equivalence. 

Theorem 10. Let r, A k e : r where r = (5 H T } .  Let 
furthermore cp k-I$ .ii - V’ : f where dom(cp)ndom(A) = 
0 and s ,  s’ 2 dom(cp) M dom(A). Then, cp kz:: [V /g]e  - 
[ C ’ / 2 ] e  : r. That is, any expression is related to itself when 
its free variables are substituted with related values. 

Corollary 11 (Soundness of Logical Relation). If 0 kiyi 
e - e‘ : r ,  then t e M e’ : r. 

6.2 Extended Logical Relation 

In the basic logical relation above, a relation between values 
encrypted by each secret key k is given by the relation envi- 
ronment cp. However, cp gives up no information about the 
relations that should be associated with fresh keys that are 
still to be generated in the future. As a result, the basic logi- 
cal relation technique fails to prove the equivalence of some 
important examples that are, in fact, equivalent: in particu- 
lar, we cannot prove the security of the improved version of 
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I $5 t:;, f - f’ : 7 1  + 7-2 1 f = Ax. e and f‘ = Ax. e’ for some x, e ,  e‘ such that 
cp w $J tzL:,s,wl, [w/x]e - [w’/x]e’ : r 2  for any w .  U’, t ,  t’, $J such that 
p k~ + k;&s,w,t, t~ - U’ : T~ with dam($) C t n t’ 
p = (w1 , . . . . w,) and p’ = (vi, . . . , vh) for some V, 6’ such that 

t = in,(.) and t’ = in2(w’) for some z,v, U’ such that 

k = k‘ where k E s n s‘ with k @ dom(cp) 
c = { w } k  and c’ = { d } k  for some U ,  w’,  k such that 
k E dom(p) with k E s n s’ and (w,v’) E y ( k ) ,  or 
k # dom(cp) with k E s n s’ and cp t::, w - w’ : r 

( s ) e  .V ( s  
p w $J E$t.s,wt, v - v’ : r with dom(1c,) 

p k;ai, p - p’ : TI x . . . x T, 

p E;:;, t - t’ : r1 + . . . + r, 

cp t-za;, k - k’ :  key[^] 
p t-;a:, c - c’ : b i t s [ r ]  

p E;;;, v - 6’ : -T 

p E:;, v - U’ : r, 
I 

m 

p t-zr: e - e‘ : r t ) v  and (s’)e’ 4 (s’ W t’)v‘ for some t ,  w, t’, U’, 1c, such that 
t n t’ 

Figure 4. Basic Logical Relation 

the Needham-Schroeder public-key protocol from Section 
3.2. 

For a simpler example showing where the proof tech- 
nique goes wrong, consider a program y2 = new x i n  (A-. 
new y i n  { Y } ~ ,  X{y’},. Some({i}yt)) for some secret inte- 
ger i. Since the key x (to be precise, the key bound to the 
variable 5 )  is kept secret, the key y = y’ is also kept se- 
cret, so i is kept secret. Therefore, 43 and y5, say, should 
be equivalent. But in order to prove this by using the ba- 
sic logical relation above, we would have to give a relation 
between values encrypted by the key k bound to x .  Since 
the key k’ that will be bound to y is not yet determined, we 
cannot specify a relation like p ( k )  = { (k’, k’)}. Thus, y3 
and 45 cannot be related. 

This problem can be addressed by refining the definition 
of the logical relation a little, i.e., parameterizing the rela- 
tion environment p with respect to sets s and s’ of keys- 
representing the sets of keys that will have been generated 
at some point of interest in the future-as well as the rela- 
tion environment 11, that will be in effect at that time. (The 
definition of “a relation environment parametrized by an- 
other relation environment” is recursive, but such entities 
can be constructed inductively, just as elements of a re- 
cursive type can be.) Then, in the example above, for in- 
stance, we can specify the needed relation as p:,,(k) = 
{(k’ ,k’)  I lc,t,tl(k’)x = {(3 ,5 )} fo rany t , t ’ andx} .  Ac- 
cordingly, we extend the definition of the logical relation 
for ciphertext types to: 

cp k$, c - c’ :  bits[^] + 
c = {v }k  and c’ = {v’}k for some ‘U, U’, k such that 
k E dom(p) with k E s n s’ and ( U ,  U’) E p;,,, ( k ) ,  or 
k # dom(cp) with k E s n s’ and cp k;;:, ‘U - U’ : T 

Interestingly, even after this extension, the propositions 
in Section 6.1 (and their proofs!) continue to hold with- 

out change-as long as we impose the condition that cp 
in p!,s,(k) is monotonic with respect to extension of s, 
s’, and I$. Intuitively, the condition guarantees that val- 
ues related once do  not become unrelated as fresh keys are 
generated in the future. This is not the case if we take 
p:,, ( k )  = { (k’, k’) I k’ # s U s’}, for example. The mono- 
tonicity condition excludes such anomalies. Formally, we 
require that each p satisfies 

* *wx 
P S , d  ( k )  c (Pswt,s’wt’(k) 

for any s, s‘, t and t’ with s n t = 8 and s‘ n t‘ = 0, and for 
any 1c, and x with dam(+) G s n s’ and dom(x )  C t n t’. 
We refer to this condition as “p is monotonic.” 

Example 12. For the previous q,, let r = (unit --+ b i t s  
[key[ i n t ] ] )  x ( b i t s  [key[ i n t ] ]  --+ o p t  i o n [ b i t  s [ in t ] ] ) .  
Then, 8 k;:: y2 - y3 : r for any i and j. To prove this, 
let t = t’ = { k }  and 

lc ,zs , (k)  = { ( k ’ , k ’ )  I cp$(k’) = { ( i , j ) } f o r a n y t , t ’ a n d x }  

in the definition of 8 ti:: 42 - q3 : T .  It is straightforward 
to check that q!~ is monotonic. Hence t- y2 M y3 : T .  

Example 13. Let us see how to prove the correctness of the 
system in Section 3.2, which is based on the improved ver- 
sion of the Needham-Schroeder public-key protocol, using 
the extended logical relation. 

First, in order for the encoding NS: to be well-typed 
at all, values encrypted by the keys z b  and z ,  need to be 
tagged. (The tags are underlined.) 

new z, i n  new 21, i n  new ze i n  
{z)z,, 1 { x ) z t , ,  z e ,  

Some( ( {  (Na 7 Nb, B )  }zc .  3 X{%(Nb) } = b .  Some( { ~ } N I ,  )) )) 1 

(B .X{~( (N, ,A) )} , , . new Nb i n  

( A X .  new NLl i n  ({*((Na, A ) ) ) z , ,  
X { N a ,  Nx. X}Z<, .  Some({*(Nz));,)))) 
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Call this expression NSY. It can be given the type 

(71  -+ b i t s [ q ] )  x ( 7 2  ---f b i t s [ q ] )  x key[rz]x 
(nam x ( b i t s [ r ~ ]  -+ op t ion [b i t s [q ]x  

(bits[r2] -+ opt ion[b i t s [ in t ] ] ) ] ) )  x 
(nam -+ (bits[r2] x (b i t s [q ]  --t opt ion[b i t s [~2]] ) ) )  

where nam is actually just i n t  and 

71 = key[o] x key[int] x nam 
~2 = key[o] x nam f key[int] 

for some g. Call this type r. 
Now, NS; and NSY can be related (and are therefore 

extensionally equivalent) for any i and j by letting t = t’ = 
{ka, kbr he} and 

4&,(ka) = { ( v , ~ ’ )  I cpl-:;:, V N I J ’ : ~ ~ )  

U { ((Nar N b r  B ) ,  ( N a t  N b r  B ) )  1 
cpf t f (Na)  = r and cpttt(Nb) = {i,j} 
for any t t‘ and x} 

‘$cs,(kb) = 
U 

U { (in?_(Nb), in,(Nb)) I 

{(‘U,’U’) 1 cp k$, 2) - ‘U’ : 7 2 )  

{ ( in l (Wa,  A ) ) ,  i n l (Wal  4)) I 
cp&, ( N a )  = r for any t ,  t‘ and x} 

cp& (Nb) = {i, j }  for any t ,  t‘ and x} 
for some r in the definition of 8 ti$‘ NS‘,‘ - NSY : r. 

It is straightforward, by the way, to check that 
Good(NS:) evaluates to Some({i}N,) for some fresh Nb. 

So this system is indeed both safe (from attacks that can be 
modeled in our setting) and sound. 

6.3 Another Extended Logical Relation 

Another way of extending the logical relation is to let a re- 
lation environment cp map apair of secret keys-rather than 
one secret key-to a relation between values encrypted by 
those keys. Consider, for example, the following two ex- 
pressions. 

e = new 5 i n  

e’ = new J: innew y i n  ({3}z, {4}y, 

{ 2 } z 1  
Az. l e t  { z } z  = z i n  Some(z mod 2) e l s e  None} 

Az. l e t  { z } z  = z i n  Some(i mod 2) e l s e  
l e t  {j}y = z i n  Some(j mod 2 )  e l s e  None) 

They should be extensionally equivalent because, in both 
expressions, the keys x and y are kept secret, and there- 
fore the only way to use the first and second elements of 
the tuples is to apply the third elements, which return the 
same value. However, this extensional equivalence cannot 
be proved by using either of the logical relations above, be- 
cause the second elements are encrypted by different keys. 

This problem can be solved by letting a relation environ- 
ment cp take apair of secret keys, like cp(lc,, k z )  = { (1 ,3)}  
and cp( kz, k p )  = { (2 ,4)}  for example, and extending the 
definition of the logical relation accordingly, letting 

9 k$, c - C’ : bits[?-] 
c = {w}k and c’ = {v’}p for some v, w’, k, k’ such that 
( I C :  k’) E dom(cp) with (k, k’) E s x s‘ and (v, U’) E cp(k), or 
(k: k’) 6 dom(cp) with (k, k’) E s x s‘ and cp k?:, w - v‘ : ?- 

cp kz$ k - k’ : key[?-] e+ 
k = k’ where (IC,  IC) E s x s‘ with 
( k ,  k’’) dom(p)  and (k”, k) dom(p) for any k” 

and so forth. Again, it is straightforward to adapt the re- 
sults in Section 6.1 for this extension. (It may seem some- 
what surprising that the results in Section 6.1 are so easily 
adapted to different definitions of logical relations. This 
stems from the fact that the proofs of the propositions do 
not actually depend on the internal structure of relation en- 
vironments.) 

7 Related Work 

Numerous approaches to formal verification of security pro- 
tocols have been explored in the literature [ l  I ,  13, 15, 16, 
etc.]. Of these, the spi-calculus [3] is one of the most power- 
ful; it comes equipped with useful techniques such as bisim- 
ulation [2 ,6 ]  for proving behavioral equivalences and static 
typing for guaranteeing secrecy [ 1 J and authenticity [lo]. 
We are not in a position yet to claim that our approach is su- 
perior to the spi-calculus (or any other existing approach); 
rather, our goal has been to demonstrate that standard tech- 
niques for reasoning about type abstraction can be adapted 
to the task of reasoning about encryption, in particular about 
security protocols. For this study, A-calculus offers a better 
starting point than name-passing process calculi, where re- 
lational parametricity does not actually work very well be- 
cause of aliasing [21]. Of course, the cost of this choice 
is that we depend on the ability of the A-calculus to en- 
code communication and concurrency by function applica- 
tion and interleaving. Since this encoding is not fully ab- 
stract (processes are linear by default while functions are 
not), a process that is actually secure is not always encoded 
as a secure A-term. Any attacks that we discover for the 
encoded term must be reality-checked against the original 
process (cf. the false attack on the program using the ffgg 
protocol in Section 3). However, if the encoding of a pro- 
cess can be proved secure, then the process itself is also 
secure (cf. the proof of the secrecy property of the program 
using the improved Needham-Schroeder public-key proto- 
col in Section 3). 

Formalizing and proving secrecy as non-interference- 
i.e., equivalence between instances of a program with dif- 
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ferent secret values-has been a popular approach both in 
the security community and in the programming language 
community. Non-interference reasoning in protocol verifi- 
cation can be found in [9,24,26], among others. 

Since the cryptographic A-calculus has a key genera- 
tion primitive, we must be able to reason about generative 
names. We adopted Pitts and Stark’s work on A-calculus 
with name generation [25] in formulating both the seman- 
tics in Section 4 and the logical relation in Section 6.1. 

Encryption is similar to type abstraction in that both re- 
strict access to secrets (the former dynamically obfuscates 
their values, while the latter statically hide their types). To 
define the logical relation in Section 6.1, we also referred 
to the logical relation for the polymorphic A-calculus, also 
known as the theory of relational parametricity [23]. While 
the latter assigns each type variable a relation between val- 
ues implementing the abstract type, the former assigns each 
secret key a relation between values encrypted by the key. 

There also exist many proposals for using techniques 
in programming languages-in particular, static typing- 
to guarantee security of programs. For example, Heintze 
and Riecke [ 121 proposed a typed A-calculus with informa- 
tion flow control, and proved a non-interference property- 
that a value of high security does not leak to any context 
of low security-using a logical relation. Most of those ap- 
proaches aim to statically exclude attackers coming into a 
system, rather than to dynamically protect a program from 
attackers outside the system. (An exception is the work 
cited above on static typing for secrecy and authenticity in 
spi-calculus.) 

Lillibridge and Harper [personal communication, July 
20001 have independently developed a typed seal calculus 
that is closely related to our cryptographic A-calculus. Their 
work mainly focuses on encoding sealing [ 181 primitives in 
terms of other mechanisms such as exceptions and refer- 
ences (and vice versa), rather than establishing techniques 
for reasoning about secrecy properties of programs using 
sealing. 

8 Future Work 

Recursive Functions and Recursive wpes It can be 
shown (from Theorem 10 and the definition of cp k::: e - e’ : T )  that under our simple type system, evaluation 
of a well-typed expression always terminates. Therefore, 
recursive functions cannot be written. Indeed, introducing 
recursive functions breaks the soundness proof of the log- 
ical relations. Also, introducing recursive types breaks the 
well-definedness of the logical relations. We expect that 
these limitations can be removed by incorporating the the- 
ory of logical relation for A-calculus with recursive func- 
tions and/or recursive types (e.g., [5,7]). 

State and Linearity Although real programs often have 
some kind of state or linearity (in the sense of linear logic), 
our framework does not take them into account. Thus, it 
cannot prove the security of a program depending on them. 

For example, consider an expression p i  = new z i n  Ax. 
l e t  { - } z  = x i n  in l ( i )  e l s e  inz(z) for some secret inte- 
ger i.,Although this program leaks the secret integer i under 
the attacker f = Ap. l e t  inz(z) = p { O } k  i n  l e t  in l ( i )  = 
p{O},  i n  Some(i), it is actually secure if the function Ax. 
. . . is linear (i.e., applied only once). A similar example can 
also be given by using an ML-like reference cell. 

Although we have not yet come across a realistic pro- 
gram whose security depends on its state or linearity in a 
crucial manner (maybe because such a “dangerous” design 
is avoided a priori by engineering practice?), we expect that 
this issue can be addressed, too, by incorporating the the- 
ory of logical relation for A-calculus with state or linearity 
14,221. 

Type Abstraction via Encryption Although we focused 
on adapting the theory of type abstraction into encryption, 
it is also interesting to think of using the technique of en- 
cryption for type abstraction. Specifically, it may be possi- 
ble to implement type abstraction by means of encryption, 
in order to protect secrets not only from well-typed pro- 
grams, but also from arbitrary attackers-in other words, to 
combine polymorphism with dynamic typing without los- 
ing the abstraction. That would enable us to write programs 
in a high-level language using type abstraction and trans- 
late them into a lower-level code using encryption. Then, 
the problem is whether and how such translation is possi- 
ble, preserving the abstraction. In an earlier version of this 
work, we suggested one possibility of such translation [20, 
Section 41 but proved nothing about it. The results in the 
present paper-in particular, the logical relations in Section 
6-would help better understanding of this issue. 
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