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Abstract

In earlier work, we presented a process al-
gebra, PACSR, that uses resource failures
to capture probabilistic behavior in reac-
tive systems. In this paper, we explore the
e�ects of resource failures in the situation
where resources may be hidden from the en-
vironment. For this purpose, we introduce a
subset of PACSR, called \PACSR-lite," that
allows us to isolate the issues surrounding
resource hiding, and we provide a sound and
complete axiomatization of strong bisimula-
tion for this fragment.

1 Introduction

The real-time process algebra ACSR [6] fea-
tures a notion of resource-dependent actions.
A process needs to have access to a set of re-
sources speci�ed in an action, before it can
proceed with the action. Recently, in the
context of the process algebra PACSR [9],
we extended the ACSR framework with the
possibility of resource failures, which hap-
pen with a given probability.

Previous work on extending process al-
gebra with probability information, such
as [4, 12, 1, 3, 5, 11] typically associates
probabilities with process terms. An ad-

�Research supported in part by grants AFOSR
F49620-95-1-0508, ARO DAAH04-95-1-0092, NSF
CCR-9988409, NSF CCR-9619910, and ONR
N00014-97-1-0505 (MURI).

vantage of associating probabilities with re-
sources, rather than with process terms, is
that the speci�cation of a process does not
involve probabilities directly. Failure prob-
abilities of individual resources are de�ned
separately and are used only during analy-
sis. This makes speci�cations simpler and
ensures a more systematic way of applying
probabilistic information. In addition, this
approach allows one to explore the impact
of changing probabilities of failures on the
overall behavior, without changing the spec-
i�cation.

In this paper, we explore the e�ects of
resource failures in the situation where re-
sources may be hidden from the observer
(i.e., private to a process). Speci�cally, we
present PACSR-lite, a fragment of PACSR
that allows us to isolate the issues surround-
ing resouce hiding, and present a sound and
complete axiomatization of strong bisimula-
tion equivalence for this fragment. An ax-
iomatization of full PACSR is currently be-
ing undertaken and will be published in a
future paper.

2 The Syntax of PACSR-lite

PACSR-lite is a subset of the probabilistic
process algebra PACSR [9]. The actions
of PACSR-lite specify access to a (possi-
bly empty) set of resources that the pro-
cess requires to perform the action. More-
over, each resource has an associated failure
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probability. Resources can be hidden in that
their identity is not visible to the environ-
ment, but their failures can be observed.

Resources and actions. We assume that
a system contains a �nite set of serially
reusable resources drawn from the in�nite
set Res. We write Res for the set that con-
tains, for each r 2 Res, an element r, rep-
resenting the failed resource r, and R for
Res [ Res. An action is drawn from the
domain PP (R) with the restriction that each
resource is represented at most once. For
example, the singleton action frg denotes
the use of resource r. This action cannot
happen if r has failed. On the other hand,
action frg takes place given that resource r
has failed. A notation for failed resources is
useful for specifying recovery from failures.
Action ; represents idling, since no resource
is consumed. We let Act denote the domain
of actions and A, B range over Act.
Each resource has an associated probabil-

ity specifying the rate at which the resource
may fail. For all r 2 Res we denote by
p(r) 2 [0; 1] the probability of resource r
being up, while p(r) = 1� p(r) denotes the
probability of r failing. We assume an in�-
nite number of resources for each probabil-
ity failure in [0; 1]. For example, consider
the action fcpug, where resource cpu has
probability of failure 1=3, i.e. p(cpu) = 2=3.
Then, fcpug may occur with probability 2=3
and fails with probability 1=3.

Processes. The set Proc of PACSR-lite
processes, ranged over by P and Q, is given
by:

P ::= NIL j A : P j P + P j PnnI

The process NIL represents the inac-
tive process. A : P executes a resource-
consuming action and proceeds to process
P . The process P + Q represents a non-
deterministic choice between the two sum-
mands. PnnI hides the identity of resources
in I so that they are not visible on the inter-
face with the environment. The formal se-
mantics of processes is given in the next sec-

tion. The full process algebra, PACSR, ad-
ditionally contains the usual constructs for
recursion, parallel composition, restriction,
etc.

The operator PnnI binds all free occur-
rences of the resources in I in P . This binder
gives rise to the sets of free and bound re-
sources of a process P , denoted by fr(P ) and
br(P ) respectively. We write res(P ) for the
set of all resources of P .

Let Z = fr1; : : : ; rng � R. Then p(Z) =
�1�i�np(ri); W(Z) = fZ 0 � Z [ Z j r 2
Z 0 i� r 62 Z 0g; and res(Z) = fr 2 Res j r 2
Z or r 2 Zg.
Thus W(Z) denotes the set of all pos-

sible worlds involving the set of resources
Z, that is, the set of all combinations of
the resources in Z being up or down. For
example, W(fr1; r2g) = ffr1; r2g; fr1; r2g;
fr1; r2g; fr1; r2gg. Note that p(;) = 1 and
W(;) = f;g. Finally, the function imr(P ),
de�ned inductively below, associates each
process with the set of resources on which
its behavior immediately depends:

imr(NIL) = ;
imr(P1 + P2) = imr(P1) [ imr(P2)
imr(A : P ) = res(A)
imr(PnnI) = imr(P )

3 Operational Semantics

A con�guration is a pair of the form
(P;W ) 2 Proc � 2R, representing a process
P in world W . A world captures the state
(up or down) of resources relevant to P . We
write S for the set of con�gurations. The se-
mantics of PACSR-lite is given in terms of
a labeled transition system whose states are
con�gurations and whose transitions are ei-
ther probabilistic (labeled by a probability)
or nondeterministic (labeled by an action).
The idea is that, for a process P , computa-
tion begins in the initial con�guration (P; ;).
A probabilistic transition is then performed
to determine the status of resources which
are immediately relevant for execution (as
speci�ed by imr(P )) but for which there is
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no knowledge in the con�guration's world.
The status of a resource does not change
until the next action-labled transition oc-
curs; moreover, actions erase all previous
knowledge of the con�guration's world (see
law (Act)). Nondeterministic transitions are
possible from con�gurations that contain all
necessary knowledge regarding the state of
resources.

With this view of computation in mind,
we partition S as follows:

Sn = f(P;W ) 2 S j imr(P )� res(W ) = ;g,
the set of nondeterministic con�gurations,
and

Sp = f(P;W ) 2 S j imr(P )� res(W ) 6= ;g,
the set of probabilistic con�gurations.

The operational semantics of PACSR-lite
processes is given as a combination of two la-
beled transition systems: 7�!� Sp� [0; 1]�
Sn is the probabilistic transition relation
and �!� Sn �Act� S is the nondetermin-
istic transition relation. We write elements
of 7�! as (P;W )

p
7�! (P 0;W 0) and elements

of �! as (P;W )
�
�! (P 0;W 0).

The probabilistic transition relation is
given by the rule (PROB) in Table 1.
Note that con�guration (P;W ) evolves into
(P;W [Z2) which is, by de�nition, a nonde-
terministic con�guration. Further, it can be
shown that for all s 2 Sp,

P
fjp j (s; p; s0) 2

7�! jg = 1, where fj and jg are multiset
brackets and the summation over the empty
multiset is 1.

The nondeterministic transition relation
is given by rules (Act), (Sum), and (Hide)
of Table 1. The symmetric version of rule
(Sum) has been omitted. Note that in rule
(Act), the occurrence of an action A re-
initializes the world to ;. It can be shown
that the semantics of PACSR-lite processes
de�ne alternating transition systems, that
is, transition systems where nondeterminis-
tic and probabilistic states alternate [4].

For example, consider process fr1; r2g :
P , which, in a world where resource r1
is up and r2 is down, may evolve to P .
Let p(r1) = p(r2) = 0:5. Then, by

(PROB), (fr1; r2g : P; ;)
0:25
7�! (fr1; r2g :

P;Wg), for each W 2 W(fr1; r2g), and, by

(Act), (fr1; r2g : P; fr1; r2g)
fr1;r2g
�! (P; ;),

whereas (fr1; r2g : P; fr1; r2g), (fr1; r2g :
P; fr1; r2g), and (fr1; r2g : P; fr1; r2g) have
no transitions.

4 Strong Bisimulation

We introduce the notion of (strong) bisimu-
lation [8] for PACSR-lite processes. It cap-
tures formally the notion that equivalent
systems exhibit the same behavior, includ-
ing probabilistic behavior, at their interfaces
with the environment. Our de�nition of
probabilistic strong bisimulation is closely
related to those studied by [4, 10].

De�nition 4.1 For s 2 S andM� S, we
de�ne �(s;M) =

P
s02Mfjp j (s; p; s

0) 2 7�!
jg 2

Thus, �(s;M) denotes the probability that
s may perform a probabilistic transition to
a con�guration in M.

De�nition 4.2 An equivalence relation
R � S� S is a strong bisimulation if, when-
ever PRQ (1) for all � 2 Act, if P;Q 2 Sn
and P

�
�! P 0 thenQ

�
�! Q0 and P 0RQ0; (2)

for all M 2 S=R, if P;Q 2 Sp, �(P;M) =
�(Q;M).

Two con�gurations P and Q are strong

bisimulation equivalent, written P � Q, if
there exists a strong bisimulation R such
that PRQ. 2

Consequently, two con�gurations are related
by a strong bisimulationR, if they can reach
all equivalence classes of the relation with
the same probability and they can simulate
each other's behavior.

It is easy to show that there is a largest
strong bisimulation which we denote as
�. We consider two PACSR-lite processes
bisimilar when their initial con�gurations
are bisimilar.
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(PROB)
(P;W ) 2 Sp; Z1 = imr(P )� res(W ); Z2 2 W(Z1)

(P;W )
p(Z2)
7�! (P;W [ Z2)

(Act) (A : P;W )
A
�! (P; ;), if A �W (Sum)

(P1;W )
�
�! (P;W 0)

(P1 + P2;W )
�
�! (P;W 0)

(Hide)
(P;W )

A
�! (P 0;W 0); A0 = A� I

(PnnI;W )
A0

�! (P 0nnI;W 0)

Table 1: The probabilistic and nondeterministic transition relations

5 The Laws

Tables 2 and 3 contain our axiomatization
of strong bismulation for PACSR-lite, which
we refer to as A. We shall subsequently
show that A is a sound and complete ax-
iomatization of strong bisimulation. In the
sequel, we will use the equality symbol \="
when two processes can be shown to be
equivalent using A.

Law Hide(2) describes how the hiding op-
erator distributes over summation. In or-
der to push a summation outside a hiding
operator, we must ensure that no pair of
summands share any bound resources, oth-
erwise a resource that was shared in the two
summands of the left-hand side process will
become two di�erent resources on the right-
hand side, which causes a problem with the
probabilistic behavior of the process, as will
be shown in the example below. Law Down
states that a process which is only willing
to engage in an action involving a failed
resource is in fact a failed process. Law
Rename establishes the equivalence of pro-
cesses that only di�er by a change of bound
resources that have the same probability of
failure.

The laws of Table 3 are central for
the completeness of the strong bisimulation
characterization. Law Extend, allows us to
rewrite a summation of pre�xes by enriching
each summand with information about the
state of a new hidden resource, thus replac-
ing each process A : P with the summation
(A [ frg) : P + (A [ frg) : P , assuming
r 62 res(A). Law Standard, provides a stan-

dard form for a summation of processes by
identifying probabilistic branches that have
the same observable bevavior, although pos-
sibly using di�erent sets of hidden resources,
and grouping these into a single branch by
using a new set of hidden resources. This set
of new resources are used to create a number
of mutually-exclusive worlds, each of which
will be used to represent di�erent behaviors
of the left-hand side process. The probabil-
ities of each of the required resources can
be obtained by solving the set of equations
p(Ci) =

PJi
j=1 p(Bi), for all i. It can be eas-

ily shown that a unique solution exists to
this set of equations with each of the solu-
tions in [0; 1], as required.

We illustrate the intuition behind laws
Standard with two examples. First, let I =
1 and J1 = K1 = 2. Then, assuming all re-
sources are hidden and omitting the index i,
the left-hand side process of both laws Stan-
dard is P = B1:P1+B1:P2+B2:P1+B2:P2.
Figure 1,a) gives the transitions for (P; ;).
The law Standard(1) allows us to merge
the probabilistic branches that lead to the
same processes, arriving at a bisimilar pro-
cess Q = C:P1 + C:P2, as illustrated in
Figure 1,b). In this case, C = f�g with
a matching probability. For a more de-
tailed example, consider the process P =
(fr1; r2g : P1 + fr1; r2g : P2 + fr1; r2g :
P3 + fr1; r2g : P3)nnfr1; r2g. If both re-
sources r1; r2 are available, P can silently
evolve into either P1 or P2. If either one
of the resources is available, P can evolve
into P3. Otherwise, P is deadlocked. We
need to group together the cases where P

4



0 0

pr 1(B  )
pr 2(B  )

0 0

PP1 2

0 0

PP1 2

pr(C) 1- pr(C)

0(P,    ) 0

pr 1(B  ) pr 2(B  )

PP1 2

Nil

(Q,    )
a) b)

Nil

1- -

Figure 1: Law Standard(1)

evolves into P3 into a single term, introduc-
ing new hidden resources in order to match
the probability of arriving at P3. Applying
the law Standard 1, we obtain the process
Q = (f�1; �2g : P1+f�1; �2g : P2+f�1; �2g :
P3)nnfr1; r2; �1; �2g, where the the failure
probabilities are assigned to �1 and �2 is
such a way that p(�1) � p(�2) = p(r1) � p(r2)
and p(�1) �p(�2) = p(r1) �p(r2)+p(r1) �p(r2).

6 Soundness

In this section we establish the soundness of
the laws, that is, we prove that the equations
respect strong bisimulation. To do this, we
rely on the result of [2], which provides a
sound axiomatization for a non-probabilistic
process algebra ACSR. We note that every
PACSR-lite term is also an ACSR term, and
that all Choice and Hide laws in Table 2 hold
for ACSR as well. We refer to these laws as
A0. Their soundness with respect to proba-
bilistic strong bisimulation can be derived as
a consequence of this fact. In the sequel we
will use P =0 Q to denote that P and Q can
be shown to be equivalent by using laws A0,
�0 to refer to strong nonprobabilistic bisim-
ulation, and �!0 to refer to the transition
relation of ACSR, as de�ned in [2]. We in-
troduce the notion of compatibility between
PACSR-lite processes de�ned as follows.

De�nition 6.1 An equivalence relation
R ��0 is a compatibility relation if, when-
ever PRQ, 1) imr(P ) = imr(Q), and 2) for

all � 2 Act, if P
�
�!

0
P 0 then Q

�
�!

0
Q0 and

P 0RQ0. Two states P and Q are compati-

ble, if there exists a compatibility relation R
such that PRQ. 2

Thus two processes are compatible if they
are nonprobabilistically strongly bisimilar,
have the same immediate resources, and pre-
serve these properties under reduction. A
useful fact that we will be using is that if
P =0 Q then P and Q are compatible to
each other. This can be easily proved by
induction on the size of the =0-proof.

The following theorem achieves that, if
two PACSR processes can be shown to be
equivalent by using laws in A0, then they
are bisimilar.

Theorem 6.2 If P =0 Q then P � Q.

Proof: Let

R = f((P; ;); (Q; ;)) j P , Q are compatibleg [

f((P;W ); (Q;W )) j P , Q are compatible;

(P;W ); (Q;W ) 2 Sng

The proof involves showing that R ��.
This follows easily given the compatibility
of the processes in the two types of con�g-
urations. Then, since P =0 Q implies that
P and Q are compatible, we may conclude
that P � Q as required. 2

It remains to establish the soundness of
laws Rename, Down, and the laws of Ta-
ble 3.

Lemma 6.3 If P and Q are are related
by one of the laws Rename, Down, Extend,
Standard(1), or Standard(2), then P � Q.

Proof: The proof of this result follows eas-
ily from the de�nitions of strong bisimula-
tion. We consider the two most interesting
laws:
Extend Let Q � (

P
i2I Ai : Pi)nnV and

R � (
P

j2I;r 62Aj (Aj [frg) : Pj+(Aj [frg) :
Pj)+

P
j2I;r2Aj Aj : Pj)nnV , r 2 V . Clearly,

imr(Q) = imr(R), thus (Q; ;)
p
7�! (Q;W ) i�

(R; ;)
p
7�! (R;W ). Furthermore, for each

world W , Q has exactly the following tran-
sitions: (1) if r 62 Ai and Ai [ frg � W ,
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then (Q;W )
Ai�V�! (Pi;W ), (2) if r 62 Ai and

Ai [ frg � W , then (Q;W )
Ai�V�! (Pi;W ),

and (3) if r 2 Ai and Ai � W , then

(Q;W )
Ai�V�! (Pi;W ). (R;W ) has exactly

the same transitions. Hence the result fol-
lows.

Standard(1) Here we prove the soundness
of a reduced version of this law where the
processes have no free resources andKi = 1,
for all i. This allows us to concentrate on the
essence of the law, that is the e�ect or re-
naming bound resources. The full result fol-
lows easily given that the processes on each
side of the equation have the same behav-
ior under each valuation of the bound re-
sources. Let Q � (

PI
i=1

PJi
j=1Bij : Pi)nnV

and R � (
PI

i=1 Ci : Pi)nnV [ f�1; : : : ; �Ig,
satisfying the conditions of the lemma. We
observe that both processes can evolve into
exactly one of the equivalence classesMi =
f; : Pig�, 1 � i � I and the equiv-
alence class fNILg�. Then, �(Q;Mi) =PJi

j=1 p(Bij) = p(Ci) = �(Q;Mi). There-
fore, Q � R. 2

7 Completeness of the ax-

iomatization

In this section we will prove that the laws
given in Tables 2 and 3 are complete for
PACSR-lite. The completeness proof is car-
ried out in the standard way: First, we de-
velop a kind of standard set of equations and
show that it is satis�ed by any PACSR-lite
process. We then show that two bisimilar
processes can be shown to satisfy a common
set of standard equations and, �nally, we ap-
peal to the result that such sets of equations
have a unique solution up to bisimulation.

7.1 Standard Set of Equations

In this section we prove that any P 2 Pr

provably satis�es a particular set of equa-
tions.

Let eX be a set of variables and eH be
terms. We say that a process P provably
satis�es a set of equations S : eX = eH if
there is a set of terms eP = fP1; P2; : : : Png

such that eP = eH[eP = eX ] and P = P1.
A set of equations S is said to be standard

if X1 = X2nnV and for all i � 2

Xi =
X
j2Ji

X
k2Ki

Ajk [Bj : Xjk;

where

1.
S
j2Ji;k2Ki

Ajk \ V = ;,
S
j2J Bj � V ,

res(Bjl) = res(Bjm) for all jl; jm 2 Ji
and Bjl 6= Bjm for all jl 6= jm,

2. V \ res(X2) = V .

The �rst point to note in this de�nition is
the treatment of the hide operator. This
construct cannot be eliminated from stan-
dard sets of equations: the probabilistic in-
formation that accompanies a hidden re-
source is necessary for de�ning the seman-
tics of a process and it can not be encoded by
any other means. (Note that in ACSR this is
possible and standard sets of equations can
be given as unrestricted summations.) How-
ever, the Hide-laws allow us, after possibly
renaming some resources, to push the hid-
ing operators outwards in a given process.
Thus in a standard set of equations, the top
equation consists of a variable restricted by
a set of resources and each of the remain-
ing variables contains the summation of a
set of pre�xed variables. The �rst condition
stipulates that Ajk are the visible resources
of the process and Bj the hidden resources,
where the hidden resources that appear in
each summand are the same but the world
each combination describes is distinct from
all others. Clause 2 stipulates that set V
contains only resources that actually occur
in the process.

Theorem 7.1 Every PACSR-lite process
R provably satis�es a standard set of equa-
tions.
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Proof: By induction on the structure of
R. We present the most interesting case:
(R = P + Q). By induction hypothesis, P
provably satis�es S : eX = eH andQ provably
satis�es T : eY = eG. This implies that there
exists terms eP and eQ such that P = P2nnV
and Q = Q2nnU and P +Q has the form

(
P

j2J2

P
k2K2

Ajk [Bj : Pjk)nnV
+(
P

l2L2

P
m2M2

Clm [Dl : Qlm)nnU:

Using Rename, we can rewrite the second
summand so that all its bound resources are
fresh and di�erent from the resources of the
�rst summand, and the probabilities of the
bound resources are preserved. Then using
Hide(2) we can pull the hide operation to
the outer level of the term, and P +Q:

= (
P

j2J2

P
k2K2

Ajk [Bj : Pjk)nnV
+ (

P
l2L2

P
m2M2

Clm [D0

l : Q
0

lm)nnU
0

= (
P

j2J2

P
k2K2

Ajk [Bj : Pjk
+
P

l2L2

P
m2M2

Clm [D0

l : Q
0

lm)nnV [ U 0;

where, if ey = res(P )\ res(Q), U 0 = U [ex=ey];
Q0lm = Qlm[ex=ey]; D0

l = Dl[ex=ey]; s.t. for all i,
p(xi) = p(yi); ex \ (res(P ) [ res(Q)) = ;.
To transform the above process to stan-

dard form and in particular to satisfy con-
dition (1), we will need to apply laws Ex-
tend and Standard. First, we close the
summands of the process with information
about all immediate hidden resources of the
process by applying law Extend once for ev-
ery r 2

S
j2J2 Bj [

S
l2L2 D

0
l to obtain:

(
X
n2N

X
j2J2

X
k2K2

Ajk [Bj [En : Pjk+

X
n2N 0

X
l2L2

X
m2M2

Clm [D
0
l [Fn : Q

0
lm)nnV [U

0

where the
S
n2N

eEn are the possible combi-
nations of the immediate bound resources
of process Q,

S
l2L2 D

0
l, and similarly, theS

n2N 0 Fn are the possible combinations of
the immediate bound resources of process
P ,
S
j2J2 Bj . Now it remains to rearrange

the last two summands in the style of the
left-hand side of law Standard, by group-
ing together all processes that can take

place under the same evaluation of the hid-
den resources, and then isolating all worlds
that exhibit the same behavior. So, using
Choice(3), Choice(4) and �nally Standard
we obtain:

P +Q = (
X
i2I

X
j2Ji

X
k2Ki

A0

ik [ B
0

ij : P
0

ik)nnV [ U 0

= (
X
i2I

X
k2Ki

A0

ik [ e�i : P 0

ik)nnV [ U 0 [
[
i

e�i

where res(e�im) = res(e�in) and e�im 6= e�in
for all im 6= in, By the induction hy-
pothesis each P 0ik provably satis�es a stan-
dard set of equations Sik : eXik = eHik

with distinguished variable Xik
1 . Then

P + Q, satis�es the standard set of equa-
tions: fX = X1nnV [ U 0 [

S
i e�i, X1 =

(
P

i2I

P
k 2 KiA

0
ik [ e�i : Xik

1 )g
S
i;k S

ik.

7.2 Common Set of Prioritized

Standard Equations

Theorem 7.2 Let P and Q provably satisfy

two standard sets of equations S and T . If

P and Q are bisimilar, then there exists a

third standard set of equations S0 satis�ed
by both P and Q.

Proof: We will restrict our attention to
processes with standard sets of equations
containing no visible resources, and Ki = 1.
This allows us to focus on the central as-
pects of the proof that involve the renaming
of bound resources.
Suppose that eX and eY , are disjoint sets

of variables, and that the given sets of equa-
tions are S : eX = eH, T : eY = eG. Further,

let eP and eQ be such that eP = eH[eP = eX ],eQ = eG[eQ=eY ], with P = P1, Q = Q1, so
that P1 = P2nnU , Q1 = Q2nnV , and Pi =P

j2Ji Bj : Pj , Qi =
P

l2Li Dl : Ql. Let us
consider the relation R such that (u; v) 2 R
i� Hu � Gv. Clearly, (1; 1) 2 R. Let
(u; v) 2 R and consider Pu and Qv. Suppose
that there exists W 2 W(

S
j Bj) such that

for all j, Bj 6� W . (The other case follows
similarly with the exception that law Stan-
dard(2) is used instead of Standard(1).) We
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may construct a partition � = f ej1; : : : ;ejng
of Ju, such that if j; j0 2 ej�, Pj � Pj0 , and

vice versa. Similarly, let �0 = fel1; : : : ; eln0g
be the equivalent partition of Qv. Since Pu
and Qv must have equal transitions, the fol-
lowing statement is true:

n = n0, and for each ej� 2 �,
there exists el�0 2 �0 such that for
any j 2 ej�, l 2 el�0 , (j; l) 2 R,P

j2ej� p(Bj) =
P

l2el�0 p(Dl).

Thus Pu and Qv can be rewritten as fol-
lows Pu =

Pn
�=1

P
j2ej� Bj : Pj ; Qv =Pn

�=1

P
l2el� Dl : Ql, where we assume that

the summations are ordered so that for all
1 � � � n, classes ej�, el� are matching, in
the sense of the above statement.
However, despite the bisimilarity of the

two processes and the fact that they have
the same cumulative probability of reaching
each equivalence class of �, they have pos-
sibly di�erent branching structures. Our in-
tention is to show, that Pu and Qv can be
rewritten into equal processes which have
identical branching structures. To do this
we will employ a set of new hidden resources,
and rewrite the two processes in such a way
that each probabilistic transition of the ini-
tial processes with probability p is replaced
by a set of probabilistic transitions with cu-
mulative probability p. While doing this we
want to ensure that both resulting processes
have exactly the same probabilistic transi-
tions to each equivalence class of �. We
achieve this as follows:
For every �, let � be the greatest

common divisor of the probabilities p(Bj),

p(Dl), for all j 2 ej�, l 2 el�. Further,

let �� =

P
j2ej� p(Bj)

l
and � =

P
��

�.

By the de�nition of �, �� and thus �
are integers. Let e�uv = �1; : : : ; �� be new
resources and e�1; : : : ; e��, mutually exclu-
sive worlds involving these resources such
that the �rst �1 worlds have probability
1, the next �2 worlds probability 2 and

so on. Finally, if j 2 ej�, let �j =
p(Bj )
�

,

and let f��
1 ; : : : ;�

�
Ju
g, be a partition of

f1; : : : ;��g, such that ��
i = f

P
r<i �r +

1;
P

r<i �r + 2; : : :
P

r�i �rg.

Similarly, if l 2 el�, let �0j =
p(Dj)
�

,

and let fE�
1 ; : : : ; E

�
Ju
g, be a partition of

f1; : : : ;��g, such that E�
i = f

P
r<i �

0
r +

1;
P

r<i �
0
r + 2; : : :

P
r�i �

0
rg. By Stan-

dard(1), we have that the two processes
satisfy the following equations: PunnU =
(
Pn

�=1

P
j2ej�

P
�2��

j
e�� : Pj)nnV [ e�uv,

QvnnV = (
Pn

�=1

P
l2el�
P

�2E�
l
e�� : Ql)nnV [

e�uv.
Let eX 0 and eY 0, be disjoint sets of vari-

ables, and consider the sets of equations
S0 : eX 0 = eH 0, T 0 : eY 0 = eG0, where
X 0
1 = X 0

2nn
S
u;v e�uv, Y 01 = Y 02nn

S
u;v e�uv,

and X 0
u = (

Pn
�=1

P
j2ej�

P
�2�j

e�� : X 0
j),

Y 0v = (
Pn

�=1

P
l2el�
P

�2El
e�� : Y 0l ). It can

be shown that S0 and T 0 are satis�ed by P
and Q respectively.
Let us now consider the set of equationseZ = eF , de�ned for all (u; v) 2 R by Z0;0 =

Z1;1nn
S
u;v e�uv, where

Zu;v =
nX

�=1

�X
�=1

X
(j;l)2Kuv�

e�� : Zj;l

with Kuv� = f(j; l)g s.t. e�� : Pj is a sum-
mand of Pu, e�� : Ql is a summand of Qv,
(j; l) 2 R: Again, it is easy to prove that
this is a set of standard equations.

Now take the set of processes Rj;l =
Pj , for all l. We may see that the terms

Fi;j [
eR=eZ ] contain the same summands as

H 0
i[
eP =fX0 ] with some possible duplications.

In particular, F1;1[
eR=eZ ] = P1 = P . Hence

P satis�es this new set of equations. A sim-
ilar reasoning can be applied to show that
Q satis�es the same set of equations.

2

7.3 Unique Solution

We now have to prove that if two processes
satisfy the same set of standard equations,
they are bisimilar. Such is the objective of

8



the following theorem. Its proof follows ex-
actly the proof given by Milner[7].

Theorem 7.3 A set of standard equations

has a unique solution up to a bisimulation.

Since, by Theorem 7.2, P 0 and Q0 satisfy
a common set of standard equations, and
by Theorem 7.3 P 0 = Q0, we have the �nal
result:

Theorem 7.4 For any two FS processes P
and Q, if P � Q then P = Q.

8 Conclusions

We have presented a sound and complete
axiomatization of strong bisimulation for
the fragemnt PACSR-lite of the resource-
oriented process algebra PACSR. The key
technical hurdle was to axiomatically chara-
terize the e�ects of resource hiding within a
probabilistic setting. We are working to ex-
tend the axiomatization to the full PACSR.

References

[1] J. Baeten, J. Bergstra, and S. Smolka.
Axiomatizing probabilistic processes:
ACP with generative probabili-
ties. Information and Computation,
121(2):234{255, Sept. 1995.

[2] P. Br�emond-Gr�egoire, J. Choi, and
I. Lee. A complete axiomatization of
�nite-states ACSR processes. Informa-
tion and Computation, 138(2):124{159,
Nov 1997.

[3] A. Giacalone, C. Jou, and S. Smolka.
Algebraic reasoning for probabilistic
concurrent systems. In Proceedings of

Working Conference on Programming

Concepts and Methods, Sea of Gallilee,
Israel, Apr. 1990. IFIP TC 2, North-
Holland.

[4] H. Hansson. Time and Probability

in Formal Design of Distributed Sys-

tems. PhD thesis, Department of

Computer Systems, Uppsala Univer-
sity, 1991. DoCS 91/27.

[5] J.-P. Katoen, R. Langerak, and
D. Latella. Modeling systems by prob-
abilistic process algebra: An event
structures approach. In Proceedings of

FORTE '92 { Fifth International Con-

ference on Formal Description Tech-

niques, pages 255{270, Oct. 1993.

[6] I. Lee, P. Br�emond-Gr�egoire, and
R. Gerber. A process algebraic ap-
proach to the speci�cation and analy-
sis of resource-bound real-time systems.
Proceedings of the IEEE, pages 158{
171, Jan 1994.

[7] R. Milner. A complete axiomatization
for observational congruence of �nite-
state behaviors. Information and Com-

putation, 81:227{247, 1989.

[8] D. Park. Concurrency and automata on
in�nite sequences. In Proceedings of 5th

GI Conference, volume 104, of Lecture
Notes in Computer Science, pages 167{
183, 1981.

[9] A. Philippou, O. Sokolsky, R. Cleave-
land, I. Lee, and S. Smolka. Probabilis-
tic resource failure in a real-time pro-
cess algebra. In Proceedings of CON-

CUR '98, Sept. 1998.

[10] R. Segala and N. Lynch. Probabilis-
tic simulations for probabilistic pro-
cesses. In B. Jonsson and J. Parrow,
editors, Proceedings CONCUR 94, Up-
psala, Sweden, volume 836 of Lecture
Notes in Computer Science, pages 481{
496. Springer-Verlag, 1994.

[11] K. Seidel. Probabilistic CSP. PhD the-
sis, Oxford University, 1992.

[12] C. Tofts. Processes with probabilities,
priorities and time. Formal Aspects of

Computing, 4:536{564, 1994.

9



Choice(1) P +NIL = P

Choice(2) P + P = P

Choice(3) P +Q = Q+ P

Choice(4) (P +Q) +R = P + (Q+R)

Hide(1) NILnnI = NIL

Hide(2) (P +Q)nnI = (PnnI) + (QnnI) if imr(P ) \ imr(Q) \ I = ;

Hide(3) (A:P )nnI = A:(PnnI) if res(A) \ I = ;

Hide(4) PnnInnJ = PnnI [ J

Hide(5) Pnn; = P

Hide(6) PnnI = PnnI [ frg if r =2 res(P )

Down A : P = NIL; if for some r 2 A; p(r) = 0

Rename PnnI = (PnnI)[r0=r] if r 2 I; r0 =2 res(P ) and p(r) = p(r0)

Table 2: Laws for sum, recursion and hiding

Extend (
P

i2I
Ai : Pi)nnV = (

P
j2I;r 62Aj

(Aj [ frg) : Pj + (Aj [ frg) : Pj)

+
P

j2I;r2Aj
Aj : Pj)nnV where r 2 V

Standard(1) (
PI

i=1

PJi
j=1

PKi

k=1
(Aik [ Bij) : Pik)nnV

= (
PI

i=1

PKi

k=1
(Aik [ Ci) : Pik)nnV [ f�1; : : : ; �Ig

if 9W 2 W(
S
i;j;k

Aik [Bik) 8i; j; k �Aik [ Bij 6�W , and

whenever i; j 6= m;n; res(Bij) = res(Bmn); Bij 6= Bmn and
where

S
i;j
Bij � V; (

S
i;k

Aik) \ V = ;;

Ci =
S
1�j<i

f�jg [
S
i�j<I

f�jg;

where �1; : : : ; �I are fresh resources,

such that p(Ci) =
PJi

j=1
p(Bij)

Standard(2) (
PI

i=1

PJi
j=1

PKi

k=1
(Aik [ Bij) : Pik)nnV

= (
PI�1

i=1

PKi

k=1
(Aik [ Ci) : Pik+P

D2D

PKi

k=1
(AIk [D) : PIk)nnV [ f�1; : : : ; �I�1g

if 8W 2 W(
S
i;j;k

Aik [Bik) 9i; j; k �Aik [ Bij �W , and

whenever i; j 6= m;n; res(Bij) = res(Bmn); Bij 6= Bmn and
where

S
i;j
Bij � V; (

S
i;k

Aik) \ V = ;;

Ci =
S
1�j<i

f�jg [
S
i�j<I�1

f�jg;

where �1; : : : ; �I�1 are fresh resources,

such that p(Ci) =
PJi

j=1
p(Bij);

D =W(�1; : : : ; �I�1)� fC1; :::; CI�1g

Table 3: Laws for reintroduction of hidden resources
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