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Maximum Entropy Methods for Biological Sequence Modeling

Abstract
Many of the same modeling methods used in natural languages, specifically Markov models and HMM's, have
also been applied to biological sequence analysis. In recent years, natural language models have been
improved upon by using maximum entropy methods which allow information based upon the entire history
of a sequence to be considered. This is in contrast to the Markov models, whose predictions generally are
based on some mixed number of previous emissions, that have been the standard for most biological sequence
models. To test the utility of Maximum Entropy modeling for biological sequence analysis, we used these
methods to model amino acid sequences. Our results show that there is significant long-distance information
in amino acid sequences and suggests that maximum entropy techniques may be beneficial for a range of
biological sequence analysis problems.
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ABSTRACT
Many of the same modeling methods used in natural lan-
guages, speci�cally Markov models and HMM's, have also
been applied to biological sequence analysis. In recent years,
natural language models have been improved upon by using
maximum entropy methods which allow information based
upon the entire history of a sequence to be considered. This
is in contrast to the Markov models, whose predictions gen-
erally are based on some �xed number of previous emissions,
that have been the standard for most biological sequence
models. To test the utility of Maximum Entropy model-
ing for biological sequence analysis, we used these meth-
ods to model amino acid sequences. Our results show that
there is signi�cant long-distance information in amino acid
sequences and suggests that maximum entropy techniques
may be bene�cial for a range of biological sequence analysis
problems.

Keywords
maximum entropy, amino acids, sequence analysis

1. INTRODUCTION
Comparisons between biological sequence data and natural
languages are commonplace, in part because these compar-
isons help to frame our understanding of nucleic and pep-
tide sequences within a topic, language, of which most of us
have an intuitive sense. So when newspapers describe bi-
ology to the masses, genomes become books, chromosomes
become chapters, genes become sentences, and so on. These
comparisons are more than useful metaphors for conceptu-
alization. Many of the statistical models that have proven
successful for language have been adapted for use in ana-
lyzing biological sequences. For example, Markov models
and Hidden Markov Models are popular tools both in natu-
ral language processing [9] and in computational biology [8],
where they have been used for gene �nding [3] and pro�ling
protein domains and families [11].

In spite of the popularity of Markov models, it has become
increasingly popular in natural language processing to use
models that deviate from the Markov assumption, that is
that the next member of a sequence will be dependent on a
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short, �xed length of prior emissions. Rosenfeld [18] showed
recently that he could signi�cantly reduce the perplexity of
a probability model of the next word in a document by using
\triggers", words that cause other words to occur at some
later, unspeci�ed distance in the document. So for example,
seeing the word \bank" increases the likelihood of the word
\bank" occurring again later in the document, as well as
related words such as \check" and \loan".
To incorporate \long distance" features such as triggers into
his model, Rosenfeld used Maximum Entropy (ME) model-
ing. A major bene�t of the Maximum Entropy modeling
technique is that a diverse range of features can be incorpo-
rated into a single probability model, without any require-
ment of independence among the features. Rosenfeld com-
pared these models to interpolated Markov models, where
several models are trained separately and then combined,
and concluded that Maximum Entropy models are superior
in their performance. The ability of ME Models to incor-
porate diverse, sometimes overlapping features into a single
probability model has inspired their adoption for other tasks
in natural languages, such as translation [2], document clas-
si�cation [12], identifying sentence boundaries [17], preposi-
tional phrase attachment [16], and part-of-speech tagging [14].
Given the rising popularity of ME models in natural lan-
guages, we might expect them to be applicable to biological
sequence models as well. As a �rst test case of applying
Maximum Entropy techniques to biological sequences, we
built a model for amino acid sequences. We chose amino
acid sequences in part because they require a less complex
model than eukaryotic genes (with exons, introns, promot-
ers, and other features to consider). While not requiring the
complexity of a eukaryotic gene model, amino acid sequences
(or peptide sequences) are good candidates for the utility of
\long distance" information, since the amino acids within
a protein interact over variable distances due to the bend-
ing of the protein into its secondary and tertiary structure.
Finally, it has been suggested that better statistical models
of amino acid sequences may lead to better gene prediction
models [19].

1.1 Theoretical Basis for Maximum Entropy
One of the most attractive aspects of Maximum Entropy
is its simplicity. It speci�es that an ideal model should
match what we know about the empirical distribution we are
attempting to model without making any unwarranted as-
sumptions. Phrased di�erently, the technique involves �rst
constraining the modeled distribution to match certain fea-
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tures of the empirical data (training data), and then choos-
ing the probability function that satis�es these constraints
while being as uniform as possible.
We begin by selecting a set of n features that are salient to
the problem at hand. We will limit ourselves to real valued
features (functions) that evaluate to between zero and one
inclusive: fi : " ! [0; 1]. A special case of this is binary
features which are either present or absent within a given
event or instance: fi : " ! f0; 1g. Our goal is to end with
a probability model p̂ that, given an event, can estimate
its probability based on its features. A reasonable way to
constrain our model is to require it to have the same expec-
tation value for each feature as the observed probability ~p
in the training data, T , which is our approximation of the
real (unobservable) distribution p. That is, for each of the
n features indexed by i, 1 < i < n:

X
x2"

p̂ (x) fi (x) =
X
x2T

~p (x) fi (x) =
1

jT j

X
x2T

fi (x) (1)

where jT j is the number of examples in our training set.
The set of constraints will not, in general, specify a unique
probability distribution. Rather, there will be a set of distri-
butions that satisfy these constraints, from which we must
choose one. We will choose the distribution that has maxi-
mum entropy, where entropy of p̂ is de�ned by

H (p̂) = �
X
x2"

p̂ (x) log p̂ (x) (2)

This can also be viewed as the information content of the
distribution, and thus is a measurement of what we do not
know about the world. The smaller H(p) is, the more we
know. Maximizing this function is then comparable to as-
suming as little as possible about the world.

It can be shown that there is always a unique, maximum en-
tropy distribution that satis�es the constraints imposed by
our training set and choice of features, and that this proba-
bility distribution will always have the exponential form:

p̂ (x) = �

nY
i=1

�
fi(x)
i (3)

where � is simply a normalization constant to guarantee thatP
x2" p̂ (x) = 1 [15]. Each �i can be viewed as the weight of

the feature fi in the model. A very large �i corresponds to a
more frequent feature, whereas a very small �i corresponds
to a feature that occurs rarely. Note that both can be use-
ful information, although some models focus exclusively on
frequent features because of the size of the feature space.
There is a duality to the Maximum Entropy approach that
is appealing. It can be shown that �nding the probabil-
ity distribution that satis�es the chosen feature constraints
while maximizing entropy is equivalent to �nding the ex-
ponential distribution that maximizes the likelihood of the
training data [15]. Thus, while our ME model is the most
uniform distribution that will satisfy our constraints, it is
also the most likely exponential distribution with respect to
our data.

1.2 Estimating Parameters

Since the Maximum Entropy distribution must have the ex-
ponential form detailed above, once features have been se-
lected the task of modeling is reduced to �nding the param-
eter (�) values that satisfy the constraints generated by the
selected features and the training data. As a rule, parame-
ter values cannot be solved for directly and must instead be
estimated by an iterative, hill-climbing method. Two such
methods are available: Generalized Iterative Scaling [7] and
Improved Iterative Scaling [13].
Both GIS and IIS begin with all �i initialized to one, unless
a previous solution for a similar set of features is available
as a starting point. Both algorithms then update the �i's
iteratively, each iteration resulting in a new probability dis-
tribution that is closer to satisfying the constraints imposed
by the expectation values of the selected features. GIS re-
quires that for any event the sum of features will be a con-
stant. This requirement can be met for any set of features
by introducing a dummy feature such that:

Fdummy (x) = C �

nX
i=1

Fi (x) (4)

The constant C is chosen to be equal to the maximum value
for the sum of features 1 though n. IIS di�ers from GIS in
that it does not require model features to sum to a constant,
and the IIS algorithm often runs slightly faster than GIS.
Since IIS and GIS result in equivalent models, we chose to
use GIS for our parameter estimation because it is slightly
easier to code.

2. METHODS

2.1 Model
Our goal is to model the probability distribution p (a j h),
the probability that a will be the next amino acid, given the
history h of amino acids that have already occurred. This
probability will be calculated from the probability of the
next amino acid and the history p (a; h), normalized over all
possible selections for the next amino acid.

p̂ (a j h) =
p̂ (a; h)P
x p̂ (x; h)

(5)

In practice, the event space (a; h) is too large to practically
calculate the expectation value of a feature in p̂, so we esti-
mate it using the training set [18].
A standard method used to measure the success of a proba-
bility model p̂ in modeling a probability distribution p is the
cross-entropy of the two distributions. The cross-entropy of
two probability distributions for sequences S with tokens a
taken from a language L is:

H (p; p̂) = lim
n!1

1

n

X
S2L;jSj=n

p (a1; : : : ; an) log p̂ (a1; : : : ; an)

(6)

This cross-entropy gives an upper-bound for the actual en-
tropy of the \real" distribution. If we compare the cross-
entropy of two di�erent models (that is, comparing H (p; p̂1)
to H (p; p̂2)), the more accurate model will have a lower
cross-entropy. By making certain simplifying assumptions
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about the modeled probability distribution [10], speci�cally
that it is ergodic and stationary, we can assume that a long
enough sequence from p will be representative of its distri-
bution, rather than summing over all possible sequences.
Making this assumption, we can write:

H (p; p̂) = lim
n!1

�
1

n
log p̂ (a1; : : : ; an) �

1

jT j
log p̂

�
a1; : : : ; ajT j

�
(7)

where T is our test set of amino acid sequences.

We use the perplexity (actually cross-perplexity) of the mod-
els created with test data as our measure of success. Cross-
Perplexity, which is equal to two to the cross-entropy, is an
intuitively pleasing measure of how well we have modeled
a probability distribution. The upper-bound perplexity per
amino acid of this system is 20, corresponding to the 20 pos-
sible amino acids. Thus, if the cross-entropy of our model
with a set of test data is 19, we have increased our knowledge
of amino acid sequences such that we could encode protein
sequences with 19 symbols instead of 20 and still use one
symbol (on average) to encode each amino acid.

2.2 Features
Models were created with various sets of features, drawing
upon both short distance (unigrams and bigrams) and long
distance (triggers and caches) information. Below, each of
the feature sets is described and then expressed as a set
of functions. Subscripts in our feature functions serve to
identify the type of function (u for unigram), and super-
scripts provide information speci�c to that type of feature
(the type of unigram). For example, fcu (a; h) represents the
feature function corresponding to the unigram frequency of
the amino acid C (Cysteine).

Conventional Unigrams and Bigrams The frequency of
amino acid x is:

f
x
u (a; h) =

�
1 if a = x

0 otherwise
(8)

There are 20 unigram features, one for each amino
acid.

The frequency of amino acid pair xy is:

f
x;y
b (a; h) =

�
1 if a = y and h ends in x

0 otherwise
(9)

There are four hundred possible bigram features.

Unigram Cache The observed frequency of the next amino
acid in the history.

fuc (a; h) =
N (a; h)

jhj
(10)

This is a single feature which is not speci�c to a given
amino acid. N(a; h) refers to the number of occurrence
of a in h.

Self-Triggers If the next amino acid is x, the frequency
of x in the history, and zero otherwise. There are 20
possible self-triggers, one for each amino acid.

f
x
t (a; h) =

�
N(x;h)
jhj

if a = x

0 otherwise
(11)

There are 20 possible self-triggers, one for each amino
acid. Note that these triggers are di�erent from the bi-
nary valued triggers used in some natural language ap-
plications [18], in which a single occurrence of a word
\triggers" its occurrence later in the document. Be-
cause there are only 20 amino acids, we are more likely
to have a useful metric if we consider the number of
times an amino acid has occurred in the history rather
than whether it has occurred at all.

Class-Based Self-Triggers If the next amino acid belongs
to class x, the frequency of class x in the history, and
zero otherwise.

f
x
ct (a; h) =

�
N(x;h)

jhj
if a 2 x

0 otherwise
(12)

Amino acids are partitioned into one of �ve possi-
ble classes: Non-polar aliphatic (AVLIP), aromatic
(FYW), polar uncharged (STCMNQ), positively charged
(KRH), and negatively charged (DE).

2.3 Training and Test Sets
Our training and test sets were derived from a set of genes
from Burset et al. [5] that have become a standard bench-
mark for gene-�nding software. Their set included 571 pro-
teins, some of which were highly homologous. All 571 pro-
teins were compared to the other proteins in the set using
BLAST [1], after which the set was screened so that no two
proteins with any signi�cant homology would be included
together in the screened set. The resulting set of 204 non-
homologous proteins was randomly split into a training set
of 102 proteins with 30,438 amino acids and a test set of 102
proteins with 29,158 amino acids.

3. RESULTS AND DISCUSSION
Perplexity measures for models trained with various combi-
nations of features are summarized in Figure 1. Note that
the addition of the 400 possible bigram features to the uni-
gram model actually increases test set perplexity because of
over-�tting. In contrast to natural languages, where bigrams
are very useful information sources, the previous amino acid
tells us little or nothing about what amino acid will follow it.
While knowledge of the previous amino acid is uninforma-
tive, there is signi�cant information available in the entire
amino acid sequence, as witnessed by the 30% decrease in
perplexity for our best model over the perplexity decrease
of the unigram model alone.

As we might expect, individual self-triggers for each amino
acid performed better than the Unigram cache, which at-
tempts to encode the same information in one parameter
instead of twenty. By examining the calculated parameters
for the amino acid self-triggers, we can see that the presence
of some amino acids in the history carry more information
than others. For example, the Cysteine self-trigger had the
largest parameter associated with it, which is in keeping with
the biological literature that certain proteins are \Cysteine
rich".
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Figure 1: Training and test set perplexity for ME Models using the following feature sets: Unigram, Unigram and Bigram,
Unigram and Unigram Cache, Unigram and Self-Triggers, Unigram and Class-Based Self-Triggers, and Unigram and All
Triggers (Normal and Class-Based).

Our best model resulted from using both self-triggers and
class-based self-triggers combined with unigrams, which per-
formed slightly better on the test set than the unigram and
self-triggers model. Thus, the knowledge of category fre-
quency, for example that many previous amino acids have
been positively charged, carries information not available in
the frequency of each amino acid alone.

To test if our model might improve existing gene prediction
techniques, Genscan [4] was run on the Burset benchmark
set of genes. We produced a set of 169 predicted exons
with low Genscan scores (less than 0.5), and grouped them
into categories of correct if the exon was predicted exactly
correct, and incorrect if the predicted exon did not overlap
with any known coding region. We did not consider partially
correct exons. Scores were then assigned to each exon based
on the log of the ratio of the likelihood of the sequence given
our best model to that of a baseline model, which we chose
to be the unigram model.

Score = log

�
P (protein j BestModel)

P (protein j UnigramModel)

�
(13)

A logistic regression was performed using our score and
the Genscan assigned probability to predict the category
of each exon (correct or incorrect). Both the Genscan as-
signed probability and our score were statistically signi�cant
predictors of exon correctness, with null hypothesis proba-
bilities of 0.0016 for Genscan's probability and 0.019 for our
score. We therefore conclude that our model contains in-
formation useful for exon prediction not already present in
Genscan's probability assignment.

4. CONCLUSION
We have shown that the use of \long distance" features can
improve a statistical model of amino acid sequences. Even
better results may be possible by including other features
that are calculated across the history of the protein, for ex-
ample the net charge of the encoded protein. It might also be
possible to improve our model by weighting distance features
to rely more heavily on the recent history, since many pro-
teins have multiple \domains" with di�erent functional roles
and thus di�erent compositions. Improvement may also be
possible by smoothing either the entire model or features of
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the model, as has been attempted in some natural language
ME models. [6]
Our results strongly suggest that this type of model could
improve existing gene �nding programs. A logical next step
would be to build a nucleotide coding model that accounts
both for codon preference and for the long-range patterns ex-
pected of the encoded protein. MaximumEntropy is amenable
to this kind of joint model, since there is no problem with
dependent feature sets such as amino acid frequency and
hexamer nucleotide frequency.

Finally, there are a host of open biological sequence analysis
problems that may be amenable to ME modeling. Promoter
analysis is made di�cult by the need to use contextual clues
to identify functional transcriptional elements from random
consensus matches. This problem is not unlike that of us-
ing contextual clues for language translation, to which ME
modeling techniques have already been applied. Similarly,
protein secondary structure prediction is roughly analogous
to part-of-speech tagging, for which ME models have also
been built. Because of the similarity of language and bio-
logical sequences, it may behoove computational biologists
to continue borrowing the techniques that prove successful
for natural language.
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