View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by ScholarlyCommons@Penn

University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

March 2004

Sound Code Generation from Communicating

Hybrid Models

Yerang Hur

University of Pennsylvania

Jesung Kim

University of Pennsylvania

Insup Lee

University of Pennsylvania, lee@cis.upenn.edu

Jin-Young Choi

Korea University

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation

Yerang Hur, Jesung Kim, Insup Lee, and Jin-Young Choi, "Sound Code Generation from Communicating Hybrid Models", . March
2004.

Postprint version. Published in Lecture Notes in Computer Science, Volume 2993, Hybrid Systems: Computation and Control: 7th International
Workshop, 2004 (HSCC 2004), pages 432-447.
Publisher URL: http://dx.doi.org/10.1007/b96398

This paper is posted at ScholarlyCommons. http://repositoryupenn.edu/cis_papers/95

For more information, please contact libraryrepository@pobox.upenn.edu.

https://core.ac.uk/display/76382817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/95
mailto:libraryrepository@pobox.upenn.edu

Sound Code Generation from Communicating Hybrid Models

Abstract

Precise translation from hybrid models to code is difficult because models are defined in the continuous-time
domain whereas code executes on digital computers in a discrete fashion. Traditional approach is to associate
the model with a sampling rate before code generation, and rely on an approximate algorithm that computes
the next state numerically. Depending on the choice of the sampling rate and the algorithm, the behavior of
the code may vary significantly due to numerical errors, but the discrepancy has been addressed informally,
making the analysis results at the model level less meaningful for implementation. Formal relationship
between the model and the code becomes even more unclear when components of the code execute
concurrently. In this paper, we propose a formal framework that addresses the issue of soundness of
concurrent programs generated from communicating hybrid models. The motivation is that concurrent
programs executing in different rates may cause an erroneous transition when transition conditions are
evaluated using values from different time instances. The essence of our technique is to refine the model by
tightening transition conditions according to the maximum errors due to different sampling rates. We claim
that the generated code has a trace of discrete transitions that is equivalent to one of the traces observable
from the model, and that the values of variables are bounded. Our framework demonstrates how hybrid
models defined in the continuous time domain are translated into discretized models with or without
consideration of errors due to asynchronous sampling, and finally into executable code with real-time
scheduling,

Keywords
Communicating hybrid systems, automatic code generation, soundness

Comments

Postprint version. Published in Lecture Notes in Computer Science, Volume 2993, Hybrid Systems:
Computation and Control: 7th International Workshop, 2004 (HSCC 2004), pages 432-447.
Publisher URL: http://dx.doi.org/10.1007/b96398

This conference paper is available at ScholarlyCommons: http://repositoryupenn.edu/cis_papers/95

http://repository.upenn.edu/cis_papers/95?utm_source=repository.upenn.edu%2Fcis_papers%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages

Sound Code Generation from Communicating
Hybrid Models

Yerang Hur, Jesung Kim, and Insup Lee
Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA, USA

Jin-Young Choi
Department of Computer Science and Engineering
Korea University, Seoul, Korea

Abstract. Precise translation from hybrid models to code is difficult
because models are defined in the continuous-time domain whereas code
executes on digital computers in a discrete fashion. Traditional approach
is to associate the model with a sampling rate before code generation, and
rely on an approximate algorithm that computes the next state numer-
ically. Depending on the choice of the sampling rate and the algorithm,
the behavior of the code may vary significantly due to numerical errors,
but the discrepancy has been addressed informally, making the analysis
results at the model level less meaningful for implementation. Formal
relationship between the model and the code becomes even more un-
clear when components of the code execute concurrently. In this paper,
we propose a formal framework that addresses the issue of soundness of
concurrent programs generated from communicating hybrid models. The
motivation is that concurrent programs executing in different rates may
cause an erroneous transition when transition conditions are evaluated
using values from different time instances. The essence of our technique
is to refine the model by tightening transition conditions according to
the maximum errors due to different sampling rates. We claim that the
generated code has a trace of discrete transitions that is equivalent to one
of the traces observable from the model, and that the values of variables
are bounded. Our framework demonstrates how hybrid models defined in
the continuous time domain are translated into discretized models with
or without consideration of errors due to asynchronous sampling, and
finally into executable code with real-time scheduling.

1 Introduction

A model-based approach is an emerging paradigm for developing robust soft-
ware, and has been the focus of increasing research effort. Models are used during
the design phase to ensure systems under consideration have desired properties.
Benefits of high-level modeling can be significantly improved if the code is gen-
erated automatically from the model. However, precise translation from models
to code is difficult especially when the model is based on hybrid systems. Hy-
brid models combine continuous state change specified by differential equations
with discrete state transition specified by the finite state machine. Formally, a
hybrid model consists of a vector x = (1,2, .., Z,) of (continuously updated)
variables, a finite set of discrete states P that associates x with a differential

equation & = f,(x) for each p € P, a set of transitions E C P x P, a guard set
G((p,p")) € R™ for each (p,p') € E specifying the condition that the transition
(p,p') can be taken, and an invariant set I(p) C R™ for each p € P specifying
the condition that z follows ¢ = f,(z). Hypothetically, precise implementation
of a hybrid model would be possible if there exists a program that computes
valuation z(t) of z at time ¢ € R according to the dynamics & = f,(z) defined
at the current discrete state p, and decides the next state p' according to the in-
variant set I(p) and the guard set G((p,p')), all in infinitesimal time. Of course,
such a program is not feasible in digital computers, since it requires indefinite
computation power and precision.

A traditional approach to automatic code generation from hybrid models is
to associate the model with a sampling rate, and generate code that computes
the state of the model at the given rate approximately by using a numerical
method (e.g., Runge-Kutta method). Depending on the choice of the sampling
rate and the numerical method, the behavior of the synthesized code may vary
significantly. However, reasoning on the discrepancy between the model and the
code is oftentimes left to the designer’s intuition and/or ad hoc experiments. In
the case of the code generated from a model consisting of multiple components
with different sampling rates, the issue of formal relationship between the model
and the code becomes even more unclear. Thus, analysis results obtained at the
model level is less useful to the generated code. The desire to bridge this gap
motivates our research.

Formally, we can define a discrete-time abstraction of a given hybrid model A

over a discrete time domain T = {#;|t; € R,i =0,1,2,....,t; < t;11}, denoted by
A/T, as an extended finite state machine with an equivalent set of variables z7
and discrete states Pr, and zr(t;11) = zr(t f bit1 fp(zr)dt. AJT abstracts

A, that is, z7(t) = z(t) for all t € T, prov1ded that A satisfies z(t') € I(p;)
for all t' € [t;,ti+1] for all i > 0. An implementation prog(A/T) of A/T, then,
is a program that computes z(t l+1) based on a routine prog(f,) that solves the
equation z(tjy 1) = z(t f b1 £ (2)dt numerically, and determines the next
discrete state p', on or before tlme t,+1 prog(A/T) is a precise implementation
of A/T if (1) a precise algorithm prog(f,) to solve ftt:“ [p(z) dt is provided, and
(2) execution of the algorithm and decision of the next discrete state can be done
within the time constraint (¢;1 —t;). The latter requirement is a classic real-time
computing problem. In a special case where t;,1 —t; = h for all ¢ > 0, prog(A/T)
can easily be mapped to a periodic task of the RTOS with a period h. On the
other hand, the former requirement can be satisfied only for a limited class of
differential equations (e.g., zero-order differential equations) and a sampling rate
carefully selected to avoid floating-point errors. The effect of numerical errors
in hybrid models can be significant since discrete transitions based on erroneous
values may lead to entirely different trajectory.

When the model consists of multiple components and the code is gener-
ated such that components are mapped to concurrent tasks, in addition to the
aforementioned requirements, tasks need to be synchronized with each other.
That is, given a composite hybrid model A = A;||Az]|....||An, prog(A/T)

would consist of concurrent programs prog(A4;/T), prog(A2/T),...,prog(A,/T)
such that each program prog(A4;/T') executes (1) a numerical algorithm to solve
A, (tiv1) = za,(8:) + fti"“ foa, (4,) dt where x4, is a vector of variables whose
dynamics is constrained by A;, (2) wait for A, for all m # [to finish compu-
tation of z4,, (t;41), and (3) decides the next discrete state. This requirement
may be costly if the programs are executed in a distributed system where com-
munication is an expensive operation. Moreover, formal relationship between
the model and the code is not obvious when the concurrent tasks are execut-
ing at different rates. Modern modeling tools such as SIMULINK, for example,
support code generation with different sampling rates (assuming they are har-
monic) for different components of a single model to improve the CPU utiliza-
tion, but there have been no formalism on the semantic relationship between
the implementation and the model. In general, a set of concurrent programs
prog(A; /T1), prog(As/Ts), . . ., prog(A,/Ty,) for A = A||As]|....||An, does not
implement A/T precisely for any T if T; # T, for some m,l. The reason is
that, to evaluate a guard set G(p,p’) of A4; at time ¢, valuation z,,(t) should
be available for all 1 < m < n, which is true only when T} =T = ... = T,,.
Evaluation of guard sets based on valuation from different time instances may
lead to an erroneous discrete transition that is not allowed in the hybrid model.
For example, suppose a hybrid model consisting of two variables x1,z2 and the
code that is generated such that the two variables are updated at different rates.
At time ¢, the generated code may have valuation x1(t) of z; at time ¢, but, for
x2, only valuation z2(t') at time ¢’ < ¢t may be available. Suppose again, that
(z1(t),z2(t")) € G((p,p")) for some p' where p is the discrete state at time ¢. In
this case, the generated code may take the transition (p, p') since it appears to be
enabled. However, if the hybrid model indicates z(t) = (z1(t), z2(t)) ¢ G((p,p')),
the transition should not be taken at time ¢, implying the generated code is not
consistent to the model. We call this type of errors synchronization errors.

In this paper, we propose a framework aiming at sound code generation
from Communicating hybrid models that prevents synchronization errors. Our
approach is based on a model refinement technique that we call instrumentation.
Instrumentation replaces the guard set and the invariant set with their subsets to
exclude valuations that may potentially lead to an erroneous discrete transition
due to different valuation times of variables. Note that a model obtained by
instrumentation is subsumed by the original hybrid model, that is, every possible
behavior of the instrumented model is also a valid behavior of the original hybrid
model. This comes from the semantics of hybrid automata where transitions may
be taken when the associated enabling condition (i.e., guard) is true (that is, the
transition condition is an enabler, rather than a trigger). Therefore, the behavior
observed from the code generated from the instrumented model is guaranteed
to belong to (a discrete-time abstraction of) the original hybrid model.

Figure 1 shows overall flow of our framework. We start with Communicat-
ing Hybrid Automata defined in the continuous time domain. Associating a
discrete time domain to Communicating Hybrid Automata defines Discretized
Communicating Hybrid Automata. States of Discretized Communicating Hybrid

Automata are defined only at the time instances belonging to the given time do-
main. Discretized Communicating Hybrid Automata generate exact snapshots of
Communicating Hybrid Automata in a discrete fashion, under a condition that
will be explained in Section 3. Instrumented Communicating Hybrid Automata
allows heterogeneous discrete time domains between components. States of In-
strumented Communicating Hybrid Automata are defined at the time instances
belonging to the union of all the discrete time domains of the components. We
claim that, for every trace of discrete transitions of Instrumented Communicat-
ing Hybrid Automata, there exists an equivalent trace of discrete transitions in
Communicating Hybrid Automata. We also claim that the deviation of valuation
at every discrete transition is bounded.

Communicating Hybrid
Automata
I Discrete
e domain Continuous time
Discretized Communicating e
Hybrid Automata I T
Error bound I discrete time domain Discrete synchronous time

Instrumented S
Communicating Hybrid - g
Automata I e I

EAPE ST

Realtime constraints _ Discrete asynchranous fime

Fig. 1. Design flow.

The remainder of the paper is organized as follows. The next section gives
a formal description of Communicating Hybrid Automata and the semantics.
In the next, we present Discretized Communicating Hybrid Automata and their
relationship with Communicating Hybrid Automata. The following is a detailed
description of Instrumented Communicating Hybrid Automata with a motiva-
tional example. Additional issues that need to be considered when the instru-
mented model is converted into code are described in the next section. Finally,
concluding remarks are given in the last section.

2 Communicating Hybrid Automata

This section defines Communicating Hybrid Automaton (CHA) as an extension
of the timed automaton [1] to include shared variable-based communication. To
simplify discussion, we limit our attention to Communicating Hybrid Automata
with independent dynamics and guard/invariant sets specified by intervals.

Definition 1. (CHA). A Communicating Hybrid Automaton, CHA, is a tuple
A= (P,VC,SV,po,F, E, I,G,R,INIT), where

— P is a finite set of distinct positions,

— VC is a finite set of continuous real variables, where |VC| = n,

— SV CVC is a non-empty finite set of shared variables which are partitioned
into input SV, and output SV |ous,

— po € P is the initial position,

F: P — F assigns to p € P a function F, € F : R* — R", which defines
ordinary differential equations satisfying the assumptions for existence and
uniqueness of solutions for all variables in VC — SV |;p,

— E C P x P is a finite set of discrete transitions,

— I: P — (2®)™ assigns the invariant interval to p € P such that I(p) € (2&)"
and, for all x € VC, we denote the invariant interval of © at the position p
by L (p),

— G: E = (28" assigns to (p1,p2) € E the guard interval such that for all
z € VC, Gy((p1,p2)) N I (p1) # 0, where G, ((p1,p2)) denotes the guard
interval of x,

— R: ExVC — R assigns a reset value R((p1,p2),z) € Iy(p2) to a pair
(p1,p2) € E and z € VC — SV |, and

— INIT: VC — R assigns to a variable the initial value satisfying INIT (x) €

L, (po), for all x € VC — SV|ip,. O

In the rest of the paper, we denote P of A by P4. Likewise, we use VCjy, p64,
Fa,Ex, I4,Ga, Ra, and INIT4 to denote VC, po, F, E, I, G, R, and INIT
of A, respectively. For all x € VCy, the invariant and the guard intervals of z
are denoted by I4 , and G4 4, respectively. When it is clear, we omit A.

Definition 2. (State of a CHA). Given a CHA A, a (time-stamped) state s =
(p,u,t) is an element of P4 x R™ x R satisfying the following condition: at time
t, for all x € VC, u(z) € I,(p), where u(x) is the valuation of x. m|

A state (p,u,t) means that at time ¢ the system is at the position p with the
valuation u. When a state s; = (p;, us, t;) is given, we use 8;|p, Silu; Sil¢ to denote
Di» Ui, t;, respectively. In addition, we use u € Ia(p) if u(z) € I4,(p) for all
z € VC, and u € Ga((p1,p2)) if u(z) € Ga((p1,p2)) for all z € VC.

Definition 3. (Discrete transition step of a CHA). Given a CHA A, a pair of
states (s;,;) is called a discrete transition step if the following conditions are
satisfied:

— sile = sjlt,

— (ilp,8jlp) € Ea,

— Silu € Ga((8ilp; 85lp)), and

— Sjlu(z) = Ra((Silps Sjlp), @), for all z € VC — SV |in. O

The value of input variable is defined later in Definition 7. Note that a discrete
transition is of the form (p.,,pn), where p,,, p, € P, i.e., a directed edge from
the node py, to the node p,, whereas a discrete transition step is (s;, s;), where
s; and s; are states defined in Definition 2.

Definition 4. (Continuous transition step of a CHA). Given a CHA A, a pair
of states (sq,58;) is called a continuous transition step if the following conditions
are satisfied:

— sile < Sjlt;

= Silp = 8jlp,

— for all t € [s4]¢, 8|¢], 2(t) € Iz (silp), for all z € VC, and
— for all t € [si]s,5;]¢], dx(t)/dt is the same as the dynamics defined by Fy, ,
for allz € VC — SV ;. O

The value of input variable is defined later in Definition 8. The continuous transi-
tion step corresponds to the continuous flow at the position p with the dynamics
specified by F}, from time ¢; to time ¢;.
Definition 5. (System of Communicating Hybrid Automata). Given a finite set
of CHAs {(Ao, SV0),...,(Ai,SV;),...,(An,SV,)}, a System of Communicat-
ing Hybrid Automata denoted by SCHA C is a tuple ((Ag, SVo),-- -, (4;, SV;),
-« (Ap,SV,)), such that

- UzSVHzn g Uisv;'lout and

- S‘/iloutnsvﬂout:@: f07‘ allOSZ#JSn o
We will denote C' as (Ao, A1,...,An,SV), where SV = J, SVi|out. Note that
the shared variables in SV are write-exclusive.

Definition 6. (State of an SCHA). Given an SCHA C = (Ao, A1, ..., Apn, SV),
a state s is defined as ((pA°,u?0), ..., (pA,ut"),t), where (p?i,u?i t) is a state
of CHA A at time t satisfying that u” (x) = u?i (z) if x € SVi|in N SVjlowt- O
Note that s
S|A;p) S
Definition 7. (Discrete transition step of an SCHA). Given an SCHA C, a
pair of states (s;, s;) s called a discrete transition step if there exists Ap, such

that (si|a,,,sjla,,) is a discrete transition step in A,,, and for all Ay where
(silAx, 8514,) is not a discrete transition step in Ay, if the following is satisfied:

4, denotes (p?i,u?i,t), and that s|; denotes the time . We will use
A;us and 8|4, to denote p4i, udi, and t, respectively.

8i|Ak7t = SJ"Ak,t’ 8i|Ak7P = SJ'|Ak,P7 and

Slet,u(w) ifz € SVklinmSVllout for some A,

Sj|ag,u(T) otherwise. H

53 lanle) = {
Definition 8. (Continuous transition step of an SCHA). Given an SCHA C,
a pair of states (s;,s;) is called a continuous transition step if the following is
satisfied:

— sile < 8jle,
— (8il4x>8j]4.) s a continuous transition step for all k € {0,1,...,n}, and
— 8jla,,u(®) = sj]a,u(®), for all x € SVi|in N SVi|out.
Definition 9. (Run of an SCHA). A run of an SCHA C = (Ap, A1,..., Ay, SV)
is a (possibly infinite) sequence of states (so,S1, - - -, 8i;Siy1, ---), where

— 50 = (9", INITa,), (9", INIT4,), ..., (g, INIT4,),0), and
— (s4,8i41) 1s either a discrete transition step or a continuous transition step
for all i > 0.

A run is called an alternating run if discrete transition steps and continuous
transition steps occurs alternately, i.e., if (8;,8i+1) is a continuous transition
step, then (s;11, Si+2) s a discrete transition step, and vice versa. O

6

3 Discretized Communicating Hybrid Automata

We now give a formal definition of Discretized Communicating Hybrid Automata
as the first step towards the generated code. A Discretized Communicating Hy-
brid Automaton is a discrete-time abstraction of a given Communicating Hybrid
Automaton over a discrete time domain.

Definition 10. (DCHA) A Discretized Communicating Hybrid Automaton, DCHA,
is a tuple H = (A, T), where

— A is a Communicating Hybrid Automaton,
— T ={to,t1,t2,...} is a discrete time domain, where t; € R and t;11 > t; for
all i. O

Definition 11. (State of DCHA). Given a DCHA H, a (time-stamped) state
s = (p,u,t) is an element of P4 x R™ X R satisfying the following condition:
t €T, and s is a state of A. O

Note that states of DCHA are defined only at time instances belonging to
the given discrete time domain 7. The following defines a continuous transition
step of DCHA over T'. A discrete transition step is defined similarly.

Definition 12. (Continuous transition step of DCHA). Given a DCHA H, a
pair of states (s;,s;) is called a unit continuous transition step if the following
conditions are satisfied:

— Silt = tm and sj|¢ = tmq1 for some tp, tmy1 €T,
- Si|P = Sj|1):

= Silu, 8jlu € La(silp), and

for all z € VC — SV|n, SJ|u(33) = 8ifu(+ftm+1F

When ((si, Si+1), (Si+1,8i4+2),---,(8j=1,5;)) is a sequence of unit continuous
transition step, we say that (s;,s;) is a continuous transition step. When it
is clear, a unit continuous transition step is also called o continuous transition
step. O

Note that a pair (s;, s;) of states of CHA is a continuous transition step of DCHA
if (s4,s;) is a continuous transition step of CHA and s;|¢ = tm, $jl¢ = tm41 for
some tp,tmy+1 € T. However, the contrary is not always true. That is, a pair
of states constituting a continuous transition step of DCHA is not necessarily
a continuous transition step of CHA. This is because that a continuous tran-
sition step of CHA requires that for all ¢t € [s;|¢, s;]¢], ©(t) € I;(si|p), whereas
a continuous transition step of DCHA only requires s;|y, S|l € I(si|p). Thus,
DCHA does not represent CHA faithfully when the dynamics changes rapidly
during a short time interval such that invariant violation may occur even if the
states at the endpoints of the interval satisfy the invariant. The following defini-
tion formalizes such a condition. (See [2, 3] for more general discussion on event
detection problems of hybrid systems.)

Definition 13. (h-insensitivity). Given o CHA A, the invariant I,(p) is said
h-insensitive if, for all x € VC — SV|ipn, x(t) € I;(p) and z(t + h) = =(t) +
ftt+h Fy(z)dt € I,(p) implies z(t +) = x(t) + ftt+5 Ey(z)dt € I (p) for all
0 € [0, h], where z(t) denotes valuation of x at time t. When all invariants in A

are h-insensitive, A is said h-insensitive. We say that SCHA C' is h-insensitive
when all CHA Ay, of C is h-insensitive. O

Now we give a definition of discretized SCHA.

Definition 14. (discretized SCHA). Given an SCHA C = (Ag, A1,...,A,, SV)
and a discrete time domain T, a discretized SCHA, denoted by DSCHA, is a
tuple (Ho, Hy, ..., H,,SV), where H; = (A;,T). O

Note that the components of DSCHA shares the same discrete time domain.
That is, we are defining a discretized system of CHA, rather than a system of
discretized CHA. This issue will become clear in Section 4 when we define SICHA
that allows heterogeneous time domains. Given that, a state of DSCHA and a
run of DSCHA can be defined similar to the case of SCHA. The following lemma
states the relation between DSCHA and SCHA.

Lemma 1. Every run of DSCHA has an equivalent run in the originating SCHA,
if SCHA is h-insensitive, where h = max(t;+1 — tm)stms tms1 € T O

4 Instrumented Communicating Hybrid Automata

In this section, we present the effect of accumulated numerical errors and syn-
chronization errors in code generated from an SCHA. To formalize the effect
of accumulated numerical errors and synchronization errors of an SCHA, we
propose the formalism called a System of Instrumented Communicating Hybrid
Automata (SICHA). We show that a run of the SICHA is always included in
that of the SCHA. Thus, the SICHA provides correct execution results with
regard to runs of the original model. The essence of our idea is to reflect the
effect of the errors to the invariants and the guards of each position so that the
resulting instrumented hybrid automata will produce a sound trace on discrete
transition steps. This paper focuses on instrumenting an SCHA considering the
effect of asynchrony due to discretization of a model. For the details of the effect
of accumulated numerical errors, refer to the the paper [4].

Motivating example. Figure 2 describes the effect of a synchronization error.
Let a shared variable y € SV|2 NSV |21, be read by Ay and written by A;, where
the integration stepsizes of Ag and A; are 0.001 and 0.002, respectively (namely,
ha, = 0.001 and h4, = 0.002). In this case, y is updated by 4; at time 0, 0.002,
0.004, ..., and read by Ag at time 0, 0.001, 0.002, 0.003, 0.004, In Figure 2,
Ag needs to decide whether or not it will take a discrete transition step at time
0.001x(2n + 1) with a computation result using the value of y produced at time
0.001x2n, where n is a non-negative integer. For example, at time 0.003 A will
evaluate the transition condition with the value of y produced at time 0.002. We
need to decide which approximated value of y Ag will use in evaluating the state

of Ag. It relies on the effect of discrepancy between the correct value and the
approximated value different from the correct one due to numerical errors and
synchronization errors.

t:0 1:0.001 t:0.002 t:0.003 t:0.004

Ao rea? y ready re?d y ready h,.,= 0.001
Al ; : ; : ha, = 0.002
write y write y
t:0 :0.002 t:0.004

Fig. 2. The Effect of Synchronization Errors

Now consider an example of an SCHA. Figure 3 illustrates SCHA foo com-
posed of Communicating Hybrid Automata Ag and A;.

X >2.040p00,x A
y >= 50.0+0 poo, y

Fig. 3. SCHA foo Fig. 4. Instrumented foo

Table 1 shows that an unexpected trace occurs during simulation of an SCHA
foo even if we do not consider the effect of numerical errors. If we use the
execution stepsize 1.0-1072 and 2.0-1072 for Ay and A;, respectively, the value
of y, u(y) read by Ay at time 2.000 becomes 50.000000. At time 2.001, Ay uses
the value produced at time 2.000, thus discrete transition from pgog to po1 is
enabled. In foo, however, the transition (pgg, po1) must not occur, as the value
of y is always less than 50.000000, where z € (2.000, c0).

t Yy Ysimulation

1.998(49.999980| 49.999980
1.999(49.999995| 49.999980
2.000{50.000000| 50.000000
2.001]49.999995| 50.000000

Table 1. The Effect of Synchronization Errors of SCHA foo

We denote the bound of that discrepancy at position p by 7,., and will
compute 7,, 4 statically using Equation (1). Note that we allow only exclusive-
write/multiple-read shared variables.

Given an SCHA C = ((4o,SW),---, (A, SV,)) and a shared variable y €
SV;|in N SVi|out, the bound of discrepancy due to synchronization error denoted
by vp;,y at position p; is computed as follows:

|f(t7 y) . h(pk)|maw %f h(pk) > h(pj)7
Yoz = § [f(&9) - h(®5)|mas if h(p) < h(p;),
where f(t,y) is the derivative of y at time ¢, py € Py,, and p; € Py;.

1)
To formalize the effect of that asynchronous integration effect in code execu-
tion, we propose the formalism called System of Instrumented Communicating
Hybrid Automata (SICHA). First, we define ICHA as a correspondent of CHA
followed by definition of SICHA and then, we show that the alternating run of
the SICHA is always included in that of the SCHA. Thus, the SICHA provides
sound execution results with regard to the alternating run of the original model.

In the rest of the paper, given an interval b, we use [(b) and r(b) to denote
the lower and the upper bounds of b, respectively. An interval b can be open on
either or both sides; so, b can be (I(b),r(b)), (1(b),r(b)], [L(b),r (b)), or [I(b),r(D)].
For arithmetic operations with /(b) and r(b), we assume that co =z = oo for
any real x.

Definition 15. (ICHA). Given a CHA A, an Instrumented Communicating Hy-
brid Automaton of A, called ICHA, is defined as a tuple B = (A,N,h,(,7),
where

— N: P4 — PROG assigns to p € P4 a numerical method program with a

stepsize h(p),

h: P4 — RY assigns to p € Pa a stepsize h(p),

— B: Pa4xVC — R assigns tox € VC at each p € P4, a mazimum accumulated

numerical error to calculate x denoted by Bp .,

v: Py x SV|in — R assigns to x € SV|;p, at each p € P4, a mazimum

difference of the value of x from time t to time t + h(p) denoted by vp o,

— for each p € P4 and the invariant interval I z(p), (I, (p)) = 1(Ia,.(p)) +
op.z, T(IB,z (D)) = r(Ta,z(P)) — ap,z, for all x € VCa, and

— for each e € E4 and the guard interval Ga z(e), (GBz(€)) = I(Ga(e)) +
0p.z, (GB,z(€) =r(Gag(e)) —apg, for allx € VCy,

where

= Bp,z if variable © & SV |in at position p
P Bp.z + Yp,z otherwise.

O

We will use a or a, instead of ap, when clear. The definition of state and
discrete transition step for ICHA are the same as the definitions in Section 2.

Definition 16. (Continuous transition step of an ICHA). Given an ICHA B,
a pair of states (s;,s;) is called a unit continuous transition step if the following
conditions are satisfied:

10

— 85|t = silt + h(silp),

- 8i|P = sj'P:

— foralli,j, Si|u78j|u € I4(silp), and

— for all x € VC — SVi|in, Sjlu(z) is computed with N(s;|p), h(sj|p), and
Silu(z). O

The value of input variable is defined later in Definition 19 and Definition 20.

Definition 17. (System of Instrumented Communicating Hybrid Automata,).
Let C = (Ao, A1, ..., Ap,SV) be an SCHA. A System of ICHA (SICHA) D
of an SCHA C is defined by a tuple (Bo, Bu,...,By,SV) where B; is an ICHA
of A;. O

Definition 18. (State of an SICHA). Given an SICHA D = (By, By, ..., B,,SV)
of SCHA C, a state s at time t is defined as ((pP°,uPo,tPo), (pBr, uBr,tP1),
ooy (PP, uBr tBn), letting sy, s|B;, s Bi,u, ond 8|, ¢ be t, (pPi,uPi tPi),

pBi, uBi, and tB, respectively, where

Bi,ps $

— for every i, s|B; is a state of ICHA B;,
— for every i, s|B; + < s|t,
— for some i, s|B;+ = $|t,
— for every i, st — s|B;,t < h(s|B;p), and
— if £ € SVa,|in N SVa;lous and s|B; s < s

Bt then 8|, () = s|B; «().

O

Definition 19. (Discrete transition step of an SICHA). Given an SICHA D, a
pair of states (s;, s;) is called a discrete transition step at time t, if the followings
are satisfied:

— 8i|By,t = Sj|Byn,t for every ICHA By, in D,
— there exists some non-empty set K C {0,1,...,n}, satisfying the following:
e if k € K then (si|B,,sj|B,) is a discrete transition step of By at time
sile, (that is, si|By,t = Sj|By,t = Silt), and

S'l (.’E): 8j|Bl,u(x) foESVk|ZnnSW|out
31Bryu R((si|By,p> 5| By,p)> T) otherwise,

o if k & K then silp,t = sj|Bots silBop = 8ilBip, ond si|By,u(7) =
$j|By,u(x) for all x € VCp,. a

Definition 20. (Continuous transition step of an SICHA). Given an SICHA D,
a pair of states (s;, s;) is called a unit continuous transition step if the following
conditions are satisfied:

— sile < 85,
— there exists o unique non-empty set K C {0,1,...,n} such that
o for k € K, (si|B,,5;j|B,) is a continuous transition step of By, such that
sjle = silByt + h(silByp), and sj|B, w(x) = silB,u(2), if © € SVi|in N
S‘/l|outa and

11

o for k & K, sil,t + h(silBy,p) > s5le and silB,c = sj|Byts ilBp =
$j|By,p, 0nd 8i| By ,u(2) = 8j|B, u(x) for all x € VCp,. m|

Definition 21. (Run of an SICHA). A run of an SICHA D = (By, B, ..., By,
SV) is a sequence of states (so,$1,---,) such that

— s0 = ((6°, INITg,), (py*, INITg,),...,(py",INITg,),0),
— if 8ilt = Six1lt, (8i,8i41) 18 a discrete transition step at time s;|;, and
— if 8ilt < Six1lt, (8i,8i41) 1S @ unit continuous transition step.

The alternating run of an SICHA is defined similarly to that of an SCHA. A
run of an SICHA D is called an alternating run of D, if the discrete transition
step and the continuous transition step occurs in D alternately. O

Let A be an HA and B be its instrumented correspondent. In this paper, we
assume that A is hp-insensitive, where hg = hp(p)maz, P € Pp. Then, given
an HA A its IHA B always produces safe alternating runs. The claim is stated
formally in Theorem 1 and its proof is given in [4]. Also, the proofs of Lemma 2
and Lemma 3 are presented in [5].

Theorem 1. Given an HA A, let B = (A,N,h,(,v) be an IHA such that A is

hp-insensitive. Then, for every alternating run (s&,...,sE,...)), there exists
an alternating run (sg',...,si,...,) of A such that
§|p = sPlps
f4|u() G [sB|u(z) — Be,82|u(x) + Bz] for allx € VC 4 — SV |in, and
e = sPle- g
l

Lemma 2. Given an SCHA C = (Ao, A1,..., A, SV), let D = (By, By,.-..,
B, SV) be its SICHA and let s and s be states in C and D, respectively,
satisfying the following conditions:

- s
— 8% 4;.p = 8P|, p for all i,0 <i <n, and

C|t =sD|t}

— 894, u(z) € [8P]B; u(T) — 0z, 8P| B, u(T) + @] for all z € VCy, and for all
i,0<i<n.
Suppose A; is hp,-insensitive and, for some state s'° of D if (sP,s'P) is a

unit continuous transition step with respect to K, then there exists a continuous
transition step (s©,s'C) for some state s'° in C and it satisfies followings:

1. 8|4, p = 8'"P|B,p for every i,
D 1D ' f 7
1 [SI Bi,u(x) — Bz, s BiaU(x) +'Bm]
2. 5% a;u(z) € {[s’D B u(T) — 0z, 8'P| B, (%) + @] otherwise,

3. 8'C|y = 8P|, and
4. 8" au(@) € Ta, (s

Lemma 3. Given an SCHA C = (Ao, A1,...,A,SV), let D = (By,By,.-..,
By, SV) be its SICHA and let s¢ and s be its states satisfying the conditions
for some K C {0,1,...,n},

'Cla; p) for all x € VCa, and for all i. |

12

— 8% a;.p = 8P|Bip, for alli, 0 <i <,

— 894, u(z) € [8P]B; u(T) — s, 8P| B, u(T) +)], for all z € SV4, and for all
i,0<i<n,

— 5%, = P[4, and

- 3D|Bj,U($) € Gz(3D|Bj,p); ifj e K.

Then, for some state s'B of B, if (s8,s'B) is a discrete transition step with
respect to K then there exists a discrete transition step (s©,s'C) with respect to
K for some state s'C in C satisfying followings:

Cla,p = 8P|, p, for all i,0<i <n,

Ol g u(z) = 8P|, u(z), if i € K and x & SVa, |in,

IclAi,u(x) € [SID|B¢',U($) - awaSIDlBi,u(m) + aw]) Zfl g K orze SVAilinl
Cly = 8P|y, and
"Casulx) € (s

Theorem 2. Let C' and D be an SCHA, (Ao, ..., Aj,...,An, SV), and its SICHA,
(Bos---, Bj,..., By, SV), respectively. Suppose A; is hp,-insensitive, then, for

G o e N
w W wm w

A;,p), for all z € SV, and for alli € K. O

every alternating run (s¥,sP ... sP ...) in D, there exists an alternating run
(s§,8¢ ...,8¢,...,) in C such that

- Sg|Ai,P = SzplBBp: b
- 8 Ai,u($) € [Sz Ai,u(x) — Oz, S;
_ O — oD

sile = sile

B,—,u(x) + az]: and

Proof. Immediately followed by lemma 2 and lemma 3. O

Example revisited. Figure 4 depicts the instrumented version of the SCHA foo
described in Figure 3 to exclude the unexpected execution trace from foo. As
the stepsize of Ay and A; are 1.0 - 107 and 2.0 - 1073, respectively, v,00,5 is
0.002-100.0 = 0.2. If we instrument the guard at position pog of Ag with vp00,y,
then the unexpected trace disappears.

5 Executable Code

We have implemented a code generator that produces C++ code implementing
SICHA. The generated code needs to be associated with a real-time scheduler
to satisfy timely computation. Each ICHA B; of an SICHA can be mapped
to a periodic task with the period and the deadline equal to min(hp,(p)). In
addition, a scheduling policy that guarantees the condition of a valid state of
an SICHA (Definition 18) should be chosen. That is, for every state s of an
SICHA, the condition s|; — s|g;,+ < h(s|p;,p) should be satisfied for all B;. This
implies that the task for B; should be scheduled earlier than the task for B; if
s|B;,t +h(s|B;,p) < 5|B;,t + h(s|B,,p)- Note that this requirement is equivalent to
the well-known EDF scheduling policy. (The RM scheduling policy can satisfy
the requirement only when the periods are harmonic.)

Moreover, it is also required that the task for B; should be blocked even when
the system is idle if the task for By, such that s|g, + h(s|B,.p) < s|B; + h(s|B; p)
is not ready (i.e., t < s|B, ., where t is the real time). This wastes the CPU

13

utilization and may affect schedulability, similarly to the problem of scheduling
of tasks with dependency. This problem can be addressed in two ways. First, the
execution result of a task can be buffered and emitted later to avoid blocking
of such tasks (see [6,7], for example). Second, the model can be instrumented
to tolerate the errors due to scheduling of such tasks, in the same way as we
do for models with different rates. Our approach has the advantage of avoiding
possible overhead of buffering.

Another important issue is how to resolve non-determinism of discrete transi-
tions. The non-determinism comes from two sources. First, a discrete transition
may or may not be taken when the associated guard is enabled. Second, there
may be more than one transition whose guard is enabled. Depending on the de-
cision, different behaviors may arise. The set of behaviors are acceptable as long
as they do not violate the invariant condition. Note that our framework guar-
antees that every behavior of SICHA is also found in the hybrid model (within
bounded deviation) up to the point before the invariant is violated whatever a
decision is made on non-deterministic discrete transitions.

In the case where the code detects violation of the invariant, it means either
(1) the hybrid model also has an equivalent run that ends with invariant viola-
tion, or (2) the code missed an outgoing transition before the invariant is violated
due to discretized guard checking. The former issue is the matter of the validity
of the model, rather than code generation. That is, such a case can be prevented
by refining the model such that the states outside of the invariant set are un-
reachable. (See [8-10] for systematic approaches.) On the other hand, the latter
case is an artifact of code generation. Instrumentation may additionally cause
such an artifact that should not otherwise occur, because it reduces the guard
set and the invariant set, and thus gives a better chance of transition misses.
Assuming that the hybrid model is valid (i.e., the invariant set is unreachable),
transition misses can be prevented if the guard set and the invariant set overlap
for a duration of time longer than the step size, and the code employs an urgent
transition policy (i.e., transition is taken as soon as it is detected enabled). For
detailed description, see [11].

6 Conclusion

In this paper, we have proposed a code generation framework for hybrid models
that focuses on soundness of synthesized code. The idea behind the sound code
generation is to refine the hybrid model such that it is robust to erroneous
values. In this paper, we have focused on the effect of synchronization errors
that occur when components of a hybrid model are synthesized into concurrent
programs having different rates. We have proved that every possible behavior
of the model instrumented with maximum possible errors is a valid behavior of
the original hybrid model. We have also explained the issue of scheduling and
non-determinism when the instrumented hybrid automata are finally converted
into executable code.

We implemented our idea in the context of the hybrid systems modeling
language CHARON [12]. Previous implementation of the code generator [11,13]
has been extended to allow instrumentation of the guard and the invariant. We

14

have also performed preliminary experiments with Sony’s robot dog AIBO to
avoid erroneous behavior that is not consistent to the model.

Our work can be extended further in many ways. First, a more systematic
way of model instrumentation may be possible if model checking techniques
are employed. The predicate abstraction-based model checking tool developed
for CHARON [14] can be used for this purpose. We expect that model checking
based instrumentation leads to more tightly instrumented code. Second, we can
also include controller synthesis techniques [8-10] to our framework to allow
automatic refinement of the model such that the generated code is guaranteed
to satisfy the invariant condition.

Acknowledgement This research was supported in part by NSF CCR-
9988409, NSF CCR-0086147, NSF CCR-0209024, ARO DAAD19-01-1-0473, and
DARPA ITO MOBIES F33615-00-C-1707.

References

1. Alur, R., Dill; D.L.: A theory of timed automata. Theoretical Computer Science
126 (1994) 183-235

2. Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulating
hybrid systems. In: Proceedings of HSCC. LNCS 2034 (2001) 204-217

3. Park, T., Barton, P.: State event location in differential-algebraic models. ACM
Transactions on Modeling and Computer Simulation 6 (1996) 137-165

4. Choi, J.Y., Hur, Y., Lee, I.: THA: Ensuring sound numerical simulation of hybrid
automata. Technical Report MS-CIS-03-06, University of Pennsylvania (2003)

5. Choi, J.Y., Hur, Y., Kim, J., Lee, I.: Sound synchronization of communicating
hybrid automata. Technical Report MS-CIS-03-30, University of Pennsylvania.
(2003)

6. Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: A time-triggered language for
embedded programming. In: Proceedings of EMSOFT. (2001) 166-184

7. Kodase, S., Wang, S., Gu, Z., Shin, K.G.: Improving scalability of task allocation
and scheduling in large distributed real-time systems using shared buffers. In:
Proceedings of RTAS. (2003) 181-188

8. Wong-Toi, H.: The synthesis of discrete controllers for linear hybrid automata. In:
Proceedings of CDC. (1997) 4607-4612

9. Altisen, K., GoBler, G., Pnueli, A., , Sifakis, J., Yovine, Y.: A framework for
scheduler synthesis. In: Proceedings of RTSS. (1999) 154-163

10. Altisen, K., Go8ler, G., Sifakis, J.: A methodology for the construction of scheduled
systems. In: Proceedings of FTRTFT. (2000) 106-120

11. Alur, R., Ivancié, F., Kim, J., Lee, 1., Sokolsky, O.: Generating embedded software
from hierarchial hybrid models. In: Proceedings of LCTES. (2003) 171-182

12. Alur, R., Dang, T., Esposito, J., Hur, Y., Ivancié, F., Kumar, V., Lee, 1., Mishra,
P., Pappas, G., Sokolsky, O.: Hierarchical modeling and analysis of embedded
systems. Proceedings of the IEEE 91 (2003) 11-28

13. Kim, J., Lee, I.: Modular code generation from hybrid automata based on data
dependency. In: Proceedings of RTAS. (2003) 160-168

14. Alur, R., Dang, T., Ivancié, F.: Reachability analysis of hybrid systems via predi-
cate abstraction. In: Proceedings of HSCC. LNCS 2289 (2002) 35-48

15

	University of Pennsylvania
	ScholarlyCommons
	March 2004

	Sound Code Generation from Communicating Hybrid Models
	Yerang Hur
	Jesung Kim
	Insup Lee
	Jin-Young Choi
	Recommended Citation

	Sound Code Generation from Communicating Hybrid Models
	Abstract
	Keywords
	Comments

	tmp.1114444109.pdf.b3PQG

