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Abstract

When specifying system requirements, we want a language that can express the requirements in the simplest
and most intuitive form. An expressive and intuitive language makes specifying requirements easier and less
error-prone. Although our MaC system provides an expressive language, called MEDL, to specify safety
requirements, it is generally awkward to express an order of events with complex timing dependencies, timing
constraints, and frequencies of events. MEDL-RE extends our MEDL language to include regular expression
and three associated events to easily specify timing dependencies and its timing constraints. Our regular
expression is unique in a way that a user can specify which events are relevant to a regular expression. This
feature makes it easy when a user wants to specify a requirement of one specific component of a system.
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Regular Expressions for Run-Time Verification

Usa Sammapun and Oleg Sokolsky
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract

When specifying system requirements, we want a language that can express the
requirements in the simplest and most intuitive form. An expressive and intuitive lan-
guage makes specifying requirements easier and less error-prone. Although our MaC
system provides an expressive language, called MEDL, to specify safety requirements, it
is generally awkward to express an order of events with complex timing dependencies,
timing constraints, and frequencies of events. MEDL-RE extends our MEDL language
to include regular expression and three associated events to easily specify timing de-
pendencies and its timing constraints. Our regular expression is unique in a way that a
user can specify which events are relevant to a regular expression. This feature makes it
easy when a user wants to specify a requirement of one specific component of a system.

1 Introduction

Real-time systems are systems that concern both computation requirements and timing
requirements. These requirements sometimes are difficult to achieve due to uncertainty
of external environments and unforeseen bugs of either specification or implementation.
Hence, most real-time system designers typically use various methods of formal verification
and testing to debug and verify correctness of the systems. However, these methods have
their own limitation. Formal methods verify specification but not implementation, and they
do not scale up well to handle large systems. On the other hand, testing is scalable and
performed on the implementation level, but it is not exhaustive.

Because of the above reasons, several researchers have proposed runtime formal analysis
based on formal requirement to bridge the gap between the two techniques: formal verifi-
cation and testing. The monitoring, checking and Steering (MaC) framework [9, 10, 11, 13]
is one of the runtime formal analysis researches. It has been designed to ensure that the
execution of a real-time system is consistent with its requirements at run-time.

It provides a language, called MEDL, to specify safety properties. The safety properties
include both computational requirements and timing requirements. The safety properties
are defined in terms of events, conditions and auxiliary variables. Events are instantaneous
incidents such as variable updates or the start or the end of a method call. Conditions are
propositions about the program that may be true or false for a duration of time. Auxil-
iary variables are temporary storage to, for example, keep counters or a time of the last
occurrence of an event, which can be used to specify timing requirements.

Using events, conditions and auxiliary variables, the MEDL language provides an elegant
and intuitive way to specify computational requirements. It, however, does not provide as
intuitive way to specify timing requirements, i.e., specifying order of events with complex



timing dependencies between events, timing constraints or keep track the numbers of specific
events in a time interval are generally awkward to represent in the current MEDL language.

In this paper, we propose an extension of the MEDL language, MEDL-RE, to provide
a simpler and more intuitive language to specify timing requirements. We believe that a
simple and intuitive language can offer a user with clearer and less error-prone specification.
This extension allows us to easily specify ordering of events, and its timing constraints in
terms of start times, end times, and frequencies.

The ordering of events are in a form of regular expressions over a specified set of events.
We call this set of events a relevant set of events because events not specified in the set
would be ignored during evaluation of a regular expression. Each regular expression has
its own relevant set. By observing a sequence of events happening in a target system, the
extension MEDL-RE matches the sequence of events with specified regular expression.

The extension MEDL-RE provides three events associated with a regular expression.
They are events indicating start, success and failure of finding a regular expression. These
events can be composed to specify safety and timing properties. To specify start and end
times of each regular expressions, users can simply use the time function, provided by our
original MEDL language. These start and end times allow us to express timing constraints
in a more intuitive way.

The frequencies count the number of events or regular expression of events occurred
during the time duration when a specified condition holds true. This condition is a gener-
alization of a time interval.

We want to clarify what we mean by “an order of events” and “a sequence of events”.
When we say “an order of events”, we mean a temporal relation among specified events.
When we say “a sequence of events“, we mean the actual events happening in a target
system.

The paper is organized as follows. Section 2 briefly explains an overview of the MaC
framework. Section 3 discusses motivation and design issues. Section 4 introduces an
extension MEDL-RE. Section 5 discusses implementation issues. Section 6 presents related
work. Lastly, section 7 discusses future work and concludes the paper.

2 MaC Overview

2.1 MaC Architecture

The MaC system has been designed and developed to ensure that a target program is
running correctly with respect to a formal requirement. Figure 1 shows the overall structure
of the MaC architecture. The system works as follows. A user specifies a requirement of a
target program in a formal language. The MaC formal language composes of three scripts
explained in the next section: a monitoring script, a requirement specification, and a steering
script. Given a target program and the requirement, the MaC system inserts a collection
of probes or a filter into a target program.

During run-time, the probed target program are running and being monitored and
checked by the MaC system. An event recognizer detects an event from the state information
received from the filter. Events are recognized according to a monitoring script. Recognized
events are sent to the run-time checker. A run-time checker, then, determines whether or
not the current execution history satisfies a requirement specification. The execution history
is captured from a sequence of events sent by the event recognizer. If the run-time checker
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Figure 1: Overview of the MaC architecture
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detects any violation, it notifies the user and triggers an injector to take a steering action
specified in a steering script and steer the target program back to a safe state.

2.2 MaC Language

The MaC system provides three languages. The requirement specification is called the
Meta-Event Definition Language (MEDL). MEDL is used to express requirements in terms
of events and conditions. MEDL, based on an extension of a linear temporal logic (LTL) [14],
allows to express a large subset of safety properties of systems, including real-time prop-
erties. The monitoring script is expressed in the Primitive Event Definition Language
(PEDL). PEDL describes primitive high-level events and conditions in terms of system ob-
jects. PEDL is used to define what information is sent from the probed target program
or a filter to the MaC system, and how it is transformed into events used in high-level
specification or MEDL. Both of these languages are based on the notions of events and
conditions, explained in Section 2.2.1. The steering script of the Steering Action Definition
Language (SADL) is used to specify actions that need to be invoked when violations oc-
cur. Since PEDL and MEDL are quite similar to each other and the main focus for this
paper is the language MEDL, we are not explaining PEDL and SADL in detail here. Please
see [9, 10, 11, 13] for more details.

2.2.1 Events and Conditions

FEvents occur instantaneously during the system execution, whereas conditions represent
information that holds for a duration of time. For example, an event denoting the call to
method init occurs at the instant the control is passed to the method, while a condition
(difference < 0.1) holds as long as the value of the variable difference does not exceed
0.1. For formal semantics of events and conditions, see [9, 11, 13].

2.2.2 Meta Event Definition Language (MEDL)

The safety requirements (invariants) are written in MEDL. A MEDL specification includes
the following sections:



Imported events and conditions. A list of events and conditions imported by PEDL is
declared.

Definitions of events and conditions. Events and conditions are defined using imported
events, imported conditions, and auxiliary variables, whose role is explained later in
this section. These events and conditions are then used to define safety properties
and alarms.

Safety properties and alarms. The correctness of the system is described in terms of
safety properties and alarms. Safety properties are conditions that must be always
true during the execution. Alarms, on the other hand, are events that must never be
raised (all safety properties [14] can be described in this way).

Auxiliary variables. Auxiliary variables increase expressive power of MEDL. They can
be used to define events and conditions. Their values are updated in response to
events. Auxiliary variables allow us, for example, to count the number of occurrences
of an event.

3 DMotivation and Design Issues

3.1 Motivating Example

The motivation for our need of an extension to the MEDL language arises when we need to
specify complex timing requirements. We encounter several difficulties shown below when
trying to use our existing MEDL language.

e Order of events with complex timing dependencies between elements are generally
awkward to represent in the current MEDL.

e To specify timing constraints, we need an auxiliary variable to keep track of the last
occurrence of an event. We also need to update this variable every single time the
event occurs.

e Keeping track of how many events have occured in a desired period of time requires
a few auxiliary variables and constantly updating these variables.

An example of such requirements are “an event ¢ must not happen 3 times in a row”
and “the ordered events w,z,y,z can happen out of order for less than 10 times at night,”
assuming a system consists of six events and one condition. Events are a, b, w, z, y, z,
where events a and b are not related to events w, z, y, and z, and vice versa. A condition
is might which is true during at night.

To specify those requirements in our existing MEDL, we need a few auxiliary variables
to keep track of when and how many times events a, b, w, z, y, and z happen. The fragment
of MEDL below shows how we specify the above requirements in our original MEDL.

var happenA, count;
alarm 3a = a when happenA == 3;

event wxyz = ( yll|z when [w,x) ) ||
( z when [w, end([x,y))) ) when night;



property 10wxyz = count < 10;

a -> { happenA’ = happenA+1; }
b -> { happenA’ = 0; }
wxyz -> { count’ = count+1}

The happenA variable keeps track of how many times an event A happens. Whenever a
happens, we increment it and whenever b happens, we reset it. The alarm 3a alerts users
when happenA becomes 3. The event wxyz is triggered only at night when y or z happens
between w and z and when z happens between z and y. The count variable stores a number
of times the event wxyz has occured. The property 10wxyz alerts users when count is more
than 10.

Consider when we need to specify the ordering of more than four or even ten events, the
event such as wxyz can get very complicated and error-prone because of too many cases to
be considered. This shows that writing requirements using our existing MEDL is awkward,
error-prone and difficult to understand, especially when the ordering is more complex than
the above requirements. We believe that by adding regular expressions to our language, it
could ease these difficulties because regular expressions can express an order of events in a
more intuitive way than our existing MEDL. Besides regular expressions itself, adding a few
events associated to regular expressions such as event indicating start, success and failure
of finding such regular expression could facilitate expressing system requirements.

The below fragment of the specification shows how to specify the example requirements
in our extended MEDL-RE. The regular expression 3aRE and wxyzRE denote the ordering
of events a happening two times in a row and the ordering of the event w followed by the
events z, y, z. The alarm 3a and and the property wxyz alert users when we find the first
ordering, and when the second ordering fails more than 10 times at night. The requirements
now are much simpler and easier to understand than our original MEDL.

RE 3aRE = <a.a.a>;

RE wxyzRE = <w.x.y.z>;

alarm 3a = success(3aRE);

property 10wxyz = occur(fail(wxyzRE),night) < 10;

However, this is not quite correct because there are six events occurring but, for example,
the regular expression wxyzRE is composed of only four events. If a occurs right after z
occurs, wxyzRE will fail. But because event a and b are not related to event w, z, y, and z,
wxyzRE should not fail. We could rewrite the two regular expressions as:

RE 3aRE = <a. (wtx+y+z)*.a. (wx+y+z)*.a>;
RE wxyzRE = <w.(a+b)*.x.(a+b)*.y.(atb)*.z>;

As shown above, specifying events of two non-related components can complicate a
requirement. We propose that we associate each regular expression with a relevant set and
concern only events specified in the regular expression and events specified in the relevant
set. The two above regular expressions become:

RE 3aRE {b} = <a.a.a>;
RE wxyzRE {} = <w.x.y.z>;



which is much simpler. The set {b} in 3aRE indicates that if an event b occurs between
two events a, then this sequence would fail to match 3aRE. However, the MEDL-RE would
ignore an event z if it occurs between two events a and would not fail the sequence.

3.2 Design Issues

Before getting into details about our syntax and semantics, we need to decide on several
designing issues regarding regular expressions because one regular expressions can match
more than one sequence of events. Our concerns regarding regular expressions are as follows.

1. Do we automatically include events in a regular expression into a relevant
set? We are concerned about this issue when we monitor a distributed system where
two machines trigger the same events. Since those same events from different machines
are not related to each other, we want to be able to exclude the same events of different
machines from a relevant set. Therefore, we have decided that we would automatically
include events in a regular expression into a relevant set for events from the same
machine and users can manual include events specified in a regular expression into a
relevant set from a relevant set for events from different machine.

2. If there are more than one place to start evaluating a regular expression,
when should we start? Earliest or latest? We take the earliest because we would
not know if any more valid event is coming.

3. If there are more than one place to end evaluating a regular expression,
when should we end? Earliest (shortest sequence), latest (longest se-
quence), or report all? We are choosing the shortest and not the longest because
the longest can be infinite and reporting all can be redundant.

4. How do we deal with overlapping sequence? For each regular expression, only
one instance of the regular expression can be checked at one time. For example, if a
regular expression R is “a.b.a*.c” and a sequence of occuring events is “a, b, a, ¢.” We
consider the second ’a’ as ’a*’ in the regular expression and would not start another
instance where the second ’a’ is a start of the regular expression R.

4 Syntax and Semantics of MEDL-RE

Now we extend our MEDL language to include ordering of events with complex timing
dependencies by expressing them as a regular expression and to include a frequency of events
in a time interval. The regular expression has its associated events that help specifying
timing constraints such as start, success and failure of regular expression.

4.1 Syntax

Atomic events are events in the original MaCS framework described in Section 2.2.1. These
events can be primitive or composed by other events, conditions and auxiliary variables.
Each regular expression ranges over its own set % of atomic events. It consists of atomic
events (e), concatenation (R . R), union (R+R), and Kleene star (R*). We define the
regular event expression syntax as follows.



R:=¢|R.R|R+R | R*

The regular event expression R itself is neither a condition nor an event. It can be
considered as a declaration of a regular expression, which has three associated events:
startRE(R), success(R), and fail(R). The startRE(R) event is used to indicate that
we start observing this regular expression. The success(R) event indicates that we have
found a sequence of events that specifies the expression R, and the fail(R) event indicates
that we have started observing but fail to finish finding such sequence.

For an event e and a condition ¢, the function occur(e,c) returns a frequency or a
number of occuring of an event e during the time interval when a condition ¢ holds true.

4.2 Semantics

In order to correctly define our regular event expression, we need to specify a set X of events
for a regular expression R. Let 3 denote a set of events specified in a regular expression R
and Xy denote a set of events specified in a relevant set of R described in Section 3. Then,
Y=XrUZXy.

We also modify the model M defined in [9]. A model M is a tuple (S,7,L¢, Lg,o0),
where S = {sg, s1,...} a set of states, 7 is a mapping from S to the discrete time domain,
L¢ is a total function from S x C to {true, false, A} where C denotes a set of conditions
and A denotes undefined, and L is a partial function from S x £ to a value domain. For all
er where Lg(s;,eg) is defined, there is an order o(s;, ;) such that at time 7(s;), an order
for each occuring ey, is distinct. Although those events have the same time stamp, they are
considered to occur at different time and have different orders. In other words, each event
occurs a distinct time. We define such order of an event ey, at state s; as o(s;, ex) where o
is a total and injective function that maps e and s; to an ordered set of positive integers
and o(s;_1,ex) < o(s;,¢e) for all ¢ and any k, I.

Derivative of a Regular Expression We start defining our semantics by reminding a
reader with the definition of a derivative of a regular expression [5]. The derivative
of a regular expression R with respect to an alphabet a produces a set of strings by
chopping the prefix a off from each string in R. In other words, if a DFA M simulates
a regular expression R, then the derivative is a regular expression resulted from taking
a step in M with an input a. Formally, for any regular expression R and any alphabet
a, a derivative of R with respect to a, denoted by D,(R), is the regular expression

D,(R) = {z € ¥*|az € R}

The semantics of a derivative of a regular expression is defined as follows.

D,(a) =€

D,(b) = A

Dy(A) = A

Dg(e) = A
Do(R+ S) = Do(R) + Da(S5)

Da(R¥) = (Da(R)) . B*
(Do(R)) . S if E(R) = false

Da(R . §) = { (Do(R)) . S+ Da(S) if E(R) = true



We also need to define a function E(R) from ¥* to boolean to test whether € € R.
This test is needed in D,(R . S).

E(a) = false
E(A) = false
E(e) = true
E(R+S) = E(R)V E(S)
E(R.S) = E(R)ANE(S)
E(R*) = true

Besides the derivatives, we also need to define a function FIRST(R) and a function
®9,(R). FIRST(R) returns a set containing all events that can appear as the first event in
the regular expression R.

FIRST(R) = {a € E U {e}|az € R where x € £*}

@9, (R) represents the remainder of the regular expression R at an order o after a sequence
of derivatives. We define ®9,(R) as follows.

q);S[Si,e)(R) - R if M,7(s;) |F e where e € FIRST(R)
BN (R) = D(@5) 1 (R)) if M,7(s:) = e

We can now define the semantics of a regular expression and its associated events. We
define a language £ (R) of R as follows:

L(o)= o L(
(a) {a} L(
LR.S)={x1 .29 | z1 € L(R) and x5 € L(S)} L(

)

the fail(R) event.

M,t |= startRE(R) iff M,t |= e where e € FIRST(R)
M,t = success(R) iff M,t |= e and € € FIRST(D, (@;E;i’e)*l(R))) where t = 7(s;)
M,t = fail(R) iff M,t|=eand D.(®), olsi.e)= 1(R)) = A where t = 7(s;)

The event startRE(R) is triggered when an occuring event is one of the events that can
appear as the first event in the regular expression R. The event success(R) is triggered
when an occuring event e causes the derivative of the remainder to contain empty string,
and the event fail(R) is triggered when an occuring event e causes the derivative of the
remainder to become undefined.

Next, we define a frequency function occur(e,c). A function occur(e,c) returns a
number of occurrence of an event e during the time interval that a condition ¢ holds true.
occur(e, c¢) is defined as follows. Let f(s;, e, c) denote a frequency of e in ¢ at time 7(s;).

A if M,7(s;) = c
. ) if M,7(s;) = start(c)
flsie.c) = f(si—1,e,¢) if M,7(s;) Ecand M,7(s;) [£e
f(sic1,e,¢) +1 i M, 7(s;) = cand M,7(s;) e

At time 7(s;), occur(e,c) = f(s;,e,c).



import event sendToCtrl, recvVolt, sendToIP;
import action killCtrl{};

RE dmTask = <sendToCtrl.recvVolt.sendToIP>
event 0K = successRE(dmTask);
event notOK = failRE(dmTask);

RE deadCtrl {0K} = <notOK.notOK.notOK>;
event deadCtrlOccur = successRE(deadCtrl);

deadCtrlOccur -> { invoke killCtrl(); }

Figure 2: Excerpts from the IP.medl

4.3 Example Revisited

We are using an inverted pendulum (IP) example introduced in [10]. The example demon-
strates how to use steering to steer the inverted pendulum system back to a safe state.
The architecture of the control system for the inverted pendulum is based on the Simplex
architecture for control systems [15].

The IP system consists of a motor driven cart which is equipped with two quadrature
encoders. One sensor measures the position (track) of the cart. The other sensor measures
the angle (angle) of the pendulum attached to the cart. The pendulum freely moves in
the vertical plane that is parallel to the track. The purpose of the IP control system is to
maintain the pendulum upright by activating an appropriate controller which transmits a
correct voltage output (volts) to the motor. The software part of a system consists of three
components: a decision module, a safe controller and an array of external controllers. To
run this system, the decision module picks a controller to run, sends track and angle to
the controller, receives track from a controller and sends the voltage to a hardware cart. A
safe controller always calculates a safe voltage just in case something is wrong with external
controllers. The external controllers are controllers written by outsiders and not always
reliable.

The safety requirements written in MaCS language as specified in [10] follows closely the
requirement specified in [15]. The safety requirements indicate that if a voltage sent by a
current controller is not safe or a cart is too close to the end of the track, the decision module
should pick a voltage calculated by a safe controller. However, it omits one requirement
indicating that if a controller fails to send a voltage value in time for three times in a
row, it is considered a dead controller and needs to be killed. We have tried to write this
specification using our existing MaCS and found that it is not quite simple.

With the MEDL-RE, we can easily specify this requirement as shown in Figure 2.
Imported events sendToCtrl, recvVolt and sendToIP respectively indicate an instant when
the decision module sends track and angle to a controller, an instant when the decision
module receives a voltage value from a controller, and instant when the voltage value is
being sent to the hardware. We assume that sendToCtrl and sendToIP always occur at
the right instant, but recvVolt does not because external controllers are not always reliable.

A regular expression dmTask describes an order which three imported events should
follow. An event OK indicates a success of dmTask, and an event notOK indicates that the



decision module does not receive a voltage value in time. An event deadCtrl0ccur indicates
that the controller fails to send a voltage value three times in a row and needs to be killed.

5 Implementation Issues

To monitor and detect a regular expression, we need to translate a regular expression into
a finite automaton. When a current event takes an automaton to a start stage, it would
trigger a startRE event. If the automaton moves to a final stage when the event occurs,
the event triggers a success event. Similarly, the event causing the automaton to get stuck
triggers a fail event. For each occur(e, ¢), we store information of a current frequency and
update the information according to the value of ¢ and e.

The main difficulty of the implementation is to translate a regular expression into a finite
automaton. Translating the regular expression R into an NFA could cause the monitor to
be very inefficient in detecting a sequence of events of R while translating into a DFA could
exponentially blow up the number of states. A number of previous researches have tried to
solve this problem. We have chosen the algorithm by Aho, Sethi and Ullman [1] because
the empirical result by Watson [17] suggests that this DFA contruction is fast and efficient.
Their algorithm calculates a follow set for each character in the regular expression where the
follow set is a set of characters that can follow after each character in the regular expression.
The DFA is then constructed using the follow set. The details of the algorithm could be
found in [1].

6 Related Work

There are a few existing works that incorporate regular expressions into logic. The ForSpec
Temporal Logic (FTL) [3], Intel’s new formal specification language, is a linear temporal
logic [14] that allows a user to define temporal connectives over time windows, regular se-
quences of Boolean events, and then relate such events via special connectives. Sugar [4]
adds an extensive set of operator including regular expressions as a syntactic sugar to
CTL [7]. Monitoring oriented Programming (MoP) [6] provides a monitoring architecture
based on LTL [14] and extended regular expressions. They will also support RTL [2] and
MTL [12] in a near future. Temporal Rover [8] is an architecture that helps a system do
monitoring. Its specification language uses LTL [14] and MTL [12] with regular expressions
and Time-Series. Time-Series observes temporal properties over time and is used for prop-
erties like stability, monotonicity, temporal average, sum, and max/min value. They also
have a counting operators which specify properties like event A must occur between 10 and
20 times until event B occur.

Comparing to the MEDL-RE based on LTL and regular expressions, FTL [3], MoP [6],
and Temporal Rover [8] provides similar languages based on LTL and/or MTL and regular
expressions while Sugar [4]’s language is based on CTL and similar regular expressions.
However, our startRE, success and fail events are unique and none of them has a similar
notion of a relevant set which facilitates users when they need to specify a regular expression
for different components with different sets of events.

We also consider a Unix RegEzp [16] command related to our work. RegEzp is a software
that returns one substring of a given string s that matches a given regular expression exp.
It is related because their decision in dealing with multiple substrings matching a regular
expression is similar to ours. If RegFzp can match a regular expression with more than

10



one substrings, it chooses using the rule “earliest then longest.” It can choose the longest
substring because its input strings are finite while our execution trace can be infinite. Qur
issue of a relevant set in Section 3.2 is also irrelevant to RegFEzp because all of its characters
are relevant whereas not all of our events are relevant.

7 Conclusion and Future Work

We have presented our extension MEDL-RE, which incorporates regular expressions and
its associated events into our MEDL language. The extension provides a more intuitive
and simpler language to express complex dependencies between sequence of events, timing
constraints, and a frequency of events during a time interval. Qur MEDL-RE gives users a
power to include or exclude events that are related or not related to a regular expression.
Our events associated with a regular expression offers an ability to detect the instant the
regular expression starts being observed and the instant we success or fail to find the regular
expression. We believe that this extension facilitates expressing system requirements with
a clearer and less error-prone language.

Since the implementation of extension MEDL-RE is still in progress, our future plan is
to complete and test the implementation. This work may be furthered by extending our
MEDL language to support a specification written in MTL and/or other logics. The MaCS
system itself maybe extended to monitor distributed and parallel systems.
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