
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2000

An Efficient State Space Generation for the Analysis
of Real-Time Systems
Inhye Kang
Soongsil University

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Young-Si Kim
Electronics and Telecommunications Research Institute

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2000 IEEE. Reprinted from IEEE Transactions on Software Engineering, Volume 26, Issue 5, May 2000, pages 453-477.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=18365&puNumber=32

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/83
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Inhye Kang, Insup Lee, and Young-Si Kim, "An Efficient State Space Generation for the Analysis of Real-Time Systems", . May 2000.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=18365&puNumber=32
http://repository.upenn.edu/cis_papers/83
mailto:libraryrepository@pobox.upenn.edu

An Efficient State Space Generation for the Analysis of Real-Time Systems

Abstract
State explosion is a well-known problem that impedes analysis and testing based on state-space exploration.
This problem is particularly serious in real-time systems because unbounded time values cause the state space
to be infinite even for simple systems. In this paper, we present an algorithm that produces a compact
representation of the reachable state space of a real-time system. The algorithm yields a small state space, but
still retains enough information for analysis. To avoid the state explosion which can be caused by simply
adding time values to states, our algorithm uses history equivalence and transition bisimulation to collapse
states into equivalent classes. Through history equivalence, states are merged into an equivalence class with
the same untimed executions up to the states. Using transition bisimulation, the states that have the same
future behaviors are further collapsed. The resultant state space is finite and can be used to analyze real-time
properties. To show the effectiveness of our algorithm, we have implemented the algorithm and have analyzed
several example applications.

Keywords
Formal specification, reachability analysis, real-time analysis, state space minimization, timed automata

Comments
Copyright 2000 IEEE. Reprinted from IEEE Transactions on Software Engineering, Volume 26, Issue 5, May
2000, pages 453-477.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=18365&puNumber=32

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/83

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=18365&puNumber=32
http://repository.upenn.edu/cis_papers/83?utm_source=repository.upenn.edu%2Fcis_papers%2F83&utm_medium=PDF&utm_campaign=PDFCoverPages

An Efficient State Space Generation
for the Analysis of Real-Time Systems
Inhye Kang, Member, IEEE, Insup Lee, Senior Member, IEEE, and Young-Si Kim

AbstractÐState explosion is a well-known problem that impedes analysis and testing based on state-space exploration. This problem

is particularly serious in real-time systems because unbounded time values cause the state space to be infinite even for simple

systems. In this paper, we present an algorithm that produces a compact representation of the reachable state space of a real-time

system. The algorithm yields a small state space, but still retains enough information for analysis. To avoid the state explosion which

can be caused by simply adding time values to states, our algorithm uses history equivalence and transition bisimulation to collapse

states into equivalent classes. Through history equivalence, states are merged into an equivalence class with the same untimed

executions up to the states. Using transition bisimulation, the states that have the same future behaviors are further collapsed. The

resultant state space is finite and can be used to analyze real-time properties. To show the effectiveness of our algorithm, we have

implemented the algorithm and have analyzed several example applications.

Index TermsÐFormal specification, reachability analysis, real-time systems analysis, state space minimization, timed automata.

æ

1 INTRODUCTION

AS computers become ubiquitous, they are increasingly

used in safety critical environments. Typical safety

critical applications are control systems, monitoring sys-

tems and communication systems. Any failure of such

computer systems may cause a great financial loss,

environmental disaster, or even the loss of lives. The

potential high cost associated with an incorrect operation

of these systems has created a demand for a rigorous

framework in which various design alternatives can be

formally specified and rigorously analyzed and tested

before implementation.

It is commonly believed that future safety critical

systems will be more complex due to increased demands

on their functionalities as well as the size of the problem

domain. Thus, it will be difficult for one to analyze and test

correctness without computer-aided tools. One common

aspect of safety critical systems is that they must respond

under stringent real-time constraints. That is, their correct-

ness depends not only on how concurrent components

interact, but also on the time at which these interactions

occur. In addition, these systems are costly to prototype,

requiring careful prediction of timing properties before

implementation and evaluation of design alternatives.

Although the verification problem is in general undecid-

able, there exist several automatic verification and analysis

techniques for finite state systems. Such techniques are

usually based on state space exploration. That is, they identify

a set of states that are reachable from the initial states and

then analyze this set for verification. Such techniques exist

for proving absence of deadlock or livelock, for proving

properties expressed in propositional temporal logic or real-

time logic, and for determining trace equivalence, testing

preorder or bisimulation equivalence, etc.

The major weakness of the state space exploration based

approach is that the size of the state space grows

exponentially with the number of processes and thus

creates the state space explosion problem. The problem is

particularly serious in real-time systems because un-

bounded time values cause the state space to be infinite.

Recently, there has been some work on constructing the

finite representation of the reachable states, i.e., the reach-

ability graph from a real-time system [27], [24], [17], [2].

Most of this work represents real-time using the discrete

time model in which events can happen only at the integer

time values [27], [24], [17]. The reachability analysis based

on the discrete time model may not detect some reachable

states in the real world where time is dense [1]. In the dense

time model, events can happen at arbitrary points in time

over real-line. For real-time systems with dense time, there

exist little work on reachability analysis [2], [29]. This paper

describes our approach to constructing a reachability graph

for both discrete and dense time models. Our model for a

real-time system is a timed automaton introduced in [2], [6].

The timed automaton is a finite automaton extended with

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000 453

. Inhye Kang is with the School of Computing, Soongsil University, Seoul,
Korea.
E-mail: kang@computing.soongsil.ac.kr.

. Insup Lee is with the Department of Computer and Information Science,
University of Pennsylvania, Philadelphia, PA 19104-6389.
E-mail: lee@central.cis.upenn.edu.

. Young Si Kim is with Electronics and Telecommunications Research
Institute, 161 Gajong-Dong Yusong-Gu, Taejon, Korea.
E-mail: yskim@tdx.etri.re.kr.

Manuscript received 20 Nov. 1995; revised 13 Aug. 1998; accepted 1 Dec.
1998.
Recommended for acceptance by J. Gannon.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 101166.

0098-5589/00/$10.00 ß 2000 IEEE

timing constraints. It has a finite set of nodes and transitions

to represent control flow and a finite set of real-valued

clocks to express timing constraints. A transition may

depend on the values of the clocks and can reset some of the

clocks. The values of the clocks increase at the same rate

with the global time. The timed automaton can model a

wide range of time-dependent behaviors such as time-out,

delay, and lower/upper bounds between events using

arbitrary number of clocks. Our goal is to develop a

technique to efficiently represent the reachability graph of a

timed automaton.

Timed automata have been extensively studied for

verification of real-time systems [4], [3], [29], [23].

These are region-based approaches. A region is a set of

states, where a state consists of a node and a clock

valuation. In [2], a region includes states with the same

node and a set of equivalent clock valuations in some sense,

and a finite region graph is constructed using the partition-

ing algorithm given in [8]. The region graph has size

exponential in the number of clocks and the size of the

constants that appear in the enabling conditions of the

transitions. Because the region graph is too fine-grained,

minimization approaches [4], [29] have been proposed in

order to equate more valuations. The minimal region

graphs, however, still have the same worst case complexity

as region graphs. Another region-based approach to

generate finite reachable state space from a timed auto-

maton is based on forward analysis [14], [5]. The forward

analysis repeatedly computes the region that includes

reachable states by initially starting from the initial region

and then adding states reachable from the current region

through time passage or transitions until the region

contains all reachable states, i.e., the fixed point reaches.

One drawback of the forward analysis is that it does not

guarantee the termination of the procedure.

In this paper, we present an algorithm that produces a

compact reachability graph from a timed automaton. The

algorithm usually yields a small state space, but it retains

reachability and event ordering information for analysis of

real-time properties such as safety properties and bounded

response time properties. Our algorithm uses the notions of

history equivalence and transition bisimulation to cluster

states into equivalence classes. In our approach, states are

defined as histories (i.e., executions upto the states). In

history equivalence, states that have the same untimed

hisotries are equivalent and are merged into one. Since

there exist infinitely many untimed histories, the state space

minimized by history equivalence is still infinite. Using

transition bisimulation, states that have the same future

behaviors are further merged, so the resultant state space

becomes finite. Comparing to the minimal region graph

approaches, our approach is minimized based on traces,

while the minimal region graph approaches are based on

branching-time structures. Comparing to the forward

analysis approaches, the number of equivalence classes in

our approach is finite, whereas the forward analysis

approaches may generate infinitely many regions. Our

approach is implemented in a tool, called TREAT (Timed

Reachability Analysis Tool).

The paper is organized as follows. Section 2 describes the

syntax and semantics of timed automata and also reviews

existing approaches for reachability analysis on timed

automata. Section 3 defines equivalence relations, namely

history equivalence and transition bisimulation. Section 4

presents the algorithm that generates a reachable state space

according to the underlying equivalence relations. Section 5

reports on case studies that show the efficiency of our tool

TREAT, and compares our results with other tools. Section 6

summarizes relevant research in state-space generation

techniques for real-time systems. In Section 7, we conclude

the paper with current and future research issues.

2 TIMED AUTOMATA

Various kinds of timed automata have been used to

describe real-time Systems [2], [23], [6]. In this paper, we

adopt the timed automaton introduced by Nicollin et al.

[23] which associates timing constraints with both nodes

and transitions.

2.1 The Syntax

A timed automaton has a finite set of nodes and transitions

to represent control flow and a finite set of variables called

clocks to express timing constraints. The domain of clocks is

the set of real numbers. The values of all clocks are initially

zero and increase at the same rate, but any subset of them

can be reset to zero on a transition. Timing constraints are

associated with both nodes and transitions.

The syntax of timed automata is defined as follows. Let I

be the set of non-negative integers, and let R be the set of

nonnegative real numbers. Let C be the set of timing

constraints expressed using the conjuctions over the atomic

formulas of the form x � i for clock x and integer i.1

The timing constraints do not include comparisons of
two or more clock values such as x1 � i1 � x2 � i2.

Definition 2.1. A timed automatonA is a tuple �N;ninit; X; �;
Inv; T �, where

1. N is a finite set of nodes;
2. ninit is the initial node;
3. X is a finite set of clocks;
4. � is a finite set of events;
5. Inv : N ! C is a timing constraint on each node;

and
6. T � N � C � �� 2X �N is a transition relation.

454 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

1. Disjunctions can be represented as separated edges with conjunctions
and real numbers in constants can be modified to integers by multiplying
all constants by 10k for some k.

The function Inv associates with each node n 2 N a timing

constraint called the invariant of n. The system's control can

stay in a node n only while the current clock valuation

satisfies Inv�n�. This constraint forces control to move to the

next node before it becomes false to prevent control being

stuck in a node. We restrict invariants to be conjunctions of

atomic formulas of the form x � i. For a transition

a � �n1; c; �; Y ; n2� 2 T , if the current node n1 satisfies the

timing constraint c, then the system can take the transition.

As the result of taking the transition, the system performs

event e, resets all clocks in Y to zero, and instantaneously

moves to the next node n2.

We use the following notations on a transition a �
�n1; c; �; Y ; n2� for convenience: source�a� is the source node

n1, target�a� is the target node n2, condition�a� is the

enabling condition c, event�a� is the event �, and

resetclocks�a� is the set of clocks Y .

Composition. In general, a system consists of several timed
automata running in parallel and communicating with each

other. These concurrent timed automata can be composed
into a global timed automaton as follows: transitions of the
timed automata that do not execute a shared event are

interleaved, whereas transitions using a shared event are
synchronized.

Definition 2.2. Let A1 � �N1; ninit1; X1;�1; Inv1; T1� and
A2 � �N2; ninit2; X2;�2; Inv2; T2�. The composition A �
A1jjA2 of A1 and A2 is a tuple �N;ninit; X;�; Inv; T �,
where

1. N � N1 �N2;
2. ninit � �ninit1; ninit2�;
3. X � X1 [X2 (assume X1 \X2 � ;);
4. � � �1 [�2;
5. Inv�n1; n2� � Inv1�n1� ^ Inv2�n2�; and
6. T is given as follows:

. for all �n1; c1; �1; Y1; n
0
1� 2 T1 and

�n2; c2; �2; Y2; n
0
2� 2 T2;

if �1 is equal to �2, then T includes

��n1; n2�; c1 ^ c2; �1; Y1 [Y2; �n01; n02��;

. for all �n1; c1; �1; Y1; n
0
1� 2 T1, if �1 is not in

�1 \ �2, then for all n2 2 N2, T includes
��n1; n2�; c1; �1; Y1; �n01; n2��; and

. for all �n2; c2; �2; Y2; n
0
2� 2 T2, if �2 is not in

�1 \ �2, then for all n1 2 N1, T includes
��n1; n2�; c2; �2; Y2; �n1; n

0
2��.

Example: Railroad Crossing System. The standard railroad

crossing problem has been used to compare different formal

methods for real-time systems [13]. Fig. 1 shows an

automatic controller that opens and closes a gate at a

railroad crossing presented in [3]. The system is formed as

the composition of three components, Train, Gate, and

Controller, which execute in parallel and synchronize

through the events: approach, exit, lower, and down. When

a train approaches the crossing, Train sends an approach

signal to Controller and sends an in signal at least 300

seconds later to its environment to represent that a train

enters the crossing. When a train leaves the crossing, Train

generates an out signal to its environment for representing

that a train leaves the crossing and then sends an exit signal

to Controller for synchronizing with it. The exit signal is

sent within 500 seconds after the approach signal. Controller

sends a signal lower to Gate exactly 100 seconds after the

approach signal and sends a raise signal within 100 seconds

after exit. Gate responds to lower by moving down within

100 seconds and responds to raise by moving up between

100 and 200 seconds. The composed timed automaton from

Train, Gate, and Controller is shown in Fig. 2. For

simplicity, it ignores nodes that have no path from the

initial node because any such node is obviously unreach-

able. Node �i; j; k� represents that Train, Gate, and

Controller are at nodes i, j, and k, respectively.

2.2 The Semantics

The semantics of a timed automaton is given by executions

and behaviors. We first explain the executions using the

railroad crossing system in Fig. 2. Initially, the system

control resides at node �0; 0; 0�, and the values of clocks x, y,

and z are all zero. At 20.5 seconds, the values of x, y, and z

become 20.5 at node �0; 0; 0�. If transition b1 is taken at that

time, the system executes event approach, and control

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 455

Fig. 1. Timed automata for Train, Gate, and Controller.

moves to node �1; 0; 1�. Since x and z are reset by transition

b1, the values of x; y, and z are 0, 20.5, and 0, respectively.

The invariant of the node �1; 0; 1� is ªx � 500 ^ z � 100.º

Since the current values of x and z are zero, control can stay

at node �1; 0; 1� for at most 100 seconds. The enabling

condition ªz � 100º of transition b2 and the enabling

condition ªx � 300º of transition b3 remain false during

this 100 second time period. At time 120.5, the values of x

and z are both 100. Since the enabling condition of b2

becomes true at that time, the transition can be executed. On

the other hand, the enabling condition of b3 is still false.

Since control must leave from the node due to the invariant,

the system executes b2, i.e., performs event lower and moves

to the next node �1; 1; 2� at time 120.5.
We now define executions of a timed automaton. Let

v; v1; . . . represent clock valuations. For a valuation v and a

real number r, let v� r be valuation v0 such that v0�x� �
v�x� � r for x 2 X.

Definition 2.3 An execution of a timed automaton A � �N;
ninit; X;�; Inv; T � is defined as a finite sequence

�n0; v0�ÿ!a1;t1�n1; v1�ÿ!a2;t2�n2; v2� � � � ÿ!ak;tk�nk; vk�
or an infinite sequence:

�n0; v0�ÿ!a1;t1�n1; v1�ÿ!a2;t2�n2; v2� � � � ÿ!ak;tk�nk; vk� � � �
satisfying the following constraints:

1. Initiality: n0 � ninit, v0�x� � 0 for all x 2 X, and
t0 � 0;

2. Invariant Constraint: for each i � 0, �vi � r�
satisfies Inv�ni� for 0 � r � �ti�1 ÿ ti� (if it is
finite, �vk � r� satisfies Inv�nk� for r � 0);

3. S u c c e s s i o n C o n s t r a i n t : f o r e a c h i � 0
(0 � i � kÿ 1 if it is finite), there exists transition
ai�1 in T with source ni and target ni�1 such that

. �vi � ti�1 ÿ ti� satisfies condition�ai�1� and

.

vi�1�x� �
0 if x 2

resetclocks�ai�1�
vi�x� � ti�1 ÿ ti otherwise; and

8<:
. Monotonicity: ti � ti�1 for i � 0.2

In an execution, ti means the global time passed after the

start of the execution. And ªÿ!ai;ti º means that transition ai
happens ti time units after the system starts the execution,

and ªÿ!ai;ti �ni; vi� ÿ!ai�1;ti�1
º indicates that control stays at node ni

from ti to ti�1.
In the railroad crossing example, we have an execution

��0; 0; 0�; �0; 0; 0�� ÿ!b1;20:5��1; 0; 1�; �0; 20:5; 0��
ÿ!b2;120:5��1; 1; 2�; �100; 0; 100�� � � �

where valuation �r1; r2; r3� indicates that the values of x, y,

and z are r1, r2, and r3, respectively.

When we analyze a system we are usually interested in

behaviors rather than the valuations of clocks, where a

behavior is a sequence of events with their occurrence

times. A behavior of a timed automaton can be obtained

from an execution as described in the following definition.

Definition 2.4 For an execution

�n0; v0�ÿ!a1;t1�n1; v1�ÿ!a2;t2�n2; v2�ÿ!a3;t3�n3; v3� � � � ;
the corresponding behavior is

h �event�a1�; t1�; �event�a2�; t2�; �event�a3�; t3�; � � � i:

For example, the railroad crossing system has a behavior

h �approach; 20:5�; �lower; 120:5�; � � �i which comes from

the execution

��0; 0; 0�; �0; 0; 0�� ÿ!b1;20:5��1; 0; 1�; �0; 20:5; 0�� ÿ!b2;120:5 � � � :
The set of possible executions or behaviors can be

combined into a labeled transition system. A labeled

transition system is defined as follows.

Definition 2.5. A labeled transition system is a tuple
�S; S0; L;!�, where

1. S is a set of states;
2. S0 � S is a set of initial states;
3. L is a set of labels; and
4. !� S � L� S is a transition relation.

The formal definition of the corresponding labeled transi-

tion system for a given timed automaton is described in [1].

3 OUR APPROACH: BACKGROUND THEORY

Our approach is to add history equivalence to the definition

of states instead of clock valuations because clock values

cause state explosion. We also give a labeled transition

system for a timed automaton according to newly defined

states. We then define history equivalence and transition

bisimulation for minimizing states and discuss properties

which the minimized state space preserves.

3.1 States

We first define states for a given timed automaton

A � �N;ninit; X;�; Inv; T �. Let ainit be a dummy transition

representing the start of the execution such that target�ainit�
is the initial node ninit and resetclocks�ainit� is the set X of

all clock variables. We define a timed history as a sequence

h�a0; t0�; �a1; t1�; �a2; t2�; . . . ; �ai; ti�; . . .i
where a0 � ainit, t0 � 0, ai 2 T , ti 2 R, tiÿ1 � ti for i � 1.
We define a state as (node, timed history) instead of (node,
clock valuation). State

�n; h�a0; t0�; �a1; t1�; �a2; t2�; . . . ; �ak; tk�i�

456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

2. Monotonicity constraint ensures time that does not decrease but
allows several actions at the same time.

represents that the system starts its execution at time t0,
executes transitions a1; a2; . . . at times t1; t2; . . . , respec-
tively, and control is currently in node n. We note that
n � target�ak�. With this definition of states, we give an
execution of the system as follows.

Definition 3.1. (execution) For a timed automaton
A � �N;ninit; X;�; Inv; T �, an execution is given by:

�let thi � h�a0; t0�; �a1; t1�; . . . ; �ai; ti�i�

�n0; th0� !a1;t1�n1; th1�!a2;t2�n2; th2� � � � !ak;tk�nk; thk� � � �
satisfying

. initiality: n0 � ninit, a0 � ainit, t0 � 0;

. invariant constraint: vi � r satisfies inv�ni� for
0 � r � �ti�1 ÿ ti�;

. succession constraint: vi � �ti�1 ÿ ti� satisfies
condition�ai�1�; and

. time monotonicity: ti � ti�1,

where v0�x� � 0 for x 2 X, vi�1�x� � 0 for

x 2 resetclocks�ai�1�;
and vi�1�x� � vi�x� � �ti�1 ÿ ti� for x 62 resetclocks�ai�1�.
For a timed automaton A, all possible executions of A

define a labeled transition system as follows. Let execs�A�
be the set of all possible executions of A.

D e f i n i t i o n 3 . 2 . G i v e n a t i m e d a u t o m a t o n

A � �N;ninit; X;�; Inv; T �, the corresponding labeled

transition system is Mlts�A� � �Slts; Slts0; Llts;!lts�,
where

. Slts � f�n; th�j � � � �n; th� � � � 2 execs�A�g;

. Slts0 � f�ninit; h�ainit; 0�i�g;

. Llts � T �R; and

.

!lts �� Slts � Llts � Slts�
� f��n1; th1�; �a; t�; �n2; th2��jth2 � th1 � h�a; t�ig:

Here, we represent a transition ��n1; th1�; �a; t�; �n2; th2�� by:

�n1; th1�!a;t�n2; th2�:

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 457

Fig. 2. Timed automation for railroad crossing system.

We relate the notion of execution (called old execution)

in Definition 3.1 with the notion of execution in

Definition 3.1 as follows. For an old execution

�n0; v0�!a1;t1�n1; v1�!a2;t2�n2; v2� � � � ;
the corresponding newly defined execution is

�n0; th0�!a1;t1�n1; th1�!a2;t2�n2; th2� � � � ;
where thi � h�ainit; 0�; �a1; t1�; . . . ; �ai; ti�i. And for an

execution

�n0; th0�!a1;t1�n1; th1�!a2;t2�n2; th2� � � � ;
the corresponding old execution is

�n0; v0�!a1;t1�n1; v1�!a2;t2�n2; v2� � � � ;
where v0�x� � 0 for x 2 X, vi�1�x� � 0 for

x 2 resetclocks�ai�1�;
and vi�1�x� � vi�x� � �ti�1 ÿ ti� for x 62 resetclocks�ai�1�.

Fig. 3 shows a part of the labeled transition system
corresponding to the railroad crossing system in Fig. 2.

3.2 History Equivalence

For a timed history th � h�a0; t0�; �a1; t1�; �a2; t2�; . . .i, we
define (untimed) history by:

untimed�th� � ha0; a1; a2; . . .i:
For a state �n; th�, let untimed�n; th� � �n; untimed�th��.
Definition 3.3. (history equivalence) Two states s1 and s2

are history equivalent if untimed�s1� � untimed�s2�:

Given timed automaton A, if we minimize the labeled

transition system Mlts�A� with respect to history equiva-

lence, then the minimal labeled transition system Mhist�A� is
defined as follows.

Definition 3.4. For a timed automaton

A � �N;ninit; X;�; Inv; T �;
let Mlts�A� � �Slts; Slts0; Llts;!lts�. The minimal labeled

transition system with respect to history equivalence is
Mhist�A� � �Shist; Shist0; Lhist; !hist�, where

. Shist � funtimed�s��js 2 Sltsg;

. Shist0 � funtimed�s0�js0 2 Slts0g
�i:e:; f�ninit; hainitig�;

. Lhist � faj�a; t� 2 Lltsg (i.e., Lhist � T); and

.

!hist �
f�untimed�s1�; a; untimed�s2��j��s1; �a; t�; s2� 2!ltsg:

Here, we represent a state as a (node, untimed history) pair
after clustering history-equivalent states. For a state s �
�n; h� in Shist, let node�s� � n and history�s� � h. For a

transition tt in !hist , let label�tt� � a.

Definition 3.5. For a timed automaton

A � �N;ninit; X;�; Inv; T �;
let Mhist�A� � �Shist; Shist0; Lhist;!hist�. For a state

s 2 Shist,
. s is said to be reachable;
. history�s� is said to be valid; and
. node�s� is said to be reachable through history�s�.

For the railroad crossing system, the labeled transition

system shown in Fig. 3 is minimized with respect to history

equivalence as shown in Fig. 4.

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

Fig. 3. Labeled transition system for railroad crossing system.

Fig. 4. Reachability tree for railroad crossing system.

After collapsing history equivalence states, states lose

absolute clock values and transitions lose absolute transi-

tion time values. However, history equivalence preserves

reachability in the sense that all and only reachable nodes in

the original system A appear in the minimal labeled

transition system Mhist�A�. And also, history equivalence

preserves untimed behaviors of A, that is, h�1; �2; . . .i is a

behavior of M if and only if it is a behavior of Mhist�A�, that

is, there exists a sequence a1; a2; . . . in Mhist�A� such that

event�ai� � �i�.
3.3 Strong Transition Bisimulation

Definition 3.6. (transition bisimulation) For a timed

automaton A, let Mhist�A� � �Shist; Shist0; Lhist;!hist�. A

relation � � Shist � Shist is a transition bisimulation if for

all �s1; s2� 2 �, for all a 2 Lhist,
. whenever s1!a hists

0
1, there exists s02 such that

s2!a hists
0
2 and �s01; s02� is also in �;

. whenever s2!a hists
0
2, there exists s01 such that

s1!a hists
0
1 and �s01; s02� is also in �.

Two states s1 and s2 are said to be transition bisimilar.

Transition bisimulation is the same as strong bisimulation

[22]. We just call it transition bisimulation to emphasize that

label a represents a transition in T instead of an event in �.

If we minimize the labeled transition system Mhist�A�
with respect to transition bisimulation, the minimal labeled

transition system is given as follows. For a state s, let

equiv�s� be the set of states equivalent to s with respect to

transition bisimulation.

Definition 3.7. For a timed automaton A, let

Mhist�A� � �Shist; Shist0; Lhist;!hist�:
Then the minimal labeled transition system with respect

to history equivalence and transition bisimulation is

Mhb�A� � �Shb; Shb0; Lhb;!hb�, where

. Shb � fequiv�s�js 2 Shistg;

. Shb0 � fequiv�s�js 2 Shist0g;

. Lhb � Lhist;

. !hb� f�equiv�s�; a; equiv�s0��j�s; a; s0� 2!histg.
We note that the minimal labeled transition system Mhb�A�
has a finite number of states and transitions. (See

Theorem 4.2 later.) For each transition tt � �s; a; s0� in

!hb , let TAtransition�tt� � a. And for each s 2 Shb, let

incoming�s� (outgoing�s�) be the set of transitions in !hb

whose target (source) states are s.

Fig. 5 describes the relationship among Mlts�A�, Mhist�A�
and Mhb�A�, where hi � untimed�thi� for i � 0.

Theorem 3.1. For a timed automaton A, Mhb�A� preserves

reachability and event ordering:

1. reachability: n is reachable through some execution of
M iff Mhb�A� includes some state s such that
node�s� � n;

2. event ordering: h�1�2�3 . . .i is a behavior of M iff Mhb

has a sequence of transitions tt1tt2tt3 . . . with labels
a1a2a3 . . . such that event�ai� � �i.

Proof. We omit the proof. However, it is easy to see from

Fig. 5. tu

4 OUR APPROACH: ALGORITHM

Our approach is summarized as follows: given a timed

automaton A,

1. construct the labeled transition system Mlts�A�;
2. minimize Mlts�A�with respect to history equivalence

(we have Mhist�A�); and
3. minimize Mhist�A� with respect to transition bisimu-

lation (we have Mhb�A�).
However, in practice it is impossible to construct the

intermediate labeled transition systems Mlts�A� and

Mhist�A� because they have an infinite number of states

although Mhb�A� is finite. We thus develop an algorithm

that constructs the minimal labeled transition system

Mhb�A� with respect to history equivalence and transition

bisimulation, directly from A without generating the

intermediate labeled transition systems. In the algorithm,

we assume that we have the following functions:

1. transition-bisimilar(s1; s2): returns true if two states
s1; s2 are transition bisimilar; and

2. valid-history(h): returns true if history h is valid.

In the current implementation, the labeled transition system

Malg�A� generated from the algorithm is bigger than Mhb�A�
because we have a sufficient (not a necessary) condition for

checking transition bisimilarity among states, that is,

transition-bisimilar(s1; s2) may return false although s1; s2

are transition bisimilar. In this section, we present the

algorithm and then give how to implement the two

functions.

4.1 Construction Algorithm

We now present an algorithm that constructs a reachability

graph from a given timed automaton A. The resultant

reachability graph is the labeled transition system in which

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 459

Fig. 5. Relationship among labeled transition systems for timed automation A.

the number of states is reduced using history equivalence

and transition bisimulation.

The algorithm is given in Fig. 6. Step 1 is initialization.

During the algorithm, Explored keeps all explored states,

Unexplored keeps unexplored states which are immediately

reachable from explored states, and Transitions includes

explored transitions. Here, a state is a (node, untimed

history) pair. For a transition tt � �s1; a; s2� 2 Transitions,
let source�tt� � s1, target�tt� � s2 and label�tt� � a. Step 2

repeats as long as there is at least one unexplored state. In

Step 2, it picks an unexplored state s1. If there exists an

explored state s2 transition bisimilar to the selected state s1

(at Step 2A), then it gets rid of s1 and adjusts the target state

of the incoming transition of s1 as s2 in Step 2A-1. On the

other hand, if there is no such state, then the selected state is

added to Explored and states immediately reachable from

the state are created and added to Unexplored in Step 2A-2.

The algorithm generates the minimal labeled transition

system Mhb�A� with respect to history equivalence and

transition bisimulation if two functions transition-bisimilar

and valid-history are supported [18].

4.2 Implementation

We discuss how to compute transition-bisimilar(s1; s2) for
states s1 and s2 and valid-history(h) for a history h which are
used in the algorithm. We first define the minimum and
maximum time distances between transitions in a history,
and then give conditions, in terms of the distances, under
which a history is valid and two states are transition
bisimilar, respectively.

4.2.1 Minimum and Maximum Distances

Given a timed automaton A, let Mlts�A� be

�Slts; Slts0; Llts;!lts�:
For a valid history h � ha0; a1; . . . ; aki and for

1 � i � j � k;min dist�ai; aj; h�
and max dist�ai; aj; h� are defined as the minimum and

maximum time distances, respectively, from ai to aj for all

executions associated with the history:

min dist�ai; aj; h� � minftj ÿ tij�n; h�a0; t0�; . . . ; �ai; ti�; . . . ;

�aj; tj�; . . . ; �ak; tk�i� 2 Sltsg
max dist�ai; aj; h� � maxftj ÿ tij�n; h�a0; t0�; . . . ;

�ai; ti�; . . . ; �aj; tj�; . . . ; �ak; tk�i� 2 Sltsg:

460 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

Fig. 6. Construction algorithm.

Here, min dist�ai; aj; h� determines the earliest time at

which the transition aj can take place after the transition

ai, whereas max dist�ai; aj; h� determines the latest time by

which the transition aj must take place after the transition

ai. That is aj happens at least min dist�ai; aj; h� time units

and at most max dist�ai; aj; h� time units after ai for all

executions associated with h. For a clock x, reset�x; h� is the

last transition in h on which x is reset, and last�h� is the last

transition in the history, that is, last�h� � ak. We note that

there is not the case that x is not reset along h because x is

reset on ainit. At the entering time to state �l; h�, the value of

x i s in between min dist�reset�x; h�; last�h�; h� and

max dist�reset�x; h�; last�h�; h�.
We compute min dist and max dist using weighted

graphs. This method is similar to the one used by

Modechart [17]. For a history h � ha0; a1; . . . ; aki, let W�h�
be the weighted graph �V ;E;w�, where V is a set of vertices,

E is a set of directed edges, and w : E ! I is a weight

function of edges such that:

. V � fvij0 � i � kg (vi is a vertex corresponding to
ai);

.

E �f�viÿ1; vi�; �vi; viÿ1� j 1 � i � kg[
f�vi; vj� j x � l 2 cond�aj�

and ai � reset�x; ha0; a1; . . . ; ajÿ1i�g[
f�vj; vi� j �x � l 2 cond�aj�

or x � l 2 inv�source�aj��
and ai � reset�x; ha0; a1; . . . ; ajÿ1i�g;

. if i < j, then

w�vi; vj� :� max�f0g [fljx � l 2 cond�aj� and

ai � reset�x; ha0; a1; . . . ; ajÿ1i�g�;

if i > j; then

w�vi; vj� :� max�fÿ1g [fÿlj�x � l 2 cond�ai�
or x � l 2 inv�source�ai��� and

aj � reset�x; ha1; a2; . . . ; aiÿ1i�g:

We assign the earliest time that aj can happen after ai

happens to w�vi; vj�, directly from conditions of M. For

cond�aj�, relations with ª� º define w�vi; vj� and relations

with ª� º defines w�vj; vi� for i < j. Suppose that

cond�aj� � x1 � c1 ^ x2 � c2; and

ai � reset�xl; ha0; a1; . . . ; ajÿ1i�

for l � 1; 2. Then, aj can happen at least c1 time units and at

most c2 time units after ai happens. In other words, the

earliest time from executing ai to executing aj is c1 and the

earliest time from executing aj to executing ai is ÿc2. Thus,

we assign c1 to w�vi; vj� and ÿc2 as w�vj; vi�. If several

relations with ª� º exist, for example,

cond�aj� � x1 � 10 ^ x2 � 20

and ai � reset�xl; ha0; a1; . . . ; ajÿ1i� for l � 1; 2, then aj can

happen both 10 and also 20 time units after ai happens.

Thus, aj can happen 20 time units (maxf10; 20g) after ai

happens, that is, w�vi; vj� � 20. On the other hand, if several

relations with ª� º exist (say,

cond�aj� � x1 � 10 ^ x2 � 20; inv�source�aj�� � x3 � 30;

and ai � reset�xl; ha0; a1; . . . ; ajÿ1i� for l � 1; 2; 3), then aj

must happen within 10 time units, within 20 time units, and

within 30 time units after ai. Thus, aj must happen within

10 time units (minf10; 20; 30g), that is, w�vj; vi� � ÿ10.

For a valid history h, we compute min dist and max dist

from the weighted graph W �h� as follows. In W�h�, there

can be several paths from vi to vj with different weights.

Suppose that there exist two paths p1 and p2 from vi to vj for

i � j with weights c1 and c2. Then aj happens at least c1

time units after ai, in order that conditions associated with

p1 are satisfied and happens at least c2 time units after ai in

order that conditions associated with p2 are satisfied. In

order that all conditions in h are satisfied, aj happens at

least maxfc1; c2g time units after ai. Similarly, if there exist

two paths p1 and p2 from vj to vi with weights ÿc1 and ÿc2,

then ai happens at least maxfÿc1;ÿc2g time units after aj.

In other words, aj happens at most ÿmaxfÿc1;ÿc2g time

units after ai. We determine min dist;max dist as follows:

. min dist�ai; aj; h� is equal to the maximum weight

among all path weights from the node correspond-

ing to ai to the node corresponding to aj; and
. max dist�ai; aj; h� is equal to the absolute value of

the maximum weight among all path weights from

the node corresponding to aj to the node corre-

sponding to ai.

4.2.2 Testing History Validity

Using the weighted graph, we can compute whether a given

history is valid by the following theorem.
Definition 4.1. For a history h, h is valid if and only if W�h�

has no positive cycle.

Proof. The proof is given in the appendix. tu

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 461

4.2.3 Testing Transition Bisimulation

We show how to compute function transition-bisimilar(s1; s2)

in Fig. 6. Transition bisimulation is a relation for future

behaviors. We cannot enumerate all future behaviors due to

their infiniteness. Thus, we develop a condition with which

we decide transition bisimilarity among states without

regarding future. The condition is given in terms of

minimum and maximum time distances.

Let a1 � a2 represent that a1 precedes a2. Let Maxc be the

largest among the constants appearing in the conditions of

the timed automaton. We can partition clocks in X into

three according to history h as follows:

Definition 4.1. For a history h,

1.

P1�h� �
fx 2 Xjmin dist�reset�x; h�; last�h�; h� > Maxcg;

2.

P2�h� �
fx 2 Xjmin dist�reset�x; h�; last�h�; h� �Maxc and

max dist�reset�x; h�; last�h�; h� > Maxcg;

3.

P3�h� �
fx 2 Xjmax dist�reset�x; h�; last�h�; h� �Maxcg:

Definition 4.2. For two states s1 and s2, let h1 � history�s1�
and h2 � history�s2� and let

. cond1�s1; s2� :� node�s1� � node�s2�;

.

cond2�s1; s2� : � P1�h1� � P1�h2� ^ P2�h1�
� P2�h2� ^ P3�h1�
� P3�h2�

.

cond3�s1; s2� :� cond3:1�s1; s2� ^ cond3:2�s1; s2�
cond3:1�s1; s2� :� 8x 2 P2�h1�:
min dist�reset�x; h1�; last�h1�; h1� �
min dist�reset�x; h2�; last�h2�; h2�

cond3:2�s1; s2� :� 8x 2 P3�h1�:
min dist�reset�x; h1�; last�h1�; h1� �
min dist�reset�x; h2�; last�h2�; h2�^

max dist�reset�x; h1�; last�h1�; h1� �
max dist�reset�x; h2�; last�h2�; h2�

.

cond4�s1; s2� :� 8x1; x2 2 P2�h1� [P3�h1�:
reset�x1; h1� � reset�x2; h1�
) cond4:1�s1; s2� _ cond4:2�s1; s2�

cond4:1�s1; s2� :�
max dist�reset�x1; h1�; reset�x2; h1�; h1� > Maxc ^
max dist�reset�x1; h2�; reset�x2; h2�; h2� > Maxc ^
min dist�reset�x1; h1�; reset�x2; h1�; h1� �
min dist�reset�x1; h2�; reset�x2; h2�; h2�

cond4:2�s1; s2� :�
min dist�reset�x1; h1�; reset�x2; h1�; h1� �
min dist�reset�x1; h2�; reset�x2; h2�; h2�^

max dist�reset�x1; h1�; reset�x2; h1�; h1� �
max dist�reset�x1; h2�; reset�x2; h2�; h2�:

Then,

bisim cond�s1; s2� �
cond1�s1; s2� ^ cond2�s1; s2�^
cond3�s1; s2� ^ cond4�s1; s2�:

The first condition, cond1�s1; s2�, means that two states

are associated with the same nodes. We note that states that

come from the different nodes are not merged by history

equivalence and transition bisimulation. (See the definition

of history equivalence in Definition 3.3 and the definition of

transition bisimulation in Definition 3.6.)

The conditions cond2�s1; s2� and cond3�s1; s2� show the

relation between the time that each clock was reset and the

current time. Obviously, if

min dist�reset�x; h1�; last�h1�; h1�
is greater than Maxc and min dist�reset�x; h2�; last�h2�; h2�
is greater than Maxc, then the enabling condition of s1 and

s2 over x is evaluated to the same value in both s1 and s2.

For example, suppose Maxc � 10 and the enabling condi-

tion is x � 10. Here the enabling condition evaluates to false

in both s1 and s2 if their min dist values are greater than 10.

If their minimum distances are not greater than Maxc, then

their minimum time distances should be the same and their

maximum time distances should be either the same or any

values greater than or equal to Maxc. Here, the evaluated

value of the form x � k for � � � or � is the same in both

the states.

The conditions cond2�s1; s2� and cond4�s1; s2� give the

relation between t he reset times of every two clocks.

Suppose that

min dist�reset�x; h1�; last�h1�; h1� �
min dist�reset�x; h2�; last�h2�; h2� � 5 and

min dist�reset�y; h1�; last�h1�; h1� �
min dist�reset�y; h2�; last�h2�; h2� � 3:

462 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

Here, cond2�s1; s2� is true. However, if

min dist�reset�y; h1�; reset�x; h1�; h1� � 1

and

min dist�reset�y; h2�; reset�x; h2�; h2� � 2

(i.e., the value of �xÿ y� is greater than or equal to 1 at

state s1 and 2 at state s2), then an enabling condition

x � 5 ^ y � 4 is satisfiable at state s1, but is always false

at state s2. This is why the third condition is necessary in

addition to the second condition.
Lemma 4.1 states that bisim cond is a condition for

bisimulation. It is a sufficient condition, not a necessary

condition. Lemma 4.2 states that the construction algorithm,

shown in Fig. 6, always terminates.

Lemma 4.1. If bisim cond(s1; s2) is true, then s1 and s2 are

transition bisimilar.

Proof. The proof is given in the appendix. tu
Theorem 4.2. A relation f�s1; s2� j bisim cond�s1; s2�g has

finitely many equivalence classes.

Proof. The proof is given in the appendix. tu

The total number of states ever put into Unexplored is also

finite. Thus, the algorithm always terminates. Theorem 4.3

shows that in the worst case, the size of the timed

reachability graph generated using Definition 4.2 is doubly

exponential to the number of clocks. This bound is the same

as that of the minimal region graph [4].

Theorem 4.3. For a given timed automaton, the number of

equivalence classes using bisim cond is bounded by

O�jLj �Maxk�kc �, where Maxc is the largest among the

constants appearing in the invariants and enabling conditions

and k is the number of clocks.

Proof. It follows directly from the proof of Theorem 4.2. tu
Example. In the railroad crossing system in Fig. 4, let us

consider two states

s1 � ��1; 1; 2�; hb0; b1; b2i� and

s2 � ��1; 1; 2�; hb0; b1; b2; b4; b8; b12; b15; b17; b19; b20; b2i�:
Let h1 � history�s1� and h2 � history�s2�. Obviously,

cond1�s1; s2� is true. For clock x,

min dist�reset�x; h1�; last�h1�; h1� �
min dist�reset�x; h2�; last�h2�; h2� �

max dist�reset�x; h1�; last�h1�; h1� �
max dist�reset�x; h2�; last�h2�; h2� � 100:

The minimum and maximum distances for z are also

100. And the minimum and maximum distances for y

are zero because reset�y; hi� � last�y; hi� for i � 1; 2.

Thus, cond2�s1; s2� is true. Finally, cond3�s1; s2� is also

true because min dist�reset�x; hi�; reset�y; hi�; hi� equals

to 100 for i � 1; 2 and so on. Thus, �s1; s2� is in

transition bisimilar, that is, the two states s1 and s2 are

transition bisimilar.

Fig. 7 shows the reachability graph for the railroad

crossing system.

Implementation. We have implemented in TREAT the

algorithm that generates the reachability graph with time

relations using C++ and the algorithm that composes two

timed automata into a global timed automaton. The

program is about 2,000 lines of code. The reachability graph

shown in Fig. 7 was drawn manually using the reachability

information that was automatically generated.

4.3 Analysis of Properties

For real-time systems, the practical goal is to verify safety

properties such as deadlock-freeness, mutual exclusion, and

meeting timing constraints. Reachability analysis is used to

prove that systems never enter unsafe states. We can prove

verify safety properties using reachability graphs generated

from the algorithm.
Absence of Deadlock. In the reachability graph, if we

can find a state which has no outgoing transitions, we

conclude that the system can deadlock or terminate.
General Properties as Timed Automata. In [3], proper-

ties given in timed automata are proved as follows:

1. Model the system with timed automata,
M1;M2 . . . ;Mn;

2. Specify properties as a timed automaton Ms;
3. Construct the reachability graph from the composed

timed automaton, �M1jjM2jj . . . jjMnjjMs�; and
4. Decide whether the system is correct.

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 463

Fig. 7. Reachability graph for the railroad crossing system.

5 APPLICATIONS

We now illustrate the application of our approach with

three examples: the railroad crossing control system, the

Fischer's mutual exclusion protocol, and the active structure

control system, and compare the experimental results of

TREAT with HyTech [15] and Kronos [10], [11].

The experiments were executed on Sun Microsystems

60 MHz SuperSPARC with 256 MB of physical memory.

They were executed under the following three limitations:

1. Time limitation: every experiment is performed at
most for 24 hours;

2. Memory limitation: memory usage of every experi-
ment is limited to 256 MB; and

3. Tool limitation: each tool may have constraints
such as the size of the system given as an input.
If an experiment fails due to the time limitation,
the memory limitation, or the tool limitation, then
it is represented by failtime, failmem, or failtool,
respectively.

5.1 Railroad Crossing System

The railroad crossing control system is a benchmark

example for real-time formal method. The railroad crossing

lies in a region delimited by entry and exit sensors that

detect the entry and exit of trains. There are n tracks in the

crossing; that is, there can be up to n trains approaching,

leaving or in the crossing. The correctness of the railroad

crossing control system is given by: whenever a train is in

the crossing, the gate is down.

Model. The railroad crossing control system RCCS is

given in Fig. 8. The system is modified from the system

described in Section 2.1 to deal with multiple tracks. The

Train process consists of processes Traini which models the

behaviors of track i. If RCCS has k tracks, then

RCCS � Train1jj . . . jjTrainkjjControllerjjGate:

For 1 � i � k, Traini has four nodes. Controller has three

nodes and Gate has four nodes. In RCCS, there exist k� 2

clocks since for 1 � i � n, the Traini process has clock xi,

the Controller process has clock y and the Gate process has

clock z. RCCS has a data variable nt to represent the

number of trains in the crossing.

Analysis. We now show whether the RCCS process

satisfies the safety property. To satisfy the property, Gate

must stay in node g2 while Traini is in node t2 for some i. If

Traini is in t2 for some i and Gate is in g0, g1, or g3, then the

system is unsafe. Thus we can prove the safety property by

showing whether there exists an unsafe state in

Malg�RCCS� after TREAT generates Malg�RCCS�.
Experimental Results. Table 1 shows experimental

results of TREAT, HyTech, and Kronos. TREAT gives that

the number of states for one track is 12, the number of states

for two tracks is 83, and the number of states for three tracks

is 10,892. For four tracks, TREAT fails due to the time

limitation, i.e., TREAT fails to generate the minimal labeled

transition system within 24 hours. For k � 1; 2; 3,

Malg�RCCS� does not include a state that Traini is in t2

for some i and Gate is in g0, g1, or g3. Thus, the railroad

crossing control system satisfies the safety property.

For TREAT and HyTech, it gives the time taken and the

number of states generated during analysis. Since Kronos

dose not construct the state space but performs symbolic

model checking, it gives the time taken for analysis. HyTech

provides both forward and backward analysis techniques.

The time taken by TREAT and HyTech includes the

composition time as well as the analysis time. On the other

hand, the time taken by Kronos includes only the analysis

time because Kronos accepts the composed system as an

input.

For HyTech's forward analysis approach, HyTech gen-

erates 12 regions in 2.69 seconds for one track. With two

tracks, HyTech fails due to the time limitation. In fact,

HyTech does not terminate because newly generated

regions are not included in existing regions at each

iteration. For example, there exists a behavior such that at

least one train is always in the crossing, that is, before a

train in track 1 leaves the crossing, a train in track 2 enters

the crossing, and vice versa. For node �t2; t0; c0; g2�, the

value of x1 is always in [300, 500] and z increases at each

iteration because z is never reset. At each iteration, a newly

generated region for �t2; t0; c0; g2� is not included in existing

regions. As we see in this case, one advantage of our

approach over the forward analysis is to generate a finite

number of states for any given system.

For HyTech's backward analysis approach, it proves the

property up to three tracks like TREAT. TREAT performs

the analysis faster than HyTech up to two tracks while

HyTech performs the analysis faster than TREAT for three

tracks. The backward analysis does not generate the

reachable state space of the system. The states generated

by the backward analysis are not the states to which the

initial state can reach but the states from which the error

state is reached.

Compared to the results of Kronos, Kronos proves the

safety property up to five tracks. With six tracks, Kronos

fails to compose the system due to the tool limitation.

Kronos allows the number of nodes less than 216 because

nodes are represents using the C type ªshortº (2 bytes). But,

the number of nodes of the composed system with six

tracks exceeds the limit. Kronos gives much better results

than TREAT and HyTech in this example. Kronos does not

construct the reachable state space.

5.2 Fischer's Mutual Exclusion Protocol

Mutual exclusion arises when it is necessary for a shared

resource to be accessed by only one process at a time. With

concurrent systems, more than one process may simulta-

neously try to access the same resource. Thus the systems

464 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

are required to provide a mechanism that makes accesses to

a critical resource by concurrent processes mutually

exclusive. One such technique is a simple timing-based

mutual exclusion protocol due to Fischer [20].

In Fischer's protocol, the system MUTEX has several

processes, each Pi executes the algorithm shown in Fig. 9.

Assume that the statement s :� i takes no more than a time

units. Then we have two timing parameters a and b in the

algorithm. The algorithm includes a shared variable s. In

MUTEX, it violates the mutual exclusion if it includes a

state in which any two processes Pi and Pj are in the critical

sections CSi and CSj simultaneously. In other words, the

correctness of the system is that the system never reaches

such a state.

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 465

Fig. 8. Railroad crossing control system.

Model. The shared variable is modeled as a process S

since CTSM does not have shared variables. Then

MUTEX � P1jjP2jj . . . jjPnjjS for n concurrent processes.

We describe MUTEX=�P1jj . . . jjPnjjS� for a � 10 and b � 20,

that is assignment s :� i takes at most 10 time units and the

delay in Step 2 is 20 time units. The system MUTEX has

channels value�j; i�, set�0; i�, set�i; i� for 1 � i; j � n, as

shown in Fig. 10a. Through event value�j; i�, process S is

synchronized with Pi to inform that the current value of s is

j. Through set�i; i�, process Pi is synchronized with process

S to inform that Pi changes the value of s to i. And, action

set�0; i� by process Pi is sent to process S to indicate that Pi
changes the value of s to zero.

Process S consists of (n� 1) nodes representing the

values (0; 1; . . . ; n) of s. The process is initially at node 0,

where it outputs a signal to channel value�0; i� if Pi wants to

get the value of s for 1 � i � n. If it receives a signal from

channel set�i; i�, then it moves to node i. For 1 � j � n,

node j represents that the value of s is j. At node j, the

process S outputs a signal to channel value�j; i� if Pi wants

to get the value of s for 1 � i � n. If it receives a signal from

channel set�0; i�, then it returns to the initial node 0. If it

receives a signal from channel set�i; i� for 1 � i � n, then it

moves to node k. Fig. 10b shows the process S for n � 2.

For 1 � i � n, process Pi is shown in Fig. 10b. It has a

clock xi to represent the timing constraints. It is initially at

node 0. It can move to the next node 1 at any time if s � 0

(i.e., it receives a signal from channel value�0; i�). At node 1,

it sends a signal to process S through channel set�i; i�
within 10 time units because assignment s :� i takes at most

10 time units, and moves to node 2. The timing constraint is

given by the invariant ªxi � 10º of node 1. At node 2, it gets

the value of s from process S at least 20 time units after it

enters to the node due to the statement. The timing

constraint is given by the enabling conditions ªxi � 20º in

outgoing transitions from node 2. If it receives a signal from

channel value�i; i� (i.e., s � i), then it enters the critical

section CSi. If it receives a signal from channel value�j; i� for

i 6� j (i.e., s 6� i), then it fails to enter the critical section and

returns to the initial node 0.

For MUTEX with a � 10; b � 10, all processes are the

same except for the enabling conditions ªxi � 20º in

outgoing transitions from node 2 of process Pi is changed

to ªxi � 10.º

Analysis. We show that the system MUTEX satisfies

mutual exclusion using TREAT. The system violates the

mutual exclusion property if and only if it includes a state

in Malg�MUTEX� such that any two processes Pi and Pj are

in the critical sections CSi and CSj simultaneously.

Experimental Results. Table 2 shows the experimen-

tal results. The results of TREAT for MUTEX are as

follows. The number of reachable states of the system

with a � 10; b � 20 is 35, 825, 3,175 for n � 2; 3; 4,

respectively, and the number of reachable states of the

system with a � 10; b � 10 is 61, 1,091, 18,616 for

n � 2; 3; 4, respectively, MUTEX satisfies the mutual

exclusion property for a � 10; b � 20, but MUTEX

violates the property for a � 10; b � 10. This property

states that any two or more processes are in the critical

sections are reachable in the system with a � 10; b � 10.

From these experimental results, we recognize that the

correctness of the mutual exclusion protocol depends on

the values of timing parameters a and b. Table 2a shows

the results for a � 10 and b � 20.

Compared to the results of HyTech's forward analysis,

TREAT successfully performs the analysis up to four

466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

Fig. 9. Fischer's mutual exclusion protocol.

TABLE 1
Experimental Results: TREAT, HyTech, and Kronos for the Railroad Crossing Control System

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 467

Fig. 10. Timed automata for mutual exclusion protocol. (a) Process configuration. (b) Process description.

processes while HyTech fails due to the time limitation for

four processes when a � 10 and b � 10. For a � 10 and

b � 20, HyTech generates less states than TREAT with two

or three processes. On the other hand, HyTech generates

4,769 states and TREAT generates 3,174 states with four

processes. For a � 10 and b � 10, HyTech generates less

states than TREAT with two. However, HyTech explores

1,974 states while TREAT generates 1,091 with three

processes.

For HyTech's backward analysis approach, it proves the

property up to five processes. Let us consider the system

with n � 4, a � 10 and b � 10. TREAT generates 18,616

states reachable from the initial state. And HyTech

generates 2,849 states that can reach the error states in

which the mutual exclusion violates.

Compared to the results of Kronos, Kronos gives the

correctness result much faster than TREAT and HyTech and

analyzes up to five processes because Kronos does not

generate the state space but performs symbolic model

checking.

5.3 Active Structure Control System

Elseaidy, Cleaveland, and Baugh [12] present an active

structure control system (ASCS) which monitors the state

of the system (e.g., accelerations and displacements), and

provides the counter external excitation of the structure.

The active structural control system contains three major

components: a sensor, which monitors the state of the

system; an actuator, which applies forces to the structure;

and a control process, which feeds the data provided by the

sensor to a control algorithm that calculates the appropriate

forces which the actuator device should provide to counter

external excitation of the structure. The result in [25] shows

that the system provides satisfactory performance if the

time between pulses is bounded by T0=8 and T0=2 for the

natural period T0 � 29msec of a structure. Thus the

correctness of the system is given by: the time between

successive pulse applications must be in �37; 145�.
Model. The system ASCS consists of three components:

Sensor, Actuator, and Controller, which are described in

Fig. 11. Events tau s; tau a; tau c represent internal actions

of Sensor, Actuator, and Controller, respectively. There are

two channels sensor controller and controller actuator.

Sensor sends a message to Controller via channel

sensor controller, Controller sends a message to Actuator

via controller actuator.

Sensor has a clock x1 to represent timing constraints.

Sensor collects data for 50 to 55 time units at node 1. It sends

the data to Controller. To send the data, Sensor first

prepares communication for 10 time units at node 2, waits

for synchronization with Controller using action

sensor controller at node 3, and sends the data to Controller

for five time units at node 4.

Actuator has a clock x4 to represent timing constraints.

Actuator receives from Controller a message via channel

468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

TABLE 2
Experimental Results: TREAT, HyTech, and Kronos for the Mutual Exclusion Protocol

(a) Correct specification a � 10 and b � 20. (b) Incorrect specification a � 10 and b � 10.

controller actuator. To receive the message, it sets up

communication for 10 time units at node 1, waits for

synchronization with Controller through action

controller actuator at node 2, and receives the message for

five time units at node 3. After getting a message from

Controller, Actuator generates a pulse event for observation

of the start of pulse application at node 4. It then applies

forces to the structure for 25 to 30 time units at node 5.

Controller has two clocks x2 and x3. Clock x2 is used to

represent the total time elapsed in each node, and clock x3

is used to hold the total time elapsed since the previous

pulse application. Controller also has a Boolean variable

first which is true at the first iteration and then becomes

false. Controller repeatly gets data from Sensor, and if

enough time has elapsed since the previous pulse applica-

tion, it calculates the appropriate pulse magnitude and

sends it to Actuator. In detail, to get the data from Sensor,

Controller first prepares communication for 10 time units at

node 1, waits for synchronization with Sensor using action

sensor controller at node 2, and receives the data for five

time units at node 3. After the communication, it moves to

node 4. At node 4, we have three cases: 1) if there is no

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 469

Fig. 11. Timed automata for active structure control system.

previous pulse application (i.e. first is true), then

Controller moves to node 6; 2) if enough time has elapsed

(i.e. x3 � 135), then Controller also moves to node 6; and 3)

otherwise it moves to node 5. At node 5, Controller waits for

20 to 25 time units and then returns to the initial node 1. At

node 6, Controller calculates the pulse magnitude for 40 to

45 time units. To send it to Actuator, Controller prepares

communication for 10 time units at node 7, waits for

s y n c h r o n i z a t i o n w i t h S e n s o r u s i n g a c t i o n

controller actuator at node 8, sends it for five time units

to Sensor at node 9, and returns to the initial node 1.

Analysis. One of the correctness properties for the

system is a bounded response time property that the time

between successive pulse applications must be in the range

�37; 145�. To show the timing requirement, we have a

monitoring process Mon which goes to the error state

whenever the time between successive pulses is less than 37

or greater than 145, as shown in Fig. 12.

Experimental Results. TREAT constructs the composed

CTSM process ASCSjjMon. The composed process has 360

nodes and 767 transitions. The composed process has five

clocks, x1, x2, x3, x4, and y.

Table 3 shows the experimental results for the system.

The first row shows the result for the correctness that the

time between successive pulse applications is in the range

�37; 145�. TREAT outputs the labeled transition system with

133 states, which takes 3.1 seconds. In the system, there is

no error state. Therefore, we conclude that the system

satisfies the timing requirement. As a comparison, Elseaidy,

Cleaveland, and Baugh report that the reachability graph

has 3,174 states [12]. It takes 171 seconds on Sparc 2. Thus,

TREAT reduces the state space by 1/14 because TREAT

minimizes the time state space.

Compared to HyTech's forward analysis, it explores

smaller number of states than TREAT but takes more time

than TREAT. HyTech's backward analysis fails due to

memory overflow. For Kronos, it takes 4.8 hours. This

shows that symbolic model checking is not always faster

than the state space exploration approach.

The second row gives the result for the correctness

with the time range �37; 125�. TREAT outputs the labeled

transition system with 142 states, which takes

3.3 seconds. The labeled transition system includes error

states, and thus, the system violates the timing

requirement for range �37; 125�.
5.4 Summary

We summarize the experimental results as follows.

TREAT gave better performance than HyTech's forward

analysis except for the active structure control system.

TREAT generated smaller state space than HyTech and

performed faster than HyTech for the railroad crossing

control system, the Fischer's mutual exclusion protocol.

Moreover, TREAT successfully analyzed the railroad cross-

ing system for two and three tracks and the Fischer's

mutual exclusion protocol for n � 4; a � 10; b � 10 while

HyTech failed.

For HyTech's backward analysis, it gave better perfor-

mance than TREAT for the railroad crossing control system

and the Fischer's mutual exclusion protocol. However, it

failed to analyze the active structure control system even

though TREAT analyzed it within several seconds.

Kronos does not generate the state space but performs

symbolic model checking. Thus, it showed better perfor-

mance than TREAT and HyTech for most of the

experiments. To our surprise, the results of the active

470 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

TABLE 3
Comparison: TREAT, HyTech, and Kronos for Active Structural Control System

Fig. 12. Timed automata for correctness property (Active Structure Control System).

structure control system disproves the popular belief that

symbolic model checking always gives better performance

than state space exploration approach. Kronos takes 4.8

hours for the analysis while TREAT takes just 3.1 seconds.

Through these experiments we observed that for Kronos it

is hard to debug when the descriptions of given systems

include errors because Kronos does not generate the

explored states or erroneous traces. For the railroad

crossing control system with six tracks, Kronos fails to

compose the system due to the tool limitation. Kronos has

strong constraints on the input descriptions that the

number of nodes, the number of transitions and the

largest constant are required to be less than 28 because

they are represents using the C type ªshortº (2 bytes).

One of the lessons from these experiments is that there is

no analysis approach that always performs better than

others and thus it would be advantageous to incorporate

various analysis approaches into TREAT.

6 RELATED WORK

We briefly overview other work on reachability analysis

for real-time systems. In real-time systems, a state can

be unreachable due to timing constraints. Although

timing constraints have different expressions in different

models, the property that time increases uniformly and

unboundedly is the same. The domain of time is either

discrete or dense. Many real-time models [27], [24], [17]

follow the discrete time semantics since it is easier to

handle and analyze. For real-time systems with dense

time, little work has been done on timed reachability

analysis. The most successful method for dense time is

proposed by Alur et al. [2].

In Communicating Real-time State Machines (CRSMs)

[27], a system consists of a set of CRSMs connected with

one-to-one communication channels. CRSMs use the set of

integers to represent time. Each CRSM has a finite set of

data variables, control locations and transitions. Transitions

consist of an enabling condition, an action, a transformation

function, and lower and upper time bounds. For a transition

with time bound �l; u�, the system can execute the action of

the transition at least l time units and at most u time units

after the transition is enabled. The behaviors of the global

system are time-stamped traces of actions. Raju [26] gives a

method to generate a reachability graph representing the

behaviors. In the reachability graph, a node consists of the

current location of each CRSM, the variable valuation, and

the time spent by each CRSM in its current location. An

edge is labeled with a set of actions executed and the time

gap between nodes. The domain of each variable is

restricted to be finite, and thus the number of possible

variable valuations are finite. The time spent by each CRSM

labeling a node can be distinguished using �c� 1� different

values, where c is the largest value of upper bounds of

transitions. Since time is given by the set of integers, the

reachability graph is always finite. This approach is based

on discrete time, so each state can be represented as time

spent by each CRSM in its current location. But, in dense

time semantics, if time spent in its current location is given

in a state, infinitely many states exist. On the other hand, in

our approach, each minimized state is represented as

relative time intervals between clocks, so finitely many

states exist in dense time semantics.

Timed Transition Models (TTMs) [24] also uses discrete

time. Time is modeled using an external and conceptual

global clock which ticks infinitely often. A system has a set

of TTMs, each of which consists of locations and transitions.

In transitions, there are enabling conditions, transformation

functions and lower and upper time bounds, similarly to

CRSM. In the reachability graph, a node consists of the

possible transitions as well as the current variable valua-

tions. The possible transitions are decorated with the

current time bound. Each edge represents either a TTM's

transition or a tick transition. The tick transition represents

a unit of time passage. With a tick transition, the current

time bounds decorated in transitions are decreased by one

down to zero. As long as a TTM has a finite number of

valuations, the reachability graph is finite. We note that

edges represent at most one time unit passage in TTM,

whereas edges represent several time units in CRSM.

Modechart [16] is a graphical specification language for

real-time systems which allows a user to describe a system

in a hierarchical and modular way. A Modechart specifica-

tion consists of modes that can be running in parallel or

sequentially. There are three kinds of modes: primitive

modes, serial modes, and parallel modes. A primitive mode

contains an action with lower and upper time bounds. In

Modechart, events is an instantaneous change such as the

start of an action, the end of an action, the start of a mode,

the end of a mode, etc. A serial mode has several modes

connected by transitions. Transitions are labeled with either

events or lower and upper time bounds. A parallel mode

includes a set of modes running simultaneously. The

reachability analysis for a Modechart is described in [17].

In the reachability graph, each node represents an event

occurrence, and each edge represents the causality that the

target node can happen as the result of the event of the

source node and time passage. The timing relation between

nodes is computed using the time bounds in actions and

transitions, and is used to compute the reachability of

nodes. The resulting graph is finite because there exist

finitely many distinguishable nodes and timing relations.

The condition distance equivalence relation(deq) used to

distinguish nodes is computed using weighted graph like

the condition bisim cond in Definition 4.2. The difference is

that while deq compares the distances between a node and

its parent, bisim cond compares the distances between a

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 471

nodes and its all predecessors that reset clocks because

clocks can be reset anytime and can be compared in any

enabling conditions.

Timed automata introduced in this paper has dense time

semantics unlike CRSM, TTM, and Modechart. Because

there can be an arbitrary number of clock variables and

transitions can reset any subset of clock variables, time

dependent behaviors of a real-time system are more

expressive. Alur et al. [2] propose region graphs as

reachability graphs. A region consists of a location and a

set of clock valuations that are equivalent. Two valuations

are equivalent if the integral parts of each clock are the same

and the orderings of fractional parts of all the clocks are the

same. If the valuations are equivalent, then they have the

same reachability. The region graph has size exponential in

the number of clocks and the size of the constants that

appear in the enabling conditions of the transitions [2].

Because the region graph is too fine-grained, more valua-

tions that have the same reachability are equated in [4], [29].

Their algorithms, called minimization, partitions the whole

state space until all regions in the partition include bisimilar

states. Comparing to our approach, a node includes states

that have the same enabled immediate transitions in the

minimal region graph approaches. On the other hand, our

approach is minimized based on traces, so a node is a

collection of states that have the same transitions enabled

immediately or in the future.

One approach to generate the reachable state space for

timed automata is forward and backward analysis [14], [5].

If the reachability problem is given as: ªCan the system

reach from a state in region Ri to a state in region Rf?,º then

the problem is solved using fixed-point methods: forward

and backward fixed-point computations [21]. The forward

(backward) fixed-point procedure starts with the set Q � Ri

(Q � Rf) and repeatly adds states to (from) which any state

in Q can reach (be reached). The procedure terminates if at

some stage Q \Rf (Q \Ri) is not empty or no new states

can be added. The procedure may not terminate at all. On

the other hand, our approach always terminates. This

verification method is implemented in Kronos [10], [11] and

Hytech [15]. In this approach, regions are constructed

independently from properties that are verified.

To reduce the state space for timed automata, Yi et al.

[30], [21] present a symbolic technique that partitions the set

of clock valuations according to the particular property to

be verified. More clock valuations can be equated because

the approach partitions the set of valuations only if they

affect the satisfiability of the given property differently. This

approach is implemented in Uppaal [7]. In [28], Sokolsky

and Smolka also present a symbolic technique that explores

the portion necessary to determine the truthhood the given

property. If a real-time system is represented as the

composition of a collection of timed automata, then the

global automaton is constructed on-the-fly.

7 CONCLUSION

We have presented an algorithm to cope with the state

explosion problem in generating the state space of a timed

automaton. Our algorithm clusters a set of states that are

equivalent under the notions of history equivalence and

transition bisimulation. To show the usefulness of the

reachability graph, we have presented our experimental

results for the railroad crossing example and the mutual

exclusion protocol.

Although the reachability graph presented in this paper

is similar to the computation graph of Modechart [17], there

are several differences: 1) The underlying time domain of

the computation graph is discrete in Modechart; 2) Timing

constraints in a Modechart specification are much simpler

than those in a timed automaton.

We have developed a data space minimization algorithm

with respect to bisimulation for states with arbitrary data

variables [19]. We plan to integrate the data space

minimization algorithm and the reachability graph con-

struction algorithm presented in this paper. At the same

time, we will optimize our implementation to give better

results.

The work is part of our research in developing effective

tools based on state space exploration [9]. We are also

currently investigating other properties such as time

bounds between events that can be checked directly from

the reachability graph generated by our algorithm.

APPENDIX

PROOFS OF THEOREMS AND LEMMAS

Lemma 4.1. L1. If h is valid, then for an edge �v1; v2� in W�h�,
t1 � w�v1; v2� � t2 where t1 and t2 are execution times of
transitions a1 and a2 corresponding to v1 and v2, respectively.

Proof. If a1 precedes a2 in h, then w�v1; v2� � 0, and for
some clock x, x is reset on transition a1 and x � w�v1; v2�
is in cond�a2� by the definition of W�h�. The value of x is
�t2 ÿ t1� at t2. At t2, cond�a2� should be true to execute a2.
Thus, t2 ÿ t1 � w�v1; v2�. That is, t1 � w�v1; v2� � t2.

Similarly, if a2 precedes a1 in h, then w�v1; v2� � 0, and
for some clock x, x is reset on transition a2 and x �
ÿw�v1; v2� is in cond�a1�. The value of x is �t1 ÿ t2� at t1.
At t2, cond�a1� should be true to execute a1. Thus,
t1 ÿ t2 � ÿw�v1; v2�. That is, t1 � w�v1; v2� � t2. tu

Theorem 4.1 For a history h, h is valid if and only if W�h� has
no positive cycle.

Proof. We first show that if h is valid, then W �h� has no
positive cycle, and then show that if W�h� has no
positive cycle, then h is valid.

1. If h is valid, then W�h� has no positive cycle.
Suppose that h is valid and W�h� has a positive
cycle.

472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

Let v1v2v3 . . . vk�� v1� be a positive cycle in the

weighted graph W �h�. Then, the total weight of

the cycle is greater than zero, i.e.,

�kÿ1
i�1w�vi; vi�1� 0: �R1�

Since h is valid, there exists an execution exec

corresponding to h. For exec, let ti be the

execution time of the transition corresponding to

vi for 0 � i � k. Then, by L1,

t1 � w�v1; v2� � t2; t2 � w�v2; v3�
� t3; � � � ; tkÿ1 � w�vkÿ1; vk� � tk:

That is,

t1 � �kÿ1
i�1w�vi; vi�1� � tk:

Since v1 � vk, i.e., t1 � tk,
t1��kÿ1

i�1w�vi; vi�1� � t1
�kÿ1
i�1w�vi; vi�1� � �t1 ÿ t1�

�kÿ1
i�1w�vi; vi�1� � 0:

: �R2�

Then, R2 contradicts to R1. Therefore, W�h� has

no positive cycle.
2. If W �h� has no positive cycle, then h is valid.

Let h � ha0; a1; . . . ; aki, and let vi be the

corresponding vertex of ai. We define m�vi; vj�
as the maximum weight among all path weights

from vi to vj for 0 � i; j � k. Let t0 � 0 and ti �
m�v0; vi� for 1 � i � k.

If x � c is in cond�aj� and

reset�x; ha0; . . . ; ajÿ1i� � ai;
then w�vi; vj� � c by the definition of w, and thus

m�vi; vj� � c by the definition of m. And also,

m�v0; vj� � m�v0; vi� �m�vi; vj�
m�v0; vj� ÿm�v0; vi� � m�vi; vj�

tj ÿ ti � m�vi; vj�
tj ÿ ti � c:

If x � c is in cond�aj� and

reset�x; ha0; . . . ; ajÿ1i� � ai;
then w�vj; vi� � ÿc, and thus m�vj; vi� � ÿc. If

m�v0; vj� ÿm�v0; vi� > ÿm�vj; vi�;
i .e., m�v0; vj� �m�vj; vi� > m�v0; vi�, then the

weight of v0 . . . vjvi is the greater than m�v0; vi�.
It contradicts the definition of m. Thus,

m�v0; vj� ÿm�v0; vi� � ÿm�vj; vi�:
Since m�vj; vi� � c, m�v0; vj� ÿm�v0; vi� � c and,

thus, tj ÿ ti � c. Therefore, there exists an

execution,

s0!a1;t1
s1!a2;t2

s2 � � � !an;tnsn;
for some s0; s1; . . . ; sn. That is, h is valid. tu

Lemma 4.1. L2. Let s1 � �n; h1� and s2 � �n; h2�. Let f be an

enabling condition. If bisim cond�s1; s2� is true, then f is

satisfiable at s1 iff f is satisfiable at s2.

Proof. It is proved by the induction on the length of f .

Base case. f � truejfalsejx � cjx � c
Case f � true or false : trivial
Case f � x � c :
For i � 1; 2, f is satisfiable at si only if

min dist�reset�x; hi�; last�hi�; hi� � c:
If min dist�reset�x; h1�; last�h1�; h1� �Max, then by

Definition 4.2,

min dist�reset�x; h1�; last�h1�; h1� �
min dist�reset�x; h2�; last�h2�; h2�

;

i.e., min dist�reset�x; h1�; last�h1�; h1� � c iff

min dist�reset�x; h2�; last�h2�; h2� � c:
Thus, f is satisfiable at s1 iff it is satisfiable at s2.

Case f � x � c :
For i � 1; 2, f is satisfiable at si only if

max dist�reset�x; hi�; last�hi�; hi� � c:
If max dist�reset�x; h1�; last�h1�; h1� �Max, then by

Definition 4.2,

max dist�reset�x; h1�; last�h1�; h1�
� max dist�reset�x; h2�; last�h2�; h2�;

i.e., max dist�reset�x; h1�; last�h1�; h1� � c iff

max dist�reset�x; h2�; last�h2�; h2� � c:
Thus, f is satisfiable at s1 iff it is satisfiable at s2.

Induction Step. Suppose that f is satisfiable at s1 and
s2. Then for f 0 � f ^ x � cjf ^ x � c, we show that f 0 is
satisfiable at s1 iff f 0 is satisfiable at s2.

We prove it using weighted graphs. For i � 1; 2, let

Wi be the weighted graph W �hi^hai� for

cond�a� � f . Since f is satisfiable at s1 and s2, there

is no positive cycle in W1 and W2 by Theorem 4.1.

Let vli be the vertex for a, vxi be the vertex for

reset�x; hi� and vyi be the vertex for reset�y; hi� in

Wi. Let wi�v; u� be the maximum weight among all

path weights from v to u for vertices v and u in Wi.
Case f 0 � f ^ x � c :
Let W 0

i be the weighted graph which is the same as Wi

except for adding an edge from vli to vxi with weight
ªÿc.º We show that W 0

1 has no positive cycle iff W 0
2 has

no positive. Then f 0 is satisfiable at s1 iff it is satisfiable at
s2.

Case w1�vx1; vl1� > Max :
Then, w2�vx2; vl2� > Max by Definition 4.2. In W 0

1,
there is a positive cycle vx1; vl1; vx1 with weight
w1�vx1; vl1� � �ÿc� because w1�vx1; vl1� > Max � c.

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 473

Similarly, in W 0
2, there is a positive cycle vx2; vl2; vx2

with weight w2�vx2; vl2� � �ÿc�.
Case w1�vx1; vl1� �Max :
Then, w1�vx1; vl1� � w2�vx2; vl2� by Definition 4.2.
Case w1�vx1; vl1� > c :
There exist positive cycles vxi; vli; vxi with weight

wi�vxi; vli� � �ÿc� in Wi for i � 1; 2.
Case jw1�vl1; vx1�j � c :
Since w1�vl1; vx1� � ÿc, the maximum weight from vl1

to vx1 in W 0
1 is the same as w1�vl1; vx1�.

Thus, there is no positive cycle in W 0
1. Similarly, there

is no positive cycle in W 0
2.

Case w1�vx1; vl1� � c < jw1�vl1; vx1�j :
Then the maximum weight from vl1 to vx1 in W 0

1 is ÿc,
not w1�vl1; vx1�. Suppose that there exists a positive cycle
vx1; u1; u2; . . . ; un; vl1; vx1 in W 0

1.
That is,

w1�vx1; u1� � w1�u1; u2� � . . .� w1�un; vl1� � �ÿc� > 0:

By the definition of w1,

w1�vx1; vll� � w1�vx1; u1� � w1�u1; u2� � . . .� w1�un; vl1�:
Thus, w1�vx1; vll� � �ÿc� > 0, which contradicts the

assumption w1�vx1; vl1� � c.
Therefore, there is no positive cycle in W 0

1. Similarly,
in W 0

2.
Case f 0 � f ^ x � c :
Let W 0

i be the weighted graph which is the same as Wi

except for adding an edge from vxi to vli with weight ªc:º
We show that W 0

1 has no positive cycle iff W 0
2 has no

positive. Then 0 is satisfiable at s1 iff it is satisfiable at s2.
case w1�vx1; vl1� > Max :
Then the maximum weight from vx1 to vl1 in W 0

1 is the
same as w1�vx1; vl1�.

Thus, there is no positive cycle in W 0
1. Similarly, there

is no positive cycle in W 0
2.

case w1�vx1; vl1� �Max :
By Definition 4.2,

w1�vx1; vl1� � w2�vx2; vl2�:
Case w1�vx1; vl1� � c :
Then the maximum weight from vx1 to vl1 in W 0

1 is the

same as w1�vx1; vl1�.
Thus, there is no positive cycle in W 0

1. Similarly, there
is no positive cycle in W 0

2.
Case jw1�vl1; vx1�j < c :
There exist a positive cycle vx1; vl1; vx1 with weight

c� w1�vl1; vx1� in W 0
1. Similarly, in W 0

2.
Case w1�vx1; vl1� < c � jw1�vl1; vx1�j :
Then the maximum weight from vx1 to vl1 in W 0

1 is c,
not w1�vx1; vl1�. Suppose that there exists a positive cycle
vx1; vl1; u1; u2; . . . ; un; vx1 in W 0

1.
That is,

c� w1�vl1; u1� � w1�u1; u2� � :::� w1�un; vx1� > 0:

By the definition of w1,

w1�vl1; vx1� � w1�vl1; u1� � w1�u1; u2� � :::� w1�un; vx1�:

Thus, c� w1�vl1; vx1� > 0, which contradicts the as-
sumption c � jw1�vl1; vx1�j.

Therefore, there is no positive cycle in W 0
1.

Similarly, in W 0
2.

Therefore, if bisim cond�s1; s2� is true, then f is
satisfiable at s1 iff f is satisfiable at s2. tu

Lemma 4.1. L3. Let s1 � �n; h1� and s2 � �n; h2�. Let f be an

enabling condition. Suppose node n has a transition a to n0

with f . Let

s01 � �n0; h1^a�; s02 � �n0; h2^a�:
If bisim cond�s1; s2� is true and f is satisfiable at s1 and s2

then bisim cond�s01; s02� is true.

Proof. We prove it using the proof of L2. We show that

whenever weighted graphs are changed in L2, we show

that the maximum weights are preserved. Let w0i�v; u� be

the maximum weight among all path weights from v to u

for vertices v and u in W 0
i .

Case f 0 � f ^ x � c :
As shown in the proof of L2, if w1�vx1; vl1� > c then f 0

is false, and if jw1�vl1; vx1�j � c, then maximum weights
in W 0

i is the same as Wi. Thus we just consider the case of
T/p

w1�vx1; vl1� � c < jw1�vl1; vx1�j:
Then for any clock y,

w01�vy1; vx1� � maxfw1�vy1; vx1�; w1�vy1; vl1� ÿ cg;
w02�vy2; vx2� � maxfw2�vy2; vx2�; w2�vy2; vl2� ÿ cg and

w01�vl1; vy1� � maxfw1�vl1; vy1�;ÿc� w1�vx1; vy1�g;
w02�vl2; vy2� � maxfw2�vl2; vy2�;ÿc� w2�vx2; vy2�g:

Case w1�vy1; vl1� � w1�vx1; vl1� : (i.e., x � y)
If jw1�vy1; vx1�j > Max then jw2�vy2; vx2�j > Max.

Since jw1�vy1; vl1� ÿ cj �Max.

w01�vy1; vx1� � w1�vy1; vl1� ÿ c
� w2�vy2; vl2� ÿ c
� w02�vy2; vx2�:

Otherwise, w01�vy1; vx1� � w02�vy2; vx2� because

w1�vy1; vx1� � w2�vy2; vx2�:
If jw1�vl1; vy1�j > Max then jw2�vl2; vy2�j > Max. Since

j ÿ c� w1�vx1; vy1�j �Max;

w01�vl1; vy1� � ÿc� w1�vx1; vy1�
� ÿc� w2�vx2; vy2�
� w02�vl2; vy2�:

Otherwise, w01�vl1; vy1� � w02�vl2; vy2� because

w1�vl1; vy1� � w2�vl2; vy2�:
Case w1�vy1; vl1� > w1�vx1; vl1� : (i.e., y � x)
If jw1�vl1; vy1�j �Max, then

w01�vl1; vy1� � w02�vl2; vy2�
since w1�vl1; vy1� � w2�vl2; vy2� and

474 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

w1�vx1; vy1� � w2�vx2; vy2�:
If jw1�vx1; vy1�j > Max, then

jw01�vl1; vy1�j; jw02�vl2; vy2�j > Max:

If jw1�vx1; vy1� ÿ cj > Max then

w01�vl1; vy1� � w02�vl2; vy2�
since jw01�vl1; vy1�j, jw02�vl2; vy2�j > Max.

If jw1�vl1; vy1�j > Max and jw1�vx1; vy1� ÿ cj �Max
then w01�vl1; vy1� � w02�vl2; vy2� � w1�vx1; vy1� ÿ c since
w1�vx1; vy1� � w2�vx2; vy2�.

If w1�vy1; vl1� �Max, then w01�vy1; vx1� � w02�vy2; vx2�
since w1�vy1; vx1� � w2�vy2; vx2� and

w1�vy1; vl1� � w2�vy2; vl2�:
If w1�vy1; vx1� > Max, then

w01�vy1; vx1�; w02�vy2; vx2� > Max:

If w1�vy1; vx1� �Max, then w1�vy1; vl1� � w2�vy2; vl2�
since

w1�vy1; vl1� � w1�vx1; vl1� � w1�vy1; vx1�;

w1�vx1; vl1� � w2�vx2; vl2�;

w1�vy1; vx1� � w2�vy2; vx2�:
So, w01�vy1; vx1� � w02�vy2; vx2�.
Case f 0 � f ^ x � c :

As shown in the proof of L2, if w1�vx1; vl1� � c, then

maximum weights in W 0
1 is the same as maximum

weights in W1, and if jw1�vl1; vx1�j � c, then f 0 is false.

Thus we just consider the case of

w1�vx1; vl1� � c < jw1�vl1; vx1�j:
Then for any clock y,

w01�vx1; vy1� � maxfw1�vx1; vy1�; c� w1�vl1; vy1�g;
w02�vx2; vy2� � maxfw2�vx2; vy2�; c� w2�vl2; vy2�g and

w01�vy1; vl1� � maxfw1�vy1; vl1�; w1�vy1; vx1� � cg;
w02�vy2; vl2� � maxfw2�vy2; vl2�; w2�vy2; vx2� � cg:

Case w1�vy1; vl1� � w1�vx1; vl1� : (i.e., x � y)

Since w1�vx1; vl1� � c, w1�vy1; vl1� � w2�vy2; vl2� and

w1�vx1; vy1� � w2�vx2; vy2�.
If jw1�vl1; vy1�j � c then w1�vl1; vy1� � w2�vl2; vy2�. So,

w01�vx1; vy1� � maxfw1�vx1; vy1�;
c� w1�vl1; vy1�g � maxfw2�vx2; vy2�;
c� w2�vl2; vy2�g � w02�vx2; vy2�:

Otherwise, w1�vl1; vy1� < ÿc, and thus,

w1�vl1; vy1� � c < 0:

Since w1�vx1; vy1� � 0, w01�vx1; vy1� � w1�vx1; vy1�.
Similarly, w02�vx2; vy2� � w2�vx2; vy2�.
Thus, w01�vx1; vy1� � w02�vx2; vy2�.
If jw1�vy1; vx1�j � c then w1�vy1; vx1� � w2�vy2; vx2�.

So,

w01�vy1; vl1� � maxfw1�vy1; vl1�; w1�vy1; vx1� � cg
� maxfw2�vy2; vl2�; w2�vy2; vx2� � cg
� w02�vy2; vl2�:

Otherwise, w1�vy1; vx1� < ÿc, and thus,

w1�vy1; vx1� � c < 0:

Since w1�vy1; vl1� � 0, w01�vy1; vl1� � w1�vy1; vl1�.
Similarly, w02�vy2; vl2� � w2�vy2; vl2�.
Case w1�vy1; vl1� > w1�vx1; vl1� : (i.e., y � x)
If jw1�vl1; vy1�j �Max then w1�vl1; vy1� � w2�vl2; vy2�
and w1�vx1; vy1� � w2�vx2; vy2�.

So,

w01�vx1; vy1� � maxfw1�vx1; vy1�; c� w1�vl1; vy1�g
� maxfw2�vx2; vy2�; c� w2�vl2; vy2�g
� w02�vx2; vy2�:

Otherwise, w1�vl1; vy1� � w1�vl1; vx1� � w1�vx1; vy1�.
Then, w1�vl1; vy1� � c � w1�vx1; vy1�.

Thus, if jw1�vx1; vy1�j �Max,

w01�vx1; vy1� � w1�vx1; vy1� � w2�vx2; vy2� � w02�vx2; vy2�:
If jw1�vx1; vy1�j > Max, jw01�vx1; vy1�j > Max.
Similarly, jw02�vx2; vy2�j > Max.
If w1�vy1; vl1� > Max then w01�vy1; vl1� > Max.
Similarly, w02�vy2; vl2� > Max.
Otherwise, w1�vy1; vl1� �Max and, thus,

w1�vy1; vl1� � w2�vy2; vl2�;
w1�vy1; vx1� � w2�vy2; vx2�:

Thus,

w01�vy1; vl1� � maxfw1�vy1; vl1�; w1�vy1; vx1� � cg
� maxfw2�vy2; vl2�; w2�vy2; vx2� � cg
� w02�vy2; vl2�:

Therefore, if bisim cond�s1; s2� is true and f is
satisfiable at s1 and s2 then bisim cond�s01; s02� is true. tu

Lemma 4.1. If bisim cond�s1; s2� is true, then s1 and s2 are

transition-bisimilar.

Proof. Let s1 � �n; h1� and s2 � �n; h2�. Let f be an enabling

condition. Suppose bisim cond�s1; s2� is true. Then f is

satisfiable at s1 iff f is satisfiable at s2 by L2. Suppose

node n has a transition a to n0 with f . Since f is satisfiable

at states s1 and s2, the states have outgoing transition

labeled with a. Let s01 � �n0; h1^a�; s02 � �n0; h2^a�. Then

bisim cond�s01; s02� is true by L3. By the definition of

transition bisimulation, if bisim cond�s1; s2� is true, then

s1 and s2 are transition bisimilar. tu
Theorem 4.2. For a timed automaton A, a relation

f�s1; s2� j bisim cond�s1; s2�g has finitely many equivalence

classes.

Proof. Let X and L be the set of clocks and the set of

locations in M, resectively. And, let Maxc be the largest

among the constants appearing in the conditions of M.

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 475

Let X be fx1; . . . ; xjXjg. Let k � jXj � 1. Let xk be an
extra clock that is reset on the last transition in a history.
That is, reset�xk; h� � last�h�.

Based on Lemma 4.1, for each state �l; h�, the
corresponding equivalence class can be represented by
a pair �l; ��:

� � f�ijj1 � i; j � kg;
where if reset�xi; h� precedes reset�xj; h�, then

. �ij � min dist�reset�xi; h�; reset�xj; h�; h�; and

. �ji � max dist�reset�xi; h�; reset�xj; h�; h�;
otherwise,

. �ij � max dist�reset�xj; h�; reset�xi; h�; h�; and

. �ji � min dist�reset�xj; h�; reset�xi; h�; h�.
Here, �ii � 0.
Let Max�c be an value larger than Maxc.

For 1 � i < j � k, if reset�xi; h� precedes reset�xj; h�,
then �ij has at most �Maxc � 2� distinguishable values:

0; 1; . . . ;Maxc;Max�c

since any values greater than Maxc cannot be distin-

guishable by cond3 and cond4 in Lemma 4.1.

Suppose that �ij equals to n for 0 � n �Maxc. Then

�ji can have at most �Maxc � 2ÿ n� different values:

n; n� 1; . . . ;Maxc;Max�c

since �ij � �ji. If �ij equals to Max�c , then �ji is also

Max�c .
Therefore, the total number of different values of

(�ij; �ji� is at most

XMaxc

n�0

�Maxc � 2ÿ n� � 1 � �Maxc � 2��Maxc � 3�=2:

Similarly, if reset�xj; h� precedes reset�xi; h�, then the

total number of different values of (�ij; �ji� is also at

most �Maxc � 2��Maxc � 3�=2.
For 1 � i < j � k, the total number of different values

of (�ij; �ji) is at most

�Maxc � 2��Maxc � 3�=2� �Maxc � 2��Maxc � 3�=2
� �Maxc � 2��Maxc � 3�:
There exists k�kÿ 1�=2 pairs of (�ij; �ji) in � such as

(�12; �21), (�13; �31), . . . , (�1k; �k1), (�23; �32), . . . , (�2k; �k2),
and so on.

Thus, for each location l, the number of distinguish-
able values of � is at most

��Maxc � 2��Maxc � 3��k�kÿ1�=2 < �Maxc � 3�k�kÿ1�=2:

Therefore, the number of distinguishable equivalence

classes is less than jLj � �Maxc � 3�k�kÿ1�=2 since an

equivalence class is a pair of �l; ��, where L is the set

of locations. tu

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Air Force

Office of Scientific Research grant F49620-95-1-0508,

Northwestern University grants ARODAAG55-98-1-0393,

ARODAAG55-98-1-0466, U.S. National Science Foundation

grant CCR-9619910, and Office of Naval Research grant

N00014-97-1-0505.

REFERENCES

[1] R. Alur, ªTechniques for Automatic Verification of Real-Time
Systems,º PhD dissertation, Department of Computer Science,
Stanford Univ., Aug. 1991.

[2] R. Alur, C. Courcoubetis, and D. Dill, ªModel Checking for Real-
time Systems,º Proc. of IEEE Symp. Logic in Computer Science, 1990.

[3] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-
Toi, ªAn Implementation of Three Algorithms for Timing
Verification Based on Automata Emptiness,º Proc. IEEE Real-Time
Systems Symp., 1992.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-
Toi, ªMinimization of Timed Transition Systems,º Proc. Int'l Conf.
Concurrency Theory, vol. 630, Aug. 1992.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, ,P. Ho, X.
Nicollin, A. Olivero, J. Sifakis, and S. Yovine., ªThe Algorithm
Analysis of Hybrid Systems,º Theoretical Computer Science, vol. 138,
pp. 3±34, 1995.

[6] R. Alur and D. Dill, ªA Theory of Timed Automata,º Theoretical
Computer Science, pp. 183±235, 1994.

[7] J. Bengtsson, K. Larsen, F. Larsson, P. Petterson, and W. Yi.,
ªUPPAAL Ð A Tool Suite for Automatic Verification of Real-
Time Systems,º Proc. DIMACS Workshop on Verification and Control
of Hybrid Systems, 1995.

[8] A. Bouajjani, J.-C. Fernandez, N. Halbwachs, and P. Raymond,
ªMinimal State Graph Generation,º Science of Computer Program-
ming, vol. 18, pp. 247±269 1992.

[9] D. Clarke, I. Lee, and H.-L. Xie, ªVERSA: A Tool for the
Specification and Analysis of Resource-Bound Real-Time Sys-
tems,º J. Computer and Software Eng., vol. 3, no. 2, Apr. 1995.

[10] C. Draws, A. Olivero, and S. Yovine, ªVerifying ET-LOTOS
Programs with KRONOS,º Proc. Seventh Int'l Conf. Formal
Description Techniques, 1994.

[11] C. Draws and S. Yovine, ªTwo Examples of Verification of
Multirate Timed Automata with KRONOS,º Proc. IEEE Real-Time
Systems Symp., Dec. 1995.

[12] W. M. Elseaidy, R. Cleaveland, and J.W. Baugh, Jr., ªVerifying an
Intelligent Structural Control System: A Case Study,º Proc. IEEE
Real-Time Systems Symposium, 1994.

[13] C. Heitmeyer, R. Jeffords, and B. Labaw, ªComparing Different
Approaches for Specifying and Verifying Real-Time Systems,º
Proc. Tenth IEEE Workshop Real-Time Operating Systems and
Software, May 1993.

[14] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, ªSymbolic
Model Checking for Real-Time Systems,º Information and Compu-
tation, vol. 111, no. 2, pp. 193±244, 1994.

[15] T.A. Henzinger, P. Ho, and H. Wong-Toi, ªA User Guide to
HYTECH,º Technical Report CSD-TR-95-1532, Cornell Univ.,
1995.

[16] F. Jahanian and A.K. Mok, ªA Graph-Theoretic Approach for
Timing Analysis and its Implementation,º IEEE Trans. Computers,
vol. 36, no. 8, pp. 961±975, Aug. 1987.

[17] F. Jahanian and D.A. Stuart, ªA Method for Verifying Properties
of Modechart Specifications,º Proc. IEEE Real-Time Systems
Symposium, 1988.

[18] I. Kang, ªReal-Time System Analysis based on State-Space
Exploration,º PhD dissertation, May 1997.

[19] I. Kang and I. Lee, ªState Minimization for Concurrent System
Analysis Based on State Space Exploration,º Proc. Conf. Computer
Assurance, June 1994.

[20] L. Lamport, ªA Fast Mutual Exclusion Algorithm,º Proc. ACM
Trans. Computer Systems, vol. 1, no. 5, pp. 1±11, 1987.

[21] K.G. Larsen, P. Petterson, and W. Yi, ªModel-Checking for Real-
time Systems,º Proc. Conf. Fundamentals of Computation Theory,
1995.

[22] R. Milner, Communication and Concurrency. Prentice Hall, 1989.

476 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 5, MAY 2000

[23] X. Nicollin, J. Sifakis, and S. Yovine, ªCompiling Real-Time
Specifications into Extended Automata,º IEEE Trans. Software
Eng., vol. 18, no. 10, Sep. 1992.

[24] J. S. Ostroff, ªDeciding Properties of Timed Transition Models,º
IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 2, Apr. 1990.

[25] Z. Prucz, T.T. Soong, and A. Reinhorn, ªAn Analysis of Pulse
Control for Simple Mechanical Systems,º Dynamic Systems,
Measurement, and Control, vol. 107, pp. 123±131, Jun. 1985.

[26] S.C.V. Raju, ªAn automatic Verification Technique for Commu-
nicating Real-Time State Machines,º Technical Report 93-04-08,
Univ. of Washington, April 1993.

[27] A.C. Shaw, ªCommunicating Real-Time State Machines,º IEEE
Trans. Software Eng., vol. 18, no. 9, Sep. 1992.

[28] O. Sokolsky and S. A. Smolka, ªLocal Model Checking for Real-
Time Systems,º Proc. Conf. Computer-Aided Verification, 1995.

[29] M. Yannakakis and D. Lee, ªAn Efficient Algorithm for Minimiz-
ing Real-time Transition Systems,º Proc. Workshop Computer-Aided
Verification, 1993.

[30] W. Yi, P. Petterson, and M. Daniels, ªAutomatic Verification of
Real-Time Systems by Constraint Solving,º Proc. Seventh Int'l Conf.
Formal Description Techniques, 1994.

Inhye Kang received her BS and MS degrees in
computer engineering from Seoul National Uni-
versity, Korea in 1987 and 1989, respectively.
She received her PhD degree in computer
science from University of Pennsylvania in
1997. She is a visiting professor at Soongsil
University, Korea. She is a member of the IEEE.
Her research interests include formal methods,
software engineering, and real-time systems.

Insup Lee received the BS degree in mathe-
matics from the University of North Carolina,
Chapel Hill, in 1977, and the PhD degree in
computer science from the University of Wis-
consin, Madison, in 1983.

He is currently professor in the Department
of Computer and Information Science at the
University of Pennsylvania, where he has been
since 1983. He was CSE Undergraduate Curri-
culum Chair from September 1994 to August

1997. His research interests include real-time systems, formal methods,
mobile computing, operating systems, and software engineering.

He was the cochair of the program committee for the 1992 IEEE
Real-Time Systems Symposium, and the general cochair for the 1993
IEEE Real-Time Systems Symposium. He was the cochair of the
program committee for First International Workshop on Real-Time
Computing Systems and Applications held in December 1994 at Seoul,
Korea. He was the cochair of CONCUR '95: International Conference on
Concurrency Theory held in August 1995 at the University of
Pennsylvania. He was the cochair of the Program Committee for Third
International Workshop on Real-Time Computing Systems and Applica-
tions held in October 1996 at Seoul, Korea. He was the cochair of the
program committee for the First IEEE International Symposium on
Object-Oriented Real-time Distributed Computing in April 1998 at Kyoto,
Japan. He is on the editorial boards of IEEE Transactions on Computers
and Formal Methods in System Design.

Young-Si Kim received the BS degree in
computer science from Chung Ang University
in 1977, the MS degree from Yon Sei University
in 1980, and a the PhD degree from Chung Ang
University in 1991. He joined Electronics and
Telecommunications Research Institute (ETRI)
in 1977 and has been developing electronic
switching systems, called TDX. His research
interests are switching system software, distrib-
uted real-time system software, system

verification and software testing. He is a principal member of
engineering staff at ETRI.

KANG ET AL.: AN EFFICIENT STATE SPACE GENERATION FOR THE ANALYSIS OF REAL-TIME SYSTEMS 477

	University of Pennsylvania
	ScholarlyCommons
	May 2000

	An Efficient State Space Generation for the Analysis of Real-Time Systems
	Inhye Kang
	Insup Lee
	Young-Si Kim
	Recommended Citation

	An Efficient State Space Generation for the Analysis of Real-Time Systems
	Abstract
	Keywords
	Comments

	An efficient state space generation for the analysis of real-time systems - Software Engineering, IEEE Transactions on

