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problem while considering simultaneously the energy constraints and the real-time requirements of
embedded systems. We formulate such an optimization problem and prove this optimization problem is NP-
hard. Given the difficulty of finding the optimal solution to the problem, we then propose four heuristic
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Abstract. Real-time embedded systems often have multiple resource
constraints such as energy and code size constraints. Traditionally, tech-
niques for reducing energy consumption for real-time embedded systems
have been developed without considering code size constraints, whereas
code size reduction techniques have been developed without considering
energy constraints. There, however, is a tradeoff relationship between
reducing dynamic energy consumption and reducing code size for real-
time embedded systems. Therefore, reducing code size may result in in-
creasing energy consumption. In this paper, we present a triple-tradeoff
relationship among code size, execution time, and energy consumption
and then address the code size minimization problem while considering
simultaneously the energy constraints and the real-time requirements
of embedded systems. We formulate such an optimization problem and
prove this optimization problem is NP-hard. Given the difficulty of find-
ing the optimal solution to the problem, we then propose four heuristic
algorithms to find sub-optimal solutions and evaluate their performance
through simulations.

1 Introduction

Energy consumption is one of the most important design constraints in designing
battery-operated embedded systems such as digital cellular phones and personal
digital assistants. Energy consumption is a critical design factor for such energy-
constrained systems, since the battery operation time is a primary performance
measure. Memory size is one of the most important design constraints in de-
signing embedded systems targeting system-on-a-chip (SOC). Since the cost of
a chip is proportional to the fourth (or higher) power of its die size [5], program
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NSF CCR-0209024, ARO DAAD19-01-1-0473, by the Ministry of Education of the
Republic of Korea under the Brain Korea 21 Project in 2004, and the Ministry
of Science and Technology of the Republic of Korea under the National Research
Laboratory program.



code size is a key design factor that determines the memory size of a chip and
thus affects the die size and the chip cost. In addition, embedded systems often
have strict temporal requirements. Hence, many embedded systems can have
energy and code size constraints as well as real-time constraints simultaneously.
Traditionally, techniques [12,6,10,1,7,8] for reducing energy consumption for
real-time embedded systems have been developed without considering code size
constraints, whereas code size reduction techniques [9] for real-time embedded
systems have been developed without considering energy constraints. In this
paper, we introduce a tradeoff relationship between reducing dynamic energy
consumption and reducing code size for real-time embedded systems. That is,
reducing code size may result in increasing energy consumption. Hence, we de-
velop the first approach of code size minimization considering simultaneously
the energy constraints and the real-time requirements of embedded systems.

For energy-constrained embedded systems, recent trends in embedded ar-
chitecture provide support for dynamic voltage scaling (DVS) technique at the
processor level. The CPU clock speed (and its corresponding supply voltage)
can be dynamically adjusted on several commercial variable-voltage processors
such as Intel’s Xscale, AMD’s K6-2+ and Transmeta’s Crusoe processors. This
DVS technique produces a voltage vs. CPU clock speed tradeoff. Various DVS
algorithms [12,6,10,1,7,8] have been proposed on employing this tradeoff for
hard real-time systems. Their main goal is to reduce the total system’s energy
consumption while satisfying the system’s real-time requirements.

A popular code size reduction technique for embedded systems with code
size constraints is to employ a “dual instruction set”, with the processor capable
of executing two different Instruction-Sets (IS). Compilers can reduce code size
by encoding a subset of normal 32-bit instructions into a 16-bit format as in
ARM Thumb [4] and MIPS16 [11]. These 16-bit instructions can be dynamically
decompressed by hardware into 32-bit equivalent ones before execution. This
approach can substantially reduce the code size; however, it increases the number
of instructions to be executed, and thus, increases the execution time of the
program. For typical examples, the compressed code may require around 70%
of the space of the original code, while executing 40% more instructions [2].
Our earlier work [9] was to employ this code size vs. time tradeoff for real-time
embedded systems to reduce the total system’s code size.

In this paper, combining these two tradeoff relationships, we introduce a new
triple-tradeoff relationship among code size, energy consumption, and execution
time. From the triple-tradeoff relationship, we can see that techniques to reduce
code size may result in increasing energy consumption in real-time systems.
Using the triple-tradeoff relationship, we address a design problem for real-time
embedded systems with energy and code size constraints. The design problem,
called the code size optimization problem, is to minimize the system’s total code
size satisfying the real-time and energy constraints imposed on the system. To
the best of the authors’ knowledge, there is no previous work that addresses the
code size minimization problem considering the real-time and energy constraints
simultaneously. We formulate the code size optimization problem and prove the



problem is NP-hard. Given the intractability of the problem, we propose heuristic
algorithms to find sub-optimal solutions and evaluate them through simulations.

The rest of this paper is organized as follows: Section 2 presents related work
about energy reduction techniques and code size reduction techniques. Section
3 provides the problem description and the system model. Section 4 formulates
the optimization problem and presents heuristic algorithms. Section 5 evaluates
the performance of the heuristic solutions with simulation results. Finally, we
conclude in Section 6 with discussion on future research.

2 Related Work

2.1 Energy Reduction Techniques

Energy consumption is one of the most important design factors for battery-
oriented embedded systems. The dynamic power dissipation Pp, which is the
dominant component of energy consumption in widely popular CMOS technol-
ogy, is given by Pp o< CL V3 Feiock, where Cp, is the load capacitance, Vpp is
the supply voltage, and F,. is the clock frequency. Because the dynamic power
dissipation Pp is quadratically dependent on the supply voltage Vpp, lowering
Vpp is an effective technique in reducing the energy consumption. However,
lowering the supply voltage also decreases the clock speed, because the circuit
delay Tp of CMOS circuits is given by Tp « Vpp/(Vbp — V)%, where Vr is
the threshold voltage and « is a technology-dependent constant. Hence, lowering
Vpp yields a tradeoff between reducing the energy consumption and increasing
the circuit delay. The dynamic voltage scaling (DVS) technique, which involves
dynamically adjusting the supply voltage and the CPU clock speed, has been
widely accepted as a key technique to reduce the energy consumption for em-
bedded systems. This technique has been increasingly employed on commercial
variable-voltage processors such as Intel’s Xscale, AMD’s K6-2+ and Trans-
meta’s Crusoe processors. Targeting these processors, various DVS algorithms
[12,6,10,1,7,8] have been proposed to reduce the dynamic energy consumption
while satisfying the system’s real-time requirements. One of the main differences
between these approaches and our approach is that they considered only en-
ergy and temporal constraints, but we consider code size, energy, and temporal
constraints.

2.2 Code Size Reduction Techniques

For many embedded systems, program code size is a critical design factor. We
present a brief overview of a compiler technique for code size reduction that
works for a processor capable of executing dual bit-width instructions. A very
good example of such a processor is ARM microprocessors with a 32-bit instruc-
tion set (IS) for normal modes and a 16-bit reduced bit-width IS for Thumb
modes [4]. A reduction in code size comes from encoding a subset of the 32-
bit normal mode IS into the 16-bit Thumb mode IS. At the execution time,



a decompression engine converts a Thumb-mode instruction into an equivalent
normal-mode instruction during the decode stage. The Thumb IS can access only
8 general purpose registers (out of 16 general purpose registers in the normal
mode) and can encode only a small immediate value. These limitations increase
the number of execution cycles and, thus, increases the program execution time.
For typical programs, by using this technique the code size can be reduced by
around 30%, while the number of execution cycles increases by about 40% [2].

The dual bit-width ISA allows a program to contain both 32-bit normal-
mode instructions and 16-bit reduced bit-width instructions where the mode
change between the two can be performed by executing a single mode-change
instruction. This capability allows for a tradeoff between code size and the num-
ber of execution cycles when compiling a program. For example, by progressively
transforming program units such as functions or basic blocks in the normal mode
into the equivalent ones in the reduced bit-width mode while adding patch-up
code to maintain the correct semantics, we can obtain a table that gives pos-
sible (code size, the number of execution cycles) pairs. The order by which the
transformation is performed considers both reduction in code size and increase
in the the number of execution cycles, i.e., it favors program units that give
large reduction in code size with only a small increase in the number of execu-
tion cycles. Qur earlier work [9] proposed a design framework that deals with
a design problem taking advantage of this code size vs. time tradeoff. In this
paper, we introduce a new design approach that simultaneously considers code
size, energy, and temporal constraints.

3 Problem Description and System Model

3.1 Problem Description

Embedded systems often have resource constraints as well as real-time require-
ments. In this paper, we consider two resource constraints that are energy and
code size constraints. The dynamic voltage scaling (DVS) technique yields a
tradeoff relationship between voltage and CPU clock speed for the system, and
with this tradeoff, we can easily build an energy consumption vs. execution time
tradeoff for a task. Code size reduction techniques such as one using the dual
instruction sets produce a tradeoff relationship between code size and execu-
tion time for an individual task. Combining these two tradeoff relationships, we
present a new triple-tradeoff relationship among code size, execution time, and
energy consumption of a task. We address a design problem for real-time em-
bedded systems with this triple-tradeoff relationship. The design problem, called
code size optimization problem, is to determine the code size s, the number of
execution cycles n, and the CPU clock speed f of each real-time task such that

— at compile time, compilers can employ s and n to generate its executable
code in order to minimize the system’s total code size, and

— at run time, the EDF task scheduler can use the CPU frequency f to sched-
ule the task in order to satisfy its real-time requirement and maintain the
system’s energy consumption below its upper bound.



3.2 System Model

Task Parameters. We assume that a real-time embedded system 7,y is com-
posed of a set of real-time tasks, {71,...,7,} and we refer |75y,| to the number
of real-time tasks in the system. We consider a real-time task has the following
parameters:

— period P: the fixed time interval between the arrival times of two consecutive
requests of the task,

— deadline D: the time instant relative to the start-of-its-period by which the
task’s execution is required to be completed (D = P),

— the number of execution cycles n: the number of execution cycles required
to complete its execution in the worst case,

— CPU frequency f: the CPU frequency (or clock speed) at which the task
executes (Fmin < f < Fmag, where Fpo, and Fi, denote the maximum
and minimum CPU frequencies available in the system, respectively),

— execution time t: the time amount required to complete the task’s execution
at the CPU frequency of f in the worst case; t is determined as n/f,

— energy consumption e: is the amount of energy consumed during a single
execution of the task; e is determined as t - v2 - f where v is the supply
voltage depending on f, and

— code size s: the size of the task’s executable code.

System parameters. We define the system code size (ssy5) as the sum of the
code sizes of all the tasks in the system, i.e.,

Ssys = E S;-
TiETsys

We also define the system energy consumption (es,,) as the sum of energy con-
sumption of all the tasks in the system during a hyper-period, i.e.,

- Z Prom .
sYs — "G
P

Ti€ETsys

where the hyper-period Pr,c s is the least common multiplier (LCM) of P;’s of all
7;’s in the system. We refer €gys LO the maximum available e;y; and e;’;’;" to the
minimum available esy;. We define the range of the system energy consumption
efanse as (e’ — epir)

Size/Time Tradeoff. We assume that each real-time task has a tradeoff rela-
tionship between code size and execution time. In this paper, we assume that
the tradeoff relationship is given as multiple pairs of possible (code size (s),
the number of execution cycles (n)) values. We refer size/time tradeoff to this
tradeoff and Mgt to the number of tradeoff pairs. Figure 1 shows examples of
size/time tradeoff pairs of three tasks. For each task 7;, we sort these size/time
tradeoff pairs in a decreasing order of code size and refer S; ; and N;; to the
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Fig. 1. Examples of task-level tradeoff between size and time

Speed Level|Speed (MHz)|Voltage (V)
1 400 1.0
2 600 1.3
3 800 1.6
4 1000 1.8

Table 1. CPU clock speed settings and voltages

code size and the number of execution cycles in the j — th pair, respectively. In
Figure 1, four circles represents the tradeoff pairs of task 7; and the four circles
are named as (S;1,N;1),-.., and (S;4,N;4) in the decreasing order of code
size, respectively. As shown in the figure, the size/time tradeoff pairs may not
be clearly modeled as a continuous convex, linear, or concave function. Hence,
in this paper, we consider a discrete step function ST; that captures the possible
(s,n) pairs of task 7; as follows:

n = ST;(s), where s € {S;1,...,Si, Mgz }» (1)

Figure 1 also shows examples of discrete step functions that captures the tradeoff
pairs of three tasks, respectively.

Energy/Time Tradeoff. We also assume that a real-time embedded system
has a tradeoff relationship between voltage and CPU clock speed. In this pa-
per, we assume that the tradeoff relationship is given as one in Table 1, where
Fy =400MHz,...,Fy = Fyue = 1GHz and V; = 1.0V,...,Vy = 1.8V, respec-
tively. We refer voltage/speed tradeoff to this tradeoff and Mpy to the number
of tradeoff pairs. We consider another discrete step function F'V that captures
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Fig. 2. System-level tradeoff between energy consumption and execution time

this tradeoff relationship as follows:
v =FV(f), where f € {F1,...,Fpnea}, (2)

Given n; and f; for task 7;, we can compute the execution time and energy
consumption of the task 7; as follows:

tz' = n,/f, and €; = tz' - ]::'V(fi)2 - f, =MN; - FV(f,')Q.

With the voltage/speed tradeoff given in Table 1, we build a tradeoff between
energy consumption and execution time for any task and Figure 2 shows such a
tradeoff for one execution cycle for all possible f;’s. We refer energy/time tradeoff
to this tradeoff.

Size/Time/Energy Triple-Tradeoff. So far, we considered the size/time
tradeoff and the energy/time tradeoff, respectively. Combining these two trade-
offs, we now consider a new tradeoff. For each task 7;, we construct a tradeoff
relationship among code size s;, execution time t¢;, and energy consumption e;.
To capture such a triple-tradeoff relationship of task 7;, we define a triple-tradeoff
tuple X;(s;,t;,e;). We create this triple-tradeoff relationship as follows: (1) we
first obtain the cartesian product of two sets, one of which is a set of the number
of execution cycles {n;} and the other of which is a set of the CPU frequency
{fi}, and then define a triple-tradeoff tuple X;(s;,t;,e;) for each element (n;, f;)
of the cartesian product result {(n;, f;)} as follows:

n;
fi’
where n; = N;1,...,Nimgp, and f; = Fi,..., Fpyep. The number of possible

values of X;(s;,t;,e;) is simply Mgt - Mpy, where Mgy is the number of the
voltage/speed tradeoff values.

8; =ST; '(n;), ti= and e; = n; - FV(f;)?,
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Fig. 3. Examples of system code size vs. system energy consumption tradeoff

When each task 7; has triple-tradeoff tuples X;(s;,t;,€;), we can consider a
set of triple-tradeoff tuples X = {X;} such that X includes exactly one triple-
tradeoff tuple X; for each task 7;. From all possible triple-trade tuple sets, we now
introduce a new relationship between the system code size and the system energy
consumption. For each triple-tradeoff tuple set X, we can compute its system
code size sgy5 and its system energy consumption egy, and can check whether
its satisfies system’s real-time constraints, if given. For two triple-tradeoff tuple
sets X and X’ both of which satisfy some given system’s real-time constraints,
we define a partial order such that X is said to be smaller than X', denoted by
X < X', if s5y5 < 55, and egys < €}, .. A triple-tradeoff tuple set X is said to be
a boundary triple-tradeoff tuple set if there is no smaller triple-tradeoff tuple set
X' than X i.e., if X' £ X for all X"’s that satisfy some given system’s real-time
constraints. In Figure 3, we plot three typical example pairs of (ssys, €sys) that
are obtained from boundary triple-tradeoff tuple sets through simulations.! The
figure shows that decreasing the system code size generally increases the system
energy consumption.

4 Problem Formulation and Heuristic Algorithms

In this section, we formulate our code size optimization problem and prove this
problem is NP-hard. Given the difficulty of finding the optimal solution to the
problem, we present four heuristic algorithms that find sub-optimal solutions.

4.1 Problem Formulation and Complexity

We formulate the code size optimization problem as follows:

1A detail of simulation settings is described in Section 5.



— Objective:

minimize E S;-

Ti€Tsys
— Constraints:
. . t;
real-time constraint: VT € Toys 1 t; < P;  and E 2 <1,
Ti€Toys  ©
energy constraint: esys < Egve".

We present the following theorem to show that the code size optimization
problem is intractable.

Theorem 1. The problem of finding the minimum system code size satisfying
the system’s real-time and energy constraints is NP-hard.

Proof. The proof is via a polynomial-time reduction from the subset sum prob-
lem that is known to be NP-complete [3]. Let a set of positive integers A =
{ai1,...,ar} and g represent an instance of the subset sum problem that is to
find a subset A’ C A such that > a = g. Assume that for each ¢, 1 <7 <k,
a; > 1 and Zlea,- =M.

For reduction, we construct a set of tasks T5ys = {7,..., 7} as follows: for
each task 7;, 1 < i < k, we first construct its period such that P, = k- B+ g
for some integer B > 0 and then construct its size/time tradeoff pairs in the
form of (s;,n;) as (a; + B, B) and (B, a; + B). We also construct a voltage/speed
tradeoff in the form of (v;, f;) as (1,1) and (2,2). Combining these two tradeoffs,
we can get a triple-tradeoff tuple in the form of (s;,;, e;) as (a; + B, B, B), (a; +
B,B/2,2-B),(B,a;+B,a;+B), and (B, (a; + B)/2,2-(a; + B)), with t; = n;/ f;
and e; = n; - v2. Finally, we construct the upper bound to the system energy
consumption e;FP*" as k- B + g.

Consider that in any solution,

a€cA’

k
D (si+ni)=2-k-B+ M. (3)

i=1

That is, Y%, s; is minimized when Y% | n; is maximized. In any solution that
satisfies the system’s real-time and energy constraints, Zle ti<k-B+gand
Ele e; < k- B+ g. Add these two inequalities, we get

k k
1
dtiter = Y omi-(++v]) < 2-k-B+2-yg (4)
i=1 i=1 fi

Since Zle s; is minimized when Zle n; is maximized, the problem of minimiz-
ing Ele s; is equivalent to the problem of maximizing Ele n;. From Eq. (4),
we can see that when (1/f;+v?) is minimized for each 7;, Zle n; is maximized.
From the voltage/speed tradeoff, we know that when v; = f; = 1, (1/f; +v?) is



minimized to 2 for each 7;. With this, we get Zle n; < k- B+ g from Eq (4).
When Ele n; is maximized to k- B + g, Zle $; is minimized to k- B+ M — k
from Eq. (3). Hence, the minimum system code size is achieved if and only if
there is a subset 7}, of 7,5 such that ) (n; — B) = g; for task 7; € 7.

8Ys Ti€ET ys ELER]
we set n; to a; + B and for 7; ¢ 7,, ., we set n; to B, respectively. The problem
of finding such a subset 7y, is equivalent to the problem of finding the subset
A" of A such that ), a = g. It is obvious that the reduction can be done in

polynomial time.

4.2 Heuristic Algorithms

Given the intractability of the code size optimization problem, a natural ap-
proach to resolve the problem is to develop heuristic algorithms that find sub-
optimal solutions. Basically, we consider heuristic algorithms that gradually re-
duce the system code size by increasing the number of execution cycles of a
task and adjusting the clock speed for the task as long as the system’s real-time
and energy constraints are satisfied. Our algorithms commonly have two steps:
initialization and code size reduction. In the initialization step, the algorithms
find a set of triple-tradeoff tuples X = {(s;,t;,e;)} for all tasks 7; such that
the system’s double constraints are satisfied with X . In the code size reduction
step, the algorithms change X to X' to reduce the system code size while still
satisfying the system’s double constraints.

Initialization Step. The goal of this step is to initialize a set of triple-tradeoff
tuples of all tasks such that the collective tuples X satisfy the system’s real-time
and energy constraints.

Each task 7; has a minimum available execution time ¢}, when its has the
smallest number of execution cycles IV; 1 to execute at the fastest clock speed
Fraz, ie., n; = N;j1 and f; = Fipe,. We assume that the system’s real-time
requirements are satisfied when each task 7; has the minimum possible execution
time ¢}, i.e., X {s;,t}, ;}. Otherwise, there is no feasible solution to the code size
optimization problem satisfying the system’s real-time constraints.

For each task 7;, this step initializes n; and f; as follows:

n;=N;1 and  f; = Fra-
Each task 7; then has its triple-tradeoff tuple (s;,t;,e;) initialized as follows:
8i=29S;1, ti=DNi1, and e =N;1-FV(Frna)’.

For these tuples (s;, t;, €;), t; is initialized to its minimum possible execution time
tf. By our assumption, the collective tuples (s;,t;,€;) thus satisfy the system’s
real-time constraints. Unlike ¢;, e; is not initialized to its minimum possible
value. Thus, the collective tuples may not satisfy the system energy constraints.

If the collective tuples satisfy the system energy constraints, the system’s real-
time and energy constraints are both satisfied and this initialization step finishes.



Otherwise, this step decreases the system energy consumption by changing X to
X' as follows, until the system’s double constraints are satisfied. It selects a task

7; to change its tuple X;(s;,t;,e;) to X (s}, t;, e}). Our initialization step selects

a task with the highest ratio A, /d;,, where

th—1t; e; — e
Ay, = 2—2 and A, =2 d
b P " “ P

Code Size Reduction Step. The initialization step makes a set of triple-tradeoff
tuples of all tasks (X) satisfy the system’s real-time and energy constraints.
Given X from the initialization step, the goal of this step is to adjust X to
reduce the system code size while the two system constraints are still satisfied.
We consider four heuristic algorithms to achieve such a goal.

The four heuristic algorithms commonly to the following procedures: they se-
lect a task 7; and adjust its task tradeoff variables from X;(s;, t;, €;) to X/(s}, t}, e})
in order to decrease the system code size without violating either of the system’s
real-time and energy constraints. They repeat this sub-step until there is no
eligible task to decrease its code size without violating any constraint.

The four heuristic algorithms differ from each other in the selection of a task
to decrease a code size. We first introduce two naive heuristic algorithms, T'M-
ONLY and EZ-ONLY. These two algorithms consider only one aspect of the
system’s real-time and energy constraints, respectively.

— The TM-ONLY algorithm favors a task that can efficiently reduce a code
size without increasing an execution time much. The TM-ONLY algorithm
chooses a task with the highest ratio A, /A;,, where

th —t;

P

— The EZ-ONLY algorithm favors a task that can efficiently reduce a code size
without increasing an energy consumption much. The EZ-ONLY algorithm
chooses a task with the highest ratio Ay, /A, where

As, =s;—s,, and Ay =

e —e;
P;
Now, we introduce two other heuristic algorithms, FIX-MIX and DYN-MIX,
that simultaneously consider the both aspects of the system’s double constraints.

— The FIX-MIX algorithm favors a task that can efficiently reduce its code size
without much increasing both an execution time and an energy consumption.
To consider an execution time increase and an energy consumption increase
together, we normalize them. Let Aj, denote a normalized execution time
increase of 7; and A}, denote a normalized energy consumption increase of
7; such that

!
Ag, =s;—s;, and A, =

Ag, A,
Af = d and A = — & —
Prem €sys — €sys

The FIX-MIX algorithm chooses a task with the highest ratio A, /(Af, +
A ).



Between the system’s double constraints, one constraint may be tight while
the other is loose. In this situation, a reasonable approach is to favor a task
that can reduce a code size by placing the least impact on the tighter constraint
and by imposing a large impact on the looser constraint. Considering this, we
develop the DYN-MIX algorithm as follows.

— The DYN-MIX algorithm favors a task that can efficiently reduce a code size
without much increasing either an execution time or an energy consumption,
whichever has a tighter system constraint. To capture the tightness of the
constraints, we define time weight (w;) and energy weight (w.) as follows:
wy represents the normalized distance of the current CPU utilization to the
upper-bound constraint to the CPU utilization, i.e., 1, and w, represents the
normalized distance of the current system energy consumption (esy;) to the
upper-bound constraint to the system energy consumption (EYPPeT) ..,

sys
upper
RS N et
wy = D. an We = E’UPpeT _ pmin’
sYs esys

Ti€ETsys

The time weight w; and energy weight w, dynamically change reflecting the
tightness of the real-time and energy constraints. The DYN-MIX algorithm
chooses a task with the highest ratio Ay, /(wy - A7, + we - A}).

5 Simulation Results

For the purpose of evaluating the performances of heuristic algorithms, we per-
formed simulations on finding the optimal solution and some heuristic solutions
to the code size optimization problem. We first describe the simulation param-
eter configuration that was used during the simulations and then evaluate the
performances of heuristic algorithms.

5.1 Simulation Parameters

During simulations, our performance measure is the error of a heuristic solution
to the reference solution in terms of the system code size. We define the error
E(s, 5% s*) of a solution s from the initial solution s° to the reference solution

s* as follows:
s —s*

()

During simulations, the initial solution s° is the initial (maximum) system code
size. The reference solution s* is the optimal solution obtained through an ex-
haustive search or the best heuristic solution among the heuristic solutions in
simulations.

During simulations, we have the following simulation parameters:

Err(s, s, s*) = o

— The number of tasks (|75ys|) is determined in the range [5,150].



— The period (F;) of a task 7; is randomly generated in the range [100, 1000].

— The size/time tradeoff of each task 7; is generated as a sorted list of (code
size, the number of execution cycles) pairs. That is, the tradeoff of 7; is
given as {(S;1, Ni1), .-, (Si,Msr, Ni,msr)}, where S; > S g1 and Ny, <
Nigy1 (1 <k < Mgy —1).

e The number of tradeoff values (Mgr) is determined in the range [4, 50].

e The maximum possible code size (S;1) is randomly generated in the
range [1000, 10000]. The minimum possible code size (S; mg,) is also
randomly generated in the range [0.7 - S; 1, 0.9 - S;.1] to reflect the code
size reduction technique’s performance for typical programs [2]. The in-
termediate code size values, S;2,...,Si mgr—1, are randomly generated
in the range [S; 1, Si msr] Such that they are unique and sorted.

e The minimum number of execution cycles (V; ;) is randomly generated in
the range [1,(3- P;)/|7sys|], where |75y, is the number of tasks. The maxi-
mum number of execution cycles (N; mgy ) is also randomly generated in
the range [1.1- N; 1, 1.4- N; 1] following the reduction technique’s typical

performance [2]. The intermediate values, N;2,..., N; mgr—1, are ran-
domly determined in the range [N; 1, N; ms,] such that they are unique
and sorted.

— For an energy/time tradeoff, the voltage/speed tradeoff shown in Table 1
is used in the simulations. To place an energy constraint on the system,
the upper-bound of the system energy consumption (E;Z’S””) is randomly
generated in the range [e7¥' 4 0.15 - ef079¢, eltin 4 0.85 - e5079¢]. To place a
real-time constraint on the system, a task set is used for simulations if and
only if the task set is schedulable when n; = N; 1 and f; = F,4, for each

task 7;, but is not schedulable when n; = N; prep and f; = Fi.

In addition to the four heuristic algorithms introduced in Section 4.2, we have
another greedy heuristic algorithm RANDOM that randomly selects a task to
reduce its code size among all tasks as long as the system’s real-time and energy
constraints are satisfied. While performing simulations, we did not consider a
simulation run as valid if our four heuristic solutions and RANDOM’s solution
are identical in the simulation run. Excluding these simulation runs where the
system’s real-time and energy constraints are both so loose that any greedy
algorithm can have the same solution, we performed 500 or 1000 simulation
runs for each simulation setting.

5.2 Heuristic Solution Evaluation

First, we evaluate the heuristic solutions comparing them with the optimal solu-
tion. The error of heuristic solutions are calculated taking the optimal solution
as their reference solution. Due to the complexity of the exhaustive search to
find the optimal solution, we limited the number of tasks to 5. The number of
size/time tradeoff pairs Mg increases from 4 to 12 by 2. Figure 4 plots the av-
erage error of heuristic solutions for 500 simulation results as a function of Mgr.
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Fig. 4. Average error of heuristic solutions to the optimal solution as a function of the
number of size/time tradeoff pairs (Msr).

Sim. Type DYN-MIX|FIX-MIX|TM-ONLY |[EZ-ONLY RANDOM
I Mean 0.073 0.078 0.101 0.177 0.252
Std. Dev.| 0.120 0.122 0.136 0.186 0.209
II Mean 0.002 0.004 0.008 0.224 0.415
Std. Dev.| 0.011 0.011 0.019 0.156 0.198
III Mean 0.001 0.004 0.007 0.374 0.493
Std. Dev.| 0.013 0.017 0.026 0.228 0.218

Table 2. Statistical analysis of simulation results

Figure 4 shows that DYN-MIX and FIX-MIX have considerably better perfor-
mance than the other heuristic solutions. This implies that we can significantly
reduce the system code size while considering the both aspects of the system’s
real-time and energy constraints at the same time. The mean and standard de-
viation of the error of heuristic solutions are shown in Table 2 under simulation
type I. The results in the table shows that DYN-MIX has the best performance
among all the heuristic algorithms. This result implies that we can achieve a
better performance in considering the tightness of the system’s constraints.
Due to the complexity of the exhaustive search, we could not find the op-
timal solutions when performing simulations with a large number of size/time
tradeoff values and/or a large number of tasks. In this case, we used the best
heuristic solution as the reference solution, rather than the optimal solution, in
comparing the heuristic solutions. The average errors of the heuristic solutions
obtained through 1000 simulation results are plotted as a function of Mg while
|7sys = 10| in Figure 5, and as a function of 7, while Mgy = 10 in Figure
6, respectively. It is shown in the both figures that DYN-MIX, FIX-MIX, and
TM-ONLY significantly outperforms EZ-ONLY and RANDOM and that the
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Fig. 5. Average error of heuristic solutions to the best heuristic solution as a function
of the number of size/time tradeoff pairs (Msr).

performance gap between these two groups increases as Mgr and |74y5| increase,
respectively. The mean and standard deviation of heuristic solutions’ errors for
variable Mgt cases are shown in Table 2 under simulation type II, and those for
variable |7,ys| are shown in the same table under simulation type III. These sim-
ulation results consistently show that DYN-MIX is the most promising heuristic
algorithm among the five ones.

6 Conclusion

Combining the code size vs. execution time tradeoff and the voltage vs. clock
speed tradeoff, we introduced a triple-tradeoff among code size, execution time,
and energy consumption. With this triple-tradeoff, we addressed the problem
of minimizing code size for energy-constrained real-time embedded systems. We
presented a mathematical model of the code size optimization problem and then
proved the problem is NP-hard. With the intractability of the code size optimiza-
tion problem, we presented heuristic algorithms that find sub-optimal solutions.
The implication of our simulation results is that heuristic algorithms yield bet-
ter solutions when considering the system’s real-time and energy constraints
simultaneously. In particular, the simulation results show that it is worthy for
heuristic appraoches to consider the tightness of the both constraints.

In this paper, we assume that the code size vs. execution time tradeoff rela-
tionship and the voltage vs. clock speed tradeoff relationship are both discrete.
However, these two tradeoff relationships can be approximated by continuous
functions. Our future work is to develop a design framework that deals with
design optimization problems with both continuous and discrete tradeoff as-
sumptions.
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