
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2003

Using Replication and Partitioning to Build Secure
Distributed Systems
Lantian Zheng
Cornell University

Stephen Chong
Cornell University

Andrew C. Myers
Cornell University

Stephan A. Zdancewic
University of Pennsylvania, stevez@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2003 IEEE. Reprinted from Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP 2003) pages 236-250.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27002&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/54
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Lantian Zheng, Stephen Chong, Andrew C. Myers, and Stephan A. Zdancewic, "Using Replication and Partitioning to Build Secure
Distributed Systems", . May 2003.

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27002&page=1
http://repository.upenn.edu/cis_papers/54
mailto:libraryrepository@pobox.upenn.edu

Using Replication and Partitioning to Build Secure Distributed Systems

Abstract
A challenging unsolved security problem is how to specify and enforce system-wide security policies; this
problem is even more acute in distributed systems with mutual distrust. This paper describes a way to enforce
policies for data confidentiality and integrity in such an environment. Programs annotated with security
specifications are statically checked and then transformed by the compiler to run securely on a distributed
system with untrusted hosts. The code and data of the computation are partitioned across the available hosts
in accordance with the security specification. The key contribution is automatic replication of code and data
to increase assurance of integrity—without harming confidentiality, and without placing undue trust in any
host. The compiler automatically generates secure run-time protocols for communication among the
replicated code partitions. Results are given from a prototype implementation applied to various distributed
programs.

Comments
Copyright 2003 IEEE. Reprinted from Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP
2003) pages 236-250.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27002&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/54

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27002&page=1
http://repository.upenn.edu/cis_papers/54?utm_source=repository.upenn.edu%2Fcis_papers%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages

Using Replication and Partitioning
to Build Secure Distributed Systems

Lantian Zheng Stephen Chong Andrew C. Myers Steve Zdancewic
Computer Science Department Dept. of Computer and Information Science

Cornell University University of Pennsylvania
fzlt,schong,andru}@cs.cornell.edu stevez@cis.upenn.edu

Abstract

A challenging unsolved security problem is how to spec-
ify and enforce system-wide security policies; this problem
is even more acute in distributed systems with mutual dis-
trust. This paper describes a way to enforce policies for
data confidentiality and integrity in such an environment.
Programs annotated with security specifications are stati-
cally checked and then transformed by the compiler to run
securely on a distributed system with untrusted hosts. The
code and data of the computation are partitioned across
the available hosts in accordance with the security speci-
fication. The key contribution is automatic replication of
code and data to increase assurance of integrity—without
harming confidentiality, and without placing undue trust
in any host. The compiler automatically generates secure
run-time protocols for communication among the replicated
code partitions. Results are given from a prototype imple-
mentation applied to various distributed programs.

1 Introduction

Computing systems are becomingmore complex and yet
we increasingly depend on them to function correctly and
securely. Unfortunately, it is currently difficult to make
strong statements about the security provided by a comput-
ing system as a whole. Distributed systems make security
assurance particularly difficult, as these systems naturally

This research was supported in part by DARPA Contract F30602-99-
1-0533, monitored by USAF Rome Laboratory, in part by ONR Grant
N00014-01-1-0968, in part by NSF Grant 0208642, and in part by an NSF
CAREER award. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes, notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsement, either expressed or implied, of
the Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

cross administrative and trust boundaries; typically, some
of the participants in a distributed computation do not trust
other participants or the computing software and hardware
they provide. Systemsmeeting this description include clin-
ical and financial information systems, business-to-business
transactions, and joint military information systems. These
systems are distributed precisely because they serve the in-
terests of mutually distrusting principals.

The open question is how programmers should build
distributed systems that properly enforce strong security
policies for data confidentiality and integrity. In partic-
ular, we are interested in policies based on information
flow (e.g., [16, 49, 57, 26]), which are attractive because
they constrain the behavior of the whole system. Informa-
tion flow policies are an end-to-end specification of com-
puter security, unlike (discretionary) access control, which
does not track information propagation.

Recently, secure program partitioning [61] has been pro-
posed as a way to solve this problem. The Jif/split compiler
automatically partitions high-level, non-distributed code
into distributed subprograms that run securely on a collec-
tion of host machines that are trusted to varying degrees
by the participating principals. (Such hosts are heteroge-
neously trusted.) A partitioning is secure if the security of
a principal can be harmed only by the hosts the principal
trusts. Thus, the partitioning of the source program is driven
by a high-level specification of security policies and trust.

This work shows how to use replication to protect the
integrity of program data and control information in the se-
cure partitioning framework. Earlier work on secure par-
titioning found that integrity is a crucial aspect of system
security, especially when trying to enforce complex, data-
dependent security policies. Replication makes it easier to
provide integrity because replicated data and computations
can be checked against each other to ensure they agree.
This is a well-known way to increase integrity assurance,
used in file systems and replicated state machines (e.g.,
[40, 23, 7, 47]); what has not been previously investigated

1

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

is how to apply it to general computation in a system with
mutual distrust.

Applying replication to secure program partitioning en-
ables a broader class of applications to be automatically
compiled for distributed systems with heterogeneously
trusted hosts. But in this context, replication creates sev-
eral new problems that this paper addresses:

� Trust is heterogeneous, unlike in the traditional appli-
cations of replication to fault tolerance. Therefore the
replication of computation and data must vary from
host to host, as determined by trust and security poli-
cies.

� Replication makes confidentiality policies harder to
enforce, because it creates more copies of the data po-
tentially vulnerable to attack. In our system, secure
hash replicas are automatically generated to ensure in-
tegrity without violating confidentiality.

� For efficiency, replicated computation is performed
concurrently. Therefore a suitable concurrency-control
mechanism is needed for heterogeneously trusted
hosts.

The rest of this paper is structured as follows. Section 2
gives some background on secure program partitioning, de-
scribing the security model and showing how programs are
written using this model. Section 3 explains how programs
are statically partitioned and replicated according to secu-
rity constraints. Section 4 describes the run-time mech-
anisms that ensure the assumptions of the static analysis
hold. The implementation of this approach and experience
with it are discussed in Section 5, along with some perfor-
mance results. Sections 6 and 7 conclude the paper with a
discussion of related approaches, limitations of the existing
system, and future work.

2 Programming and Security Models

2.1 Secure program partitioning

In the secure program partitioning approach, the desired
computation is expressed as a non-distributed program con-
taining security annotations. These annotations are used to
check at compile time that the program does not contain
disallowed information flows. The splitter, a back end to
the compiler, also uses these program security annotations,
along with information about the degree to which principals
trust the available hosts, to construct a fine-grained secure
partitioning of the program code and data onto these hosts.

Computations that would ordinarily be written as sep-
arate programs communicating over the network can be
written as a single program; based on security considera-
tions, the splitter automatically generates the separate sub-
programs and discovers a network protocol that they may

use to communicate. The splitter operates automatically,
but it may be given constraints and hints, for example to
improve performance. It is not necessary to give the split-
ter the entire program at once; program code may be sep-
arately compiled. The use of explicit constraints and sepa-
rate compilation can be useful for programmers who wish
to partition their code by hand. In this usage the compiler
and splitter serve to verify that the manual partitioning is
secure.

An alternative approach to building secure distributed
programs would be to start from a lower-level distributed
program and add annotations that permit the program to be
shown secure. However, secure program partitioning has
some important advantages. First, the programmer need
not be aware of the distributed protocols that are needed to
ensure strong security properties. Second, it is not known
how to annotate a program containing these complex pro-
tocols in a way that permits accurate determination of in-
formation flow. The closest existing work—on information
flow in concurrent systems with a trusted execution plat-
form [45, 52, 39, 6, 24, 19, 33]—has produced restrictive
analyses that rule out many practical programs. We expect
that dealing with mutual distrust would only exacerbate the
problem. By contrast, secure program partitioning starts
from a simpler, higher-level description of the computation
and can be less restrictive because its security analysis has
more information to work with.

This work is concerned with the control of informa-
tion flow, including covert storage channels such as implicit
flows [9]. We do not treat covert channels based on termi-
nation and timing, though some ongoing work partially ad-
dresses timing channels [1, 37]. In addition, our prototype
implementation does not attempt to prevent certain traffic
analysis attacks. Although all communication is suitably
encrypted, an attacker could learn information based on the
pattern of that communication. Adding dummymessages is
one possible way to protect against these attacks [20, 2].

In this work the trusted computing base is the same as in
the secure program partitioning work [61]; for example, it
includes the Jif compiler and the splitter. However, a trusted
host is not needed to perform the compilation and splitting
of the program.

2.2 Security labels

The programs to be partitioned are written in the pro-
gramming language Jif [29], which extends the Java lan-
guage [48] with security annotations. Jif programs contain
labels based on the decentralized label model [30], in which
principals can express ownership of information-flow poli-
cies. This model works well for systems incorporating mu-
tual distrust, because labels specify on whose behalf the
security policy operates. In particular, label ownership is

2

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

used to control the use of selective declassification [34], a
feature needed for realistic applications of information-flow
control.

In this model, a principal is an entity (e.g., user, pro-
cess) that can have a security concern. These concerns are
expressed as labels, which state confidentiality or integrity
policies that apply to the labeled data. Principals can be
named in these policies as owners of policies and as readers
of data.

A security label specifying confidentiality is written
as {o:r1,r2,...,rn}, meaning that the labeled data is
owned by principal o, and that o permits the data to be read
by principals r1 through rn (and, implicitly, o). A label is
a security policy controlling the uses of the data it labels;
only the owner has the right to weaken this policy. A secu-
rity label specifying integrity is written as {*:p1,...,pn},
meaning that principals p1 through pn trust the data—they
believe the data to be computed by the program as writ-
ten. This is a weak notion of integrity; its purpose is to
protect security-critical information from damage by sub-
verted hosts. Labels combining integrity and confidential-
ity arise naturally; for example, the label {*:p1; p1:p2}

indicates that the labeled data is trusted by principal p1 and
also owned by p1, and only p2 is permitted to read it.

Labels on data create restrictions on the use of that data.
The use of high-confidentiality data is restricted to prevent
information leaks, and the use of low-integrity data is re-
stricted to prevent information corruption. The label on in-
formation may be securely changed from label L1 to label
L2 if L2 specifies at least as much confidentiality as L1,
and at most as much integrity as L1. We write this label re-
lationship as L1 v L2. The relation v is a pre-order whose
equivalence classes form a distributive lattice [30]; the lat-
tice join and meet operations are t and u respectively.
The join operation combines the restrictions on how data
may be used. For example, if x has label Lx and y has label
Ly, then x + y has label Lx tLy, which preserves restric-
tions on the use of x and y. Dually, the label Lx uLy is at
most as restrictive asLx orLy; thus, it must describe at least
as much integrity as either label. This makes sense because
labels represent restrictions on how data may be used; data
with higher integrity has fewer restrictions on its use [4].

For any label (or program expression) x, the notations
C(x) and I(x) refer respectively to the confidentiality and
integrity parts of x (or the label of x).

2.3 The Jif programming language

Variables and expressions in Jif have types that may
include security labels. For example, a value with type
int{o:r} is an integer owned by principal o and readable
by r. When unlabeled Java types are written, the label com-
ponent is automatically inferred from the uses of the data.

Every program expression has a labeled type that is an
upper bound (with respect to thev order) on the security of
the data represented by the expression. Jif’s type-checking
algorithm prevents labeled information from being down-
graded, or assigned a less-restrictive label (i.e., lower in the
lattice). In general, downgrading results in a loss of con-
fidentiality or a spurious increase in claimed integrity. The
type system tracks data dependencies (information flows) to
prevent unintentional downgrading.

Implicit flows [9] are information flows through the con-
trol structure of the program. Implicit flows can create
both integrity and confidentiality concerns. For example,
control-flow integrity is important: if untrusted parties can
affect the control flow of the program, they might cause a
security violation. Security policies on control flow are ex-
pressed as labels, just as for ordinary variables. For each
program point pc, two special labels C(pc) and I(pc) are
computed statically, representing the confidentiality and in-
tegrity policies applying to the control flow at that point.

A Jif programmermay annotate a programwith arbitrary
security labels, but this does not mean that the program-
mer has control over security. First, if labels are not inter-
nally consistent the program will not type-check; second,
labels must also be consistent with the security policies on
data in the external environment that the program interacts
with. External consistency is checked partly at link time
and partly at run time.

Strict information-flow policies based on noninterfer-
ence [16] have not been successful in practice as they
are very restrictive. Jif supports two operators for inten-
tionally downgrading security policies, declassify and
endorse. Declassification reduces confidentiality require-
ments and endorsement (dually) increases the claimed in-
tegrity of data. To downgrade a security label, code must be
granted the authority of the principals whose security poli-
cies are affected. For declassification, these principals are
the owners of the confidentiality policies that are weakened;
for integrity, these are the principals newly appearing in the
integrity part of the label.

A second restriction on downgrading is that it is only
permitted at a point where the program counter label indi-
cates that the affected principals trust program control flow.
This requirement prevents the downgrading decision from
being improperly affected by untrustworthy data or com-
putation. The goal is to enforce the robust declassification
property [59].

This work inherits some of the limitations of Jif. The
most important is that programs are sequential; the Java
Thread class is not available. This rules out an important
class of timing channels whose control is an open research
area [24, 44, 45].

3

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

1 int{Alice:; *:Alice,Bob} bid;

2 boolean{Alice:Bob; *:Alice,Bob} isCommitted;

3
4 void commit{Alice:Bob; *:Alice,Bob}

5 (int{Alice:; *:Alice} v)

6 where authority (Bob)

7 {

8 v = (v>=0) ? v : 0;

9 if (!isCommitted) {

10 bid = endorse(v, {*:Alice,Bob});

11 isCommitted = true;

12 }

13 }

14 int{Alice:Bob; *:Alice,Bob} reveal{*:Alice,Bob} ()

15 where authority (Alice)

16 {

17 if (isCommitted)

18 return declassify(bid, {Alice:Bob});

19 else return -1;

20 }

Figure 1. Bid commitment program

2.4 Bid commitment example

Figure 1 shows an example of a Jif program based on
the well-known Bit Commitment Protocol [5]. Instead of
committing a bit, the program commits a non-negative inte-
ger. The principal Alice commits a bid v to a principal Bob
without revealing the bid. Later, Alice reveals v and Bob
verifies that it is the bid Alice previously committed. We
chose this example because it is short but has interesting
security issues.

Alice’s committed bid is represented by the field bid.
Its label {Alice:; *:Alice,Bob} indicates that this field
is owned (and can be read) only by Alice, and that both
Alice and Bob trust it to be the committed bid. The boolean
isCommitted records whether Alice has committed a bid
yet; it must be trusted by both Alice and Bob and visible to
both of them.

Lines 4 through 13 define a method commit that Alice
uses to commit to the integer value v. Bob does not need
to trust v because he does not care how Alice computes the
value she commits to. The endorse operation makes that
policy decision explicit—it boosts the integrity of the value
of v so that it can be assigned to bid. The authority clause
in line 5 gives the method Bob’s authority, which is needed
by the endorse operation. In lines 4 and 14, the label after
the method name is a start label, used to control the implicit
flow into the method [29].

Lines 14 through 20 define a method reveal that is used
by Alice to reveal the committed bid to Bob. It returns the
value of field bid if the value of isCommitted is true. If
the value of isCommitted is false, it means that Alice has
not committed a value yet, and reveal simply returns -1.
Because Alice owns bid, releasing the data requires declas-
sification and hence Alice’s authority (declared at line 15)

so that it can declassify Alice’s data.
As shown in the example program, most security anno-

tations that a programmer needs to specify are in method
signatures. In general, programmers do not need to specify
labels for local variables because they can be inferred auto-
matically [29]. Usually, there are fewer security annotations
in a program than type annotations, so writing down secu-
rity annotations is not a much heavier burden than writing
down the type annotations that programmers are used to.

2.5 Trust model and security assurance

Clearly, any secure distributed system relies on the trust-
worthiness of the underlying infrastructure. Let H be a
set of known hosts, among which the program is to be dis-
tributed. We assume that pairwise communication between
two members of H is authenticated, reliable, in-order, and
cannot be intercepted or forged. Protection against intercep-
tion and forgery can be achieved efficiently through well-
known encryption techniques (e.g, [46, 58]).

To partition a program securely, the splitter must know
the trust relationships between the participating principals
and the hosts H . For example, if Alice declares that she
trusts a host to hold her confidential data, the splitter can
allow her data to reside on that host. Moreover, her confi-
dentiality policy should be obeyed unless some host trusted
by her suffers a malicious (Byzantine) failure, taking an ac-
tion that is inconsistent with the subprogram located on h.
Such an action might result from the subversion of h by
an attacker. Conversely, a host that simply stops or crashes
may cause the computation as a whole to halt, but should
not harm data confidentiality or integrity.

Each host h has a security label that describes the trust
that principals place in h. The confidentiality part of this
label, C(h), is an upper bound on the confidentiality of in-
formation that can be sent securely to h. The integrity part
of the label, I(h), is an upper bound on the integrity of in-
formation that can be received securely from h; that is, the
set of principals that trust data from h. To authenticate a
host label, each principal p needs to sign the security poli-
cies in the label that are owned by p.

The trust configuration is a map from all the hosts in H
to their corresponding security labels. The splitter uses pro-
gram labels and the trust configuration to securely partition
a program. The partitioning must obey the constraint that
the host selected to run a subprogram has a label that de-
scribes enough protection of confidentiality and integrity to
execute that subprogram. A secure partitioning must satisfy
the following security condition [61]:

Security Assurance: Suppose Hbad is the set of
compromised hosts in the system. Then the con-
fidentiality of an expression e cannot be harmed

4

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

unlessC(e) v A
h2Hbad

C(h); its integrity cannot
be harmed unlessBh2Hbad

I(h) v I(e).

The intuition behind this condition is that the label of a
host is a bound on the damage that the host can do if it
is subverted. However, if multiple hosts are subverted, they
may collude to cause more damage. Therefore, the dam-
age caused by a set Hbad of compromised hosts should be
bounded by the join of their confidentiality labels and the
meet of their integrity labels.

The security assurance condition is not always
easy to satisfy. Consider running the bid commit-
ment program on a trust configuration in which host
ha’s label is {Alice:; *:Alice} and host hb’s is
{Bob:; Alice:Bob; *:Bob}. That is, ha is trusted by
Alice and can hold her private data, and hb is trusted by
Bob and can hold his private data as well as data Alice
reveals to him. However, the original Jif/split system [61]
cannot partition this code because the field isCommitted

must be trusted by both Alice and Bob; therefore, the field
cannot be placed on either ha or hb. This paper shows that
replication of code and data can often solve this problem,
which arises in realistic applications.

3 Partitioning and Replication

In this work the original secure program partitioning al-
gorithm has been extended to exploit automatic replication.
If there is no host with a sufficient integrity label to run a
program statement or to store a field, the extended splitter
can replicate the statement or the field on multiple hosts to
satisfy integrity requirements.

Consider the partitioning failure described in Sec-
tion 2.5. Unlike the original splitter, our extended Jif/split
compiler can replicate the field isCommitted onto both ha
and hb, so that the field’s value is considered valid only
when the copies on ha and hb agree. Alice trusts the
copy on ha and Bob trusts the copy on hb; therefore, if
both copies have the same value x, both Alice and Bob
trust that the field isCommitted has the value x, as re-
quired by the field’s integrity label, {*:Alice,Bob}. In
general, by replicating data on a set of hosts h1; : : : ; hn,
integrity may be increased up to the combined integrity
I(h1)u : : : u I(hn) if the replicas all agree.

The use of replication increases the flexibility that the
splitter has to partition programs, but the same security as-
surance condition still applies. Suppose e is replicated on a
set of hosts hi where 1 � i � n. The splitter ensures stati-
cally that the combined integrity of the hosts hi is sufficient
to compute e, so B

i
I(hi) v I(e). The result of e can be

incorrect only if all the replicas of e produce the same incor-
rect result; if so, the hosts hi are all compromised, and we
have B

h2Hbad
I(h) v B

i
I(hi). By transitivity, the result

of e can be incorrect only when B
h2Hbad

I(h) v I(e), but
then the security assurance condition does not guarantee the
integrity of e.

Enforcing the integrity policies described here does not
guarantee availability; if any of the hosts performing a repli-
cated computation is compromised and produces a result in-
consistent with the results from other hosts, the error will be
detected and the computation will be halted. Better enforce-
ment of availability policies appears to be possible within
the secure partitioning framework, but is left to future work.

The rest of this section describes the replication and par-
titioning of classes and objects across a distributed system,
as well as the static constraints that determine where each
statement and each data item can be placed in the distributed
system. These constraints ensure that confidentiality and in-
tegrity policies are enforced if all hosts compute correctly.
Misbehaving hosts are controlled by the run-time mecha-
nisms described in Section 4.

3.1 Splitting code, classes and objects

The splitter uses a fine-grained approach to partitioning.
For each field and statement, the splitter assigns a set of
hosts to it. Then statements and fields that can be placed
on the same host are assembled to form a subprogram. This
fine-grained approach gives the splitter flexibility in select-
ing hosts to satisfy the security constraints.

Like Java, Jif is an object-oriented language in which a
program consists of classes. The splitter partitions a class
into multiple local classes, each of which resides on one
host. A local class contains some fields of the original class
and stub code for calling class methods. If a class C is split
into local classes C1; : : : ; Cn, then an object o of class C
is represented by a set of local objects o1; : : : ; on that are
instances of the classes C1; : : : ; Cn and located on hosts
h1; : : : ; hn. These local objects share the same global ob-
ject ID.

The code of each source method is split into code seg-
ments. A code segment corresponds to a fragment of a
source method and is identified by the source program point
pc at which the fragment begins. Each code segment is
replicated on a set of hosts; all the replicas simulate the
computation of the source fragment.

A running method has an activation record that is explic-
itly represented as an object in the partitioned target code.
Each activation record is partitioned into local frame ob-
jects that represent the part of the activation record that is
stored on their host. As with local objects, local frame ob-
jects that represent the same activation record also share the
same global frame ID.

5

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

3.2 Selecting hosts for data

If a data item d is replicated on hosts h1; : : : ; hn, then
each hi must be trusted not to leak d to unauthorized read-
ers. This constraint is expressed as C(d) v C(hi) for all i,
or equivalently, as C(d) v BiC(hi).

The hosts holding d may receive access or update re-
quests for d from other hosts, and infer some information
about the control flow. The splitter computes the confi-
dentiality Cif (d) of the implicit flow to each data item
d: if d is accessed at a program point pc, the constraint
C(pc) v Cif (d) is satisfied. The hosts hi must be trusted
to read the implicit flow: Cif (d) v BiC(hi).

The integrity of d is at most as high as the combined
integrity of the set of hosts storing it: BiI(hi) v I(d).
Thus, replicating d tends to make it easier to satisfy the
integrity constraint but harder to satisfy the confidentiality
constraints: there is a tension between confidentiality and
integrity. One way to resolve this tension is to store a se-
cure hash value of d on hosts that cannot read d. The user
of d can verify the real value of d against its hash value to
assure integrity. We refer to the hashed copies of a piece
of data as its hash replicas. Confounders are used to pro-
tect hash replicas against dictionary attacks, as described in
Section 4.4.1.

Suppose a host h holds a hash replica of d. While it
cannot determine the real value of d, it knows when d is
accessed. Therefore h must have a confidentiality label at
least as high as Cif (d). For hash replicas, there are three
constraints for placing d on hosts h1; : : : ; hn:

9i C(d) v C(hi)
Cif (d) v C(h1)u : : : uC(hn)
I(h1)u : : : u I(hn) v I(d)

The first constraint ensures that there exists at least one
host that can hold v’s real value. The second constraint en-
sures that the hosts holding the data are trusted to receive
the implicit flows. The third says that collectively the set of
hosts satisfy d’s integrity requirement.

Consider the field bid of Figure 1. It has
the label {Alice:; *:Alice,Bob}, and Cif (bid) is
{Alice:Bob} because the value of isCommitted can be
inferred from the fact that bid is updated at line 9. Thus,
bid is replicated on ha and hb, and ha can hold its real
value while hb can only hold its hash. It is easy to check
that the three constraints are satisfied: C(bid) v C(ha),
Cif (bid) v C(ha)uC(hb) and I(ha)u I(hb) v I(bid).

3.3 Selecting hosts for code

In general, the hosts running a statement need to read all
the inputs of the statement. However, knowing hash repli-
cas of some inputs is sufficient for execution of some com-

mon statements such as assignments. Consider the state-
ment bid=endorse(v,{*:Alice, Bob}) in the bid com-
mitment example. This statement is translated into bid=v

and replicated on ha and hb. Since hb is not allowed to read
the real value of bid or v, it owns hash replicas of both bid
and v. To execute the statement, hb only needs to assign the
hash replica of v to the hash replica of bid—no computa-
tion that depends on the actual value of v takes place. Given
a statement s, let Ur(s) be the set of inputs whose real val-
ues are needed in the computation of s, and let Uh(s) be the
set of inputs whose hash replicas are sufficient to carry out
s. Then C(s) = Av2Ur(s)C(v).

The hosts running a statement s also need to have a com-
bined integrity at least as high as the integrity of any out-
put of s. Let D(s) be the set of locations s defines. Then
I(s) = Bl2D(s)I(l). In general, hosts h1; : : : ; hn can ex-
ecute the statement s securely if the following three con-
straints are satisfied:

8v02Uh(s) 9i C(v0) v C(hi)
C(s) v C(h1)u : : : uC(hn)
I(h1)u : : : u I(hn) v I(s)

The first constraint guarantees that there exists at least one
host hi that can hold the real value of the input v0. The sec-
ond constraint requires that every host can read those inputs
whose real values are needed to execute s. The third con-
straint ensures that the set of hosts has a combined integrity
sufficient for every output of s.

4 Run-time Mechanisms

As a partitioned program runs, code segments on differ-
ent hosts interact to simulate the control flow and data flow
of the source program as if it were running on a single ma-
chine. These interactions include control and data transfers
between hosts, both of which are supported by the run-time
system. Each call to the run-time system sends a message to
another host to trigger an action on that host, such as execut-
ing a code segment or accessing a field. An important goal
of the run-time system is to prevent bad hosts from causing
integrity violations.

4.1 Run-time interface

Figure 2 shows the interface to the run-time system.
There are three operations for transferring data between
hosts. Calls to getField and setField access remote
fields, while forward transfers local variables between
frame objects on different hosts. The other three opera-
tions in the figure—rgoto, lgoto and sync—are used to
transfer control among the hosts. This run-time interface is
similar to that in the original Jif/split system [61], but its

6

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

Val getField(Host h, Obj o, Field f)

void setField(Host h, Obj o, Field f, Val v)

void forward(Host h, FrameID f, Var var, Val v)

void rgoto(Host h, FrameID f, int pc)

void lgoto()

void sync(FrameID f, int pc)

Figure 2. Run-time interface

int bid;
boolean isCommitted;

sync(sr);
rgoto(s1);

s0: entry

v = (v>=0)?v:0;
forward(hb,...,v);
lgoto();

s1

rgoto(s2);

sr

if (!isCommitted){
 bid=v;
 isCommitted=true;
}
rgoto(s3);

s2

lgoto();

s3: exit

Host ha

lgoto, ta

rgoto

rgoto

rgoto, tasync

Hash bid;
boolean isCommitted;

sync(sr);
rgoto(s1);

s0: entry

rgoto(s2);

sr

if (!isCommitted){
 bid=v;
 isCommitted=true;
}
rgoto(s3);

s2

lgoto();

s3: exit

Host hb

rgoto

rgoto

rgoto, tb
sync

fwd

ta

ta

tb

tb

hash
lgoto, tb

Figure 3. Control flow graph of the commitmethod

implementation is quite different because it may be used
concurrently by different replicas.

Both rgoto (“regular goto”) and lgoto (“linear goto”
[60]) operations transfer control to a code segment on a
remote host. Intuitively, rgoto is used to transfer control
from a code segment to another with equal or lower in-
tegrity1, while lgoto allows a code segment to transfer con-
trol to another code segment with higher integrity. Figure 3
shows the control-flow graph of a possible splitting and
replication of the commitmethod in Figure 1, and illustrates
how rgoto, lgoto and sync are used to transfer control. In
Figure 3, the integrity labels of s0, s1 and s2 are respectively
{*:Alice,Bob}, {*:Alice} and {*:Alice,Bob}.

� rgoto(h; f; pc) invokes the code segment at pc on host
h, with frame object f . The hosts doing the rgoto

must have a combined integrity as high as that of the
code segment to be invoked. In Figure 3, s0 transfers
control to s1 with rgoto.

1The integrity label of a code segment s is the meet of the integrity
labels of all the statements in s.

� lgoto() transfers control from one code segment to
another with higher integrity. A capability mechanism
prevents a host from using an invalid lgoto to corrupt
a computation with higher integrity. In Figure 3, af-
ter running s1, host ha sends two lgoto requests to
invoke the two replicas of sr. Since the integrity of
ha is lower than that of sr, ha must present a capa-
bility for invoking sr. Unlike in the original Jif/split
system [61], the capability is a set of capability tokens
fta; tbg. Each token is used to invoke a replica of sr.

� sync(f; pc) creates a capability token t that can be
used to invoke the code segment replica on the local
host with frame object f . In general, a sync opera-
tion is replicated on multiple hosts, and creates a set
of tokens. A capability token is a tuple hh; f; pc; uidi,
containing a host ID, a frame ID, a program counter,
and a unique 128-bit identifier. The first three compo-
nents specify the code segment to be invoked by the
token. The last component prevents forgery and en-
sures uniqueness with high probability. In Figure 3,
the replicas of s0 do sync operations to collectively
generate the capability fta; tbg.

4.2 Replication and run-time checks

Except for sync, all of the operations in the run-time in-
terface need to send a message to another host. This has two
security implications. First, the receiving host must protect
the confidentiality of the message, and second, a message
cannot be trusted more than its sender.

Suppose a run-time call on host h sends a message m

to host h0 to invoke an action a. Let C(m) be the confi-
dentiality of the information that is contained in m or can
be inferred from it, and let I(a) be the integrity required
to perform a. Then the system must enforce two security
constraints: C(m) v C(h0) and I(h) v I(a). The split-
ter statically ensures that C(m) v C(h0) when it gener-
ates the code for the run-time call. However, the condition
I(h) v I(a)must be checked at run time, because bad hosts
might fabricate messages.

The constraint I(h) v I(a) has an interesting interaction
with replication. Suppose a statement f=3 is replicated on
hosts h1 and h2, and the field f resides on host h0. On
executing the statement, both h1 and h2 send a setField
message to h0. Host h0 should update f if the combined
integrity of h1 and h2 is as high as that of f. Suppose h0

receives the setFieldmessage from h1 first and finds that
I(h1) 6v I(f). In that case, h0 suspends the request until the
same request is made by h2. Then, h0 accepts the request
after verifying that I(h1)u I(h2) v I(f). In general, if
h1; :::; hn request an action a, it can be performed securely
if the combined integrity of the hosts hi is sufficient:

I(h1)u :::u I(hn) v I(a) (RC1)

7

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

However, this condition is more restrictive than necessary.
In general, if hosts h1; : : : ; hn send messages to hosts
h0

1
; : : : ; h0

r to invoke an action a, each h0

j can securely do
a if the following condition holds:

I(h1)u :::u I(hn) v I(a)t I(h0

j) (RC2)

The action a is successfully performed only if all the hosts
h0

j perform it, implying that RC2 holds at all h0

j . But
this implies BiI(hi) v I(a)tBjI(h

0

j), which guarantees
that RC1 is satisfied because the splitter statically ensures
BjI(h

0

j) v I(a). Therefore, it is safe to use RC2 in run-
time checks.

Suppose hosts h1; h2 and h3 want to update a field f

that is replicated on hosts h0

1
and h0

2
. The integrity of f is

{*:Alice,Bob,Chuck}, and the integrity labels of the five
hosts are shown in the following figure. Using RC2, only
three messages are required:

h1 h2 h3

{*:Alice} {*:Bob} {*:Chuck}

h1
' h2

'

{*:Alice,Bob} {*:Chuck}

4.3 Control transfer mechanisms

Using the three run-time calls (rgoto, lgoto and sync)
as building blocks, the splitter generates the run-time proto-
col that simulates the control flow of the source program. A
secure control transfer protocol must prevent low-integrity
hosts from affecting high-integrity control flow. Otherwise,
a bad low-integrity host may compromise high-integrity
computation, leading to data corruption or improper declas-
sification of confidential data.

The difficult case is when the control needs to be trans-
ferred from a code segment s1 to another segment s2 with
higher integrity (I(s1) 6v I(s2)). This transfer is poten-
tially insecure, because the bad hosts may have sufficient
integrity to invoke s1 and cause control to be passed to s2
even though they do not have enough integrity to invoke s2.
So s1 must use an lgoto operation along with a set of ca-
pability tokens to invoke s2.

4.3.1 The lgoto protocol

Consider a simple control flow s0 ! s1 ! s2, where s0
and s2 have higher integrity than s1. Control should go
from code segment s0 to s1, and then to s2. Here, s1 has
low integrity and cannot pass control to s2 directly, but s0
has sufficient integrity to transfer control to s2. So when
s0 passes control to s1, it gives s1 a capability that permits
control to be returned to a segment sr containing the state-
ment rgoto(s2). The segment sr has the same integrity as

s0 and resides on the same set of hosts. Intuitively, s1 is like
a procedure call, and sr is the return address.

Suppose s0 is replicated on hosts h1 through hn. The
protocol works roughly like this: each replica of s0 on hi
does a sync operation to create a token ti for the replica
of sr on the same host. Then s0 passes control and the
set of tokens t1; : : : ; tn to s1. After s1 finishes running, it
returns control to sr with those tokens. Finally, sr runs and
transfers control to s2. Using the notation “s0 ! s1 : m”
to represent sending a message m from s0 to s1, we can
write the protocol as:

1. s0 : sync(sr), creates t1; : : : ; tn
2. s0 ! s1 : rgoto, ht1; : : : ; tni
3. s1 ! sr : lgoto, ht1; : : : ; tni
4. sr ! s2 : rgoto

This description hides some complexity arising from
replication. In step 2, sending an rgoto request from s0
to s1 actually requires multiple network messages from the
hosts running s0 to the hosts running s1. In step 3, if a
host running s1 has the token ti, the host just sends ti along
with an lgoto request to hi. Figure 3 shows an example in
which s0 and s1 are replicated on two hosts.

This protocol handles a simple control transfer to and
from a low-integrity host; more complex control flow can
always be reduced to occurrences of this simple case.

4.3.2 The rgoto protocol

Suppose code segment s0 transfers control to segment s1
with an rgoto, where s0 is replicated on h1; :::; hn and s1
is replicated on h0

1
; :::; h0

m. For each h0

j , the splitter finds
the smallest subset of fh1; :::; hng such that the combined
integrity of the subset of hosts is greater than or equal to
I(h0

j)t I(s1); every host in the subset sends an rgoto re-
quest to h0

j . This protocol guarantees that the run-time
check of RC2 at each host h0

j succeeds, and avoids unnec-
essary network communication.

4.3.3 Token management

Capability tokens allow low-integrity hosts to invoke high-
integrity code segments using lgoto, so it is critical to re-
strict the creation and propagation of these tokens. Suppose
that I is an arbitrary integrity label. A label I 0 is consid-
ered high-integrity if I 0 v I ; otherwise it is low-integrity.
To prevent misuse of capability tokens, the system must en-
force two security invariants for every integrity label I :

TI1 When control is in a high-integrity code seg-
ment, no set of hosts whose combined in-
tegrity is low has a complete set of tokens
for a high-integrity code segment.

8

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

TI2 When control is in a low-integrity code seg-
ment, at most one complete set of tokens
for a high-integrity code segment is held by
any set of hosts whose combined integrity is
low.

TI1 prevents low-integrity hosts from starting a high-
integrity thread while one is already running. TI2 ensures
that once control is transferred to a low-integrity code seg-
ment, high-integrity control flow can be resumed at only
one point. These two invariants leave low-integrity hosts
no choice but to follow the control flow chosen by high-
integrity hosts.

In the control-transfer protocol, tokens are passed be-
tween hosts in two ways. First, tokens can be passed along
with lgoto requests, as shown in step 3 of the lgoto pro-
tocol. The run-time system of each host maintains an entry
table that records tokens created on that host and their cor-
responding code segments. When a host receives an lgoto
request with a token t, it checks the entry table. If t is in the
entry table, the host invokes the corresponding code seg-
ment, and deletes t from the entry table to prevent replay
attacks.

Second, tokens can be passed along with rgoto requests,
as shown in step 2 of the lgoto protocol. These tokens
can be used by the destination hosts to invoke a remote
code segment. The run-time system associates the tokens
received along with an rgoto request with the code seg-
ment invoked by the rgoto request. The tokens associated
with the running code segment are called the active token set
(ATS). For instance, in Figure 3, the ATS of s1 is fta; tbg.
Suppose host h is running code segment s. Depending on
what control transfer operations are performed by s, the run-
time system of hmanages the ATS of s in one of three ways:

� Case 1: lgoto. The ATS is used to return control
to some higher-integrity code segment. Recall that an
lgoto call does not have any arguments, because the
run-time system maintains the ATS.

� Case 2: rgoto. The ATS is distributed to the replicas
of the destination code segment along with the rgoto
request.

� Case 3: sync followed by rgoto. The sync call cre-
ates a new token t that corresponds to a code segment
sr, which should be the only return point for the fol-
lowing computations that has a lower integrity than s.
Token t is sent along with the rgoto request, and the
current ATS becomes associated with sr, so that it be-
comes the ATS when control returns.

There is an important security constraint about the dis-
tribution of tokens in case two. Suppose a set of hosts
use rgoto to transfer control to a code segment s repli-
cated on h0

1
; : : : ; h0

m
, and distributes a set of tokens to each

of the replicas. Then any subset B of fh0

1
; : : : ; h0

m
g with

I(B) 6v I(s) cannot receive the complete set of tokens.
This is a direct corollary of TI1, where high integrity and
low integrity are defined with respect to I(s). If B receives
the complete set of tokens, then TI1 is violated: the control
is in a high-integrity code segment s, but B has a low com-
bined integrity label and holds a complete set of tokens for
a high-integrity code segment.

The run-time system enforces this constraint by ensuring
that each recipient gets at least one unique token. However,
the senders may not have enough tokens to assign a unique
one to each recipient. In that case, the run-time system splits
a token into multiple tokens by a secret-splitting scheme
based on the exclusive-or operation [42].

4.3.4 Control flow assurance

The control flow assurance that our control transfer mech-
anism is designed to enforce can be defined using a trace
model. We represent an execution of a program as a trace
of code segments that are running sequentially. For exam-
ple, F = s0s1srs2 is a trace. Let bF cI represents the trace
obtained by removing fromF those code segments with low
integrity relative to I . Intuitively, bF cI should not be cor-
rupted by a set of bad hosts whose combined integrity is
lower than I . The control transfer mechanism is intended to
enforce the following property:

Control Flow Assurance Let F be the correct
trace of running a program, F 0 be the actual trace
of running the same program, andHbad be the set
of compromised hosts. Then B

h2Hbad
I(h) 6v I

implies bF 0cI is a prefix of bF cI .

Recall that bad hosts can potentially stop the computa-
tion. That is the reason why the condition states that bF 0cI
is a prefix of bF cI instead of equal to bF cI . However, this
availability attack will not corrupt data or cause confidential
data to be leaked.

Our control transfer mechanism ensures that low-
integrity hosts can only use capability tokens to invoke a
high-integrity code segment. Under this condition, the two
token invariants imply the control flow assurance.

4.4 Data transfer mechanisms

Data transfer operations include accessing fields, updat-
ing fields, and forwarding local variables. To read a field
f, a host h sends getField requests to a host set Hf that
hold f and have a combined integrity as high as I(f)t I(h).
Each host in Hf returns the value of f to h after checking
that C(f) v C(h). Then h compares the replicas of f from
Hf, and accepts the value only if all the replicas are the
same.

9

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

To update a field f replicated on h0

1
through h0

n, the up-
dating hosts send setField requests to each h0

i, which do
the update after checking RC2. If a running code segment
updates a local variable, it has to forward the update to other
code segments residing on remote hosts that may use the
variable.

4.4.1 Data hashing

As described in Section 3.2, a secure hash value of data d
may be stored on a host h whose confidentiality is only as
high as Cif (d). The run-time system uses the MD5 algo-
rithm [36] to generate the hash. If host h wants to create a
hash of data d, it generates a confounder n and computes
fd; ngMD5. Whenever h sends d to some host, it also sends
n to that host so that the recipient can verify that fd; ngMD5

is the hash of d. If d is replicated on multiple hosts, those
hosts have to create the same confounder for d. The run-
time system uses the global identifier generation algorithm
of Section 4.5 to generate shared confounders.

In Figure 3, the code segment s1 contains a statement
v=(v>=0)?v:0 that defines v, and s2 contains a statement
bid=v that uses v. After running s1, ha needs to forward the
value of v to the replica of s2 on hb. Since hb cannot read v,
ha only sends the hash value of v to hb. It is interesting that
the usual way of implementing the bit commitment protocol
is to have Alice send a hash value of her committed bit to
Bob. The splitter automatically generates a similar protocol
from the high-level security policy.

4.4.2 Data consistency and synchronization

Several hosts may run the same piece of code or access the
same data concurrently. To maintain consistency, the run-
time system must ensure that those accesses are properly
ordered. Suppose a field is replicated on a set of hosts.
It is important that each host processes the getField and
setField requests in the order specified by the source pro-
gram. However, requests are generated by replicated code
segments that need not be synchronized with one another.
A host should not serve a request until all logically previous
requests have been served. Timestamps are a common way
to accomplish this, but timestamps may leak confidential in-
formation about control flow. Instead, the hosts storing field
replicas coordinate with each other using the following pro-
tocol.

A host receiving a new access request acts as the coordi-
nator of a two-phase commit protocol that ensures all other
replica hosts are aware of the request. It announces the ex-
istence of the request to the other replica hosts, which ac-
knowledge the announcement. Once all acknowledgements
have been received, the request is serviced by the coordina-
tor, and in parallel it informs the other replicas, permitting

them to begin servicing that request as well. Every host de-
lays servicing a field request until it has served all pending
requests that it has acknowledged.

Some simple optimizations reduce the number of mes-
sages sent. A read request may be serviced if all pending
requests are also reads. In general several hosts may re-
ceive a new request concurrently and each try to act as co-
ordinator. However, coordinators are arbitrarily ordered and
a host stops participating in a run of this protocol once it be-
comes aware of a different run for the same request with a
lower-numbered coordinator. Finally, if there are only two
replicas, the final step of the two-phase commit is skipped
because it is not necessary.

4.5 Global identifier generation

Both object IDs and frame IDs are global and must be
generated consistently by replicated code segments. How-
ever, care must be taken to avoid creating a covert infor-
mation channel in which information about the control flow
on trusted hosts is deducible from the global identifier. In
our implementation, the covert channel is avoided by mak-
ing an identifier appear random to hosts other than the cre-
ators. Every set of hosts that may create a global identi-
fier share a secret confounder, which is used to generate
global identifiers independently and efficiently using MD5
hashing. The identifiers created with a confounder appear
random to hosts who do not know the confounder. At the
start of the program, hosts need to create global IDs run an
agreement protocol to initialize the confounder.

5 Results

The splitter and the necessary run-time support for exe-
cuting partitioned programs has been implemented in Java
as an extension to the existing Jif compiler [31].

5.1 Benchmark Programs

The system was evaluated with a set of programs that ex-
plored different kinds of distributed protocols and security
configurations; these programs were also compared with
hand-coded implementations.

Based on previous experience, communication cost is the
greatest contributor to execution time in a WAN environ-
ment. Since the distributed system will typically cross ad-
ministrative boundaries, we expect a WAN environment to
be the norm, and therefore report performance in terms of
the number of host-to-host messages generated.

The execution of the partitioned programs on differ-
ent hosts was simulated with multiple threads in a single
JVM, and the number of messages between hosts counted.
Each host’s subprogram was executed in a different thread.

10

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

The hand-coded implementations were also run on multiple
threads in a single JVM.

The benchmark programs used were auctions, a banking
simulation, and the game Battleship. Replication of both
code and data was required to successfully partition these
programs with the trust configurations used. The programs
used are fairly short but contain the same security issues that
would be found in a more complete implementation.

In our most full-fledged example, Battleship, there are
44 security annotations (labels), which is approximately 1
annotation for every 3 lines of code.

To summarize the results, the run-time performance of
the system on these programs was reasonable, and replica-
tion allows us to successfully partition programs for a larger
class of trust configurations.

5.1.1 Auctions

Auctions are a useful component of a number of elec-
tronic commerce interactions [21], for example electronic
procurement, where suppliers are bidding to fulfill a con-
tract. Participants in these interactions may have confiden-
tiality and trust requirements on the information used and
exchanged; various types of auctions, such as closed bid
auctions, incorporate aspects of privacy and trust. The di-
verse security requirements of different types of auctions,
and their relevance to electronic commerce, make auctions
an interesting and suitable problem area.

Three different types of auctions were modeled. All the
auctions modeled are one-sided, first price auctions, with
only a single item for sale. The seller and the bidders are
identified with principals. Due to the single-threaded nature
of the programs, bids cannot be submitted asynchronously.
Instead, a round of bidding consists of each bidder in turn
submitting a bid.

The three auctions are named A1, A2 and A3. Auction
A1 is an open bid auction—all bids are public, and are en-
dorsed by all principals. At the close of the bidding, compu-
tation of the winning bidder is performed publicly. Auction
A2 is a sealed bid auction, where bids are made public at
the close of bidding. Auction A3 is similar to A2 except that
bids are revealed only to the seller, who then determines the
winning bidder and reveals the result. The privacy and in-
tegrity requirements of each of these auctions are expressed
in their programs as labels and uses of downgrading.

5.1.2 Banking Simulation

Banking is an important distributed application with com-
plicated privacy and integrity requirements. We imple-
mented a simple banking example: Alice holds a credit-card
with a bank, and two credit report agencies maintain a credit
report for her. If Alice pays her credit-card bill late, the bank
reports this to the agencies, and then asks the agencies for

Alice’s credit rating. If the rating is too low, the bank may
cancel her line of credit.

We model Alice’s bank account information as being
owned by Alice, readable by the bank, and trusted by
both of them. For the bank to send a report to the agen-
cies thus requires an explicit declassification of information
by Alice, which is presumably authorized by Alice when
she opens the account. Alice’s credit report has the label
{A:C1,C2;*:C1,C2}, where A represents Alice and C1 and
C2 represent the credit report agencies. To achieve the re-
quired security assurance, the code and data for the credit
report must be replicated on the hosts of both agencies.

5.1.3 Battleship Game

Battleship is a game for two players. Each player has a se-
cret grid containing several battleships. In turn, each player
asks the opponent to reveal the contents of a particular loca-
tion on the opponent’s grid. Play continues until one player
wins by discovering the location of all of his opponent’s
battleships.

This simple game has a number of interesting security
properties. Each principal (player) has a grid that is read-
able only by its owner, but to prevent cheating it must be
trusted by both principals. The principals alternate between
testing a single location of the opponent’s grid for a ship,
and declassifying that information. The control flow of the
program must be trusted by both principals, to ensure that
turns alternate strictly and thus that no principal reveals too
much at once. At the end of the game, the unrevealed por-
tion of each principal’s grid is declassified, to verify that
both principals had the same number of battleships.

Many of the security issues that arise in this simple
game, such as preventing client cheating, are relevant to
more realistic online gaming systems. We speculate that
program partitioning may be useful for constructing secure
online games.

5.2 Performance

All the auction scenarios were run with three bidders. In
auctions A1 and A2 the seller plays no role in the bidding
process or in the computation of the winning bid, and is not
explicitly represented. The banking program BNK was run
with 4 principals, representing the bank customer, the bank
and two credit reporting agencies. The Battleship program
BTL was run with two principals on a 10�10 grid.

Table 1 shows the trust configurations that were used for
the experiments. Each column shows the host labels occur-
ring in one configuration. For the auctions, principals A, B,
and C are bidders and S represents the seller; for Banking,
principal A is the bank customer, B represents the bank, and
C1 and C2 represent credit reporting agencies; for Battle-
ship, principals A and B are the two players.

11

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

Host Config X Config Y Config Z Config B Config W

h1 {A:; *:A,B} {A:; S:A; *:A} {A:; S:; *:A} {A:B; *:B,C1,C2} {A:; *:A}

h2 {B:; *:B,C} {B:; S:B; *:B} {B:; S:; *:B} {A:C1; *:C1} {B:; *:B}

h3 {C:; *:C} {C:; S:C; *:C} {C:; S:; *:C} {A:C2; *:C2} �

h4 � {S:; *:A,B,C,S} {S:; *:S} � �

Table 1. Trust configurations for example programs.

Metric A1(hA1) A2(hA2) A3(hA3Y) A3(hA3Z) BNK(hBNK) BTL(hBTL)

Lines 49 (78) 54 (85) 62 (94) 62 (175) 53 (120) 142 (162)
Configuration X X Y Z B W

Total messages 11 (4) 24 (8) 47 (9) 27 (18) 16(8) 1294 (383)
forward 1 7 9 9 4 1109
lgoto 2 2 9 0 2 0
rgoto 8 15 29 18 10 185

Table 2. Program measurements

The first row of Table 2 gives the program lengths in lines
of code. We measured total message counts using configu-
ration X for A1 and A2, configurations Y and Z for A3,
configuration B for Banking and configuration W for BTL
(as shown in the next row). The subsequent rows give total
message counts and a breakdown of counts by type for the
automatically partitioned program.

No setField or getField messages were sent during
any of the simulations—all field accesses were local. The
splitter is often able to avoid setField and getField calls
because of the increased spatial locality of the data that re-
sults from replication: because fields are replicated on mul-
tiple hosts, a host can often access its local replicated copy,
instead of communicating with other hosts.

The results from the hand-coded implementations of the
example programs are shown in the table in parentheses
(hA1, hA2, hA3Y, hA3Z, hBNK and hBTL of Table 2). The
hand-coded implementations provide the same security as-
surance as the automatically partitioned programs, and ex-
plicitly replicate data and code to achieve the required in-
tegrity. The insight obtained by reading the corresponding
partitioned code helped in writing the reference implemen-
tations securely and efficiently.

All of the hand-coded implementations are longer
than the corresponding automatically partitioned programs.
Also, the hand-coded implementationswere written for spe-
cific trust configurations; hA3Y and hA3Z were both coded
from scratch, while A3 was recompiled with different trust
configurations. In general, partitioning a program for dif-
ferent trust configurations is very easy; it is simply a matter
of recompilation.

The hand-coded implementations send 1.5–6� fewer
messages than the automatically partitioned programs. This
efficiency is possible because the hand-coded programs ex-

ploit concurrency to a greater degree than our automatically
partitioned programs. Our system must be conservative in
its use of concurrency to ensure that the security protocol of
a program—often implicit in the sequencing of execution—
is adhered to. For example, in the bid commitment program
of Figure 1 there is an implicit synchronization point after
the endorse statement of the commit method, to ensure
that Alice has really committed to a value before computa-
tion proceeds. Our system thus conservatively follows the
flow of control of the source program, while the hand-coded
programs are free to rearrange control flow so long as the se-
curity constraints are met. However, as program complex-
ity increases, writing secure concurrent code by hand, and
guaranteeing its security, can be difficult. Our system trades
off some of the expressiveness and performance of hand-
written concurrent code for the assurance that the princi-
pals’ security policies are adhered to.

5.3 Discussion

If our new Jif/split system and the original Jif/split sys-
tem [61] are both able to successfully partition some pro-
gram given a trust configuration, then the performance of
the two partitioned programs will be the same. However,
our system is able to successfully partition a given program
for a larger class of trust configurations than the original
Jif/split, which does not support replication. In fact, all pro-
grams that are compilable by the original Jif/split are com-
pilable in our system; none of the benchmark programs can
be compiled by the original Jif/split, as they all require repli-
cation.

For example, the players’ grids in the Battleship game
must be trusted by both principals, but since no host in
configuration W is trusted by both principals, the original

12

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

Jif/split would be unable to find a host on which to store
either grid. Our system satisfies the security requirements
by replicating the grids on both hosts, though only in hash
value form on the opponent’s host.

6 Related Work

We have used the term “end-to-end security policies”
largely synonymously with “information flow policies”. In-
formation flow policies have been enforced using both dy-
namic [14, 25] and language-based techniques [9, 27, 28,
13, 53, 18, 34, 35, 3, 38]. Jif [29, 31] is a full-scale imple-
mentation of a security-typed language. This work builds
on the original Jif/split system [61] that introduced the se-
cure partitioning technique, extending it to support auto-
matic replication of code and data.

Although most research on information flow has focused
on confidentiality policies, integrity has also been stud-
ied [4, 32]. Security types that capture integrity have been
used to reason about the correctness of communications
protocols [17] and to find format string vulnerabilities in
C [43]. Stack inspection [55] also protects integrity by en-
suring that privileged code is not invoked by untrusted par-
ties.

Fragment-Redundancy-Scattering (FRS) is a related de-
sign methodology in which programmers implement secure
applications by manually splitting and replicating their code
and data to achieve confidentiality and integrity [51, 12].
Secure program partitioning differs in that programmers
write formal security policies into their applications that en-
able the system to automatically split and replicate code and
data in order to enforce a formally specified security condi-
tion.

Another language-based approach that uses code trans-
formation to enforce security policies is inline reference
monitors [10, 11]. Automated code transformation has
also been used to guard against buffer overflows [8] and
more generally, violations of memory safety [54]. How-
ever, none of these code-wrapping techniques can enforce
information-flow policies [41].

Program slicing techniques [56, 50] provide information
about the data dependencies in a piece of software. Al-
though the use of backward slices to investigate integrity
and related security properties has been proposed [15, 22],
the focus of work on program slicing has been debugging
and understanding existing software.

7 Conclusions

End-to-end security assurance is a long-standing prob-
lem that is growing more important as computation be-
comes increasingly distributed, spanning organizational and

other trust boundaries. Information-flow policies are a nat-
ural way to specify end-to-end security, but there has been
little prior investigation of how to practically specify and
enforce them in systems with mutual distrust and distrusted
hosts. Enforcement of data integrity policies is a central
problem that was identified in earlier work on secure pro-
gram partitioning [61] but not satisfactorily resolved.

This paper has described a way of exploiting redundancy
to improve integrity guarantees. The definition of security is
the same as in the original secure partitioning work: the se-
curity policies of a principal can be violated only if a trusted
host misbehaves, perhaps because of a successful attack. In
this work, we have shown that an extension to secure par-
titioning in which program code and data are replicated to
satisfy the security constraint. The results show that exam-
ples of useful secure distributed computation that could not
be supported by the original secure partitioning algorithms
can be successfully partitioned using replication.

Adding replication involves several nontrivial extensions
to the run-time protocols. Because confidentiality and in-
tegrity can conflict, data may be replicated onto hosts us-
ing a one-way hash that permits integrity verification with-
out violating confidentiality. Untrusted hosts are prevented
from sabotaging the integrity of program control flow by a
run-time protocol based on capabilities that are decomposed
into sets of unforgeable tokens. A synchronization protocol
prevents concurrently executing code segments from intro-
ducing inconsistencies.

One benefit of programming in a security-typed lan-
guage is that programmers only need to specify high-level
security requirements, and the compiler can generate code
that actually fulfills those security requirements. This pa-
per shows that the secure partitioning methodology can be
extended to improve support for data integrity. However,
there is much left to be done: for example, supporting true
concurrent programming, availability policies, and dynam-
ically varying principals and policies.

Acknowledgments

We would like to thank several people who gave useful
suggestions on the presentation of this work. In addition
to the anonymous reviewers, Lorenzo Alvisi, Kavita Bala,
Nate Nystrom, Andrei Sabelfeld, and Stephanie Weirich all
helped improve this paper.

References

[1] Johan Agat. Transforming out timing leaks. In Proc.
27th ACM Symp. on Principles of Programming Languages
(POPL), pages 40–53, Boston, MA, January 2000.

13

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

[2] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis
attacks and trade-offs in anonymity providing systems. Lec-
ture Notes in Computer Science, 2137, 2001.

[3] Anindya Banerjee and David A. Naumann. Secure informa-
tion flow and pointer confinement in a Java-like language.
In IEEE Computer Security Foundations Workshop (CSFW),
June 2002.

[4] K. J. Biba. Integrity considerations for secure computer sys-
tems. Technical Report ESD-TR-76-372, USAF Electronic
Systems Division, Bedford, MA, April 1977. (Also available
through National Technical Information Service, Springfield
Va., NTIS AD-A039324.).

[5] Manuel Blum. Coin flipping by telephone. In Advances in
Cryptology: A Report on CRYPTO 81, pages 11–15, 1981.

[6] Gerard Boudol and Ilaria Castellani. Noninterference for
concurrent programs. In Proc. ICALP, volume 2076 of Lec-
ture Notes in Computer Science, pages 382–395, July 2001.

[7] Miguel Castro and Barbara Liskov. Practical Byzantine Fault
Tolerance. In Proceedings of the Third Symposium on Oper-
ating Systems Design and Implementation (to appear), New
Orleans, LA, February 1999.

[8] Crispin Cowan, Calton Pu, DaveMaier, Heather Hinton, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian
Zhang. Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings of the 7th
USENIX Security Conference, January 1998.

[9] Dorothy E. Denning and Peter J. Denning. Certification of
programs for secure information flow. Comm. of the ACM,
20(7):504–513, July 1977.

[10] Ulfar Erlingsson and Fred B. Schneider. SASI enforcement
of security policies: A retrospective. In Proceedings of the
New Security Paradigm Workshop, Caledon Hills, Ontario,
Canada, 1999.

[11] David Evans and Andrew Twyman. Flexible policy-directed
code safety. In Proc. IEEE Symposium on Security and Pri-
vacy, Oakland, May 1999.

[12] Jean-Charles Fabre, Yves Deswarte, and Brian Randell. De-
signing secure and reliable applications using fragmentation-
redundancy-scattering: an object-oriented approach. In
PDCS 2: Open Conference, pages 343–362, Newcastle-
upon-Tyne, 1994. Dept of Computing Science, University of
Newcastle, NE1 7RU, UK.

[13] Richard J. Feiertag. A technique for proving specifications
are multilevel secure. Technical Report CSL-109, SRI In-
ternational Computer Science Lab, Menlo Park, California,
January 1980.

[14] J. S. Fenton. Memoryless subsystems. Computing J.,
17(2):143–147, May 1974.

[15] George Fink and Karl Levitt. Property-based testing of priv-
ileged programs. In Proceedings of the 10th Annual Com-
puter Security Applications Conference, pages 154–163, Or-
lando, FL, 1994. IEEE Computer Society Press.

[16] Joseph A. Goguen and Jose Meseguer. Security policies and
security models. In Proc. IEEE Symposium on Security and
Privacy, pages 11–20, April 1982.

[17] Andrew D. Gordon and Alan Jeffrey. Typing correspondence
assertions for communication protocols. In Preliminary Pro-
ceedings of the 17th Conference on the Mathematical Foun-
dations of Programming Semantics (MFPS 17), Aarhus, May
2001. BRICS Notes Series NS-01-2, May 2001, pages 99–
120.

[18] Nevin Heintze and Jon G. Riecke. The SLam calculus: Pro-
gramming with secrecy and integrity. In Proc. 25th ACM
Symp. on Principles of Programming Languages (POPL),
pages 365–377, San Diego, California, January 1998.

[19] Kohei Honda and Nobuko Yoshida. A uniform type structure
for secure information flow. In Proc. 29th ACM Symp. on
Principles of Programming Languages (POPL), pages 81–
92. ACM Press, January 2002.

[20] Paul A. Karger. Non-discretionary access control for decen-
tralized computing systems. Technical Report MIT/LCS/TR-
179, MIT Laboratory for Computer Science, Cambridge,
MA, May 1977.

[21] Gregory E. Kersten, Sunil J. Noronha, and Jeffrey Teich. Are
all e-commerce negotiations auctions? In Proc. COOP’2000
: 4th International Conference on the Design of Cooperative
Systems,, Sophia-Antipolis, France, May 2000.

[22] James R. Lyle, Dolores R. Wallace, James R. Graham,
Keith. B. Gallagher, Joseph. P. Poole, and David. W. Binkley.
Unravel: A CASE tool to assist evaluation of high integrity
software. IR 5691, NIST, 1995.

[23] Dahlia Malkhi and Michael Reiter. Secure and scalable repli-
cation in Phalanx. In Proc. of the 17th IEEE Symposium on
Reliable Distributed Systems, October 1998.

[24] Heiko Mantel and Andrei Sabelfeld. A generic approach to
the security of multi-threaded programs. In Proc. 14th IEEE
Computer Security Foundations Workshop, pages 126–142.
IEEE Computer Society Press, June 2001.

[25] M. Douglas McIlroy and James A. Reeds. Multilevel secu-
rity in the UNIX tradition. Software—Practice and Experi-
ence, 22(8):673–694, August 1992.

[26] John McLean. Security models and information flow. In
Proc. IEEE Symposium on Security and Privacy, pages 180–
187, 1990.

[27] Jonathan K. Millen. Security kernel validation in practice.
Comm. of the ACM, 19(5):243–250, May 1976.

[28] Jonathan K. Millen. Information flow analysis of formal
specifications. In Proc. IEEE Symposium on Security and
Privacy, pages 3–8, April 1981.

[29] Andrew C. Myers. JFlow: Practical mostly-static informa-
tion flow control. In Proc. 26th ACM Symp. on Principles of
Programming Languages (POPL), pages 228–241, San An-
tonio, TX, January 1999.

[30] Andrew C. Myers and Barbara Liskov. Protecting privacy
using the decentralized label model. ACM Transactions on
Software Engineering and Methodology, 9(4):410–442, Oc-
tober 2000.

14

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

[31] Andrew C. Myers, Nathaniel Nystrom, Lantian Zheng, and
Steve Zdancewic. Jif: Java information flow. Software re-
lease. Located at http://www.cs.cornell.edu/jif, July
2001.

[32] Jens Palsberg and Peter Ørbæk. Trust in the �-calculus. In
Proc. 2nd International Symposium on Static Analysis, num-
ber 983 in Lecture Notes in Computer Science, pages 314–
329. Springer, September 1995.

[33] François Pottier. A simple view of type-secure information
flow in the pi-calculus. In Proc. IEEE Computer Security
Foundations Workshop, pages 320–330, June 2002.

[34] François Pottier and Sylvain Conchon. Information flow in-
ference for free. In Proc. 5nd ACM SIGPLAN International
Conference on Functional Programming (ICFP), pages 46–
57, 2000.

[35] François Pottier and Vincent Simonet. Information flow in-
ference for ML. In Proc. 29th ACM Symp. on Principles of
Programming Languages (POPL), pages 319–330, 2002.

[36] Ronald L. Rivest. The MD5 message-digest algorithm. In-
ternet RFC-1321, April 1992.

[37] Andrei Sabelfeld and Heiko Mantel. Static confidentiality
enforcement for distributed programs. In Proceedings of the
9th International Static Analysis Symposium, volume 2477
of LNCS, Madrid, Spain, September 2002. Springer-Verlag.

[38] Andrei Sabelfeld and Andrew Myers. Language-based
information-flow security. IEEE Journal on Selected Areas
in Communications, 21(1), January 2003.

[39] Andrei Sabelfeld and David Sands. Probabilistic noninter-
ference for multi-threaded programs. In Proc. 13th IEEE
Computer Security Foundations Workshop, pages 200–214.
IEEE Computer Society Press, July 2000.

[40] Fred B. Schneider. Implementing fault-tolerant services us-
ing the state machine approach: a tutorial. ACM Computing
Surveys, 22(4):299–319, December 1990.

[41] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security, 3(1):30–
50, 2001. Also available as TR 99-1759, Computer Science
Department, Cornell University, Ithaca, New York.

[42] Bruce Schneier. Applied Cryptography. John Wiley and
Sons, New York, NY, 1996.

[43] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David
Wagner. Detecting format string vulnerabilities with type
qualifiers. In Proceedings of the 10th USENIX Security Sym-
posium, 2001.

[44] Geoffrey Smith. A new type system for secure information
flow. In CSFW14, pages 115–125. IEEE Computer Society
Press, June 2001.

[45] Geoffrey Smith and Dennis Volpano. Secure information
flow in a multi-threaded imperative language. In Proc.
25th ACM Symp. on Principles of Programming Languages
(POPL), pages 355–364, San Diego, California, January
1998.

[46] Jennifer G. Steiner, B. Clifford Neuman, and Jeffrey I.
Schiller. Kerberos: An authentication service for open net-
work systems. Technical report, Project Athena, MIT, Cam-
bridge, MA, March 1988.

[47] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz,
Craig A. N. Soules, and Gregory R. Ganger. Self-securing
storage: Protecting data in compromised systems. In Op-
erating Systems Design and Implementation (OSDI), pages
165–180, San Diego, CA, October 2000.

[48] Sun Microsystems. Java Language Specification, ver-
sion 1.0 beta edition, October 1995. Available at
ftp://ftp.javasoft.com/docs/javaspec.ps.zip.

[49] David Sutherland. A model of information. In Proc. 9th
National Security Conference, pages 175–183, Gaithersburg,
Md., 1986.

[50] Frank Tip. A survey of program slicing techniques. Journal
of Programming Languages, 3:121–189, 1995.

[51] Gilles Trouessin, Jean-Charles Fabre, and Yves Deswarte.
Improvement of data processing security by means of fault
tolerance. In 14th National Computer Security Conference,
pages 295–304, Washington, USA, 1991.

[52] Dennis Volpano and Geoffrey Smith. Probabilistic nonin-
terference in a concurrent language. J. Computer Security,
7(2,3):231–253, November 1999.

[53] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A
sound type system for secure flow analysis. Journal of Com-
puter Security, 4(3):167–187, 1996.

[54] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault isolation.
In Proc. 14th ACM Symp. on Operating System Principles,
pages 203–216. ACM Press, December 1993.

[55] Dan S. Wallach, Andrew W. Appel, and Edward W. Fel-
ten. The security architecture formerly known as stack in-
spection: A security mechanism for language-based systems.
ACM Transactions on Software Engineering and Methodol-
ogy, 9(4), October 2000.

[56] Mark Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, 10(4):352–357, 1984.

[57] J. Todd Wittbold and Dale M. Johnson. Information flow
in nondeterministic systems. In Proc. IEEE Symposium on
Security and Privacy, pages 144–161, May 1990.

[58] Tatu Ylonen. SSH – secure login connections over the Inter-
net. In The Sixth USENIX Security Symposium Proceedings,
pages 37–42, San Jose, California, 1996.

[59] Steve Zdancewic and Andrew C. Myers. Robust declassifi-
cation. In Proc. 14th IEEE Computer Security Foundations
Workshop, pages 15–23, Cape Breton, Nova Scotia, Canada,
June 2001.

[60] Steve Zdancewic and Andrew C. Myers. Secure informa-
tion flow and CPS. In Proc. 10th European Symposium on
Programming, volume 2028 of Lecture Notes in Computer
Science, pages 46–61, 2001.

[61] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and
Andrew C.Myers. Secure program partitioning. ACM Trans-
actions on Computer Systems, 20(3):283–328, August 2002.

15

Proceedings of the 2003 IEEE Symposium on Security and Privacy (SP�03)
1081-6011/03 $17.00 © 2003 IEEE

	University of Pennsylvania
	ScholarlyCommons
	May 2003

	Using Replication and Partitioning to Build Secure Distributed Systems
	Lantian Zheng
	Stephen Chong
	Andrew C. Myers
	Stephan A. Zdancewic
	Recommended Citation

	Using Replication and Partitioning to Build Secure Distributed Systems
	Abstract
	Comments

	Using replication and partitioning to build secure distributed systems - Security and Privacy, 2003. Proceedings. 2003 Symposium on

