
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

May 2003

Modular Code Generation from Hybrid Automata
based on Data Dependency
Jesung Kim
University of Pennsylvania

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Copyright 2003 IEEE. Reprinted from Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2003), pages
160-168.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27075&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the
University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/26
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Jesung Kim and Insup Lee, "Modular Code Generation from Hybrid Automata based on Data Dependency", . May 2003.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27075&page=1
http://repository.upenn.edu/cis_papers/26
mailto:libraryrepository@pobox.upenn.edu

Modular Code Generation from Hybrid Automata based on Data
Dependency

Abstract
Model-based automatic code generation is a process of converting abstract models into concrete
implementations in the form of a program written in a high-level programming language. The process consists
of two steps, first translating the primitives of the model into (approximately) equivalent implementations,
and then scheduling the implementations of primitives according to the data dependency inherent in the
model. When the model is based on hybrid automata that combine continuous dynamics with a finite state
machine, the data dependency must be viewed in two aspects: continuous and discrete. Continuous data
dependency is present between mathematical equations modeling timecontinuous behavior of the system. On
the other hand, discrete data dependency is present between guarded transitions that instantaneously change
the continuous behavior of the system. While discrete data dependency has been studied in the context of
code generation from modeling languages with synchronous semantics (e.g., ESTEREL), there has been no
prior work that addresses both kinds of dependency in a single framework. In this paper, we propose a code
generation framework for hybrid automata which deals with continuous and discrete data dependency. We
also propose techniques for generating modular code that retains modularity of the original model. The
framework has been implemented based on the hybrid system modeling language CHARON, and
experimented with Sony’s robot platform AIBO.

Comments
Copyright 2003 IEEE. Reprinted from Proceedings of the 9th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2003), pages 160-168.
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27075&page=1

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution must be obtained from
the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all
provisions of the copyright laws protecting it.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/26

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27075&page=1
http://repository.upenn.edu/cis_papers/26?utm_source=repository.upenn.edu%2Fcis_papers%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

Modular Code Generation from Hybrid Automata based on
Data Dependency�

Jesung Kim and Insup Lee
Department of Computer and Information Science

University of Pennsylvania
jesung@saul.cis.upenn.edu, lee@cis.upenn.edu

Abstract

Model-based automatic code generation is a process
of converting abstract models into concrete implemen-
tations in the form of a program written in a high-level
programming language. The process consists of two
steps, first translating the primitives of the model into
(approximately) equivalent implementations, and then
scheduling the implementations of primitives according
to the data dependency inherent in the model. When
the model is based on hybrid automata that combine
continuous dynamics with a finite state machine, the
data dependency must be viewed in two aspects: con-
tinuous and discrete. Continuous data dependency is
present between mathematical equations modeling time-
continuous behavior of the system. On the other hand,
discrete data dependency is present between guarded
transitions that instantaneously change the continuous
behavior of the system. While discrete data dependency
has been studied in the context of code generation from
modeling languages with synchronous semantics (e.g.,
ESTEREL), there has been no prior work that addresses
both kinds of dependency in a single framework. In this
paper, we propose a code generation framework for hy-
brid automata which deals with continuous and discrete
data dependency. We also propose techniques for gener-
ating modular code that retains modularity of the origi-
nal model. The framework has been implemented based
on the hybrid system modeling language CHARON, and
experimented with Sony’s robot platform AIBO.

1 Introduction

Developing software for real-time embedded systems
requires fundamentally different approach due to unique

�This research was supported in part by NSF CCR-9988409, NSF
CCR-0086147, NSF CCR-0209024, ARO DAAD19-01-1-0473, and
DARPA MOBIES F33615-00-C-1707.

characteristics of the system that are not common in gen-
eral purpose computers [8, 9]. First, they usually interact
with the physical world and are based on mathematical
models. Second, they are in many cases safety critical,
making high assurance of correctness essential. Model-
based automatic code generation is promising in this do-
main since design can be formally verified in the level of
models using formal verification techniques, and imple-
mentation can be free from program errors due to man-
ual coding.

A computer system interacting with an analog envi-
ronment can be best modeled by hybrid automata [1,
10]. Hybrid automata combine the traditional finite state
machine-based model of discrete control with continu-
ous dynamics of the physical world. In hybrid automata,
a set of differential equations and algebraic equations
specify dynamics of the system, and the finite state ma-
chine specifies discrete change of dynamics of the sys-
tem from one set of equations to another. This model
is useful for describing systems that interact with the
physical world where the input and output are contin-
uous trajectories, rather than discrete samples, of vari-
ables. For example, the input to a robot tracking an ob-
ject is a trajectory of the position of the object, and the
output is a trajectory of the position of the head that min-
imizes the angle between the direction towards the ob-
ject and the line of sight. Such trajectories can be con-
veniently modeled by differential equations that spec-
ify evolution of variables with respect to time. That is,
differential equations reflect stimuli and reactions of the
model. This concept is generally not well supported in
other languages based on discrete events. Thus, devel-
oping such systems using traditional programming lan-
guages becomes unnecessarily complicated and hard to
validate.

Automatic code generation rectifies the situation by
converting mathematical models automatically into pro-
grams written in a system-level programming language
such as C. Our code generation process consists of two

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

phases. First, each element of hybrid automata is con-
verted into a piece of code. The challenge in this phase is
to discretize time-continuous actions such that they can
be executed by a digital computer. Second, the pieces of
code generated in the first phase are combined into a sin-
gle program. This phase resolves concurrency inherent
in the model by interleaving the code for each element
at the granularity of the period determined in the first
phase. Here, the challenge is to determine an interleav-
ing that is consistent to the mathematical model. In our
approach, we address this issue by generalizing the con-
cept of data dependency to the continuous-time domain
and interleaving the code according to a data depen-
dency order. We divide the data dependency of hybrid
automata into continuous part and discrete part of the
model and address separately. This approach is based
on the semantics of hybrid automata where discrete ac-
tions occur instantaneously without any observable time
passage. This means that time is conceptually stopped
while discrete actions are performed. Time advances
only while continuous activities change the state. There-
fore, we can analyze dependency between discrete ac-
tions independently of the continuous part of the model,
and vice versa. Once the dependency is resolved sep-
arately and the code is generated accordingly, we can
simply concatenate both.

Our automatic code generation technique supports
modularity of the generated code. Generating modu-
lar code is crucial when the original model consists of
a large collection of hierarchical or concurrent compo-
nents. The generated code captures modularity of the
original model in two senses. First, the code consists of
components, each of which can be separately compiled
for a different target platform. Second, each component
of the generated code is valid even when other part of
the model is modified. These properties facilitate reuse
of components of the generated code in different appli-
cation context and target hardware platforms.

Our code generation framework is implemented in
the context of the hybrid system modeling language
CHARON [2], and tested in Sony’s robot platform AIBO.
We have experimented our framework with numerous
examples, including the modeling of robot’s behavior
presented in Section 2.

Related works. Commercial modeling tools such as
Simulink and RationalRose support automatic code gen-
eration, but it is not formally described and the consis-
tency between model and code is not addressed explic-
itly. Modeling languages for reactive systems such as
ESTEREL [4], LUSTRE [6], and STATECHART [7] also
support automatic code generation, but they do not sup-
port modeling of continuous dynamics.

2 Modeling

A hybrid automaton [1, 10] consists of locations each
of which has a set of differential equations and algebraic
equations, and transitions between locations. When a
hybrid automaton stays in a location, variables are up-
dated continuously according to the differential equa-
tions and algebraic equations of the location, until a tran-
sition is taken or the invariant condition of the location
is violated. A transition can be taken whenever the as-
sociated condition (guard) is true. When a transition is
taken from one location to another, differential equations
and algebraic equations belonging to the destination be-
come effective immediately, and the variables continu-
ously evolve according to those new equations. Transi-
tions may have optional assignments to variables that are
performed instantaneously when the transition is taken.
Formally, we define hybrid automata as follows.

Definition 1 (Hybrid automata) A hybrid automaton
� is a tuple ��� �� ��� ��������	� ��
�, where

� � is a set of locations.

� � is a set of real variables.

� �� is the initial state, which is a tuple ���� ���,
where �� � � is the initial location and �� � � �
� is a function that assigns the initial value of the
variables in � , where � is the set of real numbers.

� � � � � � is a set of transitions between two lo-
cations. An element ��� ��� � � is said active when
����� �� � � is the last transition that was taken, or
� � ��.

� � assigns to each ��� ��� � � a guard, denoted
as ���� ���, which is a predicate over � � �. A
transition ��� ��� � � is said enabled when ���� ���
is true.

� � assigns to each ��� ��� � � a reset, denoted
as � ��� ���, which is a function from ������� to �,
where ������� � � . � and � collectively define
discrete behavior of � . A reset changes the value
of variables in ������� to � ��� ��� instantaneously
when ��� ��� is taken.

� � is a set of differential equations in the form of
�� � ���, where � � � , � � ���� ��� ���� ��� is
a vector of variables �� � � , and ��� is the first
derivative of � with respect to time (i.e., ����� �
���).

� 	 is a set of algebraic equations in the form of � �
����, where � � � , � is a vector of variables in
� 	 ���.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

x = 10
x ≤ 25

z=x/180⋅π

.
x = -10
x ≥ -25

z=x/180⋅π

.

x ≥ 22

x ≤ -22

x

Figure 1. Hybrid automaton modeling a
robot dog panning the head.

� � is a set of predicates over � � � that are the
invariant conditions.

� � assigns to each � � � constraints, a subset of
� � � � � that defines continuous behavior of the
location. An element in ���� is said active when
���� �� is the last transition that was taken, or � �
��.

Hybrid automata have been widely used for model-
ing and simulating control systems consisting of mul-
tiple control laws. In such a system, differential equa-
tions and finite state machines are essential for specify-
ing transition of control laws. Hybrid automata are also
very useful for programming robots, where one of the
main tasks is to update the angle of each joint periodi-
cally to simulate a continuous action. For example, Fig-
ure 1 shows a simple hybrid automaton modeling a robot
dog panning its head. It consists of two locations, each
of which specifies constant increase/decrease (��� Æ��)
of variable 	, which represents the angular position of
the head. Transitions cause the direction of the move-
ment of the head to be reversed by switching the location
(and hence dynamics) when the head is moved beyond
a certain position (��� Æ). Note that in hybrid automata
transitions can be taken any time while the guard is true
(i.e., the time when the transition is taken can be non-
deterministic). The invariant of each location specifies
that the switch should occur before the head moves be-
yond its allowed range (� �� and 	 � ���). Each lo-
cation also has an algebraic equation that translates the
degree to the radian (
 � 	���� � �). Once the automa-
ton is compiled into a programming language and the
variable
 is mapped to a hardware device or a device
driver that actually controls the position of the head, the
head will move as expected from the model.

Hybrid automata can be composed hierarchically
and/or concurrently to model more complex systems. In
hierarchical hybrid automata, a location can be a hybrid
automaton, or another hierarchical hybrid automaton.
Figure 2 shows a hierarchical hybrid automaton model-
ing a robot dog tracking an object. The model assumes
continuously updated input variable � that indicates the

x = 10
x ≤ 25

. x = -10
x ≥ -25

.
x = k⋅θ

z=x/180⋅π

.

x ≥ 22

x ≤ -22

|θ | ≥ 30

|θ | < 30

x

z=x/180⋅π

θ

Figure 2. Hierarchical hybrid automaton
modeling a robot dog tracking an object.

stop wag
x = 10
x ≤ 25

. x = -10
x ≥ -25

.
x = k⋅θ

z=x/180⋅π

.

x ≥ 22

x ≤ -22

|θ | < 30 / v := 10

|θ | ≥ 30 / v := 0

v > 0

v = 0z=x/180⋅π

Figure 3. Concurrent hierarchical hybrid
automaton modeling a robot dog wagging
the tail.

position of the object relative to the head. When � is
within a certain threshold (�	 ��), the robot attempts
to move the head towards the object, as modeled by a
differential equation 		 � � � � in the rightmost location
of the model. However, if � is beyond the threshold, the
robot gives up tracking the object, and continues pan-
ning the head. Note that the same model in Figure 1 is
reused in modeling movement of the head.

Figure 3 shows concurrent hierarchical hybrid au-
tomata modeling a robot dog wagging its tail when it
detects an object. It simply combines the automaton
shown in Figure 2 with a new automaton for wagging
the tail, which is very similar to the model shown in Fig-
ure 1 and the details are omitted. The automaton shown
in Figure 2 is slightly modified such that it assigns to the
variable � a value greater than zero when the dog detects
the object. This triggers wagging of the tail.

A hybrid automaton can be identified by a set of pos-
sible traces of the variables. A trace � of a hybrid au-
tomaton is one possible trajectory of values of variables
that satisfies constraints ���� when the automaton stays
in a location � at time �, and has a discrete jump to
� ��� ��� when there is a transition ��� ��� at time �. We
denote the values of variables in a trace � at time � as
����. In this paper, we translate a hybrid automaton into

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

a program whose trace is sampling of some trace of the
original automaton at discrete times. We define a dis-
cretization of a hybrid automaton as a basis for formal
definition of the automatically generated code.

Definition 2 (Discretization of hybrid automata) A
hybrid automaton is said discretizable with respect to
time step �, if there exists a trace � such that ���� is
continuous for all � � � � ��� ��� � � ��� � � �� �� �� ����.
A discretization of a discretizable hybrid automaton
with respect to time step � is an automaton whose trace
is a sequence ���� ��� ��� ���� of values of variables,
such that there exists a trace � of the hybrid automaton
satisfying �� � ���� �� for all � 	 �.

Informally, in a discretizable hybrid automaton, it is
possible that transitions are taken only at times multi-
ple of �. A discretization of such a hybrid automaton
assigns to each variable a value that is the same as the
original hybrid automaton at every time �. In the re-
mainder of this paper, we will describe our framework
for generating code that is equivalent to the automaton
of Definition 2.

3 Translation of primitives

We now explain how each primitive of hybrid au-
tomata can be translated into a piece of code that dis-
cretizes the primitive defined in the continuous-time do-
main. We first present translation of continuous actions
specified by differential equations and algebraic equa-
tions. We then explain translation of discrete actions
specified by guarded transitions.

3.1 Continuous actions

A differential equation in the form of �� � 	��� spec-
ifies continuous change of variable � at the rate specified
as the first derivative 	��� of � with respect to time (i.e.,

��
� � 	���). Continuous change of a variable can be
simulated by stepwise update of the variable based on a
numerical method that computes an approximate value
of the variable after a discrete time step. In this study,
we consider the fourth-order Runge-Kutta method that
averages a number of approximate values [11]. A gen-
eral form of the Runge-Kutta method for a differential
equation �� � 	��� with a step size � is as follows.

�� � 	����
 � (1)

�� � 	��� � �����
 � (2)

�� � 	��� � �����
 � (3)

�� � 	��� � ���
 � (4)

���� � �� � ���� � ���	 � ���	 � ���� (5)

double diff_x(double h) /* x’ = 2x */
/* returns the value of x at time t+h */
k1 = 2*x*h;
k2 = 2*(x+k1/2)*h;
k3 = 2*(x+k2/2)*h;
k4 = 2*(x+k3)*h;
return x + k1/6+k2/3+k3/3+k4/6;

}

Figure 4. Translation of a single-variable
differential equation

A translation of a differential equation �� � �� using
this method is shown in Figure 4. Continuous change of
variable � due to the differential equation can be simu-
lated by invoking the function periodically at every time
step �. Note that this equation involves only one vari-
able, making it self-contained. In general, dynamics of
a system can be specified by a set of differential equa-
tions that have dependency. For example, let’s consider
a model of an object that moves at the acceleration given
by . The position � of the object can be modeled as a
system of two differential equations: �� � � and �� � .
The Runge-Kutta method for a set of differential equa-
tions has the same form except that each variable is a
vector. That is, �� � 	���� �����
� can be interpreted
as ��� � 	���

�
� � ������ �

�
� � ������ ���� �

�
� � ��� ���
� for

all �, and so on.
In our approach, differential equations are translated

in two different ways depending on their dependency re-
lations. We define that differential equation
� � � has
dependency on another differential equation
� � �,
denoted as
� �
� , when the right-hand side of
�
contains the variable at the left-hand side of
� . Data
dependency is called cyclic if
� �
�,
� �
�, ���,

��� �
�, and
� �
�, for some differential equa-
tions
��
�� ����
� � � (� 	 �).

When differential equations have cyclic dependency,
they are translated based on the vectorized Runge-Kutta
method. Figure 5 shows code for two differential equa-
tions �� � 	���� �� and �� � 	���� �� based on the vec-
torized Runge-Kutta method. A drawback of the code
is that differential equations are tightly coupled. This
means that different code needs to be generated for each
possible combination of differential equations that can
be active simultaneously. We can decompose the code
by encapsulating each intermediate step as a function
and cross-referencing when the result of the intermedi-
ate step of another differential equation is needed. Fig-
ure 6 shows an extra implementation. However, this
code introduces overheads due to frequent and redun-
dant function calls.

We can get more efficient yet modular code, if data

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

void diff_xy(double h) {
k1_x = h*fx(x, y); /* x’ = fx(x, y) */
k1_y = h*fy(x, y); /* y’ = fy(x, y) */
k2_x = h*fx(x+k1_x/2, y+k1_y/2);
k2_y = h*fy(x+k1_x/2, y+k1_y/2);
k3_x = h*fx(x+k2_x/2, y+k2_y/2);
k3_y = h*fy(x+k2_x/2, y+k2_y/2);
k4_x = h*fx(x+k3_x, y+k3_y);
k4_y = h*fy(x+k3_x, y+k3_y);
x += k1_x/6+k2_x/3+k3_x/3+k4_x/6;
y += k1_y/6+k2_y/3+k3_y/3+k4_y/6;

}

Figure 5. Non-modular implementation of
the Runge-Kutta method.

dependency between differential equations is not cyclic.
The idea behind it is that, if data dependency is not
cyclic, numerical integration of each differential equa-
tion can be performed separately one by one, with-
out interleaving intermediate steps of different equations
as implied by the original formula of the Runge-Kutta
method. That is, if �� � �� , integration of �� does not
require the results of integration of ��, and thus integra-
tions of two differential equations can be performed se-
quentially. Thus, the tightly coupled code shown in Fig-
ure 5 can be decomposed into a component for each dif-
ferential equation without overhead for redundant func-
tion calls of the code shown in Figure 6. We define a
discretization of a differential equation with respect to
step size � as a procedure that produces the value of the
left-hand side variable at time �� � and its intermediate
values (i.e., ��� ��� ��� ��), from the values of variables
at the right-hand side at time � and their intermediate
values.

For example, Figure 7 shows modularized code for a
pair of differential equations �� � � and �� � �. Note
that the code does not assume anything about dynamics
of �. This makes the code for �� � � valid regardless
of dynamics of �, provided that the code for � is exe-
cuted before �. For example, when another concurrent
automaton constrains � by either �� � � or �� � �� de-
pending on the state of the system, the code for �� � � is
valid provided that it is executed after the code for � is
executed.

Once the differential equations are solved, algebraic
equations are evaluated to reflect the change due to dif-
ferential equations. The general form of algebraic equa-
tions is � � 	�
�. An algebraic equation can be imple-
mented by an assignment statement of the same form.
That is, a discretization of algebraic equation � � 	�
�
is simply an assignment of the form � �� 	�
�.

We also define data dependency between algebraic
equations � � �. Algebraic equation �� has depen-

void diff_x(double h) {
return x + (k1_x(h)/6 + k2_x(h)/3

+ k3_x(h)/3 + k4_x(h)/6);
}
double k1_x(double h) {

return h*fx(x, y);
}
double k2_x(double h) {

return h*fx(x+k1_x(h)/2, y+k1_y(h)/2);
}
double k3_x(double h) {

return h*fx(x+k2_x(h)/2, y+k2_y(h)/2);
}
double k4_x(double h) {

return h*fx(x+k3_x(h), y+k3_y(h));
}

void diff_y(double h) {
return y + (k1_y(h)/6 + k2_y(h)/3

+ k3_y(h)/3 + k4_y(h)/6);
}
double k1_y(double h) {

return h*fy(x, y);
}
double k2_y(double h) {

return h*fy(x+k1_x(h)/2, y+k1_y(h)/2);
}
double k3_y(double h) {

return h*fy(x+k2_x(h)/2, y+k2_y(h)/2);
}
double k4_y(double h) {

return h*fy(x+k3_x(h), y+k3_y(h));
}

Figure 6. Modular implementation of the
Runge-Kutta method.

double diff_v(double h) { /* v’ = a */
v_k1 = a*h;
v_k2 = (a+a_k1/2)*h;
v_k3 = (a+a_k2/2)*h;
v_k4 = (a+a_k3)*h;
return v+(v_k1/6+v_k2/3+v_k3/3+v_k4/6);

}

double diff_x(double h) { /* x’ = v */
x_k1 = v*h;
x_k2 = (v+v_k1/2)*h;
x_k3 = (v+v_k2/2)*h;
x_k4 = (v+v_k3)*h;
return x + (x_k1/6 + x_k2/3 + x_k3/3 + x_k4/6);

}

double diff_vx(double h) {
v_tmp = diff_v(h);
x_tmp = diff_x(h);
v = v_tmp;
x = x_tmp;

}

Figure 7. Dependency-based implementa-
tion of the Runge-Kutta method.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

dency on another algebraic equation �� � �, denoted
as �� � �� , when the right-hand side of �� includes the
left-hand side variable of �� . That is, algebraic equation
� � ��� � has a dependency on another algebraic equa-
tion � � ���� if � contains �. By executing discretiza-
tions of algebraic equations before executing discretiza-
tions of algebraic equations that have dependency on the
former, equalities between variables inferred by the al-
gebraic equations in the model can be satisfied. That is,
the code satisfies � � ������� when algebraic equations
� � ���� and � � ���� are active. Note that the equality
may not be satisfied if the execution order is reversed. In
this paper, we do not consider hybrid automata that have
cyclic dependency in algebraic equations.

3.2 Discrete actions

Discrete actions of hybrid automata specify instanta-
neous change of continuous dynamics and the values of
variables. Discrete actions are specified by transitions
between locations, where each location defines different
dynamics. The transition also has a guard that specifies
the necessary condition for the transition to be taken, and
may have optional assignments to variables that are per-
formed when the transition is taken. When a transition is
taken, differential equations and algebraic equations de-
fined in the source location become no longer active, and
differential equations and algebraic equations defined in
the destination location take effect immediately.

We translate a transition into an if-then statement
where the guard becomes the if-condition and the state-
ment block contains the assignments, along with an ad-
ditional statement that updates a variable storing the cur-
rent location. Such a variable is needed to test whether a
differential/algebraic equation is currently active. Con-
ceptually, the if-block should be executed continuously
(i.e., infinitely frequently), since continuous variables
can be updated at any time. In the generated code,
however, variables are updated synchronous to execu-
tion of discretizations of differential equations and al-
gebraic equations. Therefore, the code for transitions is
executed after continuous actions are performed at ev-
ery step. Formally, we define that 	 �
 if 	 � � and

 � � � �. Note that such a discretization guarantees
that a transition is taken in a delay less than after it is
enabled.

A transition may enable another transition through
a discrete action as in the model shown in Figure 3.
While non-deterministically specified hybrid automata
allow us to leave such transition not taken until the next
time step, our code generator enforces such transitions
occur synchronously in the same step. The motivation is
that we can eliminate delays of synchronous transitions

if they are evaluated in a dependency order. We define
a transition ���� �

�

�
� has dependency on another transi-

tion ���� �
�

�
� if ����� ��

�
� is true over � ���� �

�

�
�. For

example, in the model shown in Figure 3, transitions in
the right automaton have dependency on transitions in
the left automaton. If transitions in the left automaton
are evaluated before transitions in the right automaton,
wagging of the tail can start simultaneously when the
dog starts tracking an object. Note that wagging of the
tail can be delayed by when the evaluation order is
reversed.

4 Scheduling

We now describe a process of combining discretiza-
tions of primitives explained in the previous section
into a single program. The resulting program is a
single-threaded code that executes discretizations of ac-
tive primitives sequentially. An execution order, i.e., a
schedule, is determined based on data dependency de-
fined in the previous section.

Formally, given a set � of primitives, i.e., � �
����� , a schedule of � is a sequence �	�� 	�� ���� 	��
of all primitives 	� � � , i.e., a total order on � . Schedul-
ing is a process of determining a schedule. Scheduling
can be done either statically at code generation time or
dynamically at run time. In static scheduling, a sched-
ule determined at code generation time, called a static
schedule, is used throughout execution, and the execu-
tion order never changes. On the other hand, in dynamic
scheduling, schedules are determined at run time, and
thus the execution order can be changed.

We enforce that a schedule be consistent and com-
plete. A schedule �	�� 	�� ���� 	�� is consistent (to data
dependency) if 	� � 	� implies � � � for all �� � � �.
Let �� be a set of active primitives at time � . A schedule
is said complete at time � when it includes all 	 � �� .
A schedule is complete if it is complete for all times.

A static schedule that is consistent exists when data
dependency is not cyclic. If data dependency is not
cyclic, the transitive closure of the data dependency rela-
tion defines a partial order on ����� . Any total order
on � �� � � that subsumes the partial order is consis-
tent to data dependency, and can be used as a consistent
static schedule. Such a schedule is complete since it in-
cludes all primitives.

Note that a static schedule that is consistent and
complete is possible only when data dependency is not
cyclic. In other case, dynamic scheduling is used. Given
a set �� of active primitives at time � , a schedule that is
consistent exists if the data dependency relation on ��

is not cyclic. A schedule of �� is complete by defini-
tion. A consistent schedule can be obtained at time � by

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

determining a total order that subsumes the partial order
defined by the transitive closure of the data dependency
relation on �� . A schedule that is consistent exists at all
times if the data dependency relation on �� is not cyclic
for all � .

On the other hand, if the data dependency relation on
�� is not cyclic for some time � , a consistent schedule
does not exist.

We now define code of a hybrid automaton.

Definition 3 (Code) Code of a hybrid automaton is a
program that executes discretizations of active primi-
tives at time �� � �� �� � � �� �� �� ���, such that

� execution starts from �� at time �� and continuous
until the invariant is violated.

� there is a procedure that determines a set ��� of
active primitives at time ��.

� there is a procedure that determines a schedule
(i.e., a run-time scheduler) in the case of dynamic
scheduling.

A trace of code is a sequence ���� ��� ��� ����, where ��
is the initial values and ��� � � � is the values produced
by execution of discretizations at time ����.

Code based on static scheduling executes discretiza-
tions of primitives that are active in an order given by a
static schedule. Since an execution order is determined
at the code generation phase, a schedule can be encoded
as a sequence of code. Thus, there is no run time over-
head associated with scheduling. On the other hand,
code based on dynamic scheduling determines execution
order at run time. To support dynamic scheduling, it is
required that the generated code be modular since com-
ponents can be reordered at run time, It also requires a
run-time scheduler that determines a schedule based on a
data dependency relation on currently active primitives
at every step. This dynamic scheduling can be imple-
mented by encapsulating each component in a function
and maintaining the pointers to the functions in an array.
Figure 8 compares code based on static scheduling and
code based on dynamic scheduling.

Now we present the properties of the code formally.

Theorem 1 The trace of the code of a discretizable hy-
brid automaton is equal to the trace of some discretiza-
tion of the hybrid automaton, if

1. The schedules is consistent and complete at each
step.

2. The code does not violate the invariant.

code_static() {
while (1) {

if (active_d1()) diff_1();
if (active_d2()) diff_2();
...
if (active_a1()) alge_1();
if (active_a2()) alge_2();
...
if (active_t1()) trans_1();
if (active_t1()) trans_2();
...
assert(inv_1() && inv_2() && ...);

}
}

(a) Static scheduling

code_dynamic() {
while (1) {

schedule(f);
for (i = 0; i < N; i++) {

(*f[i])();
}
assert(inv_1() && inv_2() && ...);

}
}

(b) Dynamic scheduling

Figure 8. Generated code skeleton.

3. The discretizations of differential equations are
precise.

4. Execution of the step at time �� finishes before ����.

Proof Let ���� ��� ��� ���� be the trace of the code. And
let 	� be the �’th element of the trace 	 of some dis-
cretization of the hybrid automaton. Initially, for all dis-
cretization, �� � 	� by definition. Let’s assume that
there exists discretizations that satisfy �� � 	� for all
� �
. Then among such discretizations, there exists
discretizations that also satisfy �� � 	� for all � �
��

because (1) discretizations of differential equations pro-
duce the same values as in 	��� by the assumptions 1
and 3, and because (2) discretizations of algebraic equa-
tions produce the same values as in 	��� by the assump-
tion 1. In addition, ���� � 	��� and the assumption
3 imply that transitions enabled in the code are also en-
abled in the hybrid automaton, and thus any transition
occurred in the code is possible in the hybrid automa-
ton. And instantaneous transition semantics is preserved
since the values used to test guards and the values pro-
duced by discrete actions both represent the values at
time ����. Finally, the assumption 4 indicates that the
values at ���� are readily available at ����, satisfying
timely production of values. �

Note that the code generated from the model shown
in Figure 1 satisfies all three conditions given by The-

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

orem 1, since data dependency is not cyclic, differen-
tial equations are zero-order and thus can be solved pre-
cisely, and transitions can be taken before the invariant
is violated. However, in general, our code generation
framework guarantees only the first condition of Theo-
rem 1. That is, even if we can generate the code that
is consistent to the data dependency when there is no
cyclic dependency, it is not guaranteed that the code pro-
duces the exactly same values of variables as the original
mathematical model, since discretization of differential
equations introduces numerical errors and discretization
of transitions may cause a transition miss. Note that the
latter two conditions are the matter of robustness of the
model against discretization, and should be analyzed at
the level of the model possibly with feedback informa-
tion from the code (c.f. [3, 5]). For example, the model
can be analyzed whether guards are enabled longer than
a certain duration before the invariant is violated [3].
The effect of numerical errors can also be analyzed if
the error bound of the numerical method is given [5].

5 Implementation

We have implemented our code generation frame-
work in the context of CHARON, the hybrid system mod-
eling language [2]. Using CHARON, designers can for-
mally describe sophisticated behaviors of hybrid sys-
tems using a language construct such as modes and
agents. To experiment our framework in a real system,
we used Sony’s four-legged robot, AIBO, as the target
platform (http://www.aibo.com). The robot is a typical
example of hybrid systems, consisting of analog devices
for inputs and outputs and a digital control system to
control the devices. The control system is an embedded
computer based on a MIPS microprocessor running at
384 MHz, and equipped with 32 MB main memory and
16 MB flash memory. The operating system is Sony’s
proprietary object-oriented real-time operating system
known as Aperios. There is an additional layer of soft-
ware called OPEN-R that hides system-level details.

Our code generator is implemented on top of the
parser of CHARON. It generates a C++ class for each
module (mode/agent) of the model that can be com-
piled separately. Using the code generator, we can trans-
late the models explained in Section 2 into C++ pro-
grams and compile them into executable code for the
robot (see Figure 9). Since the generated code is virtu-
ally platform-independent, we are required to write ad-
ditional code that interfaces the operating system, which
should be done manually in part. We also implemented
a run-time scheduler independently of the code genera-
tor that can be compiled and linked with automatically
generated code. The scheduler is invoked periodically

.cn .cc

.cc

.cc

.bin
code

generator
target

compiler

CHARON
model

generated
C++ code scheduler

API interface

binary code

Figure 9. Code generation process.

Table 1. Generated code evaluation.
Execution time Code size

PANNING THE HEAD (Figure 1)
Static scheduling 5,910 msec 44,992 bytes

Dynamic scheduling 8,370 msec 47,449 bytes
TRACKING AN OBJECT (Figure 2)

Static scheduling 23,740 msec 59,789 bytes
Dynamic scheduling 32,690 msec 60,173 bytes
WAGGING THE TAIL (Figure 3)

Static scheduling 31,180 msec 60,960 bytes
Dynamic scheduling 40,500 msec 62,413 bytes

by the operating system of the robot. All the generated
code were compiled and run smoothly as intended by the
model.

We measured performance of the code to evaluate the
cost of dynamic scheduling. The measurement is done
in the host system, since measuring tools for the tar-
get platform were not available. Table 1 shows the re-
sult obtained by compiling and running the code gen-
erated from the models explained in Section 2 in the
host system based on the 1.8 GHz Intel Pentium 4 pro-
cessor running the Linux operating system. The execu-
tion time indicates the CPU time consumed to execute
the application up to 100,000 steps. The results show
that run-time overheads of dynamic scheduling range
from 30% to 40% compared to the statically scheduled
code in our implementation. This indicates that static
scheduling improves the performance significantly, and
thus should be preferred wherever possible. However,
static scheduling requires that data dependency should
be resolved at the stage of code generation, and is lim-
ited to models that do not have potential cyclic depen-
dency. The results also show the overhead of the code
size due to dynamic scheduling, but overhead is much
less significant.

6 Conclusion

We have presented a framework of automatic code
generation for embedded real-time systems from models
specified in hybrid automata. The automatic code gener-
ation process is decomposed into two phases: one trans-
lating each primitive into a piece of code and the other
scheduling the pieces of code consistent to data depen-

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

dency. We have shown that data dependency analysis
can be done separately in two domains, and that code
can be modularized if the dependency in each domain is
acyclic. The framework generates modular and efficient
code suitable for single-threaded execution even when
the model has arbitrarily complex hierarchy and concur-
rency.

The framework is implemented in the hybrid system
modeling language CHARON and tested in a robot plat-
form AIBO. We feel that the model-based approach is
promising especially in hybrid systems. Robot program-
ming, for example, generally requires implementation
of finite state machines and periodic update of variables,
and in many cases these are hand-crafted using tradi-
tional programming languages. Debugging is more diffi-
cult because reasoning is done at the level of code, rather
than at the level of the abstract model. In contrast, au-
tomatic code generation improves productivity since it
eliminates errors due to tedious manual coding and al-
lows the designer to be devoted to higher level design
issues.

Our code generation framework is based on a formal
language, and we have defined the relation between the
model and the generated code formally. There, how-
ever, still exists discrepancy between them, when a nu-
merical solution of differential equations is not precise,
and when discretizations are executed in a distribute sys-
tem where communication delays are present. We are
currently addressing these issues by considering correct-
ness of the generated code in more general cases. This
paper has focused on semantic relationship between the
model and the generated code, and we have largely ig-
nored a possible performance gap between the two. We
are also studying on improving performance of the gen-
erated code by exploiting the hierarchical structure of
the model.

Acknowledgements. The authors would like to thank
Rajeev Alur, Franjo Ivančić, and Oleg Sokolsky for their
various contributions to the code generation framework
for CHARON. We are also grateful to Jin-Young Choi
and Yerang Hur for their invaluable comments.

References

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,
P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine.
The algorithmic analysis of hybrid systems. Theoretical
Comp. Science, 138:3–34, 1995.

[2] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivančić, V. Ku-
mar, I. Lee, P. Mishra, G. Pappas, and O. Sokolsky. Hi-
erarchical modeling and analysis of embedded systems.
Proceedings of the IEEE, 2003.

[3] R. Alur, F. Ivancic, J. Kim, I. Lee, and O. Sokolsky.
Generating embedded software from hierarchical hy-
brid models. Technical Report MS-CIS-03-07, Dept. of
Computer and Information Science, University of Penn-
sylvania, 2003.

[4] G. Berry and G. Gonthier. The synchronous program-
ming language ESTEREL: design, semantics, implemen-
tation. Technical Report 842, INRIA, 1988.

[5] J.-Y. Choi, Y. Hur, and I. Lee. IHA: Ensuring sound
numerical simulation of hybrid automata. Technical Re-
port MS-CIS-03-06, Dept. of Computer and Information
Science, University of Pennsylvania, 2003.

[6] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous dataflow programming language LUSTRE.
Proceedings of the IEEE, 79:1305–1320, 1991.

[7] D. Harel. Statecharts: A visual formalism for complex
systems. Sc. of Comp. Programming, 8:231–274, 1987.

[8] T. Henzinger and C. Kirsch, editors. Embedded Soft-
ware, First International Workshop. LNCS 2211.
Springer, 2001.

[9] E. Lee. What’s ahead for embedded software. IEEE
Computer, pages 18–26, September 2000.

[10] O. Maler, Z. Manna, and A. Pnueli. From timed to hy-
brid systems. In Real-Time: Theory in Practice, REX
Workshop, LNCS 600. Springer-Verlag, 1991.

[11] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C: the Art of Scientific
Computing, 2nd Ed. Cambridge University Press, Cam-
bridge, UK, 1999.

Proceedings of the 9th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’03)
1080-1812/03 $17.00 © 2003 IEEE

	University of Pennsylvania
	ScholarlyCommons
	May 2003

	Modular Code Generation from Hybrid Automata based on Data Dependency
	Jesung Kim
	Insup Lee
	Recommended Citation

	Modular Code Generation from Hybrid Automata based on Data Dependency
	Abstract
	Comments

	Modular code generation from hybrid automata based on data dependency - Real-Time and Embedded Technology and Applications Symposium, 2003. Proceedings. The 9th IEEE

