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Abstract
In addition to real-time requirements, the program code size is a critical design factor for real-time embedded
systems. To take advantage of the code size vs. execution time tradeoff provided by reduced bit-width
instructions, we propose a design framework that transforms the system constraints into task parameters
guaranteeing a set of requirements. The goal of our design framework is to derive the temporal parameters and
the code size parameter of each task in such a way that they collectively guarantee the system end-to-end
timing requirements while the system code size is minimized. Our design framework is based on
asynchronous periodic tasks with pre-period deadlines under EDF scheduling. For schedulability analysis, we
present a new feasibility condition that can be more efficiently evaluated than existing ones. When the code
size vs. execution time tradeoff can be safely approximated as linear functions, the minimization problem
becomes a linear programming problem. However, when the tradeoff is given by a table of possible (code size,
execution time) pairs, the problem becomes NP-hard. We provide three heuristic algorithms that can find
sub-optimal solutions and evaluate their performance with simulation results.
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Abstract

In addition to real-time requirements, the program code
size is a critical design factor for real-time embedded sys-
tems. To take advantage of the code size vs. execution time
tradeoff provided by reduced bit-width instructions, we pro-
pose a design framework that transforms the system con-
straints into task parameters guaranteeing a set of require-
ments. The goal of our design framework is to derive the
temporal parameters and the code size parameter of each
task in such a way that they collectively guarantee the sys-
tem end-to-end timing requirements while the system code
size is minimized. Our design framework is based on asyn-
chronous periodic tasks with pre-period deadlines under
EDF scheduling. For schedulability analysis, we present
a new feasibility condition that can be more efficiently eval-
uated than existing ones. When the code size vs. exe-
cution time tradeoff can be safely approximated as linear
functions, the minimization problem becomes a linear pro-
gramming problem. However, when the tradeoff is given
by a table of possible (code size, execution time) pairs, the
problem becomes NP-hard. We provide three heuristic al-
gorithms that can find sub-optimal solutions and evaluate
their performance with simulation results.

1 Introduction

The program code size is one of the key factors that de-
termine the manufacturing cost of an embedded system, es-
pecially when the embedded system is implemented as an
SOC (System On a Chip). One code size reduction tech-
nique at the instruction set architecture (ISA) level is to�

This research was supported in part by NSF CCR-9988409, NSF
CCR-0086147, NSF CISE-9703220, ARO DAAD19-01-1-0473, DARPA
MOBIES F33615-00-C-1707, ONR N00014-97-1-0505, and the Ministry
of Science and Technology of the Republic of Korea under the National
Research Laboratory program.

use a subset of normal 32-bit instructions compressed into
a 16-bit format as in ARM Thumb [6] and MIPS16 [13].
These 16-bit instructions are dynamically decompressed by
hardware into 32-bit equivalent ones before execution. This
approach can substantially reduce the program code size;
however, it increases the number of instructions to be ex-
ecuted, and thus, increases the execution time of the pro-
gram. For typical examples, the compressed code may re-
quire around 70� of the space of the original code, while
executing 40� more instructions [3].

When an embedded system is used as a real-time system,
there are also temporal requirements imposed on the system
that must be met for correct operation. In such a real-time
embedded system, the code size vs. execution time tradeoff
resulting from the use of reduced bit-width ISA [7] gives
rise to a challenging question: to minimize the total code
size of all the tasks in the system while satisfying all the
temporal requirements imposed on the system.

There has been much work on the design of real-time
systems guaranteeing the system temporal requirements. In
particular, Period Calibration Method (PCM) [5] is a de-
sign framework that transforms the system temporal re-
quirements into the temporal parameters of tasks that col-
lectively guarantee the system-level end-to-end timing re-
quirements. The design framework proposed in this paper
extends the PCM framework by considering the code size
vs. execution time tradeoff of each task to come up with
a solution that minimizes the total system code size while
satisfying the system-level real-time requirements. The pro-
posed framework assumes that the code size vs. execution
time tradeoff for each task is given either by a table that
lists possible (code size, execution time) pairs or by a linear
tradeoff function that safely approximates the table. From
this tradeoff relationship, the proposed framework formu-
lates the optimization problem of minimizing the total sys-
tem code size subject to the system-level real-time require-
ments. The optimization problem is a linear programming
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problem when the tradeoff is given as a linear function, or it
becomes an NP-hard problem when the tradeoff is given as
a tabular form. For the latter case, we describe three heuris-
tic algorithms, each of which finds a sub-optimal solution
to the optimization problem using different criteria in the
solution process. In addition, for a set of asynchronous pe-
riodic tasks with relative deadlines less than or equal to their
periods, we develop a new feasibility condition under EDF
(Earliest Deadline First) scheduling [10] that can be more
efficiently evaluated than existing ones.

The rest of this paper is organized as follows: Section 2
describes the system model and gives the problem descrip-
tion and the overview of our solution process. Section 3
briefly reviews PCM and the code size reduction technique.
Section 4 presents a new feasibility condition. Section 5
formulates the optimization problem and presents heuristic
algorithms. Section 6 illustrates how our design framework
works using an example and evaluates the performance of
the heuristic algorithms with simulation results. Finally, we
conclude in Section 7 with discussion on future research.

2 System Model and Problem Description

2.1 System Model

We assume that an embedded system���	�
� is composed
of a set of tasks,���
�
�
���
�����
��� . Each task�
����� �	�
� has the
following task temporal parameters:� period � � : the fixed time interval between the arrival

times of two consecutive requests of� � ,� offset � � : the time instant relative to the start-of-
its-period at which� � ’s execution becomes available
( � ����� ),� deadline � : the time instant relative to the start-of-its-
period by which� � ’s execution is required to be com-
pleted ( ��! � � ),� execution time"
� : the time amount required to com-
plete �
� ’s execution in the worst case,� execution window#$� : the time interval of % �&���� '�)(
during which ��� ’s execution becomes available and
needs to be completed.* #+�,*.-/ 0�21��3� .

A task � � is said to be synchronous if� � - � or asyn-
chronous if �&� �4� . A task �
� is said to have a period
deadline if  '�5-6�7� or a pre-period deadline if 0� ! �7� .
Our design framework considers asynchronous tasks with
pre-period deadlines. In this paper, when it comes to an ex-
ecution time, it means the worst-case execution time. When
a worst-case execution time has its value range due to the
code size vs. execution time tradeoff possible at compile

si

ei
e

s

linear

step

code size

execution timei

min
i min ei

max

maxsi

Figure 1. tradeoff functions between code
size and execution time

time, the minimum execution time refers to the minimum
value of the the worst-case execution time. In addition to
the temporal parameters, each task� � has a task code size
parameter as follows:� code size8�� : the size of�
� ’s executable code.

Let �79;:=< be the least common multiplier (LCM) of�7� ’s
of all � � ’s �>�?�	�
� . We consider� 9;:=< as the major period
of the system.

Let � �)@ A denote theB -th job (execution unit) of� ��C B ��.D . Let E �)@ A �GF �H@ A and # �)@ A denote the offset, the deadline
and the execution window of� �H@ A , respectively. Note thatE �)@ A and F �H@ A are time instants relative to the start-of-major-
period such thatEI�H@ A5-/�3��JKBML)�7� and FN�)@ A3-O 0�
JPBQLH��� . We
define R.9S:T< as the set of jobs whose deadlines are earlier
than or equal to��9S:T< , i.e.,

R 9;:=< -VUW� �)@ A *XF �H@ AY! � 9;:T<[Z �
Let " �)@ A and 8 �H@ A denote the execution time and code size

of � �H@ A , respectively. Since the execution time and the code
size are determined at compile time, all" �H@ A ’s and 8 �H@ A ’s are
equal to" � and 8 � , respectively.

In this paper, we assume that each task��� is given a trade-
off relationship between code size (8 ) and execution time
( " ) either by a discrete step function (i.e., a table of possible
( 8.�G" ) pairs) or a linear function that safely approximates the
step function. Figure 1 shows an example of a discrete step
function that gives the code size vs. execution time trade-
off and a linear function that safely approximates the step
function. The tradeoff function is denoted by

83-O\ ��C " D � "?] �^�� ! " ! "
]`_�a� � (1)
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Figure 2. Overview of our design framework

For real-time embedded systems, we consider the fol-
lowing three classes of timing constraints presented in [5]:� A freshness constraintbounds the time it takes for

data to flow from inputb to output c (denoted asd C ce* b D ).� A correlation constraintbounds the maximum time-
skew between several inputs (b � ���
�
���fb � ) used to
produce outputc (denoted asg C ch* b � ���
�����fb �;D ).� A separation constraintbounds the jitter between con-
secutive values on a single outputc (denoted asi C c D
and j C c D ).

We define the system code size (8 �k�
� ) as the sum of the
code sizes of all the tasks in the system, i.e.,

8
�	���`- lmknpoqmfrtsfr 8 � �
2.2 Problem Description

We consider a design framework for real-time embedded
systems that transforms the system constraints into task pa-
rameters guaranteeing a set of requirements. The goal of
our design framework is to derive the temporal parameters
and the code size parameter of each task in such a way that
they collectively guarantee the system end-to-end timing re-
quirements and that the system code size is minimized. Fig-
ure 1 depicts the overview of our design framework. The in-
put, output, and requirements of our design framework are
given as follows:

Input:� System structure:a task graph representing dataflow
and task precedence.� System constraints:the system end-to-end timing
constraints� tradeoff between the code size and the (worst case)
execution time of each task.

Output:� Task parameters:the temporal parameters (period,
offset, deadline, and execution time) and the code size
parameter of each task.

Requirements:� Correctness:system behaviors that satisfy all the task
parameters also satisfy the system constraints.� Feasibility: task temporal parameters never demand a
time interval during which the CPU utilization exceeds
100%.� Optimization: the total code size should be mini-
mized subject to the above two requirements.

When solving the problem of determining the temporal
parameters and the code size of each task satisfying the sys-
tem end-to-end timing constraints and optimizing the sys-
tem code size, our design framework breaks the problem
into two sub-problems: (1) transforming the system end-to-
end timing constraints into task temporal parameters with
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the system structure and constraints and the execution time
of each task and then (2) deriving the code size and execu-
tion time of each task with the optimization goal subject to
the task temporal parameters. We iteratively solve these two
sub-problems. We initially use the minimum (worst-case)
execution time of each task to solve the first sub-problem.
The solution to the second sub-problem determines the ex-
ecution time of each task with the optimization goal, and
then we go back to the first sub-problem with this new exe-
cution time of each task. We repeat this iterative procedure
until the solution converges.

Our design framework uses an existing technique called
Period Calibration Method (PCM) [5] to solve the first sub-
problem and we provide a new optimization framework to
solve the second sub-problem.

PCM is a design methodology that transforms the sys-
tem end-to-end timing constraints into the temporal param-
eters of each task when the system task graph, the system
constraint, and the worst case execution times of tasks are
given. Having PCM as the first sub-problem solver, our de-
sign framework can use the same asynchronous task graph
and the end-to-end timing constraints as those in [5].

With PCM serving as the front-end technique, our design
optimization framework works as back-end. The goal of
this back-end is to determine the code size vs. execution
time tradeoff of each task to minimize the system code size
while guaranteeing a feasible schedule. The input to the
back-end is the code size vs. execution time tradeoff of each
task as well as the temporal parameters of each task that
PCM determined as solutions to the first sub-problem.

To guarantee a feasible schedule with the temporal pa-
rameters of each task, our design framework generates fea-
sibility constraints according to a feasibility condition. With
the feasibility constraints, the back-end formulates the opti-
mization problem of minimizing the system code size. De-
pending on the format by which the code size vs. execution
time tradeoff is given, the back-end solves the optimization
problem with a different tool. If the tradeoff relationship
is given as a linear function, the back-end uses an existing
linear programming solver to find the optimal solution. If
the tradeoff is given in a tabular form, the back-end uses
heuristic algorithms to find sub-optimal solutions. For this
purpose, we give three heuristic algorithms that use differ-
ent criteria in the solution process. With the solution given
by the back-end, our design framework finds the temporal
parameters and the code size parameter of each task that
satisfy the three requirements of correctness, feasibility, and
optimization.

3 Overview of Existing Techniques

3.1 Period Calibration Method (PCM) Overview

Period calibration method (PCM) [5] provides a design
methodology that transforms the system end-to-end timing
requirements into task temporal parameters. As input, PCM
takes a task graph and a set of system end-to-end timing
constraints of the embedded system: the task graph repre-
sents dataflow, task precedence, and end-to-end timing con-
straints on freshness from input to output, input correlation
and allowable output separation. Solving the constraints
generated from the system timing requirements, PCM first
derives the periods of tasks minimizing the CPU utilization
and then derives the offset and deadline of each task subject
to the periods locally maximizing the schedulability of each
task. The static priorities of tasks are assigned considering
the task precedence given in the task graph.

There has been work on applying PCM to the design of
real-time embedded systems including an avionics control
system [12] and a computerized numerical control system
[11]. While reporting some weaknesses of PCM such as in-
feasible solutions [12] and the absence of overload handling
[11], these papers concluded that PCM provides a useful
methodology for the design of real-time embedded systems.

PCM derives task temporal parameters for static priority-
based scheduling. However, our design framework uses the
earliest deadline first (EDF) scheduling to improve system
utilization and to enable efficient feasibility analysis. This
requires a change in task temporal parameters generated by
PCM so that when tasks are scheduled by EDF, the end-to-
end timing requirements are still satisfied. In the original
PCM, the task precedence is preserved by static priorities.
If �
� precedes�uA , �
� has a higher priority than�,A . In our
EDF-based scheduling, we assign deadlines in such a way
that if �
� precedes�,A ,  '� is smaller than KA by one.

3.2 Code Size Reduction Technique Overview

For many embedded systems, program code size is a crit-
ical design factor. We present a brief overview of a compiler
technique for code size reduction that works for a processor
capable of executing reduced bit-width instructions. A very
good example of such a processor is ARM microprocessors
with a 32-bit instruction set (IS) for normal modes and a 16-
bit reduced bit-width IS for Thumb modes [6]. A reduction
in code size comes from encoding a subset of the 32-bit nor-
mal mode IS into the 16-bit Thumb mode IS. At the execu-
tion time, a decompression engine converts a Thumb-mode
instruction into an equivalent normal-mode instruction dur-
ing the decode stage. The Thumb IS can access only 8 gen-
eral purpose registers (out of 16 general purpose registers in
the normal mode) and can encode only a small immediate
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value. These limitations increase the number of instructions
executed and, thus, increases the program execution time.
For typical programs, by using this technique the code size
can be reduced by around 30� , while the number of instruc-
tions executed increases by about 40� [3].

The reduced bit-width ISA allows a program that con-
tains both 32-bit normal-mode instructions and 16-bit re-
duced bit-width instructions where the mode change be-
tween the two can be performed by executing a single
mode-change instruction. This capability allows for a trade-
off between code size and execution time when compiling a
program. For example, by progressively transforming pro-
gram units such as functions or basic blocks in the normal
mode into the equivalent ones in the reduced bit-width mode
while adding patch-up code to maintain the correct seman-
tics, we can obtain a table that gives possible (code size,
execution time) pairs. The order by which the transforma-
tion is performed considers both reduction in code size and
increase in the program execution time, i.e., it favors pro-
gram units that give large reduction in code size with only a
small increase in the program execution time.

4 Feasibility Analysis under EDF

There has been much work on feasibility analysis tech-
niques under EDF scheduling. The following important re-
sults have been proved for independent periodic tasks on
one processor. Liu and Layland [10] showed that any set
of v synchronous periodic tasks with period deadlines with
processor utilizationwx-zy ��^{T�Y| n} n is feasible if and only
if w !�~ . Coffman [2] also showed that any set ofv asyn-
chronous periodic tasks with period deadlines is feasible if
and only if w !�~ . The problem of deciding whether a set of
asynchronous periodic tasks with pre-period deadlines has
been proved to be NP-hard by Leung and Merrill [9]. Fur-
ther, Baruah et al. showed that this problem is NP-hard in
the strong sense [1].

Definition 4.1 Let � �fCH��� � �k��D denote the number of jobs of
task � � that must be completely scheduled in% ��� � �k��D . It is
computed as follows:

� �fCH��� � �k��D -/�'����U � �W� �k� 1�� � 1� ��7� � 1�� ��� 1�� ��7� � J ~�Z �
Lemma 1 (Baruah et al. [1])A set ofv asynchronous pe-
riodic tasks with pre-period deadlines is feasible if and only
if �l �^{T� �q� CH� �I� � � D L�"?� !�� ��1 � �
�
for all ��!����Y���k��! � ]`_�a J���� 9;:T< , where� ]�_ua is the
maximum among all� � ’s.

Lemma 1, by Baruah et al., gives a necessary and sufficient
feasibility condition for asynchronous periodic tasks with
pre-period deadlines. We provide an alternative necessary
and sufficient condition that can be more efficiently evalu-
ated than the one in Lemma 1.

Lemma 2 For eachB ��� , �.� C EI�H@ A��T�q� � � D = �q� CH� �
� � � D for allEI�)@ A ��� � ! EI�H@ A��T� and for a fixed� ��� � � . For eachB ��� ,�q� C)� �
�GF.�H@ A D = �q� CH� �
� � � D for all F.�H@ A !�� � � F.�H@ A��T� and for a
fixed � � ��� � .
Proof. From the definition ofE �H@ A and F �H@ A , E �H@ A is � � J[Bq� �
and F �H@ A is � � J�B.� � J� � . From the definition of� � , ���
is contributed to computing�u�t�,� � n} n¢¡ and �k� is contributed

to computing £ �)¤
� � n � ¥ n} n ¦ . We can easily see that when� �
is EI�H@ A��T� , � � � � n} n is exactly BPJ ~ and � � � ��� n} n§¡ is B0J ~ as
long asE �)@ AK������! E �)@ A��T� . We can also see that when�k� isF �H@ A , � ¤ ��� n � ¥ n} n is exactlyB and £u� ¤ � � n � ¥ n} n ¦ is B as long asF �H@ A�!��k�Y� F �H@ A��T� . ¨

Let �©�7ª79;9 denote a set of possibleC)� �I� � � D values for
Lemma 1, that is,� C)� �I� � � D>«©¬�� �
� � � «Y�­!®� � �®� � !� ]�_ua J��I�79;:=<h� . Let �&ª79S9 denote a set of offsets of all
tasks between 0 and� ]�_ua J/���79;:T< , that is, �
EI�)@ A « ���3�� �	�
� ��EI�H@ A � � ]�_ua J/����9S:T<h� . Let  'ª79;9 denote a set of
deadlines of all tasks between 0 and� ]�_ua J���� 9;:T< , that
is, �
F �H@ A�« � � �h���k�
�
��F �H@ AY! � ]`_�a J���� 9;:T< � . Let �Y ª79S9
denote a set of possible pair of (offset, deadline) between
0 and � ]�_ua J��I� 9;:T< , that is, � C E¯�GF D°« E>��� ª79;9 �GF�� ª79;9 ��E � FS� . We can see that�Y ª79S9�± �©� ª79;9 , and if
there is any time� � �$�V�0� � ]`_�a J/�I� 9;:=< , such that�
is not included in both� ª79S9 and  ª79S9 , then �Y ª79;9/²�©� ª79;9 .
Theorem 1 A set of v asynchronous periodic tasks with
pre-period deadlines is feasible if and only if�l �^{T� �q� C)� �I� � � D L
"
� !�� ��1 � �
�
for all C)��� � �k�
D �h�Y ª79;9 .

Proof. We prove this theorem by showing that this feasi-
bility condition (referred as

d g � ) is equivalent to the fea-
sibility condition (referred as

d g � ) given in Lemma 1 in
terms of feasibility analysis. While sharing the same set
of inequalities, the two conditions differ in the domains ofC)��� � �k��D values: �©� ª79;9 for

d g � and �Y ª79;9 for
d g � . In

what follows, we show that the two conditions yield the
same feasibility results with the two different domains.

First, we show that if
d g�� finds a task set feasible, thend g � also finds the task set feasible. This is obvious from�Y ª79;9³± �©� ª79;9 .
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Second, we show that if
d g � finds a task set infeasible,

then
d g � also finds the task set infeasible. To prove this,

we will show that if there isCH� �I� � � D ���©�7ª79;9 that makes
the inequality false, then there isCH��´� � ��´� D ���Y 'ª79;9 that
makes the same inequality false. Suppose the inequality is
false with CH� �
� � � D �¢�©�7ª79;9 . We can transformC)� ��� � � D
to C)��´� � ��´� D such that��´� is �0µ^¶7�
EI� « EI�0���3ª79;9��GEI� �·� �?�
and ��´� is ���I� �?F ��« F � �¸ ª79;9 �GF ��!¹�k� � . From its
definition, C)��´� � ��´� D �º�Y ª79;9 . We can derive that for
each task� � , there is B such that E �)@ A»�¼���x!½��´� -E �)@ A��T� and there is¾ such thatF �)@ ] - ��´� !��k�¿� F �H@ ] �=� .
From Lemma 2, we can see that for each� � , � �fCH��´� � �k��D -� �fCH��� � �k��D and � �GC)��� � � ´� D -�� �GC)��� � �k�?D . By obtaining� ´� and � ´�
in turn, we can eventually get� �GC)��� � �k�?D -­� �GC)��´� � ��´� D for all� � and �l �^{T� �q� C)� ��� � � D -

�l �^{T� �q� CH� ´� � � ´� D �
Since���3!���´� and ��´� !��k� ,�l �^{T� � �fCH��� � �k��D � �k� 1 ����À

�l �Á{=� � ��CH� ´� � � ´� D � � ´� 1 � ´� �
Third, we show that if

d g � finds a task set feasible, thend g � also finds the task set feasible. As we described in the
last paragraph, we can transform eachC)��� � �k�?D �¿�©� ª79;9 toC)� ´� � � ´� D �¿�Y ª79;9 satisfying�l �^{T� � �GC)��� � �k��D -

�l �^{T� � �fCH� ´� � � ´� D �
Since���3!���´� and ��´� !��k� ,�l �^{T� � �fCH� ´� � � ´� DÂ!�� ´� 1 � ´� À

�l �Á{T� � ��C)��� � �k�?DÂ!��k� 1 ��� �
Fourth, we show that if

d g � finds a task set infeasible,
then

d g � also finds the task set infeasible. This is obvious
from �Y ª79;9³± �©� ª79;9 . ¨

From �Y ª79;9O± �©� ª79;9 . we can see that the feasibil-
ity condition given in Theorem 1 can be more efficiently
evaluated than the one given in Lemma 1.

5 Optimization Formulation and Solutions

5.1 Optimization Formulation

Once the PCM generates the temporal parameters (pe-
riods, offsets and deadlines) of tasks and feasibility con-
straints are generated with the feasibility condition shown
in Theorem 1 based on the temporal parameters of tasks,
the optimization framework, i.e., the back-end technique,

tries to minimize the system code size while satisfying all
the feasibility constraints. This optimization uses the code
size vs. execution time tradeoff relationship of each task for
this purpose. More formally, this optimization is formulated
as follows:� Objective: the objective function is as follows:

Minimize lm n oqm rHs�r 8 � � (2)

� Constraints: the feasibility constraints are from Theorem
1 as follows:�l �^{T� � �GC)��� � �k��D LÃ" �M!��k� 1 ��� � for all C)�u~ � � � D �¿�Y ª79;9 �

Depending on the tradeoff function of each task, this opti-
mization problem can be solved by linear programming or
heuristic approaches.

Linear programming (LP) problem. If all the trade-
off functions are linear, this optimization problem be-
comes an LP problem with the objective of minimizingy m n oqm rHs�r \ ��C " �tD . Thus, it can be solved by an existing LP
solver.

NP-hard problem. If the tradeoff functions are given as
discrete step functions, the problem of finding the optimal
solution becomes intractable.

Theorem 2 When the code size vs. execution time tradeoff
is given as a tabular form, the problem of finding the mini-
mum system code size satisfying the real-time requirements
is NP-hard.

Proof. The proof is via a polynomial-time reduction from
the subset sum problem that is known to be NP-complete
[4]. Let a set of positive integersÄV-¢�?Å;�I�
�
���
�GÅN� � and Æ
represent an instance of the subset sum problem. Assume
that for eachÇ , ~�! Ç ! v , Å¯� �È~ and y ��Á{T� Å¯�P-ÊÉ .
For reduction, for eachÇ , ~�! Ç ! v , we first construct
the tradeoff for� � in the form of C 8 � ��" �tD as CHË ��Å � 1 ËuD andC Å � 1 Ë � ËuD such thatË5� �� and then construct the temporal
parameters of� � such that� � - � ,  � -ÌÆ , and � � -�qÆ . In any schedule,y ��^{T� C " � J�8 �ÃD -�É . In any feasible
schedule,y ��Á{T� " �M! Æ . Then, we know that in any feasible
schedule,y ��^{T� 8 �Í� É¹1>Æ . ConsideringË , we know that
the minimum system code size is betweenÉº1+Æ and Éº1Æ�J ~ . The minimum system code size is achieved if and
only if there is a subsetÄ&Î of Ä such that the sum of the
elements ofÄ&Î is Æ . ¨
Given the difficulty of this optimization problem when the
tradeoff is given as discrete functions, a natural approach is
to develop heuristic algorithms that find sub-optimal solu-
tions.
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5.2 Heuristic Algorithms

We present heuristic solutions to the optimization prob-
lem that can be used when tradeoff functions are given as
discrete step functions. Basically, we consider a solution
that gradually reduces the system code size by increasing
the execution time of a task. We give three greedy algo-
rithms that differ only in the sequence of tasks they consider
in increasing the execution time. In all the three algorithms,
the iterative procedure continues until there is no task eli-
gible to increase its execution time. Before explaining the
three algorithms individually, we define a few terms.

When the execution time of a task� � increases, letÏ �
denote the amount of execution time by which" � increases.
Since a solution to the optimization problem should satisfy
the feasibility constraints, each" � can be increased as long
as it does not violate any of the feasibility constraints. With
the feasibility constraints on"
� , we can derive the upper
boundÏ ]�_ua� of Ï
� as follows:

Ï ]`_�a� -/�'µÁ¶°Ð ¬QC)� �?� � � D �¿�Y C �
� D`«�� ��1 � �I1 �l �^{T� �.� CH� �
� � � DkÑ �
where �Y C � �pD is a subset of�Y ª79S9 that includes at least
one # �H@ A �ÃB !�� .

We define a reduction ratio (Ò � ) for a task� � as a ratio of
the amount of code size reduction to the amount of execu-
tion time increase. When" � increases byÏ � , its reduction
ratio Ò � is given by

Ò � - \I� C "
� D 1�\I� C "
�WJ�Ï
� DÏ � �ÓÏ ����� �
With the range ofÏ�� that is �¿! Ï
� ! Ï ]�_ua� , we can define
the best reduction ratioÒ ´� as follows:

Ò ´� -������ C Ò �pD � where�'! Ï �Q! ÏI]�_ua� �
Let Ï ´� denote the value ofÏ � that givesÒ ´� .
Highest Best Reduction-Ratio First (HBRF). This al-
gorithm favors a task with a higher best reduction ratio. In
each iterative step, the HBRF algorithm calculates the best
reduction ratioÒ ´� for each task� � and increases" ] by Ï ´]such thatÒ ´] is the highest among allÒ ´� .
Longest Period First (LPF). This algorithm favors a task
with a longer period. Given a fixed time interval, a task with
a longer period has a smaller number of jobs than a task with
a shorter period. Thus, in general, increasing the execution
time of a task with the longest period has the least impact on
the schedulability of the task set. The LPF algorithm cap-
tures this and, in each iterative step, this algorithm increases

HBRF:
do Ô

for all ÕuÖØ×PÕuÙpÚ,Ù ,
calculateÛ �Ö for ÜuÖ	Ý4Þ3ß+ÜuÖ2ß$Ü�à=áuâÖ , such that

Û �ÖÂã�ä�å
æ Ð�ç Öfè)é�Ö)ê�ë ç Öfè)é�ÖNì Ü ÖHêÜ Ö ÑTí
determineÕ à such thatÛ �à�î Û �Ö for all ÕuÖ2×0ÕuÙpÚ,Ù .é à ã é à ì Ü �à .ï

until ( Û �à ã Þ ).
LPF:ð ÙpÚ,Ù ã Õ ÙpÚ,Ù .
while (

ð ÙpÚ,Ù is not empty) Ô
determineÕ à such thatñ à î ñSÖ for all Õ,Ö2× ð ÙÃÚ,Ù .é à ã é à ì Ü à=áuâà .
excludeÕ à from

ð ÙpÚGÙ .ï
HBRF:
do Ô

for all ÕuÖØ×PÕuÙpÚ,Ù ,
calculateòMÛ �Ö for ÜuÖkÝ®Þ3ß+ÜuÖØß+Ü�à=áuâÖ , such that

òÍÛ �Öóã�ä�å
æ Ð ñ ÖñWô.õSö6÷ ç Öfè)é�ÖHê�ë ç Ökè)é
ÖNì Ü ÖtêÜ,Ö Ñ=í
determineÕ à such thatòMÛ �à�î òÍÛ �Ö for all ÕuÖ7×'ÕuÙpÚGÙ .é à ã é à ì Ü �à .ï

until ( òMÛ �à ã Þ ).
Figure 3. Heuristic algorithms

" ] of � ] by Ï ]�_ua] where� ] is the task with the longest pe-
riod with Ï ]�_ua] ��� . If there are multiple tasks that have the
same longest periods, the algorithm chooses task� ] with
the highestÒ ´] among them and increases" ] by Ï ´] .

Highest Best Weighted-Reduction-Ratio First (HBWF).
This algorithm combines the HBRF algorithm and the LPF
algorithm in a sense that it favors a task with a higher best
reduction ratio and a lower increase in utilization. The
HBWF algorithm defines a weight of a task as

} n}IøIù¯ú and
determines a weighted reduction ratio as follows:

û Ò¯�=- � �� 9;:=< L \ �fC " �ÃD 1�\ ��C " � J>Ï �tDÏ � �ÓÏ�� ��� �
This algorithm determines the best weighted reduction ratioû Ò ´� for each �
� in the same way as the HBRF algorithm
doesÒ ´� and increases" ] by Ï ´] where û Ò ´] is the highest
among allû Ò ´� .

If the tradeoff relationship for each task�
� is given by a
table (i.e., a step function), one of the entries in the table
gives theÒ ´� . Assuming that the average number of entries
is ü , we can inspect one task in� C ü D . Therefore, the time
complexity of each iterative step for the HBRF and HBWF

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02) 
1052-8725/02 $17.00 © 2002 IEEE 



X2X1 3X

X1 X X2 3d d d

τ3τ2τ1

Sτ

d1 2d

τ5τ
4

d3Y1 d4

Y2

τ
6

d3Y1 d4

Y2

τ
6

d1 2d

τ5τ
4

τ3τ2τ1

X1 X2 X3

(a) (b)

Figure 4. Examples of asynchronous task
graph: (a) original task graph and (b) trans-
formed task graph

Freshness
d C c � * b ��D -/ý � � d C c � * b ��D -Oý �d C c � * b ��D -O� � � d C c � * b�þ D - ~?ÿ

Correlation g C c7�.* be�
��b�� D -Oýg C c �¯* b�����b þ D -��
Separation j C c �
D -O� ~ ��i C c �uD -Oý.�j C c �?D -O���;��i C c �
D -�� ~

Table 1. The system end-to-end timing con-
straints of the example

algorithms is� C v5Ltü D wherev is the number of tasks. Since
the LPF algorithm increases the execution time of the task� ] with the longest period byÏ ]�_ua] , the time complexity of
each iterative step for the LPF algorithm is� C v D .
6 Illustration and Evaluation

6.1 Design Framework Illustration

In this section, we illustrate how our design framework
works with the same example given in the PCM paper [5].
The system structure of the example is given by the task
graph shown in Figure 4(a) and the system end-to-end tim-
ing constraints are given in Table 1. For the illustration pur-
poses, the tradeoff function of each task is given by both the
linear tradeoff function shown in Figure 5(a) and a table of
possible (code size, execution time) pairs shown in Figure

Solutions Õ Ù Õ�� Õ�� Õ	� Õ	
 Õ	� Õ	�ñSÖ 13 26 13 39 26 39 39
Solution I 
ÂÖ 0 0 0 0 21 0 13� Ö 3 21 12 13 26 13 15ñSÖ 15 30 15 30 30 30 30
Solution II 
ÂÖ 0 0 0 0 21 0 13� Ö 3 21 12 13 26 13 15

Table 2. The solutions of PCM for the example

Õ Ù Õ�� Õ�� Õ	� Õ	
 Õ�� Õ	� Õ ÙpÚGÙ� Ö 1.0 2.35 1.97 1.65 2.01 3.86 2.21 15.05é�Ö 1.0 4.28 2.46 2.12 1.24 4.33 1.92

Table 3. Maximum code size and minimum ex-
ecution time of each task

5(b). Taking as its input the task graph, the end-to-end tim-
ing constraints, and the minimum execution time of each
task, PCM transforms the task graph of Figure 4(a) into the
task graph shown in Figure 4(b) and derives the temporal
parameters of each task. Among various solution candi-
dates, PCM chooses one shown in the upper part (Solution
I) of Table 2 since it provides the minimum utilization with
the minimum execution time of each task shown in Table 3.
Our design framework modifies the deadline of each task in
such a way that the task precedences are maintained under
EDF scheduling. When the execution time of each task is
initially its minimum value, the system code size is 15.05
Kbytes shown in Table 3.

The solution of PCM that is given by a set of task tem-
poral parameters now becomes the input to our optimization
framework. It first generates the feasibility constraints given
by Theorem 1 from the set of task temporal parameters.
With these feasibility constraints, the optimization problem
formulated in Section 5.1 can be solved by an LP solver,
an exhaustive search, or heuristic algorithms depending on
the type of the code size vs. execution time tradeoff of each
task. If the tradeoff is given as a linear function shown in
Figure 5(a), the optimization problem is formulated as a lin-
ear programming (LP) problem and its solution can be ob-
tained by an LP solver. Table 4 shows the solution given
by the back-end in its upper part (Solution I). This solu-
tion by the LP solver reduces the system code size to 12.57
Kbytes. For the tradeoff relationship of a task given in a tab-
ular form as shown in Figure 5(b), an exhaustive search was
performed to find the optimal solution over all possible ex-
ecution time values and the three heuristic algorithms were
used to find sub-optimal solutions with a reduced time com-
plexity. The upper part (Solution I) of Table 5 shows the so-
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Figure 5. Code size vs. execution time tradeoff for the example:(a) linear and (b) discrete.

Solutions Parameters ÕuÙ Õ � Õ � Õ � Õ 
 Õ � Õ � ÕuÙpÚGÙ
Solution I Code Size 1.00 1.62 1.98 1.66 1.41 2.96 1.94 12.57

Execution Time 1.00 6.06 2.46 2.12 1.74 5.68 2.00

Solution II Code Size 1.00 2.04 1.40 1.44 1.41 2.70 1.94 11.93
Execution Time 1.00 5.00 3.43 2.51 1.74 6.06 2.00

Table 4. The solutions by the back-end for the example with linear tradeoff

Solutions Algorithms � Ù � � � � � � � 
 � � � � � ÙÃÚ,Ù
Solution I OPT 1.00 1.64 1.97 1.59 1.41 3.12 1.88 12.61

HBRF/LPF/HBWF 1.00 1.64 1.97 1.65 1.97 2.71 1.88 12.82

Solution II OPT 1.00 2.10 1.38 1.30 1.41 2.88 1.88 11.95
HBRF/LPF/HBWF 1.00 1.64 1.97 1.55 1.69 2.71 1.88 12.44

Table 5. The solutions by the back-end for the example with discrete tradeoff

lution by an exhaustive search (OPT) and those of the three
heuristic algorithms (HBRF/LPF/HBWF). The system code
size is reduced to 12.61 Kbytes by an exhaustive search and
to 12.82 Kbytes by all the three heuristic algorithms. While
the three heuristic algorithms (HBRF/LPF/HBWF) do not
always yield the same solution as pointed out in Section
6.2, all the heuristic algorithms provide the same solution
in this particular example.

The new execution time of each task given by the solu-
tion to the optimization problem becomes the input to PCM.
With this new execution time of each task, the utilization is
now 0.8174 with PCM Solution I and 0.8173 with PCM
Solution II shown in Table 2 after the second path through
PCM. The solution process of our optimization framework
continues with this new solution by PCM. The lower parts
(Solution II) of Table 4 and Table 5 show the new solutions
obtained by the back-end with PCM Solution II. When lin-
ear tradeoff functions are used, the system code size is re-

duced to 11.93 Kbytes. When the tradeoff is given in a tabu-
lar form, the system code size is reduced to 11.95 Kbytes by
the exhaustive search and to 12.44 Kbytes by all the three
heuristic algorithms.

PCM takes as its input the new solution (Solution II) by
the back-end. PCM gives the same solution as PCM So-
lution I (with the minimum utilization of 0.8710) and thus
the iterative procedure terminates. Among all the solutions
of our optimization framework obtained through the itera-
tive procedure, the final solution is the one that minimizes
the system code size while satisfying all the feasibility con-
straints.

6.2 Heuristic Algorithm Evaluation

We evaluate the performance of the three heuristic algo-
rithms against the exhaustive search algorithm through sim-
ulations with various task sets. The parameters of each task
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Figure 6. Performance evaluation: (a) performance of the three heuristic algorithms
(HBRF/LPF/HBWF) and the best performing one (BEST) with 8 tasks and (b) performance of BEST
with various numbers of tasks.

are randomly chosen during the simulations. The period of
each task is randomly chosen to be one among 10, 20, 25,
50, and 100 ms. The discrete tradeoff between code size
vs. execution time of each task is randomly determined to
be 5 pair of values such that the tradeoff values are mono-
tonically decreasing and the execution time of each task is
smaller than its period. The offset and deadline of each task
are also randomly determined such that its execution win-
dow is greater than its execution time. Simulations were
performed more than 100 times with 4, 6, 8, 10 and 12
tasks, respectively. As the performance measure, we de-
fine the closeness of a non-optimal solution of a heuristic
algorithm to the optimal solution by the exhaustive search
algorithm as follows:

Closeness�
���������������! #"%$&�����'����(*),+-"
���������������! #"%$&�����'����.0/1 #"-2

where
� ����� �3������ #"

is the initial system code size,
� ���'� ��(*),+-"

is the system code size determined by the heuristic algo-
rithm, and

� ���'� ��.0/4 #"
is the optimal system code size.

Figure 6(a) plots the performance of the three algorithms
and their best-case performance (BEST) with 8 tasks. We
can see in Figure 6(a) that at least one of the three algo-
rithms finds the optimal solution for about 32% of simula-
tion cases. With the simulation results, we can state with
90% confidence that the mean of the best-case performance
with 8 tasks in the real-world is between 75% and 100%.
Among the three algorithms, HBRF exclusively yields the
BEST solutions for 47% of simulation cases, HBWF does
so for 18%, and LPF does so for 12%, respectively. For
the remaining 23% of simulate cases, two or more algo-
rithms provide the BEST solutions together. Figure 6(b)

plots the best-case performance (BEST) of the three heuris-
tic algorithms against 4, 6, 8, 10 and 12 tasks, respectively.
The best-case solution is the optimal solution for about 68%
with 4 tasks, 46% with 6 tasks, 32% with 8 tasks, 18% with
10 tasks, and 11% with 12 tasks of simulation cases.

7 Conclusion

With the reduced bit-width instruction sets of recent mi-
croprocessors, it is possible to take advantage of the code
size vs. execution time tradeoff of a task during the design
of embedded systems. This paper describes a design frame-
work for real-time embedded systems that provides solu-
tions to the optimization problem of minimizing the system
code size subject to guaranteeing the system’s real-time re-
quirements under EDF scheduling.

Our design framework decomposes the optimization
problem into two sub-problems: 1) deriving task tempo-
ral parameters that guarantees the system real-time require-
ments and 2) deriving the code size and execution time of
each task while minimizing the system code size subject to
feasibility constraints. Our framework iteratively solves the
two sub-problems using solutions from each other until the
solutions converge. This iterative approach inherently finds
a locally optimal solution. However, it may be possible to
develop an integrated approach that solves the optimization
problem without breaking it into two sub-problems. Such
an integrated approach increases the complexity of finding
solutions, but may deliver solutions that are close to the
globally optimal solution. We plan to develop such an ap-
proach and evaluate the complexity and effectiveness.

Our current design framework considers the issue of
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minimizing the total code size while guaranteeing the real-
time requirements. In the design of real-time embedded
systems, energy consumption is another critical design fac-
tor. With the Dynamic Voltage Scaling (DVS) technique
that allows each job to execute at various CPU clock speeds,
there is a possible tradeoff between energy consumption and
execution time. Our future direction is to extend our de-
sign framework so that it can allow the embedded system
designer to evaluate tradeoffs among code size, execution
time, and energy consumption.
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