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Embedded System Design Framework for Minimizing Code Size and
Guaranteeing Real-Time Requirements

Abstract

In addition to real-time requirements, the program code size is a critical design factor for real-time embedded
systems. To take advantage of the code size vs. execution time tradeoff provided by reduced bit-width
instructions, we propose a design framework that transforms the system constraints into task parameters
guaranteeing a set of requirements. The goal of our design framework is to derive the temporal parameters and
the code size parameter of each task in such a way that they collectively guarantee the system end-to-end
timing requirements while the system code size is minimized. Our design framework is based on
asynchronous periodic tasks with pre-period deadlines under EDF scheduling. For schedulability analysis, we
present a new feasibility condition that can be more efficiently evaluated than existing ones. When the code
size vs. execution time tradeoft can be safely approximated as linear functions, the minimization problem
becomes a linear programming problem. However, when the tradeoff is given by a table of possible (code size,
execution time) pairs, the problem becomes NP-hard. We provide three heuristic algorithms that can find
sub-optimal solutions and evaluate their performance with simulation results.
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Abstract use a subset of normal 32-bit instructions compressed into

a 16-bit format as in ARM Thumb [6] and MIPS16 [13].

In addition to real-time requirements, the program code These 16-bit instructions are dynamically decompressed by
size is a critical design factor for real-time embedded sys- hardware into 32-bit equivalent ones before execution. This
tems. To take advantage of the code size vs. execution timapproach can substantially reduce the program code size;
tradeoff provided by reduced bit-width instructions, we pro- however, it increases the number of instructions to be ex-
pose a design framework that transforms the system con-ecuted, and thus, increases the execution time of the pro-
straints into task parameters guaranteeing a set of require- gram. For typical examples, the compressed code may re-
ments. The goal of our design framework is to derive the quire around 7% of the space of the original code, while
temporal parameters and the code size parameter of eachexecuting 49 more instructions [3].
task in such a way that they collectively guarantee the sys-
tem end-to-end timing requirements while the system codeth
size is minimized. Our design framework is based on asyn-,
chronous periodic tasks with pre-period deadlines under

EDF schedu_lllng. For. ;chedulab|l|ty analy5|s,. we present resulting from the use of reduced bit-width ISA [7] gives
anew fea5|b|I|ty gond|t|on that can be more eﬁlglently eval- rise to a challenging question: to minimize the total code
uat_ed than existing ones. When the co_de SIZE VS.  €X€giz6 of all the tasks in the system while satisfying all the
cutlon time trad<_ao_ff can be safely apprommated_as linear temporal requirements imposed on the system.
functions, the minimization problem becomes a linear pro-
gramming problem. However, when the tradeoff is given ~ There has been much work on the design of real-time
by a table of possible (code size, execution time) pairs, theSystems guaranteeing the system temporal requirements. In
problem becomes NP-hard. We provide three heuristic al- particular, Period Calibration Method (PCM) [5] is a de-
gorithms that can find sub-optimal solutions and evaluate sign framework that transforms the system temporal re-
their performance with simulation results. guirements into the temporal parameters of tasks that col-
lectively guarantee the system-level end-to-end timing re-
qguirements. The design framework proposed in this paper
1 Introduction extends the PCM framework by considering the code size
vs. execution time tradeoff of each task to come up with
a solution that minimizes the total system code size while

¢ The ptrhogram C?d? SIze 1S o?efof the kbeydfjlc(tjors tPat de'satisfying the system-level real-time requirements. The pro-
ermine the manufacturing cost or an embedaed SySIem, €Sy .04 tamework assumes that the code size vs. execution

gg:glléwrtlen tge emé:)ﬁdde%systerg IS !mplercr;erlt_ed ?s ﬁ ime tradeoff for each task is given either by a table that
(System On a Chip). One code size reduction tec “lists possible (code size, execution time) pairs or by a linear

hique at the instruction set architecture (ISA) level is to tradeoff function that safely approximates the table. From
“This research was supported in part by NSF CCR-9988409, NSF this tradeoff relationship, the proposed framework formu-
CCR-0086147, NSF CISE-9703220, ARO DAAD19-01-1-0473, DARPA ' 5105 the optimization problem of minimizing the total sys-

MOBIES F33615-00-C-1707, ONR N00014-97-1-0505, and the Ministry i i K X
of Science and Technology of the Republic of Korea under the National t€M code size subject to the system-level real-time require-

When an embedded system is used as a real-time system,
ere are also temporal requirements imposed on the system
at must be met for correct operation. In such a real-time
embedded system, the code size vs. execution time tradeoff

Research Laboratory program. ments. The optimization problem is a linear programming
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problem when the tradeoff is given as a linear function, or it

becomes an NP-hard problem when the tradeoff is given as
a tabular form. For the latter case, we describe three heuris-

tic algorithms, each of which finds a sub-optimal solution
to the optimization problem using different criteria in the

solution process. In addition, for a set of asynchronous pe-

riodic tasks with relative deadlines less than or equal to their
periods, we develop a new feasibility condition under EDF
(Earliest Deadline First) scheduling [10] that can be more
efficiently evaluated than existing ones.

The rest of this paper is organized as follows: Section 2

describes the system model and gives the problem descrip-

tion and the overview of our solution process. Section 3
briefly reviews PCM and the code size reduction technique.
Section 4 presents a new feasibility condition. Section 5
formulates the optimization problem and presents heuristic
algorithms. Section 6 illustrates how our design framework

code size

§
S1max

step

linear

execution time

Figure 1. tradeoff functions between code
size and execution time

works using an example and evaluates the performance of

the heuristic algorithms with simulation results. Finally, we
conclude in Section 7 with discussion on future research.

2 System Model and Problem Description
2.1 System Model

We assume that an embedded systgpg is composed
of a set of tasks{r1, ..., 7, }. Each task; € 74,5 has the
following task temporal parameters:

e periodT;: the fixed time interval between the arrival

times of two consecutive requestsof

offset O;: the time instant relative to the start-of-
its-period at whichr;'s execution becomes available
(0; 2 0),

deadlineD;: the time instant relative to the start-of-its-
period by whichr;’s execution is required to be com-
pleted O; < T7),

execution times;: the time amount required to com-
pleter;’s execution in the worst case,

execution window#;: the time interval of[O;, D;]
during which 7;’'s execution becomes available and
needs to be completefi¥;| = D; — O;.

A task 7; is said to be synchronous @; = 0 or asyn-
chronous ifO; > 0. A taskr; is said to have a period
deadline ifD; = T; or a pre-period deadline ib; < T;.

time, the minimum execution time refers to the minimum
value of the the worst-case execution time. In addition to
the temporal parameters, each tagkas a task code size
parameter as follows:

e code sizes;: the size ofr;’s executable code.

LetTLca be the least common multiplier (LCM) @t's
of all 7;'s € 74,,. We considefl'.cas as the major period
of the system.

Let 7; ; denote thej-th job (execution unit) of; (j >
0). Leto;;,d;; andW; ; denote the offset, the deadline
and the execution window af; ;, respectively. Note that
0;,; andd; ; are time instants relative to the start-of-major-
period such thag; ; = O; +j-T; andd; ; = D;+5-T;. We
defineJp o as the set of jobs whose deadlines are earlier
than or equal td' Lo, i.€.,

Jroem = {Ti,j | dij; < TLCM}-

Lete; ; ands; ; denote the execution time and code size
of 7; ;, respectively. Since the execution time and the code
size are determined at compile time, @ll;’s ands; ;'s are
equal toe; ands;, respectively.

In this paper, we assume that each task given a trade-
off relationship between code size) and execution time
(e) either by a discrete step function (i.e., a table of possible
(s, e) pairs) or a linear function that safely approximates the
step function. Figure 1 shows an example of a discrete step

Our design framework considers asynchronous tasks withfunction that gives the code size vs. execution time trade-
pre-period deadlines. In this paper, when it comes to an ex-off and a linear function that safely approximates the step
ecution time, it means the worst-case execution time. Whenfunction. The tradeoff function is denoted by

a worst-case execution time has its value range due to the

code size vs. execution time tradeoff possible at compile

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
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Figure 2. Overview of our design framework

For real-time embedded systems, we consider the fol- Input:

lowing three classes of timing constraints presented in [5]: )
e System structurea task graph representing dataflow
e A freshness constrainbounds the time it takes for and task precedence.
data to flow from inputX to outputY (denoted as

F(Y]X)). e System constraintsthe system end-to-end timing

constraints

e A correlation constraintbounds the maximum time-
skew between several inputX{,...,X,) used to
produce outpuY” (denoted a&' (Y| X1, ..., Xy)).

e A separation constrainbounds the jitter between con-
secutive values on a single outgdt(denoted as(Y)

e tradeoff between the code size and the (worst case)
execution time of each task.

Output:

e Task parametersthe temporal parameters (period,

andl(Y)).

We define the system code sizg,(;) as the sum of the
code sizes of all the tasks in the system, i.e.,

offset, deadline, and execution time) and the code size
parameter of each task.

Requirements:

e Correctnesssystem behaviors that satisfy all the task
parameters also satisfy the system constraints.

Ssys = E S;-

Ti€Tsys

e Feasibility: task temporal parameters never demand a
time interval during which the CPU utilization exceeds
100%.

2.2 Problem Description

We consider a design framework for real-time embedded
systems that transforms the system constraints into task pa-
rameters guaranteeing a set of requirements. The goal of
our design framework is to derive the temporal parameters
and the code size parameter of each task in such a way that When solving the problem of determining the temporal
they collectively guarantee the system end-to-end timing re-parameters and the code size of each task satisfying the sys-
guirements and that the system code size is minimized. Fig-tem end-to-end timing constraints and optimizing the sys-
ure 1 depicts the overview of our design framework. The in- tem code size, our design framework breaks the problem
put, output, and requirements of our design framework areinto two sub-problems: (1) transforming the system end-to-
given as follows: end timing constraints into task temporal parameters with

YF]',F.

COMPUTER
SOCIETY

e Optimization: the total code size should be mini-
mized subject to the above two requirements.
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the system structure and constraints and the execution timeé3  Overview of Existing Techniques
of each task and then (2) deriving the code size and execu-

tion time of each task with the optimization goal subjectto 3.1 Perjod Calibration Method (PCM) Overview
the task temporal parameters. We iteratively solve these two

sub-problems. We initially use the minimum (worst-case)  period calibration method (PCM) [5] provides a design

execution. time of each task to solve the first su_b—problem. methodology that transforms the system end-to-end timing
The solution to the second sub-problem determines the eXyequirements into task temporal parameters. As input, PCM
ecution time of each ta_sk with the opt|m|z_at|or! goal, and 5kes a task graph and a set of system end-to-end timing
then we go back to the first sub-problem with this new exe- ¢qnsiraints of the embedded system: the task graph repre-
cut!on time of_each task. We repeat this iterative procedureggtg dataflow, task precedence, and end-to-end timing con-
until the solution converges. straints on freshness from input to output, input correlation
and allowable output separation. Solving the constraints
Our design framework uses an existing technique calledgenerated from the system timing requirements, PCM first
Period Calibration Method (PCM) [5] to solve the first sub- derives the periods of tasks minimizing the CPU utilization
problem and we provide a new optimization framework to and then derives the offset and deadline of each task subject
solve the second sub-problem. to the periods locally maximizing the schedulability of each
task. The static priorities of tasks are assigned considering

. . _the task precedence given in the task graph.
PCM is a design methodology that transforms the sys There has been work on applying PCM to the design of

tem end-to-end timing constraints into the temporal param- e o mbedded systems including an avionics control
eters of each task when the system task graph, the system tem 1121 and a con>1/ terized n mg ical control tem
constraint, and the worst case execution times of tasks ar oYS [12] puteriz umerl rot sys

given. Having PCM as the first sub-problem solver, our deﬁ;].'k\)ll\:a hllglr?_[())(r)]rtlnlgzsom det;vszlgngzsiso?gpgll\g Ssl(r:]gr?;'l:-
sign framework can use the same asynchronous task grap% sible solutions [12] an senc verioa ng

o e . ! 11], these papers concluded that PCM provides a useful
and the end-to-end timing constraints as those in [5] methodology for the design of real-time embedded systems.

PCM derives task temporal parameters for static priority-
With PCM serving as the front-end technique, our design based scheduling. However, our design framework uses the
optimization framework works as back-end. The goal of earliest deadline first (EDF) scheduling to improve system
this back-end is to determine the code size vs. executionytilization and to enable efficient feasibility analysis. This
time tradeoff of each task to minimize the system code sizerequires a change in task temporal parameters generated by
while guaranteeing a feasible schedule. The input to thepCM so that when tasks are scheduled by EDF, the end-to-
back-end is the code size vs. execution time tradeoff of eachend timing requirements are still satisfied. In the original

task as well as the temporal parameters of each task thapCM, the task precedence is preserved by static priorities.
PCM determined as solutions to the first sub-problem. If 7; precedes;, 7; has a higher priority tham;. In our
EDF-based scheduling, we assign deadlines in such a way

To guarantee a feasible schedule with the temporal pa-thatif 7; precedes;, D; is smaller tharD; by one.
rameters of each task, our design framework generates fea-
sibility constraints according to a feasibility condition. with 3.2 Code Size Reduction Technique Overview
the feasibility constraints, the back-end formulates the opti-
mization problem of minimizing the system code size. De-  For many embedded systems, program code size is a crit-
pending on the format by which the code size vs. executionical design factor. We present a brief overview of a compiler
time tradeoff is given, the back-end solves the optimization technique for code size reduction that works for a processor
problem with a different tool. If the tradeoff relationship capable of executing reduced bit-width instructions. A very
is given as a linear function, the back-end uses an existinggood example of such a processor is ARM microprocessors
linear programming solver to find the optimal solution. If with a 32-bit instruction set (IS) for normal modes and a 16-
the tradeoff is given in a tabular form, the back-end uses bit reduced bit-width IS for Thumb modes [6]. A reduction
heuristic algorithms to find sub-optimal solutions. For this in code size comes from encoding a subset of the 32-bit nor-
purpose, we give three heuristic algorithms that use differ- mal mode IS into the 16-bit Thumb mode IS. At the execu-
ent criteria in the solution process. With the solution given tion time, a decompression engine converts a Thumb-mode
by the back-end, our design framework finds the temporal instruction into an equivalent normal-mode instruction dur-
parameters and the code size parameter of each task thahg the decode stage. The Thumb IS can access only 8 gen-
satisfy the three requirements of correctness, feasibility, anderal purpose registers (out of 16 general purpose registers in

optimization. the normal mode) and can encode only a small immediate
Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02) COMPUTER
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value. These limitations increase the number of instructionsLemma 1, by Baruah et al., gives a necessary and sufficient
executed and, thus, increases the program execution timefeasibility condition for asynchronous periodic tasks with
For typical programs, by using this technique the code sizepre-period deadlines. We provide an alternative necessary
can be reduced by aroundZ0while the number of instruc-  and sufficient condition that can be more efficiently evalu-
tions executed increases by abou¥4[3]. ated than the one in Lemma 1.

The reduced bit-width ISA allows a program that con-
tains both 32-bit normal-mode instructions and 16-bit re- Lemma 2 For eachj > 0, 7;(0;,j+1,t2) = 1:(t1, t2) for all
duced bit-width instructions where the mode change be-o;; < t; < 0; ;41 and for a fixedt, > ¢,. For eachj > 0,
tween the two can be performed by executing a single n;(t1,d;,;) = ni(t1,t2) forall d; ; < t» < d; ;41 and for a
mode-change instruction. This capability allows for a trade- fixedt; < ta.
off between code size and execution time when compiling a
program. For example, by progressively transforming pro- Proof. From the definition ob; ; andd; ;, 0;,; is O; + jT;
gram units such as functions or basic blocks in the normalandd; ; is O; + jT; + D;. From the definition ofy;, t;
mode into the equivalent ones in the reduced bit-width modeis contributed to computin@tl‘o'] andts is contributed
while adding patch-up code to maintain the correct seman-ig compuﬂnth?OiDlJ We can easily see that when
tics, we can obtain a table that gives possible (code size g S 05 41, 1 9i js exactlyj + 1 and |'t1 —0i1isj +1as
execution time) pairs. The order by which the transforma- | ng aso; ; < t1 < 0i41. We can also see that whenis
tion is performed considers both reduction in code size and i to— (gr_ : s exactlyj anstz —0;=D; | is j as long as
increase in the program execution time, i.e., it favors pro- ; <ty < diji1. O
gram units that give large reduction in code size with only a
small increase in the program execution time.

zh]

Let TT 411, denote a set of possiblg;, ;) values for
Lemma 1, that iS,{(tl,tQ) : th,tQ 0 <t <ty <
4 Feasibility Analysis under EDF Omaz +2TLom}. LetO4p denote a set of offsets of all
tasks between 0 an@,,., + 27Lom, thatis,{o; ; : 7; €
Tsys>0ij < Omaz +2Tpom}. Let Dypr denote a set of
deadlines of all tasks between 0 afig, ., + 27.c M, that
- {d ij - Ti € Tsysadzj < Omaz + 2TLCM} LetOD4rr
denote a set of possible pair of (offset, deadline) between
0 andOnez + 2T .o M, that IS,{(O,d) :0 € Ogrr,d €
Darr,o < d}. We canseetha®Darr, C TTarr, and if
there is any time&,0 < t < Onee + 2TLom, SUch thatt
is not included in bottO a7, andD 4., thenOD 411, C
TTarrL.

There has been much work on feasibility analysis tech-
nigues under EDF scheduling. The following important re-
sults have been proved for independent periodic tasks on
one processor. Liu and Layland [10] showed that any set
of n synchronous periodic tasks with period deadlines with
processor utilizatiod/ = i, 7 is feasible if and only
if U < 1. Coffman [2] also showed that any setrohsyn-
chronous periodic tasks with period deadlines is feasible if
and only ifU < 1. The problem of deciding whether a set of
asynchronous periodic tasks with pre-period deadlines ha
been proved to be NP-hard by Leung and Merrill [9]. Fur-
ther, Baruah et al. showed that this problem is NP-hard in

S'I'heorem 1 A set ofn asynchronous periodic tasks with
pre-period deadlines is feasible if and only if

the strong sense [1]. n
Z’?z’(tlatZ) re; Stg — 1y,
Definition 4.1 Let 7;(t1,t2) denote the number of jobs of i=1
taskr; that must be completely scheduled[ép, ¢2). It is
computed as follows: forall (t1,t2) € ODarL.

to — O0; — D; t1 — O; Proof. We prove this theorem by showing that this feasi-
T; J N [ T; -‘ + 1}‘ bility condition (referred ag'C-) is equivalent to the fea-
sibility condition (referred a¥’C}) given in Lemma 1 in

Lemma 1 (Baruah et al. [1]) A set ofn asynchronous pe-  terms of feasibility analysis. While sharing the same set

riodic tasks with pre-period deadlines is feasible if and only of inequalities, the two conditions differ in the domains of

ni(t1,t2) = max{O, [

if (t1,t2) values:TT arr, for FCy andOD 4,1, for FCs. In
n what follows, we show that the two conditions yield the
Z ni(ty,ba) - ei Sta —t, same feasibility results with the two different domains.
i=1

First, we show that i'C"; finds a task set feasible, then
forall 0 <t1 < ta < Omaz + 2TLom, WhereO . is the F(Cs also finds the task set feasible. This is obvious from
maximum among alD;'s. ODyrr, CTTarr.

TEEE .2
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Second, we show that #C; finds a task set infeasible, tries to minimize the system code size while satisfying all
then F'C> also finds the task set infeasible. To prove this, the feasibility constraints. This optimization uses the code
we will show that if there iSt;,t2) € TTarr that makes size vs. execution time tradeoff relationship of each task for
the inequality false, then there {8},t5) € OD 4y that this purpose. More formally, this optimization is formulated
makes the same inequality false. Suppose the inequality isas follows:
false with (t1,t2) € TTarr. We can transfornity,ts)
to (t{,t;) such thatt{ is min{o,- :0; € Oapp,0; > tl}
and 5 is max{d; : di € Dapy,d; < t»}. From its Minimize )" ;. @)
definition, (¢7,t3) € ODarr. We can derive that for Ti€Tays
each taskr;, there isj such thato;; < ¢t < ¢ =
0;,j+1 and there isn such thatd; ,, = t3 < t2 < djmy1.

e Objective: the objective function is as follows:

e Constraints: the feasibility constraints are from Theorem

1 as follows:
From Lemma 2, we can see that for eaghn;(t},t2) = n
ni(t1,t2) andn;(t1,t3) = n;(t1,2). By obtainingt andt; D milti,ta)-e; <ty —ty, forall (¢1,#2) € ODLL.
in turn, we can eventually get (¢1,t2) = n;(t7, ¢5) for all = -
T; and

n n Depending on the tradeoff function of each task, this opti-
Zm(h,h) = Zm(ti‘,té)- mization problem can be solved by linear programming or
i=1 i=1 heuristic approaches.

Sincet; < t7 andt; < to,

Linear programming (LP) problem. If all the trade-

off functions are linear, this optimization problem be-

comes an LP problem with the objective of minimizing

Eneﬁw fi(ei). Thus, it can be solved by an existing LP

Third, we show that iff'C> finds a task set feasible, then solver.

FC also finds the task set feasible. As we described in the

last paragraph, we can transform e&th ¢z) € TTarr to NP-hard problem. If the tradeoff functions are given as

(t7,t5) € OD 41 satisfying discrete step functions, the problem of finding the optimal

solution becomes intractable.

n n
D omilts b)) >t —t > > mi(t,3) > t5 — 1.
i=1 i=1

n n
Zm (t1,t2) = Zni(t;‘,t;), Theorem 2 When the code size vs. execution time tradeoff
i=1 i=1 is given as a tabular form, the problem of finding the mini-
) mum system code size satisfying the real-time requirements
Sincet; < t7 andt; < to, is NP-hard.
n n Proof. The proof is via a polynomial-time reduction from
D omith ) <ty —t1 = Y milta,ta) <ty — . the subset sum problem that is known to be NP-complete

i=1 i=1 [4]. Let a set of positive integerd = {ay,...,a,} andk

Fourth, we show that if'C, finds a task set infeasible, represent an instance of the subset sum problem. Assume
that for eachi, 1 < i < n,a; > land) ;. ,a; = M.

thenF'C; also finds the task set infeasible. This is obvious . = : :
For reduction, for each, 1 < i < n, we first construct

fromOD CTTarLrL- O ' >
ALL = £ ZALL the tradeoff forr; in the form of(s;,e;) as(e,a; — €) and

(a; — €,€) such thak < + and then construct the temporal

parameters of; such thatO; = 0, D; = k, andT; =

2k. In any schedule}"? | (e; + s;) = M. In any feasible

schedule}~" | e; < k. Then, we know that in any feasible

schedule}"" | s; > M — k. Considering:;, we know that

the minimum system code size is betwedn- k and M —

k + 1. The minimum system code size is achieved if and

5.1 Optimization Formulation only if there is a subsetl’ of A such that the sum of the
elements ofd’ is k. |

Once the PCM generates the temporal parameters (pe-

riods, offsets and deadlines) of tasks and feasibility con- Given the difficulty of this optimization problem when the

straints are generated with the feasibility condition shown tradeoff is given as discrete functions, a natural approach is

in Theorem 1 based on the temporal parameters of tasksto develop heuristic algorithms that find sub-optimal solu-

the optimization framework, i.e., the back-end technique, tions.

FromOD a1, C TTarr. We can see that the feasibil-
ity condition given in Theorem 1 can be more efficiently
evaluated than the one given in Lemma 1.

5 Optimization Formulation and Solutions

YF]',F.
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5.2 Heuristic Algorithms

We present heuristic solutions to the optimization prob-

HBREF:
do {
for all 7; € Tsys,

calculatep; for d;, 0 < d; < §;**", such that

lem that can be used when tradeoff functions are given as

discrete step functions. Basically, we consider a solution
that gradually reduces the system code size by increasing
the execution time of a task. We give three greedy algo-
rithms that differ only in the sequence of tasks they consider
in increasing the execution time. In all the three algorithms,
the iterative procedure continues until there is no task eli-
gible to increase its execution time. Before explaining the

three algorithms individually, we define a few terms.
When the execution time of a task increases, le§;
denote the amount of execution time by whighncreases.

Since a solution to the optimization problem should satisfy

the feasibility constraints, eae3 can be increased as long
as it does not violate any of the feasibility constraints. With
the feasibility constraints om;, we can derive the upper
boundg™** of §; as follows:

o7 = min (V(t1,2) € OD(73) s ta—tr=>_milt1, 1)),

i=1

whereOD(r;) is a subset 00D 4,1, that includes at least
oneW; ;,j <0.
We define a reduction ratigp{) for a taskr; as a ratio of

the amount of code size reduction to the amount of execu-

tion time increase. Whes; increases by;, its reduction
ratio p; is given by

pi = filei) — (J;-(ez- + 51'),

d; > 0.

With the range ob; that is0 < §; < 6/***, we can define
the best reduction ratig; as follows:
p; =max(p;), where0 <§; <M.

Letd; denote the value aof; that givesp;.

Highest Best Reduction-Ratio First (HBRF). This al-
gorithm favors a task with a higher best reduction ratio. In

each iterative step, the HBRF algorithm calculates the best

reduction ratiop} for each task; and increases,, by d;,
such thapy}, is the highest among ;.

Longest Period First (LPF). This algorithm favors a task

fie:) —

filei + 62))

0 '
determiner,, such thap;, > p; forall 7; € 7gys.
em = €m + .

Yuntil (o}, =0).

pi = max(

LPF:
sts = Tsys-
while (Qsys is not enmpty) {
determiner,, such that’,, > T; forall ; € Qsys.
em = em + ",
excluder,, from Qgys.

}

HBREF:
do {
forall 7; € Tsys,

calculatewp; for d;, 0 <4; < 87**%, such that

files) =

T; filei + 5@))

Trom di '
determiner,, such thatwpy, > wp; forall 7; € 7sys.
em = €m + .

Yuntil (wp;, =0).

wp; = max (

Figure 3. Heuristic algorithms

em Of 7, by §72%* wherer,, is the task with the longest pe-
riod with §72** > 0. If there are multiple tasks that have the
same longest periods, the algorithm chooses tgshkvith
the highesp, among them and increaseg by ¢7,.

Highest Best Weighted-Reduction-Ratio First (HBWF).
This algorithm combines the HBRF algorithm and the LPF
algorithm in a sense that it favors a task with a higher best
reduction ratio and a lower increase in utilization. The
HBWF algorithm defines a weight of a task ag‘— and
determines a weighted reduction ratio as follows:

filed) — filei +6i)
d;

T;
Trom

This algorithm determines the best weighted reduction ratio
wp; for eachr; in the same way as the HBRF algorithm
doesp? and increases,, by ¢, wherewp, is the highest

Proceedings of the 23rd IEEE REAL-TIME SYSTEMS SYMPOSIUM (RTSS’02)
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with a longer period. Given a fixed time interval, a task with among alkwp}.

alonger period has a smaller number of jobs than a task with  If the tradeoff relationship for each taskis given by a

a shorter period. Thus, in general, increasing the executiontable (i.e., a step function), one of the entries in the table
time of a task with the longest period has the least impact ongives thep}. Assuming that the average number of entries
the schedulability of the task set. The LPF algorithm cap- is h, we can inspect one task ®(h). Therefore, the time
tures this and, in each iterative step, this algorithm increasescomplexity of each iterative step for the HBRF and HBWF
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| Solutions | | Ts | 1 | T2 | T3 | T4 | Ts | T6
T; |13 26| 13| 39| 26| 39| 39
Solution | | O; 0 0 0 0 |21| 0 |13
D; 3 121)12|13| 26| 13| 15
T; | 15| 30| 15| 30| 30| 30 | 30
Solutionll | O; | 0 | O | O | 0 |21| O |13
D; 3 121)12|13| 26| 13| 15

Table 2. The solutions of PCM for the example

Ts T1 T2 T3 T4 Ts T6 Tsys
s; | 1.0 235| 1.97| 1.65| 2.01| 3.86 | 2.21 | 15.05
e; | 1.0 | 428 246 | 2.12 | 1.24 | 433 | 1.92

Table 3. Maximum code size and minimum ex-
@) (b) ecution time of each task

Figure 4. Examples of asynchronous task
graph: (a) original task graph and (b) trans-

formed task graph 5(b). Taking as its input the task graph, the end-to-end tim-

ing constraints, and the minimum execution time of each
task, PCM transforms the task graph of Figure 4(a) into the

Freshness | F(Y;|X1) = 30, F(Y1|X2) = 30 task graph shown in Figure 4(b) and d_erives thg tempore_ll
F(Y3|X,) = 20, F(Y2|X3) = 15 parameters of each task. Among various solution canQ|-
Correlation| C(Y;[X1, X2) = 3 dates, PCM c_hoos_es one shown in the upper part (Sol_utlon
C(Ya| X2, X3) =4 l) of Table 2 since it provides the minimum utilization with
Separation | 1(Y;) = 21, u(Y;) = 32 the minimum execution tImQ.Of each task_shown in Table 3
I(V2) =Qu (Y3) = 41 Our design framework modifies the deadline of each task in
such a way that the task precedences are maintained under
Table 1. The system end-to-end timing con- EDF scheduling. When the execution time of each task is
straints of the example initially its minimum value, the system code size is 15.05

Kbytes shown in Table 3.

The solution of PCM that is given by a set of task tem-
poral parameters now becomes the input to our optimization
framework. It first generates the feasibility constraints given
by Theorem 1 from the set of task temporal parameters.
With these feasibility constraints, the optimization problem
formulated in Section 5.1 can be solved by an LP solver,
an exhaustive search, or heuristic algorithms depending on
the type of the code size vs. execution time tradeoff of each

algorithms isO(n - h) wheren is the number of tasks. Since
the LPF algorithm increases the execution time of the task
Tm With the longest period by**, the time complexity of
each iterative step for the LPF algorithm(gn).

6 lllustration and Evaluation task. If the tradeoff is given as a linear function shown in
_ _ Figure 5(a), the optimization problem is formulated as a lin-
6.1 Design Framework Illustration ear programming (LP) problem and its solution can be ob-

tained by an LP solver. Table 4 shows the solution given

In this section, we illustrate how our design framework by the back-end in its upper part (Solution I). This solu-
works with the same example given in the PCM paper [5]. tion by the LP solver reduces the system code size to 12.57

The system structure of the example is given by the taskKbytes. For the tradeoff relationship of a task given in a tab-
graph shown in Figure 4(a) and the system end-to-end tim-ular form as shown in Figure 5(b), an exhaustive search was

ing constraints are given in Table 1. For the illustration pur- performed to find the optimal solution over all possible ex-
poses, the tradeoff function of each task is given by both theecution time values and the three heuristic algorithms were
linear tradeoff function shown in Figure 5(a) and a table of used to find sub-optimal solutions with a reduced time com-

possible (code size, execution time) pairs shown in Figure plexity. The upper part (Solution I) of Table 5 shows the so-

YF]',F.
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Linear trade-off Discrete trade-off
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Execution Time (ms) Execution Time (ms)

Figure 5. Code size vs. execution time tradeoff for the example:(a) linear and (b) discrete.

| Solutons | Parameters | 7. | m [ m | 1 [ m | 1w [ 716 | Teys |
Solution | Code Size 1.00| 1.62| 198 | 1.66 | 1.41| 2.96 | 1.94 | 12.57
Execution Time| 1.00 | 6.06 | 2.46 | 2.12 | 1.74 | 5.68 | 2.00
Solution Il Code Size 1.00| 2.04 | 1.40| 1.44| 141 | 270 | 1.94 | 11.93
Execution Time| 1.00 | 5.00 | 3.43 | 2.51 | 1.74| 6.06 | 2.00

Table 4. The solutions by the back-end for the example with linear tradeoff

[ Solutions [ Algorithms [ s, [ s1 [ s> | s3 | sa | 85 | S6 | Ssys |
Solution | OPT 1.00| 1.64| 1.97| 159 | 141| 3.12| 1.88| 12.61
HBRF/LPF/HBWF| 1.00| 1.64| 1.97 | 1.65| 1.97| 2.71 | 1.88 | 12.82

Solution Il OPT 1.00| 2.10| 1.38| 1.30| 1.41| 2.88| 1.88 | 11.95
HBRF/LPF/HBWF | 1.00 | 1.64 | 1.97 | 1.55| 1.69 | 2.71 | 1.88 | 12.44

Table 5. The solutions by the back-end for the example with discrete tradeoff

lution by an exhaustive search (OPT) and those of the threeduced to 11.93 Kbytes. When the tradeoff is given in a tabu-
heuristic algorithms (HBRF/LPF/HBWF). The system code lar form, the system code size is reduced to 11.95 Kbytes by
size is reduced to 12.61 Kbytes by an exhaustive search andhe exhaustive search and to 12.44 Kbytes by all the three
to 12.82 Kbytes by all the three heuristic algorithms. While heuristic algorithms.

the three heuristic algorithms (HBRF/LPF/HBWF) do not PCM takes as its input the new solution (Solution I1) by
always yield the same solution as pointed out in Section the back-end. PCM gives the same solution as PCM So-
6.2, all the heuristic algorithms provide the same solution lution | (with the minimum utilization of 0.8710) and thus

in this particular example. the iterative procedure terminates. Among all the solutions
of our optimization framework obtained through the itera-
tive procedure, the final solution is the one that minimizes
the system code size while satisfying all the feasibility con-
straints.

The new execution time of each task given by the solu-
tion to the optimization problem becomes the input to PCM.
With this new execution time of each task, the utilization is
now 0.8174 with PCM Solution | and 0.8173 with PCM
Solution 1l shown in Table 2 after the second path through o . ]
PCM. The solution process of our optimization framework 6.2 Heuristic Algorithm Evaluation
continues with this new solution by PCM. The lower parts
(Solution 1) of Table 4 and Table 5 show the new solutions ~ We evaluate the performance of the three heuristic algo-
obtained by the back-end with PCM Solution Il. When lin- rithms against the exhaustive search algorithm through sim-
ear tradeoff functions are used, the system code size is reulations with various task sets. The parameters of each task

nrru
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Performance of algorithms with 8 tasks Performance of BEST with various task numbers
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Figure 6. Performance evaluation: (@) performance of the three heuristic algorithms
(HBRF/LPF/HBWF) and the best performing one (BEST) with 8 tasks and (b) performance of BEST
with various numbers of tasks.

are randomly chosen during the simulations. The period of plots the best-case performance (BEST) of the three heuris-
each task is randomly chosen to be one among 10, 20, 25tic algorithms against 4, 6, 8, 10 and 12 tasks, respectively.
50, and 100 ms. The discrete tradeoff between code sizeThe best-case solution is the optimal solution for about 68%
vs. execution time of each task is randomly determined to with 4 tasks, 46% with 6 tasks, 32% with 8 tasks, 18% with
be 5 pair of values such that the tradeoff values are mono-10 tasks, and 11% with 12 tasks of simulation cases.
tonically decreasing and the execution time of each task is
smaller than its period. The offset and deadline of each task:
are also randomly determined such that its execution win-

dow is greater than its execution time. Simulations were ] o ) .
performed more than 100 times with 4, 6, 8, 10 and 12 With the reduced bit-width instruction sets of recent mi-

tasks, respectively. As the performance measure, we de_c_roprocessors,_it is_possible to take advanta_ge of the c_ode
fine the closeness of a non-optimal solution of a heuristic SiZ€ VS. execution time tradeoff of a task during the design

algorithm to the optimal solution by the exhaustive search Of émbedded systems. This paper describes a design frame-
algorithm as follows: work for real-time embedded systems that provides solu-

tions to the optimization problem of minimizing the system
sys (init) — Ssys(alg) code size subject to guaranteeing the system’s real-time re-
’ quirements under EDF scheduling.
Our design framework decomposes the optimization

Conclusion

Closeness= b
Ssys (init) — Ssys(opt)

whereS;, s (init) is the initial system code siz€,,;(alg) problem into two sub-problems: 1) deriving task tempo-
is the system code size determined by the heuristic algo-ral parameters that guarantees the system real-time require-
rithm, andS,, s (opt) is the optimal system code size. ments and 2) deriving the code size and execution time of

Figure 6(a) plots the performance of the three algorithms each task while minimizing the system code size subject to
and their best-case performance (BEST) with 8 tasks. Wefeasibility constraints. Our framework iteratively solves the
can see in Figure 6(a) that at least one of the three algo<two sub-problems using solutions from each other until the
rithms finds the optimal solution for about 32% of simula- solutions converge. This iterative approach inherently finds
tion cases. With the simulation results, we can state with a locally optimal solution. However, it may be possible to
90% confidence that the mean of the best-case performanceevelop an integrated approach that solves the optimization
with 8 tasks in the real-world is between 75% and 100%. problem without breaking it into two sub-problems. Such
Among the three algorithms, HBRF exclusively yields the an integrated approach increases the complexity of finding
BEST solutions for 47% of simulation cases, HBWF does solutions, but may deliver solutions that are close to the
so for 18%, and LPF does so for 12%, respectively. For globally optimal solution. We plan to develop such an ap-
the remaining 23% of simulate cases, two or more algo- proach and evaluate the complexity and effectiveness.
rithms provide the BEST solutions together. Figure 6(b)  Our current design framework considers the issue of
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