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Multiband statistical learning for f0 estimation in speech

Abstract
We investigate a simple algorithm that combines multiband processing and least squares fits to estimate f0
contours in speech. The algorithm is untraditional in several respects: it makes no use of FFTs or
autocorrelation at the pitch period; it updates the pitch incrementally on a sample-by-sample basis; it avoids
peak picking and does not require interpolation in time or frequency to obtain high resolution estimates; and
it works reliably, in real time, without the need for postprocessing to produce smooth contours. We show that
a baseline implementation of the algorithm, though already quite accurate, is significantly improved by
incorporating a model of statistical learning into its final stages. Model parameters are estimated from training
data to minimize the likelihood of gross errors in f0 as well as errors in classifying voiced versus unvoiced
speech. Experimental results on several databases confirm the benefits of statistical learning.
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MULTIBAND STATISTICAL LEARNING FOR F0 ESTIMATION IN SPEECH

Fei Sha, J. Ashley Burgoyne, and Lawrence K. Saul

Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA 19104

ABSTRACT

We investigate a simple algorithm that combines multiband pro-
cessing and least squares fits to estimatef0 contours in speech.
The algorithm is untraditional in several respects: it makes no use
of FFTs or autocorrelation at the pitch period; it updates the pitch
incrementally on a sample-by-sample basis; it avoids peak picking
and does not require interpolation in time or frequency to obtain
high resolution estimates; and it works reliably, in real time, with-
out the need for postprocessing to produce smooth contours. We
show that a baseline implementation of the algorithm, though al-
ready quite accurate, is significantly improved by incorporating a
model of statistical learning into its final stages. Model parame-
ters are estimated from training data to minimize the likelihood of
gross errors inf0, as well as errors in classifying voiced versus un-
voiced speech. Experimental results on several databases confirm
the benefits of statistical learning.

1. INTRODUCTION

There exists a large body of work on pitch determination of speech
signals[1, 2, 3, 4]. The goal of algorithms for pitch tracking is to
estimate the fundamental frequency,f0, of speech as generated by
the quasi-periodic vibration of the vocal cords (and as corresponds
typically to its perceived pitch).

Most algorithms for pitch tracking involve one or more of the
following components: (i) preprocessing to enhance the periodic-
ity of the waveform (e.g., lowpass filtering, center clipping), (ii)
short-time analysis of speech to obtain initial estimates off0, and
(iii) postprocessing to correct isolated errors and produce smooth
contours (e.g., median filtering, dynamic programming). Methods
in the time domain[2, 3, 4] typically rely on autocorrelation at the
pitch period, detectingf0 from one or more peaks in the autocorre-
lation function. Likewise, methods in the frequency domain[1, 4]
typically rely on FFTs, detectingf0 (for example) from peaks the
magnitude cepstrum or harmonic power spectrum. Peak-picking
in either domain can be difficult, requiring special heuristics to
handle the complexities of voiced speech (e.g., quasiperiodicity,
nonstationarity). Initialf0 estimates from peak-picking are also
limited in resolution by the sampling rate (in the time domain) or
FFT size (in the frequency domain), though in either domain they
can be subsequently refined by interpolation.

Recently, we introduced a multiband least squares
algorithm[5] for pitch tracking that takes a different approach.
In particular, the algorithm makes no use of FFTs or autocor-
relation at the pitch period; it does not require interpolation to
obtain high resolution estimates off0; and it works reliably, in
real-time, without the need for postprocessing to produce smooth
contours. The algorithm is based on the assumption that the low
frequency spectrum of voiced speech can be modeled as a sum

of (noisy) sinusoids occurring at integer multiples off0. Using a
nonlinearity to concentrate energy atf0 and a bank of overlapping
bandpass filters with carefully arranged passbands, the algorithm
detects voiced speech by ascertaining that the output of one filter
resembles a sinusoid at frequencyf0, while the others do not.
Sinusoids are detected by simple, one-parameter least-squares fits.

In this paper, we significantly extend our previous work. Not
only do we benchmark the algorithm on much larger data sets,
but we also incorporate a model of statistical learning into its fi-
nal stages. The model is a multiway classifier trained to select the
bandpass filter whose output reveals the fundamental frequencyf0

of the speech waveform. The parameters of the model are esti-
mated from the TIMIT database[6], containing over two hours of
speech. The classifier adds little computational overhead to the
original algorithm, but yields significantly fewer errors in estimat-
ing f0 and classifying voiced versus unvoiced speech. We have
also incorporated the multiband classifier into a real-time imple-
mentation for pitch tracking.

2. MULTIBAND LEAST SQUARES METHOD

In this section, we briefly review the multiband least squares
method for pitch tracking; more details can be found in our earlier
work[5]. We first explain how least squares fits can be used to de-
tect sinusoids in individual subbands, then extend this approach to
the more general problem of estimating the fundamental frequency
of a periodic (though not sinusoidal) waveform.

2.1. Detecting sinusoids

Consider the problem of detecting sinusoids. The approach we de-
scribe here is a simple variant of Prony’s method[7]. Note that for
a discretely sampled sinusoidsn = A sin(ωn+θ), each sample is
proportional to the average of its neighbors, with the constant of
proportionality given by:

sn = (cos ω)−1
hsn−1 + sn

2

i
. (1)

We can use eq. (1) to measure how well an unknown signalxn is
described by a sinusoid. In particular, consider the error function:

ε(α) =
X

n

h
xn − α

“xn−1 + xn+1

2

”i2

. (2)

If xn is well described by a sinusoid, then the right hand side of
eq. (2) will achieve a small value when the coefficientα is tuned to
match its frequency, as in eq. (1). The minimum error least squares
fit is given by:

α∗ =
2

P
n xn(xn−1 + xn+1)P
n(xn−1 + xn+1)2

. (3)



We can judge whetherxn is sinusoidal by checking two condi-
tions: first,ε(α∗) � ε(0), and second, that|α∗| > 1. The first
condition establishes that the residual error is small relative to the
overall energy of the signal, while the second establishes that the
signal oscillates with an estimated (real-valued) frequency:

ω∗ = cos−1(1/α∗). (4)

The above scheme has several useful properties for our purposes.
First, the frequency estimate is the solution to a least squares prob-
lem; hence, its resolution is not limited by the sampling rate, as
(say) the location of the peak of an autocorrelation function. Sec-
ond, it relies only on the zero-lagged and one-lagged autocorre-
lation in eq. (3), namely

P
n x2

n and
P

n xnxn±1. Third, the
method is easily adapted to tracking the frequency of nonstation-
ary signals; we simply analyze the signal with windows that shift
one sample at a time, incrementally updating the autocorrelations
that appear in eq. (3) for adjacent windows.

Eq. (1) can be viewed as a one-parameter autoregression, a
predictive model that forecastssn+1 from sn andsn−1. The sec-
ond derivative of its error function thus characterizes the uncer-
tainty in the fit due to noises in the observation process[8]. In-
tuitively, the closer the signalxn is to a sinusoid, the sharper the
fit and the less its uncertainty. LetN (α) = ε(α)/ε(0) be the di-
mensionless, normalized error function (which is insensitive to the
amplitude of the signal), and let∆µ denote the uncertainty in the
estimated log-frequencyµ∗=log ω∗, characterized by:

∆µ =

»
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By working in the log domain, we measure uncertainty in units
proportional to the distance between notes on the musical scale.
We shall see in later sections that this measure of uncertainty is a
useful feature for pitch tracking.

2.2. Estimatingf0 in speech

The multiband least squares method for pitch tracking is a simple
extension of the method in the previous section. The algorithm op-
erates in a number of stages, as shown in Fig. 1, and as summarized
below.

2.2.1. Preprocessing

In the first stage, the signal is lowpass filtered to remove energy
above 1 kHz, then transformed by a pointwise nonlinearity such
as squaring or half-wave rectification. The lowpass filter is used
to remove the aperiodic components of voiced fricatives, while the
nonlinearity helps to concentrate energy atf0 in the case of a weak
or missing fundamental. The signal can also be downsampled at
this stage for faster processing.

2.2.2. Filterbank

In the second stage, the signal is analyzed by a bandpass filter-
bank whose filters are designed to satisfy two competing criteria.
On one hand, we make them sufficiently narrow to resolve the
fundamental atf0, while on the other hand, we make them suf-
ficiently wide to integrate higher-order harmonics. An idealized
two-octave filterbank with these properties is shown in Fig. 1. The
result of this analysis for voiced speech is that the output of the
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Fig. 1. Multiband least squares method for estimatingf0.

filterbank consists of either sinusoids atf0 (and not any other fre-
quency) or signals do not resemble sinusoids at all. For example,
consider a segment of voiced speech with fundamental frequency
f0 = 180 Hz. In this case, the second filter with a passband of
50–200 Hz will output a sinusoid atf0 = 180 Hz. By contrast,
the first filter will output low frequency noise; the third filter will
pass the first and the second harmonics at 180 Hz and 360 Hz, and
the fourth filter will pass the second, third, and fourth harmonics
at 360, 540, and 720 Hz. Thus, the outputs of the first, third, and
fourth filters bear no resemblance to pure sinusoids. While the ide-
alized filters in Fig. 1 have unrealizably steep rolloffs, we obtain
the same effect in practice by implementing a larger bank of six
filters with narrower (1.6 octave) passbands.

2.2.3. Sinusoid detection

The final stage of the algorithm is sinusoid detection at the outputs
of the filterbank, using the method described in section 2.1. Run-
ning least squares fits and their uncertainties are computed from
eqs. (3–5). The fits are updated on a sample by sample basis for
the output of each filter. A voicing decision is then made for frames
whose total energy exceeds a minimum “silence” threshold. Non-
silent frames are labeled as voiced if the uncertainty∆µ of any
subbandf0 estimate from the filterbank is less than a specified
threshold; in this case, the value off0 is estimated from the sub-
band with the sharpest least squares fit. Otherwise, the frame is
labeled as unvoiced.

3. MULTIBAND STATISTICAL LEARNING

In previous work[5], we showed that the algorithm from section 2
works well for batch and real-timef0 estimation in speech. Nev-
ertheless, the algorithm hinges in an unsatisfying way on two
heuristics—namely, the manual tuning of energy and sharpness-
of-fit thresholds to minimize errors in voiced/unvoiced classifica-
tion, and the use of the uncertainty criterion in eq. (5) to select
the correct subband from which to estimatef0. It is obvious that
additional features could be used for these purposes, but it is not
obvious (from a priori knowledge) how to combine them in a sen-
sible way. In this section, we describe a multiband classifier that
can be trained from referencef0 contours to provide better deci-
sions for voiced/unvoiced classification and subband selection in
the final stages of our algorithm.



3.1. Inputs and outputs

We considered various features as input to the classifier, eventually
settling on the following. For each frame, and in each subband, we
computed three features: the square root of the normalized residual
errorN (α), the cube root of the uncertainty measure∆µ, and the
logarithm of the energy. The nonlinear transformations in these
features were chosen to equalize their dynamic ranges. The same
features at the preceding frame were also included as input to the
classifier. Thus, for each frame, the classifier input consisted of a
36-dimensional feature vectorx ∈R36 consisting of six features
from each subband and reflecting not only the signal properties in
that frame but also their first derivatives in time. (Note that features
from succeeding frames were deliberately excluded to minimize
the latency of a real-time implementation.)

The classifier output was a discrete labely∈{0,1,2,3,4,5,6}
indicating either that the frame was unvoiced (y = 0) or that
the output of theyth subband should be used to estimatef0.
Thus, whereas in the original algorithm the signal was classified
as unvoiced or voiced based on simple energy and sharpness-of-fit
thresholds, the multiband classifier was trained to make these deci-
sions by analyzing the much richer input provided by each frame’s
feature vector.

3.2. Model and training

The classifier was trained by multinomial logistic (or “softmax”)
regression[8] on the feature vectors. Target labels for the classi-
fier outputs were provided by referencef0 contours from a large
database of speech (described in section 4).

Softmax regression is a simple model for multiway classifica-
tion. The model computes the posterior probability that a feature
vectorx has class labely as:

Pr(y= i|x) =
ewi·xP
j ewj ·x

, (6)

wherewj is the weight vector attributed to classj, and the sum in
the denominator—over all class labels—ensures that the right hand
side defines a properly normalized distribution. In practice, the
feature vectorx is labeled by whichever class maximizes the right
hand side of eq. (6), or equivalently, whichever class maximizes
the dot productwi · x that appears in the exponent. Because of
this, eq. (6) gives rise to piecewise linear class boundaries in the
feature space.

The weight vectorswj are the parameters of the softmax re-
gression. They can be estimated from a large training set of labeled
examples. Let(xt, yt) denote thetth example in the training set.
We choose the parameters to maximize the total log-likelihood of
correct classification:

L =
X

t

log Pr(y=yt|xt). (7)

The log-likelihoodL is a concave function of the parameterswj ,
and its global maximum can be computed by iterative procedures
such as gradient ascent or Newton’s method. In our experiments,
we used a variant of Newton’s method that updated one weight
vector at a time, as opposed to all the weight vectors at once: this
was done to avoid computing the entire hessian matrix.

The above model is easily incorporated into the final stages of
the multiband least squares algorithm. Whereas our original im-
plementation only considered the minimum uncertainty∆µ across

subbands, the classifier in eq. (6) uses much more information
to make voiced/unvoiced decisions and to determine (in voiced
frames) the subband from which to estimatef0. Also, unlike the
manually tuned energy and sharpness-of-fit thresholds in section 2,
here the classifier parameters have the benefit of being optimized
over a large training set of labeled examples.

4. EVALUATION

We evaluated the multiband least squares algorithm for pitch track-
ing on several data sets of speech. To assess the benefits of statisti-
cal learning, we collected results both before and after incorporat-
ing the multiband classifier into the final stages of the algorithm.

4.1. TIMIT data

To train the classifier, a large data set of speech with reference
pitch contours was needed. We used the training portion of the
TIMIT data set[6] for this purpose. The TIMIT utterances are
not distributed withf0 contours, so we used two independent,
state-of-the-art pitch tracking algorithms (getf0 from ESPS[2]
and YIN[3]) in conjunction with the TIMIT phonetic alignments
to derive voiced/unvoiced labels and referencef0 contours. Both
get f0 and YIN were used with their default parameter settings,
except for adjustments of the frame rate. Classifier targets were
derived as followed. Frames were labeled as unvoiced (with a
classifier target ofy=0) if both the phonetic alignment and getf0
labeled them as unvoiced. Frames were labeled as voiced if thef0

estimates of getf0 and YIN were within20% of each other. For
frames labeled as voiced, thef0 estimates from getf0 were con-
verted into targetsy∈{1, 2, 3, 4, 5, 6} for the multiband classifier
based on the subbands that contained them. Ambiguous frames,
including those in voiced-unvoiced and unvoiced-voiced transi-
tions, were discarded from training and testing.

The training portion of the TIMIT data set consists of 4620
utterances from adult male and female speakers from the major di-
alect regions of the US; with an analysis window of 40 ms, and a
10 ms shift between frames, a total of 1015630 frames were col-
lected for training (not including discarded frames). The testing
portion of the TIMIT data set consists of 1680 utterances, giving
rise to 369378 frames for testing.

Experimental results on the TIMIT data set are shown in Ta-
ble 1. In the table, MLS and MLS+ refer respectively to the multi-
band least squares algorithm before and after the incorporation of
the statistical learning model. The first two rows report the per-
centage of unvoiced frames misclassifed as voiced (“unvoiced in
error”) and the percentage of voiced frames misclassified as un-
voiced (“voiced in error”). The third row (“gross errors”) reports
the percentage of voiced frames where thef0 estimates from MLS
and MLS+ differed from the ground-truth estimate (supplied by
get f0) by over20%. Finally, the last row reports the root-mean-
squared (RMS) difference between the estimatedf0 and the getf0
value for frames without gross errors.

The benefits of statistical learning are apparent. The incor-
poration of the multiband classifier leads to roughly a halving of
errors in the classification of unvoiced/voiced frames and grossly
incorrect estimates off0. Note that comparative results for getf0
and YIN do not appear in Table 1 because these algorithms were
used to derive the “ground-truth” estimates off0.



Table 1. Results on TIMIT data.

train test
error type MLS MLS+ MLS MLS+

unvoiced in error(%) 4.64 1.42 4.28 1.27
voiced in error (%) 2.25 1.58 2.34 1.65
gross errors (%) 1.31 0.69 1.31 0.70
rms (Hz) 3.41 3.49 3.41 3.53

Table 2. Results on Keele and Edinburgh data.

Keele
error type MLS MLS+ get f0 YIN
unvoiced in error(%) 8.60 7.90 6.83 –
voiced in error (%) 8.87 7.03 3.24 –
gross errors (%) 1.68 1.5 2.29 3.28
rms (Hz) 4.68 4.54 4.5 3.62

Edinburgh
error type MLS MLS+ get f0 YIN
unvoiced in error(%) 4.86 5.65 8.84 –
voiced in error (%) 7.97 5.38 4.29 –
gross errors (%) 0.39 0.67 2.86 3.48
rms (Hz) 5.88 5.88 5.83 6.2

4.2. Keele and Edinburgh data

We also evaluated the MLS algorithms on two smaller data sets
with referencef0 contours derived from laryngograph signals: the
Keele data set[9] and the Edinburgh data set[4]. The Keele data set
contains roughly five minutes of speech from five male and female
adult speakers, while the Edinburgh data set contains roughly five
minutes of speech from two adult speakers, one male and one fe-
male. Both data sets have somewhat different acoustic, phonetic
and linguistic characteristics from those of TIMIT.

The results for the Keele and Edinburgh data sets are shown
in Table 2. Note that the classifier parameters in MLS+ were not
adapted to these data sets; their values were frozen after being es-
timated from the TIMIT training data. The only allowance made
for the Keele and Edinburgh data sets was to scale the energy fea-
tures computed from their waveforms so that they had a similar
histogram as those from the TIMIT waveforms. Here again, the
results show that the incorporation of a statistical learning model
leads to generally improved performance of the MLS algorithm.

For these data sets, it was also possible to evaluate getf0 and
YIN in the same experimental setup. Note that YIN does not
classify frames as voiced/unvoiced, so these error rates are not re-
ported for YIN. Among MLS+, get f0, and YIN, no method uni-
formly outperforms the others. In these comparisons, however, it is
worth remembering that getf0 is not suited to real-time implemen-
tations (because it relies on dynamic programming for smooth-
ing of pitch contours), and that YIN does not classify frames as
voiced/unvoiced. The MLS+ algorithm is well suited to applica-
tions with both these requirements[5]. More generally, we believe
that it provides an interesting, competitive alternative to two lead-
ing algorithms based on autocorrelation at the pitch period.

5. DISCUSSION

We have shown how to improve a pitch-tracking algorithm based
on multiband least squares fits by incorporating a model of statis-
tical learning into its final decision process. In addition to bench-
marking the algorithm on the TIMIT, Keele, and Edinburgh data
sets, we have also implemented a real-time version of the improved
algorithm on a 1 GHz Macintosh PowerBook G4. This imple-
mentation is being used as a front-end to interactive applications
with voice-driven agents and real-time audiovisual feedback[5].
Finally, while the algorithm described in this paper was conceived
only for clean speech, we are investigating how to apply similar
ideas to noisy environments, polyphonic music, and “cocktail par-
ties” with overlapping speakers. We hope that the ideas in this
paper will ultimately inspire novel approaches tof0 estimation in
these more challenging settings.
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