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A spectral analysis of relations,

further developments

KLAUS KRIPPENDORFF

The Annenberg School of Communications, University of Penn.ﬁylvania

Philadelphia, USA

1. INTRODUCTION

Part of my background is in the social sciences
where the concept of "relation" is a central one.
Almost anything social is said to be transacted and
has relational qualities. Processes of communica-
tion are relational in the sense of connecting,
however tenuously, two or more individuals. Auth-
ority, power and control can only be defined in
relational terms. And the very notion of organiza-
tion, social or otherwise, implies boundaries
within which certain patterns of interaction are
maintained and across which matter, energy and
information are exchanged which in turn creates,
maintains or destroys other patterns of inter-
action. While much of social science data contain
evidence about relations, it is surprising that
empirical techniques for analyzing complex rela-
tions are quite underdeveloped.

In a previous paper [9] I developed the idea
of a spectral analysis of relations in part because
I feel quite strongly that we might miss important
insights if we restrict our vision through existing
analytical techniques to very simple kinds of rela-
tions, correlations, associations, factor loadings,
proximities, differences, causes, etc., all of
which are essentially binary in nature. This re-
stricted vision stands in marked contrast to
ordinary conceptions of social Tife which recognize
human communication as a multi-channel affair,
social interaction to be rich and complex, and the
environment of social organizations to be turbulent
in the sense that feedback Toops are multiple and
intermeshed and rates of change are unequal and
interdependent.

A spectral analysis of relations does not
promise all the badly needed insights into what
everyone agrees are deep and hidden complexities
(see Simon [12], for example). For once, it is
constrained by current computational limitations.
But it does offer a modest improvement in analyti-
cal vision.

2. A SPECTRAL ANALYSIS OF RELATIONS

Generalizing from physics, one could say that a
spectral analysis entails a calculus or accounting
system for certain magnitudes such that the magni-
tude of a whole can be regarded as the algebraic
sum of the magnitudes of its component parts. The
decomposition of a source of light into additive
spectra is a classical example but so is the
Fourier analysis of oscillations, mechanical,
musical, economic or social. I am applying the

general idea to the study of relations.

The relations of interest in this paper are
manifest in distributions of data in multivariate
spaces. Illustrating this notion, we are all
familiar with scatter diagrams of data points in
a plane. One can easily extend this notion by
visualizing a distribution of data points in a
three or four dimensional space. But when more
than four variables are involved other conceptual
devices are needed. Nevertheless it should not
be difficult to imagine that multi-variable
distributions may assume very complex forms.

Some distributions are inherently simple in the
sense that either some variables are redundant

or the whole distribution can be explained as a
conjunction of distributions of lower ordinality.
Distributions that represent linear relations

are of this kind. They are usually depictable

in a series of scatter diagrams each representing
a binary relation. Figure 1 exemplifies such a
case.

Figure 1. Example of a Linear Relation
Typically Assumed in Social
Science Methods

Some relations are inherently complex in the sense
that all variables are needed, not in pairs, not
in triples, all in conjunction, to account for
that relation. Figure 2 depicts such a non-
decomposable relation in three dimensions. Most
non-Tinear relations are of this kind. Part of
the aim of a spectral analysis of relations is to
ascertain whether a multi-valued relation can be
simplified without Toss, where the non-decompos-
able complexities Tie in the data, the ordinality
of the explanation required, how much would be
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lost if one were to impose an unjustified simpli-
fication on an empirical fact, etc.

Example of a Non-Linear Relation
of Concern to Catastrophy Theory
Among Others

Figure 2.

The gualitative components in the spectral
analysis of relations consist of all possible re-
lations of equal or Tower ordinality than are
inherent in a given data. Generally, for rela-
tional data within m variables there are:

1 zero-order relation
m lst-order relations
(properties)
m(m-1 2nd-order relations
2 (binary relations)
m(m-1) (m-2) 3rd-order relations
6 (tertiary relations)

rth-order relations

1 mth-order relation

total number of possible
relations

This can be a large number, even with a moderate
number m of variables. While the number of pos-
sible relations might set computational Timits
for a complete analysis of relational data, this
fact can hardly serve as a justification for
statistical techniques in the social sciences to
assume as it were that social phenomena are es-
sentially linear and, hence, decomposable into
binary relations or at best constrained by a
third variable.

The magnitudes in a spectral analysis of re-
lations reflect deviations of observed frequencies
from what would be expected by chance. Again, we
are all too familiar with the two-variable case.
Two variables, A and B, are regarded as independent
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when the joint probability distribution is fully
explainable from its individual probability
distributions, i.e., for all values a € A and

b €B" pap = paPh_ Or Pab/PaPb = 1 where

Pa=)_ Pabs etc. The extent of the deviation

of pap from pypy is taken to be indicative of

the strength of an association between the two
variables. In the literature I have found no
extension of this test to higher order dependen-
cies. Bartlett [4] might be mentioned as an
exception. However, his test concerns only

2 by 2 by 2 contingency tables. In the spectral
analysis of relations the above comparison of
observed and expected probabilities is general-
ized by an expansion of the probabilities in dis-
tributions of varying ordinality into a series of
tests, each pertaining to a different subspace
of the original distribution, and all are logically
independent of each other (see (1) on next page).
The probability pabcd of a data point in a four
dimensional space can be seen as the product of
the tests for the presence of one zero-order
relation (which is an artifact here and of no
consequence in the following), four unary rela-
tions (properties or distributions in one vari-
able), six binary relations (involving all pairs
of variables), four tertiary relations, and one
qua ternary relation.

The accounting equation for the spectral
analysis of relations is obtained by first divid-
ing both sides by the set of first order proba-
bilities and then summing the average logarithm
of these probabilistic expressions for all data
points. While there are probably several tests
that could be employed to establish the presence
of relations of higher ordinality, the logarithmic
function is justified by Shannon's [11] proof
that it is the only function leading to additive
quantities. Thus, the fundamental accounting
equation for the spectral analysis of relations
is:

T(AB) = Q(AB)
T(ABC) = Q(ABC) + Q(AB)
+ Q(AC) + Q(BC)
T(ABCD) = Q(ABCD) + Q(ABC) + Q(ABD)

+ Q(ACD) + Q(BCD)
+ Q(AB) + Q(AC) + Q(AD)
+ Q(BC) + Q(BD) + Q(CD)

g

nlr
T(m variables) =

Q(r:t:h—order)i

r=2 i=]1

m

(2)

In it, the T-measures assess the total amount of-
relation (relatedness, constraint, information
transmission, multivariate association, etc.) in

the data as a whole:
P
ab
Z Paplog, 54—

(continued on p. 72)

T (AB)
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T (ABC)

XXX pabclOgZ P pbc
abc bPe

bed
T (ABCD) - }jp log ___ﬁL____
i abed™ "2 p aPpPcPy

N

bec

etc.

And the Q-measures assess the unique contribution
each relation makes to the total:

P
ab
Q(aB) = } § p_,log, ——.
PR ab™ "2 PPy
Ej}:}j Pabe
Q(ABC) = L pabclog2 PP acPhe
PaPpPe
pabcd
p P__ P
QABCD) = E:E:}:E:pab J1og, abcPabdPacdPbed
¢ PabPacPadPbcPbdPed
PPpP Py

etc.

Mainly because it will not cause confusion in this
paper, my notation condenses the conventional forms
established by Ashby [1,2]. Accordingly, T(ABC) =
TA:B:C), Q(ABC) Q(A:B:C), and in what follows
H(ABC) = H(A,B,C), T(ABC) = T(A,B:C), etc.

Some of the properties of these measures have
been discussed and exemplified previously [9].

Here I will state them very briefly.

First, the Q-measures are indicative of the
magnitude of a relation. If such a measure turns
out to be zero or approximately zero, then the
relation so assessed contributes nothing to the
data and may be ignored. If it equals the total
ghen it is the only relation accounting for the

ata.

K. KRIPPENDORFF

Second, all Q-measures are independent. The
finding that all binary relations are absent does
not imply anything about the presence or absence
of a higher order relation in data and, vice
versa, the presence of a higher order relation
suggests nothing about the magnitude of any of its
relations of lower ordinality.

Third, Q-measures assume negative values when
its immediately lower-order relations overdeter-
mine the distribution (include redundant accounts
of the total) and they assume positive values when
its immediately lower-order relations underdeter-

‘mine the relation (are insufficient as aggregate

account of the total). In other words, each
Q-measure of a relation compensates for the
errors of commission or the errors of omission
committed by the conjunction of its component
relations.

For examples, consider the four relations in
a three dimensional space (see Figure 3). The
values of all expressions of the accounting
equation are computed under the assumpt1on that
the probability p,p. of the shaded cells is 1/n
and the others are zero.

The leftmost distribution shows variable B to
be redundant. The whole distribution can be ex-
plained in terms of A and C without loss of gener-
ality. This is indicated in the corresponding
Q-measure. The accounting equation here reduces
to T(ABC) = Q(AC), suggesting that explanations
based on the pairs of variables A and B or B and C
yield nothing. The next distribution is seen as
fully explainable by the binary relations within
pairs of variables. Actually only two such
binary relations are required, the third is
implied and redundant. Taken together, the three
binary relations therefore overdetermine the whole.
It is the amount of overdetermination which now
appears as the negative value in the test for the
presence of the tertiary relation. The third
relation from the left shows the binary account
for the distribution to be important but not suf-
ficient to provide a complete account of that
distribution. An attempt to describe the whole
in terms of the three binary component relations
will miss about one-seventh of the total amount
of constraint in the data. The rightmost distri-
bution is the more complex of the four. A1l pro-
jections of the distribution on the three

l
l
l

= |‘L '// ”"_vh;
z 17 |z
‘ '5;2 A A
| i\ =
Z i Z
H¢ 7 MJM
Q(AB )= 0 Q(AB )= 1
QA C)=1 QA C)=1
Q( BC)=0 Q( BC)=1
Q(ABC)= 0 Q(ABC)=-
T(ABC)= 1 T(ABC)=22

Figure 3.

B .
P ;:
TEIIE
:ll/'%i :
T i
]
A
Q(AB )=.122 Q(AB )= 0
QA C)=.122 QA C)= 0
Q( BC)=.122 Q( BC)=0
Q(ABC)=.067 Q(ABC)= 1
T(ABC)=.433 T(ABC)=11

Four Examples of Relations
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two-dimensional planes yield uniform distributions.
The Q-measure for all binary relations are all
zero. A unique tertiary relation accounts for

the total constraint in the data: T(ABC) = Q(ABC).
This last example demonstrates the point made
earlier that the presence or absence of a rela-
tion of one ordinality is independent of the
presence or absence of a relation of another
ordinality. The Q-measures are not ordered, do
not imply each other.

The idea of representing a distribution of
data in a many-variable space in terms of simple
relations is based on Ashby's "Constraint Analysis
of Many-Valued Relations" [1] which suggests a
qualitative method for analyzing complex relations
into simple ones. Ashby starts by identifying a
relation with a proper subject of a product set.
When an empirically obtained relation is projected
onto several subspaces and reflected back into the
original space, the conjunction of these reflec-
tions form a new relation that contains the
empirically obtained one as a proper subset. The
set-theoretical difference between the two sub-
sets can be taken as the loss incurred by the
projection. Constraint analysis simplifies a re-
lation by identifying those subspaces for which
the loss is minimal or absent. A spectral
analysis of relations realizes many of Ashby's
intentions in a probabilistic context. Trans-
mission measures, T, clearly are measures of
constraint:

T(ABC...) = H(A)+H(B)+H(C)+...~-H(ABC...)
H(A) + H(B) + H(C) + ... is the maximum entropy
in a multi-variable space that would be observed
if -all variables are independent and H(ABC...) is
the entropy actually obtained. In terms of the
four examples given in Figure 3, the second from
the left exhibits the largest constraint and

Q (ABCDE)
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the third from the left the smallest. It is the
use of an accounting equation for separating the
magnitudes associated with all logically distinct
and unique contributions of each subset of vari-
ables that makes the spectral analysis different
from Ashby's approach.

The quantitative part of this spectral anal-
ysis also owes much to the groundwork laid by
Ashby in various extensions of information
theory [2,3] which were influenced by McGill's
Yor? on multi-variate information transmission

10].

3. BASIC BUILDING BLOCKS OF ORDER

‘One of the interesting consequences of the
accounting equation is that it points to the
Q-measures as possible candidates of what one
might call basic building blocks of order. While
these measures are far from simple and quite re-
moved from the entropies of a distribution, they
are at least as appealing as entropy measures are
because all information theoretical measures can
be expressed as the algebraic sum of several Q-
measures, whereas entropies require additions and
subtractions. So, if one is willing and capable
of computing all Q-measures for an empirically
obtained distribution of data points, one can
gain considerable insights into its relational
properties which ordinary H-measures would hide.
For example, in the five dimensional case of
Figure 4, all possible Q-measures are seen as
forming a lattice. In it one can identify all
entropies, H, all information transmission terms,
T, and all interactions, Q. The figure shows
three examples. The Q-measures adding up to
H(BDE) are connected by solid lines, those adding
up to T4(BCD) by broken lines, and those adding
up to Qg(ACDE) by a chain.

Q_ (ACDE)

B

Figure 4.

Lattice of Q-measures for Five Dimensions
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The basic Q-measures are computable from
entropies H:

Q(a) -H(A) = )p log,p,
a

H(A) +H(B) -H(AB) = H(A) +H(B)-§:§g§ablogzpab
a

Q(aB)

Q(ABC) -H(A) -H(B) -H(C) +H(AB) +H(AC) +H{BC) —~H(ABC)

etc.

+1 for uneven x

-1 for even x

m mC
Q(m variables) = j; kil H(] variables)k Am"{i where Ax={
(3)

whereupon all entropies, information transmissions
and interactions are expressable as the algebraic
sum of these basic Q-measures:

Transmissions

mCj
f Q@ variables)k (4)
=1

N1=

T(m variables) =

2

o~

3

T(ABCD) = Q(AB )
+Q(A C )
+Q(A D)
+Q( BC )
+Q( B D)
+Q( CD)
+Q(ABC )
+Q(AB D)
+Q(A CD)
+Q( BCD)
+Q(ABCD)

Entropies

L}

m mC 5
H(m variables) X f Q3 variables)k ( )
§=1 k=1

H(BDE) Q@®B )
+Q( D)
+Q( -E)
+Q(BD )
+Q(B E)
+Q( DE)
+Q (BDE)

Conditiona] Interactions

(s variables)

Q

r variables

r £
Z zj Q(3+s variables) (6)
j=0 k=1

(CDE) Q( CDE) HQ(A CDE) +Q( BCDE) +Q(ABCDE)

QAB
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Conditional Transmissions

Tr variables (s variables) =
e.g.:
T (CDE) Q@) =
+QAB(C E)
+Q, 5 ( DE)
*+Q,  (CDE)

Conditional Entropies

Hr variables (s variables)

HAB(CDE) QAB(C )
+Q,;( E)
+Q,;(C E)
+QAB( DE)
+, ; (CDE)

Grouping of Variables in Interactions

Q(T¥ Vvariables + s variables)

Q(ABCDEF)

It should be noted that the number of possib
Q-measures equals the number of possible H-measu
and since all information theoretical measures c
be expressed in either of the two kinds of terms
there seems to be no immediately apparent advan-
tage.
account of their simplicity.
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S SC
f Q (j variables) (7)

§=2 k=1 r variables k

Q( ¢Cp ) +Q(A CD ) +Q( BCD ) +Q(ABCD )

+Q( C E) +Q(A C E) +Q( BC E) +Q(ABC E)

+Q( DE) +Q(A DE) +Q( B DE) +Q(AB DE)

+Q( CDE) +Q(A CDE) +Q( BCDE) +Q(ABCDE)

; f (8)
jzl =1 Qr variables a variables)k

QC ¢ ) +Qac ) +Q( BC ) +Q(ABC )
HQ( D)+ D) +Q(BD) +Q(AB D)
H( E) +Q(A E) +Q( B E) +Q(AB E)
+Q( CD ) +Q(A CD ) +Q( BCD ) +Q(ABCD )
+Q( C E) +Q(A C E) +Q( BC E) +Q(ABC E)
+Q( DE) +Q(A DE) +Q( B DE) +Q(AB DE)
+Q( CDE) +Q(A CDE) +Q( BCDE) +Q(ABCDE)

Cs

- (9)
Z Q(j+s variables)k
3=1 k=1

Q(A DEF)
+Q( B DEF)
+Q( CDEF)
+Q(AB DEF)
+Q(A CDEF)
+Q( BCDEF)
+Q (ABCDEF)
le uncertainty, lack of structure and error. Both

res,
an
’

In fact, one might favour the entropies on

However, I am suggesting that Q- and H-measures

provide complementary accounts of empirical fact
Q-measures approach an empirical phenomenon from

S.

the point of view of what can be explained within

the set of observational variables. They locate
the relations of different ordinality that accou
for given data. H-measures approach the same

nt

phenomena from the point of view of what can not
be explained within these variables. They locate

the uncertainties within different subspaces of
multi-variable distribution. The spectral analy
sis elucidates structure, pattern, dependency
and constraint, whereas an account in terms of
entropies emphasizes the freedom of variation,

a

are essential for gaining any understanding of
systems.

4. BASIC BUILDING BLOCKS OF FUNCTIONAL

COMPOSITION

Another interpretation of the results of a
spectral analysis of relations is that it quanti-
fies the extent to which functional components
of varying complexity underly a process that is
responsible for the given data. Q(AB) > 0 indi-
cates that there exists a binary relationship
between the variables A and B that cannot be
explained in terms of the properties associated
with A and/or B. Q(#BC) > O indicates that
there exists a tertiary relationship among the
three variables A, B and C over and above what
the three binary relationships between A and B,
A and C, B and C, and the three properties in
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A, B and C can account. Q(ABCD) > O indicates the
presence of a unique and non-decomposable quarter-
nary dependency between A, B, C_and D, etc. A1l
variables among which a Q-measure exhibits a posi-
tive value could be said to stem from a single
source that maintains the pattern which the Q-
measure quantitatively assesses. Since the Q-
measure reflects the unique co-occurence of values
on all variables thereby assessed, it identifies
the coordinative effort by a source, an effort
that cannot be understood by fewer variables. To
make this correspondence between Q-measures and
functional components apparent, I am using Klir's
[8] graphical symbols:

Q(A) assesses a property

K. KRIPPENDORFF

E._[:]a single~valued component

Q(AB) assesses a binary relation = :Datwo—valued component
Q(ABC) assesses a tertiary relation = 54::]a three-valued component
Q(ABCD) assesses a quarternary relation = gg{:]a four-valued component
Q(ABCDE) assesses a quintenary relation = E;[:]a five-valued component
etc,

By evaluating all components that could possibly
generate data of a given dimensionality and by
associating a magnitude with each, the accounting
equation in effect outlines the dependency struc-
Lture (the wiring diagram) of the components of a
complex data source.

An accounting equation for m-valued data has
2M-m-1 distinct Q-measures. Since any one Q-
measure may be positive and since each configura-
tion of Q-measures describes a different depen-
dency structure, there are in fact 22M-m-1 gif-
ferent dependency structures to be considered.
This can be a tremendously large number. Happily,
not all Q-measures need to be evaluated one-by-one.
Some can be evaluated en bloc, which provides the
basis of a more efficient algorithm.

The first such shortcut is suggested by
Ashby's [2] theorem stating that if a trans-
mission term between two sets of variables is
zero, so are all Q-measures that make reference

0 - 4o
mlm
ulsln
00O
- Looo

"

"

iff T(5
iff T(5
iff T(5
iff T(5

iff T(5

B

to variables in both sets. Thus, if a set of
variables can be broken down into two, having,
say, r and s variables respectively, then

T(r variabTes + s variabTes)>0 implies
(2r-1)(25-1) of the 2r+s &-measures are known
to be zero, leaving only 2"+ 25 Q-measures to

be evaluated. This means a considerable saving
of computational efforts. To find independent
subsystems in the set of variables should be the
first and in a sense preliminary step of any
spectral analysis of relations. A system of,
say, five variables may be decomposed in the way
shown below.

In what follows I am therefore ignoring all
zero dependencies across independent subsystems
and focusing instead on the interdependencies
within a system of variables that cannot be
partitioned as shown below. I suppose this is
where the real power of a spectral analysis of
relations lies.

variables) = T(4 variables)

variables) = T(3 variables)
+T(2 variables)

variables) = T(2 variables)
+T(2 variables}2

variables) = T(3 variables)

1

variables) = T(2 variables)

n
o

variables)
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The second shortcut is suggested by the way
functional components are conceptualized. Suppose
the lattice of Q-measures reveals that one rela-
tion is embedded in another. For example:

« 0]

This finding would suggest that a tertiary relation
between variables A, B and C contains a binary re-
lation between variables A and B. To realize (pro-
gram or build) a functional component that would
represent (generate or simulate) the given data
would require a function of no less than three
values or a box with no less than three variables
attached. All constraints among these three vari-
ables will have to be programmed into that box,
including any binary dependency that might be mani-
fest in the data. Only if these binary relations
are shared through communication with other com-
ponents might they have to be considered separately.
The example:

Q(ABC)>0

Q(aB )>0

Q(ABC )>0
aow oo [T
Q(AB D)>0 e

leaves open where the binary relation is to be
realized, in the ABC-component or in the ABD-
component. The dependency structure is not
affected in either case.

Summarizing, one can say that a relation is
embedded in another when the set of variables in
which that relation is manifest is a proper subset
of the set of variables in which the other relation
is manifest. If it is the task to identify depen-

r res am f i s then
a spectral analysis of relations can stop with the
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location of postive Q-measures for relations none
of which is embedded in another. If it is the
task to quantify the information each functional
component requires to generate given data, then
the quantities associated with embedded relations
need to be examined. Clearly, the task of identi-
fying the dependency structure is prior to that
of quantifying what is involved inside and across
each component. The illustration to follow per-
tains to the structural identification task only.

A final and in a sense still preliminary
point is that structural ambiguities may arise
from the fact that Q-measures assess the extent
of a unique relation among variables. To deter-
mine structure types requires suitable decision
criteria. In the above example, if Q(ABC) were
positive but very small compared with Q(AB) then
one has the choice of representing the data either
by the most inclusive positive relation, here in-
volving A, B and C, or by tolerating the error
Q(ABC) and representing the data in terms of the
variables that dominate the total constraint,
here involving A and B only. The choice of a
suitable decision criterion is not a simple matter.
But I am assuming here that such a criterion does
exist. It disambiguates the emergence of struc-
ture types.

With these preliminaries, I will now exemplify
the dependency structures a spectral analysis of
relations will reveal. The two-variable case is
actually of no particular interest. Assuming a
suitable decision criterion given, a binary rela-
tion is either present in the data or it is not.

A spectral analysis of a three-variable system,

on the other hand, could result in any one of
three dependency structure types which are listed
together with the Q-measures of relations that are
ignored for lack of statistical significance or
overdetermination, and Q-measure configuration
defining the structure. I am ignoring the permu-
tations of variables throughout.

Statistically Defining Q-measure, Dependency Required
insignificant configura- embedded structure components
or negative tion, non-
Q-measures embedded
Q(ABC) Q(AB ) 1 tertiary
Q(a ©) -C;]—
» Q( BC)
Q(ABC) Q(AB ) _{:}_____c:}_ 2 binary
Q(ABC) Q(AB ) 3 binary
Q(A C)

Q( BC)
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A spectral analysis of a four-variable system could
result in any one of the following fourteen depen-

dency structure types:
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Statistically Defining Q-measure, Dependency Required
insignificant configura- embedded structure components
or negative tion, non-
Q-measures embedded
Q(ABCD) Q(ABC ) ! 1 quarternary
Q(AB D) '{;}‘
Q(A ¢D)
Q( BCD)
Q(AB )
QA C)
QA D)
Q( BC )
Q( B D)
Q( ¢D)
Q(ABCD) QA CD) QCAC) 2 tertiary
Q( BcD)  Q(A D) -O—A)
Qp (ABC) a( BC )
QC(ABD) Q( B D)
QCD(AB) Q(_ CcD)
Q(ABCD) Q(' BCD) Q( BC ) 1 tertiary
QD(ABC) QA C) 82 BCII;; :t ,}‘—‘D 2 binary
QC(ABD)
QB(ACD)
QCD(AB)
QBC(AD)
Q(ABCD) QA Cc) 3 bipary
qQ( B D) 0010
Qp (ABC) QC BC )
QC(ABDl
Qg (ACD)
QA(BCDI
QCD(ABI
QBC(ADI
QAB(CD)
Q(ABCD) QA C) 3 binary
Q( BC )
Q (ABD)
QB(ACD)
QA(BCD)
- Qcp (4B
QBC(AD)
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Q(ABCD) Q( BCD) Q( BC) 1 tertiary
QA C) Q(BD) 2 binary
Qp (AEC) Q4 D) Q( cD)
QC(ABD)
QB(ACD)
Qp(4B)
Q(ABCD) QgAB D) Q(AB ) 3 tertiary
QA CD) QA cC)
Qp, (ABC) Q( BcD) Q(A D)
Q( BC )
Q( B D)
Q( ¢Cp)
Q(ABCD) QEA CD; Qac ; 2 tertiary
Q( BCD) Q(A D 1 binary
Qp (ABC) QA ) Q( BC )
Q  (ABD) Q( B D)
‘ Q( cD)
Q(ABCD) Q(ABC ) Q(AB ) 4 tertiary
Q(AB D) Q(AC) -
Q(A CD) Q(A D) o
Q( BCD) QE BC ;
Q(BD
Q( cD) bl
Q(ABCD) QE BCD; QE BC ) 1 tertiary
Q(AB Q( B D) 3 binary
Qp, (ABC) Qe c) Q( cp) :
Q (ABD) QA D)
Q (ACD)
Q(ABCD) Q gA c ; 4 binary
a( BC
Qp (ABC) Q( B D) -
Q  (4BD) aC cp)
Qg (ACD)
Q, (BCD)
QCD(AB)
Q, (AD)
Q(ABCD) ggﬁ c ; 4 binary
N .
Qp, (ABC) Q( BC )
QC(ABD) Q( B D)
QB(ACD)
Q, (BCD)
Q5 (CD)
Q(ABCD) ggﬁ CDg 5 binary
Qp(ABC) Q( BC )
Q. (ABD) Q( B D)
Q, (BCD)

Qupy (AB)



Q(ABCD) QEAB ;
QA C
Q, (ABC) oy
Q  (ABD) QE BC ;
Q( B D
Qg (ACD) Q( cD)
QA(BCD)

It should be noted that the algebraic sum of the
defining Q-measures (of embedded and non-embedded
relations incorporated ‘in' the dependency structure)
equals the amount of transmission accounted for by
the components of the structure. Thus, in the
first dependency structure in this list (the un-
differentiated case) this sum is T(ABCD) and in
the last it is the sum of the six binary trans-
missions between the four variables.

The aim of the above exercise was not to
enumerate dependency structure types. Although
these are far fewer in number than the configura-
tions of possible Q-measures, they grow exponen-
tially with the number of variables involved. A
spectral analysis does not test for distinct struc-
ture types. They simply emerge from or are implied
by the configuration of statistically significant
and non-embedded relations as represented by their
Q-measures. The aim of the above was merely to
show the correspondence between configurations of
Q-measures and dependency structures, and to
thereby demonstrate what a spectral analysis (of
interconnected systems) of relations may reveal.

One way to organize dependency structure types
is by the number of components required to repre-
sent each structure. The above Tist is an examp1e
of this. Another and far more promising way is to
follow the path of an algorithm for structure
identification from the most complex component of
the highest possible ordinality to the smallest
set of least complex (binary) components all of
which could conceivably represent the intercon-
nections among the variables of a non-decomposable
system. The algorithm iteratively evaluates the
consequences of removing non-embedded relations
(in decreasing order of ordinality) and brings
thereby into focus those previously embedded re-
lations that are now considered candidates of a
more efficient representation of dependencies.

This algorithm is applied here to the four-
variable system of the above example (see Figure 6).
When the removal -of a relation is indicated by the
transition this 1nvokes from one dependency struc-
ture to the next, the following lattice emerges.
It assigns each structure type a unique place.

To enhance readability, the removal of the quarter-
nary relation is indicated by a horizontal line,

of a tertiary relation by a vertical line, and of
a binary relation by a 459 1ine. The transitions
are signed by the Q-measures representing the re-
moved relation. ,

The first step of this algorithm involves
testing for the statistical significance of the
one quarternary relation encompassing the whole
system. Its second and third steps involve de-
ciding whether and which tertiary relations can
be ignored as well. It might be noted that the
removal of the second tertiary relation renders
one of its embedded binary relations a component
of the resulting structure. The fourth step
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- 6 binary

offers a choice between removing the one binary
relation or one of the two tertiary ones; etc.
The process continues until a structure type
emerges that is maximally simple and represents
the total with a minimum of loss.

The functional component interpretation of
the results of the spectral analysis of relations
invites comparisons with Klir's work [7,8]. Its
aim is very similar if not identical, but it
deviates from the approach taken by the spectral
analysis in at least two ways. First, Klir uses
the sum of the absolute differences between ex-
pected and observed probabilities as measures of
the degree to which a relation is approximated
by the conjunction of its components. While
this approach is well grounded,_ in the tradition
of statistical testing (e.g. X methodology), it
is biased towards a binary notion of constraint.
In terms of the spectral analysis, the binary
notion of constraint is implicit in the T-
measures of information theory. But no longer
in third or higher-order Q-measures. The fact
that Klir's approach cannot lead to a calculus
of additive quantities for many-valued relations
need not be a disadvantage.

Second, Klir [8] adopts two rather str1ngent
"axioms of structure candidates" that limit the
structure types his procedure is able to differ-

entiate. As a consequence, circular dependencies,

e.qg.:

one loop three loops

seven loops

cannot be identified if they exist in the data.
In the above example of an interconnected system
of four variables, nine out of the fourteen
structure types include circular or indirect
mutual dependencies. Klir's approach would
identify only the first five on the list of
dependency structure types (not to be confused
with the steps of the algorithm). The others
are forced into these five types. The major
advantage and presumably the reason for adopt1ng
this somewhat more restricted concept of
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o Q(ABCD) E%E’

QD(ABc)l

G

Qep (4B)
Q (ACD)
R o
AB
Qcp (AB) 0, (4cm)
Q, (BCD)
Qep (AB) Qpc(AD)
Q, (BCD)
E ﬁ 0—0
(aD)
K °
Qpp(AC) (cp) Quc(BD)

>D
-]

oo 1o

Figure 6. Lattice Resulting from Structural
Identification Algorithm

structure is computational efficiency which is
still a problem with spectral analysis. At this
point, I cannot say how important it is and what
it implies that the spectral analysis of relations
identifies so many more alternative structures.

I should also acknowledge here recent work by
Broekstra, who was so kind to supply me with copies
of his work [5,6] after the presentation of this
paper in Linz. Like myself, he approached the
problem of structure identification from informa-
tion theory. He too encountered the power of the
Q-measures. But, unlike myself, he adopts a notion

of structure that includes only binary relations
and can be depicted as graphs between variables,
although his second publication expands this
notion to give a quantitative account of Klir's
structure types. I believe the key to the dif-
ference between the spectral analysis approach
and his Ties in divergent generalizations of
“statistical independence." The tests for the
absence of a relation adopted by spectral anal-
ysis are spelled out in (1). His generalization
of statistical independence to more than two
variables is, in effect:
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Pab = PaPp

Pabe ~ P

Pabed

etc.

In transmission terms, this condition is respec-
tively: T(AB) = 0, Tp(AB) = 0, Tcp(AB) = 0, etc.
He correctly argues that a direct dependency be-
tween two variables (represented by a graph) is
born out by data only if the conditional (on all
other variables) transmission between the two
variables is positive. His approach does allow
for circular dependencies to be detected. But
this representation of structure is Timited to
binary relations only.

One of his examples may aid the comparison.
From data he presented in [5, p. 76] as Case VI,
he finds that the five binary transmission
measures Tux(YZ), Tuy(XZ), Twz(XY), Txz(WY),
Tyz(XW) are positive while Txy(WZ) is zero, and
concludes that of the six possible direct con-
nections between the four variables only the W-Z
connection is absent. In terms of his graph of
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binary dependencies, the result is:

Z////X\\\\W
N

From Broekstra's data:

Q(WXYZ)=-.0014
Q, (XY)= .0192
Qq (WXz)=-.0011
Qy (WYZ)=-.0045
Q, (X¥z)= .0192
Qy (WX)= .0248
Qy, (W)= .0510
Qyy (W2)= 0000
Quz (XV)= . 1065
Qy (X2)= 0451
Qx (Y2)= .0510

Following the algorithm for structure identifica-
tion, the spectral analysis of relations would
start with the following:

Statistically Defining Q-measure, Dependency
configura- embedded
tion, non-
embedded
Q(WXYZ)=~.0014 Q(WXY )= .0206
Q(WX z)= .0003 X
Q(W YZ)=-.0031
Q( XYz)= ,0206 z. W
QWX )= .0053
QW Y )= .0349 Y

QW Z)= .0042
Q( XY )= .0667
Q( X z)= .0053
Q( _YZz)= .0349

total: T(WXYz)= ,1883

Removing the three relations that are overdeter-
mined as indicated by negative (conditional) Q-
measures and the one that is zero would zield the
following dependency structure and quantitative
account:

Q(WXYZ)=-.0014 Q(WXY )= .0206 Q(WX )= .0053
- Q( XYZ)= .0206 QW Y )= .0349

Qy (¥X2)=-.0011 Q( XY )= 0667 : =1+
Qy (WYZ)=-.0045 Q( X Z)= ,0053
Q( YZ)= .0349

QXY(WZ)= .0000
equals: T(WXY )= .1275

~T( XY )=-.0667

T( XYZ)= ,1275

total: .1883

s===s
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In this special case, the two tertiary components
fully account for the total amount of transmission
in the data. This need not, of course, always be
achievable. There may be losses and redundancies.
The example further illustrates the role of the
embedded relations in the representation of data
by functional components. The relation X-Y may be
realized either in the WXY-component or in the
XYZ-component. Since T(XY) is included in both
transmission measures, it is redundant in the sum
T(WXY) + T(XYZ) and must therefore be subtracted
from the account.

If one were to further simplify the repre-
sentation of the data, for example to the point of
Broekstra's method, one would have to accept
losses as evident in the account below. Evidentally,
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the tertiary relation that cannot be depicted in
the form of a graph with variables at its nodes
are removed in this result as a consequence of
which about 22% of the accountable transmission
in the system is lost.

In conclusion, let me say that my spectral
analysis of relations is far from a state of
completion. What I have learned is that while
it may be difficult to conceptualize higher-
order relations, when they are manifest in data,
they cannot be analysed into pieces. Perhaps
much of systems research into reality hangs on
the ability to cope with relations of different
(and usually higher) ordinalities. The spectral
analysis of relations may be regarded as a step-
ping stone in this direction.

Removed Non-embeded Embedded Dependency
structure
Q(WXYZ)=-.001% QWX )= .0053 -
- QW Y )= .0349 X
Q, (WXY)= .0192 QU XY )= 0667
QY(WXZ)=-.0011 Q( X 2)= .0053 2 W
Q(¥z)=-.0045 AL YZ)= .0349
_ T(WX )= .0053 - %
Q,(X¥2)= .0192 1 0% ) [0349
Quy (WZ)= .0000 T( XY )= .0667
T( X Z)= ,0053
T( YZ)= .0349
1471
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