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Investigating tRNA Release from the Bacterial Ribosome

Abstract
Translation of mRNA into proteins is integral in all living organisms, and takes place on the ribosome. In
recent years, the X-ray crystal structures of biologically relevant ribosome complexes came into light, and the
advance of kinetic studies was soon to follow, leading to a better understanding of the general ribosomal
mechanism. However, there still remains some ambiguity in certain ribosome functions.

Ribosomal protein L1 initially became relevant in the early 1980s when it was determined that ribosomes
lacking L1 showed a decreased capacity for in vitro protein synthesis. Later, it was shown that the L1-stalk is a
highly mobile region of the ribosome, and that it may be involved in the release of deacylated-tRNA from the
exit-site, after translocation. By using a fluorescently labeled L1 reconstituted ribosome as an E-site probe we
were able to study the release of deacylated-tRNA from translocating ribosomes in a time-resolved manner.
The movement of the L1-stalk with relation to the deacylated-tRNA was measured using fluorescence
resonance energy transfer (FRET) measurements between labeled L1 and labeled tRNAs (L/t FRET).
Further, the movement of deacylated-tRNA with relation to the P-site tRNA was measured using
fluorescently labeled tRNAs (t/t FRET), and the release of deacylated-tRNA was measured using changes in
anisotropy. We demonstrate that the deacylated-tRNA can be released from the ribosome via three possible
different pathways, depending on the conditions. Further, in Chapter V, we begin to demystify the interaction
that the E-site region of the ribosome has with deacylated-tRNAs in solution, and demonstrate the changes
on deacylated-tRNA release when excess tRNAs are present.

The optimization of the creation of a viable E-site probe will prove to be important for future studies in both
kinetic work and single molecule work when focusing on tRNA interaction with the E-site of the ribosome.
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ABSTRACT 

 

INVESTIGATING tRNA RELEASE FROM THE BACTERIAL RIBOSOME 

 

Ian S. Farrell 

Barry S. Cooperman 

  

 Translation of mRNA into proteins is integral in all living organisms, and takes 

place on the ribosome.  In recent years, the X-ray crystal structures of biologically 

relevant ribosome complexes came into light, and the advance of kinetic studies was soon 

to follow, leading to a better understanding of the general ribosomal mechanism.  

However, there still remains some ambiguity in certain ribosome functions. 

 Ribosomal protein L1 initially became relevant in the early 1980s when it was 

determined that ribosomes lacking L1 showed a decreased capacity for in vitro protein 

synthesis.  Later, it was shown that the L1-stalk is a highly mobile region of the ribosome, 

and that it may be involved in the release of deacylated-tRNA from the exit-site, after 

translocation.  By using a fluorescently labeled L1 reconstituted ribosome as an E-site 

probe we were able to study the release of deacylated-tRNA from translocating 

ribosomes in a time-resolved manner.  The movement of the L1-stalk with relation to the 

deacylated-tRNA was measured using fluorescence resonance energy transfer (FRET) 

measurements between labeled L1 and labeled tRNAs (L/t FRET).  Further, the 

movement of deacylated-tRNA with relation to the P-site tRNA was measured using 

fluorescently labeled tRNAs (t/t FRET), and the release of deacylated-tRNA was 

measured using changes in anisotropy.  We demonstrate that the deacylated-tRNA can be 

released from the ribosome via three possible different pathways, depending on the 
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conditions.  Further, in Chapter V, we begin to demystify the interaction that the E-site 

region of the ribosome has with deacylated-tRNAs in solution, and demonstrate the 

changes on deacylated-tRNA release when excess tRNAs are present. 

 The optimization of the creation of a viable E-site probe will prove to be 

important for future studies in both kinetic work and single molecule work when focusing 

on tRNA interaction with the E-site of the ribosome. 
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1.1 Protein Synthesis and the Ribosome 

 Deoxyribonucleic acids (DNAs), ribonucleic acids (RNAs), and proteins are 

known as the building blocks of life because they are responsible for storing and 

expressing the genetic information that makes up all living organisms.  As described by 

the central dogma of molecular biology (Crick, 1970), DNAs are both replicated by 

DNA polymerases in order to preserve the genetic material (Kornberg, 1969; Watson 

and Crick, 1953a; Watson and Crick, 1953b), and transcribed into mRNAs by RNA 

polymerases. The mRNAs are subsequently translated into the amino acid sequences that 

compose proteins (Figure 1.1). DNA and mRNA are both composed of nucleotides 

containing the bases, adenine (A), cytosine (C), guanine (G), and either thymine (T) in 

DNA or uracil (U) in mRNA.  The unique mRNA sequence is translated with the help of 

transfer RNA (tRNA) and the ribosome machinery.  Initiation of ribosome mediated 

protein synthesis begins with recognition of an AUG mRNA codon, followed by triplets 

of nucleotides that code for different amino acids.  The linker between the mRNA codon 

and the amino acid is tRNA.  In bacterial cells there are about 40 tRNA molecules, each 

composed of about 76 nucleotides.  Amino acids are added to a conserved -CCA end of 

the tRNA via an esterification utilizing amino acid-specific tRNA-synthetases and ATP 

(Figure 1.2). tRNA-synthetases have both a catalytic and editing site in order to ensure 

the correct amino acid addition to a specific tRNA.  The tRNA also contains an anticodon 

stem-loop that recognizes the mRNA codon that codes for the specific amino acid.  These 

steps ensure that the cognate amino acids get correctly added to the peptide chain. 

 



!

"!

1.2 Ribosome Components 

 The ribosome is a complex molecular machine that is utilized to translate mRNA 

sequences into specific polypeptides through repeated cycles of tRNA selection and 

peptide elongation.  In both prokaryotes and eukaryotes the ribosome is made up of 

approximately two-thirds ribosomal RNA (rRNA) and one-third ribosomal proteins.  My 

thesis work has been performed entirely with prokaryotic ribosomes.  The Escherichia 

Coli (E. Coli) ribosome is a 2.5 MDa ribonucleoprotein assembly with a long dimension 

of ~200 Å, and a sedimentation coefficient of 70S.  The ribosome is composed of a large 

(50S) and a small (30S) subunit.  Each subunit can further be broken down into its rRNA 

and protein constituents. The large subunit is composed of 23S and 5S rRNA, and 34 

different proteins labeled L1 through L36. Interestingly the Ser-2 of large subunit protein 

L12 can be acetylated to form L7, and the dimer formed between L7/L12 interacts with 

L10 to form what is called L8. The small subunit is composed of 16S rRNA, and 21 

different proteins (S1-S21) (Table 1.1).  Each ribosome has three main tRNA-binding 

sites; the aminoacyl (A) site, the peptidyl (P) site, and the exit (E) site located at the 

subunit interface.  tRNAs progress through these sites in a stepwise fashion during the 

course of peptide elongation, as described below. 
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1.3 Bacterial Translation Cycle 

1.3.1 Initiation 

 Protein synthesis in prokaryotic cells begins when mRNA binds to the 30S 

subunit of the ribosome. The anti-Shine-Dalgarno sequence at the 3’ end of the 16S 

rRNA binds to the Shine-Dalgarno (SD) sequence of the mRNA and positions the AUG 

start codon in the P-site of the small subunit. With the help of three initiation factors (IF-

1, IF-2, and IF-3) the initiator tRNA (fMet-tRNAfMet) binds to the AUG codon in a 30S 

pre- P-site, and the 50S subunit combines with the 30S initiation complex (30SIC) to 

form the 70SIC, placing fMet-tRNAfMet into the P-site. With an empty A-site, this 

initiation complex is ready to proceed to the peptide elongation phase of protein synthesis 

(Figure 1.3). 

 

1.3.2 Peptide Elongation 

 Peptide elongation begins when a ternary complex consisting of elongation factor-

Tu (EF-Tu)bound with GTP, and an aminoacyl-tRNA corresponding to cognate codon in 

the A-site arrive at the A-site of the ribosome.  Proofreading at this point allows for 

discrimination between cognate and non-cognate codon-anticodon interactions. If the 

aminoacyl-tRNA anticodon is cognate with the mRNA in the A-site, GTP hydrolysis 

rapidly occurs allowing for tRNA accommodation into the A-site, and peptide bond 

formation (Pape et. al, 1998) (Figure 1.4, Figure 1.5). At this point the peptide and 
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nascent chain remain bound to the tRNA in the A-site while the deacylated-tRNA is 

located in the P-site.  Experiments initially done by Noller and coworkers provided 

evidence that the tRNAs in a post-peptide bond formation, pre-translocation state can 

sample hybrid states in which the peptidyl-tRNA can simultaneously occupy the 30S A-

site and the 50S P-site (A/P) and the deacylated tRNA can simultaneously occupy the 

30S P-site and the 50S E-site (P/E) (Moazed and Noller 1989). Further single molecule 

evidence on pre-translocation ribosomes provided evidence that the classical (A/A, P/P) 

and the hybrid (A/P, P/E) tRNAs are in a dynamic equilibrium (Blanchard et al., 2004), 

next, elongation factor G (EF-G) bound with GTP facilitates the translocation of the 

tRNAfMet, and the new peptidyl-tRNA to the E and P-sites, respectively.  This 

translocation proceeds via a kinetically competent intermediate (INT), in which the 

peptidyl-tRNA occupies the A/P hybrid state before completing translocation and 

occupying the P/P site (Pan et al., 2007) (Figure 1.6).  The tRNA translocation is 

concomitant with mRNA movement by one codon, putting a new codon in the A-site, 

ready for the next cognate tRNA-ternary complex to enter and turnover the cycle (Frank 

et al., 2007). Elongation and translocation continue until a stop codon (UAA, UAG, or 

UGA) enters the A-site.  

 

1.3.3 Termination of Protein Synthesis and Ribosomal Recycling 

 Once a stop codon reaches the A-site of a ribosome, either release factor 1 (RF-1, 

stop codon UAA or UAG) or release factor 2 (RF-2, stop codon UAA or UGA) binds and 

catalyzes the hydrolysis of the ester bond between the completed protein and the P-site 
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tRNA, causing the release and final folding of the protein, and the rapid dissociation of 

the RF by RF-3 and GTP (Zaviolov et al., 2002).  Finally, ribosome recycling factor 

(RRF), acting with EF-G and IF-3 removes the mRNA and tRNA from the ribosome and 

dissociates the 70S into the 30S and 50S subunits (Reviewed by: Kisselev and 

Buckingham, 2000; Rao and Varshney, 2001; Vesper and Wilson, 2006).  At this 

point, the factors and subunits are ready to reinitiate protein synthesis.  

 

1.3.4 Ribosome Movements During Translocation 

 The ribosome undergoes many conformational changes during translocation, not 

the least of which are subunit ratcheting and L1 stalk movement.  Early cryo-electron 

microscopy (Cryo-EM) work demonstrated that the binding of EF-G.GTP to a pre-

translocational ribosome induces a rotation of the 30S subunit relative to the 50S subunit 

of about 3°- 10° in the direction of mRNA movement (Frank et al., 2000) (Figure 1.7); 

further, the L1 stalk domain, consisting of ribosomal protein L1 and helices 76-78 of 23S 

rRNA moves ~20 Å towards the body of the ribosome (Figure 1.8) (Valle et al., 2003; 

Frank et al., 2007; Connell et al., 2007).  These movements, along with the tRNA 

hybrid state formation, also seen in early cryo-EM structures, creates an “unlocked” 

ribosome formation from which translocation can occur.  It was originally thought that 

addition of EF-G.GTP to a pre-translocation complex causes these unlocking movements; 

however, single-molecule fluorescence resonance energy transfer (smFRET) 

measurements later showed that individually, hybrid state formation (Blanchard et al., 

2004; Munro et al, 2007), L1 stalk closure (Fei et al., 2008; Cornish et al., 2009), and 
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subunit ratcheting (Cornish et al, 2009) could be spontaneously achieved in pre-

translocation complexes creating an equilibrium between locked and unlocked states.  

The manner in which these three structural transitions occur is highly debated, and still 

widely unknown. The current model is that these movements are uncoupled so that, 

although it is possible for all three to occur and create an unlocked complex in the 

absence of EF-G.GTP, it is a very low probability event. However, the presence of EF-

G.GTP stabilizes a ratcheted conformation, in which the rate of P/E hybrid state 

formation and L1 stalk closure become accelerated (Munro et al.,  2009, 2010).  

 

1.4 Ribosome Structure 

1.4.1 X-ray Crystallography  

 Ribosomeology was advanced exponentially in 2001 when Noller and coworkers 

first reported the low resolution structure of a 70S ribosome from Thermus thermophilus  

at 5.5 Å resolution (Yusupov et al., 2001).  Previous to this, the essentially complete 

atomic structures of the 50S (Haloarcula marismortui, 2.4 Å, Ban et al., 2000) and 30S 

(Thermus thermophilus, 2.0 Å, Wimberly et al., 2000) subunits were solved, and are still 

currently used for the basis of phasing and/or molecular interpretation of all structures of 

the ribosome or its subunits.  Cate and coworkers solved the first high-resolution 

structure of a 70S ribosome in 2005, with a 3.5 Å resolution structure of an empty E. coli 

ribosome (Schuwirth et al., 2005).  However, more important to our work is the high-

resolution structure of the ribosome with functional ligands attached; for example, the 
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Thermus thermophilus ribosome with mRNA and tRNA solved at 2.8 Å resolution by 

Ramakrishnan and coworkers in 2006 (Selmer et al., 2006).  This particular structure 

shows the 70S ribosome reconstructed with mRNA, cognate A- and P-site tRNA, and 

non-cognate E-site tRNA in a pretranslocation complex.  Also, the more recent high-

resolution structures solved by Ramakrishnan and coworkers, with either EF-

Tu.aminoacyl-tRNA (Schmeing et al., 2009), or EF-G (Gao et al., 2009) bound to the 

70S ribosome, with the latter structure showing the ribosome stabilized in a post-

translocation state, provides more insight into the elongation phase of protein synthesis.   

 Of particular interest to me is the structure of the highly mobile L1 stalk region on 

the ribosome.  Because of the high mobility of this region, the L1-stalk (as well as the 

L7/L12 stalk) is partly or completely disordered in most high-resolution structures of the 

ribosome or the 50S subunit.  However, the ribosomal protein L1 has been solved in 

isolation.  The first structure of the Thermus thermophilus L1 was solved by Nikonov and 

colleagues at 1.86 Å resolution in 1996 (Nikonov et al., 1996); however, this structure 

did little to determine how the L1 interacted with the ribosome.  It wasn’t until 2003 

when the structure of the Sulfolobus acidocaldarius L1 in complex with a specific 55-

nucleotide fragment of 23S rRNA from Thermus thermophilus was solved at 2.65 Å 

resolution and was able to be incorporated into the Thermus thermophilus 70S structure, 

and the Deinococcus radiodurans 50S structure, that we had a good understanding of 

what L1 looked like on a ribosome (Nikulin et al., 2003).  Later, a structure of the 

bacterial Thermus thermophilus L1 was modeled into the E. coli ribosome to provide an 
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even better look into the contacts between L1, tRNA and 23S rRNA (Nevskaya et al., 

2006).   

 

1.4.2 Cryo-electron Microscopy (Cryo-EM) 

 Cryo-EM has provided images of functional complexes of both prokaryotic and 

eukaryotic ribosomes with resolution below 10 Å (Mitra and Frank, 2006; Halic et al., 

2005; Chandramouli et al., 2008; Taylor et al., 2007; Li et al., 2008).  Although this 

resolution is well below the high resolution of X-ray crystallography, cryo-EM has the 

advantage of being able to image ribosomes frozen in specific functional states.  As 

mentioned previously, this is of significant importance when looking at the movements 

associated with translocation, specifically hybrid state formation and L1 movement 

(Valle et al, 2003; Connell et al, 2007).  Furthermore, a recent cryo-EM study showed the 

progression of tRNA movement during translocation in 50 distinct three-dimensional 

reconstructions, showing the tRNA in classical, hybrid and various novel intermediate 

states, that will prove to be useful to my thesis work (Fischer et al., 2010). 

 

1.5 Ribosomal Protein L1 

 The ribosomal protein L1 is one of the largest proteins in the 50S subunit, and is 

located near the exit site on a protuberance that is also composed of helices 76-78 from 

the 23S rRNA. In E. coli, L1 is composed of 234 amino acids, and folds into two 

domains with both the N- and C-termini of the protein located in domain I (Nikonov et 
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al., 1996).  Originally L1 was of profound interest because of its RNA binding activity. 

Not only does L1 bind rRNA in the L1 protuberance, it also has the ability to bind its 

own mRNA, thereby acting as its own repressor, and mediating autogenous regulation of 

translation by binding to a region within the leader sequence of the polycistronic mRNA 

of the L11 operon coding for ribosomal proteins L1 and L11 (Gourse et al., 1986).  Early 

crystal structures were determined with the L1 protein bound to both mRNA (Nevskaya 

et al., 2006) and rRNA (Nikulin et al., 2003), at similar locations within domain I 

(Figure 1.9).   

 Early biochemical results showed that E. coli ribosomes lacking L1 displayed 40-

60% reduced capacity for in vitro protein synthesis (Subramanian and Dabbs, 1980).  It 

wasn’t until two years later that the reason for the reduced protein synthesis was shown to 

be a direct result of L1 being important for the binding of tRNA to the ribosomal P-site 

(Sander, 1982).   

 The early cryo-EM information obtained by Valle and coworkers showed a large 

movement of the L1 protuberance towards the ribosome body upon binding of EF-G.  

This observation led to the hypothesis that, in the EF-G bound ribosome, the L1 

protuberance makes a direct interaction with the elbow of a deacylated-tRNA in the P/E 

hybrid configuration and possibly is involved in translocation of the newly deacylated 

tRNA (Valle et al., 2003).  These hypothesis were later corroborated with smFRET 

experiments in which the L1 protuberance was shown to occupy at least two (Fei et al., 

2008), or three (Cornish et al., 2009) distinct structural states depending on the positions 

and acylation states of the tRNAs bound to the ribosome.  For the majority of this thesis I 
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utilize a fluorescently labeled L1 that was originally introduced by Fei and coworkers, 

and was shown to be a more than adequate marker for probing the P- and E-site tRNA 

interaction with L1.   

 

1.6 Deacylated-tRNA Release From the E-site 

 Two fundamentally different roles of the E-site have been put forward.  One, 

introduced by Nierhaus and colleagues, suggests an “allosteric three-site model” of 

elongation, characterized by the following four features. 1) The ribosome contains three 

tRNA-binding sites, A-, P-, and E-, the latter being specific for deacylated tRNA. 2) The 

deacylated-tRNA does not fall off during translocation but moves from P- to E- site. 3) 

The two tRNAs that are present on the ribosome both before and after translocation 

undergo codon-anticodon interaction. 4) The ribosome can adopt two conformational 

states, pre-translocational and post-translocational; the first of which has high affinities 

for tRNA in the A- and P-sites, and the latter, which has high affinities for tRNA in the P- 

and E-sites. (Gnirke et al., 1989; Rheinberger and Nierhaus, 1986).  In contrast, 

Wintermeyer and colleagues proposed a second role of the E-site, suggesting that during 

translocation the deacylated-tRNA binds to the E-site transiently, promoting its release 

from the P-site (Lill and Wintermeyer, 1987; Lill et al., 1988; Semenkov et al., 1996).  

In this model, the E-site bound state exists as a transient intermediate, rather than a stable 

product of translocation.  One of the largest inconsistencies between these two models is 

whether or not the deacylated-tRNA remains bound to the E-site after translocation; 

however, this contradiction can be explained by differences in preparation, specifically 
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buffer conditions.  Nierhaus and colleagues worked with a more physiological buffer 

containing 4.5 mM Mg2+ and the polyamines spermine and spermidine, while 

Wintermeyer and colleagues primarily used a buffer with 7 mM Mg2+ and no polyamines. 

An experiment performed by Wintermeyer and colleagues, showed that either high Mg2+ 

(15-18 mM) or the presence of polyamines (as in Nierhaus’s buffer conditions), results in 

less deacylated-tRNA from being released from the E-site instantaneously, whereas, in 

the buffer conditions with 7 mM Mg2+ and lacking polyamines, 85% of the deacylated-

tRNA was released instantaneously (Semenkov et al., 1996).  It is important to gain a 

better understanding of how deacylated-tRNA behaves in the E-site because the 

occupancy of the E-site has been linked to many different functions on the ribosome.  For 

example, it has been postulated that an E-site occupied with a tRNA is involved in 

maintaining the reading frame at the decoding center (Reviewed by: Nierhaus, 2006).  

Further, occupancy at the E-site has been speculated to be involved in regulation of 

programmed frameshifting as seen on -1 frameshifting by Léger and colleagues (Léger et 

al., 2007), and +1 frameshifting by Liao and colleagues (Liao et al., 2008).  Moreover, 

recent single molecule work done in our lab has shown that tRNA occupancy in the E-

site inhibits EF-G assisted translocation (Chen et al., Manuscript submitted).  

 In the following thesis work, I will provide further evidence for three different 

pathways of deacylated-tRNA release from the ribosome by utilizing a fluorescently 

labeled ribosomal protein L1 as a specific E-site probe, and by following the FRET 

changes of fluorescently labeled tRNAs as they move into and out of the P/E hybrid state 

and E/E site.  This site specifically labeled L1 has been shown to provide FRET 

interactions with labeled tRNA in the P/P, P/E, and E/E sites, the latter two having 
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similar FRET signals (Fei et al., 2008).  Because of the highly mobile nature of the L1 

protuberance, I also follow deacylated-tRNA release by FRET changes between the 

deacylated-tRNA and the peptidyl-tRNA in the P-site.  By combining these two 

techniques along with the anisotropy change for a labeled deacylated-tRNA, I am able to 

provide distinct kinetic mechanisms for the release of deacylated-tRNA that depends on 

both buffer conditions and acylation state of the P-site tRNA that are novel, and that 

correspond nicely with the previous biochemical work, as well as current cryo-EM 

studies (Agrawal et al., 1999; Fischer et al., 2010). 

 In my most recent work, I studied the supposed allosteric interaction between the 

A-site and E-site tRNAs by measuring the rate of release of deacylated-tRNA through the 

loss of L1-tRNA FRET in a post-translocation complex.  As mentioned above, Nierhaus 

and colleagues first introduced the theory of an “Allosteric Three-site Model” in 1986 

(Rheinberger and Nierhaus, 1986). They utilized a poly-U mRNA and radioactively 

labeled tRNAs in order to show that addition of tRNA at the A-site, causes release of 

deacylated-tRNA from the E-site.  This study drew criticisms in literature that 

reinterpreted the data as a chase of E-site tRNA by the deacylated tRNA present in the A-

site substrate (Robertson and Wintermeyer, 1987).  Baranov and Ryabova raised 

further criticism, and explained the data as a release and rebinding of the deacylated-

tRNA to the A-site after translocation (Baranov and Ryabova, 1988).  Both of these 

criticisms were valid considering the homopolymeric nature of the mRNA used, giving 

rise to the fact that all three binding sites contained the same codon, and it was virtually 

impossible to prove the site location of the deacylated-tRNA.  These concerns were 

addressed in 1989, with the introduction of a heteropolymeric mRNA for translocation 
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studies. Nierhaus and colleagues showed that by adding an aminoacyl-tRNA that was 

non-cognate for the E-site to a translocated complex, the release of E-site tRNA was 

increased (Gnirke et al., 1989).  They went on to state that a competition between the 

newly added tRNA and the E-site bound deacylated-tRNA was unlikely because the 

newly added tRNA is non-cognate for the E-site; a sound theory given the previous 

biochemical data (Rheinberger et al., 1986). However, in my following thesis work I 

will go on to show that even non-cognate tRNA is able to compete for replacement of the 

deacylated-tRNA in an E’ (Fischer et al., 2010) or E2 (Agrawal et al., 1999) site that I 

claim the tRNA is located in under the above conditions.  My work shows that addition 

of a ternary complex to a POST translocated complex does not drastically increase the 

amount of deacylated-tRNA that is released any more than is seen with only deacylated-

tRNA added in excess to the complex.  
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 Ribosome Small Subunit Large Subunit 

Sedimentation 

Coefficient 
70S 30S 50S 

Molecular Weight 

(kD) 
2520 930 1590 

RNA    

Major  16S, 1542 nts 23S, 2904 nts 

Minor   5S, 120 nts 

Molecular Weight 

(kD) 
1664 560 1104 

Proportion of Mass 66% 60% 70% 

Proteins  21 polypeptides 34 polypeptides 

Molecular Weight 

(kD) 
857 370 487 

Percentage of Mass 34% 40% 30% 

!

Table 1.1 Components of E. coli Ribosomes 

This table is adapted from (Voet et al., 2006). 
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Figure 1.1. Central dogma of  molecular biology. 

This figure is adapted from (Crick, 1970) 
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Figure 1.1 The Central Dogma of Molecular Biology  

Figure adapted from (Crick, 1970) 
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Figure 1.2 Aminoacyl-tRNA Charging Reaction   
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Figure 1.3 Overview of Bacterial Translation  

This figure is taken from (Schmeing and Ramakrishnan, 2009). 
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Figure 1.4 Mechanism of EF-Tu-dependent Binding of Aminoacyl-tRNA to the 

Ribosomal A-site. EF-Tu (light green) is depicted in three conformations: the GTP-

bound form, the transient GTP-activated form on the ribosome (G domain dark green) 

and the GDP-bound form, which dissociates from the ribosome.  

 

This figure is taken from (Pape et al., 1998). 
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Figure 1.5 Mechanism of Peptide Bond Formation 

 

This figure is taken from (Schmeing and Ramakrishnan, 2009). 
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Figure 1.6 Mechanism of Translocation Showing Stepwise Movement of tRNA After 

GTP Hydrolysis  

 EF-G.GTP binding to the PRE complex and GTP hydrolysis are rapidly followed 

by formation of the INT which is more slowly converted to  POST complex. Thiostrepton 

and viomycin inhibit INT formation, whereas spectinomycin selectively inhibits INT 

disappearance.   

 

This figure and text is taken from (Pan et al., 2007). 
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Figure 1.7 Relative Ribosomal Subunit Rotation  

A and B: Cryo-EM images of 70S-Puromycin samples before (A) and after (B) addition 

of EF-G.GDPNP, note the red arrows indicating the 30S subunit rotation, as well as the 

L1 protuberance movement. C: Schematic showing the rotation of the 30S subunit 

around the h27 helix. 

 

This figure was adapted from (A and B: Valle et al., 2003, C: Fischer et al., 2010). 
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Figure 1.8 L1 Stalk Movements 

Cryo-EM images of the 50S subunit in the open form without EF-G.GDPNP bound 

(semi-transparent pink) and the closed form with EF-G.GDPNP bound (solid blue). 

 

This figure was taken from (Valle et al., 2003). 
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Figure 1.9 Crystal Structure of L1 

The crystal structure of L1 bound to either A) mRNA or B) a 23S rRNA fragment. 

 

This figure was adapted from A. Nevskaya et al., 2006; B. Nikulin et al., 2003 

 

!
A. B. 
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Chapter II: Materials and Methods 
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2.1 Materials 

2.1.1 Buffers 

 The following buffers were prepared in 18 ! Milli-Q purified water, and the pH 

was adjusted at 25 °C, unless otherwise stated. 

Buffer A (Wintermeyer Buffer): 50 mM Tris-HCl, pH 7.5, 30 mM NH4Cl, 70 mM KCl, 

7 mM MgCl2, 1 mM DTT; T50A30K70M7D1 

Buffer B (Nierhaus Buffer): 20 mM Hepes-KOH, pH 7.6 @ 0° C, 150 mM NH4Ac, 4.5 

mM MgAc2, 4 mM "-mercaptoethanol, 2 mM spermidine, 0.05 mM spermine; 

H20A150M4.5B4S2Sp0.05  

Buffer C: 50 mM Tris-HCl, pH 7.5, 5 mM NH4Ac, 100 mM KCl, 0.5 mM CaAc2, 15 

mM MgAc2, 5 mM  putrescine, 1 mM spermidine, 6 mM "-mercaptoethanol, 

T50A5K100Ca0.5M15P5S1B6 

Ribosome Lysis Buffer: 20 mM Tris-HCl, pH 7.5, 100 mM NH4Cl, 10 mM MgAc2, 0.5 

mM Ethylenediaminetetraacetic Acid (EDTA), 3 mM "-mercaptoethanol 

Ribosome Cushion Buffer: 1.1 M Sucrose in 20 mM Tris-HCl, pH 7.5, 500 mM NH4Cl, 

10 mM MgAc2, 0.5 mM (EDTA), 3 mM "-mercaptoethanol 

Ribosome Wash Buffer: 20 mM Tris-HCl, pH 7.5, 500 mM NH4Cl, 10 mM MgAc2, 0.5 

mM (EDTA), 3 mM "-mercaptoethanol 

70S TC Zonal Buffer: 10 mM Tris-HCl, pH 7.5, 60 mM NH4Cl, 7 mM MgAc2, 0.25 

mM EDTA, 3 mM "-mercaptoethanol 
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MRE 600 Ribosome Storage Buffer: 50 mM Tris-HCl, pH 7.5, 70 mM NH4Cl, 30 mM 

KCl, 7 mM MgAc2, 0.5 mM EDTA, 1 mM DTT 

MRE 600 Subunit Storage Buffer: 20 mM Tris-HCl, pH 7.5, 100 mM NH4Cl, 10 mM 

MgCl2, 1 mM !-mercaptoethanol 

Subunit Separation Buffer: 20 mM Tris-HCl, pH 7.5, 200 mM NH4Cl, 2 mM MgCl2, 2 

mM !-mercaptoethanol 

L1 Lysis Buffer: 50 mM NaH2PO4, pH 7.0, 300 mM NaCl, 1 mM PMSF 

L1 Wash Buffer: 50 mM NaH2PO4, pH 7.0, 300 mM NaCl 

L1 Storage Buffer: 20 mM Tris-HCl, pH 7.5, 400 mM NH4Cl, 4 mM MgCl, 0.2 mM 

EDTA, T20M4A400B4E0.2 

L1 Labeling Buffer: 50 mM Tris-HCl, pH 7.5, 400 mM NH4Cl 

Reconstitution Buffer: 10 mM Tris-HCl, pH 7.5, 150 mM NH4Cl, 8 mM MgAc2, 5 mM 

!-mercaptoethanol, T10MAc8A150B5 

Reconstitution Cushion Buffer: 20 mM Tris-HCl, pH 7.5, 200 mM NH4Cl, 2 mM 

MgAc2, 2 mM !-mercaptoethanol, 1.1 M Sucrose 

Buffer RS1: 0.02 M Tris-HCl, pH 7.3, 0.01 M MgCl2, 0.3 M NaCl, 0.5 mM EDTA, 6 

mM !-mercaptoethanol 

Buffer RS2: 50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 10 mM !-mercaptoethanol 

Buffer RS3: 10 mM NaH2PO4, pH 7.2, 1 mM EDTA, 5 mM !-mercaptoethanol, 10% 

Glycerol 
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Buffer D: 20 mM NH4Ac, pH 5.0, 10 mM MgAc2, and 400 mM NaCl 

Buffer E: 20 mM NH4Ac, pH 5.0, 10 mM MgAc2, and 400 mM NaCl, 30% ethanol  

(v/v) 

Buffer F: 20 mM NH4Ac, pH 7.0, 10 mM MgAc2, and 400 mM NaCl 

Buffer G: 20 mM NH4Ac, pH 7.0, 10 mM MgAc2, and 400 mM NaCl, 30% ethanol (v/v) 

Buffer H: 50 mM NaAc, pH 5.0 

Buffer I: 50 mM NaAc, pH 5.0, 1 M NaCl 

SOC Media: 2% w/v bacto-tryptone, 0.5% w/v bacto-yeast extract, 10 mM NaCl, 2.5 

mM KCl, 10 mM MgCl2, 20 mM glucose 

 

2.1.2 Reagents 

 All aqueous solutions were prepared in diethyl pyrocarbonate (DEPC) treated 

water, in which 0.1% (v/v) DEPC (Sigma-Aldrich) was added to 18 ! Milli-Q purified 

water, incubated overnight, and then autoclaved (Sambrook and Russell, 2001).  

 The E. coli tRNAs used as well as the Yeast tRNA
Phe

 were purchased from 

Chemical Block (Moscow, Russia) and used without further purification, unless 

otherwise noted.  

 Rhodamine 110 (Rhd110) was purchased from Sigma-Aldrich.  Rhd110, 

C20H15ClN2O3, M.W. 366.80, has maximum absorbance at 499 nm and maximum 

emission at 521 nm in methanol. The corresponding wavelengths in aqueous solution at  
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pH 7.0 are 496 nm (extinction coefficient, 90,000 cm-1
 M-1) and 530 nm, respectively.  

 The CyDye
TM

 reagents used were purchased from GE Healthcare.  Cy3 hydrazide, 

M.W. 765.95, has a maximum absorbance at 550 nm (extinction coefficient, 150,000 M
-1 

cm
-1

), and a maximum emission at 570 nm.  The Cy5 hydrazide, M.W. 791.99, has a 

maximum absorbance at 649 nm (extinction coefficient, 250,000 M
-1 

cm
-1

), and a 

maximum emission at 670 nm.  The Cy3 and Cy5 maleimide dyes, M.W. 791.0 and 

817.0 respectively, have the same spectroscopic properties as the hydrazide cohorts. 

 Stock solutions of ampicillin and chloramphenicol (Sigma-Aldrich) were made in 

water to 20 mg/mL and 15 mg/mL, respectively.  Stock solutions of puromycin were 

made in the respective buffers prior to use and the pH was adjusted to 7.5. 

 Stock solutions of ATP were made to 100 mM and the pH was adjusted to 7.5.  

Stock solutions of 100 mM GTP were purchased from GE. 

 

2.2 Methods 

2.2.1 Ribosome Preparations 

2.2.1.1 70S Ribosomes From MRE 600 Cells 

  Tight-coupled 70S ribosomes were prepared from E. coli MRE 600 cells as 

described (Rodnina and Wintermeyer, 1995) with slight modifications.  Approximately 

65 g of frozen cells (15-L culture) were resuspended in 100 mL of Ribosome Lysis 

Buffer and opened by French press (SML Instruments, Inc.) at 10 K-12 K psi.  To 

eliminate cell debris, the opened cells were centrifuged at 15 K rpm for 30 min (SS-34 
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rotor) then the supernatant was removed and re-centrifuged for 60 min in an SS-34 rotor. 

The supernatant, now called S30, was layered on top of 22 mL of Ribosome Cushion 

Buffer and centrifuged at 30 K rpm, for 21 hours, in a Ti 45 Beckman rotor.  The 

supernatant of this centrifugation (S100) is removed and used to prepare aminoacyl-

tRNA synthetases.  The pellets were resuspended in 35 mL of Ribosome Wash Buffer, 

transferred to SS34 centrifuge tubes, and centrifuged at 15 K rpm for 15 min to remove 

any left over debris.  The supernatant was layered on top of 10 mL of Ribosome Cushion 

Buffer and centrifuged at 30 K rpm for 21 hours in a Ti 45 Beckman rotor.  This step was 

repeated two more times and the final pellets were resuspended in 70S TC Zonal Buffer. 

The tight-coupled 70S ribosomes were isolated from the subunits by zonal centrifugation 

in a Beckman Ti 50 rotor (20 K rpm, 16 hours) on a gradient from 10% to 50% sucrose in 

the desired buffer for future experiments. Concentration was determined by A260 with 1 

A260 equal to 26 pmol 70S. 

2.2.1.2 Subunits from MRE 600 Cells 

 Ribosomes were prepared as described above; however, after the final 

centrifugation, the pellets were resuspended in Subunit Separation Buffer.  The lower 

Mg
2+

 concentration of the Subunit Separation Buffer will facilitate the subunit 

dissociation and allow purification of 30S and 50S.  The subunits were then separated 

from the 70S and each other by zonal centrifugation in a Beckman Ti 50 rotor (20 K rpm, 

16 hours) on a gradient from 7.4% to 50% sucrose in Subunit Separation Buffer.  The 

concentration was determined for the 30S and 50S using A260 with 1 A260 equaling 39 

pmol 50S and 78 pmol 30S. 
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2.2.1.3 70S Ribosomes From –L1 Cells 

 Cells for ribosomes lacking the large subunit protein L1 (MV17-10, originally used 

by Subramanian and Dabbs, 1980) were a kind gift from Dr. Knud Nierhaus (Max-

Planck Institute, Germany), and were grown in 15 L Luria-Bertani (LB) media for 18 

hours.  Approximately 65 g of the frozen cells were resuspended in Ribosome Lysis 

Buffer, and then the protocol for purification of MRE-600 70S was followed until the 

Zonal centrifugation.  Prior to the zonal centrifugation, an analytical 70S TC separation 

was performed using Zonal Buffer containing either 1, 6, 7, or 8 mM Mg
2+

 in order to 

determine the optimum Mg
2+

 concentration for 70S TC formation.  70S ribosomes were 

the dominant form at Mg
2+

 concentrations above 6 mM; therefore, the zonal 

centrifugation was performed with 6 mM Mg
2+

, just like for the MRE 600 ribosomes.  

Absence of the L1 protein as determined by SDS-PAGE analysis of the 70S –L1 

ribosomes proved inconclusive due to the similar, SDS-PAGE analyzed, molecular 

weights of L1 (26,700 Da), S2 (28,300 Da), S3 (28,200 Da), and especially S4 (26,700 

Da).  Therefore, subunit separation was necessary in order to conclude that L1 was 

indeed absent.  

2.2.1.4 Subunits from –L1 Cells 

 The –L1 ribosomes were prepared as described above, and resuspended in Subunit 

Separation Buffer.  The –L1 ribosomal subunits were then separated from the 70S by 

zonal centrifugation in a Beckman Ti 50 rotor (20 K rpm, 16 hours) on a gradient from 

7.4% to 50% sucrose in Subunit Separation Buffer (Figure 2.1 A).  The 30S and 50S 

were collected and the 50S were analyzed by SDS-PAGE to ensure that the subunits 
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lacked ribosomal protein L1 (Figure 2.1 B). 

 

2.2.2 mRNA Preparations 

 mRNA022 was prepared by transforming pTZ118 plasmid containing the 022 

sequence under a T7 promoter (provided by C. Gualerzi, University of Camerino) into 

JM109 cells. The plasmid was extracted from cells using Qiagen Plasmid Maxi kit, and 

linearized by the restriction enzyme HindIII.  In vitro transcription was conducted using 

the EPICENTRE Ampliscribe T7 Flash Transcription Kit.  mRNA was isolated from 

other components in the reaction mixture by precipitation with 2.5 M pre-chilled LiCl on 

ice for 30 min, and then ethanol precipitated two times (2.5 volume of 95% ethanol, and 

1/10 volume of 0.3 M NaAc (pH 5.2), > 1 hour at -20°C).  The purity was confirmed by 

urea-PAGE (Figure 2.2 A) and A260/A280 (2.0 ± 0.2) and the concentration was 

determined by A260 using the extinction coefficient of 0.04 mg/A260. 

 022MFK-mRNA was purchased from Dharmacon (Lafayette, CO) with the 

sequence GGG AAG GAG GUA AAA AUG UUU AAA CGU AAA UCU ACU 

(initiator codon underlined). Both the transcribed mRNA022 and the purchased 

022MFK-mRNA were tested for activity by the amount of [
35

S]-fMet-tRNA
fMet

 bound to 

the ribosome as a function of mRNA concentration (Figure 2.2 B). 
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2.2.3 Protein Preparations 

2.2.3.1 Preparation of Protein Factors 

 The cloned elongation factors EF-G (E. coli) and EF-Tu (S. aureus), C-terminally 

His-tagged, were provided as kind gifts from Drs. Wilson and Noller (University of 

California, Santa Cruz), and Dr. M. Sassanfar (Harvard University), respectively.  Dr. T. 

Ueda (University of Tokyo) kindly provided the E. coli N-terminal His-tagged initiation 

factors, IF-1, IF-2, and IF-3.  Finally, Dr. Y.M. Hou provided the PheRS and LysRS.  

The protein factors were all purified (by me: EF-Tu, EF-G; or by others in the lab: 

Initiation factors) from either Ni-NTA (Qiagen) or TALON Superflow (Clonetech) metal 

affinity columns.  The EF-G underwent further purification via FPLC Mono-Q column 

using a gradient of 50 mM - 350 mM KCl in in 50 mM Tris-HCl (pH 7.5), 10 mM 

MgCl2, 0.5 mM EDTA, and 6 mM 2-mercaptoethanol.  The proteins were dialyzed 

against Buffer A lacking Mg
2+

 overnight, and then dialyzed against Buffer A for 3 hours. 

The Bradford Assay (Bradford, 1976) was used to determine the final protein 

concentrations, and SDS-PAGE was used to ensure the final purity of the protein factors.  

 As with the mRNA, the activity of each of the initiation factors was determined by 

measuring the amount of [
35

S]-fMet-tRNA
fMet

 bound to tight-coupled 70S ribosomes.  

Each of the initiation factors measured promoted initiator tRNA binding to the ribosome 

to reach a plateau of ~0.5-0.6 [
35

S]-fMet-tRNA
fMet

 /70S. The remaining unbound 

ribosomes are a result of either inactive ribosomes, or the binding of the non-radioactive 

tRNA
fMet

.  

 The activity of EF-Tu was measured by binding of [
14

C]-GDP.  Varying amounts of 
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purified EF-Tu were added to an excess of [
14

C]-GDP, in 20 mM Tris-HCl, pH 7.6, 100 

mM NH4Cl, 10 mM MgCl2, and incubated for 20 min at room temperature.  The EF-Tu. 

[
14

C]-GDP complexes were collected on 0.45 µm nitrocellulose filters (Millipore), and 

washed with 4 x 1 mL of the above buffer.  The concentration of active EF-Tu measured 

via this assay is then used to determine the corrected EF-Tu concentration used in all 

future experiments and is typically 65-75% of those determined by Bradford Assay. 

(Figure 2.3) 

2.2.3.2 Preparation of Ribosomal Protein L1 

2.2.3.2.1 Wild Type L1 Expression and Purification  

 The expression and purification of L1 was optimized through various growing 

conditions and purification techniques and is summarized in Chapter III. Below are the 

best conditions for growing and purification. 

 A clone of the E. coli ribosomal protein L1 was a kind gift from Dr. R. Zimmerman 

(University of Massachusetts).  The cells were initially grown on an LB-agar plate 

containing 50 µg ampicillin/mL at 37 °C overnight.  A single colony was selected from 

the plates, and grown in 5 mL LB containing 50 µg ampicillin/mL at 37 °C for 18 hours, 

until the solution became visibly cloudy with cell density. Pre-warmed large-scale LB 

growths were then inoculated with 1/1000 volume of the overnight culture, and grown to 

an OD595 of ~0.8.  IPTG was added to a final concentration of 1 mM, and the growth 

temperature was dropped to ~20 °C, in order to limit the amount of L1 inclusion bodies, 

and grown for 18 hours.  The cells were centrifuged into a pellet, quick-frozen and stored 

at -80 °C. 
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 Approximately 8 g of frozen cells were resuspended in 30 mL L1 Lysis buffer with 

1/100 Protease Inhibitor Cocktail Set 1 (Calbiochem) by light vortexing and 

homogenizer.  French press (12 K- 16 K psi), performed 3 times, was used to open the 

cells which were then centrifuged at 16,000 rcf (relative centrifugal force, as measured 

by: RCF= [r (2!N)
2
]/g; where r is the rotational radius of the rotor, N is rotational speed, 

and g is the earth’s gravitational acceleration. rcf can be used in place of rpm when the 

rotor used for the centrifugation changes, both rpm and rcf are readily available readouts 

on the centrifuge) for 20 mins at 4 °C.  The supernatant was then added to TALON 

Superflow (Clonetech) resin which was previously washed three times with ~10 bed 

volumes of L1 Wash Buffer.  The supernatant/resin mixture was gently agitated for 60 

min at 4 °C on a platform shaker.  The mixture was gently centrifuged at 700 rcf for 5 

min to pellet the resin, and the supernatant was removed and saved for SDS-PAGE 

analysis.  The resin was washed with 10 bed volumes of L1 Wash Buffer for 10 min at 4 

°C, and again centrifuged at 700 rcf for 5 min.  The above was repeated 2 more times for 

a total of 3 washes.  After the final wash, the resin was resuspended in ~15-20 mL of 

Wash Buffer and put into a column for elution.  The His-tagged L1 was eluted from the 

resin using a 25 mM, 50 mM, 150 mM, and  300 mM imidazole stepwise gradient in L1 

Wash Buffer.  The fractions containing L1, as determined by 12% SDS-PAGE (Figure 

3.4 B), were pooled and dialyzed against L1 Storage Buffer without Mg
2+

 overnight, then 

against L1 Storage Buffer for 3 hours.  The dialyzed samples were concentrated through 

4-mL Millipore centrifugal tubes with a molecular weight cutoff of 10,000 in a SLA-

1500 rotor at 7500 rcf.  The concentration of the final sample was determined through 

Bradford Assay, using bovine serum albumin (BSA) as the standard.  The Coomassie 
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Brilliant Blue G-250 (Bradford reagent) reacts primarily with arginine, and less so with 

histidine, lysine, tyrosine, tryptophan, and phenylalanine that are present in the analyzed 

protein.  Known concentrations of BSA are used to make a standard curve to determine 

the concentration of the L1 protein; therefore, it is advantageous if the L1 has similar 

features to BSA. BSA and L1 contain similar percentages of Arg (BSA: 4.3%; L1: 4.7%), 

Lys (BSA: 9.9%; L1: 9.8% ), and Trp (BSA: 5.6%; L1: 5.5%) out of total protein; 

however, BSA contains ~2-3 times more of the other reactive amino acids.  Therefore, 

BSA may provide a fairly accurate standard curve for reading of L1 concentration, and, if 

anything, underestimates the L1 concentration.  Other measurements also provide 

information about the accuracy of the concentration of L1.  During reconstitution of a 

labeled L1 in to –L1 50S subunits, when analyzed by SDS-PAGE, the L1:50S ratio is 1:1 

(Section 2.2.3.3.4) and the label:50S depends solely on the labeling efficiency of the L1.  

Therefore, it would appear that the calculation to determine labeling efficiency (using the 

L1 concentration from the Bradford Assay) is accurate.  Previously, L1 concentration has 

been determined by “Folin Phenol Reagent” (Dabbs et al., 1981), but more recent 

concentration determinations have not been mentioned. 

2.2.3.3 Ribosomal Protein L1 Mutants 

2.2.3.3.1 Primer Design For Site-directed Mutagenesis 

 The Stratagene QuickChange Site-Directed Mutagenesis Kit was utilized to 

construct five mutations of L1 (S40C, K54C, V177C, T202C, V221C).  According to the 

kit’s manual, the following principles were followed when designing primers: 1) Both of 

the mutagenic primers must contain the desired mutation and anneal to the same 
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sequence on opposite strands of the plasmid. 2) Primers should be between 25 and 45 

bases in length, with a melting temperature (Tm) of ! 78 °C. The following calculation 

was used to determine Tm for the primers. 

 

 Tm = 81.5 + 0.41(%GC) – 675/N     Equation 2.1 

 

, where N is the primer length in bases, and % GC is a whole number.  3) The desired 

mutation should be in the middle of the primer with ~10-15 bases of correct sequence on 

both sides. 4) The primers optimally should have a minimum GC content of 40% and 

should terminate in one or more C or G bases (Figure 2.4). 

2.2.3.3.2 Mutagenesis  

 In a 50 uL reaction volume, 50 ng of double-stranded template L1 DNA, 125 ng of 

each plasmid, 1 uL dNTP mix, 5 uL of the 10x reaction buffer, enough DEPC H2O to 

reach 50 uL, and lastly 1 uL of 25 U/mL pFu Turbo DNA polymerase were prepared for 

PCR.  The PCR thermocycler was set up for three segments: 1) 1 cycle at 95 °C for 30 

sec; 2) 16 cycles at 95 °C for 30 sec, 55 °C for 1 min, and 68 °C for 7 min; 3) 1 cycle at 4 

°C for 10 min; however, the sample can be left at 4 °C up to at least 18 hours.  After the 

PCR reaction was complete, 1 uL 10 U/µL Dpn I restriction enzyme were added directly 

to each amplification reaction, and incubated at 37 °C for one hour in order to digest the 

parental DNA.   

 Transformation was performed by adding 1 uL of the Dpn I digested PCR product 
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to 50 uL of XL1-Blue super-competent cells in pre-chilled 14-mL polypropylene round-

bottom tubes and incubating on ice for 30 min. The transformation reactions were heat 

shocked at 42 °C for 45 sec and then kept on ice for 2 min.  0.9 mL SOC media, pre-

heated to 42 °C, was added to the tube and incubated at 37 °C for one hour.  50 µL of the 

transformed cells were added to LB-agar plates containing ampicillin (20 µg/mL) and 

tetracycline (10 µg/mL), and allowed to incubate for 24-36 hours.  Single colonies were 

inoculated into 6 mL of LB broth and grown overnight. 1 mL of the cell cultures were 

used to make glycerol stocks, and the remaining 5 mL were prepared for sequence 

analysis. Plasmid DNA was extracted and purified from the overnight culture by a 

QIAprep Spin Miniprep Kit (Qiagen), and then sent for sequence analysis (Figure 2.5).  

2.2.3.3.3 Fluorescent Dye Labeling of Mutated L1 

 The single mutations of L1 were over-expressed and purified similarly to the wild 

type L1, and concentrated to ~ 2 mg/mL in 0.5 mL L1 Storage Buffer.  The concentrated 

mutant L1 was exchanged into L1 Labeling Buffer by using a NAP-5 (GE-Healthcare) 

column, which was pre-washed and pre-equilibrated with 10 mL of the L1 Labeling 

Buffer. The protein was eluted with 1 mL of the L1 Labeling buffer. Tris(2-

carboxyethyl)phosphine (TCEP) was added to the exchanged protein to a final 

concentration of 1 mM.  A 1-mg package of Amersham Cy3- or Cy5-maleimide mono-

reactive dye (GE-Healthcare) was resuspended in 50 uL dry dimethylformamide (DMF).  

The dye was added to the L1 drop-wise and incubated in a 37 °C shaking water bath for 

one hour.  Adding !-mercaptoethanol to a final concentration of 43 uM, and shaking at 

room temperature for 10 min, stopped the reaction.  During the incubation, a 30 mL 
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Sephadex G-25 column was pre-washed with 60 mL Milli Q-H2O, and pre-equilibrated 

with >75 mL of the L1 Storage Buffer.  After the reaction was stopped, the reaction 

mixture was added to the G-25 column in order to remove the excess Cy-dye. The labeled 

protein elutes out of the column first and the fractions that were high in A552 (Cy3) or 

A652 (Cy5) were collected and pooled.  The pooled fractions were concentrated in 4-mL 

Millipore centrifugal tubes with a molecular weight cutoff of 10,000 in a SLA-1500 rotor 

at 7500 rcf, and analyzed by Bradford Assay for protein concentration, and A552 or A652 

for the dye concentration. Typical Cy/L1 ratios were 0.6 ± 0.2 (Table 3.1).  It was shown 

previously that it is possible to separate labeled from unlabeled L11 using FPLC 

separation; therefore, several attempts were made in order to separate the labeled L1 from 

unlabeled L1 using similar techniques, but all proved to be unsuccessful. Further, the 

labeled T202C-L1 (Cy5) was analyzed using MALDI (Section 3.3.2.3, Figure 3.5), and 

showed an increase of approximately 750 Da for the labeled sample, which corresponds 

nicely with the molecular weight of the Cy5 dye.  

2.2.3.3.4 Reconstitution of Cy-Labeled L1 into 50S of –L1 Subunits 

 Initial attempts to reconstitute the either the wild type, mutated, or labeled L1 into 

70S –L1 ribosomes resulted in non-specific binding of the L1 to the ribosome, as seen 

through control experiments (Section 3.3.3.1, Figure 3.6). Therefore, reconstitution was 

performed using the 50S subunits of the –L1 ribosomes; this change not only doesn’t 

show non-specific binding of the L1, but also allows the reconstitution to be observed via 

SDS-PAGE analysis. Wild type, mutated, or labeled L1 was added in a 2x excess of the 

50S subunits lacking L1 in Reconstitution Buffer to a total of 150 uL, and incubated at 37 
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°C for 15 min.  The mixture was layered above 400 uL Reconstitution Cushion Buffer, 

and centrifuged at 110 K rpm for 40 min (S120-AT2 rotor).  The resulting pellet was 

resuspended in Buffer A, B, or C, and analyzed by SDS-PAGE. In all cases, except the 

S40C mutant, the L1 band in the reconstituted samples revealed ~1:1, 50S to L1 

reconstitution, where band density in the SDS-PAGE gels was used to determine 

reconstitution efficiency (Table 3.2).  Specifically, the ratio of band density from L1/L2 

was determined for the reconstituted samples, and compared to the ratio of L1/L2 for the 

wild type 70S ribosomes.  The ratio of these two numbers determined the reconstitution 

efficiency. In the cases where a labeled L1 was used, the Cy5 : 50S ratio was 0.6 ± 0.2 

depending solely on the labeling efficiency of the L1 (Figure 2.6). 

2.2.3.4 Preparations of crude Yeast and E. Coli Aminoacyl Synthetases 

 The procedure of Kemkhadze and coworkers was followed to prepare E. coli 

aminoacyl-tRNA synthetases (Kemkhadze et al., 1981).  The S-100 fraction obtained 

from the ribosome preparation in Section 2.2.1.1 was dialyzed against Buffer RS1, and 

approximately 375 A280 units were loaded onto a 50 mL DEAE-Cellulose column (2 cm x 

20 cm) that was first equilibrated with Buffer RS1.  The loaded sample was then eluted 

from the column with Buffer RS1.  Fractions determined to have a A280/A260 greater than 

1.5 were pooled, frozen, and kept at -80 °C in small aliquots.  Bradford Assay determined 

protein concentrations. 

 Crude yeast aminoacyl-tRNA synthetases were prepared as described (Lagerkvist 

and Waldenstrom, 1964). Approximately 6 g of dry yeast from Saccharomyces 

cerevisiae, Type II (Sigma) was added to 40 mL of pre-chilled Buffer RS2, and incubated 
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at 4 °C for 20 min.  The yeast cells were opened by French press at 10-12 K psi repeated 

4 times, and, in an SS34 rotor, were centrifuged at 12 K rpm for 30 min.  The supernatant 

was re-centrifuged at 12 K rpm for another 30 min (SS34 rotor). At 4 °C, 1/10 volume of 

10% streptomycin sulfate in Buffer RS2 was added drop-wise with stirring to the 

supernatant in order to precipitate the nucleic acids.  The sample was then centrifuged at 

12 K rpm for 1.5 hours (SS34 rotor).  Ammonium sulfate fractionation was utilized to 

partially purify the synthetases by the following procedure.  Ceramic mortar and pestle 

were used to grind the ammonium sulfate powder, which was then slowly added with 

intense stirring to the supernatant to a concentration of 50% (313 g/L). After all the 

ammonium sulfate is dissolved, the solution was stirred for 40 min at 4 °C.  The solution 

was then centrifuged at 12 K for 1.5 hours (SS34 rotor). The pellet was dissolved in 80 

mL of Buffer RS3, and dialyzed against 3 L of Buffer RS3 for 3 x 1 hour.  The sample 

was then quick-frozen and kept at -80 °C in small aliquots. 

 

2.2.4 tRNA Preparations 

 In Chapters IV and V, I utilize initiator tRNA
fMet

 in a variety of states: 1) highly 

charged and highly labeled; 2) highly charged and unlabeled; and 3) uncharged and 

highly labeled.  The synthesis of the highly charged and highly labeled tRNA
fMet

 can be 

thought of as a three-step procedure, involving NaBH4 reduction, labeling with the Cy-

hydrazide, and aminoacylation using S100 for synthetase.  The optimal order of these 

reactions was determined by Pan and coworkers, where they found that reduction-

charging-labeling gives the best results (Pan et al., 2009).   For the highly charged and 
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unlabeled, only the charging was necessary; for the uncharged and highly labeled, 

labeling immediately followed the reduction.  Further, in order to obtain high 

stoichiometry of charging or of labeling, HPLC purification was necessary following 

either or both of the steps.  Elongator tRNA
Phe

, tRNA
Lys

, and tRNA
Arg

 are also used in 

either charged and labeled, or only charged states as described below (Figure 2.7). 

2.2.4.1 NaBH4 Reduction of tRNAs to be Labeled 

 The tRNAs utilized in this work were either labeled with Rhodamine 110 

(Rhd110), Cy3 hydrazide, or Cy5 hydrazide, at the dihydrouridine position(s) in the D-

loop of the tRNA. In order for either of these reactions to take place, the 

dihydrouridine(s) had to be reduced with NaBH4, to form 3-ureidopropanol, which was 

then replaced by the label.  This reduction to create tRNA(red) was carried out by 

incubating the tRNA (2.5 mg/mL), and NaBH4 (10 mg/mL, added from 100 mg/mL in 

0.01 M KOH), in 40 mM Tris-HCl (pH 7.5) at 0 °C for 60 min in a total volume of 400 

µL.  Three ethanol precipitations then followed in order to remove any unreacted NaBH4.  

2.2.4.2 Aminoacylation of tRNAs 

 Unlabeled tRNA
fMet 

or tRNA
fMet

(red) was charged and formylated with partially 

purified E. coli tRNA synthetase from S100 (described above) which contain MetRS and 

formyl-transferase.  The reaction was carried out with 15-20 µM tRNA
fMet 

or 

tRNA
fMet

(red), 720 µM folic acid (as formyl donor), 67 µM [
35

S]-methionine (~300 

cpm/pmol) and between 1/5-1/20
th

 total volume of the crude E. coli tRNA synthetase (as 

optimized for each batch) in 100 mM Tris-HCl (pH 7.8), 4 mM ATP, 20 mM MgCl2, 1 

mM EDTA, 10 mM KCl, 7 mM !-mercaptoethanol, and 0.005 units/uL of inorganic 
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pyrophosphatase (TIPP) for 30 min at 37 °C. The aminoacylation reactions for E. coli 

tRNA
Lys

 and tRNA
Arg

, were similar except 100 µM [
3
H]-Lys or [

3
H]-Arg were used, 

respectively.   

 Unlabeled tRNA
Phe

 or tRNA
Phe

(red) was charged using purified yeast tRNA 

synthetase containing PheRS.  The reaction was performed with 20-30 µM tRNA
Phe

 or 

tRNA
Phe

(red), 100 µM [
3
H]-Phe (~200 cpm/pmol) and between 1/5 and 1/20

th
 total 

volume of yeast tRNA synthetase (optimized for each batch) in 100 mM Tris-HCl, 10 

mM ATP, 50 mM MgCl2, 2.5 mM EDTA, 3 mM !-mercaptoethanol, and 0.005 units/uL 

of TIPP for 30 min at 37 °C.  

 The above charging reactions were quenched with the addition of 1/10 volume of 

20% KAc pH 5.0, and extracted with 1 volume of Tris saturated phenol (pH 4.2 +/- 0.2) 

to remove proteins, followed by an extraction with 1 volume of chloroform to remove 

any remaining phenol.  The samples were then ethanol precipitated and the pellets were 

resuspended in 800 µL of either Buffer D for HPLC purification or Buffer H for FPLC 

purification. 

 The aminoacylated-tRNAs were further purified from poly-adenine byproducts 

through FPLC Mono-Q chromatography starting with a 15 mL wash with 50 mM NaAc 

(pH 5.0) followed by a linear gradient of 0-1 mM NaCl in 50 mM NaAc (pH 5.0) (Figure 

2.8).  As seen in Chapter IV, the ribosome is not blind to the aminoacylation state of the 

initiator tRNA.  Through the inherent difficulties associated with fully charging tRNA it 

was determined that separation of fMet-tRNA
fMet

 from tRNA
fMet

 is necessary, and this is 

possible through HPLC purification using C18/15µm column chromatography (Waters) 
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with a gradient of 6-21% ethanol in Buffer D (Figure 2.9).  The fractions were pooled and 

ethanol precipitated based on charging efficiency.  

2.2.4.3 Hydrazide Labeling of Reduced tRNA 

 Labeling of either charged or uncharged tRNA(red) with Cy3- or Cy5-hydrazide 

occurs at the now fully reduced dihydrouridine sites in the tRNA (fMet: 20, Phe: 16/17, 

Lys: 16/17/20).  The pellet of a dried tRNA(red) was resuspended in the smallest volume 

possible (typically 5-10 µL) of 0.1 M sodium formate (pH 3.7). Cy3 or Cy5 dye 

(resuspended from dry sample to ~200-300 mM in DMSO) was added to a final 

concentration of approximately 120-200 mM and incubated at 37 °C for 2 hours, 

followed by vacuum drying.  The dried sample was resuspended in 400 µL water and 

1/10 volume 20% KAc (pH 6.5), and ethanol precipitated three times to remove any 

excess dye.  Purification of labeled tRNAs from unlabeled tRNAs was accomplished 

through HPLC using the same column as above with a gradient of 0-30% ethanol in 

Buffer F at 4 °C (Figure 2.10). This separation technique was used for all combinations 

of charged and uncharged tRNA
fMet

, and tRNA
Phe

.   In each case the fractions were 

pooled, and in the case of the charged tRNAs separated based charging efficiency 

(typically 0.8-0.9 : 1) and labeling efficiency (fMet-tRNA
fMet

: ~1:1, Phe-tRNA
Phe

 ~1.5:1). 

Or in the case of the uncharged tRNAs, separated based only on labeling efficiency 

(tRNA
fMet

: 1:1) (Table 2.1).  

2.2.4.4 Rhodamine 110 Labeling of Reduced tRNA 

 0.1 mg/mL of either charged or uncharged tRNA(red) was added to 850 µL of 0.1 

M sodium formate (pH 3.0).  100 µL of 8 mg/mL rhodamine 110 in methanol was added 
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dropwise to the tRNA mixture and incubated at 37 °C for 90 min.  The reaction was 

stopped by adding 120 µL of 2M Tris-HCl (pH 7-8) and then performing a phenol and 

chloroform extraction as seen above.  The labeling reaction was analyzed by 

spectrophotometer and typically resulted in labeling efficiencies of Rhd110: Phe-tRNA
Phe

 

of 0.45:1 and Rhd110 : tRNA
Lys

 of 0.65:1 (Table 2.1). 

 

2.2.5 Complex Formation 

 All of the following complexes were incubated in a 37 °C water bath.  The 

complexes were purified using ultracentrifugation in the Sorvall Discovery M120SE 

ultracentrifuge with an S120-AT2-0372 rotor.  The 70SIC, PRE-1, and POST-1 

complexes were analyzed by tRNA binding and puromycin reactivity towards each 

species, which will be discussed later. 

2.2.5.1 70S Initiation Complex (70SIC) 

 Activated ribosomes were made by preheating mutant-50S or mutant-labeled 50S 

(2 µM) with 30S subunits (3 µM) for 10 min in either Buffer A or Buffer B.  The 

resulting activated ribosomes were incubated with mRNA (8-12 µM, depending on 

mRNA batch), IF 1 (3 µM), IF 2 (3 µM), IF 3 (3 µM), GTP (1 mM) and either charged 

and labeled, charged and unlabeled, uncharged and labeled, or uncharged and unlabeled, 

tRNA
fMet

 (3 µM) and incubated in Buffer A or B for 25 min.  Initiation complexes were 

purified by ultracentrifugation through 1.1 M sucrose cushion in either Buffer A or B at 

450,000 rcf for 40 min at 4 °C.  fMet-tRNA
fMet

 binding to the ribosome was determined 

through measuring [
35

S]-fMet-tRNA
fMet

 per ribosome, and/or label per ribosome; when 
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using HPLC purified tRNA, stoichiometries of tRNA bound were typically 0.7 : 1 and 

0.8 : 1, respectively However, the tRNA binding was strongly influenced by buffer and 

aminoacylation of initiator tRNA (Section 4.3.1.2.2, Table 4.3).  

2.2.5.2 Ternary Complex 

 Ternary complex was formed by incubating EF-Tu (6 µM) with unlabeled or 

labeled Phe-tRNA
Phe

, Lys-tRNA
Lys

, or Arg-tRNA
Arg

 (3 µM), GTP (1 mM), phosphoenoyl 

pyruvate (PEP, Roche Diagnostics, 1.5 mM), and pyruvate kinase (Roche Diagnostics, 

0.015 mg/mL) in either Buffer A or B for 5 min. 

2.2.5.3 PRE Complex 

 Incubating unpurified initiation complex with ternary complex for 1 min formed 

pre-translocation (PRE-1) complexes.  The PRE-1 complexes were purified in the same 

manner as the 70SIC, and resulted in similar fMet-tRNA
fMet

 binding efficiencies.  A-site 

binding was measured by the amount of fMet-[
3
H]-Phe/Lys/Arg-tRNA

Phe/Lys/Arg
 bound to 

the ribosome, and typically resulted in ~0.6 – 0.7 [
3
H]-tRNA / ribosome (Table 4.3). 

2.2.5.4 POST Complex 

 Post-translocation (POST-1) complexes were formed by incubating an unpurified 

PRE-1 complex with EF-G (2 : 1 for EF-G : 70S) and GTP (1 mM) for 1 min.  The POST 

complexes were purified in the same manner as the previous complexes.  Further, when 

measuring the transition from POST-1 to PRE-2 (Section 5.3.4), it is necessary to ensure 

that all EF-G has been removed from the POST-1 sample. To ensure ribosome 

purification from EF-G, ~30 pmol of purified POST complex was analyzed on a 12% 

SDS-PAGE gel and compared to unpurified POST, and EF-G alone (Figure 2.11).  As is 



!

"#!

evident in this figure, the ultracentrifugation of the POST complex through a sucrose 

cushion is effective in removing EF-G. 

 

2.2.6 Equilibrium Assays 

2.2.6.1 Filter Binding 

 Filter binding was used to determine the amount of tRNA bound to the ribosome, 

to determine initial charging efficiency of reactions in cooperation with TCA 

precipitation, and to determine the activity of EF-Tu.  To determine the amount of tRNA 

bound to the ribosome, the sample was filtered through a nitrocellulose filter (pore size 

0.45 µm, from Millipore), followed by 6 washes with 1 mL of either Buffer A or B.  

Initial tRNA charging efficiency is determined by first incubating 15 µL of the charging 

mixture with 400 µL of pre-chilled 5% TCA on ice for 60 mins.  That mixture is then 

passed through a nitrocellulose filter (pore size 0.45 µm, from Millipore), and washed six 

times with 1 mL of 5% TCA.  Determination of the activity of EF-Tu also uses filter 

binding and was described above (2.2.3.1). 

2.2.6.2 Sucrose Cushion Pull Down 

 Filter binding to determine the binding of tRNA has its benefit in that it uses very 

little sample and is relatively quick; however, the results vary greatly with the technique 

used in washing and filtering the sample.  In order to obtain a more accurate and precise 

measure of tRNA binding, a sucrose cushion pull down is performed.  However, it should 

be mentioned that some amount of tRNA that is loosely bound to the ribosome is lost 
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during sucrose cushioning, which is not lost during filter binding.  However, to determine 

the amount of [
35

S]-fMet-tRNA
fMet

 bound to a 70SIC, the 70SIC is made as above with a 

final amount of ribosome of approximately 40 pmol.  The complex is then layered onto a 

1.1 M sucrose cushion in either Buffer A or B, and centrifuged at 450,000 rcf for 40 min 

at 4 °C.  The pellet is then resuspended in either Buffer A or B, and a small aliquot is 

tested for radioactivity in the scintillation counter (Beckman LS6500). 

2.2.6.3 Puromycin Reactivity 

 Puromycin is an A-site-specific antibiotic that forms a peptide bond with 

peptidyl-tRNA in the P-site, but has almost no reactivity toward peptidyl-tRNA in the A-

site.  For the experiments presented here, the puromycin reactivity was only measured at 

equilibrium to provide further evidence of the tRNA location in the complexes.   For 

example, each of the complexes that were used in my experiments were tested for 

puromycin reactivity by incubating 0.1 µM complex with 5 mM puromycin (from 20 mM 

stock) for 15 s at 25 °C, the reaction was stopped with 0.3 M sodium formate (pH 5.0), 

and extracted with ethyl acetate.  The organic phase was analyzed in the scintillation 

counter to determine the amount of peptidyl-puromycin formed per ribosome (Table 2.2). 

2.2.6.4 FRET Measurements  

 Equilibrium FRET measurements were made on a photon-counting instrument 

(Fluorolog-3 spectrofluorometer, Horiba Jobin Yvon, USA). Typically three fluorescence 

traces were averaged for each result.  The experiments were performed at 25 °C by 

connecting the instrument to a circulating water bath.  The majority of the kinetic studies 

that were done were first tested at equilibrium because of the small amount of material 
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needed for these studies. The results of these equilibrium studies can be seen in Chapter 

4. 

 The complexes that utilized a Cy3/Cy5 FRET pair were excited at 518 nm 

(excitation band pass of 2 nm) and the emission spectrum from 550-750 nm was 

recorded.  For the equilibrium FRET, complexes containing only Cy3 (D*A), only Cy5 

(DA*), both dyes (D*A*), and no dyes (DA) were measured. The DA sample was 

subtracted from all other traces to correct for light scattering and background 

fluorescence, and relative FRET efficiency changes were determined by equation 2.2: 

 

! $%&'()*+!,-,!

 

Where E is the FRET efficiency, DA*’ is the extracted acceptor emission as calculated 

by the bottom equation. D*A*(A) is a sample with both donor and acceptor labeled, 

measured at the acceptor peak, D*A*(D) is the same complex measured at the donor peak.  

The DA* indicates a sample in which only the acceptor is labeled, and a D*A indicates a 

sample where only the donor is labeled.  The donor efficiency and acceptor efficiency are 

measured as the amount of donor/70S and acceptor/70S in the purified complexes.  

(Values and a sample calculation can be seen in Table 4.1, Figure 4.1-4.2).   
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 The complexes that utilized the Rhd110/Cy3 FRET pair were excited at 480 nm 

(excitation band pass of 2 nm) and the emission spectrum from 500-750 nm (emission 

band pass of 2 nm) was recorded.  The complexes containing only Rhd110 (D*A), only 

Cy3 (DA*), both dyes (D*A*), and no dyes (DA) were measured, and relative FRET 

changes were determined by comparing all three traces after subtraction of DA. The 

relative FRET was determined as above for the Cy3 donor experiments, except the 

acceptor peak occurs at 566 nm and the donor peak at 532 nm (Table 4.1, Figure 4.7). 

 

2.2.7 Kinetic Assays 

 Changes in fluorescence and anisotropy after rapid mixing were measured using a 

KinTek stopped flow spectrofluorometer model SF-2004 (Figure 2.12 A). In a stopped 

flow apparatus, two solutions are rapidly mixed and the reaction times are measured by 

fluorescence or anisotropy change.  In our instrument, the dead time is ~2 ms, giving us 

sufficient time resolution for most of the changes we monitor. 

2.2.7.1 Ensemble FRET experiments with Cy3 dye as donor 

 Experiments were performed in the KinTek stopped flow spectrofluorometer with 

an excitation of 530 nm, the donor Cy3 fluorescence was measured in PMT-1 with a 570 

+/- 10 nm band pass filter, and the acceptor Cy5 fluorescence was measured in PMT-2 

with a 680 +/- 10 nm band pass filter (slit width of 1.56 nm for the excitation).  In some 

instances complexes were created with only Cy3 (donor alone, D*A) or only Cy5 

(acceptor alone, DA*) in order to determine cross talk between the channels (i.e. donor 
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excitation being read in the acceptor channel); however, because of the spectroscopic 

properties of the FRET pair, the overlap is minimal.  In most cases, at least 10 traces were 

taken and averaged per experiment. 

2.2.7.2 Ensemble FRET experiments with Rhd110 dye as donor 

 Experiments were performed using the KinTek stopped flow spectrofluorometer 

with an excitation of 480 nm.  The donor, in this case Rhd110, fluorescence was 

measured in PMT-1 with a 520 +/- 10 nm band pass filter, and the acceptor Cy3 

fluorescence was measured in PMT-2 with a 570 nm long-pass filter (slit width of 1.56 

nm for the excitation).  In all instances the Rhd110 (donor alone D*A) complex was 

measured in order to determine the overlap of the Rhd110 emission in the Cy3 channel.  

Unlike the Cy3/Cy5 FRET pair, the Rhd110/Cy3 FRET pair has considerable overlap, 

and thus the acceptor channel needs to be corrected by looking at the 4 traces utilized in 

the bottom half of Equation 2.2: 1) Donor and acceptor labeled, measured at the donor 

channel, D*A*(D); 2) Donor and acceptor labeled, measured at the acceptor channel, 

D*A*(A); 3) Donor labeled, measured at the donor channel, D*A(D); and 4) Donor 

labeled, measured at the acceptor channel, D*A(A). Where D*A*’(A) is the corrected 

acceptor channel used to determine FRET efficiency change.  

2.2.7.3 Anisotropy Measurements of tRNA
fMet

 (Cy3) Release 

 In Chapter IV, preliminary fluorescence anisotropy measurements are used in 

order to determine the rate at which a deacylated-tRNA
fMet

 (Cy3) is released from the 

ribosome.  Fluorescence anisotropy is a useful method to study molecular interactions by 

monitoring changes in apparent size of fluorescently labeled molecules, in this case the 
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interaction between a fluorescent tRNA and the ribosome.  Losses in fluorescence 

anisotropy indicate that the fluorescent tRNA has gone from a bound to unbound state, 

and provides a direct measurement of tRNA release from the ribosome.  The PRE-1 

complexes used in Chapter IV were prepared as described above, and the KinTek stopped 

flow was equipped with polarizing filters to allow anisotropy measurements (Figure 2.12 

B). Anisotropy measurements utilize four fluorescence intensities and the value is 

calculated by equation 2.3. 

 

 

Where, IVV stands for intensity with vertically polarized excitation and vertically 

polarized emission, IVH stands for intensity with vertically polarized excitation and 

horizontally polarized emission, and so on.  G is a measure of the sensitivity difference 

between the two PMTs used for obtaining the data. 

 

2.2.8 Rate Constant Estimation 

 In Chapter IV, the data presented were fit both to triple exponential (Figures 4.4-

4.6, 4.8-4.11) and to the global Scheme 4.1 (Figures 4.12, 4.13) using the program 

Anisotropy =
IVV !GIVH

IVV +GIVH
     Equation 2.3 

G =
I
HV

I
HH
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Scientist (MicroMath Research, LC). Fitting of the data to a triple exponential (Equation 

2.6) yielded apparent rate constants presented in Table 4.1. Whereas fitting to Scheme 4.1, 

yielded rate constants presented in Table 4.3. 

 In Chapter V, the data presented in Figures 5.2A, 5.3, 5.4, and 5.5 were fit to 

either a single exponential (Equation 2.4) or a double exponential (Equation 2.5) in 

Scientist, and yielded apparent rate constants presented in Table 5.2. 
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tRNA Charge Label 

[
3
H]/[

35
S]-

aa : 

tRNA 

FPLC 

Purified 

[
3
H]/[

35
S]-

aa : 

tRNA 

HPLC 

Purified 

Dye : 

tRNA 

Dye : 

tRNA 

HPLC 

Purified 

fMet 

Yes No 0.4±0.1 0.8±0.1 - - 

Yes Cy3 0.4±0.1 0.8±0.1 0.3±0.1 1.0±0.1 

No Cy3 - - 0.3±0.1 1.0±0.1 

Phe 

Yes No 0.3±0.1 0.8±0.1 - - 

Yes Cy3 0.3±0.1 0.8±0.1 0.4±0.1 1.4±0.1 

Yes Rhd110 0.3±0.1 0.8±0.1 0.4±0.1 - 

Lys 

Yes No 0.15±0.05 - - - 

No Rhd110 - - 0.6±0.1 1.5±0.1 

Arg* 

Yes No 0.25 - - - 

Yes Cy3 0.40 - 0.50 - 

*The Arg-tRNA
Arg

 was only charged one time, and only charged and labeled one time. 

Table 2.1 Charging and labeling efficiencies of tRNAs 

 Different species of tRNAs were made and purified by either HPLC or FPLC, the 

resulting charging efficiencies and labeling efficiencies are shown in this table.  In 

general, HPLC purification of charged tRNA and/or labeled tRNA gave efficiencies 

greater than FPLC purification due to the higher separation of the HPLC. The >1 labeling 
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efficiencies of Phe and Lys can be attributed to the tRNA having more than one 

dihydrouridine.  

 

Complex Buffer peptidyl-Puro : 70S 

70SIC 

A 0.36±0.05 

B 0.30±0.05 

PRE-1 

A 0.03±0.01 

B 0.02±0.01 

POST-1 

A 0.35±0.05 

B 0.32±0.05 

PRE-2 

A 0.05±0.01 

B 0.05±0.01 

 

Table 2.2 Puromycin Reactivity of Ribosome Complexes 

 Equilibrium puromycin reactivity was measured for each of the complexes made 

to ensure that the correct complex was created.  For the 70SIC complex, puromycin 

forms a peptide bond with [
35

S]-fMet to create [
35

S]-fMet-Puromycin. [
35

S]-fMet-

Puromycin per 70S ribosome was measured to determine puromycin reactivity. 

Puromycin is unable to react with a PRE-1 or PRE-2 complex and the levels shown in the 

table are similar to background.  In the POST-1 complex puromycin reacts with the [
35

S]-
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fMet-[
3
H]-Phe, to create [

35
S]-fMet-[

3
H]-Phe-Puromycin, and either the radioactive fMet 

or radioactive Phe is used to measure reactivity. 

 

 

Figure 2.1 Separation of Purified –L1 Ribosomes 

After purification, the –L1 ribosomes were separated to collect either tight coupled 70S 

(black triangles) or 50S and 30S subunits (grey crosses). Approximately 30 pmol of the 

Lane:    1    2    3    4 
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50S subunits were then analyzed on a 12% SDS-PAGE gel (B). Lane 1: MRE-600 50S 

subunits (~30 pmol); Lane 2: -L1 50S subunits; Lane 3: Purified L1 (~20 pmol); Lane 

4: Molecular Weight Marker.  Notice that in Lane 2 the band for L1 is missing.  The 

apparent increase in molecular weight in the L1 band between Lane 1 and Lane 3 is 

attributed to the 10x-His-tag and linker associated with the Lane 3 purified L1 protein. 
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Figure 2.2 mRNA Purity and Activity 

 A: Transcribed mRNA022 (Lane 1-4, increasing amounts, 0.5, 1, 2, 4 µg) was 

loaded on to a 6% SDS-UREA gel, and run against the same amounts of known 

mRNA022 (lane 5-8), and stained with a methanol blue stain.  B: mRNA promotes the 

binding of [
35

S]-fMet-tRNA
fMet

 that normally reaches a plateau of 0.7 – 0.9 fMet per 

ribosome.  A number at the plateau that is less than one is a result of either inactive 

A. 

Lane:     1        2 3 4       5        6         7        8 

B. 
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ribosomes, or the binding of the non-radioactive tRNA
fMet

.  This assay was used to 

determine the correct concentration of mRNA to add in order to reach the optimum fMet-

tRNA
fMet

 binding. 

 

 

 

Figure 2.3 EF-Tu Activity Test Results 

 Increasing amounts of EF-Tu were incubated with a saturating amount of  [
14

C]-

GDP.  The EF-Tu.GDP complex was collected on nitrocellulose filters and the amounts 

were determined by radioactive counts.  The active concentration of EF-Tu was 

determined by the slope of a linear fitting and was determined to be 64.8% as active as 
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the total amount of EF-Tu as determined by Bradford Assay. Typical EF-Tu preparations 

yield 60-70% active EF-Tu. 

DNA Sequence 
 

1   ATGGCTAAAC TGACCAAGCG CATGCGTGTT ATCCGCGAGA AAGTTGATGC 

51  AACCAAACAG TACGACATCA ACGAAGCTAT CGCACTGCTG AAAGAGCTGG 

101 CGACTGCTAA ATTCGTAGAA AGCGTGGACG TAGCTGTTAA CCTCGGCATC 

151 GACGCTCGTA AATCTGACCA GAACGTACGT GGTGCAACTG TACTGCCGCA 

201 CGGTACTGGC CGTTCCGTTC GCGTAGCCGT ATTTACCCAA GGTGCAAACG 

251 CTGAAGCTGC TAAAGCTGCA GGCGCAGAAC TGGTAGGTAT GGAAGATCTG 

301 GCTGACCAGA TCAAGAAAGG CGAAATGAAC TTTGACGTTG TTATTGCTTC 

351 TCCGGATGCA ATGCGCGTTG TTGGCCAGCT GGGCCAGGTT CTGGGTCCGC 

401 GCGGCCTGAT GCCAAACCCG AAAGTGGGTA CTGTAACACC GAACGTTGCT 

451 GAAGCGGTTA AAAACGCTAA AGCTGGCCAG GTTCGTTACC GTAACGACAA 

501 AAACGGCATC ATCCACACCA CCATCGGTAA AGTGGACTTT GACGCTGACA 

551 AACTGAAAGA AAACCTGGAA GCTCTGCTGG TTGCGCTGAA AAAAGCAAAA 

601 CCGACTCAGG CGAAAGGCGT GTACATCAAG AAAGTTAGCA TCTCCACCAC 

651 CATGGGTGCA GGTGTTGCAG TTGACCAGGC TGGCCTGAGC GCTTCTGTAA 

701 ACTAA 

E. Coli L1 Sequence 

1   makltkrmrv irekvdatkq ydineaiall kelatakfve svdvavnlgi darksdqnvr 

61  gatvlphgtg rsvrvavftq ganaeaakaa gaelvgmedl adqikkgemn fdvviaspda 

121 mrvvgqlgqv lgprglmpnp kvgtvtpnva eavknakagq vryrndkngi ihttigkvdf 

181 dadklkenle allvalkkak ptqakgvyik kvsisttmga gvavdqagls asvn 
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Primers 

S40C (AGC!TGC) 

Forward: 5' GCGACTGCTAAATTCGTAGAATGCGTGGACGTAGCTGTTAACC 3' 

Reverse: 5' GGTTAACAGCTACGTCCACGCATTCTACGAATTTAGCAGTCGC 3' 

                                 

      GC content: 48.84%          Location: 50-92 

      Melting temp: 83.9°C        Mismatched bases: 1 

      Length: 43 bp                     Mutation: Substitution 

      5' flanking region: 21 bp    Forward primer MW: 13282.76 Da 

      3' flanking region: 21 bp    Reverse primer MW: 13162.70 Da 

 

 

K54C (AAA!TGC) 

Forward: 5' CTCGGCATCGACGCTCGTTGCTCTGACCAGAACGTACGTG 3' 

Reverse: 5' CACGTACGTTCTGGTCAGAGCAACGAGCGTCGATGCCGAG 3' 

                                   

    GC content: 60.00%           Location: 142-181 

     Melting temp: 81.2°C         Mismatched bases: 3 

      Length: 40 bp                 Mutation: Substitution 

      5' flanking region: 18 bp    Forward primer MW: 12249.07 Da 

      3' flanking region: 19 bp    Reverse primer MW: 12347.13 Da 

 

V177C (GTG!TGC) 

Forward: 5' CCACACCACCATCGGTAAATGCGACTTTGACGCTGACAAAC 3' 

Reverse: 5' GTTTGTCAGCGTCAAAGTCGCATTTACCGATGGTGGTGTGG 3' 

                                   

      GC content: 51.22%          Location: 113-153 

      Melting temp: 78.9°C        Mismatched bases: 3 

      Length: 41 bp                     Mutation: Substitution 

      5' flanking region: 19 bp    Forward primer MW: 12492.28 Da 

      3' flanking region: 19 bp    Reverse primer MW: 12718.36 Da 

 

 

T202C (ACT-->TGC) 

Forward: 5'GCTGAAAAAAGCAAAACCGTGCCAGGCGAAAGGCGTGTAC 

Reverse: 5'GTACACGCCTTTCGCCTGGCACGGTTTTGCTTTTTTCAGC            

 GC content: 52.50%           Location: 585-624      

 Melting temp: 78.4°C         Mismatched bases: 3          

 Length: 40 bp                      Mutation: Substitution        

 5' flanking region: 19 bp     Forward primer MW: 12406.20 Da        

 3' flanking region: 18 bp     Reverse primer MW: 12187.03 Da 
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V221C (GTT!TGT) 

Forward: 5' CACCATGGGTGCAGGTTGTGCAGTTGACCAGGCTG 

Reverse: 5' CAGCCTGGTCAACTGCACAACCTGCACCCATGGTG 

                               

      GC content: 60.00%          Location: 98-132 

     Melting temp: 80.8°C        Mismatched bases: 2 

      Length: 35 bp                     Mutation: Substitution 

      5' flanking region: 16 bp    Forward primer MW: 10844.13 Da 

      3' flanking region: 17 bp    Reverse primer MW: 10662.05 Da 

 

 

Figure 2.4 DNA and protein sequences of E. coli ribosomal protein L1 and 

sequences of the single mutant primers 

 Mutants are indicated in the DNA and protein sequence, S40C (blue), K54C 

(orange), V177C (red), T202C (pink), V221C (green), and the start codon is underlined 

in the DNA sequence.  Single mutant primers were designed using the program PrimerX 

(http://www.bioinformatics.org/primerx/) under the specifications for the Stratagene 

Quickchange site directed mutagenesis kit. 

 



!

"#!

 

 

 

!

V177C 

GTG ! 

TGC 

S40C 

AGC!

TGC 

!

!

K54C 

AAA! 

TGC 

!

C 



!

"#!

 

 

Figure 2.5 DNA Sequencing Results of the Single Mutants 

 The single mutant primers were used to create mutant strains that were sequenced 

using the T7 promoter or T7 terminator sequences as a sequencing primer depending on 

the location of the mutant within the plasmid.  Early mutants in the sequence like S40C 

!

V221C 

GTT ! 

TGT 

T202C 

ACT! 

TGC 

!
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and K54C utilized the T7 promoter primer, where as the other mutants used the T7 

terminator primer. 

 

 

Figure 2.6 Reconstitution analyses of L1 and –L1 50S subunits 

 -L1 50S subunits were reconstituted with T202C-L1 (Lane 1 A, B) and T202C-L1 

(Cy5) (Lane 2 A, B).  An SDS-PAGE gel was used to analyze the reconstitution by 

comparing the reconstituted samples (Lane 1 and 2) to wild type 50S subunits (Lane 4), 

50S subunits lacking L1 (Lane 3), T202C-L1 (Lane 5) and T202C-L1 (Cy5) (Lane 6).  

Reconstitution with both the T202C-L1 (Cy5) and T202C-L1 samples reached 1:1 when 

analyzed by band density. When the labeled T202C-L1 (Cy5) was reconstituted, the 

Cy5 : 50S ratio was 0.6 +/- 0.2, depending exclusively on the labeling efficiency of the 

L1 protein.
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Figure 2.7 Secondary Structures of tRNAs 

 Cloverleaf structures of A) initiator tRNA
fMet

; B) tRNA
Lys

; C) tRNA
Arg

 from E. 

coli, and D) tRNA
Phe

 from yeast. 
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Figure 2.8 FPLC Purification of Charged tRNAs 

 The above traces are examples for purification of tRNA from the poly-adenine 

byproduct (elapsed time ~18-23 min). The FPLC purification does not separate charged 

tRNA from uncharged tRNA, thus collection of the tRNA peak (elapsed time ~26-35 

min) results in only the inherent charging efficiencies as evidenced by comparison of 

tRNA concentration versus amino acid concentration.  A) fMet-tRNA
fMet

: total tRNA 

(~0.35:1); B) Phe-tRNA
Phe

: total tRNA (~0.4:1); C) Lys-tRNA
Lys

: total tRNA (~0.2:1); 

and C) Arg-tRNA
Arg

: total tRNA (~0.6:1). 
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Figure 2.9 HPLC Purification of fMet-tRNA
fMet

 

 HPLC purification of tRNA
fMet

 (elapsed time ~18-19 min) from fMet-tRNA
fMet

 

(elapsed time ~25-30 min) resulted in a sample that contained a ratio of [
35

S]-Met : 

tRNA
fMet

 of ~0.8 : 1.  The poly-adenosine peak as well as an earlier tRNA
fMet

 peak is not 

shown here. 
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Figure 2.10 HPLC Purification of Cy3-labeled tRNAs 

 HPLC purification of Cy3-hydrazide labeled fMet-tRNA
fMet

 (Cy3) (A) or 

tRNA
fMet

 (Cy3) (B).  In both cases the labeled tRNA (elapsed time A: ~26 min; B: ~24-
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25 min) came out after the unlabeled tRNA and resulted in labeling efficiencies of 

Cy3:tRNA of 1:1.  There is a free dye peak seen in B that is also seen in A, but it is not 

shown on the plot. 

 

Figure 2.11 SDS-PAGE Gel Electrophoresis Result of POST Complex Preparation 

 Approximately 30 pmol of ribosome complexes were loaded to a 12% SDS-

PAGE gel. Lane 1: EF-G (39 pmol); Lane 2: 70S; Lane 3: EF-G (39 pmol) and 70S (30 

pmol) added together; Lane 4: POST complex after sucrose cushion; Lane 5: Molecular 

Weight Marker.  The highest molecular weight ribosomal protein S1 is present in lanes 2-

4 indicating the presence of ribosomes.  EF-G is present in lanes 1, and 3, but is absent in 

lane 2 and 4, which clearly shows that the sucrose cushion has removed most of the EF-G 

protein at least beyond the detection limit of the gel. 

Lane:   1          2        3         4           5         
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Figure 2.12 Schematic for A) Stopped Flow and B) Anisotropy Set-up  

A. 

B. 

! PMT-1 PMT-2 

Optical Path 

Cell 

!
Mixer 

A B 

! Drive 

!

Stopping 

Syringe 



!

"#!

 

 

Chapter III: Optimization of Overexpression, 

Purification, and Reconstitution of L1 Mutants 
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3.1 Abstract 

 Obtaining pure samples of reconstituted ribosomes with modified L1 in an 

efficient manner was required for the success of the following research.  It is for this 

reason that it was necessary to spend time discovering the optimal conditions for L1 

overexpression, L1 purification, and ribosome reconstitution with the mutant and/or 

labeled L1.  Here we discuss a variety of conditions to increase the protein yield by 

overexpression, and optimize the purification of an active, native ribosomal protein L1.  

By following suggestions from a review written by Sørensen and Mortensen, it was 

determined that the most efficient way to increase yields of native L1 was to lower the 

temperature at which overexpression occurred to ~20 °C (Sørensen and Mortensen, 

2005).  This resulted in yields of purified usable L1 of ~2 mg/L of culture, which, when 

overexpressed on a large (15-L) scale provided plenty of pure L1.  Once the L1 was 

overexpressed, French press or a commercially available Bug Buster® Master Mix was 

used to lyse the cells. Both methods proved to be viable means of opening the cells to 

obtain soluble protein.  Purification was then optimized, and the TALON resin was 

determined to provide the highest yield of pure L1. 

 Once overexpression and purification of the wild type L1 were optimized, the 

mutants (S40C, K54C, V177C, T202C, and V221C-L1) were created and either labeled 

with a dye functionalized with a maleimide (Cy3, Cy5, or Cy5.5) or left underivatized.  

These mutants, either labeled or unlabeled, were then reconstituted into –L1 ribosomes.  

By optimizing the previous work of Odom et al., reconstitution into –L1 50S subunits 

was determined to be the most efficient method for creating pure reconstituted ribosomes 
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(Odom et al., 1990).  Further, the reconstituted 50S ribosomes were used to create 

ribosomal complexes, and T202C-L1 (Cy5) and K54C-L1 (Cy5) were shown to be useful 

probes for P- and E-site tRNA movement.  

 

3.2 Introduction 

  Much of the work in the biochemical field requires a reliable source for 

expression of proteins from a variety of species. In the early 1980s the utilization of 

expression vectors containing an IPTG-inducible promoter based on the lac operon 

became a popular way to control high-level expression of foreign proteins in E. coli 

(Amann et al., 1983; Amann and Brosius, 1985; Sambrook and Russell, 2001). These 

vectors use the cell’s own RNA polymerase to express a gene downstream of the lac 

promoter; however, this could cause further problems when the RNA polymerase is 

needed to express the cell’s own genes, possibly leading to leaky expression.  This 

problem was solved with the use of expression systems utilizing the bacteriophage T7 

promoter (Tabor and Richardson, 1985; Studier and Moffatt, 1986).  These 

expression systems use the bacteriophage T7 RNA polymerase, and only recognize the 

bacteriophage T7 promoters, therefore limiting the amount of non-specific expression.  In 

order to use the T7 promoter expression system, two things are required: 1) bacteriophage 

T7 RNA polymerase, which is the product of T7 gene 1; and 2) a plasmid vector 

containing a bacteriophage T7 promoter upstream of the target gene (Sambrook and 

Russell, 2001). The expression system in the following work uses the bacteriophage T7 

RNA polymerase from the competent E. coli BL21 (DE3) cells (Stratagene).  The BL21 
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(DE3) cells contain the T7 gene 1 that is under control of the IPTG-inducible lacUV5 

promoter.  The plasmid vector utilized for expression of L1 is the pET-16b vector.  The 

pET series of vectors, originally developed by Studier et al., contains the T7 promoter 

region and various cut sites downstream to insert the target gene (Studier et al., 1990).  

Specifically, the pET-16b cloning and expression region contains the T7 promoter, a lac 

operator, a sequence coding for a 10x His-tag, followed by multiple cloning sites in 

which the L1 gene was inserted between the NdeI (5’ end) and BamHI (3’ end), and 

finally the T7 terminator (Figure 3.1).  Proper expression of the L1 gene, and eventually 

the L1 mutants, is necessary in order to successfully put together fluorescently labeled 

50S complexes, and therefore, the proper mix of vector and competent cell is critical.   

 The overexpression of a protein, either foreign or native, to high levels in E. coli 

often leads to the formation of insoluble intracellular aggregates of the expressed protein 

called inclusion bodies (Williams et al., 1982; for reviews please see Marston, 1986; 

Hartley and Kane, 1988; Marston and Hartley, 1990; Georgiou and Valax, 1996; 

Sambrook and Russell, 2001). It is unclear what determines whether an overexpressed 

protein forms an inclusion body or folds properly and remains soluble. However, the 

available evidence suggests that inclusion bodies arise by the aggregation of partially 

folded and malfolded polypeptides, and is not a result of insolubility or instability of the 

native protein (Sambrook and Russell, 2001).  It was previously reported that, when 

overexpressed, E. coli L1 forms inclusion bodies, instead of the soluble folded protein 

(Köhrer et al., 1998).  Therefore, in addition to optimizing the overexpression machinery 

for L1, it is also necessary to optimize the conditions of growth to ensure proper folding 

of the protein, thus limiting the inclusion bodies.  Here, I show that by lowering the 



!

"#!

temperature of the growth, it is possible to limit the amount of L1 in inclusion bodies, 

thus increasing the amount of soluble protein.  

 The next step necessary to obtaining L1-reconstituted ribosomes for use in future 

studies is separating L1 from all other soluble proteins.  In the case of L1, a 10x-His-tag 

on the N-terminus of the protein is employed.  Immobilized-metal affinity 

chromatography (IMAC) was first used to purify proteins in 1975, and utilized the 

chelating ligand iminodiacetic acid (IDA) charged with metal ions in order to purify 

different peptides and proteins (Porath et al., 1975).  Since the first IMAC purification 

techniques were used, many more have been discovered, including but not limited to Ni-

NTA (Qiagen) and TALON (Clontech).  Ni-NTA was first used in the late 1980s and 

utilizes nitrilotriacetic acid (NTA) which forms a tetradentate with a metal ion, occupying 

four of the six ligand binding sites in the coordination sphere of the Ni, thereby allowing 

two sites to coordinate with the His-tag of the protein (Hochuli, 1989; Qiagen Manual).  

In 1991, the TALON IMAC resin was introduced and utilizes a special tetradentate metal 

chelator that holds the electropositive metal in an electronegative pocket allowing it to 

bind metal ions, specifically, cobalt.  This binding pocket is an octahedral structure in 

which four of the six metal coordination sites are occupied by the TALON resin ligand.  

The TALON resin has the advantage of enhancing the accessibility of the bound metal 

ion to the polyhistidine-tagged protein.  The coordination profile of the TALON Resin 

ligand and cobalt is more specific for polyhistidine-tagged proteins than the Ni-NTA 

resin, and therefore limits the undesirable tendency to bind unwanted proteins with 

histidine residues (Clontech manual).  Both of these IMAC resins have their advantages 
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and disadvantages, and here it is determined which purification method works best with 

L1 and L1 mutants.   

 The purified mutant proteins were labeled at the new cysteine position by 

maleimide functionalized dyes, specifically Cy3 and Cy5.  The labeling procedure is very 

straightforward and did not necessitate any further optimization resulting in dye:L1 ratios 

around 0.6-0.8 (Section 2.2.3.3.3 and Table 3.1).  Futile attempts to separate unlabeled 

L1 away from labeled L1 using FPLC separation were made, and eventually it was 

decided that further attempts would prove unproductive because extremely highly labeled 

L1 was not needed for future studies. 

 Finally, the mutant and/or fluorescently labeled L1 were reconstituted into 

ribosomes lacking L1.  In 1980, Subramanian and coworkers obtained a spontaneous 

mutant ribosome that was found to lack L1. The mutant ribosome was found to have a 

reduced level of protein synthesis that is fully restored upon addition of purified L1 to the 

mutant (Subramanian and Dabbs, 1980; Dabbs et al., 1981).  However, reconstitution 

efficiency was difficult to determine, and the reconstituted ribosome was only shown to 

be functionally active.  Here, the most efficient reconstitution for WT, mutant, and 

fluorescently labeled L1 into –L1 ribosomes or subunits was determined to be an 

incubation with at least 2x excess L1 to –L1 50S at 37 °C for 15 min. 

 Initial equilibrium FRET studies were performed using the mutants V177C-L1 

(Cy3), or V221C-L1 (Cy3) as the acceptor, and fMet-tRNA
fMet

 (Rhd 110) as the donor.  

After multiple attempts it was determined that the Rhd110/Cy3 FRET pair was not 

optimal for FRET studies. Even though preliminary data showed FRET efficiency 
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changes upon ternary complex addition to 70SIC and translocation, the inherent overlap 

between the Cy3 and Rhd110 dye made FRET efficiency calculations more difficult. 

However, the Rhd110/Cy3 FRET pair is used later for tRNA/tRNA FRET experiments, 

and the signal overlap is addressed.  The S40C-L1 (Cy3) mutant studies were dropped 

after it became obvious that the reconstitution with this mutant was not readily possible. 

 Fluorescently labeled T202C-L1 has been shown to be a useful probe for P- and 

E-site tRNA in single molecule experiments (Fei et al., 2008).  After optimizing the 

procedures leading up to the final T202C-L1 (Cy Dye)-50S subunit, it is important to 

show that this particular construct is able to work as effectively on an ensemble 

experiment scale.  Steady-state spectrofluorometer experiments (Fluorolog-3 

spectrofluorometer, Horiba Jobin Yvon, USA) were conducted to determine the 

equilibrium FRET efficiency changes for tRNAs translocating through the ribosome in 

both Buffer A and Buffer B. Not only was it determined that the T202C-L1 (Cy Dye) 50S 

was an appropriate probe for P- and E-site tRNA, it was also shown that buffer conditions 

play an important role in the release of deacylated-tRNA. 

 

3.3 Results 

3.3.1 Optimization of L1 Overexpression 

 Initial overexpression of wild type ribosomal protein L1 was performed at 37 °C 

for four hours after induction and resulted in little protein, and almost no soluble protein 

after cell lysis.  In order to optimize protein recovery from overexpression, an initial time 
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course study was performed.  A 5-mL culture was grown overnight, and then 1 L of Luria 

Bertani media was inoculated with 1:1000
th

 volume of the overnight growth (2.2.3.2.1), 

and grown to an OD595= 0.80 at which time, the 1 L culture was induced with IPTG (1 

mM).  During overexpression, small aliquots were selected at 1, 2, 4, 6, and 20 hours, and 

run on a 12% SDS-PAGE gel to determine the level of overexpression (Figure 3.2).  As 

evidenced by the gel, allowing the protein to express for at least 18-20 hours provides the 

optimum level of overexpression.   

 Although overexpressing for longer periods of time may allow more protein to be 

made, the amount of native soluble protein after cell lysis still remains a problem.  There 

are two approaches that can be taken to redirect the protein from inclusion bodies into 

soluble proteins; either the protein can be refolded from inclusion bodies, or the 

expression strategy can be modified to obtain expressed protein that is more soluble. 

Therefore, a multifaceted approach was taken to solve the problem of aggregated, 

misfolded, and, most likely, inactive L1.  First, an attempt to simply purify the denatured 

protein, and then refold it through a series of dialysis steps (independent communication 

with Jingyi Fei) proved to be more difficult and less efficient than previously believed.  

Thus, growth conditions, specifically temperature and media type, were varied in order to 

limit the amount of protein in inclusion bodies created during overexpression (Review by 

Sørensen and Mortensen, 2005).   Four different growth media were examined: 1) LB, 

2) LB + 0.5% glycerol, 3) Terrific Broth (TB), and 4) TB + 0.5% glucose.  Each of these 

media were inoculated with the same overnight cell culture and allowed to reach an 

OD595= 0.8 before IPTG induction.  Immediately after IPTG induction, the temperature 

of the overexpression was either left at 37 °C or dropped to 20 °C, resulting in a total of 
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eight growth conditions; however, TB growth medium in the absence of 0.5% glucose 

resulted in no protein expression, and thus no further analysis was done using this 

medium, leaving six conditions.  After an overnight overexpression, the cells were 

centrifuged to obtain the cell pellet, which was resuspended and the cells were lysed via 

French Press as described in 2.2.3.2.1. The insoluble cellular material was separated from 

the soluble protein via centrifugation, and both the insoluble pellet, and the soluble 

supernatant were analyzed on an SDS-PAGE gel (Figure 3.3).  It is apparent that, aside 

from the TB media, the other media (LB, LB + 5% glycerol, or TB + 5% glucose) does 

not have a big influence on overexpression; however, the temperature decrease during 

overexpression strongly increases the amount of soluble protein produced. All further 

overexpressions were performed in LB media simply because other growths in the lab 

use LB media, and therefore, sterilized media is readily available. Also the 

overexpressions were at 20 °C after addition of IPTG to limit the inclusion bodies. 

 

3.3.2 Optimization of L1 Purification 

 To facilitate purification, the E. coli L1 construct used in this work is equipped 

with a 10x-His-tag on the N-terminus.  Initial purification was performed much like the 

other His-tag purifications in the lab by utilizing the Ni
2+

-NTA resin (Qiagen); however, 

after optimization, a Co
2+

 based resin (TALON, Clontech) was determined to provide 

better coordination to the polyhistidine tags.  Further, along with lysis by French press, a 

lysis procedure utilizing a commercially available protein extraction kit called Bug 

Buster® Master Mix (Novagen) was tested for opening the cells. 
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3.3.2.1 Metal Affinity Resin Optimization 

 Initially the same amount of harvested L1 overexpressed cells was resuspended 

and lysed using the French press, and the soluble proteins were purified by running the 

supernatant through either Ni
2+

-NTA resin, or TALON resin.  The His-tagged L1 protein 

bound to the resin, and was eluted by an increasing amount of imidazole in a stepwise 

gradient using (25, 50, 150 and 300 mM imidazole).  The resulting fractions were run on 

a 12% SDS-PAGE gel to determine which fractions contain the pure, eluted, His-tagged 

L1 (Figure 3.4 A, B). In accordance with the gels, the TALON resin provides a better 

purification and separation of the L1 from the other soluble proteins.  The TALON resin 

inherently provides a better environment for both binding of only the His-tagged protein 

and purified elution.  The Co
2+

 core specifically binds only histidines that are neighboring, 

essentially eliminating the amount of nonspecific binding of other proteins to the resin.  

Since only the His-tagged protein binds the resin, the elution conditions can be less 

stringent resulting in a more highly purified sample.  

3.3.2.2 Cell Lysis Optimization  

 In order for the soluble proteins to be harvested, the cell must first be lysed, and 

cell debris must be separated from the proteins.  There are numerous ways to lyse the 

cell; however, I utilize two different methods, French press and Bug Buster® Master Mix, 

in order to obtain the soluble protein.  Both cell lysis methods result in soluble L1 that is 

ready to be purified though the TALON resin.  The advantage of the French press is that 

it is cost efficient and is able to handle large volumes of cell re-suspension; however, 
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sometimes for analytical studies only a small volume is needed, in these cases the Bug 

Buster® Master Mix is the best choice because it is quick and does not require use of a 

large instrument.  In Figure 3.4 B and C, the SDS-PAGE gel clearly shows pure protein 

elutions after both French press and Bug Buster® Master Mix treatment.  The 

preliminary purifications were done using wild type L1; however, the L1 mutants 

described below were all purified in a similar manner, and the pure mutant proteins were 

labeled with maleimide dyes without the need for further optimization (Table 3.1). 

3.3.2.3 MALDI Analysis of Pure and Labeled Mutant L1 (T202C) 

The molecular masses of purified T202C-L1 samples, both labeled with Cy5-

maleimide and unlabeled were determined by MALDI (Figure 3.5). MALDI of the 

unlabeled T202C-L1 resulted in a strong peak at 27,296 Da in strong accordance with the 

theoretical molecular weight of the mutant L1 with 10x His-tag and linker.  Further, the 

Cy5 labeled T202C-L1 resulted in 2 peaks, one indicating the unlabeled portion of the 

sample at 27,296 Da, and the other indicating the labeled sample with a molecular weight 

of 28,045 Da.  The increased molecular weight of ~750 Da corresponds to the molecular 

weight of the added Cy5-Maleimide dye (Section 2.1.2).  

 

3.3.3 Optimization of Ribosome Reconstitution with Mutant and Labeled L1 

 Odom and coworkers first performed the reconstitution of fluorescently labeled 

L1 into the ribosome in 1990, when they added a fluorescein-L1 to 50S subunits (Odom 

et. al., 1990). Using their protocol as a guide, the optimal conditions of the reconstitution 

for the mutant and fluorescently labeled L1 were determined; however, many factors play 
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a role in determining the best protocol for reconstitution.  For instance, reconstitution into 

–L1 70S tight coupled ribosomes has the advantage of saving a week’s worth of time by 

not having to separate the ribosome into subunits; however, as mentioned previously, 

checking reconstitution efficiency is then not possible with SDS-PAGE because of the 

similar molecular weights of L1, S2, S3, and S4, although, this is not a problem when 

using fluorescently labeled L1.  As was discovered during the optimization, 

reconstituting –L1 70S has the additional problem of non-specific binding of L1 to other 

locations on the ribosome, resulting in false positive results for reconstitution.  

3.3.3.1 –L1 70S Reconstitution 

 As seen in section 2.2.3.3.4, ribosome reconstitution involves an incubation of an 

excess of either WT, mutant, or fluorescently labeled L1 with –L1 ribosomes, followed 

by a sucrose cushion to remove any excess L1 and/or fluorescent dye.  Initial 

reconstitution was attempted on –L1 70S with T202C-L1 (Cy5), and the reconstitution 

efficiency was measured by A260 (for ribosome) : A652 (for Cy5), allowing the 

measurement of the amount of Cy5 per ribosome (~0.7-0.8 : 1).  However, as it was 

alluded to earlier, reconstitution could not be monitored by SDS-PAGE gel, and therefore, 

a direct measurement of L1 : 70S could not be obtained.  In order to determine if the L1 

protein was indeed being reconstituted, and to rule out that either the Cy5-L1 or the Cy5 

alone was binding non-specifically to the ribosome, the reconstituted 70S was separated 

into 50S and 30S subunits by decreasing the Mg
2+

 concentration, and then separating the 

subunits via a sucrose gradient.  Upon SDS-PAGE analysis of the subunits, it became 

apparent that L1 was indeed not being correctly reconstituted into the –L1 70S, and was 
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in fact only binding transiently, resulting in a false positive for Cy3:70S, that was not 

actually reconstitution (Figure 3.6).  Thus, reconstitution into –L1 50S and then subunit 

association with 30S is necessary in order to obtain the correctly reconstituted ribosomes.     

3.3.3.2 –L1 50S Reconstitution  

 Reconstituting L1 into –L1 50S has the distinct advantage of allowing monitoring 

via SDS-PAGE gel analysis because there are no other 50S subunit proteins that have a 

molecular weight close to that of L1; therefore, SDS-PAGE analysis provides a very nice 

reporter of the reconstitution efficiency of the reaction.  The efficiency can be directly 

determined by comparing the band density of the reconstituted L1 to the band density of 

L2.  This ratio can be compared to the L1:L2 ratio in a wild type 50S subunit, and the 

closer these two numbers become, the better the reconstitution (Table 3.2). With this in 

mind, the optimal conditions necessary for reconstitution were determined, specifically, 

incubation time, L1 : -L1-50S ratio, and incubation temperature.   

 T202C-L1 mutants were reconstituted into –L1 50S subunits in a ratio of 2:1 and 

incubated at 37° C for 5, 10, 15, and 30 min, before being purified through a sucrose 

cushion, and analyzed on a 12% SDS-PAGE gel (Figure 3.7).  As evidenced from the gel, 

the reconstitution efficiency reached a maximum at 15 min; therefore, all future 

reconstitutions were incubated for 15 min (Table 3.2). 

 Because the –L1 50S can be made on a larger scale, pure mutant L1 or pure 

mutant fluorescently labeled L1 is a limiting reagent when determining how much 

reconstituted ribosomes can be made.  Thus, in order to limit waste, it was important to 

determine the most efficient ratio of L1 to –L1-50S for reconstitution.  T202C-L1 and –
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L1-50S were combined in ratios of: 1:0 (control), 1:1, 2:1, 3:1, and 5:1, and incubated for 

15 min at 37 °C before being purified by centrifugation through a sucrose cushion, and 

analyzed on a 12% SDS-PAGE gel (Figure 3.8). As expected, the control that only 

contained T202C-L1 did not pellet through the cushion, ensuring that all the L1 seen in 

the gel is indeed reconstituted in the ribosome.  Further, the reconstitution efficiency 

reached approximately 90-100% when starting with a two times excess of L1 over –L1 

50S. The efficiency only increased a little bit when adding three times excess, and then 

plateaued (Table 3.2). 

 Even though a reconstitution efficiency of approximately 100% was reached 

using an incubation with a 3 times excess of L1 at 37 °C for 15 min, it would be useful to 

obtain a similarly highly reconstituted sample using less L1.  Therefore, a 1:1 ratio of 

T202C-L1 to –L1 50S was used and incubated for 15 min at 25 °C, 37 °C, and 45 °C, 

followed by purification through a sucrose cushion.  The resulting reconstituted 

ribosomes were analyzed on a 12% SDS-PAGE gel, and it was determined that changing 

the incubation temperature does not result in further reconstitution; therefore, it is 

necessary to use a 2-3 fold excess of L1 (depending on availability of L1) in order to 

obtain approximately 100% reconstitution (Figure 3.9, Table 3.2).  

 In addition to using the mutant T202C-L1 and T202C-L1 (Cy5), reconstitutions of 

S40C-L1 (Cy3), K54C-L1 (Cy5), V177C-L1 (Cy3), V221C-L1 (Cy3) were all done with 

a 2 times excess of L1 : 50S and incubated for 15 min at 37 °C (Figure 3.10).  These 

samples were all analyzed by SDS-PAGE for reconstitution efficiency, and 

spectrophotometrically for label per 50S (Table 3.1). All the labeled mutants besides the 
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S40C-L1 (Cy3) were able to be adequately reconstituted into the –L1 50S, and were used 

for further equilibrium FRET experiments (See Appendix). 

 Previously, it had been shown the ribosomes lacking L1 resulted in lower binding 

of initiator tRNA.  In order to test the functional activity of the reconstituted ribosomes, 

an assay was designed to determine the binding of [
35

S]-fMet-tRNA
fMet

 to the 

reconstituted ribosomes.  As seen in Figure 3.11, initiator tRNA binding to –L1 

ribosomes was very low, but binding was recovered to near wild-type efficiency when 

using the fully reconstituted ribosomes.  As expected, the complexes made with 

ribosomes supposedly reconstituted with S40C (Cy3), did not regain binding efficiency. 

 

3.4 Discussion 

 The ability to effectively and efficiently reconstitute a site-specifically labeled L1 

into a ribosome is a very useful tool for the future investigation of tRNA progression 

through the ribosome.  Fluorescently labeled L1 on the ribosome has been previously 

used for single molecule work in other labs; however, their methods of expression, 

purification, and reconstitution proved to be too inefficient for use on the much larger 

scale that is necessary for ensemble work.  By optimizing all the steps to work in our 

facilities, creating a probe to monitor tRNA near the exit site of the ribosome is now a 

very simple task.  Fluorescently labeled L1 is currently being used for both ensemble 

FRET studies (Cy5), as well as single molecule studies (Cy3).  Further, work is 

progressing using the fluorescent ribosomes to monitor translation in a cell free 

transcription/translation system. 
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 The overexpression of L1 was initially tested on the wild type L1 obtained from 

Dr. Robert Zimmermann; however, after expression was optimized, the single site 

directed mutant L1 (S40C, K54C, V177C, T202C, V221C), was overexpressed with 

similar results as the wild type.  The overexpression of the wild type L1 along with all 5 

mutants initially resulted in very high levels of inclusion body formation, which was also 

noted in Fei et al., 2008.  Fei and coworkers were able to overcome this by purifying the 

denatured insoluble L1 and then refolding after purification; however, for our needs, this 

process was deemed inefficient.  By simply lowering the temperature of the growth after 

induction with IPTG, the amount of soluble L1 was increased dramatically, allowing the 

purification of active, soluble L1 for use in future studies.  As mentioned above, inclusion 

bodies typically result from misfolded proteins, not necessarily unstable proteins; 

therefore, by lowering the growth temperature and essentially slowing down the 

overexpression, we were able to limit the amount of misfolded proteins, resulting in more 

soluble L1. 

 Purification of the wild type, S40C, V177C, and V221C was attempted using the 

Ni-NTA resin, but the purification using this procedure was very poor.  Therefore, 

purification was moved to the TALON resin system for all five mutant L1 samples.  The 

use of the TALON cobalt resin resulted in much cleaner purification, and therefore, a 

higher yield of usable protein.  The better purification with the TALON resin is most 

likely attributed to the inherently better coordination of the cobalt metal ion to the resin, 

resulting in more specific binding of polyhistidine residues, and limiting the nonspecific 

binding of proteins or peptides containing native histidines.  
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 Initial studies were performed using the S40C, V177C, and V221C mutants (see 

Appendix); however, it became obvious that the most viable mutant for my studies was 

the T202C-L1 mutant. The S40C-L1 mutant did not reconstitute into –L1 50S to a high 

enough extent (Table 3.1, Figure 3.11); and the V177C-L1 (Cy3) and V221C-L1 (Cy3) 

mutants showed limited FRET efficiency changes when analyzed with fMet-tRNA
fMet

 

(Rhd110).  However it is very possible that, using what we currently have learned with 

the T202C-L1 (Cy5) mutant, the V177C and V221C mutants could still be very viable 

options for P- and E-site probes in the future. Further, very promising preliminary results 

have been seen with the K54C-L1 (Cy5) mutant, in which it can be easily labeled and 

reconstituted into –L1 50S, and has also shown the ability to act as a probe for P- and E- 

site tRNAs, possibly in a different manner than the T202C-L1 mutant. 

 Nonetheless, throughout this thesis the T202C-L1 (Cy5) ribosome is utilized to 

measure FRET changes from Cy3 labeled initiator tRNA.  In separate single molecule 

work, T202C-L1 (Cy3) ribosomes are used with Cy5 and Cy5.5 labeled tRNAs.  In both 

cases, the reconstitution of T202C-L1 (Dye) to ribosomes is very close to 1:1 and the 

label to ribosomes is solely dependent on the labeling efficiency of the dye to L1 

(typically 0.6-0.8).  Further, a functional assay in which the binding of [
35

S]-fMet-

tRNA
fMet

 to –L1 ribosomes, MRE-600 wild type ribosomes, or reconstituted ribosomes 

was measured, and proved that the reconstitution described above results in a ribosome 

that actively binds initiator tRNA to an extent similar to the wild type ribosome.  tRNA 

binding per ribosome appears to be less than one because of the low (~30%) charging 

efficiency of the [
35

S]-fMet-tRNA
fMet

 in addition to the notion that the undetectable 

tRNA
fMet

 also binds to the P-site. 
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3.5 Conclusion 

 We have developed a method to efficiently overexpress, purify, label, and 

reconstitute ribosomal protein L1 into a –L1 strand of ribosomes, allowing us to use the 

labeled L1 as a probe for measuring tRNA movement on the ribosome as it approaches 

the exit site.  The labeled ribosomes are currently being used in ensemble as well as 

single molecule two and three color FRET experiments.  By optimizing the steps leading 

to the site specifically labeled L1 in the ribosome, we were able to obtain a large amount 

of L1-labeled ribosome in order to do multiple ensemble studies without having to go 

through the process of overexpressing and purifying the L1 on a regular basis.  The 

method for limiting inclusion bodies during expression is dependent of the protein being 

studied; however, the use of TALON resin for purification is most likely universally 

better and has been applied to the purification of other His-tagged proteins in the lab 

including EF-Tu, L11, and the initiation factors. 
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L1 

Purification 

Efficiency 

(mg/L) 

Cy:L1 Labeling 

Efficiency 

Cy:50S 

Reconstitution 

Efficiency 

Approximate 

L1:50S 

Reconstitution 

Efficiency 

Wild Type 2.3 ± 0.2 N/A N/A 1:1 

S40C 1.3 ± 0.7  Cy3: 0.7 ± 0.2 0.5 ± 0.1 0:1 

K54C 2.3* Cy5: 0.5 ± 0.1 0.5 ± 0.2 1:1 

V177C 1.3 ± 0.3 Cy3: 0.60 ± 0.05 0.6 ± 0.1 1:1 

T202C 1.5 ± 0.5  Cy5: 0.6 ± 0.2 0.6 ± 0.2 1:1 

V221C 0.7 ± 0.3 Cy3: 0.6 ± 0.2 0.6 ± 0.1 1:1 

$%&'()*+!,-./0.!1/2!3045!6-7898:;!30:!.8,:<!

Table 3.1 Purification, Labeling, and Reconstitution Efficiency for L1 

Preparations 

 The wild-type L1 and L1 mutants were overexpressed for 18 hours in LB media at 

25 °C.  The cells were opened with French Press and purified using TALON (Co
2+

) resin 

yielding the above efficiencies of pure protein to amount of overexpression media.  The 

mutant L1 samples were labeled with Cy maleimide dye and efficiency was measured 

spectrophotometrically.  The mutant, labeled L1 samples were then reconstituted into –

L1 50S subunits by incubation with a 2x excess of L1 at 37 °C for 15 min.  

Reconstitution was measured spectrophotometrically to obtain the Cy:50S ratio, and by 

SDS-PAGE analysis to obtain the approximate L1:50S efficiency. All but the S40C-L1 

mutant reconstituted to almost 100% when measured by L1:50S, and the Cy:50S 

efficiencies were typically limited by the labeling efficiency of the L1. 
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Incubation Time 

(min) 

 Reconstituted L1:L2 

Band Density Ratio 

Reconstitution 

Efficiency* 

5 

37 °C 

2:1 (L1:50S) 

0.33 0.44 

10 0.34 0.44 

15 0.51 0.68 

30 0.22 0.29 

Incubation L1 : 50S 

Ratio 

 

1:1 

37 °C 

15 min  

0.23 0.36 

2:1 0.49 0.76 

3:1 0.65 1.0 

5:1 0.68 1.0 

Incubation 

Temperature (°C) 
 

25 
1:1 (L1:50S) 

15 min 

0.21 0.28 

37 0.20 0.26 

45 0.28 0.38 

$%&'()*+,+-+,()!.//,',&)'0!12*!3&+&45,)&3!60!%&'()*+,+-+&3!7#879!42+,(!3,:,3&3!60!

1,;3!+0<&!=>?!7#879!42+,(!(/!>@A=B>@C=!3&<&)3,)D!()!+E&!D&;@!

!

Table 3.2 Band Density Analysis for the Various Reconstitution 

Conditions. 

 The gels seen in Figures 3.7-3.9 were analyzed using the software Image J to 

obtain the density of the bands corresponding to L1 and L2.  L2 was used as a 

normalizing agent for ribosome concentration.  
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Figure 3.1 pET-16b Cloning Vector for L1 Expression 

 L1 was cloned into the pET-16b E. coli vector using the 5’ Nde I and 3’ BamHI 

cut sites to incorporate the L1 gene.  The vector (A) contains an N-terminal 10x-His-tag 

and the T7 promoter/terminator sequence for efficient overexpression.  B) The expression 

sequence highlights the important aspects of the vector, as well as indicates positions for 

sequencing primers when determining accuracy of the mutations. 

Figure is adapted from Novagen pET-16b vector manual. 

$% 

!L1  

A. 

B. 
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Figure 3.2 SDS-PAGE Analysis of Wild Type L1 During 

Overexpression 

 An aliquot of 10 µL of growth media were collected and loaded onto a 12% SDS-

PAGE gel after IPTG induction.  Lane 1: Purified wild type L1 (~20 pmol); Lane 2: 

Aliquot of the growth media at OD595= 0.8, immediately prior to addition of IPTG; Lane 

3-7: aliquots of the protein overexpression media after 1, 2, 4, 6 and 20 hours following 

the addition of IPTG.  The band corresponding to L1 (approximately 27,000 Da) 

increases as the overexpression time increases, leading to a maximum amount of protein 

after overexpression for at least 20 hours.  Protein amounts for overexpression times 

longer than 20 hours were not determined. 

!

!

!
!

                              Time after induction (hr):  

               0        1        2        4        6       20 

Wild Type L1 

Lane:   1       2        3         4         5         6        7 
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A. !

!

!
!

Wild Type L1 

                       20°C           37°C  

       L1    Super  Pellet   Super  Pellet  MW 

Lane:   1          2          3         4         5        6     

                       20°C          37°C  

       L1    Super    Pellet  Super    Pellet  

Wild Type L1 

Lane:   1          2             3          4            5            

B. 

25 kD 

37 kD 
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Figure 3.3 SDS-PAGE Analysis of Soluble L1 Created by Growth at 

Different Buffer Conditions 

 Overexpression of L1 results in soluble active L1 and/or denatured inclusion 

bodies of L1.  Multiple growth media (A: Luria Bertani (LB); B: LB + 5% Glycerol, C: 

Terrific Broth + 5% Glucose) and temperatures (20 °C and 37 °C) were tested to 

determine the optimum conditions for limiting inclusion bodies, and thus increasing the 

amount of useful protein.  After 18 hours of induction, the cells were harvested, opened, 

and the soluble protein (Super) was separated from the cell debris and inclusion bodies 

(Pellet) by centrifugation.  A 10 µL aliquot of the supernatant was loaded to a 12% SDS-

PAGE gels (Lanes 2 and 4).  The pellet was resuspended in a denaturing buffer 

containing 8 M Urea, and a 10 µL aliquot was taken and loaded onto the gels (Lanes 3 

and 5).  In addition to a protein standard (A: Lane 6), a previously purified wild type L1 

sample was added as a marker for L1 (Lane 1).  As evidenced in all three growth media, 

the amount of soluble L1 is increased when the protein is overexpressed at 20 °C. It 

                           20°C                  37°C  

       L1       Super   Pellet       Super      Pellet      

Wild Type L1 

Lane:   1          2            3              4            5            

C. 
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should be mentioned that a fourth growth media, Terrific Broth, was tested but resulted in 

no protein overexpression, and thus is left out of this comparison. 

 

!

!

! !

!

Imidazole Concentration 

Lane:   1        2          3         4         5          6 

Wild Type L1 

Lane: 1    2     3    4    5    6     7   8   9  10   11   12   13  14  15     

Wild Type L1 

!

Imidazole Concentration 

A. 

B. 
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Figure 3.4 SDS-PAGE Analysis L1 Purification Techniques  

 After overexpression, the cells were opened by French Press (A and B) or Bug 

Buster® Master Mix (C).  Either a TALON Co
2+

 column (B and C) or Ni
2+

-NTA column 

(A) was used to bind the His-tag of the overexpressed L1.  A stepwise gradient of 25 mM 

to 300 mM imidazole (25, 50, 150, 300 mM) was used to elute the L1 from the column, 

1-mL fractions were collected and 10 µL aliquots were loaded to a 12% SDS-PAGE gel 

for analysis.  A previously purified L1 sample was used as a marker (Lane 1), and a 

protein standard was also used in B: Lane 8, and C: Lane 15.  As is evidenced by the 

gels, the TALON resin (B and C) provided a more pure L1 sample, and both French 

Press and Bug Buster ® Master Mix were viable options for opening the cells.  

 

 

 

 

Lane: 1   2   3    4    5   6    7    8   9  10   11  12  13  14  15     

!

Imidazole Concentration 

Wild Type L1 

C. 

25 kD 

37 kD 
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Figure 3.5 MALDI Analysis of T202C-L1 and T202C-L1 (Cy5) 

 MALDI analysis was performed on T202C-L1 (Peak 1) and T202C-L1 (Cy5) 

(Peak 2) using sinapic acid as the matrix on a Bruker Daltonics MALDI TOF MS.  

Approximately 4-8 pmol of protein was combined with excess sinapic acid in order to 

obtain the peaks.  Peak 1 corresponds to the unlabeled T202C-L1 with a molecular 

weight of 27296, and the shaded region represents the unlabeled portion of T202C-L1 

(Cy5).  Peak 2 represents the labeled portion of T202C-L1 (Cy5) with a corresponding 
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molecular weight of 28045, approximately 750 Da higher than the unlabeled peak.  

Corresponding directly to the molecular weight of the Cy5 maleimide dye. 

 

 

Figure 3.6 SDS-PAGE Analysis of Reconstituted 70S Ribosomes and 

Subunits 

 Approximately 20 pmol of ribosomes were loaded onto a 12% SDS-PAGE gel to 

analyze the presence or absence of L1 after a reconstitution into –L1 70S and subsequent 

subunit separation. T202C-L1 (Cy5) was reconstituted into –L1 70S and purified by 

centrifugation through a sucrose cushion. The ribosome pellet was resuspended in buffer 

Lane:  1           2             3            4            5          6 

L1 

        WT       -L1       Cy5       Cy5-L1:   WT     MW  

        70S        70S       L1        -L1 50S    50S 

25 kD 

37 kD 
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containing 1 mM Mg
2+

 in order to separate the subunits, and then the subunits were each 

purified through a sucrose gradient in order to obtain pure 30S and pure 50S.  The 

purified 50S (Lane 4) was shown to not contain L1, and therefore to not have actually 

been reconstituted. Lane 1: wild type 70S; Lane 2: -L1 70S, take note that it is difficult 

to see that L1 is missing due to the presence of either S2, S3 and/or S4 which have 

similar molecular weights as L1; Lane 3: T202C-L1 (Cy5); Lane 4: Purified 50S 

subunits from the reconstitution of T202C-L1 (Cy5) and –L1 70S, notice that there is no 

band corresponding to L1; Lane 5: Purified wild type 50S subunits from wild type 70S; 

Lane 6: Protein standard. 
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Figure 3.7 SDS-PAGE Analysis of Incubation Time During T202C-L1: -

L1 50S Reconstitution. 

 Approximately 20 pmol (unless otherwise noted) of 50S subunits were loaded to a 

12% SDS-PAGE gel.  T202C-L1 was added in excess to –L1 50S subunits and incubated 

for 5, 10, 15, or 30 min at 37 °C, followed by purification through sucrose cushion 

centrifugation (Lanes 1-4). Lane 5: MRE-600 50S (~50 pmol); Lane 6: MRE-600 50S; 

Lane 7: -L1 50S incubated without L1 for 15 min. The apparent density around where L1 

appears is caused by contaminating 30S ribosomal protein either S3 or S4 (the presence 

of contaminating S30 is confirmed by the presence of a slight amount of S1 at 

approximately 65 kDa, not shown); Lane 8: T202C-L1 incubated without ribosomes or 

subunits for 15 min, but not centrifuged; Lane 9: Protein standard.  It should be noted 

that the L1 band in Lanes 1-4 and 7 has a higher molecular weight than that of the MRE-

600 50S because the purified mutant L1 contains a 10x-His-tag in addition to a linker 

between the tag and the protein.  Band density analysis of the L1 band was normalized to 

Lane:   1        2        3          4        5        6       7        8         9 

     Incubation Time (min)   WT   WT   -L1  T202C 

        5       10      15       30     50S   50S    50S    L1    MW 

T202C-L1 

Rb L1 
25 kD 

37 kD 
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the density of the L2 band to determine reconstitution efficiency.  The ratio of L1:L2 

band density was used as a measure of reconstitution efficiency, and normalized to the 

L1:L2 ratio of the wild type 50S (see Table 3.2).   

   

 

Figure 3.8 SDS-PAGE Analysis of Reconstitution Ratio of T202C-L1 

and –L1 50S Subunits 

 Approximately 20 pmol of 50S subunits were loaded onto a 12% SDS-PAGE gel, 

and the reconstitution or T202C-L1 into –L1 50S was analyzed based on the L1:L2 band 

density ratio, normalizing to the MRE-600 50S L1:L2 band density.  T202C-L1 was 

incubated with –L1 50S for 15 min at 37 °C at increasing ratios of T202C-L1 : -L1 50S, 

and purified through a sucrose cushion centrifugation. Lane 1: 40 pmol of T202C-L1 

was incubated without 50S subunits, and centrifuged through the sucrose cushion as a 

control to ensure that L1 does not pellet on its own; Lanes 2-5: Increasing ratios of 

T202C-L1 to –L1 50S; Lane 6: T202C-L1; Lane 7: -L1 50S; Lane 8: MRE-600 50S; 

Lane 9: Rainbow Molecular Weight Marker; Lane 10: Protein standard.  Although the 

          T202C-L1:50S Ratio   T202C  -L1   WT 

       1:0  1:1   2:1    3:1   5:1    L1      50S   50S   

Lane:   1     2        3      4       5         6       7        8      9     10 

25 kD 

37 kD 

T202C-L1 

Rb L1 
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L1 band may appear darkest for the 5:1 reconstitution, the ratio of L1:L2 is the same for 

the 3:1 reconstitution, and only slightly lower for 2:1; therefore, further reconstitutions 

were performed at either 2:1 or 3:1. 

 

 

Figure 3.9 SDS-PAGE Analysis of Incubation Temperature on the 

Reconstitution of T202C-L1 with –L1 50S 

 T202C-L1 was incubated with –L1 50S at a ratio of 1:1 for 15 min at various 

temperatures in order to determine if complete reconstitution could be achieved while 

using less L1.  After reconstitution, the samples were purified through sucrose cushion 

centrifugation and loaded (~20 pmol) onto a 12% SDS-PAGE gel.  Although 

reconstitution occurred, the ratio of L1:L2 was not increased by varying temperature; 

therefore, a beginning ratio of T202C-L1 : -L1 50S of ! 2:1 must be used to achieve 1:1 

reconstitution. 

 

Lane:     1       2         3         4        5         6         7        8      

         Incubation Temp. (°C)       WT     -L1    WT 

          25      37      37       44        L1       50S   50S   MW   

25 kD 

37 kD 

T202C-L1 

Rb L1 
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      V177C L1:                                                                         V177C L1                                     

 -L1 50         WT 50S         -L1 50S       WT 50S          

Lane:   1               2              3             4         5 

B. 

             WT L1:           S40C L1     S40C L1:    V221C L1:    V221C L1 

             -L1 50S        -L1 50S        -L1 50S 

Lane:       1                   2              3             4               5 

A. 
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Figure 3.10  SDS-PAGE Reconstitution Analysis of Wild Type L1 and 

Cy-Labeled Mutant L1 

 Wild type, S40C (Cy3), K54C (Cy5), V177C (Cy3), T202C (Cy5), and V221C 

(Cy3) L1 was reconstituted into –L1 50S subunits by incubating a 2x excess of L1 with –

          K54C L1:                                                K54C L1                                     

 -L1 50          WT 50S       -L1 50S 

Lane:   1               2              3               4         

D. 

        T202C L1:       T202C L1                                                          

 -L1 50S          -L1 50S      WT 50S 

Lane:         1                 2                  3             4    

C. 
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L1 50S for 15 min at 37 °C.  Approximately 30 pmol of reconstituted ribosomes were 

added to a 12% SDS-PAGE gel for analysis.  A) Ribosomes reconstituted with wild type 

L1 (Lane 1), Cy3-S40C L1 (Lane 3), and Cy3-V221C (Lane 4) were run on a 12% gel, 

notice that the S40C-L1 (Cy3) does not reconstitute into the –L1 50S subunits; therefore, 

this mutant was no longer used.  The wild type, and V221C-L1 (Cy3) reconstituted to 

approximately 1:1. B) Ribosomes reconstituted with V177C-L1 (Cy3) (Lane 1) were 

loaded to a 12% gel, and compared to MRE-600 50S (Lane 2 and 4), -L1 50S (Lane 3), 

and V177C-L1 (Lane 5).  The L1 band in the reconstituted sample runs higher than in the 

MRE-600 50S sample because of the increased molecular weight due to the 10x His-tag, 

linker, and dye in the L1 that is reconstituted, this trend is seen in all of the reconstituted 

samples.  C) Ribosomes reconstituted with Cy5-T202C-L1 (Lane 1) were loaded to a 

12% gel, and compared to MRE-600 50S (Lane 4), -L1 50S (Lane 3), and T202C-L1 

(Lane 2). D) Ribosomes reconstituted with K54C-L1 (Cy5) (Lane 1) were loaded to a 

12% gel, and compared to MRE-600 50S (Lane 2), -L1 50S (Lane 3), and K54C-L1 

(Lane 4). 
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Figure 3.11 [
35

S]-fMet-tRNA
fMet

 Binding to Ribosomes to Measure 

Activity 

 30S subunits were incubated with an excess of 50S subunits, mRNA, and [
35

S]-

fMet-tRNA
fMet

 for 5 min at 37 °C, followed by a filter binding to remove any unbound 

tRNA, and analysis by radioactive counting.  As seen here, ribosomes lacking L1, and 

30S subunits without 50S have reduced tRNA binding efficiencies; however, upon 
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reconstitution of V177C-L1 (Cy3), T202C-L1, T202C-L1 (Cy5), or V221C-L1 (Cy3) 

with –L1 50S, the binding efficiency increases to almost wild type levels.  However, as 

indicated in the SDS-PAGE gel analysis, the S40C-L1 (Cy3) did not reconstitute in the –

L1 50S. Further, for the wild type subunits, binding is not 1:1 because of the low amino-

acylation efficiency of the fMet-tRNA
fMet

, and the fact that initiator tRNA binds the P-

site independent of its acylation state.  Therefore, it is probable that the undetectable 

tRNA
fMet

 is also binding to P-site. 
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Chapter IV: The Conditions that Affect 

Deacylated-tRNA Movement After Translocation 
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4.1 Abstract 

 The occupancy of the E-site has previously been postulated to be linked to fidelity 

of cognate tRNA selection at the ribosomal decoding site, preserving the reading frame, 

regulating programmed frameshifting, and determining the preference of the ribosome for 

binding either EF-Tu or EF-G. Therefore, it is important to better understand how tRNA 

behaves while in the E-site.  Three experimental procedures were utilized in order to 

determine how deacylated-tRNAfMet leaves the E-site of the ribosome. 1) The FRET 

efficiency changes between T202C-L1 (Cy5) ribosomes and tRNAfMet (Cy3); 2) The 

FRET efficiency changes between tRNAfMet (Cy3) and tRNAPhe (Rhd110); and to a lesser 

extent, 3) The anisotropy loss from the translocated tRNAfMet (Cy3) as it dissociates from 

the ribosome.   When using 70SICs created with fMet-tRNAfMet (Cy3) in the P-site and 

T202C-L1 (Cy5) ribosomes, the addition of ternary complex results in an increase in 

FRET efficiency because of both the tRNAfMet (Cy3) adoption of a P/E-hybrid, and the 

L1-stalk movement towards the body of the ribosome into a closed conformation.  This 

FRET efficiency is eventually lost when either the L1-stalk moves away, or the 

deacylated-tRNA dissociates. Three different pathways were demonstrated that allow the 

deacylated-tRNAfMet to dissociate from the E-site; 1) the L1-stalk moves away from the 

body of the ribosome into an “out” conformation before the deacylated-tRNAfMet 

dissociates; 2) the L1-stalk moves away at a similar time as the deacylated-tRNAfMet 

dissociation; or, 3) the deacylated-tRNAfMet moves along with the L1-stalk into an 

apparent E2-site as the L1 moves to the “out” conformation.  In all the cases, the release 
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of deacylated-tRNAfMet from the E-site proceeds at similar rates; however, the rates of 

dissociation from E-site and E2 site are quite different. 

 

4.2 Introduction 

 Ribosomal protein L1 was first observed as a biochemically relevant protein in 

the early 1980s when Subramanian and coworkers discovered that ribosomes lacking L1 

displayed a 40-60% reduced capacity for in vitro protein synthesis (Subramanian et al., 

1980). Later in the 1980s, it was discovered that L1 was important for the binding of 

tRNA to the ribosomal P-site (Sander, 1982).  A long period passed before Nikonov and 

coworkers finally crystallized an isolated E. coli L1 in 1996, and it wasn’t until the early 

2000’s that the structure of L1 on the ribosome really came into focus (Nikonov et al., 

1996; Valle et al., 2003; Yusupov et al., 2001; Selmer et al., 2006).  With the known 

structure came more biochemical work, specifically in the single molecule field when Fei 

and coworkers used a labeled T202C-L1 to help determine the motions of a ratcheting 

ribosome (Fei et al., 2008). In the present work, we determine how L1 movement relates 

to the mechanism of deacylated-tRNAfMet dissociation from the E-site of the ribosome. 

 The L1-stalk, comprised of ribosomal protein L1 and helices 76-78 from the 23S 

rRNA, is a highly mobile region of the 50S subunit.  Previous X-ray crystallography and 

cryo-EM work has shown that the movement of the L1-stalk is highly linked to both the 

positions and acylation state of tRNAs on the ribosome.  The L1-stalk occupies an “out” 

state when the ribosomes have vacant E-sites or in isolated 50S subunits (Korostelev et 

al., 2008; Harms et al., 2001).  When deacylated-tRNA is bound in the E-site the L1-
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stalk moves inward by ~30-40 Å to the “in” conformation (Korostelev et al., 2006; 

Selmer et al., 2006). A third position for the L1-stalk, the “overly closed,” determined by 

Cornish and coworkers, occurs when the tRNA adopts a P/E-hybrid conformation, and 

requires a further movement of ~15-20 Å towards the body of the ribosome. (Cornish et 

al., 2009; Valle et al., 2003; Gao et al., 2003).  It has been hypothesized that the L1-

stalk moves with the deacylated-tRNA as it moves from P/E to E/E-sites, and then has to 

move to an “out” conformation in order for the deacylated-tRNA to release. The behavior 

of deacylated-tRNA as it reaches the E-site is important because E-site occupancy has 

been linked to accuracy at the decoding site (Nierhaus, 2006; Zaher and Green, 2009), 

regulation of programmed frameshifting (Leger, M. et al., 2007; Liao, et al., 2008), and 

determination of the preference for the ribosome to bind either EF-Tu or EF-G (Wilson 

and Nierhaus, 2006). In the following work, I demonstrate that deacylated-tRNAfMet 

leaves the E-site of the ribosome via at least three distinct pathways, each one favored by 

different buffer conditions and peptidyl-state of P-site tRNA. 

 Results presented in Chapters II and III demonstrate that it is possible to prepare 

reconstituted 50S ribosomes containing either labeled or unlabeled T202C-L1.  Here, we 

use these ribosomes, along with highly labeled tRNAs, to measure the FRET efficiency 

and anisotropy changes associated with tRNA release from the E-site of the translocated 

ribosome. 

 The highly mobile nature of the L1-stalk and the mobile nature of the deacylated-

tRNA after translocation make it difficult to determine which physical movement the 

FRET efficiency change is associated with; therefore, two different FRET efficiency 
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measurements were taken: 1) FRET between the deacylated-tRNAfMet (Cy3) donor and 

the T202C-L1 (Cy5) acceptor (L/t FRET); and, 2) FRET between the (fMet)-Phe-

tRNAPhe (Rhd110) acceptor (which may or may not be present as a dipeptide depending 

on the set up of the experiment) and the deacylated-tRNAfMet (Cy3). In a translocated 

ribosome the (fMet)-Phe-tRNAPhe (Rhd110) is in the P-site and the deacylated-tRNAfMet 

(Cy3) is, at least initially, in the E-site.  The L/t FRET experiments provide information 

about the movement of the L1-stalk relative to the deacylated-tRNAfMet; the t/t 

experiment uses a relatively rigidly bound P-site tRNA ((fMet)-Phe-tRNAPhe) as a marker 

for when deacylated-tRNAfMet leaves the E-site (loss of FRET efficiency) (See Section 

4.3.2.1). 

 Preliminary fluorescence anisotropy measurements were utilized to monitor the 

release of deacylated-tRNA from the ribosome, exploiting the decrease in anisotropy that 

accompanies tRNA dissociation from the ribosome. Here, we were able to relate the 

apparent rate constant for tRNA dissociation with values associated for the FRET 

efficiency losses in order determine a distinct kinetic pathway for each set of conditions 

(Buffer A, peptidyl-tRNA in the P-site after translocation from PRE-1 to POST-1; Buffer 

B, peptidyl-tRNA in the P-site; and, Buffer B, aminoacyl-tRNA in the P-site).  Our 

results provide clear, biochemical evidence for a second E-site, the E’- or E2- site, that 

may have initially been described by Robertson and colleagues in early biochemical data, 

and incorrectly named the E-site (Robertson et al., 1986; reviewed by Burkhardt et al., 

1998).  Later, cryo-EM work characterized the additional exit binding position as the E’- 

or E2-site (Agrawal et al., 1999, Fischer et al., 2010). 
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4.3 Results 

4.3.1 L1 Interaction with tRNA
fMet

 (L/t FRET) 

 FRET efficiency between T202C-L1 on the 50S subunit and either fMet-tRNAfMet 

or tRNAfMet (depending on the progression of the elongation cycle) was measured using 

T202C-L1 (Cy5) and (fMet)-tRNAfMet (Cy3).  70S initiation complexes (70SIC, 4.3.1.1), 

pre-translocation complexes (PRE-1), and post-translocation complexes (POST-1, 

Chapter 5), were made and utilized in the following work in order to better understand 

what affects the release of deacylated-tRNAfMet after the first round of translocation. In 

this chapter, except where noted, PRE-1 complexes were created and purified via sucrose 

cushion centrifugation. 

 In order to establish preliminary FRET efficiency values between T202C-L1 

(Cy5) ribosomes and fMet-tRNAfMet (Cy3), equilibrium FRET experiments were 

performed on 70SICs, PRE-1, and POST-1 complexes (Figure 4.1, 4.2).  70SICs were 

prepared in either Buffer A or Buffer B with D*A*: T202C-L1 (Cy5) ribosomes and 

highly charged fMet-tRNAfMet (Cy3) initiator tRNA; D*A: T202C-L1 ribosomes and 

fMet-tRNAfMet (Cy3) initiator tRNA; DA*: T202C-L1 (Cy5) ribosomes and fMet-

tRNAfMet initiator tRNA; and, DA: T202C-L1 ribosomes and fMet-tRNAfMet initiator 

tRNA and purified via sucrose cushion centrifugation; PRE-1 complexes were made by 

adding excess ternary complex to the 70SICs, and POST-1 complexes were made by 

adding excess ternary complex and EF-G to the 70SICs.  Measurements were made in 

parallel on the D*A*, D*A, DA*, and DA samples for each ribosome complex. The 
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signal for the corresponding blank sample (DA) was subtracted from each D*A*, D*A, 

and DA* to correct for light scattering and background fluorescence.  The efficiency of 

energy transfer was determined through acceptor fluorescence enhancement at 667 nm, 

and calculated by equation 2.2, as seen in Table 4.1.  Traces corresponding to D*A*, 

D*A, and DA*, as well as, the fitted donor contribution, and the extracted acceptor 

emission are seen in Figure 4.1 for Buffer A, and Figure 4.2 for Buffer B. Fitted donor 

contribution is determined by multiplying the D*A fluorescence by the ratio of D*A* and 

D*A at 567 nm, and the extracted acceptor was determined by subtracting the fitted 

donor from the D*A* fluorescence.  As evidenced in Figure 4.2, the apparent FRET 

efficiency decreases approximately 2-fold upon addition of EF-G.GTP to a PRE-1 

complex in Buffer B. According to previous single-molecule FRET efficiency studies 

between tRNA and L1, there is no FRET efficiency change associated with translocation 

(Fei et al., 2008).  Therefore, I interpret the retention of FRET signal after translocation 

as indicating that tRNA is not fully released from the POST-1 state.  This is not seen in 

Buffer A because the deacylated-tRNA is not stably bound in the E-site under these 

conditions.  Although equilibrium FRET experiments were not performed starting with 

uncharged-tRNAfMet, Appendix 2 contains other examples for FRET efficiency changes 

in Buffer A and Buffer B starting with 70SICs containing ~25% charged fMet-tRNAfMet. 

Unlike the time-resolved studies seen later in this chapter (Section 4.3.1), apparent FRET 

efficiency does not depend on initiator tRNA charging efficiency in Buffer B for 

equilibrium experiments. 
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4.3.1.1 FRET Increase Upon Addition of Ternary Complex to 70SIC (70SIC !  

PRE-1) 

 In both Buffer A and Buffer B, a significant increase in FRET efficiency is seen 

when a Phe-tRNAPhe.EF-Tu.GTP ternary complex (0.5 µM) is added to a 70SIC (0.1 µM) 

containing fMet-tRNAfMet (Cy3) and T202C-L1-50S (Cy5).  This is not only obvious in 

the equilibrium FRET experiments (Figure 4.1 D, 4.2 D), but also in a time-resolved 

stopped flow experiment where ternary complex (0.5 or 1.0 µM; Buffer A and Buffer B, 

respectively) was added to the sucrose purified 70SIC (0.25 µM) (Figure 4.3). In the 

equilibrium FRET experiments, the FRET efficiency calculated for the PRE-1 complex in 

Buffer A and Buffer B was 0.73 and 0.90, respectively (Table 4.1, Equation 2.2).  These 

values are similar to the 0.8 that was shown for a PRE complex in previous single 

molecule work.  This work also showed that a deacylated-tRNAfMet in the PRE complex 

would fluctuate between hybrid (FRET= 0.8) and classical states (Fei et. al., 2008). 

Population of a high FRET state is observed in ensemble studies as a net FRET efficiency 

increase between L1 and deacylated-tRNA on PRE-1 complex formation that is caused 

by L1 movement towards the body of the ribosome and deacylated-tRNA adopting a P/E 

hybrid conformational state. 

4.3.1.2 FRET Efficiency Change Following Translocation (PRE-1 !  POST-1) 

 PRE-1 complexes were created and purified to remove any excess tRNA and 

factors that are unbound to the ribosome.  Previous single molecule work has shown that 

the FRET efficiency between deacylated-tRNA in a P/E hybrid state and T202C-L1 does 

not change during translocation because the L1 moves along with the elbow region of the 
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tRNA (Fet al., 2008).  In the L/t FRET experiments, the addition of EF-G.GTP (1.0 µM 

unless otherwise noted) to purified PRE complexes (0.25 µM), results in a lag that can be 

attributed to the rate-limiting translocation step in the majority of the experiments (k1app, 

Table 4.2).  In all experiments the rate constant for the lag associated with translocation is 

between 3.3 s-1 for complexes in Buffer B, and 8 s-1 for complexes in Buffer A. For the 

complexes in Buffer A, the translocation rate is in agreement with the previously 

measured translocation rates upon addition of 1 µM EF-G.GTP, of ~7.8 s-1 (Pan et al., 

2007). Although, the translocation of mRNA has previously been shown to be similar in 

both buffer conditions (Liu et al., 2010), a decrease in translocation rate by a factor of ~2 

has been shown here for Buffer B and will be explained in the Discussion. Following the 

lag, the rate and amplitude of L/t FRET efficiency loss are highly dependent on both 

buffer conditions and the aminoacylation state of the tRNA occupying the P-site as seen 

in Table 4.2. 

 The L/t FRET traces (as well as the t/t FRET traces seen in Section 4.3.2, and 

anisotropy change traces seen in Section 4.4.3) were all initially fit to a triple exponential 

curve using Scientist (MicroMath): 

 

! 

y = yo + A
1
e
" kapp 1 t + A

2
e
" kapp 2 t + A

3
e
"kapp 3 t    (Equation 4.1) 

 

As mentioned earlier, the kapp1 in the L/t FRET experiments was attributed to the lag 

between the L1 and the deacylated-tRNAfMet before separation occurs.  Depending on the 
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conditions, the major change in the FRET efficiency is represented by either kapp2 or kapp3 

as seen below and in Table 4.2. 

4.3.1.2.1 Buffer Conditions Affect Deacylated-tRNA-L1 Movement 

 Figure 4.4 directly compares the tRNA-L1 FRET efficiency loss between Buffers 

A and B upon addition of EF-G.GTP (1.0 µM) to a PRE-1 complex (0.25 µM) containing 

tRNAfMet (Cy3) and T202C-L1 (Cy5) that was made from a 70SIC using highly charged 

fMet-tRNAfMet (Cy3).  After a lag (kapp1), the fluorescence loss of the acceptor was 

measured to determine the L/t FRET efficiency loss, after ~10 s the full FRET efficiency 

is lost in Buffer A, as is evidenced by the D*A* sample reaching the same level as the 

DA* sample (Figure 4.1, 4.4). The amplitude difference of the FRET efficiency change 

between the two buffer conditions can be attributed to deacylated-tRNA binding to E-site 

more tightly in Buffer B (Semenkov et al., 1996),  so that, following translocation, it is 

not fully released. Indeed, retention of FRET signal in Buffer B reflects the establishment 

of an equilibrium between tRNA release (giving rise to a FRET efficiency loss) and 

deacylated-tRNA rebinding (refer to section 5.3.2). 

 Buffer A contains 7.5 mM Mg2+ and no polyamines, and the lag phase 

corresponding to translocation is k1app= 7.6 s-1; further, the major loss of FRET efficiency, 

as indicated by the loss of acceptor fluorescence, has an apparent rate constant of kapp2= 

4.71 s-1. In Buffer B, containing 4.5 mM Mg2+ and polyamines, the translocation rate is 

slower (k1app= 3.6 s-1) and the major loss of FRET efficiency is also slower, with an 

apparent rate constant of kapp2= 1.6 s-1. The loss of FRET efficiency can be accounted for 

in two ways: 1) L1 movement away from the E-site tRNA and/or, 2) tRNA release from 
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the ribosome. Because both labeled species, L1 and tRNA, are mobile, further 

experiments need to be conducted to determine which is indeed causing the loss of FRET 

efficiency. Distinguishing between these two possibilities is addressed later in this 

chapter (Section 4.3.2). 

4.3.1.2.2 Peptidyl State of P-site tRNA Affects Deacylated-tRNA-L1 Movement 

 The ability to aminoacylate a tRNAfMet to a very high level requires meticulous 

work and HPLC separation to attempt to remove the uncharged tRNAfMet.  To this date, 

the best charging efficiency achieved for fMet-tRNAfMet was 70-80%. Non HPLC-

purified samples reached ~30-40% charging. 

 In Buffer A, the charging efficiency of fMet-tRNAfMet, and thus occupancy of 

peptidyl-tRNA in the P-site upon translocation, does not make a difference in rate of the 

L1-tRNA FRET efficiency decrease (Figure 4.5, Table 4.2). However, it does make a 

difference in the amplitude of the acceptor fluorescence change (Table 4.2).  The 

amplitude of the fluorescence change increases approximately proportionally as the 

charging efficiency increases (25% charging: 0.33, 70% charging: 0.65, 78% charging: 

0.70). 

A possible explanation is that the uncharged tRNAfMet does not bind to the P-site 

as tightly, and thus does not survive the sucrose cushion purification of the PRE-1 state. 

Direct evidence for this is seen when preparing the PRE-1 complexes from 70SIC 

containing deacylated-tRNAfMet (Cy3). When the 70SIC complexes were prepared, half 

were purified via centrifugation through a sucrose cushion, and the other half were 

treated with ternary complex to make PRE-1 complexes, and then subjected to sucrose 
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cushion purification.  In both cases the ribosome pellets were resuspended in Buffer A, 

and tRNAfMet (Cy3) in the 70SIC remained bound to the ribosome through the sucrose 

cushion (~0.60 Cy3 / ribosome), whereas very little tRNAfMet (Cy3) was bound in the 

PRE-1 complex (~0.06 Cy3 / ribosome) (Table 4.3, 70S IC: Row 1; PRE: Row 4), 

indicating that the binding of deacylated-tRNAfMet to a P-site in a PRE-1 complex is less 

stable than in a 70SIC.  Initially this result was surprising because previous single 

molecule work has shown that FRET efficiency is retained between P-site deacylated-

tRNAfMet and A-site Phe-tRNAPhe after purification through size exclusion spin columns 

at varying concentrations of Mg2+ and no polyamines (Kim et al., 2007); however, the 

above experiment has been repeated multiple times and deacylated-tRNAfMet continues to 

be unstably bound.  It is possible that sucrose cushion purification is more stringent than 

size exclusion spin columns, and therefore, less stably bound tRNA is removed via 

sucrose cushion, but not size exclusion columns.   

 In Buffer B both highly charged and completely uncharged initiator tRNAs 

remain bound to PRE complexes at similar levels (~0.4-0.7 Cy3/70S, Table 4.3). It is 

possible that the binding of a deacylated-tRNAfMet to the P-site in a PRE-1 complex is 

stronger in Buffer B versus Buffer A, allowing the purification of a PRE-1 complex with 

aminoacyl-Phe-tRNAPhe
 in the A-site in Buffer B, but not in Buffer A. 

 Using a PRE complex formed from a 70SIC containing uncharged tRNAfMet 

(Cy3), in Buffer B, results in a P-site that is filled with aminoacyl-tRNA upon 

translocation, and a biphasic change in the FRET efficiency between T202C-L1 (Cy5) 

and tRNAfMet (Cy3). After the initial lag (kapp1) phase that follows EF-G.GTP addition, 
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only a small fraction of the FRET efficiency loss is attributed to rapid tRNA release (kapp2 

=1.17 s-1), and the major change is the second phase that occurs with an apparent rate 

constant of kapp3 =0.022 s-1. Using a PRE complex formed with highly charged fMet-

tRNAfMet (Cy3) results in a P-site that is filled with a peptidyl-tRNA upon translocation, 

and after the initial lag (k1app), the first phase is the major change with an apparent rate 

constant approximately 75 times faster (kapp2 = 1.6 s-1) than the major change seen when 

aminoacyl-tRNA is in the P-site (kapp2 = 0.022 s-1) (Figure 4.6, Table 4.2). 

 In all three conditions: 1) Buffer A, 2) Buffer B, peptidyl-tRNA in the P-site, and 

3) Buffer B, aminoacyl-tRNA in the P-site, the L/t FRET efficiency loss occurs in three 

phases. For all three conditions, the first phase is a lag phase with a k1app similar to the 

translocation rate.  For conditions 1 and 2, the second phase is the major change in which 

the L/t FRET efficiency decreases at a rate depending on the buffer (kapp2), and the third 

phase is a smaller, slower loss of FRET efficiency that is attributed to slow tRNA release 

(kapp3). However, in condition 3, the second phase is a small change where only a fraction 

of the L/t FRET signal is lost, and the slower third phase is the much larger FRET 

efficiency change. 

 

4.3.2 tRNA
fMet

 Interaction with Phe-tRNA
Phe

 (t/t FRET) 

 The changes in L/t FRET efficiency, although interesting, do not provide enough 

information in order to fully understand the tRNA movement and subsequent release of 

deacylated-tRNAfMet after translocation.  Definitive statements for the tRNA movement 

in L/t experiments is difficult due to the inherent movements of both labels; therefore, a 
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complex with a relatively stably-bound FRET donor in the P-site of a POST complex 

(Phe-tRNAPhe (Rhd110)) was used to monitor movement of acceptor tRNAfMet (Cy3) 

away from the P-site of the ribosome. Preliminary equilibrium FRET efficiency 

measurements seen in Figure 4.7, were taken for purified PRE-1 complexes, and purified 

PRE-1 complexes with EF-G.GTP (1 µM ), where the acceptor was limiting.  The FRET 

efficiency value was determined as above for the L/t experiments, except using 

Cy3/Rhd110 as the FRET pair.  The PRE-1 complex has a FRET efficiency of ~0.53 as 

determined by equation 2.2 (Table 4.1), which is in agreement with previous single 

molecule work (Chen et al., 2011).    For the kinetic experiments, PRE-1 complexes 

were isolated using sucrose cushion centrifugation, and the t/t movement was measured 

upon addition of EF-G.GTP (1.0 µM unless otherwise noted), and fit to equation 4.1.  In 

addition to monitoring the donor channel increase and acceptor channel decrease during 

FRET efficiency loss, calculations were performed in order to eliminate contributions to 

acceptor intensity due to acceptor fluorescence resulting from direct excitation from the 

laser and donor fluorescence leakage into the acceptor channel (Equation 2.2, Section 

2.2.7.2). 

4.3.2.1 In Buffer A, L1 Moves Away From Deacylated-tRNA
fMet

 Prior to tRNA 

Release 

 A tRNA translocated from the A- to P- site remains in the P/P-site, and maintains 

a fairly stable conformation, as seen in the X-ray crystallographic structure of a POST-1 

complex with deacylated-tRNA in the P-site (B-factor = 86 Å2, indicating a rms 

displacement of ~1 Å) (Gao et al., 2009). Also, Fischer and coworkers use cryo-EM to 
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see three different POST complexes and there is no indication of movement in the P-site 

tRNA between the complexes (Fischer et al., 2010). For these reasons, any loss in FRET 

efficiency between tRNAfMet (Cy3) and fMet-Phe-tRNAPhe (Rhd110) should reflect 

movement of tRNAfMet (Cy3) away from the P-site of the ribosome. 70SICs containing 

fMet-tRNAfMet (Cy3) and T202C-L1 50S were incubated with ternary complex 

containing Phe-tRNAPhe (Rhd110) to create PRE-1 complexes, which were subsequently 

purified through sucrose cushion centrifugation. EF-G.GTP (1 µM) was stopped flow 

added to the purified PRE-1 complexes (0.25 µM) in Buffer A; the resulting FRET 

efficiency losses were monitored as acceptor fluorescence losses and were fit to a triple 

exponential curve (Equation 4.1).   As seen in Figure 4.8, there is a brief initial lag in 

which the FRET efficiency does not change which corresponds to kapp1, followed by the 

major FRET efficiency decrease that occurs with an apparent rate constant of kapp2 = 1.4 

s-1, approximately 3.5 times slower than the loss of L/t FRET efficiency under the same 

conditions (Table 4.2).  Therefore, when considering the major FRET efficiency changes 

for the t/t and L/t experiments, it is reasonable to assume that the L1-stalk is moving 

away from the deacylated-tRNAfMet prior to its release from the ribosome (see Discussion, 

Scheme 4.1). 

4.3.2.2 In Buffer B, the tRNA Release Pathway is Dependent on P-site Peptidyl-state 

 As seen before, the L/t FRET efficiency change in Buffer B depends heavily on 

whether the P-site is occupied with fMet-Phe-tRNAPhe or Phe-tRNAPhe (Figure 4.6). In 

contrast, Figure 4.9 shows that the t/t FRET efficiency change shows only weak 

dependence on the P-site tRNA peptidyl state. The t/t FRET efficiency changes can be 
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compared to the L/t FRET efficiency changes under the same conditions in order to better 

understand the movement of the deacylated-tRNAfMet after translocation. 

 When EF-G.GTP is added to PRE-1 complexes containing tRNAfMet (Cy3) and  

fMet-Phe-tRNAPhe (Figure 4.10 A), only a fraction of the t/t FRET signal is rapidly lost 

(kapp1 = ~28 s-1), with the major loss of FRET efficiency having an apparent rate constant 

of kapp2 = 1.6 s-1, approximately the same apparent rate constant as the major L/t FRET 

efficiency loss seen under the same conditions (Table 4.2).  Also, similar to the L/t FRET 

efficiency loss, a slower minor FRET efficiency loss is seen with an apparent rate 

constant of kapp3 = 0.20 s-1.  The simplest model for understanding the major FRET 

efficiency changes seen in the t/t and L/t experiments is that the deacylated-tRNAfMet loss 

in FRET efficiency from L1 and from P-site peptidyl-tRNA is concomitant with the 

release of deacylated-tRNA from the ribosome (Scheme 4.1, see discussion). 

 When EF-G.GTP is added to PRE-1 complexes containing tRNAfMet (Cy3) and 

Phe-tRNAPhe (Figure 4.10 B,C), the t/t FRET efficiency changes are basically similar to 

what is seen in Figure 4.10 A. They  can still be fit to a triple exponential curve (Equation 

4.1) with only a fraction of the t/t FRET signal is lost in the first rapid change (kapp1= ~17 

s-1) and the major loss occurring in the second phase kapp2= 1.3 s-1, that is followed by a 

slower (kapp3= 0.24 s-1) smaller loss. However, the L/t FRET efficiency changes are quite 

different from what is seen in Figure 4.10 A, with the major L/t FRET efficiency loss 

occurring >50 times slower than the major FRET efficiency loss associated with the t/t 

FRET.  Thus, the movement of deacylated-tRNA away from the P-site is at a rate that is 

similar to the movement away in other conditions, but much faster than the loss in FRET 
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efficiency from L/t.  This indicates that the tRNA is remaining bound to the L1 stalk and 

moving away from the E-site, possibly into a secondary E2-site that retains FRET 

efficiency with T202C-L1, but loses FRET efficiency with P-site tRNA (Fischer et al., 

2010; Agrawal et al., 1999). 

 

4.3.3 Fluorescence Anisotropy Change of tRNA
fMet

 (Cy3) After Translocation 

 Fluorescence anisotropy is a useful tool for measuring of the apparent size of a 

fluorescently labeled molecule.  By using Cy3 labeled initiator tRNA, it was possible to 

monitor the koff rates of the deacylated-tRNAfMet upon translocation in Buffer B.  The 

bound and free states of the tRNA each have an intrinsic polarization value: a higher 

value for the bound state and a lower value for the free state; thus, by looking at the 

decrease in anisotropy of the labeled tRNA it is possible to have a direct measurement of 

tRNA release.  Anisotropy measurements utilize four fluorescence intensities, and the 

value is calculated by equation 4.2. 

 

! 

Anisotropy =
IVV "GIVH

IVV +GIVH
     Equation 4.2 
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I
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Where, IVV stands for intensity with vertically polarized excitation and vertically 

polarized emission, IVH stands for intensity with vertically polarized excitation and 
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horizontally polarized emission, and so on.  G is a measure of the sensitivity difference 

between the two PMTs used for obtaining the data. 

 Initial equilibrium anisotropy measurements were taken on PRE-1 complexes 

(bound), and POST-1 complexes (unbound) to determine the maximum loss of anisotropy 

for the translocation and release, these experiments were performed in Buffer A to ensure 

release, and the anisotropy loss was approximately 0.05±0.01, from 0.31 to 0.26 

(Yuanwei Chen, work in progress).  PRE-1 complexes were created using 70SICs that 

were made with unlabeled T202C-L1 ribosomes and either deacylated-tRNAfMet (Cy3), 

or highly charged fMet-tRNAfMet (Cy3) in Buffer B, and the anisotropy changes were 

monitored upon stopped flow addition of EF-G.GTP (1.5 µM). As expected, the 

anisotropy change for both complexes made with tRNAfMet (Cy3) and fMet-tRNAfMet 

(Cy3) was significantly less than that seen in Buffer A due to the inherent equilibrium of 

binding and release of deacylated-tRNA in the E-site in Buffer B as seen in the FRET 

studies. Unfortunately, this led to difficulty in analyzing the overall anisotropy changes, 

and this analysis is still ongoing.  However, preliminary results show that in Figure 4.11, 

the anisotropy change resulting from a POST-1 complex containing P-site Phe-tRNAPhe 

mimics the major L/t FRET efficiency loss, with kapp3= ~0.052 s-1 (B) (Table 4.2). 

 

4.3.4 Fitting of All Data to a Global Kinetic Scheme (EF-G Binding !  

Translocation) 

 A major goal in this research was to find a general kinetic scheme for the release 

of deacylated-tRNAfMet that would fit all the data obtained quantitatively. In order for the 
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scheme to be valid, not only did the data collected here need to fit properly, but also the 

results of previous work needed to be accommodated.  Rates of EF-G.GTP binding, 

hydrolysis, and conformational change were all first performed by Savelsbergh and 

coworkers at 37 °C (Savelsbergh et al., 2003); however, since the work shown here is at 

25 °C, the following results have been used (Pan et al., 2006). At 25 °C in Buffer A with 

coumarin labeled EF-G, EF-G.GTP binding and dissociation occur at rates of 30 µM-1 s-1 

and 25 s-1, respectively, and binding is followed almost immediately by hydrolysis at 

~100 s-1 (Seo et al., 2006; Pan et al., 2006; Pan et al., 2007).  Conformational change 

within the EF-G.GDP.Pi complex follows hydrolysis and occurs at ~30 s-1. This 

conformational change is indistinguishable from a tRNA movement creating a P/E 

complex, as both steps are inhibited by thiostrepton (ThS) and occur at similar rates (Seo 

et al., 2006, Pan et al., 2007). A very fast conversion from the P/E complex to an INT 

complex directly precedes translocation. 

4.3.4.1 Varying EF-G Concentration 

 In order to better understand the early steps of EF-G.GTP addition to a PRE-1 

complex, increasing concentrations of EF-G.GTP were added to the PRE-1 complexes 

discussed above, and the FRET efficiency changes were monitored.  In all cases (A, B, 

and C), the curves were fit to the global Scheme 4.1, where the hydrolysis and 

conformational change steps leading up to translocation described above were combined 

into k3. When fitting the concentration dependent data to Scheme 4.1, k4 through k9 were 

held constant and the data for k1 though k3 were fit to the Scheme.  In Buffer A (A), at 

higher concentrations of EF-G (2.0-5.0 µM) a very rapid (~ 29 µM-1 s-1) increase in 
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FRET efficiency is seen (Figure 4.12 A) upon binding of EF-G.GTP. At lower EF-G 

concentrations (0.5-1 µM) this increase is only seen as a lag because the higher FRET 

intermediate does not have time to build up before L1 movement. Further, the GTP 

hydrolysis and conformational change steps are combined into (k3),  and result in a rate 

constant of ~25 s-1 (Tables 4.4, 4.5). 

 In Buffer B, using PRE-1 complexes created with 70SICs containing highly 

charged fMet-tRNAfMet (Cy3) and T202C-L1 (Cy5) ribosomes, only two EF-G 

concentrations were examined, but both were fit to Scheme 4.1 as above (Figure 4.12 B). 

Under these conditions, addition of 5 µM EF-G results in a small increase in FRET 

efficiency. The rate constant for the binding was determined to be ~44 µM-1 s-1, and k3 = 

25 s-1 (Tables 4.4, 4.5). 

 In Buffer B, using PRE-1 complexes created with 70SICs containing deacylated-

tRNAfMet (Cy3) and T202C-L1 (Cy5) ribosomes, increasing concentrations of EF-G were 

added to the PRE-1 complex (Figure 4.12 C).  The curves were all fit to the global 

Scheme 4.1, as above, where k4-k9 were all held constant.  Like in Buffer A, the binding 

of EF-G resulted in an increase in FRET efficiency (k1= ~26 µM-1 s-1) at higher 

concentrations, and a k3 of ~25 s-1 (Tables 4.4, 4.5). 

 

4.3.5 Fitting of All Data to a Global Kinetic Scheme (Translocation Through 

Deacylated-tRNA Release) 

 The results obtained by the EF-G concentration dependence studies for the early 

steps after EF-G addition were set into Scheme 4.1, and the remaining steps k4-k9 were 
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determined by fitting the L/t and t/t FRET traces from Figure 4.8 and Figure 4.10 to the 

global Scheme 4.1.  The results from these fittings are seen in Tables 4.4, 4.5, and 

summarized below. 

4.3.5.1 Global Fitting of Deacylated-tRNA Release in Buffer A 

 Scheme 4.1 represents the steps leading up to deacylated-tRNA release from the 

ribosome after addition of EF-G.GTP.  From what we know about the triple exponential 

fits of the L/t and t/t FRET efficiency data in Buffer A, tRNA release should follow 

pathway 1 with the rate constants k6 and k8 dominating the L/t and t/t FRET efficiency 

changes, respectively.  As seen in Figure 4.13 A and Table 4.4, initial translocation 

occurs with a rate constant of k4= 8.2 s-1, and after reaching a POST-1 state, the rate 

constant k6= 5.10 s-1 corresponds to the movement of the L1-stalk into an out position, 

followed by deacylated-tRNAfMet release via a rate constant k8= 1.07 s-1.  Additionally, in 

both t/t and L/t FRET experiments, a slower release follows pathway 2, and is seen as k5 

= 0.65 s-1.  It can be said that the deacylated-tRNA release follows a dominant pathway 1, 

but there is also a minor pathway 2, in which less deacylated-tRNA is released with a 

slower rate. 

 

4.3.5.2 Global Fitting of Deacylated-tRNA Release in Buffer B (Peptidyl-tRNA in 

the P-site) 

 Using what was learned by fitting the L/t and t/t FRET experiments to a triple 

exponential curve above (Figure 4.10 A), both sets of data were fit to Scheme 4.1, 

holding k1 – k3 constant with values observed above (4.3.4.1).  After translocation (k4 = 
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3.34 s-1), the majority of the release of deacylated-tRNAfMet followed pathway 2, and was 

dominated by the rate constant k5= 1.60 s-1, with very little release following any of the 

other pathways as seen in Figure 4.13 B, and Table 4.4.  It should be noted, that since the 

initial charging efficiency of the fMet-tRNAfMet was 78%, approximately 22% of the 

ribosomes still contain aminoacyl-tRNA in the P-site after translocation; therefore, it is 

possible that a small fraction, undetectable in this Scheme, is following pathway 3, as 

described below. 

4.3.5.3 Global Fitting of Deacylated-tRNA Release in Buffer B (Aminoacyl-tRNA in 

the P-site) 

 The rate constants obtained by fitting the L/t and t/t FRET traces to triple 

exponential curves above (Figure 4.10 B, C), shows that in global Scheme 4.1 the 

majority of the release of deacylated-tRNAfMet follows pathway 3, in which the 

deacylated-tRNA moves out along with the L1-stalk and is then slowly released (k7 and 

k9).  Indeed, when the L/t and t/t FRET traces were fit to Scheme 4.1, the major release 

was seen by k7= 1.30 s-1 and k9= 0.020 s-1, with a minor release being seen via pathway 2, 

k5= 0.74 s-1 (Figure 4.13 C, Table 4.4). 

 

4.4 Discussion 

 Both the Cy5-labeled and unlabeled T202C-L1 ribosomes have been shown to be 

readily accessible and able to bind initiator tRNA to near wild type efficiency (Chapter 

3).  Further, this particular mutant has been shown to be a very good indicator of tRNA 

movement between the P/P and E/E-tRNA binding sites as seen in both single molecule 
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work (Fei et al., 2008, Ben Stevens manuscript in progress), equilibrium FRET, and 

the stopped flow kinetic FRET.  Further, the ability to prepare tRNAs that are highly 

labeled with either hydrazide dyes, or rhodamine 110 and highly aminoacylated was 

essential to being able to discover different pathways by which tRNA can leave the E-site 

of the ribosome. 

 The L1 stalk has been shown to occupy at least two (Fei et al., 2008) or three 

(Cornish et al., 2009) distinct conformations depending on the positions and acylation-

state of the tRNAs bound to the ribosome.  The L1-stalk occupies an “open” (out) state 

when the ribosomes have vacant E-sites or in isolated 50S subunits (Korostelev et al., 

2008; Harms et al., 2001) and this is most likely the position for the sucrose-purified 

70SIC ribosomes used here.  When deacylated-tRNAfMet is bound in the E-site, the L1-

stalk moves inward by ~30-40 Å (Korostelev et al., 2006; Selmer et al., 2006) and this 

is the most likely position of the stalk directly after translocation when the E-site is 

occupied with the translocated deacylated-tRNAfMet.  A third position for the L1-stalk, 

the “overly closed,” determined by Cornish and coworkers, requires a further movement 

of ~15-20 Å towards the body of the ribosome and occurs when a tRNA adopts the P/E-

hybrid conformation (Cornish et al., 2009; Valle et al., 2003; Gao et al., 2003). This is 

most likely the position of the stalk directly after addition of ternary complex to a 70SIC 

resulting in the increase in FRET efficiency described above. 

 In a 70SIC complex, the L1 stalk remains in an “out” conformation at least until 

peptide bond formation, at which point the now deacylated-tRNAfMet can adopt a hybrid 

P/E conformation.  It is this movement of deacylated-tRNAfMet, along with the movement 
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of the L1 into an “overly-closed” conformation, which results in the increase in FRET 

efficiency seen in Figures 4.1-4.3.  During translocation, the L1/tRNA interaction from 

P/E-hybrid to E/E-site does not change, as first seen in single molecule work by Fei et al., 

2008, and as shown here by a L/t FRET efficiency lag. The FRET efficiency for the PRE-

1 complex has been calculated from equilibrium FRET and stopped flow FRET 

experiments and is approximately 0.8 ± 0.1  in Buffer A, and ~0.90 ± 0.03 in Buffer B.  

This FRET efficiency, first seen in the PRE-1 state, remains relatively unchanged until 

either deacylated-tRNA dissociation or conformational change, at which time the POST-

1 FRET efficiency either goes to 0 as in Buffer A, or decreases to approximately 0.5 in 

Buffer B.  As mentioned before, the remaining FRET efficiency in the POST-1 complex 

in Buffer B is caused by rebinding of deacylated-tRNA to the E-site.  The measured 

values for the PRE-1 complex are similar to FRET efficiency values seen previously in 

single molecule work  (Table 4.6). 

EF-G.GTP Binding !  Translocation 

 Two different variables, buffer conditions and P-site peptidyl-state, with two 

possibilities were tested above; however, for one of the buffer conditions (A) we could 

only study the peptidyl-tRNA because the aminoacyl-tRNA did not remain bound to the 

PRE-1 complex through sucrose cushioning. Therefore, three different complexes were 

used to determine the possible pathways in which deacylated-tRNA can dissociate from 

the ribosome.  In all three pathways, the steps leading up to translocation did not change, 

and were in accordance with previous literature (Pan et al., 2007).  L/t FRET 
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experiments with addition of multiple concentrations of EF-G to PRE-1 complexes were 

used in order to better understand the early stages of POST-1 formation. 

As seen in Figure 4.12, the addition of EF-G.GTP at high concentrations (2.0 µM- 

5.0 µM, in most cases) resulted in a net FRET efficiency increase between L1 and 

deacylated-tRNA at a rate constant of ~30 µM-1 s-1.  Interestingly,  this increase in FRET 

efficiency is associated with the binding of EF-G rather than with conformational change 

step (k3) (Table 4.5). For samples with peptidyl-tRNA (A and B), the FRET efficiency 

increase in Buffer A is greater than it is in Buffer B.  For the PRE-1 complex, the FRET 

efficiency value in Buffer A is 0.8 (Figure 4.1) and in Buffer B it is 0.9 (Figure 4.12 A, B, 

Table 4.6). It is possible that more deacylated-tRNA samples the higher FRET state in 

Buffer B prior to addition of EF-G.GTP, and therefore, less of an increase is observed 

after addition of EF-G.GTP.  Prior to EF-G.GTP addition, the L1-stalk fluctuates between 

“in” and “out” conformations, while the now deacylated-tRNA fluctuates between classic 

(P/P) and hybrid (P/E) conformations.  A deacylated-tRNA in the P/E hybrid state will 

show a FRET signal with the L1-stalk that moves into the “in” conformation.  Upon 

addition of EF-G.GTP, the equilibrium between classic and hybrid states shifts towards 

the hybrid, resulting in a net increase in average FRET efficiency between the L1 and 

deacylated-tRNA, as seen in Figure 4.12. Indeed, in Buffer A, the increase in FRET 

efficiency leads to a FRET efficiency value of ~1, similar to the FRET efficiency value 

seen for the PRE-1 state in Buffer B. At lower concentrations of EF-G.GTP, the 

intermediate in which an increased fraction of the complexes is hybrid does not have a 

chance to build up, thus the binding is observed as a lag (as is seen in all other L/t 

experiments presented here). After EF-G.GTP binding, GTP hydrolysis occurs, followed 
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by a series of conformational changes (which were all fit to a single rate constant, k3), 

and translocation, none of which affect the L/t FRET signal (Table 4.5) because the 

distance between the L1-stalk and the deacylated-tRNA in the P/E state does not change 

when the tRNA is translocated to the E/E state. 

Translocation !  Deacylated-tRNA Release 

 By using the L/t and t/t FRET efficiency changes, three different pathways for 

deacylated-tRNAfMet release from the E-site have been discovered. As seen above, during 

the steps leading up to translocation and the steps immediately after translocation, the 

conformation of the ribosome is the same for each pathway; the L1-stalk is in towards the 

body of the ribosome (Li) and the deacylated-tRNA is in the E-site (E). After release, the 

tRNA is off of the ribosome (Eo) and the L1-stalk has moved out (Lo).  Pathway 1) the 

L1-stalk moves to the open conformation first (Lo E), and then deacylated-tRNAfMet is 

released from the ribosome (Lo Eo); 2) the L1/tRNA interaction is lost at a similar time as 

tRNA release occurs (Lo Eo); and 3) the L1-stalk moves to an open conformation (Lo) and 

remains in contact with the deacylated-tRNAfMet that has now moved into an apparent 

E2-site (E2) and is then released very slowly (Eo) (Scheme 4.1). 

 The first pathway, in which the L1-stalk moves out prior to deacylated-tRNAfMet, 

was discovered by monitoring translocation and release in Buffer A.  Buffer A has 

previously been shown to cause tRNA in the E-site to be released rapidly. However, the 

timing of the release was never determined (Semenkov et al., 1996). In the PRE-1 

complex, the FRET efficiency between deacylated-tRNAfMet (Cy3) and T202C-L1 (Cy5) 

is approximately 0.73, as measured by L/t equilibrium FRET (Figure 4.1).  Upon 



!

"#$!

translocation, this FRET efficiency value does not change; therefore, under these 

conditions, in which EF-G.GTP (1 µM) is added to the PRE-1 complex, the only change 

in FRET efficiency is when either the L1-stalk moves away, or the tRNA is released.  

Prior to the major FRET efficiency loss, a lag phase is indeed seen in the L/t FRET; this 

lag corresponds to the events leading up to and including the rate limiting translocation 

and has an apparent rate constant of 8.2 s-1, which is in accordance with translocation 

rates of ~7.8 s-1 measured in similar conditions by Pan and coworkers (Pan et al., 2007). 

Two-thirds  of the release of deacylated-tRNA in Buffer A follows pathway 1,  in which 

the L1-stalk moves away prior to the release of deacylated-tRNA. Therefore, the loss in 

FRET efficiency seen in the L/t FRET traces is due to the movement of the L1-stalk to an 

out conformation. The movement from an in conformation to an out conformation is 

approximately 30-40 Å, which increases the distance between the dyes from ~40 Å to 

~70-80 Å.  With a Förster Ro of approximately 50 Å (Fei et al., 2008) for the Cy3/Cy5 

FRET pair, this increase in distance takes a theoretical FRET efficiency from ~0.80 to 

~0.05 (Distance= Ro*(1/E-1)1/6) , values that correspond very nicely with the values 

observed (Table 4.6).  After the L1-stalk moves out, deacylated-tRNA dissociation is 

seen by the loss of t/t FRET efficiency with a rate constant of ~1.6 s-1. 

 The second pathway, is one in which the L1 moves away from the tRNA at a 

similar apparent rate constant as the tRNA releases off of the ribosome, and was 

discovered by monitoring translocation and deacylated-tRNAfMet release in Buffer B.  In 

order to obtain complexes which release deacylated-tRNAfMet via this pathway, PRE-1 

complexes had to be prepared using 70SICs which contained highly charged (>75%) 

fMet-tRNAfMet, because ribosomes that bind deacylated-tRNAfMet in the 70SIC favor 
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release from pathway 3, as discussed later.  The only definitive statement that can be 

made about ribosomes that follow this pathway of deacylated-tRNAfMet release from the 

E-site is that the deacylated-tRNAfMet dissociates from the ribosome at an apparent rate 

constant of ~1.6 s-1, as seen by the global fitting to Scheme 4.1 of the L/t and t/t FRET 

traces.  There are four sets of circumstances that could occur to cause all of these rate 

constants to be similar, and none of them can be positively ruled out using this set of 

experiments: 1) The L1-stalk outward movement, and the dissociation of the deacylated-

tRNAfMet are concerted movements; 2) The deacylated-tRNAfMet loss occurs while the 

L1-stalk is “in” and the dissociation of tRNA causes the decrease in L/t and t/t FRET 

efficiency; 3) The L1-stalk and the deacylated-tRNAfMet move out together in a rate-

determining step that is followed by rapid deacylated-tRNAfMet release from the E2-site,  

so that L/t and t/t FRET efficiency decrease at indistinguishable rates; or 4) The L1-stalk 

moves out first in a rate-determining step that is followed by rapid  deacylated-tRNAfMet 

dissociation from the E-site.  It is very unlikely that the two events occur concertedly, and 

from the evidence seen in the crystal structures when the E-site is unoccupied (L1-stalk in 

an open conformation), and from the other pathways presented here, it is unlikely that the 

L1-stalk remains in an in conformation while tRNA releases; therefore, the first two 

options are improbable. This leaves options 3) and 4), which we are unable to distinguish 

between to the precision of the rate constants measured here.  Fei and coworkers used 

single molecule FRET to monitor a similar release of deacylated-tRNA after 

translocation, with a dipeptide in the P-site.  Their results indicate that the L1-stalk moves 

out, prior to the release of deacylated-tRNA, similar to pathway 1; however, their buffer 

conditions (with polyamines, 15 mM Mg2+) cause the translocation reaction as well as the 
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release to slow down drastically at roughly 0.1 s-1, and 0.06 s-1, respectively based on 

lifetimes. (Fei et al., 2008). It is possible that the pathway 2 seen here, is indeed similar 

to what they observe, but here it is on a much faster time scale, and thus tRNA 

dissociation and L1-stalk movement appear as concerted movements. 

 The third pathway, in which the tRNA moves away from the body of the 

ribosome with the L1-stalk, was discovered by monitoring translocation and deacylated-

tRNAfMet release in Buffer B. This pathway is favored by ribosomes that initiate protein 

synthesis using a deacylated-tRNAfMet, so that, upon translocation, the P-site contains 

only an aminoacyl-tRNA. For ribosomes that follow this pathway, after the deacylated-

tRNAfMet loses contact with the P-site tRNA, it remains in contact with the L1-stalk as 

the stalk moves from a closed (Li) to an open (Lo) position.  This movement of tRNA 

with the L1-stalk is believed to put the deacylated-tRNA into a position similar to the E2-

site (E2) seen in recent cryo-EM images (Fischer et al., 2010).  The distance between the 

dihydrouridine (and therefore Cy3) at position 20 of the tRNAfMet in the E/E-site, and the 

dihydrouridines at position 16/17 (Rhd110) of tRNAPhe in the P/P-site is ~45 Å.  If the 

deacylated-tRNAfMet were indeed moving to the E2-site, the anticodon stem loop and the 

elbow region would move away from the P-site tRNA. Although it is currently not 

possible to obtain distance calculations because the coordinates are not available, it is 

likely that this movement would cause the loss of FRET efficiency that is seen in the t/t 

FRET measurements.  The loss in t/t FRET efficiency observed in the ribosomes that 

follow this pathway occurs at a rate constant that is very similar to that seen for the loss 

in t/t FRET efficiency for the other pathways (~1.6 s-1); therefore, the release of 

deacylated-tRNAfMet from the E-site is the same for all three pathways.  The L1-stalk 
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movement, and the interaction of the tRNA with the L1-stalk is dependent on (in these 

cases) the buffer conditions and the peptidyl-state of the P-site tRNA after translocation.  

In this pathway, the deacylated-tRNAfMet remains in contact with the L1 stalk as it moves 

to an open conformation, and occupies the E2-site.  The E2-site, according to cryo-EM 

images, does not have any codon/anticodon interactions between the tRNA and mRNA; 

therefore, under these conditions the tRNA in the E2-site may be very easily displaced by 

any deacylated-tRNA in solution (as seen in Chapter 5).  However, under these 

conditions in which there are no excess deacylated-tRNAs, it is possible for the tRNA to 

remain bound to the E2-site for a long time, as seen with the slow loss of L/t FRET 

efficiency and the major fluorescence anisotropy change that is seen on the same time 

scale (~0.02 s-1). 

 Although it has been shown that the three different conditions favor three 

different major pathways of deacylated-tRNA release, it should be mentioned that a 

minor, less significant pathway is also followed in each case.  The probability of a 

deacylated-tRNA releasing via any of the three specific pathways varies based on the 

conditions. 

 As previously mentioned in Section 1.6, the function and occupancy of the E-site 

has been highly debated in the literature. In one case the E-site acts as a stable binding 

site in which a translocated deacylated-tRNA can remain bound to the E-site in Buffer B 

even after sucrose centrifugation (Gnirke et al., 1989). In light of the findings that 

peptidyl-state of the P-site tRNA affects the release of deacylated-tRNAfMet from the E-

site (or E2-site) in Buffer B, the stable binding of E-site tRNA described above was 
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explored.  The current results indicate that when peptidyl-tRNA is in the P-site, 

deacylated-tRNAfMet dissociates from the ribosome relatively rapidly, whereas, when 

aminoacyl-tRNA is in the P-site, deacylated-tRNAfMet dissociates from the ribosome 

much more slowly.  The complexes used by Nierhaus and colleagues utilize a POST 

translocation state that has an N-acetyl-acyl-tRNA in the P-site, and show that this 

particular complex has a stable binding of E-site tRNA.  It is possible that N-acetyl-acyl-

tRNA in the P-site favors release of deacylated-tRNA via pathway 3 in  Scheme 4.1, 

which would allow the stable binding of the deacylated-tRNA after translocation. 

 The second role of the E-site, proposed by Wintermeyer and colleagues, is that it 

acts as a transient intermediate (Lill and Wintermeyer, 1987; Lill et al., 1988; 

Semenkov et al., 1996). This work, performed mostly in Buffer A, shows in a non-time 

resolved manner, that approximately 85% of the deacylated-tRNA is released 

“instantaneously” upon translocation (Semenkov et al., 1996). Our results agree in 

showing release of deacylated-tRNAfMet via pathway 1 (Scheme 4.1). 

 As mentioned previously, it is important to better understand the function of the 

E-site because its occupancy has been implicated in preventing amino acid 

misincorporation and random frameshifting (Nierhaus, 2006; Devaraj et al., 2009; 

Sergiev et al., 2005), as well as assisting in programmed frameshifting (Leger et al., 

2007, Liao et al., 2008).  To this end, it is possible that all three pathways observed here 

are viable options for deacylated-tRNA release, and the probability of release via any one 

pathway is dependent on conditions that may favor or disfavor changes in protein 

synthesis, such as frameshifting. 
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4.5 Conclusions 

 By utilizing a site specifically labeled L1 mutant, and reconstituting it into –L1 

50S subunits, I was able to create a probe for EF-G.GTP binding and deacylated-tRNA 

release from the ribosome.  Using this labeled ribosome along with t/t FRET and 

preliminary fluorescence anisotropy, three possible pathways for deacylated-tRNAfMet 

release from the E-site (or E2-site) were discovered. 1) The L1 stalk moves from a closed 

to an open position prior to release of deacylated-tRNAfMet; 2) The L1 stalk moves from a 

closed to an open position with a rate constant similar to that for the release of 

deacylated-tRNAfMet; and, 3) The deacylated-tRNAfMet moves with the L1-stalk as it 

moves away from the body of the ribosome into an E2-site and is then released very 

slowly.  All three of these pathways are viable options for deacylated-tRNA release and 

the probability of release via any one pathway is dependent on experimental conditions. 
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Table 4.1 Equilibrium FRET Efficiency Measurements 

 70SICs were made for L/t FRET analysis using fMet-tRNA
fMet

 (Cy3) as the donor 

and T202C-L1-50S (Cy5) as the acceptor.  Equilibrium FRET measurements were taken 
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using a Spectrofluorometer to determine the FRET efficiency at different stages of 

translocation. The samples were excited at 518 nm and FRET efficiency was measured as 

acceptor fluorescence change at 667 nm.  D*A*, D*A, DA*, and DA samples were 

prepared for each complex, and the DA background was subtracted for all samples prior 

to analysis. The t/t sample was prepared similarly, using Phe-tRNA
Phe

 (Rhd110) as the 

donor and fMet-tRNA
fMet

 (Cy3) as the acceptor, exciting at 480 nm, and measuring 

acceptor fluorescence at 567 nm.   The efficiency of energy transfer was calculated via 

Equation 2.2, reshown here as a sample calculation for FRET efficiency in the PRE-1 

complex in Buffers A and B (B).  Where E is the FRET efficiency, DA*’ is the extracted 

acceptor emission as calculated by the bottom equation. D*A*(A) is a sample with both 

donor and acceptor labeled, measured at the acceptor peak, D*A*(D) is the same complex 

measured at the donor peak.  The DA* indicates a sample in which only the acceptor is 

labeled, and a D*A indicates a sample where only the donor is labeled.  The donor 

efficiency and acceptor efficiency are measured as the amount of donor/70S and 

acceptor/70S in the purified complexes.   
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Exp. Buffer 

Charging 

Efficiency 

of fMet-

tRNA
fMet 

in 

70S IC 

k1app k2app k3app 

1 (L/t) A 25% 
13.2 ± 0.4 

(lag) 

4.7 ±0.1 

(0.33) 

0.71±0.02 

(0.29) 

34 (L/t) A 70% 7.7 ±0.1 (lag) 
4.67 ± 0.08 

(0.65) 

0.544±0.006 

(0.30) 

41 (L/t) A 78% 
7.6 ± 0.1 

(lag) 

4.7 ± 0.1 

(0.70) 

0.54 ±0.01 

(0.30) 

32 (t/t) A 70% 
13.3 ± 0.4 

(lag) 

1.38 ± 0.01 

(0.53) 

0.293 ± 0.003 

(0.27) 

44 (t/t) A 78% 
14.5 ± 0.4 

(lag) 

1.44 ± 0.03 

(0.52) 

0.27 ± 0.02 

(0.29) 

13 (L/t) B 0% 
1.7 ± 0.3 

(lag) 

1.8 ± 0.3 

(0.26) 

0.018 ± 0.001 

(0.74) 

30 (L/t) B 0% 
1.28 ± 0.07 

(lag) 

1.17 ± 0.06 

(0.20) 

0.022 ± 0.004 

(0.70) 

39 (L/t) B 0% 
2.5 ± 0.2 

(lag) 

0.5 ± 0.1 

(0.28) 

0.030 ± 0.008 

(0.69) 

28 (t/t) B 0% 17 ± 1 (0.10) 
1.24 ± 0.06 

(0.51) 

0.238 ± 0.007 

(0.31) 

38 (t/t) B 0% 17 ± 2 (0.12) 
1.24 ± 0.02 

(0.37) 

0.238 ± 0.006 

(0.13) 

12 (L/t) B 78% 
2.5 ± 0.1 

(lag) 

1.57 ± 0.08 

(0.62) 

0.11 ± 0.03 

(0.14) 

26 (L/t) B 70% 
3.6 ± 0.3 

(lag) 

1.6 ± 0.1 

(0.61) 

0.26 ± 0.03 

(0.11) 
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40 (L/t) B 78% 
5.5 ± 0.1 

(lag) 

1.6 ± 0.3 

(0.61) 

0.27 ± 0.07 

(0.14) 

24 (t/t) B 70% 28 ± 3 (0.10) 
1.69 ± 0.06 

(0.55) 

0.20 ± 0.01 

(0.11) 

42 (t/t) B 78% 25 ± 2 (0.17) 
1.04 ± 0.02 

(0.59) 

0.22 ± 0.03 

(0.12) 

64 

(Anis.) 
B 0% 

1.2+/- 0.4 

(lag) 

0.48 +/- 0.06 

(0.20) 

0.052 +/- 0.002 

(0.70) 

*Amplitude changes appear in parenthesis, major change appears in bold 

Table 4.2 Rate Constants Associated with PRE-1 to POST-1 Translocation and 

tRNA Dissociation 

 PRE-1 complexes were made by incubating 70SIC containing (fMet)-tRNA
fMet

 

(Cy3) at varying aminoacylation efficiencies, and either T202C-L1 50S (t/t) or T202C-L1 

(Cy5) 50S (L/t) with ternary complexes containing either Phe-tRNA
Phe

 (Rhd110) (t/t) or 

Phe-tRNA
Phe

 (L/t).  The PRE-1 complex used for the anisotropy study were created from 

70ICS containing uncharged tRNA
fMet

 (Cy3) and unlabeled T202C-L1 ribosomes.  The 

FRET efficiency and anisotropy changes were all fit to a triple exponential curve using 

Scientist (MicroMath) with the major change for each experiment appearing in bold.   
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Fig. 
Purified 

Complex 
Buffer 

Initial 

fMet 

Charging 

fMet/

PRE 

Phe/

PRE 

Cy3/PRE 

(tRNA
fMet

) 

Rhd/PRE 

(tRNA
Phe

) 

 
70SIC A 0 0 -- 0.58* -- 

4.3 70SIC A 25 0.52 -- 0.42 -- 

4.3 70SIC B 78 0.45 -- 0.36 -- 

 
PRE-1 A 0 0 0.19 0.06* -- 

4.5 PRE-1 A 25 0.39 0.70 0.39 -- 

4.4, 4.5 PRE-1 A 70 0.45 0.67 0.53* -- 

4.5, 

4.8, 

4.12A, 

4.13A 

PRE-1 A 78 0.58 0.61 0.62* -- 

4.6, 

4.10B/

C, 

4.12C, 

4.13C 

PRE-1 B 0 0 0.35 0.57* -- 

 
PRE-1 B 25 0.34 0.31 0.46 -- 

4.4, 

4.6, 

4.10A, 

4.12B, 

4.13B 

PRE-1 B 78 0.52 0.37 0.70* -- 

 
PRE-1 A 0 0 0.20 0.06* 0.16 

 
PRE-1 A 70 0.47 0.76 0.63* 0.54 

4.8, PRE-1 A 78 0.57 0.73 0.65* 0.50 
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4.13A 

4.9, 

4.10B/

C, 

4.11, 

4.13C 

PRE-1 B 0 0 0.41 0.52* 0.35 

 
PRE-1 B 70 0.48 0.47 0.43* 0.45 

4.9, 

4.10A, 

4.13B 

PRE-1 B 78 0.50 0.51 0.46* 0.53 

*HPLC purified, highly labeled tRNA
fMet

 

Table 4.3 Binding Efficiencies of tRNA to Purified Ribosome Complexes 
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Table 4.4 Rate Constants for Global Scheme 4.1!

 L/t and t/t FRET traces were fit to the global Scheme 4.1 using Scientist. A) PRE-

1 complexes made in Buffer A; B) PRE-1 complexes made in Buffer B with peptidyl-

tRNA in the P-site (after translocation); and C) PRE-1 complexes made in Buffer B with 
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aminoacyl-tRNA in the P-site (after translocation).  Rate constants for the steps leading 

up to translocation (k4) were fit to scheme 4.1 using EF-G concentration dependent data 

seen in Figure 4.12, and previous literature values, while holding k4-k9 constant.  Then, 

the L/t and t/t FRET traces were all fit to the global Scheme 4.1 while holding the early 

steps constant (k1-k3).  For each complex tested (A, B, and C) the L/t and t/t data fit to the 

scheme showed that the majority of deacylated-tRNA was released via 1 of 3 different 

pathways (bold), with a slower release resulting from heterogeneity in the sample (red). 

 

 

 

 

 

 

 

 

 

 

Fig Exp. FA FC FD FE FF FG FH 

4.12 L/t 4.0* 3.9 ± 2.2 ± 2.3 ± n.d. n.d. n.d. 
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A 0.5 µM 0.4 0.3 0.4 

1.0 µM 4.0* 
5.7 ± 

0.2 

2.3 ± 

0.2 

2.4 ± 

0.2 
n.d. n.d. n.d. 

2.0 µM 4.0* 
6.0 ± 

0.2 

3.2 ± 

0.2 

2.8 ± 

0.2 
n.d. n.d. n.d. 

5.0 µM 4.0* 
5.7 ± 

0.1 

3.7 ± 

0.1 

3.0 ± 

0.1 
n.d. n.d. n.d. 

4.12 

B 

L/t 

1.0 µM 
4.0* 

4.01 ± 

0.02 

4.02 ± 

0.01 

3.76 ± 

0.01 
n.d. n.d. 

2.17 ± 

0.01 

5.0 µM 4.0* 
4.08 ± 

0.01 

4.03 ± 

0.01 

3.85 ± 

0.01 
n.d. n.d. 

2.62 ± 

0.01 

4.12 

C 

L/t 

0.5 µM 
4.0* 

4.03 ± 

0.05 

4.09 ± 

0.01 

4.11 ± 

0.02 
n.d. n.d. 

10 ± 

0.3 

1.0 µM 4.0* 
4.03 ± 

0.03 

3.97 ± 

0.01 

4.16 ± 

0.01 
n.d. n.d. 

12 ± 

0.3 

2.0 µM 4.0* 
3.96 ± 

0.02 

4.01 ± 

0.01 

4.17 ± 

0.02 
n.d. n.d. 

14 ± 

0.3 

5.0 µM 4.0* 
4.28 ± 

0.02 

3.98 ± 

0.01 

4.01 ± 

0.01 
n.d. n.d. 

7.5 ± 

0.3 

4.13 

A 

L/t 4.0* 4.0* 4.0* 4.0* 
2.95 ± 

0.03 
n.d. 

2.6 ± 

0.1 

t/t 
4.07 ± 

0.02 

3.74 ± 

0.06 

4.09 ± 

0.03 

3.76 ± 

0.03 

3.48 ± 

0.03 
n.d. 

3.1 ± 

0.1 

4.13 

B 

L/t 4.0* 4.0* 4.0* 4.0* n.d. n.d. n.d. 

t/t 
4.00 ± 

0.01 

3.93 ± 

0.03 

3.88 ± 

0.01 

3.78 ± 

0.01 
n.d. n.d. n.d. 

4.13 

C 

L/t 4.0* 4.0* 4.0* 4.0* n.d. 
3.93 ± 

0.01 

3.32 ± 

0.02 

t/t 
4.00 ± 

0.01 

4.01 ± 

0.01 

3.89 ± 

0.01 

3.75 ± 

0.01 
n.d. n.d. n.d. 

  

 *Fixed values 
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Table 4.5 Fluorescence Values for Global Fits 

 Fluorescence values of traces fit to global Scheme 4.1. In the table above,  the 

complexes that are n.d. (not determined) are complexes that don’t build up during the 

course of the reaction.  
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Figure Experiment Buffer PRE FRET 

Efficiency  

Value (t0) 

Apparent 

POST FRET 

Efficiency 

Value (t10s) 

4.1 Equil; HC; L/t A 0.7 0 

4.2 Equil; HC; L/t B 0.9 0.5 

4.4, 4.8 SF; HC; L/t A 1.0 0 

4.4, 4.6, 4.10 SF; HC; L/t B 0.95 0.53 

4.6, 4.10 SF; UC; L/t B 0.93 0.55* 

4.7 Equil; HC; t/t B 0.53 0 

4.9, 4.10A SF; HC; t/t B 0.52 0.15 

4.9, 4.10B,C SF; UC; t/t B 0.91 0.07 

4.12 A 
SF; HC; L/t 

(5 uM EF.G) 
A 0.80/1.0** 0.12 

4.12 B 
SF; HC; L/t 

(5 uM EF.G) 
B 0.95/0.96** 0.46 

4.12 C 
SF; UC; L/t 

(5 uM EF.G) 
B 0.93/0.97** 0.6*** 

Chen et al, 

(submitted) 
sm FRET t/t - 0.5 

 

Fei et al., 

(2008) 
sm FRET L/t PA 0.8 0.8 

Stevens et al., 

(submitted) 
sm FRET L/t TAM15 0.5 0.75 

 

Abbreviations: Equil: Equilibrium FRET; SF: Stopped Flow FRET; HC: Starting with 

highly charged fMet-tRNA
fMet

; UC: Starting with uncharged tRNA
fMet

; smFRET: Single 

Molecule FRET; PA: Polyamine Buffer (polyamines, and 15 mM Mg
2+

); TAM15:  20 



!

"#$!

mM Tris-HCl (pH 7.5), 15 mM Mg(OAc)2, 30 mM NH4Cl, 70 mM KCl, 0.75 mM EDTA, 

1 mM DTT, 0.2% (w/v) Tween 20. 

*POST fluorescence value for FRET calculation was taken at t= 90s. 

** X/Y, where X is the FRET at t=0 and Y is the FRET at the peak of the increase, in B, 

the change in FRET value may not be significant. 

***POST fluorescence value for FRET calculation was taken at t= 30s 

Table 4.6  FRET Efficiency Measurements for Equilibrium FRET and Stopped 

Flow FRET in PRE-1 and POST-1 States. 

 It is possible to obtain FRET efficiency measurements the experiments presented 

here. The equilibrium FRET calculation is done as shown in Table 4.1.  To obtain FRET 

efficiency measurements from stopped flow data, the PRE-1 state is defined at t = 0s, 

before EF-G.GTP is added: 

PRE _FRET =
D*A*

(t0) !DA*(t0)
DA*

(t0)

"
1

DonorEfficiency

#

$
%

&

'
(

POST _FRET =
D*A*

(tx ) !DA*(tx )
DA*

(tx )

"
1

DonorEfficiency

#

$
%

&

'
(

 

Where, D*A* is a sample containing both donor and acceptor dyes, and DA* is a sample 

containing only the acceptor dye.  The POST FRET efficiency is calculated similarly, 

using times after the translocation has occurred. 
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Scheme 4.1 Global Scheme for Deacylated-tRNA Release From a Translocated 

Ribosome 

 A) The L/t and t/t FRET data that was originally fit to triple exponential curves 

(Figures 4.8 and 4.10), was fit to this global scheme using Scientist. Further, EF-G 

concentration dependent L/t FRET data was used to help find the rate constants 

associated with EF-G binding (k1 and k2) and hydrolysis/conformational change k3.  With 

these rate constants known, k4 through k9 were determined by fitting the L/t and t/t FRET 

traces for each complex to the scheme, and the pathway for deacylated-tRNA release was 

elucidated from these fits.  B) The same scheme as A, but with the corresponding states 

of the ribosome and tRNA. Li:  L1-stalk “in”; Lo: L1-stalk “out”; E1: deacylated-tRNA in 

the E site; E2: deacylated-tRNA in the E2 site; and Eo: deacylated-tRNA off the ribosome. 
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Figure 4.1 Equilibrium FRET Efficiency Changes in Buffer A 

 70SICs were made for FRET analysis using fMet-tRNA
fMet

 (Cy3) as the donor 

and T202C-L1-50S (Cy5) as the acceptor, and purified through a sucrose cushion.  

Equilibrium FRET measurements were taken using a spectrofluorometer to determine the 

FRET efficiency at different stages of translocation (A: 70SIC (0.1 µM), B: PRE-1 

(70SIC + Phe-tRNA
Phe

.EF-Tu.GTP (0.25 µM)), C: POST-1 (70SIC + Phe-tRNA
Phe

.EF-

Tu.GTP (0.25 µM) + EF-G.GTP (0.25 µM))) . The samples were excited at 518 nm and 

FRET efficiency was measured as acceptor fluorescence change at 667 nm.  D*A*, D*A, 

DA*, and DA samples were prepared for each complex, and the DA background was 
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subtracted for all samples prior to analysis.  Fitted D contribution and extracted A 

emission were determined for each stage, and the efficiency of energy transfer was 

determined by equation 2.2.  The DA samples are plotted together for each ribosome 

complex in D.  

 

Figure 4.2 Equilibrium FRET Efficiency Changes in Buffer B 

 Complexes were made and analyzed in the same way as Figure 4.1, except they 

were made in Buffer B.  Notice in C and D that the FRET efficiency is not completely 

lost due to the rebinding of deacylated-tRNA to the E-site in Buffer B. 
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Figure 4.3 FRET Efficiency Increase Associated with PRE-1 Formation 

 70SIC was created in either Buffer A or Buffer B with highly charged fMet-

tRNA
fMet

 (Cy3) and T202C-L1 (Cy5) ribosomes.  Phe-tRNA
Phe

.EF-Tu.GTP ternary 

complex (0.5 µM for Buffer A, and 1.0 µM for Buffer B) was stopped flow added to the 

70S IC (0.25 µM). tRNA
fMet

 (Cy3) in the PRE-1 complex was excited at 540 nm and the 

emission of the Cy5 acceptor was monitored at 680 ± 10 nm to determine FRET 

efficiency change, and is seen here. 
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Figure 4.4 L/t FRET Efficiency Change Upon Translocation in Buffer A and Buffer 

B 

 1.0 µM EF-G.GTP was rapidly mixed in a stopped flow spectrophotometer with a 

PRE-1 complex (0.25 µM) that was created from a 70SIC containing highly charged 

fMet-tRNA
fMet 

(Cy3) and T202C-L1 (Cy5) ribosomes in Buffer A or B. tRNA
fMet

 (Cy3) 

in the PRE-1 complex was excited at 540 nm and the emission of the Cy5 acceptor was 

monitored at 680 ± 10 nm to determine FRET efficiency change.  D*A* samples contain 

both Cy5 and Cy3 labels, whereas DA* samples contain only Cy5.  Background (DA) 

traces were subtracted from all samples, and the D*A* samples were normalized to 1.0. 

The DA* samples were compensated for the normalization by dividing by the D*A* 

fluorescence at time 0. After ~10 s in Buffer A, tRNA is completely released from the 
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ribosome resulting in no FRET; however, in Buffer B, FRET remains due to the 

equilibrium established between release and rebinding of deacylated-tRNA.  The D*A* 

traces were both fit to a triple exponential curve using Scientist. 
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Figure 4.5 L/t FRET Efficiency Change Upon Translocation in Buffer A 

 1.0 µM EF-G.GTP was rapidly mixed in a stopped flow spectrophotometer with a 

PRE-1 complex (0.25 µM) that was made from 70SIC complexes containing fMet-

tRNA
fMet 

(Cy3) charged to different levels, and ribosomes containing T202C-L1 (Cy5) 

50S in Buffer A. tRNA
fMet

 (Cy3) in the PRE-1 complex was excited at 540 nm and the 

emission of the Cy5 acceptor was monitored at 680 ± 10 nm to determine FRET 

efficiency change. The FRET efficiency changes were fit to a triple exponential curve 
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using Scientist. Unlike Buffer B, the level of charging efficiency of the initiator tRNA 

does not affect the apparent rate constant of the major FRET change in Buffer A. 

 

 

Figure 4.6 L/t FRET Efficiency Change Upon Translocation in Buffer B 

 1.0 µM EF-G.GTP was rapidly mixed in a stopped flow spectrophotometer with a 

PRE-1 complex (0.25 µM) that was made from 70SIC complexes containing either 

highly charged fMet-tRNA
fMet 

(Cy3) or deacylated-tRNA
fMet

 (Cy3), and ribosomes 

containing T202C-L1 (Cy5) 50S in Buffer B. tRNA
fMet

 (Cy3) in the PRE-1 complex was 

excited at 540 nm and emission was measured at 570 ± 10 nm. The emission of the Cy5 

acceptor was monitored at 680 ± 10 nm and is shown here fitted to a triple exponential 

curve using Scientist.  Acceptor alone (DA*) samples are also shown to indicate the 

FRET Efficiency = 0 fluorescence. 
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Figure 4.7 t/t Equilibrium FRET Change in Buffer B 

 PRE-1 complexes were made for FRET analysis using Phe-tRNA
Phe

 (Rhd110) as 

the donor and fMet-tRNA
fMet

 (Cy3) as the acceptor, and purified through a sucrose 

cushion.  Equilibrium FRET measurements were taken using a spectrofluorometer to 

determine the FRET efficiency at different stages of translocation (A: PRE-1 (0.1 µM), 

B: POST-1 (PRE-1 + EF-G.GTP (0.25 µM)).  The samples were excited at 480 nm and 

FRET efficiency was measured as acceptor fluorescence change at 567 nm.  D*A*, D*A, 

DA*, and DA samples were prepared for each complex, and the DA background was 
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subtracted for all samples prior to analysis.  Fitted D contribution and extracted A 

emission were determined for each stage, and the efficiency of energy transfer was 

determined by equation 2.2.  The DA samples are plotted together for each ribosome 

complex in C.  

  

 

Figure 4.8 L/t and t/t FRET Efficiency Change in Buffer A 

 The L/t FRET efficiency change is monitored as described in Figure 4.2.  For the 

t/t FRET experiments, 1.0 µM EF-G.GTP was rapidly mixed with 0.25 µM PRE-1 

complex that was made from a 70SIC complex containing highly charged fMet-tRNA
fMet

 

(Cy3), Phe-tRNA
Phe

 (Rhd110), and T202C-L1 50S ribosomes.  The donor fMet-Phe-

tRNA
Phe

 (Rhd110) was excited at 480 nm and emission was measured at 525 ± 10 nm, 
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the acceptor emission was monitored at 570 ± 10 nm and is shown here. The L/t FRET 

was fit to a triple exponential curve as seen in Figure 4.2, and the t/t was also fit to a 

triple exponential using Scientist. 
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Figure 4.9 t/t FRET Efficiency Change Upon Translocation in Buffer B 

 For the t/t FRET experiments, 0.25 µM PRE-1 complex made from a 70SIC 

containing either highly charged fMet-tRNA
fMet

 (Cy3) or deacylated-tRNA
fMet 

(Cy3), 

Phe-tRNA
Phe

 (Rhd110), and T202C-L1-50S ribosomes. The PRE-1 complex was rapidly 

mixed with 1.0 µM EF-G.GTP in a stopped flow experiment. The donor (fMet)-Phe-

tRNA
Phe

 (Rhd110) was excited at 480 nm and emission was measured at 525 ± 10 nm, 
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the acceptor emission was monitored at 570 ± 10 nm and is shown here.  The t/t FRET 

efficiency changes were both fit to a triple exponential curve using Scientist. 

 

Figure 4.10 L/t and t/t FRET Efficiency Change in Buffer B 

 The complexes used in the L/t FRET experiments are made, and the efficiency 

change is monitored as described in Figure 4.6.  For the t/t FRET experiments, 1.0 µM 

EF-G.GTP was rapidly mixed with 0.25 µM PRE-1 complex made from a 70SIC 

containing highly charged fMet-tRNA
fMet

 (Cy3) (A) or deacylated-tRNA
fMet 

(Cy3) (B 

and C), and T202C-L1-50S ribosomes.  The donor (fMet)-Phe-tRNA
Phe

 was excited at 
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480 nm and emission was measured at 525 ± 10 nm, the acceptor emission was 

monitored at 570 ± 10 nm and is shown here. Acceptor alone (DA*) samples are also 

shown to indicate the FRET Efficiency = 0 fluorescence. The L/t FRET efficiency 

changes were fit to a triple exponential curve as in Figure 4.4, and the t/t FRET efficiency 

changes were also fit to a triple exponential curve using Scientist. 

 

Figure 4.11 tRNA Release Measured by L/t FRET and Anisotropy Change 

 To measure the L/t FRET efficiency change, 1.0 µM EF-G.GTP was rapidly 

mixed in a stopped flow spectrophotometer with a PRE-1 complex (0.25 µM) that was 

made from 70SIC complexes containing deacylated-tRNA
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containing T202C-L1 (Cy5) 50S in Buffer B. The resulting trace was fit to a triple 

exponential using Scientist.  For anisotropy change experiments, 1.5 µM EF-G.GTP was 

rapidly mixed with 0.25 µM PRE-1 complex made from a 70SIC containing deacylated-

tRNA
fMet 

(Cy3), and unlabeled T202C-L1-50S ribosomes in Buffer B.  Anisotropy 

change was measured using a polarizing excitation at 540 nm, and monitored with 

polarizers on the PMT at 570 ± 10 nM; the changes were fit to a triple exponential curve. 

It should be noted that the L/t FRET efficiency change was monitored when 1.0 µM EF-

G.GTP was added to 0.25 µM PRE-1 complex, whereas 1.5 µM EF-G.GTP was added to 

the PRE-1 complex for the anisotropy experiments.  However, as seen in (Figure 4.12) 

EF-G concentration does not significantly affect the release of deacylated-tRNA. 
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Figure 4.12 EF-G Concentration Dependent L/t FRET Efficiency Change  

 The L/t FRET efficiency change is monitored for PRE-1 complexes that were 

made from 70SIC complexes containing either highly charged fMet-tRNA
fMet

 (Cy3) (A 

and B), or deacylated-tRNA
fMet

 (Cy3) (C), and T202C-L1 (Cy5) ribosomes in either 
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Buffer A (A) or Buffer B (B and C).  Acceptor alone (DA*) samples are also shown to 

indicate the FRET Efficiency = 0 fluorescence. In all three conditions, the FRET 

efficiency changes were fit to global Scheme 4.1, where k4 through k9 were held constant, 

while k1 though k3 were fit under these conditions. 
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 Figure 4.13 Global Fitting of L/t and t/t FRET Traces and Anisotropy 

 The traces shown in kinetic FRET experiments above were initially fit to triple 

exponential curves with the apparent rate constants seen in Table 4.2. Here, those traces 

were fit to the global Scheme 4.1 and followed different pathways for deacylated tRNA 

release depending on the ribosome complex and buffer conditions. A) 1.0 µM EF-G.GTP 

was added to 0.25 µM PRE-1 complexes in Buffer A as described in Figure 4.8; B) 1.0 

µM EF-G.GTP was added to 0.25 µM PRE-1 complexes as described in Figures 4.10 A; 

C) 1.0 µM  EF-G.GTP was added to 0.25 µM PRE-1 complexes as described in Figures 

4.10 B/C.  Both the L/t and t/t FRET traces for each complex were fit to the Scheme to 

elucidate the major pathway for deacylated-tRNA release. The fluorescence anistropy 

trace was created as in Figure 4.11, and also fit to the Scheme. Complexes from A mostly 

followed pathway 1, with a less significant and slower release via pathway 2.  Complexes 
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from B followed pathway 2, and complexes from C mostly followed pathway 3, with a  

less significant release via pathway 2 as well. 
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Chapter V: Addition of Deacylated-tRNA in Solution 

Enhances the Slow Release of Translocated Deacylated-

tRNA
fMet
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5.1 Abstract 

 The ribosomes which follow pathway 3 described in Chapter IV have an 

apparent problem to overcome in that the deacylated-tRNA remains bound to the E2-

site for too long to be viable in vivo.  However, the above experiments were done in 

conditions in which there were no outside factors competing for the tRNA binding 

site, or ternary complexes binding to the A-site.  It is possible that deacylated-tRNA 

in solution can compete for the E2-site, and/or ternary complex binding to the A-site 

could allosterically affect the release of tRNA from the E/E2-site.  Here, it is shown 

that there is indeed a competition between deacylated-tRNAs for binding to the 

ribosome that affects the release of tRNA. Further, this competition, rather than an 

allosteric interaction between A- and E-sites, seems to provide the major affect on 

deacylated-tRNA release. 

 

5.2 Introduction 

 In Chapter IV it was shown that tRNA could leave the E-site of the ribosome 

via three different pathways, each one distinct in the movement of the L1-stalk in 

relation to the deacylated-tRNA.  The first two pathways show that deacylated-

tRNA
fMet 

can dissociate from the ribosome at a reasonable rate (~1-2 s
-1

); however, 

the third pathway holds the deacylated-tRNA
fMet

 in what is presumed to be the E2-site 

as seen in cryo-EM images (Agrawal et al., 1999; Fischer et al., 2010).  Although it 

would be troublesome for a translating ribosome to only slowly release a translocated 
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tRNA, one must remember that in the above experiments, there were no deacylated-

tRNAs, and no additional ternary complexes present.  In vivo there is on the order of 

200 µM tRNA (Dong et al., 1996), and available ternary complex ready to continue 

translation.  Therefore, it is possible that, even though the ribosomes following 

pathway 3 (Chapter 4) appear to hold onto the deacylated-tRNA for an excessively 

long time, in vivo the deacylated-tRNA
fMet

 is in an equilibrium between bound and 

unbound states, and this equilibrium can be affected by competition between other 

deacylated-tRNAs present in the cell. 

 In order to test whether or not the dissociation of deacylated-tRNA
fMet

 from 

ribosomes following pathway 3 is affected by the presence of deacylated-tRNA in the 

solution, POST-1 complexes were prepared in conditions that favor pathway 3. Such 

complexes were rapidly mixed  with various concentrations of deacylated-tRNA
Lys 

or 

tRNA
Tyr

, and the changes in fluorescence were recorded in a stopped flow 

spectrofluorometer.  Both the loss of FRET between T202C-L1 (Cy5) and 

translocated tRNA
fMet

 (Cy3), and the gain of FRET between T202C-L1 (Cy5) and 

added tRNA
Lys 

(Cy3) were measured in order to determine if there were indeed a 

competition for the apparent E2-site.   According to the cryo-EM images, there 

should be no codon-anticodon interaction with tRNAs in the E2-site. Therefore, we 

tested the codon dependence of the competition between the deacylated-tRNA
fMet

 

(Cy3) and the added deacylated-tRNAs. 

 Further, the supposed allosteric interaction between the A-site and the E-site 

as first proposed by Nierhaus and colleagues (Rheinberger and Nierhaus, 1986), 
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and as later seen in single molecule work by Chen and colleagues (Chen et al., 

submitted manuscript) was tested under these conditions.  The presence of an 

allosteric interaction between an A-site and E-site by way of negative cooperativity 

would allow better accuracy of selection of aminoacyl-tRNAs while preventing 

binding of non-cognate codons in the decoding process. Further, by constantly 

maintaining 2 codon-anticodon interactions, it may help keep the messenger RNA in 

frame during translation (Nierhaus, 1990; Rheinberger, 1991).  The criticism 

against interpreting the results of Rheinberger and Nierhaus as reflecting an allosteric 

interaction was that the release of translocated E-site tRNA was coming from a 

competition with deacylated-tRNA in the solution (Robertson and Wintermeyer, 

1987).  Here, we find that deacylated-tRNA in solution does indeed provide the major 

affect on the release of tRNA; however, there is possibly a small additional affect 

when ternary complex is also added, presumably via binding to the A-site. 

 In the preliminary work presented here, it appears that there is a competition 

between deacylated-tRNA for a site near the labeled L1 that is not codon dependent. 

However, the data here have yet to be incorporated into a general kinetic scheme, and 

further work needs to be completed in order to determine the exact mechanism for 

this competition.   
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5.3 Results 

5.3.1 Preparation of a POST-1 Complex  

 Unless otherwise specified, T202C-L1 (Cy5) POST-1 complexes were made 

in Buffer B for the following experiments, starting with 70SICs containing 

deacylated-tRNA
fMet

 (Cy3). Addition of EF-Tu.GTP.Phe-tRNA
Phe

 and EF-G.GTP 

resulted in POST-1 complexes that were purified through sucrose to remove any 

excess factors and tRNA (Section 2.2.5.4). Table 5.1 presents the binding efficiencies 

for the tRNA
fMet

 (Cy3) to the ribosome, in what is assumed to be the E2-site, and 

Phe-tRNA
Phe

 to the P-site in the purified complexes; further, to ensure the complexes 

are indeed POST-1, puromycin reactivity was tested. The untranslocated PRE-1 

complex does not react with puromycin (~0.02 aminoacyl-puro/70S); however, upon 

addition of EF-G.GTP the resulting POST-1 complex regains reactivity to a level 

similar to that seen in 70SIC (~0.3 aminoacyl-puro/70S), indicating that the A-site is 

indeed unoccupied (Table 2.2).  A complex created under these conditions should 

result in the release of deacylated-tRNA following a pathway like pathway 3 in 

Scheme 4.1 (Refer to 4.3.5.3), where the deacylated-tRNA
fMet

 moves away from the 

body of the ribosome with the L1-stalk before being released.  This release from the 

E2-site, can be affected by the presence of deacylated-tRNAs in the solution. Figure 

5.1 presents the binding curve for deacylated-tRNA
fMet

 (Cy3) as measured by an 

increase in T202C-L1 (Cy5) FRET efficiency fluorescence upon addition of 
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increasing amounts of deacylated-tRNA
fMet

 (Cy3) in an equilibrium FRET 

experiment. The initial amount of fluorescence without any tRNA
fMet

 (Cy3) added 

back (0.0 µM) accounts for the fluorescence seen from the translocated-tRNA
fMet

 

(Cy3).  This experiment allowed the estimation of a KD = 0.123 µM. To ensure E2-

site occupancy in the following experiments, the equilibrium was shifted by 

preincubating the POST-1 complexes with 0.5 µM deacylated-tRNA
fMet

 (Cy3, unless 

otherwise specified).   

 

5.3.2 The Extent of Competition Depends on the Concentration of the Added 

Deacylated-tRNA 

 The FRET efficiency between T202C-L1 (Cy5) on the 50S subunit and 

deacylated-tRNA
fMet 

(Cy3) in the E2-site of a POST-1 complex (0.25 µM) was 

measured as a result of stopped-flow addition of increasing concentrations of tRNA
Lys

 

(0.0, 0.1, 0.5, 0.75, 1.5, and 3.0 µM; Figure 5.2A). The curves were fit to either a 

single or double exponential curve and, Table 5.2 shows that the apparent rate 

constant of the major FRET efficiency decrease remains constant at ~1.5 s
-1

, 

independent of the concentration of deacylated-tRNA
Lys

 added to the complex; 

however, the amplitude of the major FRET efficiency decrease is dependent on the 

concentration of the added deacylated-tRNA
Lys

. An apparent  KD of ~0.15 µM can be 

obtained by plotting the amplitude change after 30 sec versus the concentration of 

added deacylated-tRNA
Lys

 (Figure 5.2 B, in agreement with the KD obtained earlier 

by different methods using tRNA
fMet

).  Further, although the rate constant of the 
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major change (kapp1= ~1.5 s
-1

) is not affected by concentration (and is even present 

without addition of tRNA
Lys

), at concentrations above 0.75 µM the overall change 

becomes biphasic and introduces a slower  (kapp2= ~0.13 s
-1

) change of lesser 

magnitude.  

 In order to measure the binding of deacylated-tRNA to the ribosome, a 

T202C-L1 (Cy5) POST-1 complex was made from 70SICs with unlabeled 

deacylated-tRNA
fMet

, and purified as previously. In the POST-1 complex, the 

unlabeled deacylated-tRNA
fMet

 is in the E2-site, and to ensure E2-site occupancy 0.5 

µM unlabeled-tRNA
fMet

 was added to the complex. tRNA
Lys

 (Cy3) was then added to 

the T202C-L1 (Cy5) POST-1 complex via stopped flow, and an increase in FRET 

efficiency was measured when the tRNA
Lys 

(Cy3) bound to the ribosome near L1 

(Figure 5.3 A).  This FRET efficiency increase was fit to a double exponential curve, 

with the major change occurring with an apparent rate constant of kapp1 = 0.81 s
-1

, and 

a slower, lesser change occurring with an apparent rate constant of kapp2= 0.10 s
-1

 for 

deacylated-tRNA
Lys 

(Cy3) concentrations higher than 0.75 µM (Table 5.2).  The rate 

constants for binding of deacylated-tRNA
Lys

 (Cy3) are similar to the rate constants for 

the release of deacylated-tRNA
fMet

 (Cy3) (Table 5.2, Figure 5.3 A versus Figure 5.3 

B).  It is difficult to obtain the actual FRET efficiencies because the amount of Cy3-

tRNA bound to the ribosome is unknown.  In the complexes containing labeled 

tRNA
fMet

 (Cy3), it is not known how much remains bound to the E/E2-site after 

preincubation; further, it is unknown the amount of tRNA
Lys

 (Cy3) that binds to the 
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ribosome in that experiment.  By not knowing the amounts of deacylated-tRNA 

bound, it is impossible to measure accurate FRET efficiencies. 

 

5.3.3 Competition is Not Codon Specific 

  Previous cryo-EM data has shown that tRNA in an E2-site has no contacts 

with the mRNA codon in the E-site (Fischer et al., 2010).  In the POST-1 complexes 

used above, the mRNA codon in the E-site is AUG, and tRNA
Lys

 has an anticodon 

that corresponds to a codon of AAA or AAG where there is at least one base pair 

possible.  Therefore, in order to measure whether or not the competition is codon 

specific, a tRNA
Tyr

 that has no bases in common with the mRNA in the E-site was 

used (codon: UAU or UAC).  T202C-L1 (Cy5) POST-1 complexes (0.25 µM) were 

preincubated with 0.5 µM tRNA
fMet 

(Cy3) as before, and then deacylated-tRNA
Tyr

 

(0.75 or 1.5 µM) was added in a stopped flow.  As seen in Figure 5.4, the release of 

E2-site tRNA
fMet

 (Cy3) as measured by FRET efficiency loss upon addition of 

tRNA
Tyr

, is similar to the release upon addition of tRNA
Lys

 in both rate constant and 

amplitude. 

 

5.3.4 Addition of Ternary Complex Does Not Dramatically Enhance Deacylated-

tRNA
fMet

 Release 

 As alluded to in the introduction, an A- to E-site allosteric interaction has been 

shown in previous work (Rheinberger and Nierhaus, 1986; Rheinberger et al., 
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1986; Gnirke et al., 1989, Nierhaus, 1990; Rheinberger, 1991; Chen et al., 

submitted manuscript); further, this allostery has also been held under scrutiny for 

the possibility that deacylated-tRNA inherent in the ternary complex is causing E-site 

competition resulting in release of E-site tRNA (Robertson and Wintermeyer, 

1987).  Above, it has been shown that deacylated-tRNA does indeed create a 

competition for the ribosome that is codon independent. Here, I explore whether the 

addition of a ternary complex has any additional effect on the release of tRNA.  

Because of the limits of artificial tRNA charging, any ternary complex added has an 

inherent amount of deacylated-tRNA that will create a competition for the E2-site. 

Lys-tRNA
Lys 

charging efficiency has been optimized to ~35-40% resulting in 

deacylated-tRNA
Lys 

concentrations of 0.5 µM and 1.5 µM for ternary complex 

concentrations of 0.39 µM and 1.0 µM, respectively.  As seen in Figure 5.5 A/B, the 

addition of these ternary complexes to a POST-1 complex (made as above) only 

minor  further deacylated-tRNA
fMet

 (Cy3) release as compared to the release seen 

upon addition of 0.5 µM (Figure 5.5 A) or 1.5 µM (Figure 5.5 B) deacylated-tRNA
Lys

. 

 Due to the low charging efficiency of tRNA
Lys

, creation of a ternary complex 

resulted in an approximate 2-fold excess of deacylated-tRNA : ternary complex. In 

order to increase the ratio of ternary complex : deacylated-tRNA, a more highly 

charged Phe-tRNA
Phe

 (~72% charged) was used.  A POST-1 complex had to be made 

using an mRNA sequence of MRFK, instead of MFKR, in order to put the codon for 

tRNA
Phe

 in the open A-site of the complex. Using the MRFK mRNA sequence, a 

70SIC complex was made with deacylated-tRNA
fMet

 (Cy3), and to it EF-



!

"#$!

Tu.GTP.Arg-tRNA
Arg

 and EF-G.GTP was added to create the POST-1 complex, 

which was then purified through sucrose, and preincubated with 0.5 µM tRNA
fMet

 

(Cy3).  Addition of EF-Tu.GTP.Phe-tRNA
Phe

 (1.0 µM, as measured by Phe-tRNA
Phe

 

concentration) to a POST-1 complex also resulted in 0.39 µM deacylated-tRNA
Phe

 

being added.  Therefore, if the addition of ternary complex to the POST-1 complex is 

a major contributor to the loss of tRNA
fMet

 (Cy3) from the ribosome, the FRET 

efficiency loss from addition of ternary complex should be much greater than from 

the addition of 0.39 µM deacylated-tRNA
Phe

 alone.  However, as seen in Figure 5.5 C, 

the FRET efficiency loss is similar in both instances, meaning that the addition of 

ternary complex does not provide great enhancement of deacylated-tRNA
fMet

 (Cy3) 

release from the ribosome. However, there is a slightly larger amplitude change for 

the complexes in which there is a ternary complex added; therefore, it is possible that 

ternary complex has some effect on the release of deacylated-tRNA
fMet

.  Another 

possibility is that since there is no direct measurement of the amount of deacylated-

tRNA present in the ternary complex solution, we may be imprecise in the amount of 

deacylated-tRNA leading to skewed amplitudes. Further experiments must be 

performed to better understand the exact scheme by which the release occurs. 
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5.4 Discussion 

 The slow rate of deacylated-tRNA release from the ribosomes that 

predominantly follow pathway 3 described above, would drastically hinder in vivo 

protein synthesis.  However, in in vivo conditions, the cell has deacylated-tRNA and 

ternary complexes present in the solution; therefore, it is possible that this pathway is 

indeed followed, but the tRNA in the E2-site is subsequently released because of an 

equilibrium reached between bound and unbound deacylated-tRNA.  

 The equilibrium between bound and unbound deacylated-tRNA
fMet

 was 

measured by both deacylated-tRNA
fMet

 (Cy3) binding (Figure 5.1) and deacylated-

tRNA
fMet

 (Cy3) dissociation caused by competition with tRNA
Lys

 (Figure 5.2 B), and 

allowed for an estimation of the dissociation constant of ~0.12-0.15 µM. Further, as 

Figure 5.3 shows, the deacylated-tRNA
Lys

 (Cy3) in solution binds to the ribosome in 

a position that allows FRET between it and the T202C-L1 (Cy5) ribosomes. As 

mentioned before, it is difficult to measure accurate FRET efficiencies for each 

complex. 

As seen in Figure 5.2 A and Table 5.2, the major apparent rate constant for 

dissociation is not affected by the concentration of tRNA
Lys

 added to the solution.  

Furthermore, even complexes without tRNA
Lys

 added, have a small loss in FRET 

efficiency associated with release of tRNA
fMet

 (Cy3).  This apparent rate constant for 

release is similar to the smaller magnitude apparent rate constant for release seen in 

Chapter IV (Table 4.1, Exp. 30, kapp2) and indicates that there is an inherent amount 

of deacylated-tRNA released at this rate that increases as a function of increasing 
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amounts of added deacylated-tRNA in solution.  The data have been attempted to be 

fit into multiple general schemes but to this date have been unsuccessful. Therefore, 

unfortunately, at this time, it is not completely clear how the deacylated-tRNA from 

solution affects the release of deacylated-tRNA on the ribosome.  Further t/t FRET 

and anisotropy experiments need to be completed in order to gain a better 

understanding of the mechanism.   

Although the equilibrium between binding and dissociation cannot be 

specifically linked to the E2-site, it does occur at a position that is codon independent. 

In a translocated POST-1 ribosome, the mRNA codon in the E-site is AUG.  The 

codon that is cognate for tRNA
Lys

 is either AAA or AAG; therefore, there is at least 

near cognate coordination between the added tRNA
Lys

 and the codon in the E-site.  

As seen in the cryo-EM images, when tRNA occupies the E2-site there is no longer 

any codon specificity, and thus, if the competition were for this site, there should not 

be a dependence on the identity of the deacylated-tRNA.  Indeed this is what is seen 

when tRNA
Lys 

is replaced with the completely non-cognate tRNA
Tyr

 (codon: UAU or 

UAC).  The competition for the site does not depend on the codon of the deacylated-

tRNA because near cognate (tRNA
Lys

), and non-cognate (tRNA
Tyr

) compete at a 

similar level as seen in Figure 5.4.   

 The idea of an A- and E-site allosteric interaction has been suggested 

numerous times; for example, the loss of codon-anticodon interaction at the E-site 

provokes high-efficiency frameshifting (Trimble et al., 2004; Marquez et al., 2004), 

the antibiotic ediene binds to the E-site on the 30S and induces misreading at the A-
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site (Dinos et al., 2004), and weakening of E-site tRNA binding by mutations on the 

S7-S11 interface cause misincorporation and readthrough at the A-site (Robert and 

Brakier-Gingras, 2003; Dinos et al., 2005), however, it is not universally accepted.  

The major argument against one experiment that has been used as evidence for the 

allosteric interaction, that added ternary complex induces tRNA release from the E-

site, is that the deacylated-tRNA inherent in the ternary complex is causing the E-site 

tRNA to release. In previous experiments by Nierhaus and coworkers, they dispute 

this criticism by suggesting that the deacylated-tRNA in the system cannot compete 

with the E-site tRNA because they do not share the same codon, and therefore do not 

text the addition of non-cognate deacylated-tRNA (Gnirke et al., 1989). Above, I 

prove that this competition is not codon specific and any deacylated-tRNA can 

compete for the binding site.  However, the question remained, as to whether or not 

the addition of a ternary complex can cause an allosteric release from the E-site, or 

E2-site in this case.  As seen in Figure 5.5, the addition of ternary complexes with 

varying amounts of deacylated-tRNA in the mixture does not drastically change the 

amount of tRNA released from the ribosome.  However, it cannot be overlooked that 

there is a slightly larger amplitude of FRET efficiency change associated with the 

complexes that have ternary complex added to them.  It is possible that this increase 

in amplitude is only apparent because the concentration of deacylated-tRNA in the 

ternary complex solution cannot be accurately measured, or that the addition of 

ternary complex does indeed have a slight affect on release of E/E2-site tRNA.  

Further experiments need to be performed in order to obtain a full kinetic scheme for 

the competition between deacylated-tRNAs before any conclusions can be drawn 
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about the allosteric interactions.  However, the drastic effects on deacylated-tRNA 

release from the E2-site seem to be the results of competition between binding of 

deacylated-tRNA from solution, and not from any allosteric interaction between the 

A- and E-sites. 
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*POST-1 complex was made with tRNA
fMet

 (Cy3) labeled to only 0.33: 1, Cy3: tRNA
fMet

 

**[
3
H]-Arg/POST-1  

 

Table 5.1 tRNA Binding to POST-1 Complexes 

 T202C-L1 (Cy5) POST-1 complexes were made in Buffer B, starting with 70SICs  

(2 µM) containing highly labeled deacylated-tRNA
fMet

 (Cy3, ~1:1). Addition of 3.0 µM 

ternary complex with Phe-tRNA
Phe

 (unless otherwise specified) and EF-G.GTP (3.0 µM) 

resulted in a POST-1 complex that was purified through sucrose.  Cy3/POST-1 indicates 

Experiment Figure Cy3/POST-1 [
3
H]- 

Phe/POST-1 

-- 5.1 0.22* 0.34 

52,55,56,61 5.2 A 0.49 0.43 

58 5.3 A -- 0.45 

52 5.3 B 0.49 0.43 

52, 57 5.4 0.49 0.43 

49,52 5.5 A 0.49 0.43 

60, 61 5.5 B 0.65 0.47 

62, 63 5.5 C 0.74 0.41** 
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the amount of tRNA
fMet

 (Cy3) remaining bound to the POST-1 complex, and Phe/POST-

1 indicates the amount of Phe-tRNA
Phe

 remaining bound as measured by radioactive Phe, 

unless otherwise mentioned. These binding efficiencies were measured before the 

preincubation with excess deacylated-tRNAs. 

 

Figure Exp 
Deacylated-

tRNA 

Ternary 

Complex 
tRNA

fMet
 kapp1 kapp2 

5.1 -- 

tRNA
fMet

 
(Cy3), (0.1, 
0.2, 0.4, 1.0 

µM) 

NO Cy3 N/A N/A 

5.2 55 NO NO Cy3 
1.88 ± 0.07 

(0.13) 
-- 

5.2 56 
tRNA

Lys
,   

0.10 µM 
NO Cy3 

1.45 ± 0.02 

(0.18) 
-- 

5.2, 

5.5A 
61 

tRNA
Lys

,   
0.50 µM NO Cy3 

1.61 ± 0.04 

(0.36) 
-- 

5.2, 

5.3B, 

5.4 

52 
tRNA

Lys
,   

0.75 µM 
NO Cy3 

1.71 ± 0.05 

(0.35) 

0.190 ± 

0.008 

(0.08) 

5.2, 

5.5B 
52 

tRNA
Lys

,   
1.50 µM 

NO Cy3 
1.21 ± 0.01 

(0.38) 

0.134 ± 

0.002 

(0.09) 

5.2 52 
tRNA

Lys
,   

3.00 µM 
NO Cy3 

1.59 ± 0.05 

(0.35) 

0.130 ± 

0.004 

(0.09) 

5.3A 58 
tRNA

Lys 

(Cy3) 0.75 
µM 

NO Unlabeled 

0.73+/- 

0.02           

(-0.36)
!
 

0.090 +/- 

0.001         

(-0.06)
!
 

5.4 57 
tRNA

Tyr
,   

0.75 µM NO Cy3 
1.37 ± 0.02 

(0.38) 

0.164 ± 

0.006 

(0.08) 

5.5 A 60 tRNA
Lys

,   0.27 µM Cy3 1.65 ± 0.03 0.21 ± 0.01 
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0.50 µM*
 

(0.40) (0.043) 

5.5 B 49 
tRNA

Lys
,   

1.50 µM** 
1.0 µM Cy3 

1.92 ± 0.04 

(0.40) 

0.317 ± 

0.008 

(0.12) 

5.5 C 62 
tRNA

Phe
,   

0.39 µM 
NO Cy3 

1.1 ± 0.1 

(0.09) 
-- 

5.5 C 63 
tRNA

Phe
,   

0.39 µM*** 
1.0 µM Cy3 

1.79 ± 0.05 

(0.10) 

0.080 ± 

0.002 

(0.086) 

! Rate constants for binding of tRNA
Lys

 (Cy3) 

* based on using a Lys-tRNA
Lys

 preparation that was 37% charged 

** based on using a Lys-tRNA
Lys

 preparation that was 40% charged 

*** based on using a Phe-tRNA
Phe

 preparation that was 72%? charged 

 

Table 5.2 Apparent Rate Constants of tRNA
fMet

 (Cy3) Release Upon Addition of 

Deacylated-tRNA and/or Ternary Complex  

 T202C-L1 (Cy5) POST-1 complexes were created in Buffer B, starting with 

70SICs containing highly labeled deacylated-tRNA
fMet

 (Cy3) unless otherwise mentioned. 

0.50 µM tRNA
fMet

 (Cy3) or tRNA
fMet

 (exp. 58) was added to the purified POST-1 

complex (0.25 µM) in order to ensure E2-site occupancy.  Labeled or unlabeled 

deacylated-tRNA or ternary complex was added to the POST-1 complexes as indicated in 

the text and the resulting traces were fit to either a single or double exponential curve 

using Scientist (Micromath). 
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Figure 5.1 tRNA
fMet

 (Cy3) Binding to a POST-1 Complex 

 T202C-L1 (Cy5) POST-1 complexes were made in Buffer B starting with 70SICs 

containing deacylated-tRNA
fMet

 (Cy3). The resulting POST-1 complexes were purified 

through sucrose and increasing concentrations of deacylated-tRNA
fMet

 (Cy3) were titrated 

in an equilibrium FRET experiment. A) The increase in acceptor fluorescence signal 

upon addition of tRNA
fMet

 (Cy3) at increasing concentrations. B) The binding curve for 

the increase in acceptor emission.  The Cy3 donor was excited at 518 nm and the Cy5 

acceptor emission was monitored at 667 nm. An increase in acceptor emission indicative 

of E/E2-site binding and a KD value of 0.123 µM was obtained. 
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Figure 5.2 Release of Deacylated-tRNA
fMet

 (Cy3) from the E2-site as a Function of 

Added Deacylated-tRNA
Lys

 Concentration 

 T202C-L1 (Cy5) POST-1 complexes were made in Buffer B, starting with 70SICs 

containing highly labeled deacylated-tRNA
fMet

 (Cy3). 0.50 µM tRNA
fMet

 (Cy3) was 

added to the purified POST-1 complex (0.25 µM) in order to ensure E2-site occupancy 

with the labeled tRNA
fMet

 (Cy3).  In a stopped-flow experiment, increasing 

concentrations of tRNA
Lys

 was added to POST-1 complexes, and the acceptor 

fluorescence was monitored as a measure of tRNA
fMet 

(Cy3) release.  The rate constants, 

as found by fitting to either single or double exponential equations in Scientist, for the 

major FRET efficiency decreases do not vary with concentration; however, the amplitude 

of the change does. Even at high concentrations of tRNA
Lys

, some amount of 

fluorescence remains because the binding and dissociation is indeed an equilibrium 

process, and there is still some tRNA
fMet

 (Cy3) competing for the E2-site.  By plotting the 

change in acceptor fluorescence versus tRNA
Lys

 concentration (B) an apparent KD for  

tRNA
Lys

 binding can be obtained and is = 0.157 µM.  As determined by an Eadie-Hofstee 

plot (inset).   
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Figure 5.3 Deacylated-tRNA Binding to and Release From the E2-Site 

 T202C-L1 (Cy5) POST-1 complexes were made from a 70SICs containing either  

highly-labeled tRNA
fMet

 (Cy3) (0.49 Cy3/POST-1) (A, ii) or unlabeled tRNA
fMet

 (B,i).  A, 

ii: 0.75 µM tRNA
Lys

 as seen in Figure 5.2. B, i: 0.75 µM tRNA
Lys

 (Cy3) (0.52 

Cy3/tRNA
Lys

) was added to 0.25 µM POST-1 unlabeled tRNA
fMet

 complexes that were 

preincubated with 0.5 µM tRNA
fMet

, and FRET efficiency was monitored as acceptor 
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increase from the acceptor alone baseline upon tRNA
Lys

 (Cy3) binding to ribosome near 

the L1-stalk.  Apparent rate constants for the release and the binding were found by 

fitting both curves to double exponential equations as seen in Table 5.2. 
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Figure 5.4 Competition for the E2-site is Not Codon Specific 

 T202C-L1 (Cy5) POST-1 complexes were made in Buffer B, starting with 70SICs 

containing highly labeled deacylated-tRNA
fMet

 (Cy3). 0.50 µM tRNA
fMet

 (Cy3) was 

added to the purified POST-1 complex (0.25 µM) in order to ensure E2-site occupancy 

with the labeled tRNA
fMet

 (Cy3).  In a stopped-flow experiment, 0.75 µM or 1.5 µM (A 

and B, respectively) of either tRNA
Lys 

or tRNA
Tyr

 was added to the POST-1 complex and 

the release of tRNA
fMet

 from the E2-site of the ribosome was monitored by loss of 

acceptor FRET efficiency.  The apparent rate constants for the loss of FRET efficiency 

were determined by fitting the curves to a double exponential equation as seen in Table 

5.2. 
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Figure 5.5 Addition of Ternary Complex Does Not Significantly Promote Additional 

Deacylated-tRNA Release  

 T202C-L1 (Cy5) complexes were made starting with deacylated-tRNA
fMet

 (Cy3) 

in the 70SICs, and adding either EF-Tu.GTP.Phe-tRNA
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 (A and B; mRNA: MFKR) or 
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EF-Tu.GTP.Arg-tRNA
Arg

 (C; mRNA: MRFK) plus EF-G.GTP in order to make the 

POST-1 complex.  The POST-1 complexes were purified through sucrose cushion 

centrifugation and additional deacylated-tRNA
fMet

 (Cy3) was added to ensure E2-site 

occupancy, as seen above.  A) Either addition of 0.5 µM deacylated tRNA
Lys

 or 0.27 µM 

EF-Tu.GTP.Lys-tRNA
Lys

 (as measured by Lys-tRNA
Lys 

concentration), where the 

concentration of deacylated-tRNA
Lys 

in the mixture is 0.5 µM due to the low charging 

efficiency (37%) of the tRNA
Lys

, was added to a preincubated POST-1 complex. B) 

Either addition of 1.5 µM deacylated tRNA
Lys

 or 1.0 µM EF-Tu.GTP.Lys-tRNA
Lys 

(as 

measured by Lys-tRNA
Lys 

concentration), where the concentration of deacylated-tRNA
Lys 

in the mixture is 1.5 µM due to the low charging efficiency (40%) of the tRNA
Lys

, was 

added to a preincubated POST-1 complex.  C) POST-1 complexes were made using an 

MRFK message, putting the deacylated-tRNA
fMet 

(Cy3) in the E2-site, Arg-tRNA
Arg

 in 

the P-site, and an open A-site coding for tRNA
Phe

. Either addition of 0.39 µM deacylated 

tRNA
Phe

 or 1.0 µM EF-Tu.GTP.Phe-tRNA
Phe

 (as measured by Phe-tRNA
Phe

 

concentration), where the concentration of deacylated-tRNA
Phe 

in the mixture is 0.39 µM 

due to the higher charging efficiency (72%) of the tRNA
Phe

, was added to a purified, 

preincubated POST-1 complex. 
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Appendix 1: Fluorescent Studies of V177C-L1 (Cy3), V221C-L1 (Cy3), and K54C-

L1 (Cy5) 

V177C-L1 (Cy3), V221C-L1 (Cy3) 

 Fluorescently labeled mutant L1 50S were able to be prepared in an efficient 

manner.  In order to probe the P- and E-site tRNA, steady-state spectrofluorometer 

experiments were used to determine the equilibrium FRET efficiency between the dye 

labeled mutant L1 50S and labeled fMet-tRNA
fMet

 upon 70SIC to PRE-1 conversion, and 

PRE-1 to POST-1 conversion of the ribosome complex.  Initially V177C-L1 (Cy3) 50S 

or V221C-L1 (Cy3) 50S were used as FRET acceptors with fMet-tRNA
fMet

 (Rhd110) as 

the FRET donor.  In these experiments, the donor was the limiting reagent, and therefore, 

the loss in donor signal was the main focus of the FRET efficiency measurements.  In 

Buffer B, the purified 70SIC was incubated with ternary complex to create a PRE-1 

complex in which the tRNA
fMet

 (Rhd110) was free to sample the P/E hybrid state, and 

this resulted in an overall FRET efficiency increase between the deacylated-tRNA
fMet

 and 

the labeled L1 as measured by decrease in donor fluorescence (Figure A1.1).  Further, 

upon addition of EF-G.GTP to the PRE-1 complex, the donor fluorescence does not 

change, indicating a similar FRET efficiency for when deacylated-tRNA
fMet

 occupies a 

P/E hybrid and a E/E translocated state, as expected from previous single molecule 

results (Fei et al., 2008).  Although, initially these results were promising, we later 

decided that the Cy3 / Rhd110 FRET pair was not ideal for these L1 to tRNA (L/t) 

equilibrium FRET experiments, and by using a Cy5 / Cy3 pair, analysis by measuring 

acceptor fluorescence would also be possible due to decreased overlap of signals with 
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this dye pair.  Further, during optimization of the L/t FRET experiments, the mutant 

T202C-L1, utilized by Fei and coworkers, was discovered and we decided to use this 

mutant because it was already shown to work well as an indicator for tRNA movement.  

However, we should not be hasty in ruling out the possibility that these other mutants 

would work just as well, and/or provide further information about the movements near 

the E-site. 

K54C-L1 (Cy5) 

 Munro and coworkers initially used the mutant S55C as an indicator of L1-tRNA 

FRET in single molecule experiments, and therefore, we decided to design the mutants 

K54C and S55C (Munro et al, 2009; Munro et al., 2010).  Undergraduate (Adrianne 

Remiker) and rotation students (Chris Bryan, Cheryl McCullough, and Yanxin Wang) 

performed the majority of the experiments done with these mutants under my supervision.  

Primers for both mutants were designed, and Adrianne overexpressed the subsequent 

mutant protein.  Chris and Cheryl labeled the K54C-L1 with Cy5-maleimide, and 

reconstituted the labeled L1 into the –L1 50S, and Yanxin performed the majority of the 

equilibrium FRET and stopped flow FRET experiments seen below.  Equilibrium FRET 

studies were performed on two different complexes: 1) 70SICs created with highly 

charged fMet-tRNA
fMet

 (Cy3); and 2) 70SICs created with deacylated-tRNA
fMet

 (Cy3).  

The complexes were not purified through sucrose cushion, and either ternary complex 

(PRE-1) or ternary complex and EF-G.GTP (POST-1) were added to the 70SICs.  The 

complexes created with highly charged fMet-tRNA
fMet

 (Cy3) show very little change in 

the FRET efficiencies between all three complexes (Figure A1.2 A).  The complexes 
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created with deacylated-tRNA
fMet

 (Cy3) show a steady decrease in FRET efficiency from 

70SIC to PRE-1 to POST-1. It is possible that this is due to deacylated-tRNA (not 

removed by sucrose cushion) non-specifically binding to the E-site creating high FRET 

efficiency in the 70SIC that is lost upon addition of ternary complex and/or EF-G.GTP 

(Figure A1.2 B).   This decrease in FRET efficiency between the 3 complexes is also seen 

in time resolved stopped flow experiments seen below.  

 A 70SIC was created using deacylated-tRNA
fMet

 (Cy3) and K54C-L1 (Cy5) (0.25 

µM) and a ternary complex with Phe-tRNA
Phe

.EF-Tu.GTP (1.0 µM) was added in a 

stopped flow experiment.  The resulting acceptor fluorescence change can be seen in 

Figure A1.3 A and can be fit to a double exponential curve with an initial rapid increase 

(kapp1= 25 s
-1

) followed by a slower decrease (kapp2= 0.37 s
-1

).  The rapid FRET efficiency 

increase may be attributed to the ternary complex binding, whereas, the slow decrease 

(most likely what is seen in the equilibrium FRET) can be attributed to the loss of any 

deacylated-tRNA
fMet

 (Cy3) from the E-site of the ribosome.  Further, the donor channel 

signal (Figure A1.3 B) can be fit to a triple exponential, where the first phase is a 

mathematically induced donor decrease to accompany the acceptor increase described 

above.  Analysis of the donor channel reveals a fluorescence change associated with 

inherent fluorescence change of the tRNA
fMet

 (Cy3) upon tRNA accommodation, and 

occurs with an apparent rate constant of  ~10 s
-1

.  The final phase seen in the donor 

channel is a slow increase that is similar to the decrease seen in the acceptor channel and 

is most likely attributed to the loss of any tRNA that was initially bound to the E-site in 
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the 70SIC complex.  Further studies with the K54C-L1 mutant must be performed in 

order to determine its true effectiveness as a probe for P- and E-site tRNA movement. 

 

 

Figure A1.1 Equilibrium FRET Traces of PRE and POST 

Translocation Ribosomes Using the Rhd110/Cy3 FRET Pair (V177C-L1, 

V221C-L1) 
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 70S initiation complexes were made for FRET analysis using fMet-tRNA
fMet

 

(Rhd110) as the donor and A) V177C-L1-50S (Cy3) or B) V221C-L1-50S (Cy3) as the 

acceptor.  Equilibrium FRET measurements were taken using a Spectrofluorometer to 

determine the FRET at different stages of translocation.  P-site / L1 FRET was measured 

in two ways; 1: using a P-site bound initiator tRNA (70SIC, 0.1 uM, green trace); and 2: 

by adding ternary complex containing Phe-tRNA
Phe

.EF-Tu.GTP (0.25 uM) to create a 

deacylated initiator tRNA that is free to sample the P/E hybrid state (PRE-1, red trace). 

The PRE-1 complexes were translocated by addition of EF-G.GTP (0.50 uM) and the 

FRET efficiency was measured by change in Donor wavelength fluorescence.  The 

complexes were created using limiting donor (fMet-tRNA
fMet

 (Rhd110)); therefore, the 

change in donor is used to determine FRET efficiency change.  Because excess acceptor 

is used, it is possible that an acceptor molecule does not interact with a donor molecule; 

thus, the signal at the acceptor emission does not necessarily increase upon donor 

decrease since this is a bulk experiment.  Further, the background caused by direct 

excitation of Cy3 in the experiment makes it very difficult to analyze the traces at the 

acceptor wavelength.  Therefore, in all later experiments using T202C-L1 and K54C-L1 

mutants, Cy3/Cy5 FRET efficiency is measured. 

 

 

 



!

"#$!

 

Figure A1.2 Equilibrium FRET Traces of K54C-L1 (Cy5) Ribosomes 

 A and B: 70S initiation complexes not purified through sucrose were made for 

FRET analysis using A: fMet-tRNA
fMet

 (Cy3) or B: deacylated-tRNA
fMet

 (Cy3) as the 

donor and K54C-L1-50S (Cy5) as the acceptor. Equilibrium FRET measurements were 

taken using a Spectrofluorometer to determine the FRET efficiency at different stages of 
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translocation.  P-site / L1 FRET was measured in two ways; 1: using a P-site bound 

initiator tRNA (70SIC, 0.1 uM, green trace); and 2: by adding ternary complex 

containing Phe-tRNA
Phe

.EF-Tu.GTP (0.25 uM) to create a deacylated initiator tRNA that 

is free to sample the P/E hybrid state (PRE-1, red trace). The PRE-1 complexes were 

translocated by addition of EF-G.GTP (0.50 uM) and the FRET efficiency change was 

observed. The use of deacylated-tRNA
fMet

 (Cy3) in the 70SIC resulted in a decrease in 

FRET efficiency as measured by the acceptor decrease, and could be attributed to 

contaminating E-site deacylated tRNA
fMet

 (Cy3) leaving the E-site. 

 The complexes were created using limiting acceptor (Cy5-50S); therefore, the 

change in acceptor is used to determine FRET efficiency change.  Because excess donor 

is used, it is possible that a donor molecule does not interact with an acceptor molecule; 

thus, it is possible that the signal at the donor emission does not necessarily decrease 

upon acceptor increase when FRET is seen since this is a bulk experiment. 
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Figure A1.3 FRET Efficiency Changes Associated With 70SIC to PRE-1 

Complex as Viewed by Labeled K54C-L1 

 70SIC complexes were made containing deacylated-tRNA
fMet

 (Cy3) and K54C-

L1 (Cy5) and not purified through sucrose cushion centrifugation.  Ternary complex 

(Phe-tRNA
Phe

.EF-Tu.GTP, 1.0 µM) was stopped flow added to the 70SIC (0.25 µM) in 

order to create a PRE-1 complex.  The donor Cy3 was excited at 540 nm, the acceptor 

channel emission (A) was observed at 680 ± 10 nm, and the donor channel emission (B) 

was observed at 570 ± 10 nm. 
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Buffer Complex 
Cy5/

70S 

Cy3/

70S 

D*A* 

(A) 

x10
5
 

D*A* 

(D)  

x10
6
 

D*A 

(A) 

x10
4
 

D*A 

(D) 

x10
6
 

Ext. 

A (A) 

x10
5
 

DA* 

(A) 

x10
5
 

FRET 

A1 

70SIC 

0.64 0.78 

1.95 1.54 4.85 1.51 1.45 1.62 ~0 

PRE-1 2.66 1.41 4.85 1.51 2.21 1.62 0.73 

POST-1 1.79 1.54 4.85 1.51 1.29 1.62 ~0 

A2 

70SIC 

0.68 0.73 

1.72 1.47 4.71 1.46 1.25 1.64 ~0 

PRE-1 2.73 1.44 4.71 1.46 2.26 1.64 0.77 

POST-1 1.62 1.46 4.71 1.46 1.15 1.64 ~0 

B1 

70SIC 

0.66 0.75 

1.66 1.46 4.84 1.50 1.90 1.53 ~0 

PRE-1 2.68 1.45 4.84 1.50 2.21 1.53 0.90 

POST-1 2.35 1.43 4.84 1.50 1.89 1.53 0.48 

B2 

70SIC 

0.67 0.70 

1.56 1.39 4.97 1.40 1.07 1.46 ~0 

PRE-1 2.60 1.37 4.97 1.40 2.12 1.46 0.94 

POST-1 2.27 1.36 4.97 1.40 1.79 1.46 0.47 

B3 

70SIC 

0.55 0.69 

1.53 1.23 4.49 1.41 1.13 1.54 ~0 

PRE-1 2.50 1.37 4.49 1.41 2.06 1.54 0.89 

POST-1 2.37 1.43 4.49 1.41 1.91 1.54 0.63 

 

Table A2.1 FRET Efficiency Calculations for Equilibrium FRET Experiments seen 

in Figure 4.1, 4.2 and A2.1 
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Figure A2.1 Equilibrium FRET Efficiencies in Buffers A and B 

 Complexes were made and equilibrium FRET was measured as in Figure 4.1 

(Buffer A) and Figure 4.2 (Buffer B), however, instead of starting with highly charged 

initiator tRNA, ~25% charged initiator tRNA was used. FRET efficiency was determined 

and can be seen in Table A2.1. 
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