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The Synthesis and Characterization of Glycol Nucleic Acids

Abstract
A project was undertaken to elucidate the properties of the simplified glycol nucleic acid (GNA). GNA is
novel in the fact that nucleic acid duplexes composed entirely of GNA show thermal stabilities that are
superior to those of analogous DNA or RNA duplexes. Furthermore, GNA has been shown to pair with
complementary sequences of RNA, but not with DNA.

The first step towards understanding the thermal stabilities of GNA duplexes is the development of a
straightforward synthesis of the phosphoramidites for solid phase oligonucleotide synthesis. Chapter 2
describes work towards a new set of exocyclic amino protection groups which could be removed in less time
and under milder conditions than those previously reported. This new scheme results in a vastly improved
synthesis of the individual phosphoramidites and allows for quicker access to the subsequent
oligonucleotides.

With easy access to GNA oligonucleotides in hand, the next goal was to use spectroscopy to compare the
duplex formation properties with that of DNA as outlined in Chapter 3. These studies pointed to the
preorganization of the single strands and increased stacking interactions as the main factors that increase the
stability of GNA duplexes.

Although the studies in Chapter 3 present a basic understanding of GNA duplex formation, it did not provide
the direct structural insight that was desired. Chapter 4 presents the synthesis and pairing properties of three
artificial metal-mediated base pairs in GNA duplexes; one of which was used as a handle in an 8-mer duplex
for phasing the crystallographic data, thereby providing the initial structural insight that was desired.

Uncertain as to the extent by which the artificial metal-mediated base pair perturbs the overall structure of
GNA, several other structures of GNA duplexes containing exclusively Watson-Crick base pairs are presented
in Chapter 5. The most impressive structure of a 6-mer GNA duplex displays many common structural
features to that of the 8-mer duplex containing artificial base pairs.

Overall this research has provided insight into the exceptional duplex formation properties of glycol nucleic
acids and should provide the basis for future research on the application of GNA duplexes for various
biological or technical purposes.
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ABSTRACT 

 

THE SYNTHESIS AND CHARACTERIZATION OF GLYCOL NUCLEIC ACIDS 

Mark K. Schlegel 

Advisor: Dr. Eric Meggers 

 

A project was undertaken to elucidate the properties of the simplified glycol 

nucleic acid (GNA).  GNA is novel in the fact that nucleic acid duplexes composed 

entirely of GNA show thermal stabilities that are superior to those of analogous DNA or 

RNA duplexes.  Furthermore, GNA has been shown to pair with complementary 

sequences of RNA, but not with DNA. 

The first step towards understanding the thermal stabilities of GNA duplexes is 

the development of a straightforward synthesis of the phosphoramidites for solid phase 

oligonucleotide synthesis.  Chapter 2 describes work towards a new set of exocyclic 

amino protection groups which could be removed in less time and under milder 

conditions that those previously reported.  This new scheme results in a vastly improved 

synthesis of the individual phosphoramidites and allows for quicker access to the 

subsequent oligonucleotides.   
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With easy access to GNA oligonucleotides in hand, the next goal was to use 

spectroscopy to compare the duplex formation properties with that of DNA as outlined in 

Chapter 3.  These studies pointed to the preorganization of the single strands and 

increased stacking interactions as the main factors that increase the stability of GNA 

duplexes.   

conformational 

preorganization

interbase 

π-stacking  

Although the studies in Chapter 3 present a basic understanding of GNA duplex 

formation, it did not provide the direct structural insight that was desired.  Chapter 4 

presents the synthesis and pairing properties of three artificial metal-mediated base pairs 

in GNA duplexes; one of which was used as a handle in an 8-mer duplex for phasing the 

crystallographic data; thereby providing the initial structural insight that was desired. 
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Uncertain as to the extent by which the artificial metal-mediated base pair 

perturbs the overall structure of GNA, several other structures of GNA duplexes 

containing exclusively Watson-Crick base pairs are presented in Chapter 5.  The most 

impressive structure of a 6-mer GNA duplex displays many common structural features 

to that of the 8-mer duplex containing artificial base pairs.   

 

Overall this research has provided insight into the exceptional duplex formation 

properties of glycol nucleic acids and should provide the basis for future research on the 

application of GNA duplexes for various biological or technical purposes. 
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Chapter 1 
 

 

Introduction



 2 

Chapter 1.1.  Background Information 

 

Analogs of DNA and RNA have become extremely popular in the medicinal field 

for their application towards the inhibition of gene expression via the antisense or 

antigene approach.
1,2

  In principle, both of these approaches function via the simple rules 

of Watson-Crick base pairing introduced over 50 years ago with the first structure of a B-

form duplex composed of DNA; those are adenine pairs with thymine, and guanine pairs 

with cytosine.
3
  The advantage of using this method over designing drugs that use small 

molecules to target protein inhibition is that only the sequence of the target DNA or RNA 

needs to be known.  In the antisense approach, an oligonucleotide is introduced which is 

complementary to a mRNA of interest (Figure 1.1a).
1
  Duplex formation between these 

two oligonucleotides thereby prevents transcription of this mRNA by direct physical 

blockage or by the recruitment of cellular enzymes that break down the complex.  The 

antigene approach functions on the level of genomic, double-stranded DNA instead of the 

transcribed mRNA.  Oligonucleotides are introduced which interfere with the 

transcription of the gene of interest by forming a parallel or antiparallel triple helix with 

the double-stranded DNA (Figure 1.1b).
2
  One obvious advantage of the antigene 

approach over the antisense approach is that much less of the inhibitory oligonucleotide 

would be needed since there are only two copies of the gene in each cell versus possibly 

thousands of mRNA copies. 



 3 

 

Figure 1.1.  Schematic representation of oligonucleotide directed inhibition of gene 

expression:  a) the antisense approach
1
 and b) the antigene approach.

2
 

 

 

Although natural oligonucleotides composed of DNA or RNA possess the ability 

to inhibit gene expression in this manner, they have one major drawback.  Since both of 

these natural nucleotides are degraded biologically (and in the case of RNA, chemically), 

they are not ideal to develop as antisense or antigene drugs because of their low 

bioavailability.
4
  This has led researchers to investigate modifications of the DNA or 

RNA scaffold to produce nucleic acids analogs with increased affinities towards their 

targets and a greater stability which is usually accompanied by a lack of recognition by 

nucleases in the cellular environment.  The three ways of altering nucleic acid structure 

are by modifying the nucleobases,
5,6

 the phosphodiester linkage between nucleosides,
7-12

 

or the sugar of the backbone.
1,13,14

  Although sugar alternatives are probably the most 

common modification of individual nucleotides (see Figure 1.2), there is still little 

understanding as to how structural changes of individual nucleotides will affect the 

overall structure when incorporated into oligonucleotides.  Along these lines 

a) b) 



 4 

Eschenmoser set out to investigate sugar alternatives as part of ongoing research into the 

etiology of nucleic acid structure.
13

  Although Eschenmoser was more interested in why 

nature chose a deoxyribose and ribose backbone for information storage and carriage, 

respectively, these studies pointed to the importance of conformational restriction of 

nucleosides to preorganize oligonucleotides for duplex formation, thereby leading to 

novel analogs, especially LNA
15

 with very promising RNA binding affinities. 
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Figure 1.2.  Several examples of sugar modified DNA/RNA analogs. 

 

Not to be lost in the field of medicine is the application of oligonucleotide analogs 

towards the fields of structural DNA nanotechnology and nanoelectronics.
16,17

  DNA has 

become extremely interesting outside of the biological context since it is a molecule 

which has properties such as the high affinity and specificity of complementary 

sequences, a largely regular backbone regardless of sequence, and the ability to store 
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information by the arrangement of base pairs.  Based on these principles, DNA has 

already been used to create higher order three-dimensional structures and arrays,
16,17

 

nanomechanical devices,
16-18

 and DNA duplexes containing arrays of metal ions.
19,20
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Chapter 1.2.  Acyclic analogs of nucleic acids containing phosphodiester linkages 

 

 Acyclic glyceronucleotide containing oligos have been proposed as simpler 

precursors to RNA on the timescale of evolution since the corresponding nucleosides are 

presumably simpler to synthesize from simple precursors under prebiotic conditions than 

are those from the ribose and deoxyribose sugars.
4
  Furthermore, oligonucleotides 

constructed from these acyclic analogs may also possess greater stability towards 

nucleases and therefore have a greater bioavailability in a biological environment 

compared to using natural oligonucleotides which are degraded easily under these 

conditions.  Based on these two proposals, researchers became highly interested in 

synthesizing acyclic (“flexible”) nucleoside analogs for the purpose of antisense therapy 

(see Figure 1.3).  Several analogs of DNA and RNA in which an atom or bond has been 

removed from the (deoxy)ribose ring have been synthesized and tested for their 

hybridization properties with DNA.
4,21,22

  Other analogs containing dihydroxypropyl,
23

 

dihydroxybutyl,
24

 and dihydroxypentyl
25

 nucleosides have also been synthesized and 

subsequently tested for their hybridization and nuclease resistance properties.   In each 

case, incorporation of one or several of these “flexible” nucleotides into a DNA duplex 

resulted in significant destabilizations compared to DNA nucleosides.  On the other hand, 

the substitution of an acyclic nucleotide into an oligonucleotide composed of DNA 

generally conferred greater stability towards nuclease degradation compared to an 

oligonucleotide composed entirely of deoxyribonucleotides.  Although these acyclic 

nucleosides were interesting based on their nuclease resistance properties, the 
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disappointing thermal stabilities were thought to be the result of the increase in the loss of 

entropy upon the transition from single oligonucleotides to a duplex in solution.  

Furthermore, it was proposed that oligonucleotides composed entirely of “flexible” 

nucleosides would not have the conformational preorganization required to form stable 

duplexes with natural oligonucleotides in solution; effectively diminishing the likelihood 

that these oligonucleotides could be interesting for antisense applications or as a possible 

precursor to natural oligonucleotides.
4,23
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Figure 1.3.  Structures of different acyclic nucleosides:
23

  a) Constructed from deleting 

one or more atoms of the ribose sugar.  b) Constructed from simple alkyl chains. 
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Chapter 1.3.  Previous work with glycol nucleic acids (GNA) 

 

 Several years later, the Meggers group became interested in using an acyclic 

backbone to incorporate a metal-mediated base pair into the middle of a DNA duplex.
26

  

Although the earlier reports on acyclic nucleosides demonstrated large decreases in 

thermal stability in DNA duplexes, Meggers suggested that the use of a flexible linker 

might be overcome by extraordinary base-pairing strength.  In this way, it was envisioned 

one could obtain structurally simplified, functional nucleotides that could be accessed in 

greater quantities than the corresponding deoxyribonucleotides.  Surprisingly, a 

comparison of the 8-hydroxyquinoline nucleotides HQ and C3HQ (Figure 1.4), 

containing the 2’-deoxyribose and dihydroxypropyl linkers, respectively, demonstrated 

that the Cu
+2

 mediated homobase pair composed of the two flexible nucleotides resulted 

in a DNA duplex with greater thermal stability than that composed of the HQ 

nucleotides.
26

  Meggers hypothesized that the greater stability could be attributed to less 

strain with the slimmer acyclic backbone (with better accommodation of the expanded 

C1’-C1’ distance) versus the normal 2’-deoxyribose backbone. 

 

Figure 1.4.  A completely artificial base pair in DNA.
26
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 A subsequent report by the Meggers group went one step further in synthesizing 

oligonucleotides composed entirely of the “flexible” dihydroxypropyl backbone.  This 

was inspired by the previous work of Eschenmoser and others who demonstrated that 

stable duplexes with Watson-Crick base pairing could be supported by sugars different 

from those in DNA or RNA.  Accordingly, the individual nucleoside phosphoramidites of 

both the (S) and (R)-enantiomers containing the adenine and thymine nucleobases were 

synthesized and successfully incorporated into oligonucleotides which were called glycol 

nucleic acids (GNA, Figure 1.5).
27
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Figure 1.5.  Comparison of the constitution of DNA and RNA with that of the two 

enantiomers of GNA. 
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Both temperature dependent UV-spectroscopy and CD measurements pointed to 

the formation of stable GNA duplexes composed of single strands pairing in a strictly 

antiparallel fashion.  However, most surprising was that the thermal stability of the GNA 

duplex exceeded that of the analogous DNA and RNA duplexes by 22.5 and 22.0 ºC, 

respectively (Table 1.1).  This was astonishing considering all previous reports of 

oligonucleotides containing flexible nucleotides came to the conclusion that an acyclic 

backbone does not possess the required conformational preorganization required for 

duplex formation, although it was not eliminated as a possibility.
4
  Furthermore, it was 

shown that the (S)-enantiomer of GNA could form stable heteroduplexes with that of 

RNA, rendering GNA as a possible predecessor of RNA as a genetic material.
27

  A later 

communication detailed the synthesis of the glycol nucleoside phosphoramidites of all 

five Watson-Crick nucleobases
28

 (adenine, guanine, cytosine, thymine, and uracil) which 

allows one to access GNA duplexes composed of both Watson-Crick base pairs, and with 

superior stabilities to analogous DNA or RNA duplexes.  

 

Table 1.1.  Thermal stabilities of DNA, RNA and GNA duplexes.
27

 

System Sequence Tm (ºC) 

GNA 

Antiparallel 

3’-TAAAATTTATATTATTAA-2’ 

2’-ATTTTAAATATAATAATT-3’ 
63 

GNA 

Parallel 

3’-TAAAATTTATATTATTAA-2’ 

3’-ATTTTAAATATAATAATT-2’ 
No Tm 

DNA 
5’-TAAAATTTATATTATTAA-3’ 

3’-ATTTTAAATATAATAATT-5’ 
40.5 

RNA 
5’-TAAAATTTATATTATTAA-3’ 

3’-ATTTTAAATATAATAATT-5’ 
42.5 
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 With these results in mind, a study was proposed whose main goal was the 

elucidation of the properties of GNA.  Since all previous reports detailed the 

disappointing stabilities of “flexible” acyclic nucleosides, we wanted to understand how a 

backbone composed of an acyclic, three carbon, phosphodiester backbone could support 

the formation of antiparallel duplexes with superior thermal stabilities than corresponding 

duplexes of DNA or RNA.  Furthermore, it was desirable to further investigate the 

crosspairing ability of (S)-GNA and RNA.  As mentioned previously, this is a focal point 

of research in medicinal chemistry with nucleic acid analogs; mainly designing a nucleic 

acid analog with specific base pairing properities that can evade nuclease degradation 

within the cell.  Finally, based on the synthetic accessibility of glycol nucleosides, we 

were interested in the synthesis and evaluation of novel base-pairs as a means to create 

functionalized duplexes composed entirely of GNA. 
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Chapter 2 
 

 

Synthesis of glycol nucleoside phosphoramidites and 

their incorporation into GNA oligonucleotides
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Chapter 2.1.  Initial synthesis of glycol nucleoside phosphoramidites 

  

The synthesis of glycol nucleoside phosphoramidites
1
 is a straight-forward 

process starting from enantiopure (R)- or (S)-glycidol.  As previously reported, 

nucleophilic ring-opening of enantiopure glycidol produces the glycol nucleoside 

derivatives with good regioselectivity for the N-9 and N-1 regioisomers of purines and 

pyrimidines, respectively.
1
  The initial yields ranged from 39-59%, with higher yields 

generally obtained for the pyrimidines.  The pyrimidine nucleosides could then be 

converted to the nucleoside phosphoramidites directly while the purine nucleosides 

required 1-3 additional protection steps before conversion to the phosphoramidites.  The 

synthesis of these glycol nucleoside phosphoramidites represents a large savings of both 

time and material as they proceed in fewer steps and without the separation of the two 

anomeric forms as is required for the synthesis of DNA phosphoramidites.
2
 

For the synthesis of guanine phosphoramidite (S)-G, the first step is the ring 

opening of (R)-glycidol (2.2) using 2-amino-6-chloropurine (2.1) with 0.17 equivalents of 

potassium carbonate to produce compound 2.3 (Scheme 2.1) in 46% yield.  The 

somewhat low yield is due to the observed formation of both the N-7 and N-9 

regioisomers in this reaction.  Compound 2.3 is then hydrolyzed using 1 M HCl to give 

compound 2.4 in 80% yield.  Transient protection of the exocyclic amino group with 

trimethylsilyl chloride (2.5) and further reaction with isobutyryl chloride (2.6) in pyridine 

yields the protected diol 2.7 in 82% yield.  This can then be further selectively protected 

at the 3’-hydroxyl group with dimethoxytriyl chloride (2.8) in pyridine to yield 
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compound 2.9a in 63% yield.  Compound 2.9a can then be converted to phosphoramidite 

(S)-G using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) in the presence 

of excess N,N-diisopropylethylamine (product was usually not completely pure as 

determined by 
31

P NMR).  Unfortunately, the product (S)-G is not stable to either silica 

gel or aluminum oxide flash chromatography and must be purified via a precipitation 

protocol.
1
  The product is precipitated from rapidly stirred pentane by the slow addition 

of a solution of the crude product in methylene chloride, however, most times it was not 

as pure as one ideally would desire for oligonucleotide synthesis.  Furthermore, the 

product is unstable and slowly decomposes even when stored under argon at -20 °C.  
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Scheme 2.1.  Synthesis of (S)-G phosphoramidite. 

 

For the synthesis of the adenine, cytosine, and thymine glycol nucleoside 

phosphoramidites, nucleophilic ring-opening is not performed on (R)-glycidol (2.2).  

Instead, the 3’-hydroxyl group of (R)-glycidol (2.2) is first protected using 4,4’-

dimethoxytrityl chloride (2.8) and excess triethylamine in methylene chloride to yield 

compound 2.11 in quantitative yield (Scheme 2.2).  The advantage of using compound 

2.11 in the subsequent ring-opening reactions is that the desired product is more non-
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polar as opposed to its non-protected counterpart (2.2), thereby facilitating product 

purification.   

O
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Scheme 2.2.  Synthesis of (S)-glycidyl 4,4’-dimethoxytrityl ether (2.11). 

 

The synthesis of the adenine phosphoramidite (S)-A can be accomplished in four 

steps starting with ring opening of compound 2.11 using adenine (2.12) and 0.2 

equivalents of sodium hydride to produce compound 2.13 in 62% yield (Scheme 2.3).  

The exocyclic amino group is then protected using a transient protection procedure in 

which the 2’-hydroxyl group of compound 2.13 is first protected with trimethylsilyl 

chloride (2.5) and then reacted with benzoyl chloride (2.14).  Afterwards, during the 

work-up of the reaction, the 2’-trimethylsilyloxy group is cleaved by the addition of 

aqueous ammonia to produce compound 2.15 in 78% yield.  It should be noted that yields 

for this protection step were highly variable (from 40-78%) based on how well the 

removal of the “transient” TMS group was accomplished during ammonia treatment.  It 

was normally observed after ammonia treatment that a significant spot on TLC remained 

corresponding to the TMS protected product indicating this intermediate to be more 

stable than expected.  An improved procedure which utilizes TBAF to remove the TMS 
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group was developed with much more consistent results.  After treatment with aqueous 

ammonia and concentration of the reaction mixture, the crude product was redissolved in 

THF and treated with two equivalents of TBAF to produce compound 2.15 with 

consistently higher yields.  Compound 2.15 is then converted to phosphoramidite (S)-A in 

81% yield using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess 

N,N-diisopropylethylamine.  
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Scheme 2.3.  Synthesis of (S)-A phosphoramidite. 
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The phosphoramidite (S)-C is produced starting again with the ring opening of 

compound 2.11 with N-4-benzoylcytosine (2.16) using 0.2 equivalents of sodium hydride 

to produce compound 2.17 in 63% yield (Scheme 2.4).  Since the exocyclic amine of 

compound 2.17 is already protected, it can be directly converted to the phosphoramidite 

(S)-C using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess N,N-

diisopropylethylamine in 83% yield.  Similarly, the phosphoramidite (S)-T is synthesized 

starting with ring opening of compound 2.11 with thymine (2.18) using 0.2 equivalents of 

sodium hydride to produce compound 2.19 in 55% yield (Scheme 2.4).  Again, since no 

further protection is required, compound 2.19 is then converted to the phosphoramidite 

(S)-T using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite and excess N,N-

diisopropylethylamine in 80% yield. 

The synthesis of the four glycol nucleoside phosphoramidites (S)-G, (S)-A, (S)-C, 

and (S)-T proceed in five, four, three, and three steps, respectively.  Overall yields are 

39% for (S)-A, 12% for (S)-G, 52% for (S)-C and 44% for (S)-T compared to the 

published overall yields
1
 of 26%, 8%, 39%, and 38%, respectively.  The (R)-enantiomer 

of each of these phosphoramidites is also easily accessible simply by starting with (S)-

glycidol during the ring-opening step.
1
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Scheme 2.4.  Synthesis of phosphoramidites of the pyrimidine bases: a) (S)-C, b) (S)-T. 
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Chapter 2.2.  Initial protocol for GNA oligonucleotide synthesis and purification 

 

The synthesis and purification of phosphoramidites was followed by repeated 

coevaporation with toluene to remove trace amounts of water.  Afterwards, the 

phosphoramidite was left under high vacuum overnight and then repeatedly dissolved and 

repeatedly evaporated with methylene chloride to remove traces of toluene.  Again, the 

phosphoramidite was left overnight under high vacuum.  The phosphoramidites could 

then be transferred as a solid to separate vials and stored under nitrogen or argon at -20 

°C.  All phosphoramidites were stable stored under these conditions except for the (S)-G 

phosphoramidite, as mentioned previously.  Generally, on the evening prior to 

oligonucleotide synthesis the phosphoramidites [(S)-A, (S)-G, (S)-C, and (S)-T] were 

then transferred to flasks and left under high vacuum overnight to ensure dryness. 

 Solid supports were synthesized from the dimethoxytrityl protected nucleosides as 

previously reported.
3
  Briefly, nucleosides 2.9, 2.15, 2.17, and 2.19 were functionalized 

using succinic anhydride (2.20) in the presence of triethylamine to produce compounds 

2.21-2.24 (Scheme 2.5 and 2.6).  These succinimidyl esters are then linked via an amide 

linkage to long chain alkylamine controlled pore glass (Scheme 2.7) using 1-

hydroxybenzotriazole (2.25) and N,N’-diispropylcarbodiimide (2.26) to provide the solid 

support linked nucleosides.  After capping of unreacted hydroxyl groups using acetic 

anhydride, the solid support could be washed, dried, and used for solid phase synthesis of 

GNA oligonucleotides.  Loadings were generally higher than that of normal DNA solid 

supports and ranged from 55-70 µmoles of nucleoside per gram of solid support.  
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Loadings were measured by the absorbance of the released trityl cation
3
 when dissolving 

3-5 mg of the solid support in 10% dichloroacetic acid in methylene chloride.   

 

OO O

Et3N

2.20

CH2Cl2
crude

N

N
N

N

HN

OH

DMTrO

O

Ph

N

N
N

N

HN

O

DMTrO

O

Ph

O

OH

O
2.15 2.22

OO O

Et3N

2.20

CH2Cl2
crude

NH

N
N

N

OH

DMTrO

NH

O

O

NH

N
N

N

O

DMTrO

NH

O

O

O

OH

O

2.9 2.21

a)

b)

 

Scheme 2.5.  Synthesis of succinyl esters from: a) guanine glycol nucleoside, b) adenine 

glycol nucleoside. 

 

 

The next morning, the phosphoramidites were dissolved using anhydrous 

acetonitrile to a final concentration of 100 mM.  Initial syntheses were attempted using 

50 mM concentrations of phosphoramidites, however, much better coupling yields, and 

therefore oligonucleotides, were obtained when the concentration was doubled to 100 

mM.  These solutions were transferred to oven dried vials specially designed for use with 

the automated oligonucleotide synthesizer.
4
  Care was taken to avoid exposure to air 
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during all manipulations.  Solid supports were weighed out and transferred to 

polypropylene synthesis columns sealed with column frits (Glen Research).  Prior to 

synthesis, the solid support was dried for five minutes directly on the synthesizer using 

argon.   
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Scheme 2.6.  Synthesis of succinyl esters from: a) cytosine glycol nucleoside, b) thymine 

glycol nucleoside. 
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Scheme 2.7.  General scheme for the synthesis of glycol nucleoside functionalized solid 

supports using compound 2.24 as an example.  

 

Oligonucleotides were synthesized on an Applied Biosystems ABI 394 

Automated DNA/RNA synthesizer on a 0.2 or 1.0 micromole scale; however, best 

purities and yields were obtained when using a 1.0 micromole scale.  Only minor changes 

were needed from standard DNA synthetic cycles
5
 (outlined specifically in the appendix 

to chapter 2), cycle: 1000GNA, steps 45-47, 53, 60).  Most significantly, the coupling 

times were increased from 25 seconds for DNA phosphoramidites to 180 seconds from 

GNA phosphoramidites.  Best results were obtained when the last 4,4’-dimethoxytrityl 

group was left attached to the 3’-hydroxyl group after synthesis as a purification handle.  

The solid support containing oligonucleotide was dried under argon on the synthesizer 

and then transferred to a screw cap vial capable of withstanding increased pressure during 

the deprotection step.  Deprotection and cleavage from the solid support was carried out 

using 25% NH4OH at 55-60 °C for 12-18 hours (overnight).  
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After cooling and concentration, GNA oligonucleotides could then be purified by 

reverse phase HPLC (column) using the 3’-dimethoxytrityloxy group as a purification 

handle (Scheme 2.8).  This allows for the separation of shorter, capped “failures 

sequences” from the full length product.  A representative “Trityl-ON” HPLC trace is 

shown below (Figure 2.1a) in which the main peak at 7.2 mins represents the full length, 

DMTr-protected product.  The resulting fractions are combined and the 4,4’-

dimethoxytrityl group cleaved by dissolving the DMTr-oligo in 80% acetic acid (200 µL) 

for 20 minutes.  Afterwards, an equal volume of 3M sodium acetate was added and the 

oligo precipitated by the addition of isopropanol (1.1 mL).  The solution was cooled to -

20 °C for at least two hours and then centrifuged at 14000 rpm at 0-4 °C for 10 minutes.  

After decanting the liquid, the pellet was resuspended in isopropanol (1.5 mL) and 

centrifuged once more.  The resulting pellet was finally dried after decanting the 

isopropanol.  Subsequent purification was performed using reverse phase HPLC (Waters 

Xterra) to separate the desired GNA oligo from both failure sequences and post-synthetic 

modifications (see figure 2.1b for representative HPLC trace of crude “Trityl-OFF” 

oligo).  Oligonucleotides were at least 98% pure, as determined by HPLC (see 

representative trace of a pure GNA oligonucleotide in Figure 2.2). 
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Scheme 2.8.  Overview of the initial procedure for GNA oligonucleotide purification. 
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Figure 2.1.  HPLC traces of the GNA oligonucleotide 3’-TTTTTTTTTT-2’.  a) Crude 

“Trityl-ON” HPLC trace in which the peak at 7.2 minutes represents the dimethoxytrityl 

protected full length product.  The crude oligo was eluted using a Microsorb 300-10 C18 

column with a linear gradient (flow = 3.0 mL/min) from 5-80% acetonitrile in 20 minutes 

and 95-20% aqueous tritethylammonium acetate buffer (50 mM, pH=7.0).  b) Crude 

“Trityl-OFF” HPLC trace in which the peak at 17.8 minutes represents the full length 

product.  The crude oligo was eluted using a Waters Xterra column (MS C18, 4.6 x 50 

mm, 2.5 µM particle size) at 60 °C with a linear gradient (flow = 1.0 mL/min) from 3-

13% acetonitrile in 30 minutes and 97-87% aqueous tritethylammonium acetate buffer 

(50 mM, pH=7.0). 
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Figure 2.2.  HPLC trace of the purified GNA oligo 3’-CACATTATTGTTGTA-2’.  The 

oligo was eluted using a Waters Xterra column (MS C18, 4.6 x 50 mm, 2.5 µM particle 

size) at 60 °C with a linear gradient (flow = 1.0 mL/min) from 3-13% acetonitrile in 30 

minutes and 97-87% aqueous tritethylammonium acetate buffer (50 mM, pH=7.0). 

 

 

 MALDI was used as a means to confirm the identity of synthesized GNA 

oligonucleotides.  Samples were prepared at a concentration of approximately 10 µM.  

One microliter of a saturated solution of trihydroxyacetophenone in 50% aqueous 

acetonitrile was mixed with one microliter of 100 mM ammonium tartrate and then one 

microliter of the oligo sample.  The dried sample was then analyzed in the negative mode 

for detection of the sample mass.  Best results were obtained when the oligo solution was 

desalted using DOWEX 50WX8 cation exchange beads
6
 (hydrogen form) prior to mixing 

with the matrix and ammonium tartrate solutions.  A representative MALDI spectrum is 

shown in Figure 2.3.  After identification, extinction coefficients of pure samples were 

calculated from deoxynucleotide increments. 
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Figure 2.3.  MALDI spectrum of the purified GNA oligonucleotide  

3’-CACATTATTGTTGTA-2’ (calc for C118H157N50O76P14 [M-H]
-
 3925.5).  The sample 

(~10 µM in water) was analyzed in negative mode after desalting over DOWEX beads.   
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Chapter 2.3.  Development of new routes towards (S)-G phosphoramidite 
 

 The biggest initial problem with the synthesis of glycol nucleoside 

phosphoramidites was the lack of stability of the (S)-G phosphoramidite.  It is known for 

DNA that the N-2-isobutyryl protected guanosine phosphoramidite is slightly unstable 

and prone to oxidation, even when one uses extreme cautionary measures to exclude air 

and water during its manipulation.
7
  This phenomenon is apparently more extreme for the 

(S)-G phosphoramidite in which the product seems to have a half life of approximately 

only one month when stored at -20 °C under argon.  Therefore, it was desirable to 

synthesize a more stable derivative of (S)-G which could be purified more easily and 

produce a cleaner product compatible with longer storage times.   

 Initially, it was desired to develop a new synthetic route towards (S)-G that was 

simpler and more economical.  Previous experience had shown difficulties in the 

conversion of compound 2.3 to 2.4 with the main problem being salt-contaminated 

product that was hard to purify.  Moreover, the presence of salt in the product seemed to 

hinder the subsequent conversion to compound 2.9a when carried forward without further 

purification (see Scheme 2.1).  Therefore, it was envisioned that one could use guanine, 

or some derivative thereof, to perform the ring opening reaction as a more direct route 

towards the product (S)-G.  Previous experience in our lab had shown that ring opening 

of compound 2.11 with unprotected guanine (2.27) does not result in the desired product.  

Attempts thereafter involved the use of a protected derivative of guanine (scheme 2.9), 

compound 2.29, which was synthesized by first reacting guanine (2.27) with acetic 

anhydride (2.28) to produce compound 2.29 in 50% yield.
8
  This could then be converted 
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to compound 2.31 by the reaction with diphenylcarbamoyl chloride (2.30) and N,N-

diisopropylethylamine in 73% yield.  Unfortunately, an attempt at the ring opening of 

compound 2.11 with compound 2.31 and 0.2 equivalents of sodium hydride did not 

produce the desired product 2.32.   
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Scheme 2.9.  Attempted ring-opening using protected guanine derivative compound 2.31. 

 

The next attempt involved the use of O-6-benzyloxyguanine (2.36) for the ring 

opening reaction of 2.11.  The synthesis of compound 2.36 starts with the reaction of 2-

amino-6-chloropurine (2.1) with 1,4-diazabicyclo[2.2.2]octane (2.33) to produce the 

quaternary amine compound 2.34.  Afterwards, benzyl alcohol (2.35) is deprotonated 

using sodium hydride and reacted with compound 2.34 to produce O-6-benzyloxyguanine 

(2.36) in 83% over two steps
9
 (Scheme 2.10).  Afterwards, O-6-benzyloxyguanine (2.36) 

and 0.2 equivalents of sodium hydride were used successfully in the ring opening of 

compound 2.11 to afford compound 2.37 in 47% yield (Scheme 2.11). The benzyl group 

was subsequently removed using catalytic hydrogenation to produce compound 2.38 in 

97% yield.  Reaction of compound 2.38 with isobutyryl chloride (2.6) in pyridine after 

transient protection with trimethylsilyl chloride (2.5) produces compound 2.9b in 84% 
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yield.  Again, as observed for the formation of compound 2.15, best yields were obtained 

when two equivalents of TBAF were added to the product of this reaction after 

redissolving in THF to completely remove the “transient” trimethylsilyl protection group.  

This route starting with the ring opening of compound 2.11 with O-6-benzyloxyguanine 

(2.36) proceeds to the formation of compound 2.9b in six steps with 32% overall yield 

versus the route in Scheme 2.1 to compound 2.9a which requires four steps with 17% 

overall yield.  It should be noted that O-6-benzyloxyguanine (2.36) is a commercially 

available compound, but the decision was made to synthesize compound 2.36 based on 

cost and availability.  Compound 2.9b could then be further protected using 

diphenylcarbamoyl chloride (2.30) and N,N-diisopropylethylamine to produce compound 

2.39 in 75% yield.  Diphenylcarbamoyl protection was chosen to further protect the 

guanine derivative 2.9b in the O-6 position based on previous reports of increased 

stability of similar derivatives.
10-11

  Subsequent conversion to the phosphoramidite (S)-

G
DPC

 proceeds using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and 

excess N,N-diisopropylethylamine in methylene chloride in 81% yield.  Gratifyingly, (S)-

G
DPC

 was stable to flash chromatography over silica gel and a more pure 

phosphoramidite could be obtained.  Moreover, the phosphoramidite (S)-G
DPC

 was stable 

when stored under argon at -20 °C.  This new synthesis has an overall yield of 23% in six 

steps versus 12% in five steps for the previous synthesis of (S)-G in scheme 2.1. 



 34 

N

NN
H

N

OBn

NH2

N

NN
H

N

Cl

NH2

N

NN
H

N

N

NH2

N

N

N

DMSO
83%

2 steps2.1

2.33

2.34 2.36

NaH

OH

2.35

DMSO
crude

 

Scheme 2.10.  Synthesis of O-6-benzyloxyguanine (2.36). 
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Scheme 2.11.  Synthesis of (S)-G
DPC

 phosphoramidite. 
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 The major shortcoming of (S)-G
DPC

 phosphoramidite is that it suffers from the 

incomplete removal of protection groups after solid phase oligonucleotide synthesis, 

especially with the incorporation of several guanine nucleotides into a GNA 

oligonucleotide.  Furthermore, the conditions required to remove the DPC protection 

group are harsh (overnight in 25% aqueous ammonia at 55 °C) and not completely 

compatible with syntheses requiring milder deprotection.  Therefore, although (S)-G
DPC

 

was more stable than (S)-G, we were still interested in further improving the protection 

group scheme.  The original amide protection scheme of the exocyclic amines of guanine 

and adenine derivatives
12-13

 suffers from the formation of side products, long work-up 

times, and sub-optimal yields.  Encouraged by other reports
14-16 

of success using amidine 

protection, we investigated protecting the exocyclic amino group of compound 2.38 as a 

dimethylformamidine.
17

  This was accomplished quite easily by heating a mixture of 

compound 2.38 and dimethylformamide-dimethylacetal (2.40) in DMF at 60 °C for one 

hour yielding compound 2.41 in 86% yield (Scheme 2.12).  Conversion to the 

phosphoramidite (S)-G* was accomplished in 76% yield by the reaction with N,N,N’,N’-

tetraisopropylphopshordiamidite (2.42) and 0.7 equivalents of 4,5-dicyanoimidazole 

(2.43) in methylene chloride.
18

  Gratifyingly, this new phosphoramidite was also stable to 

chromatography over silica gel unlike its N-2-isobutyryl counterpart.  The new 

phosphoramidite (S)-G* is also stable for extended periods of time when stored under 

nitrogen at -20 °C.  This new synthesis using amidine protection has an overall yield of 

30% in five steps compared to 12% in five steps for the old synthesis in Scheme 2.1. 
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Scheme 2.12.  Synthesis of (S)-G* phosphoramidite. 
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Chapter 2.4.  Modified synthesis of (S)-A and (S)-C 

 

Due to the observed simplicity of amidine protection of the guanine derivative 

(S)-G* and the inherent problems with amide protection of the exocyclic amine of 

adenine derivatives, we were also interested in investigating N-6-dimethylformamidine 

protection
17

 of compound 2.13.  Amidine protection has been previously investigated in 

the context of adenosine nucleosides in an attempt to minimize acid catalyzed 

depurination during oligonucleotide synthesis.
15

  Accordingly, the reaction of compound 

2.13 with dimethylformamide-dimethylacetal (2.40) in DMF afforded compound 2.44 in 

99% yield (Scheme 2.13). The following conversion to phosphoramidite (S)-A* using 

N,N,N’,N’-tetraisopropylphopshordiamidite (2.42) and 0.7 equivalents of 4,5-

dicyanoimidazole (2.43) could be accomplished in 83% yield.  This new synthesis has an 

improved overall yield of 51% over four steps for (S)-A* compared to 39% over four 

steps for the previous phosphoramidite (S)-A.  
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Scheme 2.13.  Synthesis of (S)-A* phosphoramidite. 

 

Furthermore, we were also interested in rendering phosphoramidite (S)-C more 

amenable towards milder deprotection.
17

  Therefore, we replaced the benzoyl protection 

group of (S)-C against an acetyl group in (S)-C*.  N-4-acetylcytosine DNA 

phosphoramidites are widely used in mild and ultramild oligonucleotide synthesis.
19

  

Accordingly, epoxide ring opening of compound 2.11 using N-4-acetylcytosine (2.45) 

and 0.2 equivalents of sodium hydride in DMF afforded compound 2.46 in 57% yield 

(Scheme 2.14). Subsequent conversion to the phosphoramidite (S)-C* using N,N,N’,N’-

tetraisopropylphopshordiamidite (2.42) and 0.7 equivalents of 4,5-dicyanoimidazole 

(2.43) proceeded in 77%.  It should be noted that attempts to purify compound (S)-C* 

using flash chromatography over silica gel were unsuccessful and that the pure 

phosphoramidite could only be isolated using basic alumina (Brockmann Type II).  This 
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new synthesis has an overall yield of 44% over three steps for (S)-C* which is slightly 

lower than the overall yield of 52% over three steps for phosphoramidite (S)-C. 
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Scheme 2.14.  Synthesis of (S)-C* phosphoramidite.
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Chapter 2.5.  Second generation GNA oligonucleotide synthesis and purification 

 

 As before, the synthesis of all phosphoramidites was followed by the storage 

procedure as stated in chapter 2.2.  Solid supports were also synthesized as previously 

described in chapter 2.2 (see schemes 2.15 and 2.16 for synthesis of derivatized 

nucleosides and scheme 2.7 for the linkage to the CPG).  The phosphoramidites [(S)-A*, 

(S)-G*, (S)-C*, and (S)-T] were left under high vacuum overnight and the next morning 

they were dissolved using anhydrous acetonitrile to a final concentration of 100 mM.  

These solutions were transferred to oven dried vials specially designed for use with the 

automated oligonucleotide synthesizer.  Care was taken to avoid exposure to air during 

all manipulations.  Solid supports were weighed out and transferred to polypropylene 

synthesis columns sealed with column frits.  Prior to synthesis, the solid support was 

dried for five minutes directly on the synthesizer using argon.  
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Scheme 2.16.  Synthesis of succinyl esters from: a) (S)-G* glycol nucleoside, b) (S)-A* 

glycol nucleoside. 

 

 Oligonucleotides were synthesized on an Applied Biosystems ABI 394 

Automated DNA/RNA synthesizer.  In addition to the changes stated in chapter 2.2, the 

cycle was altered so that upon initial introduction of phosphoramidite and activator to the 

column it was left to react for 60 seconds before the introduction of the second portion of 

these reagents (outlined specifically in the appendix, cycle 1000GNA3, steps 12, 23, 34, 

45, 49-50, 55-58, 65, 80-86).  Best results were obtained when the last 4,4’-

dimethoxytrityl group protecting the 3’-hydroxy group was left attached after synthesis as 

a purification handle.  The solid support containing oligonucleotide was dried under 

argon on the synthesizer and then transferred to a screw cap vial capable of withstanding 
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increased pressure during the deprotection step.  Deprotection and cleavage from the 

solid support was carried out using AMA solution
19

 (1:1 solution of 25% NH4OH and 

40% aqueous methylamine) at 55 °C for 15 minutes (Scheme 2.17). 
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Scheme 2.17.  Overview of the improved procedure for GNA oligonucleotide 

purification. 

 

After cooling, the GNA oligonucleotide solution was applied directly to a reverse 

phase C18 Sep-Pak column (Waters).  The nonpolar packing material (C18) of the Sep-Pak 

column allows for the separation of polar entities (in this case cleaved protection groups, 

failure sequences lacking a DMTr group, etc.) from the desired DMTr-protected 
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product.
20-21

  Since the DMTr group is removed directly on the column, this allows for a 

“Trityl-ON” purification of the target oligonucleotide in a much shorter time frame than 

HPLC.  The Sep-Pak column was first pre-equilibrated using 10 mL of acetonitrile 

followed by 10 mL of 5 mM triethylammonium acetate buffer (pH=7.0).  The solution 

(including solid support) was then applied three times via syringe to the column to ensure 

complete binding of the oligonucleotide.  The column was then washed via syringe with 

the following solvents in the order stated: 15 mL of 3% NH4OH, 10 mL of water, 10 mL 

of 1.5% aqueous TFA, and finally with 10 mL of water.  The 3% aqueous ammonia 

serves to wash failure sequences from the column before cleaving the dimethoxytrityl 

group using 1.5% aqueous TFA.  The crude “Trityl-OFF” oligonucleotide can then be 

eluted using 2.5 mL of 20% aqueous acetonitrile and purified using a Waters-Xterra 

column.  Identity was confirmed by MALDI as in chapter 2.2.  A representative HPLC 

trace of a crude “Trityl-OFF” GNA oligonucleotide solution is shown in Figure 2.4.   
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Figure 2.4.  Crude “Trityl-OFF” HPLC trace of the GNA oligonucleotide  

3’-CATGTCGTGCGT A-2’.  The peak at 25.7 minutes represents the full length product.  

The crude oligo was eluted using a Waters Xterra column (MS C18, 4.6 x 50 mm, 2.5 µM 

particle size) at 60 °C with a linear gradient (flow = 1.0 mL/min) from 2-8% acetonitrile 

in 30 minutes and 98-92% aqueous tritethylammonium acetate buffer (50 mM, pH=7.0). 

 

The major advantage of this solid phase extraction method of purification using a 

Sep-Pak C18 column versus the initial purification protocol (Scheme 2.8) is the amount of 

time saved.  A “Trityl-ON” purification of a GNA oligonucleotide using a Sep-Pak 

column proceeds in approximately 15 minutes versus approximately one day for a revere 

phase HPLC purification.  Using the Sep-Pak column allows for the purification and 

cleavage of the remaining trityl group directly on the column, while the initial procedure 

involves precipitation of the crude oligonucleotide following cleavage of the remaining 

trityl group after HPLC purification.  Furthermore, use of the dimethylformamidine 

(adenine, guanine) and the acetyl protection groups (cytosine) allows for a much quicker 

deprotection procedure than the original phosphoramidites synthesized in chapter 2.1.  
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Removal of these new protection groups can be achieved in just 15 minutes at 55 °C 

versus 12-18 hours at 55 °C for the original protection groups.  This is also advantageous 

considering the crude oligonucleotide is exposed to highly basic conditions at elevated 

temperatures for a shorter amount of time; conditions known to degrade and modify 

oligonucleotides.  This results in a total time savings of approximately two days without 

sacrificing the purity or the integrity of the crude oligonucleotide product. 
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Chapter 2.6.  Conclusions 

 

 Although the initial published synthesis of GNA phosphoramidites
1
 is much 

simpler, less time consuming, and more efficient than the corresponding DNA 

phosphoramidites, there was room for improvement.  The reactions employed to protect 

the exocyclic amines of adenine and guanine involved highly air or moisture sensitive 

reagents.  Furthermore, these reactions suffered from sub-optimal yields and the 

formation of side products that are not easily removed.  The synthesis of (S)-G 

phosphoramidite is particularly problematic, especially considering the lack of stability 

inherent to the final compound.   

The development of the phosphoramidites (S)-A*, (S)-G*, and (S)-C* have not 

only streamlined the synthesis of the phosphoramidites, but also the subsequent 

oligonucleotides.
17

  The use of dimethylformamidine protection for the exocyclic amines 

of adenine and guanine provide stable phosphoramidites with high yields and simple 

purifications.  The reaction employed to protect the exocyclic amines of the adenine and 

guanine derivatives 2.13 and 2.38 as dimethylformamidines, respectively, proceeds with 

the formation of no side products and is complete in just one hour.  This renders 

formamidine protection a superior protection scheme to amide protection for GNA.  

Furthermore, this new protection scheme utilizing dimethylformamidine [(S)-A*, (S)-G*] 

and acetyl [(S)-C*] protection groups allows for a quicker post-synthetic work up of the 

resulting GNA oligonucleotides.  One can access solutions of crude “Trityl-OFF” GNA 
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oligonucleotides in just 30 minutes as opposed to approximately two days for the initial 

synthetic conditions involving an extra HPLC purification step. 
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Chapter 2.7.  Experimental procedures 

 

General procedures and reagents.  NMR spectra were recorded on a Bruker DRX-500 

(500 MHz), DMX-360 (360 MHz), or DMX-300 (300 MHz) spectrometer. High-

resolution mass spectra were obtained with a Micromass AutoSpec or Thermo LTQ-FT 

instrument using ES ionization. Infrared spectra were recorded either on a Perkin Elmer 

1600, Nicolet 510, or Bruker alpha series FTIR spectrometer. Solvents and reagents were 

used as supplied from Aldrich, Acros, Fluka, or TCI. Reactions were performed under an 

atmosphere of argon or nitrogen unless otherwise specified. 

N

N
N

N

Cl

NH2

OH

HO
2.3

 

Compound 2.3.  To a suspension of 2-amino-6-chloropurine (2.50 g, 14.8 mmol) and 

potassium carbonate (350 mg, 2.5 mmol) in DMF (50 mL) was added (R)-glycidol (1.00 

mL, 15.1 mmol) and the suspension heated to 90 °C overnight.  The solution was 

concentrated, redissolved in methanol, and then dry loaded onto silica gel.  The crude 

product was purified via flash chromatography over silica gel eluting with 10:1 

EtOAc:MeOH to afford compound 2.3 as a white solid (1.64 g, 46%).  
1
H NMR (500 

MHz, DMSO-d6) δ (ppm) 8.02 (s, 1H), 6.87 (s, 2H), 5.08 (d, J = 5.4 Hz, 1H), 4.79 (t, J = 

5.6 Hz, 1H), 4.19 (dd, J = 13.9, 3.5 Hz, 1H), 3.91 (dd, J = 13.9, 8.6, 1H), 3.81 (m, 1H), 

3.40 (m, 1H), 3.32 (m, 1H).  Data matches that of previously published data.
1
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Compound 2.4.  A suspension of compound 2.3 (1.90 g, 7.8 mmol) in 1 M HCl (68 mL) 

was heated to 85 °C for three hours.  After cooling to room temperature, the pH was 

adjusted to approximately 9 using concentrated aqueous ammonia and the solvent was 

removed until the start of the formation of a white precipitate.  This solution was then 

cooled to 4 °C overnight.  The next morning, the product was filtered to afford compound 

2.4 as a light blue solid (1.40 g, 80%).  
1
H NMR (500 MHz, DMSO-d6) δ (ppm) 7.59 (s, 

1H), 6.43 (s, 2H), 5.05 (br, 1H), 4.77 (br, 1H), 4.08 (dd, J = 13.6, 3.4 Hz, 1H), 3.81 (dd, J 

= 13.6, 8.1 Hz, 1H), 3.75 (m, 1H), 3.36 (m, 1H), 3.28 (m, 1H).  Data matches that of 

previously published data.
1
 

NH

N
N

N

O

NH

OH

HO

O
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Compound 2.7.  To a nitrogen purged suspension of Compound 2.4 (1.38 g, 6.1 mmol) 

in anhydrous pyridine (41 mL) was added  trimethylsilyl chloride (5.8 mL, 46.0 mmol) 

and the resulting solution was allowed to stir at room temperature for two hours.  After 

cooling to 0 °C, isobutyryl chloride (3.2 mL, 30.6 mmol) was added dropwise and the 

resulting solution was allowed to warm up gradually to room temperature and stir 
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overnight.  The next morning, after cooling again to 0 °C, 10 mL of water was added to 

quench the reaction and allowed to stir for 15 minutes.  This was followed by the addition 

of 15 mL of concentrated aqueous ammonia and stirring for another 30 minutes.  

Afterwards, the solution was concentrated, redissolved in a mixture of ethyl acetate and 

methanol, and then dry loaded onto silica gel.  The crude product was purified via flash 

chromatography over silica gel starting with 20:3 EtOAc:MeOH, then eluting with 4:1 

EtOAc:MeOH to afford compound 2.7 as a light yellow solid (1.48 g, 82%).  
1
H NMR 

(360 MHz, DMSO-d6) δ (ppm) 12.02 (br, 1H), 11.65 (br, 1H), 7.89 (s, 1H), 5.07 (d, J = 

5.1 Hz, 1H), 4.79 (t, J = 5.2 Hz, 1H), 4.21 (dd, J = 13.9, 3.3 Hz, 1H), 3.94 (dd, J = 13.8, 

8.6 Hz, 1H), 3.81 (m, 1H), 3.41 (m, 1H), 3.34 (m, 1H), 2.79 (p, J = 6.8 Hz, 1H), 1.12 (d, 

J = 6.4 Hz, 6H).  Data matches that of previously published data.
1
 

NH

N
N

N

O
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OH

DMTrO
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Compound 2.9a.  A solution of compound 2.7 (1.46 g, 4.9 mmol) and 4,4’-

dimethoxytrityl chloride (2.01 g, 5.9 mmol) in pyridine (22 mL) was allowed to stir at 

room temperature for three hours.  The solution was then concentrated, redissolved in 

ethyl acetate, and concentrated once more.  The crude product was purified via flash 

chromatography over silica gel starting with 100:1 EtOAc:Et3N, then eluting with 

25:1:0.01 EtOAc:MeOH:Et3N to afford compound 2.9a as a white foam (1.85 g, 63%).  

1
H NMR (300 MHz, CDCl3) δ (ppm) 11.9 (br, 1H), 9.32 (br, 1H), 7.57 (s, 1H), 7.46 (m, 
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2H), 7.37-7.16 (m, 7H), 6.81 (m, 4H), 5.71 (br, 1H), 4.46 (br, 1H), 4.28 (dd, J = 14.0, 2.3 

Hz, 1H), 4.01 (dd, J = 14.0, 8.7 Hz, 1H), 3.77 (s, 6H), 3.29 (dd, J = 9.6, 4.6 Hz, 1H), 3.19 

(dd, J = 9.4, 6.1 Hz, 1H), 2.69 (p, J = 6.9 Hz, 1H), 1.25 (dd, J = 6.3, 3.2, 6H).  Data 

matches that of previously published data.
1
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Compound (S)-G.  To an argon purged solution of Compound 2.9a (475 mg, 0.80 mmol) 

and N,N-diisopropylethylamine (0.20 mL, 1.1 mmol) in tetrahydrofuran (7.0 mL) was 

added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.19 mL, 0.85 mmol) 

dropwise and the solution stirred overnight at room temperature. The solution was 

washed once with saturated aqueous NaHCO3 extracted into CH2Cl2, dried over Na2SO4, 

and finally concentrated by rotary evaporation. A solution of the crude product in 

methylene chloride (4.0 mL) was precipitated by the addition to rapidly stirring pentane 

(350 mL).  After filtration of the white precipitate, the solid was redissolved in methylene 

chloride (20 mL) and pentane added to the solution until the first sign of precipitation 

(~50 mL).  The solution was stored at -20 °C for two hours after which the solution was 

decanted and the remaining oil redissolved in methylene chloride and concentrated to 

afford compound (S)-G as a white foam with a purity of ~60% based on NMR integration 
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(410 mg, 65%).  
31

P NMR (121 MHz, CDCl3) δ (ppm) 147.2, 147.1.  Data matches that 

of previously published data.
1 

O

DMTrO

2.11  

Compound 2.11.  To a solution of (R)-glycidol (2.00 mL, 30.1 mmol) and triethylamine 

(10.5 mL, 75.3 mmol) in methylene chloride (68 mL) was added dimethoxytrityl chloride 

(12.8 g, 37.7 mmol) and allowed to stir overnight under nitrogen.  The next morning, the 

solution was diluted with methylene chloride and washed once with saturated aqueous 

NaHCO3, dried over Na2SO4, and concentrated by rotary evaporation.  The crude product 

was purified via flash chromatography over silica gel eluting with 10:1:0.01 

Hexanes:EtOAc:Et3N to afford compound 2.11 as a colorless oil (11.6 g, 102%).  
1
H 

NMR (500 MHz, CDCl3) δ (ppm) 7.47 (m, 2H), 7.35 (m, 4H), 7.29 (m, 2H), 7.21 (m, 

1H), 6.84 (m, 4H), 3.79 (s, 6H), 3.32 (dd, J = 10.0, 2.4 Hz, 1H), 3.17-3.10 (m, 2H), 2.78 

(dd, J = 4.9, 4.2 Hz, 1H), 2.63 (dd, J = 5.0, 2.5 Hz, 1H).  Data matches that of previously 

published data.
1
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DMTrO
2.13

 

Compound 2.13.  To a suspension of adenine (1.10 g, 8.1 mmol) in 16 mL of anhydrous 

DMF was added NaH (60% in mineral oil, 65 mg, 1.6 mmol) and allowed to stir under 

nitrogen for one hour.  A solution of compound 2.11 (2.90 g, 7.7 mmol) in 16 mL of 

anhydrous DMF was added to the above solution and the reaction was heated to 110 °C 
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overnight.  The next morning, the solution was cooled, all solvent removed, the resulting 

oil coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via column chromatography starting with 100:1 EtOAc:Et3N, then 

eluting with 50:1:0.01 EtOAc:MeOH:Et3N to afford compound 2.13 as a white foam 

(2.60 g, 62%).  
1
H NMR (300 MHz, CDCl3) δ (ppm) 8.25 (s, 1H), 7.72 (s, 1H), 7.39 (m, 

2H), 7.31-7.17 (m, 7H), 6.81 (m, 4H), 5.85 (s, 2H), 4.41 (dd, J = 14.2, 2.5 Hz, 1H), 4.29 

(dd, J = 14.2, 6.7 Hz, 1H), 4.19 (m, 1H), 3.78 (s, 6H), 3.75 (s, 1H), 3.26 (dd, J = 9.6, 5.5 

Hz, 1H), 3.04 (dd, J = 9.6, 6.4 Hz, 1H).  Data matches that of previously published data.
1
 

N

N
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N
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DMTrO
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O
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Compound 2.15.  To an argon purged solution of compound 2.13 (5.30 g, 10.4 mmol) in 

anhydrous pyridine (83 mL) was added trimethylsilyl chloride (5.3 mL, 41.4 mmol) and 

the solution allowed to stir at room temperature for two hours.  The solution was then 

cooled to 0 °C and benzoyl chloride (1.81 mL, 15.5 mmol) added dropwise.  After 

allowing the solution to warm up gradually and stir for an additional two hours, it was 

cooled once more to 0 °C and 13 mL of water added to quench the reaction.  After 

stirring for 15 minutes, 30 mL of concentrated aqueous ammonia was added and allowed 

to stir for another 30 minutes after warming to room temperature.  The solution was 

diluted with methylene chloride, washed with water, dried over Na2SO4, and 
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concentrated.  The crude product was then redissolved in 200 mL of methylene chloride, 

TBAF was added (1M solution in THF, 20 mL), and then allowed to stir at room 

temperature for one hour.  After concentration, the crude product was purified via flash 

chromatography over silica gel starting with 100:1 EtOAc:Et3N, then eluting with 

50:1:0.01 EtOAc:MeOH:Et3N to afford compound 2.15 as a light yellow foam (4.95 g, 

78%).  
1
H NMR (300 MHz, CDCl3) δ (ppm) 9.39 (br, 1H), 8.69 (s, 1H), 8.02 (d, J = 7.2 

Hz, 2H), 7.95 (s, 1H), 7.58 (m, 1H), 7.51-7.39 (m, 4H), 7.32-7.18 (m, 7H), 6.82 (m, 4H), 

4.49 (dd, J = 13.9, 2.3 Hz, 1H), 4.29 (dd, J = 13.9, 7.4 Hz, 1H), 4.21 (m, 1H), 3.78 (s, 

6H), 3.67 (s, 1H), 3.25 (dd, J = 9.8, 5.4 Hz, 1H), 3.17 (dd, J = 9.7, 5.6 Hz, 1H).  Data 

matches that of previously published data.
1
 

N

N
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Compound (S)-A.  To an argon purged solution of Compound 2.15 (2.15 g, 3.5 mmol) 

and N,N-diisopropylethylamine (3.65 mL, 21.0 mmol) in methylene chloride (58 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (1.15 mL, 5.2 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was washed one time with saturated aqueous NaHCO3 extracted into CH2Cl2, 

dried over Na2SO4, and finally concentrated by rotary evaporation. The crude product 
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was purified by column chromatography starting with 1:1:0.01 Hexanes:EtOAc:Et3N, 

then with 1:2:0.01 Hexanes:EtOAc:Et3N to afford compound (S)-A as a white foam (2.30 

g, 81%).  
31

P NMR (121 MHz, CDCl3) δ (ppm) 150.4, 149.8.  Data matches that of 

previously published data.
1
 

N

N
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O
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DMTrO

Ph

O

2.17

 

Compound 2.17.  To a suspension of N
4
-benzoylcytosine (2.59 g, 12.0) in 24.0 mL of 

anhydrous DMF was added NaH (60% in mineral oil, 96 mg, 2.4 mmol) and allowed to 

stir under nitrogen for one hour.  A solution of compound 2.11 (4.30 g, 11.4 mmol) in 

24.0 mL of anhydrous DMF was added to the above solution and heated to 110 °C 

overnight.  The next morning, the solution was cooled, all solvent removed, the resulting 

oil coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via column chromatography starting with 3:2:0.01 

Hexanes:Acetone:Et3N, then eluting with 1:1:0.01 Hexanes:Acetone:Et3N to afford 

compound 2.17 as a light yellow foam (4.50 g, 63%).  
1
H NMR (300 MHz, CDCl3) δ 

(ppm) 8.80 (br, 1H), 7.90 (m, 2H), 7.61 (m, 2H), 7.50 (m, 2H), 7.42 (m, 3H), 7.33-7.17 

(m, 7H), 6.82 (m, 4H), 4.36 (dd, J = 13.6, 2.8 Hz, 1H), 4.23 (m, 1H), 3.83 (m, 2H), 3.77 

(s, 6H), 3.26 (dd, J = 9.7, 5.3 Hz, 1H), 3.12 (dd, J = 9.6, 5.9 Hz, 1H).  Data matches that 

of previously published data.
1
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Compound (S)-C.  To a nitrogen purged solution of Compound 2.17 (1.22 g, 2.1 mmol) 

and N,N-diisopropylethylamine (2.16 mL, 12.4 mmol) in methylene chloride (34 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.69 mL, 3.1 mmol) 

dropwise and the solution stirred for two hours at room temperature under nitrogen. The 

solution was washed one time with saturated aqueous NaHCO3 extracted into CH2Cl2, 

dried over Na2SO4, and finally concentrated by rotary evaporation. The crude product 

was purified by column chromatography starting with 1:2:0.01 Hexanes:EtOAc:Et3N, 

then with 1:4:0.01 Hexanes:EtOAc:Et3N to afford compound (S)-C as a white foam (1.35 

g, 83%).  
31

P NMR (121 MHz, CDCl3) δ (ppm) 150.0, 149.9.  Data matches that of 

previously published data.
1
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DMTrO 2.19
 

Compound 2.19.  To a suspension of thymine (2.00 g, 15.9 mmol) in 33.0 mL of 

anhydrous DMF was added NaH (60% in mineral oil, 130 mg, 3.2 mmol) and allowed to 
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stir under argon for one hour.  A solution of compound 2.11 (5.70 g, 15.1 mmol) in 30.0 

mL of anhydrous DMF was added to the above solution and heated to 110 °C overnight.  

The next morning, the solution was cooled, all solvent removed, the resulting oil 

coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via column chromatography eluting with 1:2:0.01 

Hexanes:EtOAc:Et3N to afford compound 2.19 as a white foam (4.20 g, 55%).  
1
H NMR 

(500 MHz, CDCl3) δ (ppm) 8.26 (s, 1H), 7.41 (m, 2H), 7.33-7.21 (m, 7H), 7.05 (m, 1H), 

6.84 (m, 4H), 4.07 (m, 1H), 4.02 (dd, J = 14.1, 3.0 Hz, 1H), 3.80 (s, 6H), 3.66 (dd, J = 

14.1, 7.2 Hz, 1H), 3.19 (d, J = 5.4 Hz, 2H), 2.85 (d, J = 4.6 Hz, 1H), 1.85 (s, 3H).  Data 

matches that of previously published data.
1
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Compound (S)-T.  To a nitrogen purged solution of Compound 2.19 (2.10 g, 4.2 mmol) 

and N,N-diisopropylethylamine (4.35 mL, 25.1 mmol) in methylene chloride (70 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (1.40 mL, 6.3 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was washed one time with saturated aqueous NaHCO3 extracted into CH2Cl2, 

dried over Na2SO4, and finally concentrated by rotary evaporation. The crude product 

was purified by column chromatography eluting with 1:1:0.01 Hexanes:EtOAc:Et3N to 
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afford compound (S)-T as a white foam (2.35 g, 80%).  
31

P NMR (121 MHz, CDCl3) δ 

(ppm) 150.1, 150.0.  Data matches that of previously published data.
1
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Compound 2.21.  To a solution of compound 2.9 (150 mg, 0.25 mmol) and succinic 

anhydride (38 mg, 0.38 mmol) in methylene chloride (2.5 mL) was added triethylamine 

(0.11 mL, 0.75 mmol) and the solution allowed to stir under argon for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.21 

as a white foam (168 mg).  The product was used in the next step without further 

purification.  
1
H NMR (500 MHz, CDCl3) δ (ppm) 10.10 (s, 1H), 7.54 (s, 1H), 7.39 (d, J 

= 7.5 Hz, 2H), 7.31-7.16 (m, 7H), 6.83 (d, J = 8.1 Hz, 4H), 5.22 (m, 1H), 4.50 (m, 1H), 

4.32 (dd, J = 14.8, 3.1 Hz, 1H), 3.78 (s, 6H), 3.25 (q, J = 4.9 Hz, 1H), 2.89-2.50 (m, 5H), 

2.42 (m, 1H), 1.11 (t, J = 7.7 Hz, 6H). 
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Compound 2.22.  To a solution of compound 2.15 (155 mg, 0.25 mmol) and succinic 

anhydride (38 mg, 0.38 mmol) in methylene chloride (2.5 mL) was added triethylamine 

(0.11 mL, 0.75 mmol) and the solution allowed to stir under argon for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.22 

as a tan foam (173 mg).  The product was used in the next step without further 

purification.  
1
H NMR (500 MHz, CDCl3) δ (ppm) 8.68 (s, 1H), 8.08 (s, 1H), 8.01 (d, J = 

7.4 Hz, 2H), 7.54 (m, 1H), 7.48-7.41 (m, 4H), 7.33-7.19 (m, 7H), 6.84 (d, J = 8.3 Hz, 

4H), 5.39 (m, 1H), 4.57 (m, 2H), 3.78 (s, 6H), 3.29 (d, J = 4.8 Hz, 2H), 2.63-2.48 (m, 

4H). 
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Compound 2.23.  To a solution of compound 2.17 (151 mg, 0.26 mmol) and succinic 

anhydride (38 mg, 0.38 mmol) in methylene chloride (2.5 mL) was added triethylamine 

(0.11 mL, 0.75 mmol) and the solution allowed to stir under argon for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.23 

as a white foam (200 mg).  The product was used in the next step without further 

purification.  
1
H NMR (500 MHz, CDCl3) δ (ppm) 7.94 (d, 2H), 7.56 (t, J = 7.5 Hz, 1H), 

7.50-7.41 (m, 6H), 7.35-7.20 (m, 7H), 6.85 (d, J = 7.8 Hz, 4H), 5.30 (m, 1H), 4.23 (m, 

1H), 4.11 (dd, J = 13.9, 8.1 Hz, 1H), 3.79 (s, 6H), 3.33-3.24 (m, 2H), 2.79-2.55 (m, 4H). 
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Compound 2.24.  To a solution of compound 2.19 (141 mg, 0.28 mmol) and succinic 

anhydride (42 mg, 0.42 mmol) in methylene chloride (2.8 mL) was added triethylamine 

(0.12 mL, 0.84 mmol) and the solution allowed to stir under argon for four hours.  The 
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solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.24 

as a white foam (173 mg).  The product was used in the next step without further 

purification.  
1
H NMR (500 MHz, CDCl3) δ (ppm) 7.41 (m, 2H), 7.33-7.20 (m, 7H), 7.01 

(m, 1H), 6.84 (d, J = 8.8 Hz, 4H), 5.28 (m, 1H), 4.09 (dd, J = 14.5, 3.8 Hz, 1H), 3.93 (dd, 

J = 14.5, 8.0 Hz, 1H), 3.79 (s, 6H), 3.30-3.23 (m, 2H), 2.71-2.52 (m, 4H), 1.84 (s, 3H). 

N
H

n

O

O

O

N

DMTrO

NH

O

O

(S)-T Solid support  

Synthesis of solid supports [(S)-T as example].  To a suspension of long-chain 

alkylamine controlled pore glass (300 mg, mesh 120-200, 174 µmole/gram loading) and 

1-hydroxybenzatriazole (2 mg, 0.02 mmol) in anhydrous acetonitrile (2 mL) and pyridine 

(0.10 mL) was added N,N’-diisopropylcarbodiimide (24 µL, 0.15 mmol) in a sealed glass 

vial.  The suspension was shaken at room temperature for 30 minutes.  Afterwards, 

compound 2.24 (33 mg, 0.055 mmol) was added to the vial and then shaken overnight at 

room temperature.  The next morning, the solid support was filtered and washed three 

times with both methanol and then chloroform.  After drying, the solid support was 

transferred to a new vial and suspended in 8:1:1 THF:2,6-lutidine:acetic anhydride (5 

mL) and 9:1 THF:N-methylimidazole (5 mL) and shaken for another hour.  The solid 

support was filtered once more and washed three times with both methanol and then 
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chloroform.  The solid supports were transferred to new glass vials and dried under high 

vacuum to ensure all the excess solvent was removed.  The loading was measured by 

accurately weighing approximately 5 mg of the solid support and suspending it in 10% 

wt:wt trichloroacetic acid in methylene chloride.  The maximum absorbance was 

measured at 504 nm and the loading calculated based on the extinction coeffiecient of 76 

mL*cm/ µmole for the dimethoxytrityl group.  Typical values were in the range from 55-

70 µmole/gram. 

NH

N
N

N

O

NH

O
O

2.29

 

Compound 2.29.  To a suspension of guanine (1.03 g, 6.8 mmol) in DMF (8.5 mL) was 

added acetic anhydride (1.60 mL, 17.0 mmol).  The suspension was heated to reflux for 

three hours after which it was cooled, filtered, and the solid washed with ethanol.  NMR 

showed only protection of the exocyclic amino group, so the product was resuspended in 

DMF (8.5 mL) and acetic anhydride (2.58 mL, 27.3 mmol) added.  The solution was 

again heated to reflux at which point the solid dissolved.  After two hours the solution 

was allowed to cool slowly to room temperature and then to 0 °C, the precipitate filtered, 

and the solid washed with ethanol to afford compound 2.29 as a fluffy tan solid (800 mg, 

50%).  
1
H NMR (360 MHz, DMSO-d6) δ (ppm) 8.44 (s, 1H), 2.82 (s, 3H), 2.22 (s, 3H).  

Data matches that of previously published data.
8
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Comound 2.31.  To a suspension of compound 2.29 (790 mg, 3.4 mmol) and 

diphenylcarbamoyl chloride (855 mg, 3.7 mmol) in pyridine (16 mL) was added N,N-

diisopropylethylamine (1.17 mL, 6.7 mmol) and the solution allowed to stir at room 

temperature for one hour.  The reaction was quenched by the addition of water (2 mL) 

and allowed to stir for 10 minutes after which it was concentrated and coevaporated with 

toluene.  The solid was redissolved in a 1:1 mixture of ethanol:water (40 mL) and heated 

over a steam bath for 1.5 hours after which the solution was cooled, filtered, and washed 

with ethanol to afford compound 2.31 as a purple solid (950 mg, 73%).  
1
H NMR (360 

MHz, DMSO-d6) δ (ppm) 13.53 (br, 1H), 10.57 (s, 1H), 8.44 (s, 1H), 7.54-7.28 (m, 10H), 

2.17 (s, 3H).  Data matches that of previously published data.
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Attempted synthesis of compound 2.32.  To a suspension of compound 2.31 (200 mg, 

0.51 mmol) in 1.0 mL of anhydrous DMF was added NaH (60% in mineral oil, 4 mg, 

0.10 mmol) and allowed to stir under nitrogen for one hour.  A solution of compound 

2.11 (185 mg, 0.49 mmol) in 1.0 mL of anhydrous DMF was added to the above solution 
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and the reaction was heated to 90 °C overnight.  The next morning, the solution was 

cooled, all solvent removed, the resulting oil coevaporated with toluene, redissolved in 

ethyl acetate and concentrated again.  The product was purified via column 

chromatography starting with 50:1:0.01 EtOAc:MeOH:Et3N, the eluting with 40:3:0.01 

EtOAc:MeOH:Et3N.  
1
H NMR did not indicate the desired product. 

N

NN
H

N

N

NH2

N

2.34  

Compound 2.34.  A solution of 2-amino-6-chloropurine (2.50 g, 14.7 mmol) and 1,4-

diazabiocyclo[2.2.2]octane (9.10 g, 81.1 mmol) in DMSO (15 mL) was allowed to stir for 

three hours at room temperature.  To the white suspension was added 150 mL of ethyl 

acetate and allowed to stir for another three hours.  The white precipitate was then filtered 

and washed with ethyl acetate and diethyl ether to afford compound 2.34 as a white solid 

which was carried crude to the next step.  
1
H NMR (300 MHz, D2O) δ (ppm) 8.21 (s, 

1H), 4.16 (t, J = 7.6 Hz, 3H), 3.40 (t, J = 7.6 Hz, 3H).  Data matches that of previously 

published data.
9 
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Compound 2.36.  To a suspension of sodium hydride (60% in mineral oil, 1.18 g, 29.5 

mmol) in anhydrous DMSO (7.5 mL) was slowly added benzyl alcohol (8.40 mL, 81.1 
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mmol).  After reacting for two hours, crude compound 2.34 (14.8 mmol) and DMSO (7.5 

mL) were added to the above solution and allowed to stir at room temperature under 

nitrogen overnight.  The next morning, the solution was dumped into ice water and the 

pH of the solution adjusted to 8 with concentrated acetic acid.  After removing the 

solvent from the resulting suspension, the solid was redissolved in a mixture of 

methylene chloride and methanol and dry loaded onto silica gel.  The crude product was 

purified via flash chromatography over silica gel starting with 20:1 CH2Cl2:MeOH, then 

eluting with 15:1 CH2Cl2:MeOH to afford compound 2.36 as a white solid (3.10 g, 83% 

two steps).  
1
H NMR (300 MHz, DMSO-d6) δ (ppm) 12.45 (s, 1H), 7.82 (s, 1H), 7.51 (m, 

2H), 7.43-7.31 (m, 3H), 6.32 (s, 2H), 5.48 (s, 2H).  Data matches that of previously 

published data.
9 
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Compound 2.37.  Compound 2.36 (3.1 g, 12.8 mmol) was partially dissolved in 

anhydrous DMF (25 mL) under a nitrogen atmosphere.  NaH was added (105 mg, 2.6 

mmol, 60% in mineral oil) and the solution was allowed to stir under nitrogen for one 

hour.  In a separate flask, compound 2.11 was dissolved in 26 mL of DMF, added to the 

first solution, and then heated to 90 °C overnight.  The next morning, the solution was 

cooled, all solvent removed, the resulting oil coevaporated with toluene, redissolved in 

ethyl acetate and concentrated again.  The product was purified via column 
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chromatography starting with 2:1:0.01 Hexanes:Acetone:Et3N, then eluting with 

3:2:0.01 Hexanes:Acetone:Et3N to afford compound 2.37 as a light yellow foam (3.7 g, 

47%).  
1
H-NMR (500 MHz, CDCl3) δ (ppm) 7.53 (s, 1H), 7.51 (d, J = 7.1 Hz, 2H), 7.42 

(d, J = 7.5 Hz, 2H), 7.35-7.25 (m, 9H), 7.21 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 8.8 Hz, 

4H), 5.52 (s, 2H), 5.11 (b, 1H), 4.85 (s, 2H), 4.28 (m, 1H), 4.16 (m, 2H), 3.78 (s, 6H), 

3.21 (dd, J = 9.5, 4.3 Hz, 1H), 3.03 (dd, J = 9.4, 5.6 Hz, 1H).  
13

C-NMR (125 MHz, 

CDCl3) δ (ppm) 161.0, 158.8, 158.7, 154.0, 144.8, 140.8, 136.5, 136.0, 135.9, 130.1, 

128.5, 128.4, 128.2, 128.1, 128.0, 127.0, 115.4, 113.3, 86.4, 69.5, 68.3, 64.7, 55.3, 48.5.  

IR (film) v (cm
-1

) = 3515, 1401, 3341, 3212, 3065, 3034, 2934, 2834, 1616, 1589, 

1510, 1456, 1410, 1385, 1356, 1333, 1300, 1252, 1175, 1154, 1101, 1061, 1028, 907, 

828, 789, 756, 727, 698, 633, 581.  HRMS calcd for C36H35N5O5 (M+Na)
+
 640.2536, 

found (M+Na)
+
 640.2530. 
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Compound 2.38.  Compound 2.37 (3.7g, 6 mmol) and Pd/C (3.7 g, 5% on Carbon) were 

suspended in EtOAc (150 mL) and the solution was purged with nitrogen, then H2, and 

allowed to stir under a hydrogen atmosphere for 3 hours after which TLC showed 

completion of the reaction.  The mixture was filtered through celite and washed with 

2:1:0.01 EtOAc:MeOH:Et3N to afford crude compound 2.38 as a tan solid.  The crude 

product was used in the next step further without purification.  
1
H-NMR (300 MHz, 
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DMSO-d6) δ (ppm) 10.76 (b, 1H), 7.57 (s, 1H), 7.41 (d, J = 7.4 Hz, 2H), 7.33-7.18 (m, 

7H), 6.88 (dd, J = 8.9, 3.4 Hz, 4H), 6.50 (b, 2H), 5.39 (b, 1H), 4.08-3.90 (m, 3H), 3.73 (s, 

6H), 2.95 (dd, J = 9.5, 5.2 Hz, 1H), 2.89 (dd, J = 9.4, 4.8 Hz, 1H).  
13

C-NMR (75 MHz, 

DMSO-d6) δ (ppm) 158.0, 157.1, 153.6, 151.3, 144.9, 138.0, 135.6, 129.7, 127.8, 126.6, 

116.4, 113.1, 85.3, 68.0, 65.7, 55.0, 49.3.  IR (film) v (cm-1) =3412, 3127, 1699, 1607, 

1578, 1541, 1508, 1481, 1462, 1443, 1412, 1379, 1302, 1250, 1173, 1152, 1113, 1074, 

1024, 986, 899, 828, 789, 777, 752, 725, 692, 629, 579, 548, 519, 432, 422, 414, 407.  

HRMS calcd for C29H29N5O5 (M+Na)
+
 550.2066, found (M+Na)

+
 550.2061. 
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Compound 2.9b.  To a nitrogen purged suspension of Compound 2.38 (3.0 g, 5.7 mmol) 

in anhydrous pyridine (38 mL) was added  trimethylsilyl chloride (2.9 mL, 22.7 mmol) 

and the resulting solution was allowed to stir at room temperature for two hours.  After 

cooling to 0 °C, isobutyryl chloride (1.2 mL, 11.4 mmol) was added dropwise and the 

resulting solution allowed to warm up gradually to room temperature and stir for an 

additional 2 hours.  After cooling again to 0 °C, 20 mL of water was added to quench the 

reaction and allowed to warm up and stir for 15 minutes at room temperature.  The 

reaction was then washed with water and extracted two times into methylene chloride.  

After drying over sodium sulfate and concentration, the resulting oil was redissolved in 

THF (120 mL) and TBAF added under nitrogen (6 mmol, 1 M solution in THF).  The 
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solution was washed again with water and extracted two times into ethyl acetate, dried 

over sodium sulfate, and concentrated.  The resulting crude foam was purified via column 

chromatography starting with 100:1 EtOAc:Et3N, then eluting with 50:1:0.01 

EtOAc:MeOH:Et3N to afford compound 2.9b as a white foam (2.85 g, 84%).  
1
H NMR 

data matched that of compound 2.9a and reported data.
1 

N

N
N

N

DPCO

NH

OH

DMTrO

O

2.39

 

Compound 2.39.  Compound 2.9b (2.25 g, 3.8 mmol) and diphenylcarbamoyl chloride 

(960 mg, 4.1 mmol) were dissolved in anhydrous pyridine (30 mL) under nitrogen.  To 

this solution was added N,N-diisopropylethylamine (0.73 mL, 4.1 mmol) and then 

allowed to stir for 1 hour at room temperature.  The resulting dark red solution was 

diluted with CHCl2, washed with saturated aqueous NaHCO3, dried over Na2SO4, 

concentrated, and finally coevaporated with toluene.  The crude product was purified 

by column chromatography starting with 3:1:0.01 Hexanes:Acetone:Et3N, then with 

2:1:0.01 Hexanes:Acetone:Et3N, and finally eluting with 3:2:0.01 

Hexanes:Acetone:Et3N to afford compound 2.39 as a light orange foam (2.4 g, 80%).  

1
H-NMR (500 MHz, CDCl3) δ (ppm) 8.06 (s, 1H), 7.89 (s, 1H), 7.49-7.33 (m, 10H), 

7.26 (m, 8H), 7.18 (t, J = 7.3 Hz, 1H), 6.79 (d, J = 8.8 Hz, 4H), 5.33 (b, 1H), 4.50 (dd, J 

= 14.3, 1.5 Hz, 1H), 4.28 (dd, J = 14.4 6.7 Hz, 1H), 4.18 (m, 1H), 3.75 (s, 6H), 3.39 

(dd, J = 9.6, 5.2 Hz, 1H), 2.95 (m, 1H), 2.65 (m, 1H), 1.23 (d, J = 3.4 Hz, 3H), 1.22 (d, 
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J = 3.4 Hz, 3H).  
13

C-NMR (125 MHz, CDCl3) δ (ppm) 158.7, 156.2, 155.3, 151.5, 

150.4, 145.3, 144.7, 141.9, 135.9, 135.8, 130.09, 129.97, 129.3, 128.13, 128.02, 127.0, 

121.3, 113.3, 86.6, 69.8, 64.3, 55.3, 50.0, 36.7, 19.34, 19.30.  IR (film) v (cm-1) = 

3413, 3065, 2971, 2933, 1756, 1625, 1591, 1511, 1493, 1447, 1408, 1385, 1337, 1301, 

1251, 1220, 1177, 1154, 1073, 1051, 1029, 1002, 978, 695.  HRMS calcd for 

C46H44N6O7 (M+Na)
+
 815.3164, found (M+Na)

+
 815.3164. 

N

N
N

N

DPCO

NH

O

DMTrO

O

(S)-GDPC

P
O

CN

N

 

Compound (S)-G
DPC

.  To a nitrogen purged solution of Compound 2.39 (2.85 g, 3.6 

mmol) and N,N-diisopropylethylamine (3.8 mL, 21.6 mmol) in methylene chloride (60 

mL) was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (1.6 mL, 7.2 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was diluted with CH2Cl2, washed one time with saturated aqueous NaHCO3 

dried over Na2SO4, and finally concentrated by rotary evaporation. The crude product 

was purified by column chromatography starting with 2:1:0.01 Hexanes:EtOAc:Et3N, 

then with 3:2:0.01 Hexanes:EtOAc:Et3N to afford compound (S)-G
DPC

 as a white foam 

(2.9 g, 81%).  
31

P NMR (121 MHz, CDCl3) δ (ppm) 150.4, 149.9.  HRMS calcd for 

C55H61N8O8 (M+Na)
+
 1015.4248, found (M+Na)

+
 1015.4242.  
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Compound 2.41.  To a solution of compound 2.38 (2.63 g, 4.99 mmol) in anhydrous 

DMF (16.0 mL) was added dimethylformamide-dimethylacetal (2.35 mL, 17.4 mmol) 

and heated to 60 °C for one hour.  After cooling and removal of the DMF, the residue 

was redissolved in methylene chloride, washed once with saturated aqueous NaHCO3, 

dried over Na2SO4, and finally concentrated.  The product was purified via column 

chromatography starting with 100:1 EtOAc:Et3N, then eluting with 40:3:0.01 

EtOAc:MeOH:Et3N to afford compound 2.41 as a white foam (2.50 g, 86%).  
1
H-NMR 

(300 MHz, CDCl3) δ (ppm) 8.73 (s, 1H), 8.45 (s, 1H), 7.49 (s, 1H), 7.45 (m, 2H), 7.36-

7.17 (m, 7H), 6.82 (m, 4H), 4.38 (dd, J = 14.0, 2.4 Hz, 1H), 4.31 (m, 1H), 4.08 (q, J = 7.0 

Hz, 1H), 3.78 (s, 6H), 3.32 (dd, J = 9.5, 5.0 Hz, 1H), 3.05 (m, 4H), 2.97 (s, 3H).  
13

C-

NMR (75 MHz, CDCl3) δ (ppm) 158.7, 158.2, 157.5, 156.5, 150.3, 145.1, 139.5, 136.2, 

136.1, 130.1, 128.2, 128.0, 126.9, 120.0, 113.3, 86.4, 69.3, 65.0, 55.4, 48.6, 41.3, 35.2.  

IR (solid) v (cm
-1

) = 2929, 2836, 1630, 1558, 1506, 1444, 1416, 1399, 1345, 1326, 1300, 

1245, 1174, 1110, 1066, 1024, 981, 827, 755, 726, 701, 644, 581.  HRMS calcd for 

C32H34N6O5Na (M+Na)
+
 605.2483, found (M+Na)

+
 605.2477. 
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Compound (S)-G*.  To a solution of compound 2.41 (1.80 g, 3.09 mmol) in 15.5 mL of 

anhydrous methylene chloride under nitrogen was added a 1 M solution of 4,5-

dicyanoimidazole (2.20 mL in acetonitrile).  2-cyanoethyl N,N,N’,N’-

tetraisopropylphopshordiamidite (1.03 mL, 3.24 mmol) was then added dropwise and the 

solution stirred at room temperature.  After two hours, the reaction mixture was diluted 

with methylene chloride, washed twice with saturated aqueous NaHCO3, dried over 

Na2SO4, and then concentrated.  The product was purified via column chromatography 

starting with 1:1:0.01 Hexanes:Acetone:Et3N, then eluting with 1:2:0.01 

Hexanes:Acetone:Et3N to afford compound (S)-G* as a white foam (1.85 g, 76%).  
31

P-

NMR (162 MHz, CDCl3) δ (ppm) 150.3, 150.0.  HRMS calcd for C41H52N8O6P (M+H)
+
 

783.3742, found (M+H)
+
 783.3736. 
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Compound 2.44.  To a solution of compound 2.13 (1.32 g, 2.58 mmol) in 7.5 mL of 

anhydrous DMF was added dimethylformamide-dimethylacetal  (1.21 mL, 9.04 mmol) 

and heated to 60 °C for one hour.  After cooling and removal of the DMF, the residue 

was redissolved in methylene chloride, washed once with saturated aqueous NaHCO3, 

dried over Na2SO4, and finally concentrated.  The product was purified via column 

chromatography starting with 100:1 EtOAc:Et3N, then eluting with 40:3:0.01 

EtOAc:MeOH:Et3N to afford compound 2.44 as a white foam (1.45 g, 99%).  
1
H-NMR 

(300 MHz, CDCl3) δ (ppm) 8.89 (s, 1H), 8.44 (s, 1H), 7.84 (s, 1H), 7.43 (m, 2H), 7.35-

7.17 (m, 7H), 6.82 (m, 4H), 4.48 (m, 1H), 4.27 (m, 1H), 3.79 (s, 6H), 3.29 (dd, J = 9.4, 

4.7 Hz, 1H), 3.23 (s, 3H), 3.21 (s, 3H), 3.10 (dd, J = 9.4, 5.7 Hz, 1H).  
13

C-NMR (75 

MHz, CDCl3) δ (ppm) 159.5, 158.7, 158.4, 152.1, 151.8, 144.8, 143.0, 135.91, 135.83, 

130.1, 128.11, 128.00, 127.0, 125.8, 113.3, 86.5, 69.6, 64.8, 55.3, 48.7, 41.4, 35.2.  IR 

(solid) v (cm
-1

) = 2929, 2836, 1630, 1558, 1506, 1444, 1416, 1399, 1345, 1326, 1300, 

1245, 1174, 1110, 1066, 1024, 981, 827, 755, 726, 701, 644, 581.  HRMS calcd for 

C32H35N6O4 (M+H)
+
 567.2714, found (M+H)

+
 567.2709. 
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Compound (S)-A*.  To a solution of 2.44 (1.82 g, 3.21 mmol) in 16.0 mL of anhydrous 

methylene chloride under nitrogen was added a 1 M solution of 4,5-dicyanoimidazole 

(2.20 mL in acetonitrile).  2-cyanoethyl N,N,N’,N’-tetraisopropylphopshordiamidite (1.07 

mL, 3.37 mmol) was then added dropwise and the solution stirred at room temperature.  

After two hours, the reaction mixture was diluted with methylene chloride, washed twice 

with saturated aqueous NaHCO3, dried over Na2SO4, and then concentrated.  The product 

was purified via column chromatography starting with 3:2:0.01 Hexanes:Acetone:Et3N, 

then eluting with 1:1:0.01 Hexanes:Acetone:Et3N to afford compound (S)-A* as a white 

foam (2.05 g, 83%).  
31

P-NMR (162 MHz, CDCl3) δ (ppm) 150.4, 149.9.  HRMS calcd 

for C41H52N8O5P (M+H)
+
 767.3793, found (M+H)

+
 767.3781. 
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Compound 2.46.  To a suspension of N
4
-acetylcytosine (1.16 g, 7.57 mmol) in 15.0 mL 

of anhydrous DMF was added NaH (60 mg, 1.5 mmol, 60% in mineral oil) and allowed 

to stir under nitrogen for one hour.  A solution of 2.11 (2.71 g, 7.20 mmol) in 15.0 mL of 

anhydrous DMF was added to the above solution and the reaction was heated to 110 °C 

overnight.  The next morning, the solution was cooled, all solvent removed, the resulting 

oil coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via column chromatography starting with 3:2:0.01 

Hexanes:Acetone:Et3N, then eluting with 1:1:0.01 Hexanes:Acetone:Et3N to afford 

compound 2.46 as a light yellow foam (2.30 g, 57%).  
1
H-NMR (300 MHz, CDCl3) δ 

(ppm) 9.36 (b, 1H), 7.57 (d, J = 7.3 Hz, 1H), 7.41 (m, 2H), 7.34-7.17 (m, 8H), 6.82 (m, 

4H), 4.33 (dd, J = 13.5, 2.6 Hz, 1H), 4.21 (b, 1H), 3.91 (b, 1H), 3.78 (m, 7H), 3.24 (dd, J 

= 9.6, 5.1 Hz, 1H), 3.08 (dd, J = 9.6, 6.0 Hz, 1H), 2.22 (s, 3H).  
13

C-NMR (75 MHz, 

CDCl3) δ (ppm) 171.1, 162.9, 158.7, 157.4, 150.5, 144.7, 135.75, 135.71, 130.1, 128.09, 

128.03, 127.0, 113.3, 96.7, 86.4, 68.9, 64.5, 55.3, 54.6, 24.9.  IR (solid) v (cm
-1

) = 3256, 

2963, 2929, 2836, 1630, 1558, 1507, 1445, 1417, 1347, 1299, 1245, 1174, 1112, 1069, 

1030, 827, 789, 755, 727, 701, 645, 582.  HRMS calcd for C30H31N3O6Na (M+Na)
+
 

552.2105, found (M+Na)
+
 552.2104. 
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Compound (S)-C*.  To a solution of 2.46 (1.06 g, 2.00 mmol) in 10.0 mL of anhydrous 

methylene chloride under nitrogen was added a 1 M solution of 4,5-dicyanoimidazole 

(1.40 mL in acetonitrile).  2-cyanoethyl N,N,N’,N’-tetraisopropylphopshordiamidite (0.67 

mL, 2.1 mmol) was then added dropwise and the solution stirred at room temperature.  

After two hours, the reaction mixture was diluted with methylene chloride, washed once 

with saturated aqueous NaHCO3, dried over Na2SO4, and then concentrated.  The product 

was purified via column chromatography (basic alumina, Brockmann Type II) starting 

with 100:1 EtOAc:Et3N, then eluting with 50:1:0.01 EtOAc:MeOH:Et3N to afford 

compound (S)-C* as a white foam (1.12 g, 77%).  
31

P-NMR (162 MHz, CDCl3) δ (ppm) 

150.3, 150.1.  HRMS calcd for C39H49N5O7P (M+H)
+
 730.3364, found (M+H)

+
 

730.3358. 
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Compound 2.47.  To a solution of compound 2.46 (106 mg, 0.20 mmol) and succinic 

anhydride (30 mg, 0.30 mmol) in methylene chloride (2.0 mL) was added triethylamine 

(0.09 mL, 0.60 mmol) and the solution allowed to stir under nitrogen for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.47 

as a white foam (150 mg).  The product was used in the next step without further 

purification.  
1
H NMR (300 MHz, CDCl3) δ (ppm) 7.57 (d, J = 7.5 Hz, 1H), 7.43 (m, 2H), 

7.35-7.18 (m, 8H), 6.84 (d, J = 8.9 Hz, 4H), 5.37 (m, 1H), 4.39 (dd, J = 14.0, 3.4 Hz, 1H), 

3.98 (dd, J = 14.0, 7.9 Hz, 1H), 3.79 (s, 6H), 3.32 (dd, J = 10.5, 4.6 Hz, 1H), 3.23 (dd, J = 

10.4, 4.4 Hz, 1H), 2.73-2.60 (m, 4H), 2.14 (s, 3H). 

NH

N
N

N

O

DMTrO

N

O

O

OH

O

N
2.48

 

Compound 2.48.  To a solution of compound 2.41 (110 mg, 0.19 mmol) and succinic 

anhydride (28 mg, 0.28 mmol) in methylene chloride (1.9 mL) was added triethylamine 
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(0.08 mL, 0.57 mmol) and the solution allowed to stir under nitrogen for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.48 

as a white foam (130 mg).  The product was used in the next step without further 

purification.  
1
H NMR (300 MHz, CDCl3) δ (ppm) 8.40 (s, 1H), 7.70 (s, 1H), 7.41 (m, 

2H), 7.32-7.16 (m, 7H), 6.81 (d, J = 8.2 Hz, 4H), 5.40 (m, 1H), 4.45 (dd, J = 14.6, 4.1 Hz, 

1H), 4.31 (dd, J = 14.6, 6.4 Hz, 1H), 3.78 (s, 6H), 3.21 (d, J = 5.1 Hz, 2H), 3.02 (s, 3H), 

2.96 (s, 3H), 2.72-2.56 (m, 4H). 

N

N
N

N

N

O

DMTrO

N

OH

O

O

2.49

 

Compound 2.49.  To a solution of compound 2.44 (104 mg, 0.18 mmol) and succinic 

anhydride (28 mg, 0.28 mmol) in methylene chloride (1.8 mL) was added triethylamine 

(0.08 mL, 0.55 mmol) and the solution allowed to stir under nitrogen for four hours.  The 

solution was diluted with methylene chloride, washed once with a solution of 4% 

aqueous citric acid, dried over Na2SO4, and finally concentrated to afford compound 2.49 

as a tan foam (165 mg).  The product was used in the next step without further 

purification.  
1
H NMR (300 MHz, CDCl3) δ (ppm) 8.86 (s, 1H), 8.51 (s, 1H), 8.09 (s, 

1H), 7.42 (m, 2H), 7.34-7.17 (m, 7H), 6.83 (d, J = 8.8 Hz, 4H), 5.35 (m, 1H), 4.62-4.47 
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(m, 2H), 3.78 (s, 6H), 3.31 (dd, J = 10.5, 4.6 Hz, 1H), 3.25-2.19 (m, 4H), 3.17 (s, 3H), 

2.71-2.56 (m, 4H). 

 

MALDI-TOF MS:  GNA oligonucleotide samples were prepared at a concentration of 

approximately 10-20 µM.  One microliter of a saturated solution of 

trihydroxyacetophenone in 50% aqueous acetonitrile was mixed with one microliter of 

100 mM ammonium tartrate and then one microliter of the oligo sample.  The dried 

sample was then analyzed in negative mode for detection of the sample mass on an ABI 

Voyager 6030 or a Bruker Biflex III MALDI-TOF instrument.  Best results were 

obtained when the oligo solution was desalted using DOWEX 50WX8 cation exchange 

beads (hydrogen form) prior to mixing with the matrix and ammonium tartrate solutions.  

The oligonucleotide was incubated at the concentration stated above with approximately 

1 microliter of DOWEX beads for approximately 5-10 minutes, mixed thoroughly by 

pipetting the solution up and down, and incubated for another 5-10 minutes after which it 

was mixed with the matrix for spotting. 
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Figure A2.1.1.  
1
H NMR spectrum of compound 2.3 (500 MHz, DMSO-d6). 
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Figure A2.2.1.  
1
H NMR spectrum of compound 2.4 (500 MHz, DMSO-d6). 
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Figure A2.3.1.  
1
H NMR spectrum of compound 2.7 (360 MHz, DMSO-d6). 
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Figure A2.4.1.  
1
H NMR spectrum of compound 2.9a (300 MHz, CDCl3). 
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Figure A2.5.1.  
31

P NMR spectrum of compound (S)-G (121 MHz, CDCl3). 
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Figure A2.6.1.  
1
H NMR spectrum of compound 2.11 (500 MHz, CDCl3). 
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Figure A2.7.1.  
1
H NMR spectrum of compound 2.13 (300 MHz, CDCl3). 
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Figure A2.8.1.  
1
H NMR spectrum of compound 2.15 (300 MHz, CDCl3). 
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Figure A2.9.1.  
31

P NMR spectrum of compound (S)-A (121 MHz, CDCl3). 
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Figure A2.10.1.  
1
H NMR spectrum of compound 2.17 (300 MHz, CDCl3). 
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Figure A2.11.1.  
31

P NMR spectrum of compound (S)-C (121 MHz, CDCl3). 
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Figure A2.12.1.  
1
H NMR spectrum of compound 2.19 (500 MHz, CDCl3). 
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Figure A2.13.1.  
31

P NMR spectrum of compound (S)-T (121 MHz, CDCl3). 
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Figure A2.14.1.  
1
H NMR spectrum of compound 2.21 (500 MHz, CDCl3). 
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Figure A2.15.1.  
1
H NMR spectrum of compound 2.22 (500 MHz, CDCl3). 
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Figure A2.16.1.  
1
H NMR spectrum of compound 2.23 (500 MHz, CDCl3). 
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Figure A2.17.1.  
1
H NMR spectrum of compound 2.24 (500 MHz, CDCl3). 
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Figure A2.18.1.  
1
H NMR spectrum of compound 2.29 in (360 MHz, DMSO-d6). 
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Figure A2.19.1.  
1
H NMR spectrum of compound 2.31 (360 MHz, DMSO-d6). 
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Figure A2.20.1.  
1
H NMR spectrum of compound 2.34 (300 MHz, D2O). 
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Figure A2.21.1.  
1
H NMR spectrum of compound 2.36 (300 MHz, DMSO-d6). 
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Figure A2.22.1.  
1
H NMR spectrum of compound 2.37 (500 MHz, CDCl3). 
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Figure A2.22.2.  
13

C NMR spectrum of compound 2.37 (125 MHz, CDCl3). 
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Figure A2.22.3.  IR spectrum of compound 2.37 (film). 
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Figure A2.23.1.  
1
H NMR spectrum of compound 2.38 (300 MHz, DMSO-d6). 
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Figure A2.23.2.  
13

C NMR spectrum of compound 2.38 (75 MHz, DMSO-d6). 
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Figure A2.23.3.  IR spectrum of compound 2.38 (film). 
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Figure A2.24.1.  
1
H NMR spectrum of compound 2.39 (500 MHz, CDCl3). 
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Figure A2.24.2.  
13

C NMR spectrum of compound 2.39 (125 MHz, CDCl3). 
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Figure A2.24.3.  IR spectrum of compound 2.39 (film). 
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Figure A2.25.1.  

31
P NMR spectrum of phosphoramidite (S)-G

DPC
 (121 MHz, CDCl3) 

with trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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Figure A2.26.1.  
1
H NMR spectrum of compound 2.41 (300 MHz, CDCl3). 
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Figure A2.26.2.  
13

C NMR spectrum of compound 2.41 (75 MHz, CDCl3). 
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Figure A2.26.3.  IR spectrum of compound 2.41 (solid). 
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Figure A2.27.1.  

31
P NMR spectrum of phosphoramidite (S)-G* (162 MHz, CDCl3) with 

trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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Figure A2.28.1.  
1
H NMR spectrum of compound 2.44 (300 MHz, CDCl3). 
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Figure A2.28.2.  
13

C NMR spectrum of compound 2.44 (75 MHz, CDCl3). 
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Figure A2.28.3.  IR spectrum of compound 2.44 (solid). 
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Figure A2.29.1.  

31
P NMR spectrum of phosphoramidite (S)-A* (162 MHz, CDCl3) with 

trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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Figure A2.30.1.  
1
H NMR spectrum of compound 2.46 (300 MHz, CDCl3). 
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Figure A2.30.2.  
13

C NMR spectrum of compound 2.46 (75 MHz, CDCl3). 
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Figure A2.30.3.  IR spectrum of compound 2.46 (solid). 
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Figure A2.31.1.  

31
P NMR spectrum of phosphoramidite (S)-C* (162 MHz, CDCl3) with 

trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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Figure A2.32.1.  
1
H NMR spectrum of compound 2.47 (300 MHz, CDCl3). 
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Figure A2.33.1.  
1
H NMR spectrum of compound 2.48 (300 MHz, CDCl3). 
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Figure A2.34.1.  
1
H NMR spectrum of compound 2.49 (300 MHz, CDCl3). 
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Table A.2.1.1.  Table of reagents for oligonucleotide synthesis 

Name Composition 

Reagent 18 100% anhydrous acetonitrile 

Reagent Tet 0.25 M 5-ethylthiotetrazole in acetonitrile 

Acetic anhydride in THF/Pyridine 
Reagent Cap 

16% 1-methylimidazole in THF 

Reagent 15 0.02 M I2 in THF/Pyridine/H2O 

Reagent 19 Argon 

Reagent 14 3% dichloroacetic acid in CH2Cl2 

 

 

 

Table A2.2.1.  DNA oligonucleotide synthesis protocol: DNA (1 µM) 

 

Step Function Name Time A G C T 5 6 7 8 

 1 106 Begin 

 2 64 18 to waste 3.0 

 3 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 4 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 5 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 6 101 Phos prep 3.0 

 7 140 Column 1 ON 

 8 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 9 58 Tet to waste 1.7 

 10 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 11 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 12 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 13 43 Push to column 

 14 141 Column 1 OFF 

 15 142 Column 2 ON 

 16 64 18 to waste 4.0 

 17 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 18 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 19 58 Tet to waste 1.7 

 20 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 21 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 22 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 23 43 Push to column 
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 24 143 Column 2 OFF 

 25 144 Column 3 ON 

 26 64 18 to waste 4.0 

 27 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 28 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 29 58 Tet to waste 1.7 

 30 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 31 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 32 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 33 43 Push to column 

 34 145 Column 3 OFF 

 35 146 Column 4 ON 

 36 64 18 to waste 4.0 

 37 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 38 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 39 58 Tet to waste 1.7 

 40 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 41 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 42 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 43 43 Push to column 

 44 147 Column 4 OFF 

 45 103 Wait 25.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 46 102 Cap prep 3.0 

 47 64 18 to waste 4.0 

 48 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 49 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 50 39 Cap to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 51 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 52 64 18 to waste 4.0 

 53 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 54 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 55 41 15 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 56 64 18 to Waste 4.0 

 57 1 Block Flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 58 103 Wait 15.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 59 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 60 4 Flush to waste 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 61 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 62 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 63 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 64 105 Start detrityl 

 65 64 18 to waste 4.0 

 66 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 67 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 
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 68 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 69 167 If Monitoring 

 70 44 19 to column 35.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 71 40 14 to column 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 72 135 Monitor trityls  

 73 40 14 to column 85.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 74 136 Monitor noise 

 75 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 76 137 Stop Monitor 

 77 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 78 2 Reverse flush 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 79 168 If not monitoring 

 80 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 81 3 Trityl flush 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 82 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 83 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 84 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 85 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 86 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 87 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 88 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 89 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 90 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 91 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 92 3 Trityl flush 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 93 106 End monitoring 

 94 42 18 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 95 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 96 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 97 107 End 

 

 

Table A2.3.1.  Initial GNA oligonucleotide synthesis protocol with changes highlighted 

in red: 1000GNA (1 µM) 

 

Step Function Name Time A G C T 5 6 7 8 

 1 106 Begin 

 2 64 18 to waste 3.0 

 3 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 4 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 5 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 6 101 Phos prep 3.0 

 7 140 Column 1 ON 

 8 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 
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 9 58 Tet to waste 1.7 

 10 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 11 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 12 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 13 43 Push to column 

 14 141 Column 1 OFF 

 15 142 Column 2 ON 

 16 64 18 to waste 4.0 

 17 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 18 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 19 58 Tet to waste 1.7 

 20 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 21 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 22 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 23 43 Push to column 

 24 143 Column 2 OFF 

 25 144 Column 3 ON 

 26 64 18 to waste 4.0 

 27 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 28 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 29 58 Tet to waste 1.7 

 30 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 31 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 32 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 33 43 Push to column 

 34 145 Column 3 OFF 

 35 146 Column 4 ON 

 36 64 18 to waste 4.0 

 37 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 38 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 39 58 Tet to waste 1.7 

 40 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 41 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 42 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 43 43 Push to column 

 44 147 Column 4 OFF 

 45 103 Wait 180.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 46 103 Wait 60.0 No Yes No No No No No No 

 47 103 Wait 300.0 No No No No Yes Yes Yes Yes 

 48 102 Cap prep 3.0 

 49 64 18 to waste 4.0 

 50 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 51 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 52 39 Cap to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 
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 53 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 54 64 18 to waste 4.0 

 55 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 56 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 57 41 15 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 58 64 18 to Waste 4.0 

 59 1 Block Flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 60 103 Wait 20.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 61 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 62 4 Flush to waste 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 63 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 64 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 65 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 66 105 Start detrityl 

 67 64 18 to waste 4.0 

 68 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 69 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 70 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 71 167 If Monitoring 

 72 44 19 to column 35.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 73 40 14 to column 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 74 135 Monitor trityls  

 75 40 14 to column 85.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 76 136 Monitor noise 

 77 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 78 137 Stop Monitor 

 79 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 80 2 Reverse flush 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 81 168 If not monitoring 

 82 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 83 3 Trityl flush 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 84 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 85 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 86 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 87 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 88 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 89 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 90 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 91 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 92 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 93 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 94 3 Trityl flush 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 95 106 End monitoring 

 96 42 18 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 
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 97 2 Reverse flush 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 98 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 99 107 End 

 

 

Table A.2.4.1.  Final GNA oligonucleotide synthesis protocol with changes highlighted 

in red: 1000GNA3 (1 µM) 

 

Step Function Name Time A G C T 5 6 7 8 

 1 106 Begin 

 2 64 18 to waste 3.0 

 3 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 4 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 5 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 6 101 Phos prep 3.0 

 7 140 Column 1 ON 

 8 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 9 58 Tet to waste 1.7 

 10 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 11 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 12 103 Wait 60.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 13 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 14 43 Push to column 

 15 141 Column 1 OFF 

 16 142 Column 2 ON 

 17 64 18 to waste 4.0 

 18 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 19 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 20 58 Tet to waste 1.7 

 21 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 22 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 23 103 Wait 60.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 24 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 25 43 Push to column 

 26 143 Column 2 OFF 

 27 144 Column 3 ON 

 28 64 18 to waste 4.0 

 29 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 30 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 31 58 Tet to waste 1.7 

 32 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 33 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 34 103 Wait 60.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 35 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 
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 36 43 Push to column 

 37 145 Column 3 OFF 

 38 146 Column 4 ON 

 39 64 18 to waste 4.0 

 40 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes  

 41 111 Block vent 2.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 42 58 Tet to waste 1.7 

 43 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 44 34 Tet to column 1.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 45 103 Wait 60.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 46 33 B+Tet to column 2.5 Yes Yes Yes Yes Yes Yes Yes Yes 

 47 43 Push to column 

 48 147 Column 4 OFF 

 49 103 Wait 180.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 50 103 Wait 300.0 No No No No Yes Yes Yes Yes 

 51 102 Cap prep 3.0 

 52 64 18 to waste 4.0 

 53 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 54 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 55 39 Cap to column 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 56 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 57 39 Cap to column 7.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 58 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 59 64 18 to waste 4.0 

 60 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 61 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 62 41 15 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 63 64 18 to Waste 4.0 

 64 1 Block Flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 65 103 Wait 20.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 66 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 67 4 Flush to waste 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 68 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 69 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 70 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 71 105 Start detrityl 

 72 64 18 to waste 4.0 

 73 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 74 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 75 1 Block flush 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 76 167 If Monitoring 

 77 44 19 to column 35.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 78 40 14 to column 3.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 79 135 Monitor trityls  
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 80 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 81 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 82 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 83 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 84 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 85 103 Wait 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 86 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 87 136 Monitor noise 

 88 40 14 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 89 137 Stop Monitor 

 90 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 91 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 92 168 If not monitoring 

 93 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 94 3 Trityl flush 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 95 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 96 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 97 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

 98 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

 99 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

100 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

101 40 14 to column 6.0 Yes Yes Yes Yes Yes Yes Yes Yes 

102 103 Wait 5.0 Yes Yes Yes Yes Yes Yes Yes Yes 

103 3 Trityl flush 5.0 No No Yes Yes Yes Yes Yes Yes 

104 42 18 to column 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

105 3 Trityl flush 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

106 106 End monitoring 

107 42 18 to column 8.0 Yes Yes Yes Yes Yes Yes Yes Yes 

108 2 Reverse flush 10.0 Yes Yes Yes Yes Yes Yes Yes Yes 

109 1 Block flush 4.0 Yes Yes Yes Yes Yes Yes Yes Yes 

110 107 End 
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Chapter 3 
 

 

Thermal and thermodynamic properties of glycol 

nucleic acid duplexes 
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Chapter 3.1.  From single incorporation to completely acyclic oligonucleotides 

 

 The initial discovery that GNA oligonucleotides could form stable duplexes in an 

antiparallel fashion was surprising.
1-2

  In fact, experiments within the last two decades 

had shown that incorporation of one or two acyclic nucleotides into DNA 

oligonucleotides resulted in a large thermal destabilization of the resulting duplexes.
3-9

  

Furthermore, it was long thought that nucleic acid analogs containing phosphodiester 

backbones needed to be cyclic in order to confer the conformational preorganization 

required for duplex formation.
3-12

  However, this seems not the be case with GNA, 

especially considering duplexes consisting of the acyclic GNA backbone display a higher 

thermal stability than DNA and RNA duplexes of the same sequence. Therefore, we were 

interested in developing an understanding as to the reasons for the stability of GNA 

duplexes, as well as their pairing behavior with DNA and RNA.   

 We first wanted to understand the relationship between the incorporation of single 

GNA nucleotides into DNA and completely acyclic GNA oligonucleotides.
1
  

Investigation of the temperature dependent UV melting at 260 nm of DNA/GNA hybrid 

systems by then post doctoral coworker Dr. Lilu Zhang confirmed previous findings in 

which single incorporation of a GNA nucleotide resulted in a large thermal 

destabilization (Table 3.1).  For example, incorporation of one glycol thymine nucleotide 

into the middle of a 15-mer DNA duplex resulted in a reduction of thermal stability to 34 

°C from 47 °C for the pure DNA duplex.  Incorporation of a total of three glycol 

nucleotides in the middle of the duplex resulted in a further destabilization to 29 °C.  
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Finally, substitution of one entire 15-mer single strand with GNA nucleotides results in 

no observable duplex formation with the complementary DNA single strand by UV 

dependent melting.   

 

Table 3.1.  Thermal stabilities of duplexes of DNA, GNA, and 

DNA/GNA hybrids
[a]

 

Entry Duplex
[b]

 Tm (ºC)
[c]

 

1 
5’-CACATTATTGTTGTA-3’ 

3’-GTGTAATAACAACAT-5’ 
47 

2 
5’-CACATTATTGTTGTA-3’ 

3’-GTGTAATAACAACAT-5’ 
34 (40) 

3 
5’-CACATTATTGTTGTA-3’ 

3’-GTGTAATAACAACAT-5’ 
29 (28) 

4 
3’-CACATTATTGTTGTA-2’ 

3’-GTGTAATAACAACAT-5’ 
no Tm (no Tm) 

5 
5’-CACATTATTGTTGTA-3’ 

3’-GTGTA TAACAACAT-5’ 
33 (33) 

6 
5’-CACATTATTGTTGTA-3’ 

3’-GTGTAATAACAACAT-5’ 
39 (39) 

7 
3’-CAC ATT ATT GTT GTA-2’ 

2’-GTG TAA TAA CAA CAT-3’ 
71 

[a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 100 

mM NaCl and 2 µM of each strand.  [b] GNA nucleotides shown in red.  

[c] Shown for S nucleotides with the values for R nucleotides given in 

parentheses 

 
 

  

Next, the substitution of an entire single base pair into the middle of the DNA 

duplex results again in a large destabilization to 33 °C.  Further substitution of three base 

pairs in the middle of the duplex with glycol nucleotides results in a duplex with a 
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stability of 39 °C.  Although this duplex is still destabilized relative to the pure DNA 

duplex, it is only destabilized by 1.3 °C per glycol nucleotide versus 6 °C per nucleotide 

when substituting single nucleotides.  As expected from previous studies, substitution of 

all base pairs with GNA nucleotides results in an extremely stable duplex with a thermal 

melting point of 71 °C.  This surpasses the stability of the pure DNA duplex by 24 °C.  

These results, in combination with previous results
1-2

 from our group, demonstrate that 

the assumption about the importance of a cyclic backbone for conformational 

preorganization does not hold for GNA.  Instead, the results from Table 3.1 suggest the 

destabilization is caused by a structural incompatibility between the 2’-

deoxyribonucleotide and glycol oligonucleotide backbones since GNA is able to pair 

strongly with itself, but not with DNA nucleotides. 

 Additionally, we were interested in determining how general the duplex formation 

was for GNA, and how comparable it is to that of DNA.  Over the years, we have 

measured the thermal melting points (Tm) of many GNA duplexes.   The Tm is defined as 

the temperature at which a nucleic acid is halfway between its fully annealed and fully 

denatured states (i.e. – when 50% of the base pairs are dissociated).  Measurements of Tm 

values can be made by monitoring the change in absorbance as a function of temperature 

at a wavelength corresponding to the maximal absorbance of the nucleobases, normally 

260 nm.  The Tm value can then be determined from the resulting sigmoidal curve (Figure 

3.1) by either a nonlinear fit or the first derivative.  Table 3.2 shows the Tm values for 

several GNA duplexes of varying sequence and length.
1
  Comparing these values to those 

of DNA in parentheses shows that GNA duplexes not only display higher thermal 
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melting points in each case, but follow the stability trends shown for DNA duplexes; that 

is, melting temperature increases with length and increasing G:C base pair content. 
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Figure 3.1.  A representative thermal melting curve as monitored by UV spectroscopy of 

the GNA duplex 3’-AATATTATTATTTTA-2’ and its complement.  Measurement was 

made in 10 mM sodium phosphate buffer (pH=7.0) with 100 mM sodium chloride.  The 

melting temperature (Tm) is indicated by the arrow and represents the inflection point of 

the curve.  The Tm can be calculated by the first derivative or nonlinear fit of the data.  
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Table 3.2.  Thermal stabilities of (S)-GNA and DNA duplexes
 [a]

  

Entry [NaCl] Duplex Tm (ºC) 

1 1 M 
3’-ATTAAT-2’ 

2’-TAATTA-3’ 
< 20 

2 100 mM 
3’-GCGCGC-2’ 

2’-CGC GCG-3’ 
53

[b]
 

3 1 M 
3’-AAATATTT-2’ 

2’-TTTATAAA-3’ 
25 

4 150 mM 
3’-AACTAGTT-2’ 

2’-TTGATCAA-3’ 
38 

5 500 mM 
3’-CGAATTCG-2’ 

2’-GCTTAAGC-3’ 
54 (36) 

6 100 mM 
3’-TACGCACGACAT G-2’ 

2’-ATGCGTGCTGTA C-2’ 
83 

7 500 mM 
3’-AATATTATTATTTTA-2’ 

2’-TTATAATAATAAAAT-3’ 
59 (41) 

8 150 mM 
3’-AAAAAAAAAAAAAAA-2’ 

2’-TTTTTTTTTTTTTTT-3’ 
65 (40) 

9 100 mM 
3’-CACATTATTGTTGTA-2’ 

2’-GTGTAATAACAACAT-3’ 
71 (47) 

10 200 mM 
3’-TAAAATTTATATTATTAA-2’ 

2’-ATTTTAAATATAATAATT-3’ 
63 (41) 

[a] Measured in 10 mM sodium phosphate buffer (pH = 7.0) with the indicated 

amount of NaCl at 2 µM duplex concentration.  Values for DNA shown in 

parentheses.  [b] Measured using CD spectroscopy. 
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Chapter 3.2.  Watson-Crick pairing, salt dependence, CD spectroscopy 

 

 At this point, it was clear that GNA was forming duplexes in an antiparallel 

fashion with thermal stabilities greater than those of the corresponding DNA duplexes.  

Considering we were somewhat astonished that this was possible with a completely 

acyclic backbone, we were interested in understanding GNA duplex formation and 

comparing its properties with that of DNA.  It was hoped that this would allow insight 

into the reason for the higher thermal stability.  First, we wanted to determine the rules 

for nucleobase pairing in the context of GNA duplexes.  Therefore, co-worker Lilu Zhang 

measured the stabilities of matched and mismatched Watson-Crick base pairs in GNA 

duplexes and compared it with those in DNA.
1
  Thermal melting points were determined 

for a 15-mer duplex in which the center base pair was modified to give every possible 

combination of pairing (Table 3.3).  In GNA duplexes, base pairs of A:T and G:C form 

the most stable duplexes with Tm values of 71 °C and 72 °C for A:T pairs and 75 °C and 

76 °C for G:C pairs.  Similarly for DNA, the most stable combinations of A:T and G:C 

provide Tm values of 47 °C and 48 °C, respectively.  All other combinations are 

destabilizing in both the GNA and DNA systems displaying destabilizations of 6-17 °C 

for GNA and 9-23 °C for DNA duplexes.  This suggests that hydrogen bonding functions 

in both GNA and DNA duplexes as a means to determine the highly specific interaction 

between the nucleobases on opposite strands, discriminating against other combinations 

of nucleobases based on slight energy differences. 
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Table 3.3.  Thermal stabilities (Tm [ºC]) of matched and mismatched Watson-Crick 

base pairs in duplex GNA
[a]

 

3’-CACATTAXTGTTGTA-2’ 

2’-GTGTAATYACAACAT-3’ 

  X 

  A G C T 

A 65 (34) 65 (38) 63 (34) 71 (47) 

G 66 (36) 62 (38) 76 (48) 62 (36) 

C 63 (31) 75 (48) 58 (25) 61 (33) 
Y 

T 72 (47) 62 (35) 59 (34) 61 (36) 

[a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 100 mM NaCl at 2 

µM duplex concentration.  Values for DNA shown in parentheses. 

 
 

 Moreover, it was interesting to understand the effect ionic strength of the solvent 

has on the formation of GNA duplexes.  Metal cations such as Na
+
 and Mg

+2
 are 

important for the formation of nucleic acid duplexes because they help to diminish the 

electrostatic repulsion of negative charges on phosphodiester groups of opposing strands 

during duplex formation.
13

  Metal cations have also been shown to bind to the G:C base 

pairs of DNA duplexes.
14-15

  Figure 3.2 shows the effect of increasing sodium ion 

concentration on the Tm value of a 15-mer GNA duplex and compares it to a DNA duplex 

of the same sequence.
1
  The data show a similar trend for both duplexes in which the 

melting point increases sharply as the concentration of sodium ions is increased from 0 to 

0.2 M.  Thereafter, the stabilization of each duplex proceeds in almost a linear fashion as 

the concentration of sodium ions is increased, albeit it in a much slower fashion.  This 

data would suggest that cations play an equally important role in diminishing the 

electrostatic repulsion during GNA and DNA duplex formation. 
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Figure 3.2.  Comparison of the effect of sodium concentration on the thermal stability of 

a GNA duplex and DNA duplex of the sequence CACATTATTGTTGTA and its 

complement.  The sequence is in the 3’→2’ direction for GNA and 5’→3’ direction of 

for DNA.  Measurements were made in 10 mM sodium phosphate buffer (pH=7.0) with 

the indicated salt concentration and 2 µM of each strand.  Each data point is the mean of 

two measurements. 
 

 

Furthermore, we wanted to understand the effect of solvent content on GNA 

duplex formation compared to DNA duplex formation.  Information about duplex 

formation can be gained by observing the melting behavior of duplexes in the presence of 

added organic co-solvent.  The increase in organic content, and therefore decrease in 

aqueous content, of the solvent can have large effects on the hydrogen bonding and 

stacking interactions occurring during duplex formation.
16-18

  One would expect that the 

hydrogen bonding and stacking contributions towards duplex formation would increase 

and decrease, respectively, as the dielectric constant of the solvent is decreased.  

Measurement of the melting temperature of a 15-mer duplex in the presence of differing 
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amounts of N,N’-dimethylformamide showed similar results for both GNA and DNA 

duplexes (Figure 3.3).
19

  For GNA, every 10% increase in DMF content results in a 

destabilization of approximately 5 °C.  A DNA duplex of the same sequence displays a 

destabilization of approximately 6 °C for every 10% increase in DMF content.  This 

suggests that duplex formation for both GNA and DNA is affected equally as the 

dielectric constant of the solution is changed.  Therefore, the solvation of the backbone 

and nucleobases is similar in both GNA and DNA. 
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Figure 3.3.  Thermal melting temperatures (Tm) of GNA and DNA duplexes of the 

sequence CAC ATT ATT GTT GTA and its complement in the presence of DMF.  The 

shown sequence is in the direction 3’→2’ for GNA and 5’→3’ for DNA.  Measurements 

were performed in 10 mM sodium phosphate buffer (pH=7.0) with 100 mM sodium 

chloride and the indicated DMF percentage at 2 µM duplex concentration.  Each data 

point is the mean of two measurments. 

  

Finally, we wanted to measure the CD spectrum of a GNA duplex and compare it 

to that of DNA.  Circular dichroism is used extensively to determine the three 

dimensional configuration of proteins in solution.  Although CD has also been used in the 
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determination of the secondary structure of DNA and RNA duplexes in solution, it is not 

as well understood as determining protein structure via CD spectroscopy.
20

  In any case, 

it can be very indicative of slight structural changes and provide insight into the duplex 

stability.  Accordingly, the CD spectrum of a GNA duplex (Figure 3.4) shows strong 

Cotton effects characteristic of the formation of a secondary structure.
1
  The peaks at 270 

nm, 220 nm, and 205 nm are indicative for the formation of a duplex of GNA.  However, 

a comparison to the CD spectrum of a DNA duplex of the same sequence shows 

significant differences.  Notably, the maxima and minima are inverted around 270, 250, 

220, and 210 nm, and the intensities are smaller compared to those of GNA.   
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Figure 3.4.  CD spectra of a (S)-GNA and DNA duplexes of the sequence CAC ATT 

ATT GTT GTA at a duplex concentration of 10 µM.  Measurements were performed in 

10 mM sodium phosphate buffer (pH=7.0) with 100 mM sodium chloride at 15 °C.  Each 

curve is the average of ten measurements. 
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Moreover, quantitative analysis of the CD signal for the GNA duplex at 220 nm 

from 20 to 90 °C is shown in Figure 3.5.  A sigmoidal fit to the data provides a Tm of 72 

°C which is consistent with the melting point of 71 °C determined by UV-melting.  A 

similar result is obtained by monitoring the CD signal at 270 nm, providing a melting 

point of 73 °C.
1
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Figure 3.5.  Temperature-dependent CD measurement of the (S)-GNA duplex 3’-CAC 

ATT ATT GTT GTA-2’ and its complement at a duplex concentration of 2 µM in 10 mM 

sodium phosphate buffer (pH=7.0) with 100 mM sodium chloride.  The CD signal (red 

dots) was measured at 220 nm as a function of temperature with a heating rate of 1 

˚C/min.  A sigmoidal fit to the data (black line) yields a melting temperature of 72 ˚C 

based on the inflection point of the curve. 

  

 

The data from the mismatch, ionic strength, and solvent content experiments 

suggest that the duplex formation properties of GNA and DNA are not significantly 

different.  Both systems display similar thermal sensitivities to non Watson-Crick base 
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pairs, the amount of added metal cations in the solution, and the dielectric constant of the 

solution.  The mismatch experiments also show that both GNA and DNA duplexes 

assemble based strictly on the Watson-Crick rules for pairing.  The CD spectrum of the 

GNA duplex suggests the formation of a stable secondary structure which has a thermal 

melting temperature (Tm) almost identical to the melting temperature obtained using UV 

spectroscopy.  Furthermore, this CD spectrum bears no resemblance to the CD spectrum 

of a corresponding DNA duplex under the same conditions. 
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Chapter 3.3.  Thermal and thermodynamic stabilities of GNA duplexes 

 Chapter 3.3.1.  Thermodynamics of GNA duplex formation 

 

 The next step towards an understanding of the higher thermal stabilities of GNA 

duplexes was to measure the thermodynamic parameters of duplex formation for GNA 

duplexes as compared to DNA duplexes.
1,19

  Over the course of several years, we had the 

opportunity to measure the thermodynamics of duplex formation for many different 

duplexes, the first of them shown in Table 3.4.  The thermodynamics of duplex formation 

can be measured using the concentration method in which the Tm
-1

 is plotted against the 

ln[oligo].
18

  From this so called van’t Hoff plot, the values of ∆H and ∆S can be extracted 

which allow for the subsequent calculation of the free energy of duplex formation, ∆G.  

From the four duplexes shown (Table 3.4), there is clearly a positive linear correlation 

between the Tm value and ∆G of duplex formation.  Furthermore, GNA duplex formation 

is less exothermic than in DNA, but surprisingly, more entropically favorable in every 

case.  Again, this was unexpected based on the assumption that the acyclic backbone of 

GNA is less conformationally preorganized to support duplex formation.  Therefore, the 

data would suggest that the GNA backbone is adjusted to support duplex formation in a 

less entropically unfavorable manner.   
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Table 3.4.  Thermal and thermodynamic stability of (S)-GNA and DNA duplexes
[a]

  

Entry Duplex 
Tm

[b]
 

(˚C) 

∆G
[c]

 

(298K, 

kcal/mol) 

∆H
[c]

 

(kcal/mol) 

-T∆S
[c]

 

(298K, 

kcal/mol) 

1
[d]

 
CGA ATT CG 

GCT TAA GC 

54 

(36) 

-12.2 

(-9.4) 

-54.0 

(-59.4) 

41.8 

(49.9) 

2
[e]

 
A15 

T15 

61 

(37) 

-19.5 

(-12.6) 

-102.3 

(-104.2) 

82.8 

(91.6) 

3
[d]

 
AAT ATT ATT ATT TTA 

TTA TAA TAA TAA AAT 

59 

(41) 

-16.2 

(-12.4) 

-77.0 

(-86.5) 

60.8 

(74.1) 

4
[e]

 
CAC ATT ATT GTT GTA 

GTG TAA TAA CAA CAT 

70 

(47) 

-21.1 

(-15.2) 

-95.6 

(-103.3) 

74.4 

(88.1) 

[a] Upper strand: 3’→2’ direction for GNA and 5’→3’ direction for DNA.  Bottom 

strand: 2’→3’ direction for GNA and 3’→5’ direction for DNA.  Values for DNA 

shown in parentheses.  [b] Melting temperature indicated for duplex at a concentration 

of 2 µM.  [c] ∆G, ∆H, and ∆S were estimated from van’t Hoff plots.  Each data point 

was measured in triplicate, and the mean value was taken.  [d] Measured in 10 mM 

sodium phosphate buffer (pH=7.0) with 500 mM NaCl.  [e] Measured in 10 mM 

sodium phosphate buffer (pH=7.0) with 100 mM NaCl 

 

 

These results led us to investigate the effect of overhanging nucleotides in GNA 

duplexes and compare it to DNA.
19, 21-23

  It was hoped that this would provide an 

indication of the stacking ability of GNA nucleotides during duplex formation compared 

to DNA.  Since the terminal nucleotide has no pairing partner, the use of overhanging 

nucleotides also provides a measure of stacking ability that is separate from hydrogen 

bonding interactions.  Therefore, we started with the self-complementary target sequence 

5’(3’)-CGA ATT CG-3’(2’) and investigated both the melting temperatures and 

thermodynamic parameters for dangling nucleotides on both ends of duplexes of GNA 

and DNA.  In GNA, the core sequence forms a duplex with a ∆H value of -54.0 kcal/mol 
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and a -T∆S value of 41.8 kcal/mol (Entry 1, Table 3.5).  The addition of a dangling base 

on the 3’ end of GNA (Entries 2-5) has no significant stabilizing effect on duplex 

formation when compared to the ∆G and Tm of the core duplex (Entry 1).  Although the 

change in ∆G is not significant for the addition of dangling bases, duplex formation is 

accompanied by a more unfavorable enthalpy (by 0.5 to 8.2 kcal/mol), but a more 

favorable entropy (by 0.6 to 7.5 kcal/mol) when compared to the core sequence.  This is 

in stark contrast to the effect of dangling bases on the 2’ end of the GNA duplex as 

shown in Entries 6-9 of Table 3.5.  The addition of the dangling bases results in both 

higher thermal (Tm increases of 8.3 to 14.6 °C) and thermodynamic (∆G increases of 2.2 

to 4.4 kcal/mol) stabilities for these duplexes.  Also in contrast to the dangling 

nucleotides on the 3’ end, the dangling nucleotides on the 2’ end results in more 

favorable enthalpic (by 6.8 to 14.9 kcal/mol) and less favorable entropic (by 4.4 to 13.3 

kcal/mol) contributions to duplex formation.  The ability of overhanging nucleobases to 

stabilize the duplex by stacking interactions on the 2’ end of GNA is consistent with 

previous reports for overhanging nucleotides in both DNA and RNA.  In the experiments 

with DNA and RNA it was determined that the stabilizing ability of the nucleobases 

increased with both decreasing polarity and increasing surface area (the polarity of the 

nucleobases increases in the order adenine<guanine<thymine<cytosine), consistent with 

what is found for the 2’ overhanging nucleotides in GNA. 
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Table 3.5.  Thermal and thermodynamic stabilities of (S)-GNA duplexes with 

overhanging nucleotides 

Entry Duplex
[a]

 
Tm

[c]
 

(˚C) 

∆G
[d]

 

(298K, 

kcal/mol) 

∆H
[d]

 

(kcal/mol) 

-T∆S
[d]

 

(298K, 

kcal/mol) 

1 
3’-CGAATTCG-2’ 

2’-GCTTAAGC-3’ 
54.3 -12.2 -54.0 41.8 

2 
 3’-ACGAATTCG-2’ 

  2’-GCTTAAGCA-3’ 
55.2 -11.9 -50.0 38.1 

3 
 3’-GCGAATTCG-2’ 

  2’-GCTTAAGCG-3’ 
55.5 -11.6 -46.6 35.0 

4 
 3’-CCGAATTCG-2’ 

  2’-GCTTAAGCC-3’ 
54.8 -11.6 -45.8 34.3 

5 
 3’-TCGAATTCG-2’ 

  2’-GCTTAAGCT-3’ 
55.4 -12.3 -53.5 41.2 

6 
  3’-CGAATTCGA-2’ 

 2’-AGCTTAAGC-3’ 
68.9 -16.2 -68.9 52.7 

7 
  3’-CGAATTCGG-2’ 

 2’-GGCTTAAGC-3’ 
66.8 -15.8 -68.9 53.1 

8 
  3’-CGAATTCGC-2’ 

 2’-CGCTTAAGC-3’ 
62.6 -14.4 -63.1 48.6 

9 
  3’-CGAATTCGT-2’ 

 2’-TGCTTAAGC-3’ 
64.9 -14.6 -60.8 46.2 

 [a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 500 mM NaCl.  [b] 

Melting temperature indicated for duplex at a concentration of 2 µM.  [c] ∆G, ∆H, and 

∆S were estimated from van’t Hoff plots.  Each data point was measured in triplicate, 

and the mean value was taken. 

 

 

For DNA the core sequence forms a duplex with a ∆H value of -59.4 kcal/mol 

and a -T∆S value of 49.9 kcal/mol (Entry 1, Table 3.6).  Adding an overhanging 

nucleotide to the 5’ end (corresponding to the 3’ end of GNA) results in both thermal 
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(Tm increases from 4.6 to 9.1 °C) and thermodynamic (∆G increases from 0.6 to 1.8 

kcal/mol) stabilization of the duplexes (Entries 2-5, Table 3.6).  In three of the four cases, 

the duplex formation is accompanied by less favorable enthalpic (by 2.6 to 11 kcal/mol) 

and more favorable entropic (by 0.6 to 5.2 kcal/mol) contributions.  This is in contrast to 

a similar experiment using the core sequence 5’-CGCGCG-3’ in which a more favorable 

enthalpic and less favorable entropic contribution towards duplex formation was 

observed.
22

  However, the amount of stabilization provided by each of the stacking 

nucleotides is similar to that using the 6-mer DNA sequence.  Similar to what is observed 

on the 5’ end, dangling nucleotides on the 3’ end of DNA also have a stabilizing effect, 

albeit to a lesser extent than on the 5’ end.  In contrast, dangling nucleotides on the 2’ end 

of GNA have a large stabilizing effect on the duplex with an increase in Tm values from 

9-15 °C based on the polarity of overhanging base.  Dangling nucleotides on the 

corresponding 3’ end of DNA also generally show a stabilizing effect (∆G increase from 

0-0.7 kcal/mol), albeit to a lesser degree than on the 5’ end (Entries 6-9, Table 3.6).  

Again, this stabilization is accompanied by less favorable enthalpic (by 0.2 to 7.9 

kcal/mol) and more favorable entropic (by 0.8 to 7.7 kcal/mol) contributions towards 

duplex formation.  The stabilization trend on the 3’ end is similar in which the purines 

(adenine and guanine) stabilize the duplex to a greater extent than the pyrimidines 

(cytosine and thymine).  However, there is very little difference between the pairs (i.e.- 

adenine is similar to guanine). 

Table 3.7 summarizes Tables 3.5 and 3.6 to emphasize the trends in the 

thermodynamic data.  Averaging the thermodynamic effect of all dangling nucleotides 
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shows an average stabilization of 0.69 kcal/mol per nucleotide in GNA compared with 

0.36 kcal/mol per nucleotide in DNA.
19

  This suggests that stacking is thermodynamically 

more favorable for GNA duplex formation versus DNA duplex formation.  The 

potentially important factors for stabilizing face-to-face base interactions are electrostatic 

interactions (dipole-dipole and dipole-induced dipole), dispersion effects (momentary 

dipole-induced dipole), and solvation effects.
22
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Table 3.6.  Thermal and thermodynamic stabilities of DNA duplexes with 

overhanging nucleotides 

Entry Duplex
[a]

 
Tm

[c]
 

(˚C) 

∆G
[d]

 

(298K, 

kcal/mol) 

∆H
[d]

 

(kcal/mol) 

-T∆S
[d]

 

(298K, 

kcal/mol) 

1 
5’-CGAATTCG-3’ 

3’-GCTTAAGC-5’ 
35.5 -9.4 -59.4 49.9 

2 
 5’-ACGAATTCG-3’ 

  3’-GCTTAAGCA-5’ 
45.0 -11.2 -60.4 49.3 

3 
 5’-GCGAATTCG-3’ 

  3’-GCTTAAGCG-5’ 
42.6 -10.7 -59.1 48.4 

4 
 5’-CCGAATTCG-3’ 

  3’-GCTTAAGCC-5’ 
40.1 -10.0 -54.7 44.7 

5 
 5’-TCGAATTCG-3’ 

  3’-GCTTAAGCT-5’ 
41.1 -10.3 -56.8 46.5 

6 
  5’-CGAATTCGA-3’ 

 3’-AGCTTAAGC-5’ 
39.1 -10.0 -57.6 47.7 

7 
  5’-CGAATTCGG-3’ 

 3’-GGCTTAAGC-5’ 
39.4 -10.1 -59.2 49.1 

8 
  5’-CGAATTCGC-3’ 

 3’-CGCTTAAGC-5’ 
36.8 -9.3 -51.5 42.2 

9 
  5’-CGAATTCGT-3’ 

 3’-TGCTTAAGC-5’ 
36.9 -9.4 -54.1 44.7 

 [a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 500 mM NaCl.  [b] 

Melting temperature indicated for duplex at a concentration of 2 µM.  [c] ∆G, ∆H, and 

∆S were estimated from van’t Hoff plots.  Each data point was measured in triplicate, 

and the mean value was taken. 
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Table 3.7.  Thermal and thermodynamic stabilities of (S)-GNA and DNA duplexes 

with overhanging nucleotides
[a]

 

  
     XCGAATTCG 

        GCTTAAGCX 
 

       CGAATTCGX 

    XGCTTAAGC 

Entry 
Overhanging 

nucleotide X
[b]

 

Tm 

(˚C) 

∆Tm 

(˚C) 

∆∆G 

(298K, 

kcal/mol) 

 
Tm 

(˚C) 

∆Tm 

(˚C) 

∆∆G 

(298K, 

kcal/mol) 

GNA duplexes        

1 None 54.3 0 0  54.3 0 0 

2 A 55.2 0.9 -0.2  68.9 14.6 4.0 

3 G 54.8 0.5 -0.6  66.8 12.5 3.6 

4 C 55.4 1.1 -0.6  62.6 8.3 2.3 

5 T 55.5 1.2 0.1  64.9 10.6 2.4 

DNA Duplexes        

6 None 35.5 0 0  35.5 0 0 

7 A 45.0 9.5 1.8  39.1 3.6 0.6 

8 G 42.6 7.1 1.3  39.4 3.9 0.7 

9 C 40.1 4.6 0.6  36.9 1.4 -0.1 

10 T 41.1 5.6 0.9  36.8 1.3 0.0 

[a] Measured in 10 mM sodium phosphate buffer (pH = 7.0) with 500 mM NaCl and 

2 µM of each duplex.  [b] Sequence for the upper strand in the direction 3’→2’ for 

GNA and 5’→3’ for DNA. 

 
 

 

Therefore, to further probe the nature of the stacking interactions in DNA and 

GNA, experiments determining the effect of the added organic cosolvent DMF to the 

stability of overhanging bases are shown in Figures 3.6 and 3.7.  Since solvophobic 

effects are correlated with the extent of surface area excluded from solvent, one would 
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expect that the greater the extent of solvophobic contribution to molecular interactions, 

the more that an added organic cosolvent will affect such interactions.
22

  For both the 

GNA and DNA duplexes with an overhanging adenine nucleotide, the stabilities of the 

duplexes containing overhanging bases is more sensitive towards the addition of organic 

cosolvent than the core sequence.  For GNA, the slope of the adenine overhang sequence 

is -0.63 compared to -0.47 for the core sequence. In DNA, the slope of the adenine 

overhang sequence is -0.72 versus -0.52 for the core sequence.  The more negative slope 

for the DNA duplexes shows that the stacking in DNA is more sensitive towards 

solvophobic effects than in GNA, suggesting that stabilization by overhanging bases in 

DNA is more driven by solvent effects.
22

  However, if one considers the thermodynamic 

data presented in Tables 3.5 and 3.6, the increased thermodynamic stability of 

overhanging bases in GNA is accompanied by a more favorable enthalpic and less 

favorable entropic term towards duplex formation.  Furthermore, the trend in which GNA 

duplex formation is less exothermic and more entropically favorable than in DNA is 

actually reversed with the addition of overhanging nucleotides.  However, we are hesitant 

to over-interpret this data because of known effects of entropy-enthalpy compensation.
24

  

Thus, it can be concluded that the addition of overhanging bases in GNA results in larger 

thermodynamic stabilities than in DNA.  The data presented here suggests that the 

increased stability is the result of slightly different interactions between nucleobases. 
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Figure 3.6.  Thermal melting temperatures (Tm) of self-complementary GNA duplexes of 

the sequence 3’-CGAATTCG-2’ (open circles) and 3’-CGAATTCGA-2’ (filled squares).  

Also shown are the linear fits to the data with the corresponding slope of the fit.  

Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with 100 

mM sodium chloride and the indicated DMF percentage at 2 µM duplex concentration.  

Each data point is the mean of two measurements. 
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Figure 3.7.  Thermal melting temperatures (Tm) of self-complementary DNA duplexes of 

the sequence 5’-CGAATTCG-3’ (open circles) and 5’-CGAATTCGA-3’ (filled squares).  

Also shown are the linear fits to the data with the corresponding slope of the fit.  

Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with 100 

mM sodium chloride and the indicated DMF percentage at 2 µM duplex concentration.  

Each data point is the mean of two measurements. 
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Chapter 3.3.2.  Probing GNA duplex formation using circular dichroism 

 

A more favorable entropic contribution to GNA duplex formation may indicate a 

strongly preorganized conformation in GNA single strands.
25

  Therefore, we investigated 

the temperature-dependent conformation of GNA single strands in solution and compared 

it to DNA single strands of the same sequence.
19

  Figure 3.8 shows that the GNA single 

strand 3’-CACATTATTGTTGTA-2’ displays significant Cotton effects that are only 

slightly less pronounced than those of the corresponding duplex at the same overall 

concentration of single strands.  Upon heating from 15-90 °C, the CD signals gradually 

disappear indicating the GNA single strands are adopting a defined helical structure.  
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Figure 3.8.  Melting of the GNA single strand 3’-CAC ATT ATT GTT GTA-2’ as 

monitored by circular dichroism (CD).  The measurements were made in 10 mM sodium 

phosphate buffer (pH=7.0) with 100 mM sodium chloride at a concentration of 20 µM.  

The CD spectra of the corresponding duplex (blue, 10 µM per single strand) and mixture 

of nucleosides (red, 300 µM total concentration) are shown for reference.  Each curve is 

the average of at least five measurements.  
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Furthermore, upon cooling of the same solution from 90-15 °C, the CD signals at 205, 

220, 240, and 270 nm reappear with equal intensity indicating reformation of this defined 

helical structure.  From this it can be concluded that the conformation of the GNA single 

strand in solution resembles that of the individual strands in the duplex.  As a 

comparison, analogous CD experiments with DNA single strands are not as conclusive 

and show less pronounced temperature dependent behavior (Figure 3.9).  Thus, although 

acyclic, the GNA backbone can apparently lead to an ideal preorganization of the single 

strands for duplex formation. 
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Figure 3.9.  Melting of the DNA single strand 5’-CAC ATT ATT GTT GTA-3’ as 

monitored by circular dichroism (CD).  The measurements were made in 10 mM sodium 

phosphate buffer (pH=7.0) with 100 mM sodium chloride at a concentration of 20 µM.  

The CD spectra of the corresponding duplex (blue, 10 µM per single strand) and mixture 

of nucleosides (red, 300 µM total concentration) are shown for reference.  Each curve is 

the average of at least five measurements.  
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To test the generality of this single strand preorganization, we investigated the CD 

spectra of GNA single strands of different sequences and lengths.  Figure 3.10 

demonstrates that not all GNA single strands adopt a preorganized conformation in 

solution.  For example, a 5-mer of the sequence 3’-TTGTA-2’, a 10-mer of the sequence 

3’-TATTGTTGT A-2’, and a 15-mer of the sequence 3’-T15-2’ show CD spectra with no 

significant Cotton effects compared to the 15-mer 3’-CATATTATTGTTGTA-2’.  Single 

strands of the sequence 3’-A5-2’ and 3’-A15-2’ do show significant Cotton effects, but 

with maxima and minima that differ from that of duplex GNA indicating that these single 

strands are adopting a different conformation than is found in the duplex.  Therefore, it is 

clear that not all GNA single strands demonstrate a strongly preorganized conformation 

in solution and that it is highly sequence and length dependent. 
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Figure 3.10.  CD spectra of GNA single strands with varying length and sequence at 

concentrations of 20 µM (15mers), 30 µM (10mer), and 60 µM (5mers).  Measurements 

were performed in 10 mM sodium phosphate buffer (pH=7.0) with 100 mM sodium 

chloride.  Each curve is the average of ten measurements.  

  

Proceeding further, we wanted to investigate the effect that the ionic strength has 

on preorganizing single strands of GNA.  Since the presence of metal cations in solution 

help in the shielding of the negatively charged phosphates from each other, it was 

assumed that changes in the salt concentration should have a large effect on the 

conformational preorganization of the single strands.  Figure 3.11 demonstrates that this 

is not the case for GNA.  CD spectra of the sequence 3’-CATATTATTGTTGTA-2’ in 

the presence of 0, 100, and 500 mM added sodium chloride do not differ significantly 

from each other in shape or intensity of the minimum peak at 270 nm.  Only slight 

differences are observed in the maxima of 205 and 240 nm, and the minimum at 220 nm. 
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Figure 3.11.  Effect of salt concentration on the CD spectra of GNA single strands at 15 

ºC with the sequence 3’-CACATTATTGTTGTA-2’ at a concentration of 20 µM.  

Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with the 

stated sodium chloride concentration.  Each curve is the average of ten measurements. 
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Chapter 3.3.3.  Intercalators and NMR analysis of single glycol nucleosides 

 

Additional support for the helical preorganization of GNA single strands was 

obtained from a comparison of the crystallographic data for single GNA nucleosides and 

NMR data of single nucleosides in organic and aqueous solutions.
19

  A comparison of the 

conformation of crystallized nucleosides with those in solution reveals that a preferred 

conformation also exists in solution.  Curiously, all four nucleosides display sharp NMR 

signals of the protons in the dihydroxypropyl backbone, consistent with a somewhat 

defined structure and therefore preferred conformation (See 
1
H NMR spectra in the 

Appendix to Chapter 2).  A thorough NMR analysis of (S)-1-(2,3-

dihyroxypropyl)cytosine reveals a similar conformation of the nucleoside in both the 

crystallized
1
 form and in aqueous and organic solutions, as shown in Figure 3.12.  Both 

the crystallized and NMR determined nucleosides adopt the same staggered conformation 

with an anti orientation of the nucleobase and a gauche conformation with respect to the 

vicinal C-O bonds. 

 

Figure 3.12.  Structure of (S)-1-(2,3-dihydroxypropyl)cytosine determined by NMR. 

 

 



 166 

Finally, the presence of an ideally preorganized backbone would imply that the 

duplex structure is quite rigid.  To probe this assumption, we investigated the interaction 

of GNA duplexes with the well known intercalators ethidium bromide and proflavine.
26

  

Intercalation between neighboring base pairs requires the unwinding of the backbone, 

resulting in a modified backbone conformation.
27

  Table 3.8 shows the results for 

intercalation of ethidium and proflavine into GNA and DNA duplexes.  For the GNA 

duplex, addition of either intercalator has essentially no effect on the melting 

temperature.  However, in DNA, the addition of the two intercalators results in a 

stabilization of the duplex in the amount of 6 °C and 4 °C for ethidium and proflavine, 

respectively.  In addition to an increase in duplex melting temperature, a red-shift of the 

longest-wavelength absorption band of each intercalator would indicate binding by 

intercalation.
26

  For ethidium, the absorption band at 477 nm shows no change in the 

GNA solution while it is shifted to 497 nm in the DNA solution.  Furthermore, for 

proflavine, the absorption band at 442 nm shows no change in the GNA solution while it 

is shifted to 450 nm in the DNA solution.  Finally, intercalation of ethidium and 

proflavine is accompanied by an increase and decrease in fluorescence intensity, 

respectively (Table 3.8).
26

  Accordingly, the fluorescence intensity of ethidium is 

increased by 164% in the DNA solution while it remains essentially unchanged for the 

GNA solution.  The fluorescence intensity of proflavine is decreased by 48% in the 

presence of DNA and by 15% in the presence of GNA.  Although the decrease in 

fluorescence intensity of proflavine in the presence of GNA might suggest intercalation, 

the UV melting and absorbance data would argue the opposite way.  It is quite possible 
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that the slight decrease in fluorescence is due to some other interaction of the proflavine 

with the GNA duplex (i.e. – groove binding or outside stacking).  Identical experiments 

with concentrations of intercalators at 150 µM instead of 15 µM show similar results.  

Therefore, it can be concluded that the duplex structure of GNA does not allow for the 

unwinding of the backbone and insertion of intercalators between base pairs. 

 

Table 3.8.  Effects of intercalators on GNA and DNA duplexes
[a]

 

 Tm ∆ Tm 
Max. Abs.

[b]
 

(nm) 
Fluorescence

[b]
 

∆ Fluorescence 

(%) 

GNA duplexes 

No Intercalator 70.3 - - - - 

Ethidium - - 477 232 - 

Duplex + Ethidium  69.8 -0.5 477 227 -2 

Proflavine - - 442 13060 - 

Duplex + Proflavine 70.2 -0.1 442 11083 -15 

DNA duplexes 

No Intercalator 47.3 - - - - 

Ethidium - - 477 232 - 

Duplex + Ethidium  53.3 6.0 497 613 164 

Proflavine - - 442 13060 - 

Duplex + Proflavine 51.3 4.0 450 6734 -48 

[a] Measured in 100 mM sodium phosphate buffer (pH = 7.0)  with 100 mM sodium 

chloride and 2 µM duplex with the sequence 5’(3’)-CAC ATT ATT GTT GTA-3’(2’) 

and its complement.  Where stated is also included 15 µM of intercalator. [b] 

Measurements performed at 25 °C. 
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Chapter 3.4.  Crosspairing of GNA single strands with DNA and RNA 

 Chapter 3.4.1.  Initial crosspairing results of (S)- and (R)-GNA with DNA and RNA 

  

Upon the introduction of a new nucleic acid analog with self-pairing ability 

usually comes interest as to how this new analog interacts with DNA and RNA.  Much of 

this interest is aimed towards using the nucleic acid analog as a molecule to interfere with 

gene expression inside the cell.  This can come on two different levels; first by interacting 

with mRNA and causing degradation of the mRNA, and second by interacting directly 

with the duplex DNA copy of the gene.  The second method can prevent gene expression 

simply by not allowing the cell’s machinery to access the gene in question.  Regulating 

gene expression in this manner can be very powerful considering the rules that govern 

interaction of nucleic acids are very simple (Watson-Crick base pairing rules) and 

specific.  This is compared to using small molecules to regulate gene expression in which 

one needs to know much more information about the protein to produce an effect (protein 

sequence, active site structure, mechanism of action, etc.).
28

 

 Along these lines, we wanted to investigate how GNA interacts with both DNA 

and RNA.  Since GNA has the attractive feature of easy synthetic access to both (R)- and 

(S)- enantiomers, we wanted to test the crosspairing ability of both enantiomers and 

determine whether any difference exists between their interactions with DNA and RNA.  

As shown in Table 3.9, 15-mer oligonucleotides comprised of poly-adenine or poly-

thymine were used as an initial test of crosspairing ability.
1
  It was hoped that using 

symmetrical oligonucleotides would allow for the observation of both parallel and 
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antiparallel pairing.  Table 3.9 shows that (S)-GNA T15 pairs strongly with (S)-GNA A15 

as expected (Tm = 65 °C).  Furthermore (S)-GNA T15 pairs weakly with (R)-GNA A15 (Tm 

= 38 °C) and RNA A15 (Tm = 33 °C).  No sigmoidal melting is observed with DNA A15.  

Besides pairing with (S)-GNA T15, (S)-GNA A15 also pairs weakly with (R)-GNA T15 (Tm 

= 35 °C), DNA T15 (Tm = 21 °C), and RNA U15 (Tm = 28 °C).  The (R)- enantiomers 

display weak crosspairing with the opposite enantiomeric form of GNA, but not with 

either DNA or RNA.  The DNA and RNA oligonucleotides form stable duplexes with 

themselves (Tm = 40 °C for DNA, 29 °C for RNA) and each other(Tm = 18 °C and 35 

°C), as expected.  Interestingly, the two (S)-GNA:RNA hybrids show thermal stabilities 

similar to that of the RNA homoduplex (28 °C and 33 °C for (S)-GNA:RNA versus 29 °C 

for RNA:RNA). 

 

Table 3.9.  Thermal stabilities (Tm [˚C]) for the cross-pairing between strands of (S)-

GNA, (R)-GNA, RNA, and DNA
[a]

  

 (S)-GNA A15 (R)-GNA A15 DNA A15 RNA A15 

(S)-GNA T15 65 38 no Tm 33 

(R)-GNA T15 35 64 no Tm no Tm 

DNA T15 21 no Tm 40 35 

RNA U15 28 no Tm 18 29 

[a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 150 mM NaCl and  

1 mM EDTA at 2 µM duplex concentration. 

 

 

 To further test this crosspairing ability, we decided to investigate duplex 

formation by CD spectroscopy.  Shown in Figure 3.13 are the CD spectra of 
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homoduplexes of (S)-GNA, RNA, and DNA using the same poly-adenine, poly-thymine 

pairing system.  The (S)- enantiomer of GNA was chosen for this study based on the 

results from Table 3.9 which only show interaction of this enantiomer with the DNA and 

RNA oligonucleotides.  The CD spectrum of the GNA duplex displays very few 

similarities to the spectra of either DNA or RNA.  One apparent observation is that the 

minima and maxima of the GNA spectrum are the opposite sign in the DNA and RNA 

spectra; what might actually suggest the formation of an opposite handed duplex (i.e. – a 

left-handed duplex for GNA).   
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Figure 3.13.  CD spectra of GNA, DNA, and RNA homoduplexes of the sequence 

A15:T15 at a duplex concentration of 4 µM.  Measurements were performed in 10 mM 

sodium phosphate buffer (pH=7.0) with 150 mM sodium chloride and 1 mM EDTA at 15 

°C.  Each curve is the average of five measurements.  

 

Proceeding further, the CD spectrum of the most stable (S)-GNA:RNA hybrid, 

(S)-GNA T15:RNA A15, was measured along with the corresponding single strands.  
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Figure 3.14 clearly shows that the CD spectrum is not simply the sum of the individual 

oligonucleotides; indicating the formation of a (S)-GNA:RNA heteroduplex.  A similar 

CD spectrum was observed for the (S)-GNA A15:RNA T15 heteroduplex.  In both spectra, 

the biggest indication of duplex formation is the peak at 283 nm which only appears in 

the curve for the heteroduplex.  Analysis of the corresponding (S)-GNA T15:DNA A15 

duplex in Figure 3.15 shows that the CD spectrum closely resembles that of the sum of 

the individual oligonucleotides.  A similar result was obtained for the (S)-GNA A15:DNA 

T15 duplex indicating no formation of a duplex between GNA and DNA.  This is 

consistent with previous results of our lab and the melting experiments in Table 3.9.   
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Figure 3.14.  CD spectra of a (S)-GNA T15:RNA A15 heteroduplex at a duplex 

concentration of 4 µM and the corresponding single strands at a concentration of 4 µM.  

Also shown is the curve representing the addition of the spectra of the two single strands.  

Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with 150 

mM sodium chloride and 1 mM EDTA at 15˚C.  Each curve is the average of five 

measurements.  
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Figure 3.15.  CD spectra of a (S)-GNA T15:DNA A15 heteroduplex at a duplex 

concentration of 4 µM and the corresponding single strands at a concentration of 4 µM.  

Also shown is the curve representing the addition of the spectra of the two single strands.  

Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with 150 

mM sodium chloride and 1 mM EDTA at 15˚C.  Each curve is the average of five 

measurements.  

 

Moreover, temperature dependent analysis of the CD signal at 283 nm from 5 to 

60 °C, shown in Figure 3.16a, provides a Tm of 34 °C after a sigmoidal fit to the data.  

This is consistent with the melting point determined by UV melting (Tm=33 °C).  A 

similar analysis at 283 nm of the (S)-GNA A15:RNA T15 duplex provides a Tm of 27 °C 

which is also consistent with the value from UV melting (Tm=28 °C).  Finally, as shown 

in Figure 3.16b, Job Plot analysis of the (S)-GNA T15:RNA A15 heteroduplex indicates 

the formation of a 1:1 complex of these two oligonucleotides.
28

   

 



 173 

 

Figure 3.16.  CD and Job plot analysis of the (S)-GNA T15:RNA A15 heteroduplex.  a) 

Temperature-dependent CD measurement at a duplex concentration of 4 µM in 10 mM 

sodium phosphate buffer (pH=7.0) with 150 mM sodium chloride and 1 mM EDTA.  The 

CD signal (red dots) was measured at 283 nm as a function of temperature with a heating 

rate of 1 ˚C/min.  A sigmoidal fit to the data (black line) yields a melting temperature of 

34 ˚C based on the inflection point of the curve.  b) Job plot analysis of (S)-GNA T15 

pairing with RNA A15.  Measurements were taken by mixing the appropriate amounts of 

a 5 µM stock solution of each oligonucleotide in 10 mM sodium phosphate buffer 

(pH=7.0) with 150 mM sodium chloride and 1 mM EDTA.  Linear fits to the data 

produces two lines which intersect at a value of 0.48. 
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 Chaper 3.4.2.  Crosspairing of mixed sequences of (S)-GNA and RNA 

 

Once it was established that there is a real interaction between (S)-GNA and RNA 

using strands composed purely of adenine and thymine, we wanted to test how G:C base 

pairs affect the duplex formation properties.
1
  Contrary to what one would expect, 

previous experience in our lab had shown that G:C base pairs destabilize these 

heteroduplexes.  To further test this, both UV melting and CD spectroscopy were used to 

analyze (S)-GNA:RNA T15:A15 heteroduplexes containing varying numbers of G:C base 

pairs.  Accordingly, Figure 3.17a shows the thermal melting curves of these 

heteroduplexes containing zero, one, and three G:C base pairs.  Again, consistent with 

our previous results, the incorporation of one G:C base pair (Tm = 24 °C) and three G:C 

base pairs (no observable Tm) lead to significant destabilizations compared to the 

heteroduplex containing no G:C base pairs (Tm = 33 °C).  As shown in Figure 3.17b, CD 

spectroscopy also points to the destabilization of these heteroduplexes based on the slow 

disappearance of the peaks at 283 and 210 nm as the number of G:C base pairs is 

increased from zero to three. 
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Figure 3.17.  Crosspairing of mixed sequences of (S)-GNA with RNA.  a) Thermal 

melting curves monitored by UV spectroscopy of 1:1 mixtures (2 µM each strand) of (S)-

GNA A15:T15 (Tm = 65˚C), RNA A15:U15 (Tm = 29˚C), RNA:(S)-GNA A15:T15 (Tm = 

33˚C), RNA:(S)-GNA A7CA7:T7GT7 (Tm = 24˚C), and RNA:(S)-GNA 

A3CA3CA3CA3:T3GT3GT3GT3 (no Tm).  b) CD spectra of a (S)-GNA:RNA 

heteroduplexes with no G:C base pairs, one G:C pair [(S)-GNA T7GT7:RNA A7CA7], and 

three G:C base pairs [(S)-GNA T3GT3GT3GT3:RNA A3CA3CA3CA3] at a duplex 

concentration of 4 µM and a temperature of 15˚C.  Measurements were performed in 10 

mM sodium phosphate buffer (pH=7.0) with 150 mM sodium chloride and 1 mM EDTA.  

Each curve is the average of five measurements. 
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Based on these surprising results, we were interested in performing a mismatch 

experiment of the five natural bases (A, G, C, T, U) and three synthetic bases (N, D, I) in 

GNA:RNA heteroduplexes.  One initial theory was that the 2-amino group of guanine 

might be involved in a steric clash in the minor groove, thereby destabilizing 

heteroduplex formation.  The incorporation of the three glycol nucleotides (S)-N (2-

aminopurine), (S)-D (diaminopurine), and (S)-I (inosine) into GNA oligonucleotides was 

aimed towards testing this theory.  The structures of these three nucleotides, compared to 

the natural ones, would allow us to directly test how the 2-amino group functions in 

GNA:RNA heteroduplex formation.  For example, 2-aminopurine (N) provides a base 

pair with thymine of approximately equal stability to that of an A:T pair (Figure 3.18).
30

  

Furthermore, inosine (I) should pair with cytosine to form a base pair that is similar in 

strength to an A:T pair, but slightly destabilized compared to a G:C pair in the same 

position.
31

  Finally, 2,6-diaminopurine (D) is capable of base pairing with thymine and 

this base pair displays a stability greater than that of an A:T base pair, but slightly lower 

than that of a G:C base pair.
32 
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Figure 3.18.  Structure of the three unnatural base pairs used in this study and their 

possible hydrogen bonding patterns. 

 

 

For the synthesis of (S)-N glycol nucleoside phosphoramidite (Scheme 3.1), 

compound 2.11 was first ring-opened using 2-aminopurine (3.1) and 0.2 equivalents of 

sodium hydride to produce compound 3.2 in 57% yield.  It should be noted that a 

significant amount (27%) of the N-7 ring opened product was also observed and that the 

correct N-9 regioisomer was determined using NMR.  Protection of the exocyclic amine 

of compound 3.2 was accomplished by first transiently protecting the 2’-hydroxyl group 

using trimethylsilyl chloride (2.5) and then reacting with benzoyl chloride (2.14) in 

pyridine to produce compound 3.3 in 46% yield.  Compound 3.3 was finally converted to 

the phosphoramidite (S)-N with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite 

(2.9) and excess N,N-diisopropylethylamine in 50% yield. 
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Scheme 3.1.  Synthesis of (S)-N phosphoramidite. 

 

Similarly, the synthesis of (S)-D phosphoramidite starts with ring opening of 

compound 2.11 using diaminopurine (3.4) and 0.2 equivalents of sodium hydride to 

produce compound 3.5 in 57% yield (Scheme 3.2).  Protection of the two exocyclic 

amines of compound 3.5 was accomplished by first reacting with trimethylsilyl chloride 

(2.5) and then with benzoyl chloride (2.14) in pyridine to afford compound 3.6 in 70% 

yield.  Further conversion to the phosphoramidite (S)-D was afforded in 79% yield by the 

reaction of compound 3.6 with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.9) 

and excess N,N-diisopropylethylamine. 
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Scheme 3.2.  Synthesis of (S)-D phosphoramidite. 

 

The synthesis of (S)-I phosphoramidite proved to be more problematic.  Initial 

attempts of ring-opening compound 2.11 using inosine (3.7) and 0.2 equivalents of 

sodium hydride yielded product 3.8a which appeared to be a mixture of two tautomeric 

forms (Scheme 3.3a).  However, subsequent protection attempts of compound 3.8a using 

diphenylcarbomyl chloride (2.30) and N,N-diisopropylethylamine proved unsuccessful 

suggesting that compound 3.9a was not the desired product.  A second route which 

started with the ring opening of (R)-glycidol (2.1) with 6-chloropurine (3.10) and 0.17 
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equivalents of potassium carbonate yielded the desired product 3.11 in 35% yield 

(Scheme 3.3b).  Subsequent hydrolysis of compound 3.11 using 1 M HCl yielded 

compound 3.12 based on TLC.  Unfortunately, the product could not be purified and was 

taken crude to the next step.  Subsequent conversion to compound 3.8b using 4,4’-

dimethoxytrityl chloride (2.7) in pyridine was unsuccessful. 
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Scheme 3.3.  Attempted synthesis of (S)-I phosphoramidite starting with: a) inosine, and 

b) 6-chloropurine. 

 

 

Next, it was envisioned that the use of benzyl protection on the 3’-hydroxyl group 

would allow for the easy purification of the polar synthetic intermediates.  Accordingly, 

(R)-glycidol was protected by the reaction with benzyl bromide (3.13) and sodium 

hydride to yield compound 3.14 in 63% yield (Scheme 3.4).
33

  Subsequent ring-opening 
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of compound 3.14 with 6-chloropurine (3.10) and 0.2 equivalents of sodium hydride 

afforded the desired compound 3.15 in 41% yield (Scheme 3.5).  Compound 3.15 was 

then hydrolyzed with 1 M HCl to provide compound 3.16 in 79% yield.  The benzyl 

group allows for a simple purification of compound 3.16 to remove any salt byproducts.  

Reaction of compound 3.16 with diphenylcarbamoyl chloride and N,N-

diisopropylethylamine in pyridine yields compound 3.17 in 64% yield.  Catalytic 

hydrogenation was then used to produce compound 3.18 in quantitative yield.  

Unfortunately, an attempt to reprotect the 3’-hydroxyl group using 4,4’-dimethoxytrityl 

chloride in pyridine did not yield the desired compound 3.9b.   

 

O

BnO

O

HO

THF
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2.2 3.14

Br

NaH

3.13

 

Scheme 3.4.  Synthesis of benzylglycidol.
32
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Scheme 3.5.  Attempted synthesis of (S)-I phosphoramidite using compound 3.14 for 

ring opening of 6-chloropurine. 

 

 

Finally, based on the success of ring-opening using O-6-benzyloxyguanine (2.36) 

for the synthesis of (S)-G, (S)-G
DPC

, and (S)-G*, O-6-benzyloxypurine (3.19) was chosen 

for the ring-opening of compound 2.11 in the presence of 0.2 equivalents of sodium 

hydride (Scheme 3.6).  Compound 3.20, which was formed in 44% yield, could then be 

converted to compound 3.8c using catalytic hydrogenation in 81% yield.  Gratifyingly, 

compound 3.8c was then converted to compound 3.9c by the reaction with 

diphenylcarbamoyl chloride and N,N-diisopropylethylamine in 52% yield.  Finally, 
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compound 3.9c was reacted with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite 

and excess N,N-diisopropylethylamine to produce phosphoramidite (S)-I in 94% yield. 
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Scheme 3.6.  Successful synthesis of (S)-I phosphoramidite. 

 

 

With these three new phosphoramidites in hand [(S)-N, (S)-D, (S)-I], it was 

possible to perform the mismatch experiment in which the middle base pair of the 15-mer 

heteroduplex is substituted for the four Watson-Crick bases in GNA and RNA and the 

three unnatural bases in GNA as shown in Table 3.10.  As expected, the most stable 
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combinations are those where adenine and thymine (or uracil) are at the middle position 

of the two 15-mers yielding melting temperatures (Tm) of 28 °C and 32 °C.  Interestingly, 

A:A (27 °C) and A:G (25 °C) also form base pairs with stabilities similar to an A:U 

match (28 °C).  A guanine nucleotide in the middle of the GNA 15-mer pairs with 

cytosine and guanine in the RNA oligo with a Tm of 24 °C, but pairs weakly with both A 

and U.  The cytosine nucleotide in the GNA oligo forms a duplex with a Tm of 26 °C and 

25 °C when pairing with A and G, respectively.  In this case, it is interesting that the 

cytosine is forming a slightly more stable base pair with adenine, rather than guanine.  

The other two combinations C:C and C:U are highly destabilizing to the duplex.  Besides 

strongly pairing with adenine (32 °C), thymine also pairs relatively well with guanine (27 

°C), but is highly destabilizing when paired with C or U.  Although the 2-aminopurine 

glycol nucleotide pairs strongest with uracil (23 °C), it results in largely destabilized 

duplexes when paired with all four RNA nucleotides.  As expected, the most stable pair 

for diaminopurine is the D:U pair (Tm = 28 °C), however, all other combinations are only 

moderately stable (24 °C for D:A, 23 °C for D:G), or unstable (D:C).  Finally, contrary to 

what one would expect, the inosine glycol nucleotide pairs strongest with guanine (Tm = 

25 °C), followed by adenine (Tm = 24 °C), then uracil (Tm = 22 °C), and finally cytosine 

(Tm = 21 °C). 
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Table 3.10.  Thermal stabilities (Tm [˚C]) of matched and mismatched base pairs in 

GNA/RNA heteroduplexes
[a]

 

5’-AAA AAA AXA AAA AAA-3’ 

2’-TTT  TTT  TYT  TTT  TTT-3’ 

  X 

  A G C U 

A 27 25 21 28 

G ≤ 20 24 24 22 

C 26 25 ≤ 20 ≤ 20 

T 32 27 ≤ 20 ≤ 20 

N 22 21 ≤ 20 23 

D 24 23 ≤ 20 28 

Y 

I 24 25 21 22 

[a] Measured in 10 mM sodium phosphate buffer (pH=7.0) with 150 mM NaCl and 1 

mM EDTA at 2 µM duplex concentration.  Each data point is the mean of two 

measurements. 

 

 

It was hoped that the mismatch experiment would shed light into the 

destabilization of (S)-GNA:RNA heteroduplexes by G:C base pairs, but unfortunately the 

data does not help with understanding this phenomenon.  A close analysis of the 

mismatch data does not reveal a clear trend of how the nucleobases are interacting with 

each other inside the duplex.  It is entirely possible that the nucleobases are interacting in 

a fashion different from that of Watson-Crick base pairs in which the purine edge 

comprised of C-6, N-1, and C-2 interacts with the pyrimidine edge comprised of C-4, N-

3, and C-2 (i.e. – alternative hydrogen bonding).  However, this does confirm the 

observation that G:C base pairs are unstable in the heteroduplexes used for this study.  
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More interesting is there are base pairs (A:A, C:A, and T:G) that are more stable than 

either of the G:C base pairs.  Although there is a large amount of interest in using GNA 

to interact with DNA and RNA,
34-35

 the crosspairing with RNA is still poorly understood 

and an in-depth structural analysis (crystallography or NMR) is needed to sort out the 

interesting behavior.  However, from the results presented above, it is clear that (S)-GNA 

is forming heteroduplex structures with stabilities similar to DNA:RNA heteroduplexes, 

albeit in duplexes composed of sequences rich in adenine and thymine.   
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Chapter 3.5.  Conclusions 

 

 The initial discovery that GNA is capable of duplex formation that was thermally 

more stable than duplexes of DNA or RNA with the same sequence was surprising.  

Based on previous experiments in which single acyclic nucleosides were incorporated 

into DNA duplexes with decreased thermal stabilities, it was thought that two 

oligonucleotides composed entirely of acyclic nucleotides would not possess the 

conformational preorganization to form a duplex.  The CD data presented here would 

suggest the opposite in which the GNA single strands are preorganized for duplex 

formation in solution, at least in some cases.  An experiment probing the interactions of 

matched and mismatched base pairs in a GNA duplex shows that the hydrogen bonding 

interactions in GNA duplexes are, to a similar degree as in DNA, selective for the 

Watson-Crick base pairs.  Experiments investigating the counter ion and solvent 

dependence of duplex formation show no significant differences between GNA and DNA 

duplexes. In contrast, measurements of the thermodynamic parameters ∆G, ∆H, and ∆S 

suggest that duplex formation is entropically favored for GNA, consistent with the CD 

results.  Furthermore, the experiments with dangling nucleosides suggests that stacking 

interactions in GNA duplexes are thermodynamically more favorable than in DNA. 

 Unfortunately, the crosspairing of GNA single strands with DNA and RNA single 

strands is still poorly understood.  Although it seems clear that only (S)-GNA pairs only 

with RNA, it is quite puzzling that this pairing is limited to sequences rich in adenine and 

thymine.  Both UV melting and CD experiments shown evidence of duplex formation in 
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A:T rich heteroduplexes which gradually disappears as the number of G:C base pairs is 

increased in the sequence.  A mismatch experiment, including the three unnatural bases 

N, D, and I does not help to increase our understanding of this crosspairing system.  

Although the synthesis of three unnatural glycol nucleoside phosphoramidites is 

presented [(S)-D, (S)-I, and (S)-N], there is much room for improvement in these 

synthesis.  For other applications of (S)-D and (S)-N, formamidine protection of the 

exocyclic amines should be investigated based on the ease of incorporation and stability 

of these protection groups in the (S)-A* and (S)-G* phosphoramidites.
36
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Chapter 3.6.  Experimental procedures 

 

General procedures and reagents.  NMR spectra were recorded on a Bruker DRX-500 

(500 MHz), DMX-360 (360 MHz), or DMX-300 (300 MHz) spectrometer. High-

resolution mass spectra were obtained with a Micromass AutoSpec or Thermo LTQ-FT 

instrument using ES ionization. Infrared spectra were recorded either on a Perkin Elmer 

1600, Nicolet 510, or Bruker alpha series FTIR spectrometer. Solvents and reagents were 

used as supplied from Aldrich, Acros, Fluka, or TCI. Reactions were performed under an 

atmosphere of argon or nitrogen unless otherwise specified. 

N

N
N

N
NH2

OH

DMTrO
3.2

 

Compound 3.2.  To a suspension of 2-aminopurine (510 mg, 3.8 mmol) in anhydrous 

DMF (8 mL) under nitrogen was added NaH (30 mg, 1.1 mmol, 60% in mineral oil) and 

the solution allowed to stir under nitrogen for one hour.  A solution of compound 2.11 

(1.35 g, 3.6 mmol) in DMF (7 mL) was added to the first solution and then heated to 90 

ºC overnight.  The next morning, the solution was cooled, all solvent removed, the 

resulting oil coevaporated with toluene, redissolved in ethyl acetate and concentrated 

again.  The product was purified via column chromatography starting with 100:1 

EtOAc:Et3N, then 50:1:0.01 EtOAc:MeOH:Et3N, and finally eluting with 40:3:0.01 

EtOAc:MeOH:Et3N to afford compound 3.2 as a light yellow foam (1.10 g, 57%).  
1
H-

NMR (300 MHz, CDCl3) δ (ppm) 8.52 (s, 1H), 7.67 (s, 1H), 7.43 (m, 2H), 7.34-7.18 (m, 
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7H), 6.82 (d, J = 8.9 Hz, 4H), 5.20 (s, 2H), 4.57 (br, 1H), 4.33 (m, 1H), 4.16 (m, 2H), 

3.78 (s, 6H), 3.26 (dd, J = 9.5, 4.9 Hz, 1H), 3.10 (dd, J = 9.5, 5.4 Hz, 1H). 

N

N
N

N
NH

OH

DMTrO
O

Ph

3.3

 

Compound 3.3.  To a solution of compound 3.2 (765 mg, 1.5 mmol) in anhydrous 

pyridine (12 mL) under nitrogen was added trimethylsilyl chloride (0.76 mL, 6.0 mmol) 

and allowed to stir for two hours at room temperature.  The solution was then cooled to 0 

°C followed by the dropwise addition of benzoyl chloride (0.26 mL, 2.2 mmol).  The 

solution was allowed to gradually warm up to room temperature and stir for another two 

hours after which the solution was cooled back to 0 °C.  Water (5 mL) was added, 

followed 10 minutes later by the addition of 25% aqueous ammonia (5 mL).  After 

stirring for another 10 minutes, the solution was diluted with water and extracted two 

times with methylene chloride.  The organic phase was dried over Na2SO4 and 

concentrated.  The product was purified via column chromatography starting with 100:1 

EtOAc:Et3N then eluting with 50:1:0.01 EtOAc:MeOH:Et3N to afford compound 3.3 as a 

light yellow foam (420 mg, 46%).  
1
H-NMR (300 MHz, CDCl3) δ (ppm) 8.96 (br, 1H), 

8.90 (s, 1H), 7.96 (s, 1H), 7.93 (s, 1H), 7.57 (m, 1H), 7.48 (m, 2H), 7.40 (m, 2H), 7.31-

7.16 (m, 7H), 6.80 (m, 4H), 4.57 (m, 1H), 4.36 (dd, J = 14.1, 6.5 Hz, 1H), 4.28 (m, 1H), 

3.77 (s, 6H), 3.42 (dd, J = 9.6, 5.0 Hz, 1H), 2.99 (dd, J = 9.4, 7.9 Hz, 1H). 
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N

N
N

N
NH

O

DMTrO
O

Ph

P
O

CN

N

(S)-N

 

Compound (S)-N.  To a nitrogen purged solution of compound 3.3 (420 mg, 0.68 mmol) 

and N,N-diisopropylethylamine (0.71 mL, 4.1 mmol) in methylene chloride (11 mL) was 

added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.23 mL, 1.0 mmol) 

dropwise and the solution stirred for two hours at room temperature under nitrogen. The 

solution was diluted with methylene chloride and washed once with saturated aqueous 

NaHCO3, dried over Na2SO4, and finally concentrated by rotoevaporation. The crude 

product was purified by column chromatography starting with 1:2:0.01 

Hexanes:EtOAc:Et3N then eluting with 100:1 EtOAc:Et3N to afford compound (S)-N as a 

light yellow foam (275 mg, 50%).  
31

P-NMR (121 MHz, CDCl3) δ (ppm) 150.0, 149.8. 

N

N
N

N
NH2

OH

DMTrO
3.5

H2N

 

Compound 3.5.  To a suspension of 2,6-diaminopurine (1.02 g, 6.8 mmol) in anhydrous 

DMF (14 mL) under argon was added NaH (55 mg, 1.4 mmol, 60% in mineral oil) and 

allowed to stir under argon for one hour.  A solution of compound 2.11 (2.43 g, 6.5 

mmol) in DMF (13 mL) was added to the first solution and then heated to 110 °C 

overnight.  The next morning, the solution was cooled, all solvent removed, the resulting 
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oil coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via column chromatography starting with 50:1:0.01 

EtOAc:MeOH:Et3N then eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford compound 

3.5 as a yellow foam (2.04 g, 57%).  
1
H-NMR (300 MHz, CDCl3) δ (ppm) 7.43 (m, 2H), 

7.34-7.16 (m, 8H), 6.81 (m, 4H), 6.02 (s, 2H), 5.04 (s, 2H), 4.26-4.06 (m, 3H), 3.76 (s, 

6H), 3.29 (dd, J = 9.6, 4.7 Hz, 1H), 3.05 (dd, J = 9.5, 6.1 Hz, 1H). 

N

N
N

N
NH

OH

DMTrO
O

Ph

3.6

HN
Ph

O

 

Compound 3.6.  To a solution of compound 3.5 (810 mg, 1.5 mmol) in anhydrous 

pyridine (12 mL) under nitrogen was added trimethylsilyl chloride (0.78 mL, 6.2 mmol) 

and allowed to stir for two hours at room temperature.  After two hours, the solution was 

cooled to 0 °C followed by the dropwise addition of benzoyl chloride (0.54 mL, 4.6 

mmol).  The solution was allowed to gradually warm up to room temperature and stir for 

another two hours after which the solution was cooled back to 0 °C.  Water (5 mL) was 

added, followed 10 minutes later by the addition of 25% aqueous ammonia (5 mL).  After 

stirring for another 10 minutes, the solution was diluted with water and extracted two 

times with methylene chloride.  The organic phase was dried over Na2SO4 and 

concentrated.  The product was purified via column chromatography starting with 100:1 

EtOAc:Et3N then eluting with 50:1:0.01 EtOAc:MeOH:Et3N to afford compound 3.6 as a 
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light yellow foam (790 mg, 70%).  
1
H-NMR (300 MHz, CDCl3) δ (ppm) 9.48 (s, 1H), 

9.31 (br, 1H), 7.99 (d, J = 7.5 Hz, 2H), 7.92 (d, J = 7.7 Hz, 2H), 7.79 (s, 1H), 7.60 (m, 

1H), 7.54-7.40 (m, 5H), 7.36-7.18 (m, 9H), 6.83 (d, J = 8.8 Hz, 4H), 4.55-4.33 (m, 3H), 

3.77 (s, 6H), 3.49 (m, 1H), 3.09 (m, 1H). 

N

N
N

N
NH

O

DMTrO
O

Ph

P
O

CN

N

(S)-D
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O

Ph

 

Compound (S)-D.  To a nitrogen purged solution of compound 3.6 (610 mg, 0.83 mmol) 

and N,N-diisopropylethylamine (0.87 mL, 5.0 mmol) in methylene chloride (13.5 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.28 mL, 1.3 mmol) 

dropwise and the solution stirred for two hours at room temperature under nitrogen. The 

solution was diluted with methylene chloride and washed once with saturated aqueous 

NaHCO3, dried over Na2SO4, and finally concentrated by rotoevaporation. The crude 

product was purified by column chromatography starting with 1:2:0.01 

Hexanes:EtOAc:Et3N then eluting with 1:4:0.01 Hexanes:EtOAc:Et3N to afford 

compound (S)-D as a light yellow foam (610 mg, 79%).  
31

P-NMR (121 MHz, CDCl3) δ 

(ppm) 150.1, 149.6. 
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NH

N
N

N

O

OH

DMTrO
3.8a

 

Attempted synthesis of Compound 3.8a.  To a solution of inosine (246 mg, 1.81 mmol) 

in 3.8 mL of anhydrous DMF was added sodium hydride (60% in mineral oil, 15 mg, 

0.38 mmol) and the solution allowed to stir under argon for one hour.  A solution of 

compound 2.11 (650 mg, 1.72 mmol) in 3.5 mL of anhydrous DMF was added to the 

above solution and heated to 110 °C overnight.  The next morning, the solution was 

cooled, all solvent removed, the resulting oil coevaporated with toluene, redissolved in 

ethyl acetate and concentrated again.  The product was purified via flash chromatography 

eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford compound 3.8a as a light yellow 

foam (250 mg, 27%).  The 
1
H NMR appears to be consistent with a mixture of two 

tautomeric forms.  
1
H-NMR (360 MHz, CDCl3) δ (ppm) 7.76 (d, J = 5.8 Hz, 2H), 7.68 (s, 

1H), 7.61-7.50 (m, 5H), 7.48-7.37 (m, 8H), 7.32 (q, J = 7.3 Hz, 4H), 7.22 (m, 2H), 6.87 

(m, 8H), 4.99 (m, 1H), 4.79 (br, 1H), 4.58-4.47 (m, 2H), 4.10-4.00 (m, 2H), 3.80 (s, 6H), 

3.77 (s, 6H), 3.52 (dd, J = 9.1, 4.6 Hz, 1H), 3.43 (dd, J = 9.5, 4.4 Hz, 1H), 3.32 (m, 2H). 
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Attempted synthesis of Compound 3.9a.  Compound 3.8a (51 mg, 0.10 mmol) and 

diphenylcarbamoyl chloride (28 mg, 0.12 mmol) were dissolved in anhydrous pyridine 

(0.80 mL) under argon.  To this solution was added N,N-diisopropylethylamine (21 µL, 

0.12 mmol) and then allowed to stir for one hour at room temperature.  The solution was 

diluted with methylene chloride, washed with saturated aqueous NaHCO3, dried over 

Na2SO4, and finally concentrated.  The crude product was purified by flash 

chromatography starting with 1:2:0.01 Hexanes:EtOAc:Et3N, then eluting with 100:1 

EtOAc:Et3N.  
1
H NMR was inconclusive. 

N

N
N

N

Cl

OH

HO
3.11

 

Compound 3.11.  To a solution of 6-chloropurine (520 mg, 3.4 mmol) and potassium 

carbonate (79 mg, 0.57 mmol) in 13.4 mL of anhydrous DMF was added (R)-glycidol 

(0.23 mL, 3.4 mmol) (60% in mineral oil, 15 mg, 0.38 mmol) and the solution heated to 

90 °C overnight.  The next morning, the solution was cooled, all solvent removed, and 

the product dry loaded onto silica gel after redissolving in methanol.  The product was 

purified via flash chromatography eluting with 10:1 EtOAc:MeOH to afford compound 



 196 

3.11 as a white solid (268 mg, 35%).  
1
H-NMR (500 MHz, d6-acetone) δ (ppm) 8.70 (s, 

1H), 8.47 (s, 1H), 4.60 (dd, J = 14.2, 3.6 Hz, 1H), 4.37 (dd, J = 14.2, 7.9 Hz, 1H), 4.13 

(m, 1H), 3.61 (m, 2H). 

NH

N
N

N

O

OH

HO
3.12

 

Compound 3.12.  A suspension of compound 3.11 (253 mg, 1.1 mmol) in 1 M HCl (11 

mL) was heated to 85 °C for three hours.  After cooling to room temperature, the pH was 

adjusted to approximately 9 using concentrated aqueous ammonia and then all solvent 

was removed.  The product was redissolved in methanol, dry loaded onto silica, and 

purified via flash chromatography over silica gel eluting with 8:1 MeCN:H2O to afford 

compound 3.12 as a white solid.  The 
1
H-NMR was inconclusive and the product was 

taken crude to the next step.   

NH

N
N

N

O

OH

DMTrO
3.8b

 

Attempted synthesis of Compound 3.8b.  A solution of crude compound 3.12 (~1.1 

mmol) and 4,4’-dimethoxytrityl chloride (450 mg, 1.3 mmol) in pyridine (4.4 mL) was 

allowed to stir at room temperature for five hours.  TLC indicated no conversion to 
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product.  An attempt was made to recover compound 3.12 by flash chromatography 

eluting with 1:1 EtOAc:MeOH but failed as nothing was eluted from the column. 

O

BnO
3.14  

Compound 3.14.  To a solution of NaH (725 mg, 18.1 mmol, 60% in mineral oil) in 

anhydrous THF (10.5 mL) under nitrogen at 0 °C was added (R)-glycidol (1.00 mL, 15.1 

mmol) and allowed to warm up slowly to room temperature and stir for one hour.  The 

solution was then cooled back to 0 °C, benzyl bromide (2.15 mL, 18.1 mmol) added 

dropwise, and the solution allowed to warm again to room temperature and stir overnight.  

The next morning, the solution was quenched with 15 mL of saturated aqueous NH4Cl, 

extracted once into ethyl acetate, dried over MgSO4, and concentrated by rotary 

evaporation.   The crude product was purified via column chromatography using 8:1 

Hexanes:EtOAc to afford compound 3.14 as a light yellow oil (1.55 g, 63%).  
1
H-NMR 

(500 MHz, CDCl3) δ (ppm) 7.38-7.28 (m, 5H), 4.60 (m, 2H), 3.78 (dd, J = 11.4, 3.1 Hz, 

1H), 3.47 (dd, J = 11.5, 5.8 Hz, 1H), 3.20 (m, 1H), 2.81 (t, J = 4.6 Hz, 1H), 2.63 (dd, J = 

5.0, 2.7 Hz, 1H).  
1
H NMR was consistent with published data.

33
  

N

N
N

N

Cl

OH

BnO
3.15

 

Compound 3.15.  A solution of 6-chloropurine (362 mg, 2.3 mmol) and K2CO3 (49 mg, 

0.35 mmol) in anhydrous DMF (4 mL) was allowed to stir under argon at room 

temperature for one hour.  A solution of compound 3.14 (385 mg, 2.3 mmol) in 
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anhydrous DMF (3.5 mL) was added to the above solution and heated to 90 °C overnight.  

The next morning, the solution was cooled, all solvent removed, the resulting oil 

coevaporated with toluene, redissolved in ethyl acetate and concentrated again.  The 

product was purified via flash chromatography over silica gel starting with 1:2 

Hexanes:EtOAc, then eluting with 100% EtOAc to afford compound 3.15 as a yellow oil 

(308 mg, 41%).  
1
H-NMR (500 MHz, CDCl3) δ (ppm) 8.70 (s, 1H), 8.18 (s, 1H), 7.37-

7.26 (m, 5H), 4.53 (d, J = 3.9 Hz, 2H), 4.49 (dd, J = 14.2, 3.2 Hz, 1H), 4.32 (dd, J = 10.2, 

7.3 Hz, 1H), 4.25 (m, 1H), 3.58-3.52 (m, 2H), 3.48 (dd, J = 9.7, 5.6 Hz, 1H). 

NH

N
N

N

O

OH

BnO
3.16

 

Compound 3.16.  A suspension of compound 3.15 (308 mg, 0.97 mmol) in 1 M HCl (9.7 

mL) was heated to 85 °C for three hours.  After cooling to room temperature, the pH was 

adjusted to approximately 9 using concentrated aqueous ammonia and then all solvent 

was removed.  The product was redissolved in methanol, filtered through celite, dry 

loaded onto silica, and purified via flash chromatography over silica gel loading with 

100% EtOAc, then eluting with 20:3 EtOAc:MeOH to afford compound 3.16 as a white 

solid (230 mg, 79%).  
1
H-NMR (360 MHz, MeOD) δ (ppm) 8.01 (m, 2H), 7.36-7.24 (m, 

5H), 4.52 (s, 2H), 4.43 (dd, J = 14.0, 3.7 Hz, 1H), 4.25 (dd, J = 14.0, 7.7 Hz, 1H), 4.14 

(m, 1H), 3.54-3.46 (m, 2H). 
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Compound 3.17.  To a solution of compound 3.16 (50 mg, 0.17 mmol) and 

diphenylcarbamoyl chloride (46 mg, 0.20 mmol) in anhydrous pyridine (1.3 mL) was 

added N,N-diisopropylethylamine (35 µL, 0.20 mmol) and allowed to stir under argon at 

room temperature for one hour.  The resulting dark red solution was diluted with 

methylene chloride, washed with saturated aqueous NaHCO3, dried over Na2SO4, and 

finally concentrated.  The crude product was purified via flash chromatography over 

silica gel starting with 1:1 Hexanes:EtOAc, the eluting with 100% EtOAc to afford 

compound 3.17 as a white foam (53 mg, 64%).  
1
H-NMR (360 MHz, MeOD) δ (ppm) 

8.52 (s, 1H), 7.93 (s, 1H), 7.55-7.10 (m, 15H), 4.48 (s, 2H), 4.31 (dd, J = 13.9, 3.5 Hz, 

1H), 4.16 (dd, J = 14.0, 7.3 Hz, 1H), 4.05 (br, 1H), 3.47-3.34 (m, 2H). 
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Compound 3.18.  Compound 3.17 (53 mg, 0.12 mmol) and Pd/C (26 mg, 10% on 

carbon) were suspended in EtOAc (3.2 mL) and the solution was purged with argon, then 

hydrogen, and allowed to stir under a hydrogen atmosphere overnight.  The mixture was 
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filtered through celite and washed with ethyl acetate to afford compound 3.18 as a 

colorless oil (43 mg, 100%).  The product was used in the next step without further 

purification.  
1
H-NMR (360 MHz, MeOD) δ (ppm) 8.53 (s, 1H), 7.97 (s, 1H), 7.54-7.14 

(m, 10H), 4.34 (dd, J = 14.1, 3.5 Hz, 1H), 4.10 (m, 1H), 3.90 (br, 1H), 3.49 (d, J = 5.3, 

2H). 
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Attempted synthesis of Compound 3.9b.  An argon purged solution of compound 3.18 

(43 mg, 0.11 mmol) and 4,4’-dimethoxytrityl chloride (43 mg, 0.13 mmol) in anhydrous 

pyridine (0.50 mL) was allowed to stir at room temperature overnight.  TLC indicated no 

conversion to product and no attempt was made at recovering the starting material. 

N

N
N
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DMTrO
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Compound 3.20.  To a suspension of 6-benzyloxypurine (514 mg, 2.3 mmol) in 

anhydrous DMF (4.5 mL) under argon was added NaH (18 mg, 0.45 mmol, 60% in 

mineral oil) and the solution allowed to stir under argon for one hour.  A solution of 

compound 2.11 (815 mg, 2.2 mmol) in DMF (4.5 mL) was added to the first solution and 
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then heated to 100 °C overnight.  The next morning, the solution was cooled, all solvent 

removed, the resulting oil coevaporated with toluene, redissolved in ethyl acetate and 

concentrated again.  The product was purified via column chromatography starting with 

1:1:0.01 Hexanes:EtOAc:Et3N, then with 1:2:0.01 Hexanes:EtOAc:Et3N, and finally 

eluting with 100:1 EtOAc:Et3N to afford compound 3.20 as a white foam (575 mg, 44%).  

1
H-NMR (500 MHz, CDCl3) δ (ppm) 8.44 (s, 1H), 7.88 (s, 1H), 7.54 (d, J = 7.0 Hz, 2H), 

7.44 (d, J = 7.3 Hz, 2H), 7.34-7.20 (m, 10H), 6.83 (m, 4H), 5.57 (m, 2H), 4.44 (d, J = 

11.8 Hz, 1H), 4.29-4.21 (m, 2H), 3.79 (s, 6H), 3.16 (dd, J = 9.7, 4.6 Hz, 1H), 3.12 (dd, J 

= 9.6, 5.1 Hz, 1H). 

NH

N
N
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OH

DMTrO
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Compound 3.8c.  Compound 3.20 (575 mg, 0.95 mmol) and Pd/C (287 mg, 10% on 

Carbon) were suspended in EtOAc (3 mL) and the solution was purged with argon, then 

hydrogen, and allowed to stir under a hydrogen atmosphere for one hour after which TLC 

showed completion of the reaction.  The mixture was filtered through celite and washed 

with EtOAc:MeOH:Et3N 40:3:0.01 to afford crude compound 3.8c as a light brown solid 

(395 mg, 81%).  The crude product was used in the next step further without purification.  

1
H-NMR (500 MHz, CDCl3) δ (ppm) 8.05 (br, 1H), 7.76 (br, 1H), 7.42 (d, J = 7.5 Hz, 

2H), 7.35-7.17 (m, 7H), 6.83 (d, J = 8.8 Hz, 4H), 4.40 (m, 1H), 4.22 (br, 2H), 3.78 (s, 

6H), 3.25 (m, 1H), 3.18 (m, 1H). 
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Compound 3.9c.  (MKS347) To a solution of compound 3.8c (350 mg, 0.68 mmol) and 

diphenylcarbamoyl chloride (190 mg, 0.82 mmol) in anhydrous pyridine (5.5 mL) was 

added N,N-diisopropylethylamine (145 µL, 0.83 mmol) and the solution allowed to stir at 

room temperature for one hour.  The solution was diluted with methylene chloride and 

washed once with saturated aqueous NaHCO3, dried over Na2SO4, concentrated, and 

coevaporated with toluene.  The product was purified via column chromatography 

starting with 1:2:0.01 Hexanes:EtOAc:Et3N, and finally eluting with 100:1 EtOAc:Et3N 

to afford compound 3.9c as a white foam (250 mg, 52%).  
1
H-NMR (360 MHz, CDCl3) δ 

(ppm) 8.06 (s, 1H), 7.63 (s, 1H), 7.50-7.07 (m, 19H), 6.84 (d, J = 8.9 Hz, 4H), 4.30 (br, 

2H), 4.07 (br, 1H), 3.80 (s, 6H), 3.24 (br, 2H). 
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Compound (S)-I.  (MKS349) To a nitrogen purged solution of compound 3.9c (250 mg, 

0.35 mmol) and N,N-diisopropylethylamine (370 µL, 2.1 mmol) in methylene chloride 

(5.9 mL) was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (120 µL, 0.53 

mmol) dropwise and the solution stirred for two hours at room temperature under argon. 

The solution was diluted with methylene chloride and washed once with saturated 

aqueous NaHCO3, dried over Na2SO4, and finally concentrated by rotoevaporation. The 

crude product was purified by column chromatography starting with 1:1:0.01 

Hexanes:EtOAc:Et3N then eluting with 1:2:0.01 Hexanes:EtOAc:Et3N to afford 

compound (S)-I as a white foam (300 mg, 94%).  
31

P-NMR (162 MHz, CDCl3) δ (ppm) 

151.1, 150.6, 150.2, 150.0. 

 

Thermal stability of nucleic acids monitored using UV spectroscopy:  Samples of 

oligonucleotides were prepared at the stated concentrations and buffer concentrations.  

Experiments involving RNA were performed using RNase free buffers and water to 

ensure the integrity of the RNA.  Melting studies were carried out in 1 cm path length 

quartz cuvettes with 200 µL of sample covered by 125 µL of mineral oil, or 150 µL of 
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sample covered by 150 µL of mineral oil on a Beckmann DU800 spectrophotometer 

equipped with a thermoprogrammer.  Melting curves were generally measured at 260 nm 

with a heating rate of 1 °C/min.  Melting temperatures (Tm) were calculated from either 

the first derivative or nonlinear fit to the heating curves.  Experiments were performed at 

least in duplicate and the average value taken. 

 

Circular dichroism of nucleic acids:  Samples of oligonucleotides were prepared at the 

stated concentrations and buffer concentrations.  Experiments involving RNA were 

performed using RNase free buffers and water to ensure the integrity of the RNA.  

Measurements were performed with a Jasco J-810 spectrometer or Aviv 62A DS 

spectrometer in 1 mm path length quartz cuvettes.  Each spectrum was the result of at 

least five measurements, averaged in real time. 
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Appendix to Chapter 3 

 
1
H, 

13
C, and 

31
P NMR spectra 

IR spectra
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Figure A3.1.1.  

1
H NMR spectrum of the N-9 regisomer of compound 3.2 (300 MHz, 

CDCl3). 
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Figure A3.1.2.  

1
H NMR spectrum of the N-7 regisomer of compound 3.2 (300 MHz, 

CDCl3). 
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Figure A3.2.1.  
1
H NMR spectrum of compound 3.3 (300 MHz, CDCl3). 
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Figure A3.3.1.  
1
H NMR spectrum of phosphoramidite (S)-N (121 MHz, CDCl3). 
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Figure A3.4.1.  
1
H NMR spectrum of compound 3.5 (300 MHz, CDCl3). 
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Figure A3.5.1.  
1
H NMR spectrum of compound 3.6 (300 MHz, CDCl3). 
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Figure A3.6.1.  
1
H NMR spectrum of phosphoramidite (S)-D (121 MHz, CDCl3). 
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Figure A3.7.1.  

1
H NMR spectrum of the two tautomeric forms (?) of compound 3.8a 

(360 MHz, CDCl3). 
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Figure A3.8.1.  
1
H NMR spectrum of compound 3.11 (500 MHz, acetone-d6). 
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Figure A3.9.1.  
1
H NMR spectrum of compound 3.14 (500 MHz, CDCl3). 
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Figure A3.10.1.  
1
H NMR spectrum of compound 3.15 (500 MHz, CDCl3). 
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Figure A3.11.1.  
1
H NMR spectrum of compound 3.16 (360 MHz, MeOD). 
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Figure A3.12.1.  
1
H NMR spectrum of compound 3.17 (360 MHz, MeOD). 
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Figure A3.13.1.  
1
H NMR spectrum of compound 3.18 (360 MHz, MeOD). 
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Figure A3.14.1.  
1
H NMR spectrum of compound 3.20 (500 MHz, CDCl3). 
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Figure A3.15.1.  
1
H NMR spectrum of compound 3.8c (500 MHz, CDCl3). 
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Figure A3.16.1.  
1
H NMR spectrum of compound 3.9c (360 MHz, CDCl3). 

N

N
N

N

O

OH

DMTrO

O

N
Ph

Ph

3.9c



 226 

 

 
 

Figure A3.17.1.  
1
H NMR spectrum of phosphoramidite (S)-I (162 MHz, CDCl3). 
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Chapter 4 
 

 

Metal-mediated base pairing in GNA 
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Chapter 4.1.  Synthesis of unnatural metal-mediated base pairs 

 

 Due to its programmable self assembly, DNA is a promising biomaterial for the 

construction of nanoscale architectures (structural DNA nanotechnology) and has already 

been used for the assembly of a variety of periodic arrays in two dimensions and the 

construction of materials with predictable three-dimensional structures such as polyhedra 

and catenanes.1,2  In this respect, an important current goal is the functionalization of 

DNA in order to create nanoscale devices with novel properties.3-7  One recently 

developed strategy is the incorporation of metal-mediated base pairs into DNA which 

enables one to place metal ions within the nucleobase π-stacking thus providing an 

angstrom-scale control of the patterning of metal ions along a helix axis.8-10  It can easily 

be envisioned that a one dimensional array of redox-active metal ions positioned along a 

DNA double helix by metal-mediated base pairing may lead to nucleic acids with 

interesting magnetic and electronic properties.11-13  However, despite such exciting 

prospects for metal-mediated base pairing, the multistep synthesis of such artificial 

nucleotides, including the chromatographical separation of anomeric mixtures, is often 

painstaking and thus makes their future large scale utilization in nanoscale devices 

questionable. 

Based on these synthetic challenges for DNA, we were interested in the 

incorporation of metal-mediated base pairs into the GNA scaffold since it combines 

highly duplex stability, high base pairing fidelity, and easy synthetic access to individual 

nucleotide building blocks.14-19  Interestingly, it has previously been shown by our group 
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that a Cu+2 mediated, 8-hydroxyquinoline homobase pair containing the GNA backbone 

is capable of supporting duplex formation of a DNA duplex.20  Unfortunately, from our 

experience the 8-hydroxyquinoline is oxidatively unstable, rendering it somewhat 

impractical for its incorporation into functionalized structures.  Therefore, we 

investigated the synthesis, incorporation, and base pairing properties of the two metal-

mediated base pairs composed of a hydroxypyridone and pyridylpurine, selective for 

Cu+2 and Ni+2 in DNA, respectively (Figure 4.1).19,21,22  
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Figure 4.1.  Constitution of the hydroxypyridone (H) and pyridylpurine (P) homobase 
pairs. 
 

 

In order to obtain the nucleobase for the synthesis of (S)-H phosphoramidite, 3-

hydroxy-2-methyl-4-pyrone (4.1) must first be protected by the reaction with benzyl 

bromide (3.13) and aqueous sodium hydroxide to produce compound 4.2 in 89% yield 

(Scheme 4.1).23  Compound 4.2 can then be converted to pyridone 4.3 via a Michael 

addition using 25% aqueous ammonium hydroxide in 87% yield.  Compound 4.3 and 0.2 

equivalents of sodium hydride were then used in the ring opening of compound 2.11, 

affording compound 4.4 in 65% yield (Scheme 4.2).19  The benzyl group of compound 
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4.4 was subsequently removed using catalytic hydrogenation to produce compound 4.5 in 

98% yield.  The initial synthesis involved reprotection of the 3’-hydroxyl group of 

compound 4.5 using pivalic anhydride (4.6) and N,N-diisopropylethylamine to produce 

compound 4.7 in 58% yield.  Finally, compound 4.7 was converted to (S)-HPiv using 2-

cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess N,N-

diisopropylethylamine in 80% yield.  Unfortunately, initial attempts at the incorporation 

of (S)-HPiv into GNA oligonucleotides failed, presumably due to its instability towards 

the reagents used during oligonucleotide synthesis. 
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Scheme 4.1.  Synthesis of 3-benzyloxy-2-methyl-4-pyridone (4.3). 
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Scheme 4.2.  Synthesis of (S)-HPiv phosphoramidite. 

  

A subsequent attempt at protection of the 3’-hydroxyl group of compound 4.5 

involved the use of diphenylcarbamoyl chloride.  We envisioned that this protection 

group would provide more stability to the final phosphoramidite, especially towards the 

reagents during oligonucleotide synthesis, based on its successful use in protecting 

guanosine nucleosides.24,25  Accordingly, compound 4.5 was reacted with 

diphenylcarbamoyl chloride (2.30) and N,N-diisopropylethylamine to afford compound 

4.8 in 82% yield (Scheme 4.3).19  Again, conversion to the phosphoramidite (S)-H 

proceeds using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess 
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N,N-diisopropylethylamine in 86% yield.  Overall, the synthesis of (S)-H 

phosphoramidite proceeds in five steps with a yield of 34% compared to the 

corresponding 2’-deoxynucleotide in which a nine step synthesis with an overall yield of 

8% was reported.21,26  This protection scheme was shown to be compatible with the 

conditions during oligonucleotide synthesis and was used for the successful incorporation 

of (S)-H into GNA oligonucleotides. 
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Scheme 4.3.  Synthesis of (S)-H phosphoramidite. 

 

Furthermore, we were interested in developing a derivative of (S)-H with yet 

another protection scheme that is stable to both the conditions for oligonucleotide 

synthesis and the deprotection conditions after synthesis.  In this way, it would be 

possible to obtain a purified GNA oligonucleotide with the hydroxypyridone nucleobase 

in a protected form.  When desired, this oligonucleotide could then be deprotected and 

release the metal chelating functionality.  Therefore, we attempted to synthesize a 

derivative of (S)-H in which the hydroxyl group of the hydroxypyridone nucleobase was 

protected as an o-nitrobenzyl derivative.  It has been previously shown that o-nitrobenzyl 
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protection groups could be removed from oligonucleotides using ultraviolet light with a 

long enough wavelength to avoid the formation of thymine dimers.27-30  Protection of 3-

hydroxy-2-methyl-4-pyrone (4.1) using o-nitrobenzyl bromide (4.9) and aqueous sodium 

hydroxide yielded compound 4.10 in 66% yield (Scheme 4.4).  Compound 4.10 was then 

further converted to the pyridone 4.11 using 25% aqueous ammonium hydroxide in 69% 

yield.  Unfortunately, attempts at ring opening of compound 2.11 with 4.11 did not 

produce the desired product.   
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Scheme 4.4.  Attempted synthesis of compound 4.12. 

 

Therefore, an alternate route was developed in which the 2’-hydroxyl group of 

compound 4.4 was protected using t-butyldimethylsilyl chloride (4.13), imidazole (4.14), 

and DMAP (4.15) to produce compound 4.16 in 48% yield (Scheme 4.5).  The benzyl 

group of compound 4.16 was subsequently removed using catalytic hydrogenation to 

produce compound 4.17 in quantitative yield.  Protection of the nucleobase hydroxyl 

group was accomplished by the reaction of compound 4.17 with o-nitrobenzyl bromide 

(4.9) and aqueous sodium hydroxide to provide compound 4.18 in 86% yield.  After 

TBAF deprotection to afford compound 4.19 in 98% yield, conversion to (S)-HNB 
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phosphoramidite was accomplished in 64% yield using 2-cyanoethyl N,N-

diisopropylchlorophosphoramidite (2.10) and excess N,N-diisopropylethylamine. 
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Scheme 4.5.  Synthesis of (S)-HNB phosphoramidite. 

 

For the synthesis of (S)-P phosphoramidite (Scheme 4.6), 6-chloropurine (4.20) 

and 0.14 equivalents of potassium carbonate were used in the ring opening of compound 

2.11 to produce compound 4.21 in 38% yield.19  The 2’-hydroxyl group of compound 

4.21 was further protected using t-butyldimethylsilyl chloride (4.13), imidazole (4.14) 
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and catalytic dimethylaminopyridine (4.15) to produce compound 4.22 in 86% yield.  

This then allows for the conversion to compound 4.25 via a Negishi coupling with 2-

pyridylzinc bromide (4.23) and PdCl2(PPh3)3 (4.24) in 81% yield.  After removal of the 

TBS group from compound 4.25 with TBAF in 81% yield, compound 4.26 could be 

reacted with 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess N,N-

diisopropylethylamine to produce phosphoramidite (S)-P in 65% yield.  This synthesis 

proceeds in five steps with an overall yield of 17% versus the synthesis of the analogous 

2’-deoxynucleotide which has a reported overall yield of 26% over six steps.22,31,32  

Although this synthesis proceeds with a lower overall yield than the corresponding 2’-

deoxynucleotide, it proceeds without the separation of an anomeric mixture and can be 

easily accomplished with the opposite enantiomer of GNA rendering it a more attractive 

overall synthesis. 
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Scheme 4.6.  Synthesis of (S)-P phosphoramidite.
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Chapter 4.2.  Incorporation of (S)-H and (S)-P into GNA oligonucleotides 

 

As with the other phosphoramidites of GNA, the synthesis of phosphoramidites 

(S)-H and (S)-P was also followed by the general storage procedure in which trace water 

was removed by repeated coevaporation with toluene.  The phosphoramidites [(S)-A, (S)-

T, (S)-H, and (S)-P] were left under high vacuum overnight and the next morning they 

were dissolved using anhydrous acetonitrile to a final concentration of 100 mM.  The 

solutions were transferred to oven dried vials specially designed for use with the 

automated oligonucleotide synthesizer.  Care was taken to avoid exposure to air during 

all manipulations.  Solid supports (A, T) were weighed out and transferred to 

polypropylene synthesis columns sealed with column frits.  Prior to synthesis, the solid 

support was dried for five minutes directly on the synthesizer using argon. 

Oligonucleotides were synthesized on an Applied Biosystems ABI 394 automated 

DNA/RNA synthesizer.  In addition to the changes stated in Chapter 2.2, the coupling 

time for (S)-H and (S)-P phosphoramidites was extended five minutes to give a total 

coupling time of eight minutes for these bases.  Best results were obtained when the last 

4,4’-dimethoxytrityl group protecting the 3’-hydroxyl group was left attached after 

synthesis as a purification handle.  The solid supports containing oligonucleotides were 

deprotected and purified as stated in Chapter 2.2.  A representative HPLC trace is shown 

in Figure 4.1.  Extinction coefficients were calculated based on deoxynucleotide 

increments and the reported ε = 534021 for H and an estimated ε = 15400 for P. 
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Chapter 4.3.  Thermal stabilities of metal-mediated base pairs in GNA 

 

The nucleotides H and P were incorporated into the middle of a 15-mer duplex in 

order to investigate the influence of metal ions on the thermal stabilities of H•H and P•P 

homo-base pairs in GNA.19  It was important that trace amounts of metal were removed 

from both the oligonucleotide and buffer solutions using Chelex 100 (Sigma) in order to 

obtain reproducible results.  Chelex 100 is a resin functionalized with iminodiacetic acid 

groups in order to bind transition metals in solution.  In the absence of transition metals, 

the H•H base pair destabilizes the 15-mer GNA duplex by 13.5 ºC compared to an A•T 

base pair in the same position (Table 4.1).  Similar to the H•H base pair in DNA, the 

GNA duplex is also stabilized the strongest by the addition of Cu+2 ions, with an increase 

in Tm of 33.2 ºC (Figure 4.2).  This duplex containing one H•H pair is 19.7 ºC  more 

stable compared to an A•T base pair in the same position.  Of the other metals tested, 

only the addition of Co(NO3)2 and ZnCl2 result in significant stabilizations of 5.1 ºC and 

15.9 ºC compared to the H•H pair in the absence of metal.  The Cu+2 stabilization of the 

H•H pair in a GNA duplex significantly exceeds the reported stabilization for the 

analogous 2’-deoxyribonucleotide H•H pair in a 15-mer DNA duplex in which a 

stabilization of 13.1 ºC reported.   
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Table 4.1.  Thermal stabilities of GNA duplexes in the presence of 
metal ions 

3’-AAT ATT AXT ATT TTA-2’ 
2’-TTA TAA TYA TAA AAT-3’ 

Entry X•Y Metal ion Tm (°C) ∆Tm (°C) 

1 A•T None 50.5 - 

2 A•T NiCl2 51.0 +0.5 

3 A•T CuSO4 50.8 +0.3 

4 A•T ZnCl2 50.8 +0.3 

5 H•H None 37.0 - 

6 H•H CuSO4 70.2 +33.2 

7 H•H ZnCl2 52.9 +15.9 

8 H•H Co(NO3)2 42.1 +5.1 

9 H•H Ni(NO3)2 38.5 +1.5 

10 H•H Cd(NO3)2 37.9 +0.9 

11 H•H AuCl3 37.1 +0.1 

12 H•H AgNO3 37.0 0.0 

13 H•H Pd(NO3)2 36.6 -0.4 

Measurments were performed in 10 mM sodium phosphate buffer (pH = 
7.0) with 100 mM sodium nitrate.  Each sample contained 2 µM of each 
strand and 4 µM of the specified metal salt.  Each data point is the 
average of at least two measurments. 
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Figure 4.2.  Copper(II)-dependent stability of a GNA duplex containing a 
hydroxypyridone (H) homo-base pair with the reference curve shown for an A•T base 
pair.  Measurements were performed with a 2 µM duplex concentration and 4 µM CuSO4 
in 10 mM sodium phosphate buffer (pH = 7.0) with 100 mM sodium nitrate.   

 

 

Similarly, in the absence of transition metals the P•P base pair leads to a 

destabilization of 15.5 ºC compared to an A•T base pair in the same position (Table 

4.2).19  Upon the addition of Ni+2 ions, the duplex is stabilized with an increase in the Tm 

value of 17.9 ºC (Figure 4.3).  Thus, the duplex with a Ni+2-containing P•P pair is 2.4 ºC 

more stable compared to the GNA duplex containing an A•T base pair in the same 

position.  Of the other metals tested, the addition of Co(NO3)2, CuCl2, and AgNO3 show 

stabilizations of 7.0 ºC, 7.3 ºC, and 12.5 ºC, respectively.  None of the other metals 

display any significant stabilizing effect on the GNA duplex.  The stabilizing effect of 

Ni+2 on the P•P pair in GNA is similar to the reported stabilization of 17.6 ºC (NiCl2) and 

18.1 ºC (Ni(NO3)2) for the analogous 2’-deoxyribonucleotide P•P pair in DNA.  
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Similarly, in DNA CoCl2 leads to a stabilization of the P•P base pair of 10.3 ºC, whereas 

AgNO3 and CuCl2, in contrast to what is observed in GNA, do not provide significant 

stabilization.  Thus, the pyridylpurine base pair displays modulated metal ion selectivity 

within the GNA duplex with a preference order of Ni+2 > Ag+ > Cu+2 ≈ Co+2, compared 

to Ni+2 > Co+2 >> Cu+2 ≈ Ag+ in DNA.19,22 

 

Table 4.2.  Thermal stabilities of GNA duplexes in the presence of 
metal ions 

3’-AAT ATT AXT ATT TTA-2’ 
2’-TTA TAA TYA TAA AAT-3’ 

Entry X•Y Metal ion Tm (°C) ∆Tm (°C) 

1 P•P None 35.0 - 

2 P•P NiCl2 52.9 +17.9 

3 P•P AgNO3 47.5 +12.5 

4 P•P CuCl2 42.3 +7.3 

5 P•P Co(NO3)2 42.0 +7.0 

6 P•P CdSO4 36.5 +1.5 

7 P•P ZnCl2 36.0 +1.0 

8 P•P AuCl3 34.6 -0.4 

9 P•P Pd(NO3)2 32.8 -2.2 

Measurments were performed in 10 mM sodium phosphate buffer (pH = 
7.0) with 100 mM sodium nitrate.  Each sample contained 2 µM of each 
strand and 4 µM of the specified metal salt.  Each data point is the 
average of at least two measurments.  
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Figure 4.3.  Nickel(II)-dependent stability of a GNA duplex containing a pyridylpurine 
(P) homo-base pair with the reference curve shown for an A•T base pair.  Measurements 
were performed with a 2 µM duplex concentration and 4 µM NiCl2 in 10 mM sodium 
phosphate buffer (pH = 7.0) with 100 mM sodium nitrate.   

 

 

In addition, we investigated the metal dependent crosspairing behavior of the H•P 

hetero-base pair.19  Again, in the absence of transition metals, the H•P pair shows a 

destabilization of 13.3 ºC compared to an A•T base pair in the same position (Table 4.3).  

Interestingly, the addition of Cu+2 leads to a large stabilization of 37.1 ºC resulting in a 

duplex with a stability that is 23.9 ºC more stable than an A•T base pair in the same 

position (Figure 4.4).  Also interesting is that the behavior of this hetero-base pair is 

similar to the H•H homo-base pair in that both ZnCl2 and Co(NO3)2 provide significant 

stabilizations of 13.6 ºC and 8.9 ºC, respectively.  Furthermore, this H•P hetero-base pair 

is significantly stabilized by the addition of Ni+2, suggesting this base pair displays a 

metal ion selectivity that is a mixture of what is observed for the H•H and P•P base pairs. 
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Table 4.3.  Thermal stabilities of GNA duplexes in the presence of 
metal ions 

3’-AAT ATT AXT ATT TTA-2’ 
2’-TTA TAA TYA TAA AAT-3’ 

Entry X•Y Metal ion Tm (°C) ∆Tm (°C) 

1 H•P None 37.3 - 

2 H•P CuSO4 74.4 +37.1 

3 H•P ZnCl2 50.9 +13.6 

4 H•P Ni(NO3)2 50.1 +12.8 

5 H•P Co(NO3)2 46.2 +8.9 

6 H•P CdSO4 38.3 +1.0 

7 H•P AuCl3 37.4 +0.1 

8 H•P AgNO3 37.0 -0.3 

9 H•P Pd(NO3)2 36.4 -0.9 

Measurments were performed in 10 mM sodium phosphate buffer (pH = 
7.0) with 100 mM sodium nitrate.  Each sample contained 2 µM of each 
strand and 4 µM of the specified metal salt.  Each data point is the 
average of at least two measurments.  
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Figure 4.4.  Copper(II)-dependent stability of a GNA duplex containing a 
hydroxypyridone (H):pyridylpurine (P) hetero-base pair with the reference curve shown 
for an A•T base pair.  Measurements were performed with a 2 µM duplex concentration 
and 4 µM CuSO4 in 10 mM sodium phosphate buffer (pH = 7.0) with 100 mM sodium 
nitrate.    

 

We were also interested in determining whether T•T mismatches could be 

stabilized in the context of a GNA duplex.  Previous experiments with DNA have shown 

that thymine mismatches are capable of being stabilized by the addition of mercury(II), 

thus providing a metal-mediated base pair consisting of only natural nucleobases.33  We 

therefore tested whether a T•T mismatch in the middle of a 15-mer GNA duplex could be 

stabilized by the addition of Hg+2 ions.  Accordingly, the incorporation of one T•T 

mismatch into the middle of the 15-mer GNA duplex results in a destabilization of 14.5 

ºC compared to an A•T base pair in the same position (Figure 4.5).  However, upon the 

addition of two equivalents of Hg+2 ions, the duplex is only destabilized by 9.8 ºC versus 

an A•T base pair in the same position.  This is in contrast to a similar experiment using 
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DNA in which a stabilization of 3 ºC was observed for the addition of Hg+2 to a 21-mer 

duplex compared to an A•T base pair in the same position.33  Although this stabilization 

was 3 ºC over the duplex, it should be noted that the overall stabilization to the T•T 

mismatch was only 10 ºC, 5 ºC higher than in GNA.  Also, the duplex used in the study 

for DNA was composed of poly-purine and poly-pyrimidine oligonucleotides which may 

further explain the different results to the GNA study using a mixed sequence. 
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Figure 4.5.  Thermal melting curves monitored by UV spectroscopy of 1:1 mixtures (2 
µM each strand) of 3’-AATATTATTATTTTA-2’:3’-TAAAATAATAATATT-2’ (Tm =  
51 ˚C), 3’-AATATTATTATTTTA-2’:3’-TAAAATATTAATATT-2’ (Tm = 36 ˚C), and 
3’-AATATTATTATTTTA-2’:3’-TAAAATAATAATATT-2’ with 4 µM HgCl2 (Tm = 41 
˚C).  Measurements were made in 10 mM MOPS buffer (pH=7.1) with 100 mM sodium 
nitrate.   

 

 

Finally, we wanted to determine whether it was possible to selectively incorporate 

two different metals into one GNA duplex, thereby accomplishing the site-specific 

incorporation of two different redox-active metals into a nucleic acid duplex.  Initially, 
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we attempted to incorporate the two bases H and P (using phosphoramidites (S)-H and 

(S)-P) into a 15-mer duplex of the following sequence 3’-AATAPTATTAHTTTA-2’ and 

its complement.  Although the synthesis of the oligonucleotides proceeded normally, 

problems were encountered during the purification of the individual strands.  The HPLC 

showed several broad peaks with little, if any, separation making this method of 

incorporation impractical.  Therefore, it was envisioned that the use of the (S)-HNB 

phosphoramidite would solve the purification problems because it would allow for a 

simpler purification of the oligonucleotides.  Accordingly, the phosphoramidites (S)-HNB 

and (S)-P were used to synthesize the two sequences 3’- AATAPTATTAH
NBTTTA-2’ 

and 3’-TAAAH
NBTAATAPTATT-2’.  As expected, the purification of these 

oligonucleotides proceeded smoothly using the o-nitrobenzyl group to protect the 

hydroxyl group of the hydroxypyridone nucleobase.  Once these oligonucleotides were 

purified, irradiation with ultraviolet light was required to remove the o-nitrobenzyl 

protection group28 rendering the hydroxypyridone nucleobase capable of Cu+2 mediated 

homobase pairing.  Afterwards, the oligonucleotides could be easily separated from other 

impurities by HPLC (Figure 4.6). 
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Figure 4.6.  HPLC traces of the GNA oligonucleotide 3’-AAT APT ATT AHNBT TTA-
2’ before (dotted line) and after (solid line) exposure to UV light for three hours.  The 
peak at 26.4 minutes represents the full length product containing a nitrobenzyl 
protection group and the peak at 18.6 minutes represents the GNA oligonucleotide after 
removal of the nitrobenzyl protection group (3’-AAT APT ATT AHT TTA-2’).  The 
crude oligos were eluted using a Waters Xterra column (MS C18, 4.6 x 50 mm, 2.5 µM 
particle size) at 60 °C with a linear gradient (flow = 1.0 mL/min) from 4-14% acetonitrile 
in 30 minutes and 96-86% aqueous tritethylammonium acetate buffer (50 mM, pH=7.0).  

 

With these two oligonucleotides in hand, the duplex stability was measured in the 

presence of two equivalents of both copper(II) and nickel(II).  Since both the H-Cu+2-H 

and P-Ni+2-P base pairs increase the stability of the duplex when incorporated into the 

middle of a 15-mer GNA oligonucleotide, one would expect that combining these two 

base pairs would provide a duplex of even higher stability.  As shown in Figure 4.7, the 

duplex containing one of each of these base pairs is actually destabilized compared to the 

duplex containing only one Cu(II) mediated hydroxypyridone homobase pair.  This led us 

to believe that one of these base pairs might become destabilized in the presence of other 
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cations and tested accordingly as shown in Figure 4.8.  For the Cu(II) mediated 

hydroxypyridone homobase pair, the presence of two equivalents of Cu(II) and two 

eqivalents of Ni(II) had no effect on the thermal stability of the duplex.  However, for the 

Ni(II) mediated pyridylpurine homobase pair, the presence of two equivalents of Cu(II) 

in the solution already containing two equivalents of Ni(II) has a destabilizing effect on 

the pre-formed duplex.  Thereafter, due to the sensitivity of the pyridylpurine homobase 

pair to Cu(II), the incorporation of two metals selectively into one GNA duplex was 

determined to be more difficult than initially thought and our interest faded. 
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Figure 4.7.  Thermal melting curves monitored by UV spectroscopy of 3’-AAT APT 
ATT AHT TTA-2’ and its complement at 2 µM duplex concentration (solid line).  Also 
shown is the sequence 3’-AAT ATT ATT ATT TTA-2’ and its complement at 2 µM 
duplex concentration.  Measurements were taken in 10 mM sodium phosphate buffer (pH 
= 7.0) with 100 mM sodium nitrate. 
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Figure 4.8.  Thermal melting curves monitored by UV spectroscopy of 3’-AAT ATT 
APT ATT TTA-2’ and its complement at 2 µM duplex concentration with two 
equivalents of nickel.  Also shown is the same duplex containg two equivalents of nickel 
followed by the addition of 2 equivalents of copper.   The corresponding duplex 
composed of 3’-AAT ATT AHT ATT TTA-2’ and its complement at 2 µM duplex 
concentration with two equivalents of copper is also shown.  Finally, the same duplex 
containing two equivalents of copper followed by two equivalents of nickel is also 
shown.  Measurements were taken in 10 mM sodium phosphate buffer (pH = 7.0) with 
100 mM sodium nitrate. 
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Chapter 4.4.  Metal-mediated base pairing as a tool for crystallography 

Chapter 4.4.1.  Duplex structure of a (S)-GNA duplex containing H-Cu-H 

 

Based on the observed high stability of the H•H homo-base pair in GNA, we 

envisioned that the introduction of this base pair into GNA duplexes would be 

advantageous for solving the crystal structure of a GNA duplex.  Not only could the 

highly stable duplexes of GNA be advantageous for growing high quality crystals, but the 

site-selective introduction of Cu+2 ions into the duplex has the possibility to be a 

convenient handle for phasing the crystallographic data as had been previously shown in 

the case of a DNA duplex.34  Accordingly, we introduced the H•H homo-base pair into 

six self-complementary GNA duplexes to be used for crystallography (Table 4.4).  

Although the synthesis and HPLC purification of the “Trityl-ON” oligonucleotides 

proceeded smoothly, the subsequent purification after the removal of the trityl group was 

problematic.  Again, because of the high stability, it was envisioned that the addition of 

copper(II) ions to the crude oligonucleotide solutions would aid in the purification by 

forming a highly stable duplex which could be purified at room temperature as the 

duplex.  Unfortunately, upon the addition of excess Cu+2 ions, a precipitate formed which 

turned out to be some metal-GNA complex since no oligonucleotide could be observed in 

the remaining solution by HPLC.  The four 8-mer GNA oligonucleotides were able to be 

recovered by the addition of strong acid, but the two 12-mer oligos were unrecoverable.  

After the 8-mer oligonucleotides were redissolved, HPLC purification proceeded at room 

temperature and the pure strands were isolated, presumably as the duplex. 
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Table 4.4.  GNA oligonucleotides for crystallography utilizing metal-mediated base 
pairing 

Name Sequence Molecular Weight Tm (ºC)[a] 

MKS62 3’-CGCGHATHCGCG-2’ 3129 - 

MKS63 3’-CGCHAATTHGCG-2’ 3128 - 

MKS64 3’-CGHATHCG-2’ 2060 78 

MKS65 3’-CHAATTHG-2’ 2059 51 

MKS66 3’-AHGCGCHT-2’ 2060 none 

MKS67 3’-ATHCGHAT-2’ 2059 none 

[a] Melting temperatures determined at a duplex concentration of 4 µM in 100 mM 
sodium phosphate buffer (pH = 7.0) with 25 mM sodium chloride. 

 

 

In order to determine whether these purified 8-mer GNA oligonucleotide duplexes 

were interesting for crystallography, the thermal melting points (Tm) were determined 

(Figure 4.9).  Thermal stability should play a large part in the crystallization of 

oligonucleotide duplexes considering a duplex that is not thermally stable enough 

probably does not possess the amount of order to produce high quality crystals.  As 

shown in Figure 4.9, two of the four duplexes show thermal melting curves indicative of 

duplex formation.  These two duplexes formed from MKS64 and MKS65 have thermal 

stabilities of 78 and 51 °C, which are higher than the stabilities of the related DNA and 

GNA sequences 5’(3’)-CGA ATT CG-3’(2’) of 26 and 40 °C, respectively. 
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Figure 4.9.  Thermal melting curves monitored by UV spectroscopy of (S)-GNA oligos 
containing H:H metallo-base pairs for crystallography at a duplex concentration of 2 µM 
and 8 µM added CuSO4.  Measurements were taken in 10 mM sodium phosphate buffer 
(pH = 7.0) with 100 mM sodium nitrate. 

 

 

With the duplexes in hand, the solution of purified oligonucleotide was 

concentrated and then redissolved at a concentration of 1 mM.  The oligos were set up 

with the Nucleic Acid Mini Screen (Hampton) at 4 °C and monitored for crystal 

formation.  The Nucleic Acid Mini Screen uses buffers containing a range of pH, 

polyamines, and cations.  The buffer, also containing 10% 2-methyl-2,4-pentanediol, is 

mixed with the sample which is then equilibrated against a well containing 35% 2-

methyl-2,4-pentanediol.  This is in contrast to other screens which typically use the same 

buffer for the sample and well.  Crystals developed for all four sequences in a time period 

of one week, however, the optically best looking crystals of the sequence  

3’-CGHATHCG-2’ (MKS64) were selected for data collection.  After a fluorescence 
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scan to determine the precise copper absorption edge in the crystal, data was collected at 

three wavelengths for MKS64 with separate scans for high and low resolution reflections.  

Processing and phasing the data provided an initial map with density that was 

unambiguous for all the bases and phosphates of the duplex, along with one copper ion 

per GNA strand, 86 water molecules, two cobalt hexamine molecules, 2 magnesium ions, 

and 1 sodium ion (see appendix for crystallographic data).35 

Initial inspection of the refined crystal structure of the GNA oligonucleotide 3’-

CGH ATH CG-2’ shows that in the crystal individual duplexes are coaxially stacked, 

thereby forming a continuous helix within the crystal (Figure 4.10).35  Minimal distortion 

of the terminal C:G base pairs allows the duplexes to stack on each other within the 

crystal.  Also within the crystal, duplexes pack in a hexagonal fashion with contacts 

between neighboring duplexes mediated by cobalt hexamine binding sites between the 

central phosphate groups of neighboring strands and also between the 2’-terminal 

guanine nucleotides on neighboring strands (Figure 4.10c).  Three of the six NH3 groups 

of the cobalt hexamine are within hydrogen bonding distance (2.8-3.0 Å) to the O6 and 

N7 atoms on the guanine residues. 
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Figure 4.10.  Overall GNA duplex structure.  [a] Continuous packing of octamer dulexes 
along the crystallographic z-axis.  [b] View along the z-axis with approximate distances 
d1 = 7.0 Å and d2 = 4.5 Å (defined from the helix axis to the center of the closest atom).  
[c] Packing of duplexes within the crystal.  The structure has been deposited in the 
Protein Data Bank under PDB code 2JJA. 
 

The overall structure of the right-handed (S)-GNA double helix differs 

significantly from the canonical A- and B-form nucleic acid helices possessing a very 

large helical pitch of 60 Å with 16 residues per turn, resulting in a large helical rise 

(Table 4.5, Figure 4.10a).  The base pairs are displaced from the helix axis (x-

displacement) by 5.1 to 8.6 Å, resulting in a very large elliptical hollow core (Figure 

4.10b).  The GNA helix possess only one large groove, corresponding to the canonical 

minor groove, whereas it lacks a major groove which is instead a convex surface.  

60 Å a 

b c 

d1
 

d2
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Therefore, the GNA helix structure might be best described as a helical ribbon loosely 

wrapped around the helix axis; closely resembling the recently disclosed hexose 

containing nucleic acids HNA and homo-DNA rather than the canonical A- and B-form 

nucleic acids.36,37 

 

Table 4.5. Comparison of Average Helical Parameters for 
(S)-GNA, B-DNA, and A-DNA. 

 (S)-GNAa 
B-

DNAb 
A-DNAb 

Helical sense right right right 

Residues per turn 16 10 12 

Helical pitch (Å) 60 34 34 

Helical rise (Å) 3.8 3.4 2.9 

x-displacement (Å) -7.0 0.1 -4.2 

Tilt(°)b 0.0 0.1 -0.1 

Roll (°)b -2.7 0.6 8.0 

Twist (°)b 23.5 36.0 31.0 

Slide (Å)b -3.5 0.2 -1.5 

P-P distance (Å)c 5.4 7.0 5.9 

[a] Data for GNA were calculated using the program 
CURVES.38,39  Data for B-DNA and A-DNA were taken 
from published values.40,41  [b] Local base pair step 
parameters.  [c] Intrastrand P-P distances. 
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All natural base pairs are engaged in standard Watson-Crick hydrogen bonding, 

whereas the two hydroxypyridone bases coordinate to a central Cu(II) ion in a square 

planar fashion with a slight propeller twist of 15°.  The hydroxypyridone metallo-base 

pair appears to fit well into the overall helix structure without any major distortions even 

though the C1’-C1’ distance of 12.7 Å is expanded by 2.0 Å compared to the standard 

Watson-Crick base pairs (Figure 4.11). 

 

Figure 4.11.  Electron density of the H-Cu-H base pair [a] and the terminal G-C base pair 
[b].  The C1’-C1’ distances are indicated. 
 

10.7 Å 

12.7 Å 

a 

b 
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Within the crystallized 8-mer duplex (Figure 4.12a), the propylene glycol 

nucleotides adopt two different conformations with respect to the torsional angles 

between C2’-O and C3’-O (Figure 4.12b).  Whereas nucleotides of Watson-Crick base 

pairs maintain a gauche conformation with an average torsional angle γ of 70°, the glycol 

at the hydroxypyridone nucleotides assume an anti conformation (γ = 165 and 172°).  As 

expected for such a simplified backbone, the distance between intrastrand phosphates are 

quite short, with an average distance of 5.4 Å, compared to around 7.0 Å for B-DNA and 

5.9 Å for A-DNA. 

 

 

Figure 4.12.  Details of the GNA duplex structure.  [a] A single GNA octamer duplex.  
[b] The backbone conformation with gauche and anti referring to the torsional angle 
between C2’-O and C3’-O.  [c] Interstrand stacking of two adjacent base pairs. 
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Maybe the most interesting feature of this GNA duplex structure is the large 

average slide between neighboring base pairs of 3.4 Å (Table 4.5, Figure 4.12c).  This is 

a consequence of the large backbone-base inclination, ranging for this duplex from 42 to 

50°.  This is similar to the unnatural hexose nucleic acids but much different than the 

average slide of 0° for B-form DNA.  The backbone-base inclination results in an almost 

complete absence of intrastrand base-base stacking, the predominant stacking interaction 

in A- and B-form nucleic acids, but extensive interstrand base-base stacking.  In order to 

compensate for the solvent-exposed base resulting from the large base pair slide, the CH2 

group of the propylene glycol backbone is participating in packing against nucleobases of 

the same strand.  Thus, in this simplified GNA double helix, the backbone is directly 

involved in hydrophobic interactions with the π-system, which might contribute to the 

high duplex stability of GNA. 



 259 

Chapter 4.4.2.  New insight into the high duplex stabililty of GNA 

 

 The newly solved crystal structure of an 8-mer (S)-GNA duplex allowed us to 

reevaluate old data in an attempt to understand the intrinsic stability of GNA duplexes.  

One of our prevailing theories is that the conformational preorganization of GNA 

oligonucleotides in solution is a major contributor to the higher duplex stability because 

of the lower entropic cost for duplex formation.  More support for the helical 

preorganization of GNA single strands comes from the comparison of the 

crystallographic data of the GNA duplex with GNA nucleosides.18,35  In the duplex 

crystal structure, all natural nucleotides adopt the same staggered conformation with an 

anti orientation of the nucleobase and a gauche conformation with respect to the vicinal 

C-O bonds.  A comparison of this backbone conformation with the conformation of 

crystallized single nucleosides reveals that this conformation is also preferred in the 

single nucleosides.  This is shown in Figure 4.13 by the superimposition of the crystal 

structure of 1-(2,3-dihydroxypropyl)cytosine15 with the conformation of a cytosine 

nucleotide within the GNA duplex.  The crystal structures of the adenine, guanine, and 

thymine nucleosides15 also show the preferred gauche conformation with respect to the 

vicinal C-O bonds even with different protection groups on the exocyclic amines or 

backbone hydroxyl groups.  However, only the guanine and thymine nucleosides show an 

anti conformation with respect to the nucleobase, while the adenine nucleoside adopts an 

almost eclipsed conformation.  It is quite possible that this difference could be the result 
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of the adenine nucleoside adopting a different conformation during crystal formation to 

maximize packing interactions between individual molecules. 

 

Figure 4.13.  (S)-1-(2,3-dihydroxypropyl)cytosine (colored balls and sticks) 
superimposed with the conformation of a cytosine nucleotide within a GNA duplex 
(green sticks). 

 

 Furthermore, the crystal structure of the 8-mer GNA duplex sheds new light onto 

the stability studies with overhanging nucleotides in GNA duplexes.   In GNA duplexes, 

overhanging nucleotides on the 3’ end do not provide any increase in thermal or 

thermodynamic stability of the duplex, while overhanging nucleotides on the 2’ end 

provide an exceptionally strong stabilization (Table 3.7).18  This was in stark contrast to 

the results for overhanging nucleotides in DNA duplexes, but similar to those results for 

RNA duplexes.  This directionality can now be explained by the strong backbone-

nucleobase inclination in GNA as show in Figure 4.12c.  This prevents stacking on the 3’ 

end (with the nucleobase almost completely exposed to solvent) but enables efficient 

stacking on the 2’ end.  Furthermore, the zipperlike interstrand stacking interactions 

probably contribute to the duplex stability of GNA as a result of attractive interstrand van 

der Waals forces.42-44  Finally, since GNA cannot maximize the intrastrand stacking of 

neighboring nucleobases because of the large backbone-base inclination and 
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preorganized conformation of the backbone, GNA oligonucleotides should benefit more 

from the conversion to the duplex where they can form stable interstrand stacking 

interactions. 

 

Table 3.7.  Thermal and thermodynamic stabilities of (S)-GNA and DNA duplexes 
with overhanging nucleotides[a] 

  
     XCGAATTCG 
        GCTTAAGCX 

 
       CGAATTCGX 
    XGCTTAAGC 

Entry 
Overhanging 

nucleotide X[b] 
Tm 

(˚C) 
∆Tm 
(˚C) 

∆∆G 
(298K, 

kcal/mol) 
 

Tm 
(˚C) 

∆Tm 
(˚C) 

∆∆G 
(298K, 

kcal/mol) 

GNA duplexes        

1 None 54.3 0 0  54.3 0 0 

2 A 55.2 0.9 -0.2  68.9 14.6 4.0 

3 G 55.5 1.2 0.1  64.9 10.6 2.4 

4 C 54.8 0.5 -0.6  66.8 12.5 3.6 

5 T 55.4 1.1 -0.6  62.6 8.3 2.3 

DNA Duplexes        

6 None 35.5 0 0  35.5 0 0 

7 A 45.0 9.5 1.8  39.1 3.6 0.6 

8 G 41.1 5.6 0.9  36.8 1.3 0.0 

9 C 42.6 7.1 1.3  39.4 3.9 0.7 

10 T 40.1 4.6 0.6  36.9 1.4 -0.1 

[a] Measured in 10 mM sodium phosphate buffer (pH = 7.0) with 500 mM NaCl and 
2 µM of each duplex.  [b] Sequence for the upper strand in the direction 3’→2’ for 
GNA and 5’→3’ for DNA. 
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Chapter 4.5.  Conclusions 

 

The synthetic ease associated with synthesizing phosphoramidites of GNA 

nucleotides makes this scaffold highly interesting for applications in the field of 

nanotechnology.  Of the two phosphoramidites synthesized for metal-mediated base 

pairing in the context of GNA duplexes, only the (S)-H phosphoramidite could be 

synthesized in a higher yield than the corresponding 2’-deoxyribonucleotide 

phosphoramidite.  Synthesis of the (S)-P phosphoramidite proceeds in a lower yield than 

the corresponding 2’-deoxyribonucleotide.  However, it is believed this synthesis can be 

improved by modifying the conditions for the ring-opening step, or by using an alternate 

route.  In any case, this synthesis is still attractive considering one has much easier access 

to the opposite enantiomer in GNA than the opposite anomer in DNA. 

These new phosphoramidites (S)-H and (S)-P could be easily incorporated into 

GNA oligonucleotides by the standard procedures outlined in Chapter 2.  At times, 

purification could be troublesome, especially with the incorporation of more than one 

metal-mediated base pair into a single oligonucleotide.  However, greater than 98% 

purity was obtained in most cases for the GNA oligonucleotides synthesized for these 

studies.  One should also consider that ion exchange chromatography may be a good 

means in which to separate these functionalized oligonucleotides based solely on charge 

and this should be considered for more complex oligos.  Once incorporated, these metal-

mediated base pairs in GNA displayed similar metal ion selectivities as the corresponding 

base pairs in DNA.  In the case of the hydroxypyridone homo-base pair, the difference in 
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duplex stability between the base pair with and without copper is greater than in DNA.  

This property has already been utilized in GNA duplexes for the sensing of copper ions in 

solution.45 

Probably the greatest impact of these metal-mediated base pairs comes from the 

crystal structure of a GNA duplex determined using the hydroxypyridone homo-base pair 

as a handle for phasing the crystallographic data.  This was important to gain a first 

insight into the structure of GNA duplexes in an attempt to understand their inherent 

greater stability compared to similar duplexes of DNA or RNA.  The structure of this 

GNA duplex has little resemblance to either A- or B-form duplexes, but instead rather 

resembles the recently published structure of hexose containing nucleic acids.  Finally, 

the structure shows that the metal-mediated base pair fits nicely within the overall duplex 

structure, rendering it an attractive means for gaining structural insight into other nucleic 

acid duplexes. 
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Chapter 4.6.  Experimental procedures 

 

General procedures and reagents.  NMR spectra were recorded on a Bruker DRX-500 

(500 MHz), DRX-400 (400 MHz), DMX-360 (360 MHz), or DMX-300 (300 MHz) 

spectrometer. High-resolution mass spectra were obtained with a Micromass AutoSpec or 

Thermo LTQ-FT instrument using ES ionization. Infrared spectra were recorded either on 

a Perkin Elmer 1600, Nicolet 510, or Bruker alpha series FTIR spectrometer. Solvents 

and reagents were used as supplied from Aldrich, Acros, Fluka, or TCI. Reactions were 

performed under an atmosphere of argon or nitrogen unless otherwise specified. 

O

O

OBn

4.2  

Compound 4.2.  To an argon purged solution of 3-hydroxy-2-methyl-4-pyrone (10.2 g, 

80.9 mmol) and 7.8 M aqueous NaOH (11 mL) in methanol (100 mL) at 0 ºC was added 

benzyl bromide (11.1 mL, 93.0 mmol) slowly over 15 minutes.  The solution was allowed 

to warm up gradually to room temperature and stir for two hours after which the solution 

was concentrated, redissolved in methylene chloride, washed with water, then with 1 M 

NaOH, dried over MgSO4, and finally concentrated.  The crude product was purified via 

flash chromatography over silica gel eluting with 1:1 Hexanes:EtOAc to afford 

compound 4.2 as a light yellow oil (15.6 g, 89%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 

7.60 (d, J = 5.7 Hz, 1H), 7.41 (m, 2H), 7.38-7.30 (m, 3H), 6.37 (d, J = 5.6 Hz, 1H), 5.18 

(s, 2H), 2.10 (s, 3H).  Data matches that of previously published data.23 



 265 

N
H

O

OBn

4.3  

Compound 4.3.  To a solution of compound 4.2 (6.01 g, 27.8 mmol) in ethanol (30 mL) 

was added 25% aqueous ammonium hydroxide (60 mL) and the solution allowed to stir 

in a closed flask at room temperature for three days.  The solution was then concentrated, 

dry loaded onto silica gel, and purified via flash chromatography over silica gel starting 

with 10:1 EtOAc:MeOH, then eluting with 20:3 EtOAc:MeOH to afford compound 4.3 

as a fluffy white solid (5.20 g, 87%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 7.39 (d, J = 

7.0 Hz, 1H), 7.34-7.26 (m, 5H), 6.35 (d, J = 7.0 Hz, 1H), 5.07 (s, 2H), 2.16 (s, 3H).  Data 

matches that of previously published data.23 

N

O

OBn

OH

DMTrO 4.4

 

Compound 4.4.  Compound 4.3 (1.3 g, 6.0 mmol) and NaH (60% in mineral oil, 50 mg, 

1.3 mmol) were combined in DMF (12 mL) and stirred at room temperature under argon 

for one hour. A solution of compound 2.11 (2.1 g, 5.7 mmol) in DMF (12 mL) was added 

and the resulting mixture was heated to 110 °C overnight. The DMF was then 

evaporated, the residue taken up in ethyl acetate and concentrated to dryness. The crude 

product was purified by column chromatography starting with 100:1 EtOAc:Et3N, then 

eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford compound 4.4 as a light yellow foam 
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(2.2 g, 65%). 1H-NMR (500 MHz, CDCl3) δ (ppm) 7.42 (d, J = 8.1 Hz, 2H), 7.37-7.20 

(m, 13H), 6.83 (d, J = 8.2 Hz, 4H), 6.11 (d, J = 7.3 Hz, 1H), 5.08 (d, J = 11.3 Hz, 1H), 

4.90 (d, J = 11.3 Hz, 1H), 4.14 (m, 2H), 3.79 (s, 6H), 3.52 (dd, J = 14.6, 9.7 Hz, 1H), 

3.35 (dd, J = 9.2, 4.3 Hz, 1H), 3.10 (t, J = 8.4 Hz, 1H), 2.16 (s, 3H). 13C-NMR (125 

MHz, CDCl3) δ (ppm) 173.0, 158.8, 145.9, 144.9, 142.2, 140.4, 137.8, 136.2, 136.0, 

130.3, 129.1, 128.5, 128.4, 128.2, 128.1, 127.1, 116.5, 113.4, 86.5, 73.4, 68.9, 65.5, 58.6, 

55.4, 12.9. IR (film) v (cm-1) = 3197, 3063, 2933, 2836, 1626, 1608, 1561, 1508, 1462, 

1398, 1301, 1251, 1220, 1176, 1073, 1033, 980, 910, 827, 790, 753, 728, 701. HRMS 

calcd for C37H38NO6 (M+H)+ 592.2699, found (M+H)+ 592.2727. 

N

O

OH

OH

DMTrO 4.5

 

Compound 4.5. Compound 4.4 (1.5 g, 2.5 mmol) and Pd/C (10% on carbon, 750 mg) 

were combined in ethyl acetate (70 mL) and the resulting suspension was purged with 

argon, then hydrogen, and allowed to stir under a hydrogen atmosphere for two hours. 

The suspension was then filtered through Celite using 100:1 EtOAc:Et3N to afford 

compound 4.5 as a tan foam (1.25 g, 98%) which was used without further purification. 

1H-NMR (500 MHz, CDCl3) δ (ppm) 7.45 (d, J = 7.8 Hz, 2H), 7.37-7.15 (m, 8H), 6.86 

(d, J = 8.5 Hz, 4H), 5.98 (br m, 1H), 5.42 (br s, 2H), 4.25 (d, J = 13.7 Hz, 1H), 4.03 (br s, 

1H), 3.81 (s, 6H), 3.65 (m, 1H), 3.41 (m, 1H), 3.18 (m, 1H), 2.39 (s, 3H). 13C-NMR (90 

MHz, CDCl3) δ (ppm) 168.7, 158.9, 145.7, 144.8, 138.5, 136.0, 135.8, 130.2, 129.4, 
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128.24, 128.18, 127.2, 113.5, 113.4, 110.8, 86.7, 69.2, 65.2, 58.0, 55.5, 12.4. IR (film) v 

(cm-1) = 3199, 3071, 2933, 2825, 1626, 1607, 1577, 1508, 1464, 1444, 1366, 1302, 1248, 

1174, 1076, 1032, 909, 825, 791, 727, 702, 643, 584. HRMS calcd for C30H32NO6 

(M+H)+ 502.2229, found (M+H)+ 502.2248. 

N

O

OPiv

OH

DMTrO 4.7

 

Compound 4.7.  To an argon purged solution of compound 4.5 (1.55 g, 3.1 mmol) and 

N,N-diisopropylethylamine (0.65 mL, 3.7 mmol) in THF (12.5 mL) was added pivalic 

anhydride (0.69 mL, 3.4 mmol) dropwise and allowed to stir at room temperature 

overnight.  The next morning, the solution was diluted with methylene chloride, washed 

with brine, dried over Na2SO4, and finally concentrated.  The crude product was purified 

via flash chromatography over silica gel starting with 100:1 EtOAc:Et3N, then eluting 

with 50:1:0.01 EtOAc:MeOH:Et3N to afford compound 4.7 as a white foam (1.05 g, 

58%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 7.44 (m, 2H), 7.35-7.21 (m, 8H), 6.85 (m, 

4H), 6.01 (br, 1H), 4.18 (br, 1H), 4.07 (m, 1H), 3.81 (s, 6H), 3.64 (m, 1H), 3.41 (m, 1H), 

3.12 (m, 1H), 2.27 (s, 3H), 1.39 (s, 9H). 
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N

O

OPiv

O

DMTrO

P

N

O
CN

(S)-HPiv

 

Compound (S)-HPiv
.  To an argon purged solution of compound 4.7 (1.02 g, 1.7 mmol) 

and N,N-diisopropylethylamine (1.75 mL, 10.0 mmol) in methylene chloride (29 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.80 mL, 3.6 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was diluted with methylene chloride and washed one time with saturated 

aqueous NaHCO3 dried over Na2SO4, and finally concentrated. The crude product was 

purified by column chromatography eluting with 1:1:0.01 Hexanes:Acetone:Et3N to 

afford compound (S)-HPiv as a white foam (1.10 g, 80%). Only one product peak was 

observed by phosphorus NMR.  31P NMR (121 MHz, CDCl3) δ (ppm) 150.3. 

N

O

ODPC

OH

DMTrO 4.8

 

Compound 4.8. To an argon purged solution of compound 4.5 (415 mg, 0.83 mmol) and 

diphenylcarbamoyl chloride (230 mg, 0.99 mmol) in anhydrous pyridine (6.6 mL) was 

added N,N-diisopropylethylamine (175 µL, 0.99 mmol) and the solution stirred for one 

hour at room temperature under argon. The solution was diluted with methylene chloride, 
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washed with saturated aqueous NaHCO3, dried over Na2SO4, and finally concentrated. 

After coevaporation with toluene, the crude product was purified by column 

chromatography starting with 100:1 EtOAc:Et3N, then 50:1:0.01 EtOAc:MeOH:Et3N, 

and finally eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford compound 4.8 as a light 

yellow foam (370 mg, 64%). 1H-NMR (500 MHz, 373K, DMSO-d6) δ (ppm) 7.50-7.20 

(m, 20H), 6.89 (d, J = 8.8 Hz, 4H), 6.08 (d, J = 7.6 Hz, 1H), 4.13 (d, J = 11.4 Hz, 1H), 

3.84 (m, 2H), 3.76 (s, 6H), 3.14 (dd, J = 9.3, 3.2 Hz, 1H), 3.00 (dd, J = 9.3, 6.1 Hz, 1H), 

2.25 (s, 3H). 13C-NMR (125 MHz, 373K, DMSO-d6) δ (ppm) 169.2, 157.9, 150.9, 144.2, 

142.3, 140.6, 140.4, 139.5, 135.3, 129.2, 128.3, 127.4, 127.2, 126.4, 126.1, 125.6, 114.5, 

112.9, 85.5, 68.6, 64.9, 62.5, 55.2, 54.7, 12.0. IR (film) v (cm-1) = 3400 (br), 3059, 2928, 

2833, 1742, 1644, 1608, 1598, 1512, 1494, 1352, 1306, 1250, 1218, 1200, 1176, 1151, 

1053, 1025, 1002, 819, 757, 693. HRMS calcd for C43H41N2O7 (M+H)+ 697.2908, found 

(M+H)+ 697.2897. 

N

O

ODPC

O

DMTrO

P
ON

CN

(S)-H

 

Compound (S)-H. To an argon purged solution of compound 4.8 (355 mg, 0.51 mmol) 

and N,N-diisopropylethylamine (0.51 mL, 2.9 mmol) in dichloromethane (8.5 mL) was 

added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.24 mL, 1.1 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 
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solution was diluted with methylene chloride, washed one time with saturated aqueous 

NaHCO3, dried over Na2SO4, and finally concentrated by rotary evaporation. The crude 

product was purified by column chromatography eluting with 1:1:0.01 

Hexanes:Acetone:Et3N to afford compound (S)-H as a white foam (395 mg, 86%). 31P 

NMR (121 MHz, CDCl3) δ (ppm) 150.6, 150.0. HRMS calcd for C52H58N4O8P (M+H)+ 

897.3987, found (M+H)+ 897.3973. 

O

O

O

4.10

O2N

 

Compound 4.10.  To an argon purged suspension of 3-hydroxy-2-methyl-4-pyrone (1.54 

g, 12.2 mmol) and 9.8 M aqueous NaOH (1.5 mL) in methanol (5 mL) at 0 ºC was added 

a solution of o-nitrobenzyl bromide (3.17 g, 14.7 mmol) in methanol (10 mL) slowly over 

15 minutes.  The solution was allowed to warm up gradually to room temperature and stir 

for two hours after which the solution was concentrated, redissolved in methylene 

chloride, washed with water, then with 1 M NaOH, dried over Na2SO4, and finally 

concentrated.  The crude product was purified via flash chromatography over silica gel 

starting with 2:1 Hexanes:EtOAc, then eluting with 1:1 Hexanes:EtOAc to afford 

compound 4.10 as a light yellow solid (2.10 g, 66%).  1H-NMR (500 MHz, CDCl3) δ 

(ppm) 8.10 (d, J = 8.2 Hz, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), 7.65 (d, 

J = 5.7 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 6.39 (d, J = 5.7 Hz, 1H), 5.49 (s, 2H), 2.31 (s, 

3H). 
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N
H

O

O

4.11

O2N

 

Compound 4.11.  To a solution of compound 4.10 (1.71 g, 6.6 mmol) in ethanol (7 mL) 

was added 25% aqueous ammonium hydroxide (14 mL) and the solution allowed to stir 

in a closed flash at room temperature for five days.  TLC indicated only ~75% 

conversion, so another portion of 25% aqueous ammonium hydroxide (7 mL) was added 

to the suspension and heated to 50 ºC overnight.  The suspension was then concentrated, 

dry loaded onto silica gel, and purified via flash chromatography over silica gel eluting 

with 20:3 EtOAc:MeOH to afford compound 4.11 as a tan solid (1.17 g, 69%).  1H-NMR 

(360 MHz, MeOD) δ (ppm) 8.06 (dd, J = 8.2, 1.2 Hz, 1H), 7.95 (m, 1H), 7.73 (dt, J = 

7.6, 1.2 Hz, 1H), 7.59-7.51 (m, 2H), 6.46 (d, J = 7.1 Hz, 1H), 5.44 (s, 2H), 2.24 (s, 3H). 

N

O

O

4.12

O2N

OH

DMTrO

 

Attempted synthesis of compound 4.12.  Compound 4.12 (1.03 g, 4.0 mmol) and NaH 

(60% in mineral oil, 33 mg, 0.83 mmol) were combined in DMF (8 mL) and stirred at 

room temperature under argon for one hour. A solution of 2.11 (1.42 g, 3.8 mmol) in 

DMF (8 mL) was added and the resulting mixture was heated to 110 °C overnight. The 
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DMF was then evaporated, the residue taken up in ethyl acetate and concentrated to 

dryness. The crude product was purified by column chromatography starting with 100:1 

EtOAc:Et3N, then eluting with 40:3:0.01 EtOAc:MeOH:Et3N.  1H NMR indicated a 

mixture of products. 

N

O

OBn

OTBS

DMTrO 4.16

 

Compound 4.16.  Compound 4.4 (1.61 g, 2.7 mmol) was dissolved in dichloromethane 

(12 mL) under argon and tert-butyldimethylsilyl chloride (1.03 g, 6.8 mmol), imidazole 

(1.67 g, 24.5 mmol), and catalytic DMAP added to the solution.  This was allowed to stir 

overnight at room temperature and then concentrated by rotary evaporation the next 

morning.  The crude product was purified by column chromatography starting with 

1:2:0.01 Hexanes:EtOAc:Et3N, then eluting with 100:1 EtOAc:Et3N to afford compound 

4.16 as a white foam (920 mg, 48%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 7.44 (m, 2H), 

7.40 (m, 2H), 7.36-7.22 (m, 10H), 7.18 (d, J = 7.6 Hz, 1H), 6.84 (m, 4H), 6.35 (d, J = 7.5 

Hz, 1H), 5.22 (m, 2H), 4.24 (dd, J = 14.5, 2.6 Hz, 1H), 3.83-3.77 (m, 7H), 3.63 (dd, J = 

14.5, 9.0 Hz, 1H), 3.20 (dd, J = 9.7, 4.0 Hz, 1H), 3.03 (dd, J = 9.6, 8.1 Hz, 1H), 2.21 (s, 

3H), 0.76 (s, 9H), -0.21 (s, 3H), -0.29 (s, 3H). 
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N

O

OH

OTBS

DMTrO 4.17

 

Compound 4.17.  Compound 4.16 (920 mg, 1.3 mmol) and Pd/C (10% on carbon, 460 

mg) were combined in ethyl acetate (36 mL) and the resulting suspension was purged 

with argon, then hydrogen, and allowed to stir under a hydrogen atmosphere for two 

hours. The product was then filtered through Celite using 100:1 EtOAc:Et3N to afford 

compound 4.17 as a tan foam (810 mg, 100%) which was used without further 

purification.  1H-NMR (500 MHz, CDCl3) δ (ppm) 7.42 (m, 2H), 7.34-7.23 (m, 7H), 7.21 

(d, J = 7.3 Hz, 1H), 6.85 (d, J = 8.7 Hz, 4H), 6.32 (d, J = 7.3 Hz, 1H), 4.34 (dd, J = 14.4, 

2.6 Hz, 1H), 3.89 (m, 1H), 3.80 (s, 6H0, 3.72 (dd, J = 14.4, 8.9 Hz, 1H), 3.25 (dd, J = 9.7, 

4.0 Hz, 1H), 3.07 (dd, J = 9.5, 8.2 Hz, 1H), 2.43 (s, 3H), 0.76 (s, 9H), -0.20 (s, 3H), -0.30 

(s, 3H). 
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O
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Compound 4.18.  A solution of compound 4.17 (502 mg, 0.82 mmol) and o-nitrobenzyl 

bromide (338 mg, 1.6 mmol) in 3.5 M aqueous sodium hydroxide (0.28 mL) and 

methanol (2.9 mL) was allowed to stir at room temperature under argon for two hours.  

The solution was dissolved in methylene chloride, washed with 1 M NaOH, dried over 
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Na2SO4, and finally concentrated.  The crude product was purified via flash 

chromatography over silica gel starting with 100:1 EtOAc:Et3N, then eluting with 

50:1:0.01 EtOAc:MeOH:Et3N to afford compound 4.18 as a light yellow foam (525 mg, 

86%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 8.11 (d, J = 7.7 Hz, 1H), 8.07 (d, J = 7.7 Hz, 

1H), 7.68 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.41 (m, 2H), 7.34-7.20 (m, 8H), 

6.85 (d, J = 8.7 Hz, 4H), 6.36 (d, J = 7.6 Hz, 1H), 5.48 (s, 2H), 4.30 (dd, J = 14.5, 2.6 Hz, 

1H), 3.89 (m, 1H), 3.80 (s, 6H), 3.71 (dd, J = 14.6, 9.0 Hz, 1H), 3.25 (dd, J = 9.7, 4.0 Hz, 

1H), 3.06 (dd, J = 9.6, 8.3 Hz, 1H), 2.39 (s, 3H), 0.77 (s, 9H), -0.18 (s, 3H), -0.25 (s, 3H). 

N

O

O

OH

DMTrO 4.19

O2N

 

Compound 4.19.  To an argon purged solution of compound 4.18 (525 mg, 0.70 mmol) 

in anhydrous THF (14 mL) was added TBAF (1 M in THF, 1.54 mL, 1.54 mmol) and the 

solution stirred for 30 minutes at room temperature. The solution was washed with water, 

extracted into ethyl acetate, dried over Na2SO4, and concentrated by rotary evaporation. 

The crude product was purified by flash chromatography over silica gel starting with 

100:1 EtOAc:Et3N, then eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford compound 

4.19 as a light yellow foam (435 mg, 98%).  1H-NMR (500 MHz, CDCl3) δ (ppm) 8.05 

(dd, J = 8.2, 1.0 Hz, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.61 (dt, J = 7.6, 1.1 Hz, 1H), 7.45-

7.39 (m, 3H), 7.34-7.26 (m, 8H), 6.83 (m, 4H), 6.11 (d, J = 7.5 Hz, 1H), 5.37 (m, 2H), 
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4.17 (dd, J = 14.3, 2.2 Hz, 1H), 4.07 (m, 1H), 3.79 (s, 6H), 3.63 (dd, J = 14.4, 9.4 Hz, 

1H), 3.34 (dd, J = 9.4, 4.6 Hz, 1H), 3.11 (dd, J = 9.3, 7.7 Hz, 1H), 2.34 (s, 3H). 

N

O

O

O

DMTrO

P
ON

CN

(S)-HNB

NO2

 

Compound (S)-HNB
.  To an argon purged solution of compound 4.19 (435 mg, 0.68 

mmol) and N,N-diisopropylethylamine (0.72 mL, 4.1 mmol) in methylene chloride (11 

mL) was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.31 mL, 1.4 

mmol) dropwise and the solution stirred for two hours at room temperature under argon. 

The solution was diluted with methylene chloride and washed one time with saturated 

aqueous NaHCO3, dried over Na2SO4, and finally concentrated. The crude product was 

purified by flash chromatography over silica gel loading with 3:2:0.01 

Hexanes:Acetone:Et3N, then with 1:1:0.01 Hexanes:Acetone:Et3N, and finally eluting 

with 2:3:0.01 Hexanes:Acetone:Et3N to afford compound (S)-HNB as a white foam (365 

mg, 64%) 31P NMR (121 MHz, CDCl3) δ (ppm) 150.5, 150.3. 
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Compound 4.21.  6-chloropurine (2.0 g, 12.9 mmol) and K2CO3 (230 mg, 1.7 mmol) 

were combined in DMF (20 mL).  A solution of compound 2.11 (4.7 g, 12.5 mmol) in 

DMF (20 mL) was added and the resulting mixture was heated to 90 °C overnight. The 

DMF was then evaporated, the residue taken up in ethyl acetate and concentrated to 

dryness. The crude product was purified by flash chromatography over silica gel starting 

with 1:1:0.01 Hexanes:EtOAc:Et3N, then eluting with 1:2:0.01 Hexanes:EtOAc:Et3N to 

afford compound 4.21 as a white foam (2.5 g, 38%).  1H-NMR (360 MHz, CDCl3) δ 

(ppm) 8.69 (s, 1H), 8.16 (s, 1H), 7.40 (m, 2H), 7.34-7.20 (m, 7H), 6.83 (m, 4H), 4.51 (dd, 

J=14.3, 3.0 Hz, 1H), 4.35 (dd, J=14.3, 7.1 Hz, 1H), 4.22 (m, 1H), 3.81 (s, 6H), 3.48 (b, 

1H), 3.20 (d, J=5.6 Hz, 2H).  13C-NMR (90 MHz, CDCl3) δ (ppm) 159.0, 152.2, 152.0, 

151.3, 146.8, 144.6, 135.73, 135.71, 131.7, 130.2, 128.31, 128.25, 127.4, 87.0, 69.5, 64.8, 

55.6, 48.0.  IR (film) v (cm-1) = 3317, 2933, 2835, 1666, 1602, 1592, 1562, 1508, 1464, 

1445, 1405, 1336, 1302, 1253, 1179, 1076, 1032, 948, 909, 830, 727, 702, 643.  HRMS 

calcd for C29H27N4O4Cl (M+H)+ 531.1799, found (M+H)+ 531.1805. 

 



 277 

4.22

N

OTBS

DMTrO

N

N

N

Cl

 

Compound 4.22.  Compound 4.21 (2.6 g, 4.9 mmol) was dissolved in dichloromethane 

(22 mL) under argon and tert-butyldimethylsilyl chloride (1.7 g, 11.3 mmol), imidazole 

(3.0 g, 44.1 mmol), and catalytic DMAP added to the solution.  This was allowed to stir 

overnight at room temperature and then concentrated by rotary evaporation the next 

morning.  The crude product was purified by flash chromatography over silica gel 

starting with 6:1:0.01 Hexanes:EtOAc:Et3N, then eluting with 4:1:0.01 

Hexanes:EtOAc:Et3N to afford compound 4.22 as a white foam (2.7 g, 86%).  1H-NMR 

(360 MHz, CDCl3) δ (ppm) 8.73 (s, 1H), 8.12 (s, 1H), 7.43 (d, J=7.3 Hz, 2H), 7.35-7.19 

(m, 7H), 6.82 (m, 4H), 4.56 (dd, J=14.1, 3.9 Hz, 1H), 4.44 (dd, J=14.0, 6.6 Hz, 1H), 4.15 

(m, 1H), 3.80 (s, 6H), 3.14 (dd, J=9.8, 4.2 Hz, 1H), 3.00 (dd, J=9.6, 7.1 Hz, 1H), 0.79 (s, 

9H), -0.16 (s, 3H), -0.33 (s, 3H).  13C-NMR (75 MHz, CDCl3) δ (ppm) 158.76, 158.74, 

152.3, 151.9, 150.9, 146.5, 144.6, 135.8, 135.7, 131.4, 130.0, 128.2, 128.0, 127.1, 113.3, 

86.6, 69.8, 64.7, 55.3, 48.0, 25.8, 17.9, -4.8, -5.4.  IR (film) v (cm-1) = 2954, 2927, 2858, 

1608, 1590, 1560, 1508, 1464, 1442, 1403, 1333, 1302, 1246, 1176, 1080, 1036, 997, 

940, 831, 779, 726, 700. HRMS calcd for C35H41N4O4SiCl (M+H)+ 645.2664, found 

(M+H)+ 645.2683. 
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Compound 4.25.  To an argon purged solution of compound 4.22 (2.7 g, 4.2 mmol) and 

PdCl2(PPh3)2 (265 mg, 0.4 mmol) in anhydrous THF (85 mL) was added 2-pyridylzinc 

bromide (0.5 M in THF, 13.5 mL) and the solution heated to 65 °C for two hours.  After 

cooling to room temperature, the solution was washed with saturated aqueous NaHCO3, 

extracted into dichloromethane, dried over Na2SO4, and concentrated by rotary 

evaporation.  The crude product was purified by flash chromatography over basic 

alumina starting with 3:1:0.01 Hexanes:EtOAc:Et3N, then with 1:1:0.01 

Hexanes:EtOAc:Et3N, and finally eluting with 100:1 EtOAc:Et3N to afford compound 

4.25 as a tan foam (2.3 g, 81%). 1H-NMR (400 MHz, CDCl3) δ (ppm) 9.12 (s, 1H), 8.97 

(m, 1H), 8.86 (d, J = 8.0 Hz, 1H), 8.23 (s, 1H), 7.93 (td, J = 7.7, 1.6 Hz, 1H), 7.45 (m, 

3H), 7.31 (m, 6H), 7.21 (t, J = 7.2 Hz, 1H), 6.82 (dd, J = 8.9, 2.5 Hz, 4H), 4.60 (dd, J = 

14.1, 3.7 Hz, 1H), 4.50 (dd, J = 14.1, 6.7 Hz, 1H), 4.21 (m, 1H), 3.77 (s, 6H), 3.16 (dd, J 

= 9.8, 4.2 Hz, 1H), 3.07 (dd, J = 9.8, 7.0 Hz, 1H), 0.79 (s, 9H), -0.16 (s, 3H), -0.34 (s, 

3H).  13C-NMR (125 MHz, CDCl3) δ (ppm) 158.73, 158.71, 154.0, 153.7, 153.3, 152.6, 

150.6, 146.8, 144.7, 136.8, 136.0, 135.9, 130.1, 128.2, 128.0, 127.0, 126.0, 124.9, 113.3, 

86.6, 69.9, 64.9, 55.3, 47.7, 25.8, 17.9, -4.8, -5.3.  IR (film) v (cm-1) = 3499, 2956, 2929, 

2853, 2362, 1612, 1581, 1510, 1463, 1441, 1384, 1325, 1301, 1251, 1174, 1116, 1068, 
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1030, 988, 929, 825, 773, 720, 692, 635, 570, 531.  HRMS calcd for C40H45N5O4Si 

(M+H)+ 688.3319, found (M+H)+ 688.3314. 

N

OH

DMTrO

N

N

N

N

4.26

 

Compound 4.26.  To an argon purged solution of compound 4.25 (1.25 g, 1.8 mmol) in 

anhydrous THF (38 mL) was added TBAF (1 M in THF, 4.0 mL, 4.0 mmol) and the 

solution stirred for 30 minutes at room temperature. The solution was washed with water, 

extracted into ethyl acetate, dried over Na2SO4, and concentrated by rotary evaporation. 

The crude product was purified by column chromatography over basic alumina starting 

with 100:1 EtOAc:Et3N, then eluting with 40:3:0.01 EtOAc:MeOH:Et3N to afford 

compound 4.26 as a tan foam (840 mg, 81%). 1H-NMR (400 MHz, CDCl3) δ (ppm) 9.04 

(s, 1H), 8.95 (m, 1H), 8.82 (m, 1H), 8.22 (s, 1H), 7.93 (td, J = 7.8, 1.8 Hz, 1H), 7.46-7.38 

(m, 3H), 7.31-7.25 (m, 6H), 7.21 (m, 1H), 6.81 (m, 4H), 4.54 (dd, J = 14.4, 2.8 Hz, 1H), 

4.39 (dd, J = 14.3, 7.0 Hz, 1H), 4.22 (m, 1H), 3.76 (s, 6H), 3.24 (dd, J = 9.8, 5.9 Hz, 1H), 

3.17 (dd, J = 9.7, 5.6 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ (ppm)  158.8, 153.8, 

153.5, 153.4, 152.3, 150.5, 146.9, 144.6, 136.9, 135.7, 135.6, 130.0, 128.08, 128.07, 

127.1, 125.9, 125.0, 113.4, 86.7, 69.6, 64.7, 55.3, 47.9, 25.8.  IR (film) v (cm-1) = 3369, 

3060, 2953, 2931, 2833, 1612, 1582, 1509, 1462, 1444, 1328, 1302, 1252, 1209, 1175, 
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1152, 1069, 1031, 905, 828, 726, 697, 637, 577.  HRMS calcd for C34H31N5O4 (M+H)+ 

574.2454, found (M+H)+ 574.2449. 

(S)-P
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N O

CN

 

Compound (S)-P.  To an argon purged solution of compound 4.26 (705 mg, 1.2 mmol) 

and N,N-diisopropylethylamine (1.0 mL, 5.9 mmol) in dichloromethane (20 mL) was 

added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.56 mL, 2.5 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was diluted with methylene chloride, washed once with saturated aqueous 

NaHCO3, dried over Na2SO4, and finally concentrated.  The crude product was purified 

by flash chromatography over basic alumina starting with hexanes: 1:1:0.01 EtOAc:Et3N, 

then  with 1:2:0.01 Hexanes:EtOAc:Et3N, and finally with 100:1 EtOAc:Et3N to afford 

compound (S)-P as a light yellow foam (620 mg, 65%). 31P NMR (162 MHz, CDCl3) δ 

(ppm) 150.5, 150.0. HRMS calcd for C43H48N7O5P (M+H)+ 774.3533, found (M+H)+ 

774.3527. 

 

Crystallization and data collection:  Crystals of self-complementary duplex GNA were 

grown using the sitting drop vapor diffusion method with buffers from the Nucleic Acid 
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Mini Screen (Hampton Research).  Crystallization conditions consisted of 1 mM duplex 

GNA (2 µL) and buffer (4 µL) against a reservoir of 35% MPD in water (1 mL). Flat, 

square-shaped crystals generally appeared after 4-7 days at 4 °C in Buffer #2 consisting 

of 10% 2-methyl-2,4-pentanediol, 40 mM sodium cacodylate (pH = 5.5), 20 mM cobalt 

hexamine, 80 mM sodium chloride, and 20 mM magnesium chloride. These crystals were 

cryoprotected by raising the concentration of MPD to 30% and subsequently picked from 

the drop with nylon loops and frozen in liquid N2. 

MAD data from a single duplex GNA crystal were recorded at beamline ID23-1, 

ESRF Grenoble.  After performing a fluorescence scan to determine the precise copper 

absorption edge in the crystal, data was collected at three wavelengths with separate 

scans for high and low resolution reflections.  All data was integrated and merged using 

XDS and phased by SHELXE and SHARP.  The initial map provided density that was 

unambiguous for all the bases and phosphates of the duplex, along with one copper ion 

per GNA strand. Automated and manual refinements were performed using REFMAC546 

and COOT.47 
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Figure A4.1.1.  1H NMR spectrum of compound 4.2 (500 MHz, CDCl3). 
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Figure A4.2.1.  1H NMR spectrum of compound 4.3 (500 MHz, CDCl3). 
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Figure A4.3.1.  1H NMR spectrum of compound 4.4 (500 MHz, CDCl3). 
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Figure A4.3.2.  13C NMR spectrum of compound 4.4 (125 MHz, CDCl3). 
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Figure A4.3.3.  IR spectrum of compound 4.4 (film). 
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Figure A4.4.1.  1H NMR spectrum of compound 4.5 (500 MHz, CDCl3). 

N

O

OH

OH

DMTrO 4.5



 293 

 

 
 
Figure A4.4.2.  13C NMR spectrum of compound 4.5 (90 MHz, CDCl3). 
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Figure A4.4.3.  IR spectrum of compound 4.5 (film). 
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Figure A4.5.1.  1H NMR spectrum of compound 4.7 (500 MHz, CDCl3). 
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Figure A4.6.1.  31P NMR spectrum of phosphoramidite (S)-HPiv (121 MHz, CDCl3). 
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Figure A4.7.1.  1H NMR spectrum of compound 4.8 (500 MHz, 373K, DMSO-d6). 
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Figure A4.7.2.  13C NMR spectrum of compound 4.8 (125 MHz, 373K, DMSO-d6). 
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Figure A4.7.3.  IR spectrum of compound 4.8 (film). 
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Figure A4.8.1.  31P NMR spectrum of phosphoramidite (S)-HDPC (121 MHz, CDCl3). 
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Figure A4.9.1.  1H NMR spectrum of compound 4.10 (500 MHz, CDCl3). 

O

O

O

4.10

O2N



 302 

 

 
 
Figure A4.10.1.  1H NMR spectrum of compound 4.11 (360 MHz, MeOD). 
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Figure A4.11.1.  1H NMR spectrum of compound 4.16 (500 MHz, CDCl3). 
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Figure A4.12.1.  1H NMR spectrum of compound 4.17 (500 MHz, CDCl3). 
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Figure A4.13.1.  1H NMR spectrum of compound 4.18 (500 MHz, CDCl3). 
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Figure A4.14.1.  1H NMR spectrum of compound 4.19 (500 MHz, CDCl3). 
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Figure A4.15.1.  31P NMR spectrum of phosphoramidite (S)-HNB (121 MHz, CDCl3). 
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Figure A4.16.1.  1H NMR spectrum of compound 4.21 (360 MHz, CDCl3). 
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Figure A4.16.2.  13C NMR spectrum of compound 4.21 (90 MHz, CDCl3). 
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Figure A4.16.3.  IR spectrum of compound 4.21 (film). 
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Figure A4.17.1.  1H NMR spectrum of compound 4.22 (360 MHz, CDCl3). 
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Figure A4.17.2.  13C NMR spectrum of compound 4.22 (75 MHz, CDCl3). 
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Figure A4.17.3.  IR spectrum of compound 4.22 (film). 
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Figure A4.18.1.  1H NMR spectrum of compound 4.25 (400 MHz, CDCl3). 
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Figure A4.18.2.  13C NMR spectrum of compound 4.25 (125 MHz, CDCl3). 
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Figure A4.18.3.  IR spectrum of compound 4.25 (film). 
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Figure A4.19.1.  1H NMR spectrum of compound 4.26 (400 MHz, CDCl3). 
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Figure A4.19.2.  13C NMR spectrum of compound 4.26 (100 MHz, CDCl3). 
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Figure A4.19.3.  IR spectrum of compound 4.26 (film). 
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Figure A4.20.1.  31P NMR spectrum of phosphoramidite (S)-P (162 MHz, CDCl3) 
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Chapter 5 
 

 

Crystallography of GNA duplexes 
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Chapter 5.1.  Derivatizing glycol nucleic acids for phasing crystallographic data 

 

The biggest challenge of solving de novo crystal structures is being able to figure 

out the problem of phasing the crystallographic data.  Like any other form of 

electromagnetic radiation, a focused beam of x-rays is scattered by its interaction with the 

electron clouds of individual atoms.  Unlike other forms of microscopy, which use lenses 

to refocus scattered visible light rays and produce an image, it is not possible to focus the 

scattered x-rays and produce an image.  Therefore, one needs different methods to 

recreate the molecular image from the diffraction pattern produced by shooting x-rays at 

a particular sample crystal.  For de novo crystal structure, one typically incorporates a 

heavy-atom into the structure of interest to produce phase estimates using the methods of 

isomorphous replacement and anomalous dispersion.  In this manner, computers can then 

be used to recreate an image of the crystallized molecule based on its diffraction pattern. 

In this respect, nucleic acid crystallography is no different from protein 

crystallography in that one must develop ways in which to solve the problem of phases.  

Although molecular replacement using duplex models may be seen as a general method 

in which to solve new structures, it does not always work with nucleic acid structures.  

Part of the reason for this may come from the fact that most of the structures of solved 

duplexes maintain similar sequences and it is possible that this set of structures is not 

representative of all geometries of double helices.1  Therefore, researchers must develop 

means in which to incorporate heavy atoms within the oligonucleotide in order to phase 

the data.  This is especially important when one has the task of solving a de novo nucleic 
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acid duplex structure which contains significant structural modifications, for instance of a 

nucleic acid with a sugar analog.  One of the simplest and most classical ways to 

incorporate heavy atoms is to use halogenated derivatives of the Watson-Crick 

nucleobases.  In this way, one merely needs to incorporate these nucleotides across from 

their Watson-Crick base pairing partner to form a derivatized duplex.  Another means to 

phase the crystallographic data is to incorporate heavy atoms in the crystallization buffer, 

or by soaking the pre-formed crystals with solutions containing metal cations capable of 

anomalous dispersion.  Unfortunately, this does not often produce crystals containing 

heavy metal cations at defined spots within the unit cell.  Recently, there has been a 

significant amount of research directed towards methods in which selenium is 

incorporated in nucleic acid duplexes by replacing a non-bridging atom with selenium in 

the phosphate linker (phosphoroselenoate),2,3 in the thymine and guanine nucleobases,4,5 

or the 2’-oxygen atom of the ribose sugar.6  Finally, there have been two reports in which 

researcher use artificial metal-mediated base pairs to site-specifically incorporate copper 

ions into a nucleic acid duplex to phase the crystallographic data.7,8 
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Chapter 5.1.1.  Synthesis of brominated nucleoside phosphoramidite derivates 

 

Along these lines, it was interesting to develop halogenated derivatives of 

nucleosides for phasing the crystallographic data of GNA duplexes.  For nucleic acid 

crystallography, the most commonly used derivatives are the 5-bromo derivatives of 

uracil and cytosine.  In this way, one only needs to synthesize the phosphoramidites of 

these modified nucleosides and incorporate them beside their Watson-Crick pairing 

partner since this modification should not affect the hydrogen bonding between the bases 

(Figure 5.1).  For GNA, the syntheses of (S)-BrU and (S)-BrC proceed in a similar manner 

as the other glycol nucleoside phosphoramidites.   
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Figure 5.1.  Comparison of the T•A and C•G Watson-Crick base pairs with the BrU•A 
and BrC•G base pair used in this study. 

 

 



 326 

For the synthesis of (S)-BrU, 5-bromouracil (5.1) and 0.2 equivalents of sodium 

hydride are used in the ring opening of compound 2.11 to produce compound 5.2 in 43% 

yield (Scheme 5.1).  Compound 5.2 is then converted to the phosphoramidite (S)-BrU 

using 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (2.10) and excess N,N-

diisopropylethylamine in 78% yield. 
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Scheme 5.1.  Synthesis of (S)-BrU phosphoramidite. 

 

An initial attempt at the synthesis of (S)-BrC started with the ring opening of 

compound 2.11 using 5-bromocytosine (5.3) and 0.2 equivalents of sodium hydride to 

produce compound 5.4 in 60% yield (Scheme 5.2).  Similar to the reactions used to 

protect the exocyclic amines of adenine and guanine, compound 5.4 was first reacted 

with trimethylsilyl chloride (2.5) in pyridine and then with benzoyl chloride (2.14) in an 

attempt to make compound 5.5.  Unfortunately, 1H NMR indicated several inseparable 

products.  Therefore, an alternate route was envisioned starting with an acetyl protected 

version of 5-bromocytosine, compound 5.6.  Accordingly, 5-bromocytosine was reacted 

with acetic anhydride (2.28) in DMF to produce compound 5.6 in 97% yield (Scheme 
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5.3).  Ring opening of compound 2.11 using compound 5.6 and 0.2 equivalents of sodium 

hydride proceeds, albeit poorly, to the formation of compound 5.7 in 12% yield.  A major 

side product of this reaction is the ring-opened product that has lost the acetamide 

protection group, compound 5.4.  Further reaction of compound 5.7 with 2-cyanoethyl 

N,N-diisopropylchlorophosphoramidite (2.10) and excess N,N-diisopropylethylamine 

affords compound (S)-BrC in 78% yield.  Unfortunately, this phosphoramidite was not 

completely pure after flash chromatography, indicating sensitivity towards silica gel, 

however, it was used as such for oligonucleotide synthesis. 
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Scheme 5.2.  Attempted synthesis of (S)-BrC phosphoramidite. 
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Scheme 5.3.  Synthesis of (S)-BrC phosphoramidite. 

 

Based on the disappointing yields for the synthesis of (S)-BrC, an improved route 

was developed based on the success of using amidine protection of exocyclic amines of 

the phosphoramidites (S)-A* and (S)-G*.9  Compound 5.3 was first reacted with 

dimethylformamide dimethylacetal (2.40) in methanol to afford compound 5.8 in 98% 

yield (Scheme 5.4).  This reaction proceeds in only one hour and without side products 

allowing it to be purified quickly via a simple filter column.  Compound 5.8 could then 

be converted to the phosphoramidite (S)-BrC* using 2-cyanoethyl N,N,N’,N’-

tetraisopropylphosphordiamidite (2.42) and 0.7 equivalents of 4,5-dicyanoimidazole 
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(2.43) in 77% yield.  Unlike its counterpart using acetyl protection (S)-BrC, (S)-BrC* is 

completely stable towards flash chromatography and the product could be isolated 

without any side products.  Furthermore, the route towards (S)-BrC* proceeds with an 

overall yield of 45% in three steps versus an overall yield of 9% in three steps for the 

corresponding (S)-BrC, rendering the former a superior synthetic scheme. 
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Scheme 5.4.  Synthesis of (S)-BrC* phosphoramidite. 

 

 The stabilities of phosphoramidites (S)-BrU and (S)-BrC* were very similar to 

other phosphoramidites of GNA nucleosides and could be handled in the same manner.  

During their synthesis, no sensitivity towards ambient ultraviolet light was observed, a 

common concern of working with halogenated derivatives.   
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Chapter 5.1.2.  Phosphoroselenoate derivatives of GNA oligonucleotides 

 

Another means of derivatizing nucleic acids for crystallographic phasing is by the 

formation of a phosphoroselenoate linkage in the backbone.10-12  Selenium has been used 

in this manner, in addition to selenated derivatives of nucleosides, to phase 

crystallographic data of DNA duplexes.2-6  The phosphoroselenoate differs from the 

phosphate linkage in that one of the non-bridging oxygen atoms is replaced by a selenium 

atom, therefore providing a handle to phase the crystallographic data.  In this manner, the 

modification is introduced during oligonucleotide synthesis, avoiding the tedious work of 

synthesizing individual phosphoramidite derivatives.  Accordingly, phosphoroselenoate 

GNA could be synthesized similar to published procedures which uses potassium 

selenocyanate as a selenium source.2,3,10,12  During oligonucleotide synthesis, the process 

is interrupted between the coupling and capping steps of the desired linkage leaving a 

phosphorus(III) intermediate (Scheme 5.5).  The synthesis column was then oxidized 

with selenium by incubating with a saturated solution of KSeCN in 95:5 

acetonitrile:triethylamine instead of the normal iodine and water, thereby producing the 

phosphoroselenoate linkage.  After washing with acetonitrile and manual capping, the 

synthesis column is returned to the oligonucleotide synthesizer to continue extension of 

the sequence.  Oligonucleotides were then deprotected in a normal fashion using 25% 

aqueous ammonium hydroxide at 55ºC, purified using reverse phase HPLC in “Trityl 

ON” mode, the trityl group cleaved, and the subsequent crude oligo further purified using 

reverse phase HPLC.  An example crude HPLC trace is shown in Figure 5.2 in which a 
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phosphoroselenoate linkage was incorporated between the first and second nucleotides of 

the sequence 3’-APSeTGCGCAT-2’.  It should be noted that oxidizing with selenium 

produces an oligonucleotide mixture composed of two diastereomers, resulting from the 

newly established chiral phosphorus atom and the presence of the chiral center in the 

dihydroxypropyl backbone.  Surprisingly, these two diastereomers were separated quite 

easily using reverse phase HPLC. 
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Scheme 5.5.  Overview of the procedure for synthesizing GNA oligonucleotides 
containing phosphoroselenoate linkages.  
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Figure 5.2.  Crude HPLC trace of the GNA oligonucleotide 3’-APSeTGCGCAT-2’.  The 
peak at 19.9 minutes represents the n-1 product.  The peak at 23.1 minutes represents the 
GNA oligo containing all phosphate linkages.  The peaks at 24.6 and 26.7 minutes 
represent the two diastereomers resulting from the phosphoroselenoate linkage.  The 
crude oligo was eluted using a Waters Xterra column (MS C18, 4.6 x 50 mm, 2.5 µM 
particle size) at room temperature with a linear gradient (flow = 1.0 mL/min) from 5-15% 
acetonitrile in 40 minutes and 95-85% aqueous tritethylammonium acetate buffer (50 
mM, pH=7.0). 

 

 

Although this method was successful in introducing the phosphoroselenoate 

linkage, an improved procedure was desired based on the toxicity and low solubility of 

KSeCN, making it difficult to work with.  Furthermore, KSeCN has a low reactivity, the 

most likely cause for the formation of a significant peak for the n-1 product; in the case 

of Figure 5.2, the oligonucleotide 3’-TGCGCAT-2’.  Therefore, another procedure was 

followed which describes the use of triphenylphoshine selenide as the selenium source 

for oxidation of the phosphorus(III) intermediate.11,13  Similar to the procedure using 

KSeCN, oligonucleotide synthesis is again halted after coupling of the phosphoramidite 
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to the growing chain.  The solid support is transferred from the synthesis column to a 

screw cap vial and then incubated with a 25 mM solution of PPh3Se in methylene 

chloride.  Afterwards, the solid support was washed once with methylene chloride, 

transferred back to the synthesis column, manually capped on the synthesizer, and then 

the extension of the oligonucleotide was continued in a normal fashion.  Deprotection and 

“Trityl ON” purification were performed normally and the crude GNA oligos purified via 

reverse phase HPLC.  In this manner, a phosphoroselenoate linkage was incorporated in 

six out of the seven possible position of the sequence 3’-CTCTAGAG-2’ and four of the 

five positions of 3’-GCGCGC-2’.  An example HPLC trace of the crude oligonucleotide 

mixture using this method of selenium oxidation is shown in Figure 5.3 demonstrating 

the high yield of selenium incorporation in most cases.  Incorporation between the 

seventh and eighth nucleotides proceeded poorly (3’-CTCTAGAPSeG-2’), resulting in 

very little phopshoroselenoate product.  It was never attempted to oxidize between the 

fifth and sixth nucleotides of the 6-mer sequence (3’-GCGCGPSeC-2’) based on the poor 

results with the 8-mer sequence.  Again, reverse phase HPLC afforded separation of the 

two diastereomers, albeit to different extents as demonstrated in Figure 5.4. 
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Figure 5.3.  Crude HPLC trace of the GNA oligonucleotide 3’-CTCPSeTAGAG-2’.  The 
peak at 24.7 minutes represents the GNA oligo containing all phosphate linkages.  The 
peaks at 28.4 and 29.7 minutes represent the two diastereomers resulting from the 
phosphoroselenoate linkage.  The crude oligo was eluted using a Waters Xterra column 
(MS C18, 4.6 x 50 mm, 2.5 µM particle size) at 50 °C with a linear gradient (flow = 1.0 
mL/min) from 2-6% acetonitrile in 40 minutes and 98-94% aqueous tritethylammonium 
acetate buffer (50 mM, pH=7.0).  
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Figure 5.4.  Crude HPLC trace of GNA oligonucleotides functionalized using a 
phosphoroselenoate linkage demonstrating the differences in separation ability of the two 
diastereomers.  a) GNA oligonucleotide 3’-GCPSeGCGC-2’.  The peak at 12.8 minutes 
represents the GNA oligo containing all phosphate linkages.  The peaks at 14.6 and 16.9 
minutes represent the two diastereomers resulting from the phosphoroselenoate linkage.  
b) GNA oligonucleotide 3’-GCGCPSeGC-2’.  The peak at 12.9 minutes represents the 
GNA oligo containing all phosphate linkages.  The peaks at 14.4 and 14.8 minutes 
represent the two diastereomers resulting from the phosphoroselenoate linkage.  The 
crude oligos were eluted using a Waters Xterra column (MS C18, 4.6 x 50 mm, 2.5 µM 
particle size) at 60 °C with a linear gradient (flow = 1.0 mL/min) from 1-7% acetonitrile 
in 30 minutes and 99-93% aqueous tritethylammonium acetate buffer (50 mM, pH=7.0). 

 

 

Although this new method of selenium incorporation proceeds with high yield 

and results in two phosphoroselenoate diastereomers to be tested for crystallography, the 

stability of these oligos is poor and more prone to oxidation compared to a normal 

phosphate linkage.  This is consistent with previous results from Egli in which 
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phosphoroselenoate derivatives of DNA had low stability under normal conditions and 

acceptable phasing data could only be collected in the time period of one week between 

crystallization and data collection.3  From our experience, phosphoroselenate derivatives 

of GNA oligonucleotides are stable to all conditions during oligonucleotide synthesis, 

deprotection, and HPLC purification.  However, it seems as though decomposition occurs 

during concentration of the freshly purified samples.  It is uncertain whether this 

decomposition occurs because of effects during the concentration of the 

triethylammonium acetate buffer (i.e. – differential evaporation of the triethylamine and 

acetic acid components) or from the manner in which the oligos are concentrated.  

Lyphilization under high vacuum of the oligos was also used in comparison to 

evaporation under low vacuum with centrifugation, but provided mixed results as far as 

the stability of the phosphoroselenoate linkage.  Our inability to obtain pure, unoxidized 

samples of phosphoroselenoate derivatives resulted in our disinterest with this method of 

phasing the crystallographic data.  It may be possible that selenium derivatives of 

nucleosides are more stable towards oxidation and are more interesting for the phasing of 

nucleic acid duplexes.4,5 
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Chapter 5.2.  Crystallographic conditions 

 

The purification of GNA oligonucleotides to be used for crystallography was 

generally followed by desalting over Sep-Pak C18 columns.  This allowed for the removal 

of any residual buffer and/or any excess metal cations.  For some sequences, this process 

was found to be more important than in others.  For example, crystals of  

3’-ATGCGCAT-2’ (MKS42) could only be grown in conditions using cobalt hexamine 

after desalting over Sep-Pak columns.  Even though crystals usually developed in other 

conditions not containing cobalt hexamine, the highest quality crystals (for all GNA 

oligos) were observed in the buffers that contained the hexamine salt.  After desalting, the 

oligonucleotide was concentrated and then redissolved in enough water to make a 1-2 

mM stock solution.  The concentration was also found to be an important parameter.  For 

example, in some cases increasing the concentration to 2 mM produced crystals whereas 

no crystals appeared with a concentration of 1 mM.  The stock solution was finally 

filtered to remove any small, insoluble particles. 

Since crystallization set-ups were all performed at 4 °C, the stock solution of the 

oligo was placed in the 4 °C cold room for several hours prior to use to make sure the 

GNA oligonucleotide solution was equilibrated.  Furthermore, the crystallization buffers 

were also equilibrated (generally stored in the cold room) at 4 °C overnight to ensure 

little temperature fluctuation during the crystallization set-up.  The hanging drop vapor 

diffusion method was initially used for crystallization, but was later switched to sitting 

drop vapor diffusion based on the greater ease during set-up.  It was found that almost 
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identical results were obtained with both methods.  Crystallization buffers were obtained 

by using the Nucleic Acid Mini Screen (Hampton Research, HR2-118).  This screen 

consists of 24 buffers with differing pH, salt, and polyamine conditions (Table 5.1).  The 

GNA oligonucleotide sample (2 µL) was then mixed with these buffers (4 µL) and 

equilibrated against a well of 35% 2-methyl-2,4-pentanediol (MPD, 1 mL) after the plate 

was sealed with clear, transparent tape.   

Table 5.1.  Formulation of the Nucleic Acid Mini Screen (Hampton Res.) 
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Crystals generally appeared within 1-2 weeks and they were subsequently picked 

from the drop using nylon loops after raising the concentration of MPD (for 

cryoprotection) in the buffer to 30%.  The optimal cryoprotectant concentration of 30% 

was obtained by freezing samples of buffer containing different concentrations of MPD 

and picking the optically best looking condition.  Initial crystal quality was judged by the 

size and shape of the growing crystals.  In general, crystals of GNA oligonucleotides 

were square shaped or long rectangular rods with a plate like appearance.  The crystals 

were then frozen and stored under liquid nitrogen until data collection. 
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Chapter 5.3.  Structure of the GNA duplex 3’-GCGCGC-2’ 

 

The most recent crystal structure of a GNA oligonucleotide was solved using the 

self-complementary brominated derivative 3’-GBrCGCGC-2’.  Initially, diffraction 

quality crystals of the self-complementary sequence 3’-GCGCGC-2’ (MKS5) were 

obtained from condition #20 of the Nucleic Acid Mini Screen and provided diffraction 

data that could be processed up to 1.20 Å.  After this initial data was collected, the native 

sequence was derivatized using both bromine and selenium in an attempt to phase the 

data (see Table 5.2).  Incorporating selenium via a phosphoroselenoate linkage into the 

structure proved to be trivial.  However, as stated above, this linkage was unstable and 

prone to oxidation.  Therefore, we focused on incorporating the bromo-cytosine glycol 

nucleotide into the sequence to phase the crystallographic diffraction data.  Crystals were 

obtained for both sequences 3’-GCGBrCGC-2’ (MKS118) and 3’-GBrCGCGC-2’ 

(MKS132), albeit in different crystallization conditions.   
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Table 5.2.  GNA oligos synthesized to solve the structure of 3’-GCGCGC-2’ 

Name Sequence Molecular Weight Outcome 

MKS5/MKS153 3’-GCGCGC-2’ 1541 
Data set collected 

up to 1.2 Å 

MKS141 3’-GPSeCGCGC-2’ 1604 Only synthesized 

MKS140 3’-GCPSeGCGC-2’ 1604 Only synthesized 

MKS139 3’-GCGPSeCGC-2’ 1604 Only synthesized 

MKS138 3’-GCGCPSeGC-2’ 1604 Only synthesized 

MKS118/MKS131 3’-GCGBrCGC-2’ 1620 
Crystals obtained, 
poor diffraction 

MKS119/MKS132 3’-GBrCGCGC-2’ 1620 Structure solved 

 
 

 

Initially, MKS118 provided the nicest looking crystals in similar crystallization 

conditions (containing spermine as the polyamine) as the native MKS5.  Unfortunately, 

the data did not provide very high resolution diffraction (up to 2.6 Å) and it was not 

adequate to generate phases to solve the structure.  Thereafter, crystals of the sequence 

3’-GBrCGCGC-2’ (MKS132) were obtained in a crystallization condition containing 

cobalt hexamine as the polyamine providing diffraction data up to 0.97 Å.14  Several data 

sets were collected at the bromine absorption edge using separate scans for high and low 

resolution which allowed us to solve the structure using SAD phasing.  The electron 

density generated provided unambiguous density for all six nucleotides, 48 water 

molecules, and three cations (see appendix for complete crystallographic data).  

Hexagonal packing is mediated by both cobalt hexamine cations and the interaction of 

bromines between adjacent duplexes (Figure 5.5). 
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Figure 5.5.  Packing contacts between duplexes in the crystal structure of  
3’-GBrCGCGC-2’.  Bromine atoms are highlighted in green and are separated by 3.64 
angstroms.  A single, cobalt (pink) hexamine molecule taking on two conformations in 
the crystal is shown in the middle.   
 

 

The overall structure (Figure 5.6) of this right-handed (S)-GNA double helix 

(from now on referred to as Type N) resembles that of a previously reported (S)-GNA 

double helix containing an artificial hydroxypyridone base pair (from now on referred to 

as Type M),8 but differs significantly from the canonical A- and B-form nucleic acid 

helices.  A comparison of the two (S)-GNA helices shows that the Type N helix is 

compressed along the z-axis relative to the Type M helix (Figure 5.6).  Although this 

compression is accompanied by very little change in the helix diameter, it causes the 

Type N helix to adopt a shallower pitch of 26 Å with 10 residues per turn versus 60 Å 

with 16 residues per turn for the Type M helix (Table 5.3).  This also forces the 
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phosphates of opposing strands to be closer in the crystal as it wraps around the helix 

axis.  Furthermore, the base pairs of the Type N helix are displaced from the helix axis 

(x-displacement) by 5.4 to 6.8 Å, resulting in a large circular hollow core similar to the 

Type M helix.  Since the x-displacements are more regular for the Type N helix, the 

hollow core is circular rather than oblong as in the Type M helix which has greater 

variance of x-displacement values (from 5.1 to 8.6 Å).  Also consistent with the Type M 

structure, the Type N (S)-GNA helix possesses one groove, corresponding to the 

canonical minor groove, and lacks a major groove, which is instead a convex surface. 

 

 

Figure 5.6.  Overall structures of (a) Type N and (b) Type M8 GNA oligonucleotide 
helices with the length of a single duplex turn highlighted.  Figure generated using 
PyMOL. 

26 Å 

a) 

60 Å 

b) 

Type N Helix 

Type M Helix 
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Table 5.3. Comparison of Average Helical Parameters for (S)-GNA, 

B-DNA, and A-DNA 

 
(S)-GNA 
Type M[a] 

(S)-GNA 
Type N[a] 

B-DNA[b] A-DNA[b] 

Helical sense right right right right 

Residues per turn 16 10 10 12 

Helical pitch (Å) 60 26 34 34 

Helical rise (Å) 3.8 2.6 3.4 2.9 

x-displacement (Å) -7.0 -6.0 0.1 -4.2 

Tilt(°)b 0.0 0.5 0.1 -0.1 

Roll (°)b -2.7 6.4 0.6 8.0 

Twist (°)b 23.5 35.7 36.0 31.0 

Slide (Å)b -3.5 -3.4 0.2 -1.5 

P-P distance (Å)c 5.4 5.4 7.0 5.9 

[a] Data for GNA were calculated using the program CURVES15,16. Data 
for B-DNA and A-DNA were taken from published values.17,18.  [b] Local 
base pair step parameters.  [c] Intrastrand P-P distances. 

 

 

All base pairs are engaged in standard Watson-Crick hydrogen bonding patterns 

with the 5-bromocytosine nucleotide appearing to have little, if any, distorting effect.  

The distances between C1’-C1’ carbons range from 10.71 to 10.85 Å which is in 

agreement for average values found in DNA duplexes (10.85 Å) and with the values 

previously reported for Watson-Crick base pairs in the Type M (S)-GNA 8-mer duplex.  
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Similar to the Type M GNA structure, the propylene glycol nucleotides adopt two 

different conformations with respect to the torsional angles between C3’-O and C2’-O 

(Figure 5.7).  In contrast to the Type M structure in which all of the nucleotides involved 

in Watson-Crick base pairs maintain a gauche conformation, the nucleotides in the Type 

N structure adopt alternating gauche and anti conformations with average torsional 

angles γ of -66° and -174°, respectively.  This also results in the opposing nucleotide of 

the Watson-Crick base pair to adopt the opposite conformation in the self-complementary 

duplex.  Consistent with the Type M structure, and also what one would expect for such a 

simplified backbone, the average intrastrand phosphate distance of 5.4 Å is quite short 

compared to A- and B-form helices.  Another interesting feature of the Type N GNA 

duplex is the large average slide between neighboring base pairs of 3.4 Å, resulting from 

the large backbone inclination ranging from -46º to -53º (see Figure 5.7).3  Similar to the 

Type M structure, this results in extensive interstrand base-stacking interactions and 

almost a complete absence of intrastrand base stacking, the major form in A- and B-form 

nucleic acids.  Furthermore, this causes the C1’-H2 group of the propylene glycol 

backbone to participate in packing interactions with nucleotides of the same strand.   
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Figure 5.7.  Structure of a single duplex of 3’-GBrCGCGC-2’ (a) and electron density of 
the 3’-terminal glycol nucleotides (b) at 1.5 sigma.  Figure generated using PyMOL. 

 

 

Finally, the high resolution of this structure allows us to determine for the first 

time accurate bond lengths, torsional angles, and phosphate bond lengths and angles.  

This is important for generating a more accurate stereochemical library to describe GNA 

nucleotides in crystal structures.14  For example, Table 5.4 shows the torsional angles for 

the GNA nucleotides in this new structure.  The bond angles of the phosphate-oxygen 

bonds of each phosphate group determined solely from the electron density are shown in 

Table 5.5.  These were obtained by refining the structure without any restraints on the 

bond angles, therefore allowing us to determine the values very accurately from the 

crystallographic data.  The phosphate bond angles after refinement using the newly 

generated stereochemical library are also shown in parentheses in Table 5.5, 

anti 

anti 

gauche 

gauche 

anti 

gauche 

a) b) 
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demonstrating the similarity between the unrefined and refined values for these bond 

angles.  This will serve as the basis for solving and refining additional GNA duplex 

structures of different sequences and length in order to gain further insight into the 

exceptional duplex formation abilities of this minimal nucleic acid backbone. 

 

Table 5.4. Backbone torsional angles.[a] 

Nucleotide α β γ δ ε ζ η 

G-1   -63 -97 -72 -65 -89 

BrC-2 -171 -151 -178 -92 -68 -56 -76 

G-3 149 152 -68 -103 -95 -67 -91 

C-4 -170 -119 -173 -109 -44 -62 -81 

G-5 127 146 -68 -89 -76 -63 -87 

C-6 -112 178 171   -59 -86 

[a] Measured in the 3’ to 2’ direction (S)-GNA

O

BO

O

PO
-O

BO

3'
2'

1'

α

β
γ

δ

ε

ζ
η
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Table 5.5. Phosphate bond angles.
[a]
 

Linkage 
O3G-P-

O2G 
O3G-P-

O1P 
O3G-P-

O2P 
O1P-P-

O2P 
O2G-P-

O1P 
O2G-P-

O2P 

G-1 – BrC-2 
99.1 

(99.6) 
109.5 

(107.0) 
111.7 

(112.1) 
114.4 

(116.3) 
107.5 

(108.8) 
113.5 

(111.7) 

BrC-2 – G-3 
100.3 

(100.4) 
111.6 

(105.8) 
110.3 

(110.5) 
116.8 

(117.1) 
105.1 

(111.5) 
111.4 

(110.2) 

G-3 – C-4 
99.9 

(100.0) 
110.8 

(107.5) 
110.9 

(111.4) 
114.1 

(116.7) 
107.8 

(109.9) 
112.4 

(110.1) 

C-4 – G-5 
103.0 

(103.6) 
105.3 

(100.6) 
108.7 

(108.0) 
129.3 

(126.1) 
99.3 

(107.0) 
108.3 

(109.2) 

G-5 – C-6 
104.7 

(104.0) 
111.6 

(107.8) 
107.4 

(110.1) 
113.7 

(114.0) 
106.5 

(111.1) 
112.6 

(109.4) 

[a] Determined by refining the structure with no restraints on bond angles.  Bond 
angles after refinement using the new stereochemical library shown in 
parentheses. 

 

With this new crystal structure in hand, it was interesting to attempt to solve the 

structure of the native sequence 3’-GCGCGC-2’ (MKS5) via molecular replacement.  

Unfortunately, all attempts at molecular replacement failed, providing electron density 

that was poorly defined with respect to the model.  This may be due to differences in the 

crystal forms, or the high crystallographic B factor of 64.5 Å2 observed in the data (see 

appendix for complete crystallographic data).  However, the overall structure is likely to 

be very similar owing to the fact that the 5-bromocytosine derivative is only a minimal 

perturbation of the native structure.  Figure 5.8 shows the similar shapes of the CD 

spectra of the bromo-derivative (MKS132) and the native (MKS5) GNA duplex, 

confirming that the secondary structure of this bromo-derivative is similar to that of the 

native. 
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Figure 5.8.  CD spectra of the self-complementary GNA duplexes 3’-GCGCGC-2’ 
(MKS5) and 3’-GBrCGCGC-2’ (MKS132) at a duplex concentration of 20 µM.  
Measurements were performed in 10 mM sodium phosphate buffer (pH=7.0) with 100 
mM sodium chloride at 15˚C.  Each curve is the average of five measurements. 
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Chapter 5.4.  Structure of the GNA duplex 3’-CTCTAGAG-2’ 

 

The second solved crystal structure of a GNA duplex was accomplished using a 

bromo-uracil derivatized glycol nucleotide (BrU) for phasing.  Initially, diffraction quality 

crystals (long rods) were obtained with the native sequence 3’-CTCTAGAG-2’ and a 

data set was subsequently collected with diffraction up to 2.0 Å.  At this point, several 

different GNA oligonucleotides were synthesized in an attempt to obtain phases for 

solving this structure.  Both bromo-uracil derivatives, 3’-CBrUCTAGAG-2’ (MKS79) 

and 3’-CTCBrUAGAG-2’ (MKS80), were synthesized and screened for their 

crystallization properties (see Table 5.6).  Fortunately, similar looking crystals were 

obtained under the same crystallization conditions for the sequence 3’-CTCBrUAGAG-2’ 

(MKS80) allowing for the collection of several data sets for MAD phasing.  The data was 

processed and scaled in two different space groups, with the ultimate choice of I4122.   

The initial map for the structure 3’-CTCBrUAGAG-2’ provided clear electron 

density for the backbone and all eight base pairs (see appendix for complete 

crystallographic data).  During refinement of the structure, there was a significant portion 

of spherical electron density which resembled a duplex type structure.  Unfortunately, the 

density could not be accommodated by either the oligonucleotide, or any components of 

the crystallization buffer.  It was suspected that this density was the result of data 

collected on twinned crystals, however, all attempts with data manipulation to solve this 

problem failed.  Therefore, we decided that although the data could not be refined to 
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provide good statistics, the electron density provided a model for the GNA duplex 

structure which should still be representative of the crystallized structure. 

 

Table 5.6.  GNA oligos synthesized to solve the structure of 3’-CTCTAGAG-2’ 

Name Sequence Molecular Weight Outcome 

MKS22 3’-CTCTAGAG-2’ 2073 Solved structure 

MKS79 3’-CBrUCTAGAG-2’ 2138 Crystals obtained 

MKS80 3’-CTCBrUAGAG-2’ 2138 Solved Structure 

MKS76 3’-CPSeTCTAGAG-2’ 2136 Only synthesized 

MKS75 3’-CTPSeCTAGAG-2’ 2136 Only synthesized 

MKS74/MKS95 3’-CTCPSeTAGAG-2’ 2136 

Best separation of 
diastereomers, 

structure solved 
w/first diastereomer 

MKS73 3’-CTCTPSeAGAG-2’ 2136 Only synthesized 

MKS72 3’-CTCTAPSeGAG-2’ 2136 Only synthesized 

MKS71 3’-CTCTAGPSeAG-2’ 2136 Only synthesized 

MKS70 3’-CTCTAGAPSeG-2’ 2136 Poor synthesis 

 
 

 

The structure of this GNA duplex formed from the self-complementary strand 3’- 

CTCBrUAGAG-2’ is shown in Figure 5.9.  The helix is similar to a Type N helix, having 

an approximate pitch of 28 Å and approximately 10 residues per turn (obtained from 

modeling).  Duplexes are stacked end-to-end, but have a staggered conformation rather 

than forming a continuous helix within the crystal.  The helices are packed in a cubic 

fashion with the bromine atoms creating close contacts between neighboring duplexes 

(Figure 5.10).  All base pairs are engaged in standard Watson-Crick base pairing with the 
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5-bromouracil appearing to have little distorting effect to the overall structure.  The C1’-

C1’ distances range from 10.48-10.78 Å with an average of 10.63 Å for this duplex.  

Consistent with the previous Type N duplex, the nucleotides adopt alternating gauche 

and anti conformations, with average torsional angles γ of -56° and -167°, respectively.  

Finally, as with the 6-mer duplex structure, this duplex is also characterized by the large 

slide between neighboring base pairs resulting in mostly interstrand stacking, the packing 

of the propylene glycol backbone C1’-H2 against the neighboring nucleobase, and the 

short distance between intrastrand phosphates. 

 

  
 

Figure 5.9.  Structure of a single duplex of 3’-CTCBrUAGAG-2’ (a) and electron density 
of the center two glycol nucleotides (b) at 1.5 sigma.  Figure generated using PyMOL. 
 

a) b) 
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Figure 5.10.  Packing contacts between two duplexes in the crystal structure of  
3’-CTCBrUAGAG-2’.  Bromine atoms are highlighted in green and are separated by 3.66 
angstroms. 

 

 

During the same time the structure of the brominated derivative (MKS80) was 

being solved, phosphoroselenoate derivatives were also being used in an attempt to 

obtain phase information.  Table 5.6 shows that six phosphoroselenoate derivatives of 

this sequence were synthesized, however, the sequence 3’-CTCPSeTAGAG-2’ (MKS74) 

was ultimately pursued for crystallography based on the ease in which the two 

diastereomers could be separated.  As mentioned previously, the phosphoroselenoate 

linkage is slightly unstable in GNA, making it difficult to obtain pure material for 

crystallography.  Nonetheless, a sufficiently pure sample of each diastereomer of MKS74 

was obtained and crystals developed for the first diastereomer, MKS74-1, in similar 

conditions to the native (also containing cobalt hexamine as the polyamine).  Data was 

collected on a single crystal at three different wavelengths after a fluorescence scan to 
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determine the precise selenium absorption edge (see appendix for complete 

crystallographic data).  Unfortunately, the data did not provide a strong enough 

anomalous signal for phasing the data.  However, since these two duplexes crystallized in 

the same space group with very similar cell constants, we were able to solve the structure 

via molecular replacement.  There are very few differences between the structures of 

MKS80 and MKS74-1, but an anomalous density difference map calculated for these two 

data sets clearly shows the strong density for the selenium atom in the 

phosphoroselenoate backbone of MKS74-1 (Figure 5.11).  Furthermore, it demonstrates 

that the crystallized diastereomer was the one with an (R)- configuration around the 

phosphate. 

 

 

Figure 5.11.  Anomalous difference density map at 5.0 sigma for peak data of 3’-
CTCPSeTAGAG-2’ using phases from the brominated derivative (MKS80).  Figure 
generated using PyMOL. 
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As with the solved 6-mer (MKS132) structure, having a good model for the 

structure of 3’-CTCBrUAGAG-2’ was also advantageous for attempts at molecular 

replacement of the native structure, 3’-CTCTAGAG-2’ (MKS22).  Fortunately, these two 

GNA oligonucleotides crystallized in the same condition with the same space group and 

similar cell constants.  This allowed us to simply perform molecular replacement by 

doing a refinement using the structure of 3’-CTCBrUAGAG-2’ and the processed data for 

MKS22.   A clear solution emerged, providing the structure of 3’-CTCTAGAG-2’ and 

acceptable electron density (see appendix for complete crystallographic data).  However, 

as with the brominated derivative MKS80, the solution suffers from the presence of 

unknown helical electron density, making the refinement to provide good statistics 

difficult.  In spite of this, the data provides a clear picture of the native duplex which is 

almost identical to the MKS80 duplex (Figure 5.12a).  Furthermore, as also shown in 

Figure 5.12b, these two duplexes adopt a similar conformation to the high resolution 

structure of 3’-GBrCGCGC-2’ (MKS132), demonstrating the validity of these models. 
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Figure 5.12.  Superimposed models of: a) The structure of MKS80 (red) and MKS22 
(blue).  b) The structure of MKS80 (red) and MKS132 (green).  Figures generated using 
PyMOL. 

a) b) 
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Chapter 5.5.  Structure of the GNA duplex 3’-ATGCGCAT-2’ 

 

 Another self-complementary GNA duplex, 3’-ATGCGCAT-2’ (MKS42), 

provided diffraction quality crystals in many different conditions.  The best diffracting 

crystals (square plates) were only obtained when cobalt hexamine was included in the 

crystallization buffer as has been previously observed with other sequences.  Data was 

collected up to 2.00 Å for these crystals and processed in the P212121 spacegroup.  

Thereafter, many different GNA oligonucleotide derivatives were synthesized in an 

attempt to collect phase information.  Both oligonucleotides containing bromo-uracil, 

both containing bromo-cytosine, and one phosphorselenoate derivative were synthesized 

as shown in Table 5.7.  Although crystals were obtained for all five of these derivatives, 

none of them provided diffraction with sufficient quality for solving the structure. 

 

Table 5.7.  GNA oligos synthesized to solve the structure of 3’-ATGCGCAT-2’ 

Name Sequence Molecular Weight Outcome 

MKS39/MKS42 3’-ATGCGCAT-2’ 2073 
Solution generated 

using MR 

MKS52/MKS121 3’-ABrUGCGCAT-2’ 2138 Crystals obtained 

MKS116/MKS134 3’-ATGBrCGCAT-2’ 2152 Crystals obtained 

MKS115/MKS133 3’-ATGCGBrCAT-2’ 2152 Crystals obtained 

MKS54/MKS122 3’-ATGCGCABrU-2’ 2138 Crystals obtained 

MKS60 3’-APSeTGCGCAT-2’ 2136 Crystals obtained 
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At the time, based on the recently solved crystal structure of the 8-mer duplexes 

with the general sequence 3’-CTCTAGAG-2’, molecular replacement was used in an 

attempt to solve the crystal structure of 3’-ATGCGCAT-2’.  An initial search model 

based on the crystal structure of MKS80 was generated by simply reconstructing the 

appropriate base pairs.   Molecular replacement with two duplexes per asymmetric 

symmetry unit provided an initial map with electron density for all phosphates and all but 

one terminal adenine of this duplex (see appendix for complete crystallographic data).  

The density of the propylene glycol backbone is absent in some cases, rendering this only 

an approximate structural solution.  However, each strongly diffracting phosphate group 

is represented by prominent electron density in the map.  This results in data that does not 

provide brilliant statistics, but nonetheless gives us more structural insight and a model 

for this sequence 3’-ATGCGCAT-2’. 

 The structural model for the self-complementary GNA duplex 3’-ATGCGCAT-2’ 

is shown in Figure 5.12.  One can observe, again, that the main features associated with 

GNA duplexes are present in this structure.  These include a large x-displacement of the 

base pairs from the helix axis, strong interstrand stacking, and an alternation between an 

anti and gauche conformation of the propylene glycol backbone.  As noted above, the 

electron density of the backbone is absent in some cases, so the backbone conformations 

cannot be assigned definitively for each case and the alternating conformation may just 

be representative of bias towards the model used for molecular replacement.  

Unfortunately, since the electron density for all non-hydrogen atoms is not present for 

this structure, one can not gain a whole lot of insight from it.  The poor electron density 
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may be due to inherent disorder in the crystal based on the high crystallographic 

temperature factor (BWilson) of 38.3 Å2.  This also manifests itself during refinement, with 

an average B-factor of 58.7 Å2. 

 

 

Figure 5.13.  Structure of a single duplex of 3’-ATGCGCAT-2’ missing one terminal 
adenine nucleotide (a) and electron density of the terminal two nucleotides (b) at 1.5 
sigma.  Figure generated using PyMOL. 
 

a) b) 
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Chapter 5.6.  Conclusions 

 

Significant progress has been made in the crystallography of glycol nucleic acid 

duplexes.  Unfortunately, progress has been slow because of the inherent phase problem 

that comes with solving de novo crystal structures.  In most cases, it was not an issue of 

being able to obtain crystals, as can be shown by the number of data sets that have been 

collected over the past couple of years.  Some of the crystals were of poor quality, 

rendering solution of the structure difficult, but optimization of the crystallization 

conditions would easily solve this issue.  However, the development of the 5-

bromocytosine (BrC*) and 5-bromouracil (BrU) phosphoramidites have allowed us to gain 

increased structural insight into the nucleic acid duplexes formed by GNA.  There are 

mixed reports as to whether bromine derivatives of nucleotides have a significant impact 

on the ability of nucleic acid duplexes to crystallize.1,19-21  From our experience the 

crystallization behavior of the bromine derivatives varied depending on the sequence.  

However, close inspection of the two crystal structures solved using bromo-derivatives 

(MKS80 and MKS132) suggest that, in the case of these two GNA structures, the 

bromine derivatives actually aid in crystallization by forming contacts between 

neighboring duplexes within the crystal. 

The five crystal structures of GNA duplexes containing exclusively Watson-Crick 

base pairs presented here (MKS22, MKS46, MKS74-1, MKS80, and MKS132) all 

maintain very similar structural features.  The large x-displacement values, strong slide of 

neighboring base pairs, large backbone-base inclinations, and the stacking of the C1’-CH2 
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group on the neighboring base are all consistent with the previously reported structure of 

a GNA duplex containing metal-mediated base pairs (MKS64).8  However, there are two 

significant differences between the Type N and Type M structures.  Figure 5.6 

demonstrates that the Type N helix is compressed along the z-axis, resulting in a much 

shallower pitch with fewer base pairs per complete turn.  Furthermore, the Type N 

structures adopt alternating gauche and anti conformations with respect to the backbone, 

in contrast to the Type M structure in which all Watson-Crick nucleotides adopt a gauche 

conformation and the hydroxypyridone nucleotides adopt an anti conformation.  Finally, 

the high resolution of the structure 3’-GBrCGCGC-2’ allows us to tabulate accurate 

values for bond lengths, torsional angles, and phosphate bond angles for the refinement 

of future glycol nucleic acid structures.   
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Chapter 5.7.  Experimental procedures 

 

General procedures and reagents.  NMR spectra were recorded on a Bruker DMX-300 

(300 MHz) spectrometer. High-resolution mass spectra were obtained with a Micromass 

AutoSpec or Thermo LTQ-FT instrument using ES ionization. Infrared spectra were 

recorded either on a Bruker alpha series FTIR spectrometer. Solvents and reagents were 

used as supplied from Aldrich, Acros, Fluka, or TCI. Reactions were performed under an 

atmosphere of argon or nitrogen unless otherwise specified. 

NH

N

O

O

OH

DMTrO 5.2

Br

 

Compound 5.2.  To a suspension of 5-bromouracil (1.04 g, 5.5 mmol) in anhydrous 

DMF (11 mL) under argon was added NaH (44 mg, 1.1 mmol, 60% in mineral oil) and 

the solution was allowed to stir under argon for one hour.  A solution of compound 2.11 

(1.95 g, 5.2 mmol) in DMF (11 mL) was added to the first solution and then heated to 85 

°C overnight.  The next morning, the solution was cooled, all solvent removed, the 

resulting oil coevaporated with toluene, redissolved in ethyl acetate and concentrated 

again.  The product was purified via flash chromatography over silica gel starting with 

2:1:0.01 Hexanes:Acetone:Et3N, then 3:2:0.01 Hexanes:Acetone:Et3N, and finally eluting 

with 1:1:0.01 Hexanes:Acetone:Et3N to afford compound 5.2 as a white foam (1.32 g, 

43%).  1H-NMR (300 MHz, CDCl3) δ (ppm) 7.65 (s, 1H), 7.46 (d, J = 7.4 Hz, 2H), 7.39-
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7.17 (m, 7H), 6.85 (d, J = 8.8 Hz, 4H), 4.14 (m, 2H), 3.79 (s, 6H), 3.64 (dd, J = 14.5, 8.6 

Hz, 1H), 3.21 (d, J = 4.5 Hz, 2H).  13C-NMR (75 MHz, CDCl3) δ (ppm) 160.0, 158.6, 

151.0, 145.8, 144.6, 135.7, 130.0, 128.07, 128.01, 127.0, 113.3, 95.8, 86.5, 68.7, 64.6, 

55.3, 52.3.  IR (solid) v (cm-1) = 3439 (br), 3168 (br), 3059, 2931, 2835, 1675, 1606, 

1506, 1443, 1347, 1300, 1245, 1174, 1070, 1029, 906, 826, 727, 701, 621, 582, 526, 423.  

HRMS calcd for C28H27N2O6BrNa (M+Na)+ 589.0945, found (M+Na)+ 589.0956. 

NH

N

O

O

O

DMTrO

P
O

N

CN

Br

(S)-BrU

 

Compound (S)-BrU.  To an argon purged solution of compound 5.2 (1.00 g, 1.8 mmol) 

and N,N-diisopropylethylamine (1.85 mL, 10.6 mmol) in methylene chloride (30 mL) 

was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.59 mL, 2.6 mmol) 

dropwise and the solution stirred for two hours at room temperature under argon. The 

solution was diluted with methylene chloride and washed once with saturated aqueous 

NaHCO3, dried over Na2SO4, and finally concentrated. The crude product was purified 

by flash chromatography over silica gel using 3:2:0.01 Hexanes:Acetone:Et3N to afford 

compound (S)-BrU as a white foam (1.05 g, 78%).  31P-NMR (162 MHz, CDCl3) δ (ppm) 

150.6, 150.2.  HRMS calcd for C37H45N4O7BrP (M+H)+ 767.2204, found (M+H)+ 

767.2206. 
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N

N

NH2

O

OH

DMTrO 5.4

Br

 

Compound 5.4.  To a suspension of 5-bromocytosine (1.00 g, 5.3 mmol) in anhydrous 

DMF (10.5 mL) under argon was added NaH (42 mg, 1.1 mmol, 60% in mineral oil) and 

the solution was allowed to stir under argon for one hour.  A solution of compound 2.11 

(1.88 g, 5.0 mmol) in DMF (10.5 mL) was added to the first solution and then heated to 

100 °C overnight.  The next morning, the solution was cooled, all solvent removed, the 

resulting oil coevaporated with toluene, redissolved in ethyl acetate and concentrated 

again.  The product was purified via flash chromatography over silica gel starting with 

100:1 EtOAc:Et3N, then eluting with 50:1:0.01 EtOAc:MeOH:Et3N to afford compound 

5.4 as a light yellow solid (1.7 g, 60%).  1H-NMR (300 MHz, CDCl3) δ (ppm) 7.87 (br, 

1H), 7.52 (s, 1H), 7.41 (m, 2H), 7.29 (m, 6H), 7.21 (m, 1H), 6.83 (m, 4H), 5.64 (br, 1H), 

4.24 (dd, J = 13.8, 2.5 Hz, 1H), 3.78 (s, 6H), 3.73 (dd, J = 14.0, 6.6 Hz, 1H), 3.23 (dd, J = 

9.7, 5.1 Hz, 1H), 3.02 (dd, J = 9.7, 6.4 Hz, 1H).  13C-NMR (75 MHz, CDCl3) δ (ppm) 

162.8, 158.7, 156.8, 147.4, 144.8, 135.9, 135.8, 130.0, 128.10, 128.03, 127.1, 113.4, 86.8, 

86.6, 69.5, 64.5, 55.4, 54.3.  IR (solid) v (cm-1) = 3442 (br), 2989, 2836, 1679, 1656, 

1597, 1444, 1348, 1299, 1246, 1175, 1071, 1031, 948, 827, 727, 701, 622, 582, 417.  

HRMS calcd for C28H28N3O5BrNa (M+Na)+ 588.1105, found (M+Na)+ 588.1115. 
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N

N

HN

O

OH

DMTrO

Br

Ph

O

5.5

 

Attempted synthesis of compound 5.5.  To an argon purged solution of compound 5.4 

(260 mg, 0.46 mmol) in anhydrous pyridine (3.7 mL) was added trimethylsilyl chloride 

(0.23 mL, 1.8 mmol) and the solution allowed to stir under argon for two hours.  The 

solution was then cooled to 0 ºC, benzoyl chloride (80 µL, 0.69 mmol) added dropwise, 

and the solution allowed to warm up gradually to room temperature and stir for another 

two hours.  The solution was cooled again to 0 ºC and quenched by the addition of water 

(1 mL) and stirred for 15 minutes.  Afterwards 25% aqueous ammonium hydroxide (2 

mL) was added and stirring continued for another 30 minutes.  All solvent was then 

removed, the oil coevaporated with toluene, and the crude product purified via flash 

chromatography over silica gel starting with 3:2:0.01 Hexanes:Acetone:Et3N, then 

eluting with 1:1:0.01 Hexanes:Acetone:Et3N.  1H NMR indicated multiple products. 

N

N
H

NH

O

5.6

Br

O

 

Compound 5.6.  To a suspension of 5-bromocytosine (750 mg, 3.95 mmol) in anhydrous 

DMF (4.9 mL) was added acetic anhydride (1.10 mL, 11.8 mmol) and the suspension 

heated to 100 ºC for 1 hour.  After cooling to room temperature, all the solvent was 
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removed and the solid resuspended in 1:1 Hexanes:EtOAc and put in the -20 ºC freezer 

for 30 minutes.  The solid was filtered, washed three times with ice cold 1:1 

Hexanes:EtOAc, and then three times with diethyl ether.  The light yellow solid was used 

as crude for the next reaction (890 mg, 97%).  1H-NMR (300 MHz, DMSO-d6) δ (ppm) 

12.01 (br, 1H), 9.67 (br, 1H), 8.20 (s, 1H), 2.22 (s, 3H). 

N

N

NH

O

OH

DMTrO

Br

O

5.7

 

Compound 5.7.  To a suspension of compound 5.6 (890 mg, 3.8 mmol) in anhydrous 

DMF (7.5 mL) under nitrogen was added NaH (31 mg, 0.80 mmol, 60% in mineral oil) 

and the solution was allowed to stir under argon for one hour.  A solution of compound 

2.11 (1.38 g, 3.6 mmol) in DMF (7.5 mL) was added to the first solution and then heated 

to 110 °C overnight.  The next morning, the solution was cooled, all solvent removed, the 

resulting oil coevaporated with toluene, redissolved in ethyl acetate and concentrated 

again.  The product was purified via flash chromatography over silica gel starting with 

2:1:0.01 Hexanes:Acetone:Et3N, then eluting with 3:2:0.01 Hexanes:Acetone:Et3N to 

afford compound 5.7 as a light yellow foam (290 mg, 12%).  1H-NMR (300 MHz, 

CDCl3) δ (ppm) 7.78 (s, 1H), 7.41 (m, 2H), 7.34-7.19 (m, 7H), 6.83 (m, 4H), 4.29 (dd, J 

= 13.7, 2.6 Hz, 1H), 4.16 (m, 1H), 3.82-3.70 (m, 7H), 3.22 (dd, J = 9.8, 5.5 Hz, 1H), 3.14 

(dd, J = 9.7, 5.6 Hz, 1H), 2.64 (s, 3H). 
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Compound (S)-BrC.  To a nitrogen purged solution of compound 5.7 (290 mg, 0.48 

mmol) and N,N-diisopropylethylamine (0.50 mL, 2.9 mmol) in methylene chloride (8.0 

mL) was added 2-cyanoethyl N,N-diisopropylchlorophosphoramidite (0.16 mL, 0.71 

mmol) dropwise and the solution stirred for two hours at room temperature under 

nitrogen. The solution was diluted with methylene chloride and washed once with 

saturated aqueous NaHCO3, dried over Na2SO4, and finally concentrated. The crude 

product was purified via flash chromatography over silica gel using 2:1:0.01 

Hexanes:Acetone:Et3N to afford compound (S)-BrC as a white foam (300 mg, 78%).  31P-

NMR (121 MHz, CDCl3) δ (ppm) 149.1, 148.6. 

N

N

N

O

OH

DMTrO 5.8

Br

N

 

Compound 5.8.  To a solution of compound 5.4 (435 mg, 0.77 mmol) in 2.5 mL of 

MeOH was added dimethylformamide-dimethylacetal (360 µL, 2.69 mmol) and heated to 
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50 °C for one hour.  After cooling and removal of the MeOH, the residue was redissolved 

in methylene chloride, washed once with water, dried over Na2SO4, and finally 

concentrated.  The product was purified via flash chromatography over silica gel starting 

with 100:1 EtOAc:Et3N, then eluting with 20:1:0.01 EtOAc:MeOH:Et3N to afford 

compound 5.8 as a white foam (470 mg, 98%).  1H-NMR (300 MHz, CDCl3) δ (ppm) 

8.72 (s, 1H), 7.64 (s, 1H), 7.42 (m, 2H), 7.29 (m, 6H), 7.21 (m, 1H), 6.83 (m, 4H), 4.29 

(dd, J = 13.9, 2.4 Hz, 1H), 4.23 (d, J = 4.8 Hz, 1H), 4.13 (br, 1H), 3.89-3.76 (m, 7H), 

3.28 (dd, J = 9.7, 5.3 Hz, 1H), 3.21 (s, 3H), 3.18 (s, 3H), 2.98 (dd, J = 9.6, 6.9 Hz, 1H).  

13C-NMR (75 MHz, CDCl3) δ (ppm) 168.1, 159.0, 158.7, 157.7, 147.6, 144.8, 136.0, 

135.8, 130.0, 128.09, 128.01, 127.0, 113.4, 96.8, 86.6, 70.0, 64.4, 55.3, 54.6, 41.6, 35.6.  

IR (solid) v (cm-1) = 3269 (br), 2930, 2835, 1651, 1607, 1586, 1484, 1447, 1383, 1347, 

1299, 1246, 1173, 1114, 1070, 1030, 982, 905, 827, 777, 725, 701, 643, 582.  HRMS 

calcd for C31H34N4O5Br (M+H)+ 621.1707, found (M+H)+ 621.1701. 

N

N

N

O

O

DMTrO (S)-BrC*

P
O

N

CN

Br

N

 

Compound (S)-BrC*.  To a solution of compound 5.8 (450 mg, 0.72 mmol) in 3.6 mL of 

anhydrous methylene chloride under nitrogen was added a 1 M solution of 4,5-

dicyanoimidazole (0.51 mL in acetonitrile).  2-cyanoethyl N,N,N’,N’-
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tetraisopropylphopshordiamidite (0.24 mL, 0.76 mmol) was then added dropwise and the 

solution stirred at room temperature.  After two hours, the reaction mixture was diluted 

with methylene chloride, washed twice with saturated aqueous NaHCO3, dried over 

Na2SO4, and then concentrated.  The product was purified via flash chromatography over 

silica gel starting with 3:2:0.01 Hexanes:Acetone:Et3N, then eluting with 1:1:0.01 

Hexanes:Acetone:Et3N to afford compound (S)-BrC* as a white foam (460 mg, 77%).  

31P-NMR (162 MHz, CDCl3) δ (ppm) 150.1, 149.9.  HRMS calcd for C40H51N6O6BrP 

(M+H)+ 821.2786, found (M+H)+ 821.2814. 

 

Crystallization and data collection of MKS5 and MKS132:  Crystals of self-

complementary duplex GNA were grown using the sitting drop vapor diffusion method 

with buffers from the Nucleic Acid Mini Screen (Hampton Research).  Crystallization 

conditions consisted of 1 (MKS5) or 2 mM (MKS132) duplex GNA (2 µL) and buffer (4 

µL) against a reservoir of 35% MPD in water (1 mL).  The brominated derivative (3’-

GBrCGCGC-2’) crystallized as rectangular rods which appeared after 1-2 weeks at 4 °C 

in Buffer #2 consisting of 10% 2-methyl-2,4-pentanediol, 40 mM sodium cacodylate (pH 

= 5.5), 20 mM cobalt hexamine, 80 mM sodium chloride, and 20 mM magnesium 

chloride.  The native sequence (3’-GCGCGC-2’) also crystallized as rectangular rods and 

appeared within 1 week at 4 °C in Buffer #20 consisting of 10% 2-methyl-2,4-

pentanediol, 40 mM sodium cacodylate (pH = 7.0), 12 mM spermine tetra-HCl, 80 mM 

sodium chloride, and 20 mM barium chloride.  All crystals were cryoprotected by raising 

the concentration of MPD in the buffer to 30% and subsequently picked from the drop 
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with nylon loops and frozen in liquid N2.  Data was recorded on a single crystal of each 

GNA oligonucleotide at beamline ID29, ESRF in Grenoble.  After performing a 

fluorescence scan to determine the precise bromine absorption edge in the crystal, SAD 

data was collected with separate scans for high and low resolution reflections for the 

brominated derivative.  All data was integrated and merged using XDS and phased by 

SHELXE and SHARP.  The initial map of the brominated derivative provided density 

that was unambiguous for all the bases and phosphates of the duplex.  Automated and 

manual refinements were performed using REFMAC522 and COOT.23 

 

Crystallization and data collection of MKS22, MKS74-1, and MKS80:  Crystals of 

self-complementary duplex GNA were grown using the sitting drop vapor diffusion 

method with buffers from the Nucleic Acid Mini Screen (Hampton Research).  

Crystallization conditions consisted of 1 mM duplex GNA (2 µL) and buffer (4 µL) 

against a reservoir of 35% MPD in water (1 mL).  The native (MKS22, 3’-CTCTAGAG-

2’) and brominated (MKS80, 3’-CTCBrUAGAG-2’) duplexes crystallized as long 

rectangular rods which appeared within one week at 4 °C in Buffer #4 consisting of 10% 

2-methyl-2,4-pentanediol, 40 mM sodium cacodylate (pH = 5.5), 20 mM cobalt 

hexamine, 40 mM lithium chloride, and 20 mM magnesium chloride.  The selenium 

derivative (MKS74-1, 3’-CTCPSeTAGAG-2’) also crystallized as long rectangular rods 

and appeared within 1 week at 4 °C in Buffer #2 consisting of 10% 2-methyl-2,4-

pentanediol, 40 mM sodium cacodylate (pH = 5.5), 20 mM cobalt hexamine, 80 mM 

sodium chloride, and 20 mM magnesium chloride.  All crystals were cryoprotected by 
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raising the concentration of MPD in the buffer to 30% and subsequently picked from the 

drop with nylon loops and frozen in liquid N2.  Data was recorded on a single crystal of 

each GNA oligonucleotide at beamline A1, CHESS (MKS22, MKS74-1) or ID23-1, 

ESRF in Grenoble (MKS80).  A fluorescence scan was performed to determine the 

precise bromine or selenium absorption edges in the crystal of MKS80 or MKS74-1, 

respectively.  Data was collected at three different wavelengths for both derivatives, with 

separate scans for high and low resolution reflections for the brominated derivative.  All 

data was integrated and merged using XDS and phased by SHELXE and SHARP.  The 

initial map of the brominated derivative provided density that was unambiguous for all 

the bases and phosphates of the duplex.  However, there was also a significant amount of 

helical electron density that could not be filled with any component of the 

oligonucleotide or crystallization buffer.  Automated and manual refinements were 

performed using REFMAC5 and COOT. 

 

Crystallization and data collection of MKS42:  Crystals of the self-complementary 

duplex GNA were grown using the sitting drop vapor diffusion method with buffers from 

the Nucleic Acid Mini Screen (Hampton Research).  Crystallization conditions consisted 

of 1 mM duplex GNA (2 µL) and buffer (4 µL) against a reservoir of 35% MPD in water 

(1 mL).  The native sequence (3’-ATGCGCAT-2’) crystallized as rectangular plates 

which appeared within one week at 4 °C in Buffer #4 consisting of 10% 2-methyl-2,4-

pentanediol, 40 mM sodium cacodylate (pH = 5.5), 20 mM cobalt hexamine, 40 mM 

lithium chloride, and 20 mM magnesium chloride.  Crystals were cryoprotected by 
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raising the concentration of MPD in the buffer to 30% and subsequently picked from the 

drop with a nylon loop and frozen in liquid N2.  Data was recorded on a single crystal of 

the GNA oligonucleotide at beamline ID29, ESRF in Grenoble.  All data was integrated 

and merged using XDS.  An initial search model for molecular replacement was obtained 

by reconfiguring the base pairs from the crystal structure of MKS80.  The PHASER 

search provided a solution containing two duplexes per asymmetric symmetry unit.  After 

an initial rigid body refinement, subsequent automated and manual refinements were 

performed using REFMAC5 and COOT.  The electron density could not be completely 

represented by the duplex model with the terminal adenine and several backbone carbon 

atoms missing. 

 

Crystallization and data collection of MKS111:  Crystals of the self-complementary 

duplex GNA were grown using the sitting drop vapor diffusion method with buffers from 

the Nucleic Acid Mini Screen (Hampton Research).  Crystallization conditions consisted 

of 1 mM duplex GNA (2 µL) and buffer (4 µL) against a reservoir of 35% MPD in water 

(1 mL).  The native sequence (3’-CGCAAATTTGCG-2’) crystallized as rectangular 

plates which appeared within one week at 4 °C in Buffer #2 consisting of 10% 2-methyl-

2,4-pentanediol, 40 mM sodium cacodylate (pH = 5.5), 20 mM cobalt hexamine, 80 mM 

sodium chloride, and 20 mM magnesium chloride.  Crystals were cryoprotected by 

raising the concentration of MPD in the buffer to 30% and subsequently picked from the 

drop with a nylon loop and frozen in liquid N2.  Data was recorded on a single crystal of 
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the GNA oligonucleotide at beamline ID23-1, ESRF in Grenoble.  All data was 

integrated and merged using XDS. 
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Figure A5.1.1.  1H NMR spectrum of compound 5.2 (300 MHz, CDCl3). 
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Figure A5.1.2.  13C NMR spectrum of compound 5.2 (75 MHz, CDCl3). 
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Figure A5.1.3.  IR spectrum of compound 5.2 (solid). 
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Figure A5.2.1.  31P NMR spectrum of phosphoramidite (S)-BrU (162 MHz, CDCl3) with 
trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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Figure A5.3.1.  1H NMR spectrum of compound 5.4 (300 MHz, CDCl3). 
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Figure A5.3.2.  13C NMR spectrum of compound 5.4 (75 MHz, CDCl3). 
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Figure A5.3.3.  IR spectrum of compound 5.4 (solid). 
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Figure A5.4.1.  1H NMR spectrum of compound 5.6 (300 MHz, DMSO-d6). 
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Figure A5.5.1.  1H NMR spectrum of compound 5.7 (300 MHz, CDCl3). 
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Figure A5.6.1.  31P NMR spectrum of phosphoramidite (S)-BrC (121 MHz, CDCl3). 
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Figure A5.7.1.  1H NMR spectrum of compound 5.8 (300 MHz, CDCl3). 
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Figure A5.7.2.  13C NMR spectrum of compound 5.8 (75 MHz, CDCl3). 
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Figure A5.7.3.  IR spectrum of compound 5.8 (solid). 
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Figure A5.8.1.  31P NMR spectrum of phosphoramidite (S)-BrC* (162 MHz, CDCl3) with 
trimethyl phosphate as an internal standard (δ = 3.06 ppm). 
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