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Abstract
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aggregate and at the individual levels. The research in this document is separated into chapters that deal with
somewhat dissimilar questions which are linked by the necessity to acknowledge and understand how
unforeseeable shocks determine how agents make economic decisions. These shocks or innovations are a
potential explanation for why, often similar economic actors face very different paths.

In Chapter 2, the interest lays in the determinants of different life-cycle fertility outcomes across educational
groups. The chapter presents a model where individuals deal with idiosyncratic shocks in the form of
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model is estimated using data for the US and tested to see how it fares replicating facts of aggregate fertility
under different counterfactual scenarios.
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ABSTRACT

ESSAYS ON MACROECONOMICS AND LABOR MARKETS:

UNDERSTANDING IDIOSYNCRATIC AND AGGREGATE SHOCKS

Se Kyu Choi

José-Vı́ctor Ŕıos-Rull

This dissertation studies the importance of shocks in understanding economic

outcomes, both at the aggregate and at the individual levels. The research in this

document is separated into chapters that deal with somewhat dissimilar questions

which are linked by the necessity to acknowledge and understand how unforeseeable

shocks determine how agents make economic decisions. These shocks or innovations

are a potential explanation for why, often similar economic actors face very different

paths.

In Chapter 2, the interest lays in the determinants of different life-cycle fertility

outcomes across educational groups. The chapter presents a model where individuals

deal with idiosyncratic shocks in the form of innovations to their market wages and to

the efficacy with which they can control fertility outcomes. The model is estimated

using data for the US and tested to see how it fares replicating facts of aggregate

fertility under different counterfactual scenarios.

Chapter 3 (co-authored with José-Vı́ctor Rı́os-Rull), studies the cyclical be-

havior of the aggregate labor’s share in total income, taking as a starting point models

of business cycles driven by economy-wide technological shocks. The chapter looks at

the co-movement of labor share and technological innovations in post war US history

and assesses how well existing models can explain the facts.
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Chapter 1

Introduction

This dissertation studies the importance of shocks in understanding economic out-

comes, both at the aggregate and at the individual levels. The research in this

document is separated into chapters that deal with somewhat dissimilar questions

which are linked by the necessity to acknowledge and understand how unforeseeable

shocks determine how agents make economic decisions. These shocks or innovations

are a potential explanation for why, often similar economic actors face very different

paths.

In Chapter 2, I present a life-cycle model with dynamic and imperfect fertility

decisions in an environment where agents are subject to idiosyncratic and uninsurable

labor income shocks and capital markets are imperfect. The model relies both on

the time-allocation of mothers hypothesis (i.e., higher opportunity costs of children

for higher wage earners) and on differential effectiveness in the use of contraceptive

technologies (what one might consider idiosyncratic shocks to birth control efforts)

to explain differences in fertility outcomes by education groups. I estimate the model

using data on pregnancies and abortions from the National Survey of Family Growth

and then I assess the effects on fertility rates of two quantitative experiments: a ban

on abortions and equalization of job market opportunities across genders.

In Chapter 3 (which is co-authored with José-Vı́ctor Rı́os-Rull) we explore the
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dynamics of the aggregate labor share for the US economy. We identify three interest-

ing facts: Labor share is not constant (as it is usually assumed), it is counter cyclical

and reacts strongly to technology shocks. We then explore the extent to which a fam-

ily of real business cycles models, where wages are not set competitively (tailored to

replicate cyclical facts about the labor market), is capable of generating the observed

dynamics of labor share as described in [45]. We build upon [39], [3], [10], among

others, who analyze models where wages are determined via Nash bargaining, employ-

ment lags productivity, and labor share falls with productivity innovations. While

these models account for various business cycles properties, they fail in replicating

the dynamic empirical response of the labor share to technological shocks; this occurs

even after we change preferences and technology. However, changing the aggregate

production function (from cobb-douglas to CES) delivers the best results, hinting the

direction for future research.
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Chapter 2

Idiosyncratic Shocks: Life-Cycle

Fertility

2.1 Introduction

In this chapter I study life-cycle fertility patterns and the cross sectional distribution

of births in the U.S. during the mid 1990s. Using data from the National Survey of

Family Growth for the year 1995 (NSFG95), I document the following differences in

fertility profiles by educational groups during their life-cycle: more educated individ-

uals have fewer children, start their childbearing later and get less abortions than

their less educated counterparts.

My approach to understand the facts is as follows. I embed a standard economic

model of fertility (the allocation of mother’s time variety1) into a rich life-cycle,

consumption-savings framework2 where fertility is an endogenous choice subject to

idiosyncratic shocks (undesired outcomes). Using this model, I revisit the question of

why there exist a negative skill-fertility relationship and ask whether this model can

accommodate the cross-sectional and life-cycle variation in the data.

1This theory was first developed by [40] and [6] and used recently by [20] and [17], among others
2The basis of this structure is in [27] and in [26]. The main difference with those papers is that

they don’t have endogenous fertility. On the other hand, I depart from general equilibrium due to
computational burden considerations
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Results from the quantitative exercise show that differential fertility risk is impor-

tant when trying to account for differences in the timing and the number of births

across educational groups. Thus, relying on substitution effects alone, as is done in

standard fertility theories, is not sufficient to produce a negative skill-fertility relation-

ship while trying to match life-cycle facts: under imperfect capital markets, non-labor

income (savings) is endogenous and higher for more skilled/lucky earners. This cre-

ates an income effect that can overpower the opportunity cost of having children. In

other words, higher educated individuals with higher wages, can insure better against

the costs of child rearing. This effect is reinforced if we account for marriage and

positive assortative matching in the analysis: females with more education tend to

marry more educated males, who have higher wages. Just like own savings, male

wages act as an insurance against child expenses and the consumption cost of not

working. Using my model, I can assess quantitatively the importance of the relevant

margins for fertility decisions and show how fertility risk plays a role in generating

different outcomes by educational groups.

Throughout this chapter, fertility risk has a dual meaning: earlier in life, it rep-

resents the fact that there exist failure when using contraceptive technologies and

pregnancies may occur sooner than expected or when they were not wanted at all;

later in life, fertility risk acquires a different connotation, since females who postpone

childbearing find themselves dealing with biological constraints to conceive. I mea-

sure fertility risk by estimating my model using individual data from the NSFG95

on pregnancies, abortions and intentions on conceptions (whether pregnancies were

planned or not).

After estimating my model, I perform two quantitative experiments and assess

the impact on fertility rates: (i) banning abortion and (ii) equalizing job market

opportunities across males and females. The first experiment raises total fertility

rates by 7%, a small number considering that abortion rates in the data are close to

15%. This result comes from the fact that rational agents substitute abortion (a costly

4



but effective form of contraception) with more preemptive efforts against pregnancies

when the abortion possibility is not available. On the other hand, equating job market

opportunities across genders (by eliminating gender wage gaps in life-cycle profiles of

mean income) raises the total fertility rate by almost 20%. This last exercise shows

that the model estimates imply a strong income effect of wage profiles in the demand

for children, so higher wages for females have a strong positive effect on births, even

if the opportunity cost of children rises.

My approach borrows insights from the empirical microeconomic literature that

studies life-cycle fertility3 using structural and dynamic models of fertility choice.

From that literature, this chapter relates to [53] and [30] who acknowledge the impor-

tance of the stochastic nature of fertility. Wolpin analyzes how child mortality risk

shapes fertility choices using Malaysian data; Hotz and Miller estimate birth control

method choices by females in a life-cycle framework. However, my approach differs

starkly in terms of assumptions regarding capital markets and preference heterogene-

ity (this is true for the whole literature and not just the specific papers mentioned

above): I assume imperfect capital markets in the sense that agents can save but

not borrow against their future earnings; also, I impose the same preferences for all

agents, downplaying the role of unobserved heterogeneity in utility.

This chapter relates the most to [48] and [11]. The first paper provides evidence

that more educated individuals are more efficient using different birth control meth-

ods, which is the main mechanism through which I obtain a negative skill-fertility

relationship. However, [48] restrict their attention to all-white couples in intact first

marriages, which might produce sample bias in their regression estimates. Also, they

analyze a time period (late 1960s and early 1970s) when policies regarding birth con-

trol were different to the ones in the period I analyze: the pill was still not massively

adopted by single females and abortion was not readily available to everyone. On

the other hand, [11] studies fertility and educational attainment in the U.S. and de-

velops a general equilibrium overlapping generations model in which agents choose

3See [29] for a survey
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whether to conceive period by period and how much to consume and save. The main

difference between this chapter and [11] is that he assumes fertility risk when couples

are seeking a birth (in the form of a constant probability of getting pregnant if one

chooses to) but perfect control when they don’t want a pregnancy.

The present exercise also contributes to the literature that investigates the sources

of lifetime inequality during using models with heterogenous households. As pointed

out by [24], family composition shocks4 are an important source of both uninsurable

economic risks (e.g. births) but also insurance (e.g. between couples in the same

household), making the understanding of fertility decisions an integral part of this

research agenda. This chapter provides a tractable fertility model that addresses

questions regarding motives and timing of fertility decisions.

The structure of the chapter is as follows: In the next section I describe my data

sources and the main stylized facts I want to explain. In section 2.3, I pose a simple

static model in which I show why standard theories of fertility need to be expanded

when moved to a life-cycle setting. In section 3.3, I describe my quantitative model.

Sections 2.5 and 2.6 describe the functional forms used in the model and the specific

estimation method to obtain model parameters. I show the estimation results and

some quantitative experiments in section 2.7. The final section concludes.

2.2 The Facts

I use information from the National Survey of Family Growth (NSFG) to put forward

a set of facts on U.S. fertility. The NSFG is compiled by the National Center for

Health Statistics (NCHS) and gathers information on family life, fertility, use of birth

control and other health related questions. I use the survey for the year 1995, which

comprises around ten thousand women between the ages of 15 and 44.

For every survey participant, the NSFG collects retrospective information on usage

of birth control methods, on a monthly basis for up to 5 years. Participants also

4See for example, [13]
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answer questions on wantedness and timing of births and pregnancy outcomes for all

pregnancies conceived during that 5 year period. The survey also contains information

on educational attainment, marital status and other background information.

I present age specific fertility rates in figure 2.1 and age specific abortion rates in

figure 2.2.
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Figure 2.1: Age-specific fertility rates by education of the mother (NSFG 1995)

Both graphs present information on pregnancies occurring between 1994 and 1995,

for each particular education-age group, i.e., I’m focusing on the cross-sectional di-

mension of the data5 Age specific fertility rates are defined by the ratio between the

number of pregnancies in the specific education-age group and the total number of

women in that group. Abortion rates are the number of abortions divided by the

total number of women in each group. I divide groups according to educational at-

tainment as follows: High School (those without any post-secondary education) and

College (those with at least some post-secondary education). In both figures, I show

smoothed statistics (moving averages of 3 years).

The following is a list of stylized facts from the data:

5Hence, I’m assuming NO cohort effects in fertility rates. A more complete discussion is in the
Appendix.
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Figure 2.2: Age-specific abortion rates by education of the mother (NSFG 1995)

1. The education fertility gap: the high school group has a total fertility rate

(TFR)6 of 2.2, while for the college group, it is 1.5 .

2. Timing of births: high school females start having children earlier than their

college counterparts. According to figure 2.1, the age with the highest fertility

rate is 25 for the High school group and 28 for the college one.7

3. Failure in fertility plans: the number of aborted pregnancies is higher for the

high school group. The abortion rate for high school educated females is ap-

proximately 18 per 1000 women, while the number for college educated females

is 11

All but the last fact have been well documented in recent economic literature.

Since income of more educated individuals is higher, fact 1 above can be restated

as the well known negative income-fertility relationship.8 The differential timing of

6Total fertility rates are the sum of of the age specific fertility rates and represent a cross-sectional
measure of aggregate fertility

7A similar statistic is average age of first birth (22.7 and 26.2 for high school and college
respectively)

8This observation goes back to [5]. [32] study Census data and find that this negative relationship
is robust across time and different definitions of income
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births is documented and studied by [9], who argue that returns to experience as well

as marriage markets play an important role in explaining delay in childbirth.

The last fact shows that failure rates are more acute for the high school group.

In terms of accuracy of this data, [15] claim that the introduction of computer as-

sisted interviews in the NSFG for the year 1995 helped in reducing underreporting

of abortions and unplanned pregnancies. Nevertheless, their study shows (by com-

paring implied abortion rates from the NSFG to data from abortion providers in

the U.S.) that non reported abortion cases are still present and are higher for lower

income groups (the high school group). Hence, differences in failure rates by educa-

tional groups are likely to be more pronounced if the data did not present any missed

observations in the form of misreported abortions.

2.3 Example: A Static Model

The example below is useful to understand the basic features of standard economic

theories of fertility. I also show how a static model of fertility can be modified to

account for stochastic fertility outcomes and a dynamic setting (period by period

choices). This example then shows where the standard time allocation theory might

fail when faced with life-cycle considerations and why fertility risk is a natural solu-

tion.

Suppose that individuals derive utility from consumption c and the number of

children k in the household. I assume separability in the utility from both elements

and log-preferences. Agents have one unit of time which can be sold in the market

at rate w and also have access to some non-labor income a. If there are children in

the household, agents must spend a fraction b(k) ∈ (0, 1) of their time taking care of

them. This function is increasing in k. I ignore good-costs of children to keep the

analysis simple. I model fertility choices in a two stage setting. In the first stage

agents choose whether to increase the size of their household. During the second

stage, agents choose optimal consumption.

9



In the second stage, agents solve the following problem, given the stock of children

k (chosen during the previous stage)

V (a, w, k) = max
c

log(c) + γ log(k)

s.t.

c+ wb(k) = a+ w

⇒ V (a, w, k) = log [a+ w(1− b(k))] + γ log(k)

Besides being increasing, I assume that for any k1 > k0, b(k) (time cost of children)

satisfies the following

1. V (0, w, k0) > V (0, w, k1)

2. 1−b(k0)
1−b(k1)

> a+w(1−b(k0))
a+w(1−b(k1))

Assumption 1 states that if non-labor income is zero, the status quo in terms of

family size is always preferred. The second assumption is a restriction on the way

b(k) affects the budget constraint of the household in terms of resources and time.

Both assumptions are restrictive but provide unambiguous results in the examples

below. Once we depart from these assumptions, however, answers must come from a

quantitative exercise.

Deterministic Fertility Choice: In the first stage, and given a startup number of

kids k0, the fertility problem is simply

vf = max{V (a, w, k0), V (a, w, k1)}

with k1 > k0. The two lemmas below show that the optimal policy function

for kids is a step function, that jumps from k0 (low fertility) to k1 (high fertility)

depending on both wages and non-labor income.

10



Lemma 2.3.1 There exists a unique w∗(a, k0) such that V (a, w∗, k0) = V (a, w∗, k1)

Proof In the Appendix. �

Lemma 2.3.2 There exists a unique a∗(w, k0) such that V (a∗, w, k0) = V (a∗, w, k1)

Proof In the Appendix. �

The first lemma says that below some threshold wage w∗, the optimal choice is to

have high fertility k1. This is the standard negative income-fertility result. On the

other hand, lemma 2.3.2 shows an opposing, ”nesting effect”: above some threshold

a∗ of non-labor income, individuals would choose higher fertility. Note that in a life-

cycle setting, non-labor income can be thought of as savings from previous periods.

Hence, the final income-fertility relationship cannot be derived as straightforward as

in the static case. This is true in general, when non-labor income and labor earnings

are positively correlated.

I will use a similar structure for the full quantitative exercise below. However, this

basic framework is not suited to account for heterogeneity in fertility across individuals

with the same wage or level of non-labor income. Below I introduce stochastic fertility

and imperfect control and show how this extension provides a natural framework to

understand the facts.

Stochastic Fertility Choice: Now, assume that individuals must exert contracep-

tive effort x in order to influence the probability of no-conception π : R → (0, 1),

which is an increasing and concave function. They also face some utility cost c(x) of

exerting effort, which is always positive, increasing and convex. Then, the problem

during the fertility stage is

vfs = max
x

π(x)V (a, w, k0) + [1− π(x)]V (a, w, k1)− c(x)

Using the first order condition from this problem as well as assumptions 1 and 2
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from before, it can be shown that ∂x/∂w > 0 and ∂x/∂a < 0. Hence, if we define the

expected fertility outcome given optimal effort x∗ as

k∗s(a, w) = π(x∗)k0 + [1− π(x∗)] k1

we get that

∂k∗s
∂w

< 0

∂k∗s
∂a

> 0

The optimal policy functions for fertility choice and their relation to both wages

and non-labor income are depicted in figures 2.3 and 2.4 respectively. In both figures,

the deterministic case is shown as a step policy function while the stochastic case is

a smooth one.

w
w∗(a, k0)

k

k0

k1

k∗

k∗

s

Figure 2.3: Optimal fertility choices with respect to wages

If we consider an economy populated by a continuum of individuals facing the

same problem, stochastic fertility and imperfect control produce a non-degenerate
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a
a∗(w, k0)

k

k0

k1

k∗(a)

k∗

s
(a)

Figure 2.4: Optimal fertility choices with respect to non-labor income

fertility rate (unlike the deterministic case, where the fertility rate is a fixed number):

it is an endogenous distribution that depends on incentives and the shape of both

π(x) and c(x).

As I showed in the previous section, the sign of the wage-fertility relationship is

ambiguous if we let labor and non-labor income to be positively correlated (as it is

the case within educational groups), since they act as two forces influencing fertility

in opposite directions. In the stochastic setting, these forces act in the same way on

the optimal contraceptive effort, thus the level of contraceptive failures by skill group

cannot be assessed either.

One way of rationalizing the educational fertility gap then, would be to implement

a model with heterogeneous preferences for children.9 However, heterogeneous pref-

erences can not explain higher levels of error in fertility plans by educational group

(abortions and unplanned pregnancies). The alternative I propose is to allow for dif-

ferential effectiveness of birth control effort on fertility outcomes. This approach has

been proposed before by [48] and in the setting below, it also helps in matching the

facts on abortion.

9See for example, [31]
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2.4 A Quantitative Model

The model environment is an economy populated by agents of different gender (males

and females) and education level (high and low) who live finite lives and face three

types of exogenous and idiosyncratic shocks: to their life (survival shocks), to their

household type (marital transition shocks) and to their earnings (shocks to the value

of their market rewards). All agents derive utility from consumption and from the

presence of children in the household. Agents supply labor inelastically to the market

before retirement and every period they decide how much to consume and save for

the future; they cannot borrow.

During the first part of their life-cycle, female agents are fertile (can conceive

children) and decide on contraceptive efforts period by period. This effort influences

imperfectly the probability of conception. Unwanted pregnancies can be aborted;

both contraceptive effort and abortions come at a utility cost. After a birth, female

agents must spend some time at home rearing their children. Male agents are not

affected by this requirement.

State space. Let z be the state space that defines an agent in this economy.

Throughout the discussion, I focus on the female’s point of view:

z = {e, e∗, i, k,m, ǫ, ǫ∗, i∗, a} (2.1)

Asterisks represent values for spouses (when applicable). Age is indexed by i =

{i0, ..., I}, k = {1, 2, ..., K} represents the number of children living in the household

(not the same as parity), m = {1, 2, 3} is the type of household (1 = single, 2 =

married, 3 = widowed/divorced10), e ∈ {e, e} represents the education type of the

agent (low, high), ǫ is the value of the multiplicative shock to labor earnings and a is

the amount of real assets in the household.

10Features of widowed vs. divorced households are unified in a single state, since their distinctions
in the data are not significant
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For ease of exposition, in some sections of the chapter I use the following partition

of the sate space z̃ = {m, e, e∗, ǫ, ǫ∗, i∗} so that z = {i, a, k} × z̃.

The Life-cycle proper. All agents start life at age i0 (first year of adulthood)

being one of two educational types: low (e) or high (e). This type doesn’t change

and can be considered as a decision taken before the events in the model. Agents can

also start life as married or single and with or without children.

The maximum lifespan for all agents is of I years. Survival from age i to i + 1

is subject to state dependent mortality risk, i.e., the probability of surviving an

additional year depends on the gender and the educational type of the agent. I

denote this probability as δi,e. The probability for males is δ
∗
i∗,e∗

With regard to labor markets, agents work until they reach age ir. The retirement

age is common for males and females. Female agents also make fertility decisions from

i0 to if , the last fertile age. This cut-off for the fertile period is common and known

to all female agents.

Fertility and children. During their fertile years, females choose effort to de-

termine the probability of a pregnancy. I denote this effort as x ∈ R, which translates

into a probability π(x|i,m, e) ∈ (0, 1) of no conception. This stochastic produc-

tion function of no pregnancies depends on the age of the female agent (to capture

biological constraints on women’s reproductive systems), her marital status (since

conception opportunities might differ if a mate is present or not) and her education.

Evidence of this last point is in [48], who estimate differential effectiveness rates of

contraceptive use by educational attainment. The exertion of this effort comes at a

utility cost of C(x).

With complementary probability (1−π), a pregnancy occurs. If the pregnancy falls

into the category of ”unplanned/unwanted” (i.e., a positive amount of contraceptive

effort was exerted), agents have the opportunity of getting an abortion at a utility

cost κe. This cost depends on the educational level of the agent. If the pregnancy is

15



intended (i.e., x < 0) the agent keeps the child and the household increases its size

by one.11

I make the assumption that children are attached to female agents. I don’t keep

track of the age nor the sex of children in the household for reasons of computational

burden. Instead, households face a constant hazard rate for the permanence of chil-

dren in the household. I denote this hazard by sk, which means that on average,

children spend 1/sk periods attached to their mothers.
12 Finally, no children can stay

in the household after retirement of the mother.

Marital states. The transition through different marital status is stochastic and

exogenous. The probability of going from m to m′ (conditional on both spouses being

alive, in case of agents being married) is given by Γi,e(m
′|m). I assume that mortality

shocks hit the household before marital transition shocks.13

Markets. Agents sell their time to a spot market for labor, receiving a fixed price

of w. They can also save positive amounts of resources, i.e., they can rent assets at

the market rate r.

Labor endowments. Agents are endowed with state dependent efficiency pro-

files, εi,m,e for females and ε
∗
i∗,m∗ for males. They also face idiosyncratic and persistent

multiplicative income shocks (ǫ and ǫ∗). The processes generating these shocks are

also state dependent. Hence, for males of age i∗, marital status m∗ and education

level e∗, labor income is given by

wǫ∗ε∗i∗,m∗,e∗

Note that w is the market rental rate for efficiency units of labor. On the other

hand, if children are present in the household, females need to devote some time

11There is no child mortality risk nor multiple births
12This hazard rate is independent for each child in the household (if k > 1).
13This is important to calculate expectations over future states

16



taking care of them. These time requirements are reflected in b(m, k) ∈ (0, 1), so that

labor income of females/mothers is given by

wǫεi,m,e(1− b(m, k))

Since I don’t keep track of ages of children in the household, b(m, k) is not time de-

pendent. This simplifying assumption is in contrast of evidence that children require

more time and money as they grow old.14

Preferences. Agents in the economy derive utility from per period consumption

and the number of kids in the household. Hence, children are treated as durable goods

in terms of utility and their characteristics (such as age and sex) are not qualities that

enter agents utility function. In this chapter I restrict attention to preferences that

are separable in consumption and number of children of the form

u(c|z) + γg(k)

Preferences for consumption depend on the characteristics of the household (z),

namely, the number of members living under the same roof. This is to capture

economies of scale in consumption and the idea that marriage might create consump-

tion habits.15

Since the focus of the chapter is on females and fertility, utility of married house-

holds is taken to be that of the female member. This could be the result of using

unitary theories of the household or theories that allow for intra-household bargaining

and the female having all the bargaining power. This assumption is restrictive, but

necessary to keep this a feasible exercise.

Agents in this economy don’t have the ability/desire of leaving bequests upon

death and don’t receive utility from their children once they leave the household.

14For example, see [4]
15See [27].
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The Dynamic problem when fertile. There are three distinct stages in the

life-cycle of a female agent: (1) work-fertile stage, (2) work - infertile stage and (3)

Retirement. Figure 2.5 presents the timing of events during the first stage, when

females make both fertility and consumption/savings choices.

i i + 1

Subperiod 1

Contraceptive effort (x)
Consumption (c)

Subperiod 2

and savings (a
′
)

states: {a, k} {a, k′} {a′, k′′}

kids leaving (k
′′
)

values: vf V vf

Figure 2.5: timeline of events

As seen in the figure, agents in this stage transit between subperiod 1, where they

make fertility decisions and subperiod 2, where they choose consumption and savings

for the future. Before transiting to subperiod 1 again, households face an updating

in their stock of children (due to kids leaving their mothers).

The following bellman equation represents the problem of agents during sub-period

2 (once they have made contraceptive effort choices):

V (i, a, k, z̃) = max
c,y

u(c|z) + γg(k) + δi,eβE [vf (i+ 1, a′, k′, z̃′)|z] (2.2)

st :

c+ y = (1 + r)a+ wǫiεi,m,e(1− b(m, k)) if m = {1, 3}

c+ y = (1 + r)a+ wǫiεi,2,e(1− b(2, k)) + wǫ∗i∗ε
∗
i∗,2,e∗ if m = 2, i∗ < ir

a′ = Φ(y, z′|z)

where m represents current marital status (m = 1, 2, 3 stands for single, married
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and widowed/divorced respectively). The budget constraint accounts for different

states, since married agents receive extra income from their spouses’ labor, but only

if the spouse is not retired (i∗ < ir). The Φ operator translates the amount of savings

into next period assets given marital transitions and future states.16

Given optimal policies in subperiod 2, females make contraceptive effort choices

in subperiod 1. The problem faced by them is:

vf (i, a, k, z̃) = max
x

π(x|i,m, e)V (i, a, k, z̃) (2.4)

+ [1− π(x|i,m, e)]max





V (i, a, k + 1, z̃),

V (i, a, k, z̃)− κe





− C(x)

The value function at this stage is a convex combination of the continuation values

with and without a new pregnancy. In the case of pregnancy (which occurs with

probability (1 − π(·))), agents have the chance of having an abortion at utility cost

κe. Note that even though there are discrete outcomes following this stage (number

of children in the household), the effort function convexifies the problem maintaining

smoothness of the value function, which proves useful for solving (2.3) using standard

continuous methods.17

16The particular form of Φ is given by:

Φ(y, z
′|z) =





y if (m′ = 2|m = 2)
y if (m′ = 1, 3|m = 1, 3)
y if (m′ = 3|m = 2) (widowhood)
χy if (m′ = 3|m = 2) (divorce)

y + a
∗

if (m′ = 2|m = 1)

(2.3)

where (m′
, m) refers to a transition from m to m

′ next period. For example, when going from
m = 2 (married) to m = 3 (through divorce), assets next period are a fraction χ of what is saved
today, where χ ∈ (0, 1) reflects the partition of assets after a divorce. Note that when going from
m = 1 (single) to m = 2 (married), assets next period are given by current savings plus what the
prospective spouse brings to the household. This last variable (a∗) is a random variable that depends
on the distribution of single agents of the opposite sex in the economy.

17Details of the numerical solution procedure are in the Appendix.
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My approach to model fertility choices differs from those who try to understand

choices of specific birth control methods by women.18 The setup above doesn’t distin-

guish between different contraceptive methods nor their efficacy, but is general and

its implementation straightforward.

Moreover, I allow the probability of no conception to be flexible enough so that

overall fertility is not only due to failed birth control but also as the result of conscious

efforts of females to start a family. Specifically, this means that the domain of π is

the entire real line (contraceptive effort can be negative, in order to maximize the

probability of conception) and the cost function is always positive, increasing away

from zero. This general specification allows me to capture biological constraint on

human fertility, which play a role in determining the optimal timing of births later in

life.

The dynamic problem after fertile years. Once agents are past the fertile

stage (cannot produce more children), they keep choosing optimal paths for consump-

tion and savings until death. This stage in the life-cycle can also be divided into two:

before and after retirement.

Before retirement (i ≤ ir), the problem of the agent is:

V (i, a, k, z̃) = max
c,y

u(c|z) + γg(k) + δi,eβE [V (i+ 1, a′, k′, z̃′)|z] (2.5)

st :

c+ y = (1 + r)a+ wǫiεi,m,e(1− b(m, k)) if m = {1, 3}

c+ y = (1 + r)a+ wǫiεi,2,e(1− b(2, k)) + wǫ∗i∗ε
∗
i∗,2,e∗ if m = 2, i∗ < ir

a′ = Φ(y, z′|z)

The main difference between this Bellman equation and the one in (2.6) is that

the the stock of children can only decrease from period to period.

18See for example [30] and [47].
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After retirement, the problem reduces to

V (i, a, 0, z̃) = max
c,y

u(c|z) + γg(k = 0) + δi,eβE [V (i+ 1, a′, 0, z̃′)|z] (2.6)

st :

c+ y = (1 + r)a if m = {1, 3}

c+ y = (1 + r)a+ wǫ∗i∗ε
∗
i∗,2,e∗ if m = 2, i∗ < ir

a′ = Φ(y, z′|z)

at this stage no children are present in the household (k = 0 ∀i ≥ ir) and the

only resources available for non-married agents are past savings. On the other hand,

if agents are married to working age individuals, they enjoy the extra labor income

wǫ∗i∗ε
∗
i∗,2,e∗ .

2.5 Taking the Model to the Data

The solution of this model is a set of policy functions xopt(z|Θ), yopt(z|Θ) for contra-

ceptive effort and savings respectively, given the current state z and other parameters,

Θ (including prices). As it’s usual, analytical expressions for the optimal policies are

unfeasible, so I approximate them using numerical solutions to an empirical model

with the following quantitative features.

Demographics and life-cycle. All agents start life at age 18 and cannot live

longer than 95 years. Retirement is at 65 and the last fertile age is 40. A model

period is one year when i ∈ {18, ..., 40}, 5 years when i ∈ {40+1, ..., 65} and 10 years

when i ∈ {65 + 1, ..., 95}.19. Age specific mortality rates are taken from the National

Center for Health Statistics and adjusted for educational attainment, as in [26].20

19I do this to reduce the state space of the model. For details, see the Appendix.
20Given the mapping from model periods to actual years, all age specific variables used in the

computation are recalculated, depending on the stage of model life-cycle. Details in the Appendix.
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I divide educational or skill types into those with at most a high school diploma

or GED, and those with some post secondary education (college, community college,

vocational school, etc.). To calculate the proportion of these types, I use the Current

Population Survey (CPS) between 1990 and 1995. The proportion of high school

individuals is around 40%. The majority of agents start life as single and childless,

but I allow some of them to be married and have children. The proportion of never

married 18 year old females in the CPS is around 93% and females with kids is

around 9%. When performing simulations of the model, I distribute women uniformly

according to these statistics to determine their initial state.

Since non-married females can always find a (new) partner in the model, I need

information on who they’d marry. Also from the CPS, I compute the proportion of

couples by age and educational attainment of the partners, the age distribution of male

partners for married females and the relative asset position of both non-married males

and non-married females.21 Given this information, I construct education-specific

grids with probabilities of marrying someone of characteristics given by {e∗, i∗, a∗}

(education, age and assets of prospective husbands). Since I’m not computing equi-

librium, this procedure doesn’t check for internal consistency of measures of agents

(as in [27], where all these probabilities are endogenous objects).

Transitions between marital states come from the Panel Study of Income Dynam-

ics (PSID) for the years 1990-1995. I follow all heads of household older than 18

years old (inclusive) and compute annual age and education specific transition prob-

abilities between three states: single, married and divorced/widowed.Given variable

specification in the PSID, married couples include cohabitating couples.

Preferences. I use an additively separable specification for instantaneous, per

period utility: u(c|z)+γg(k). The marginal utility from consumption depends on the

size of a household:

21My proxy for individual assets is the sum of interest, dividend and rent income as defined in the
March supplements of the CPS
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u(c|z) ≡ ũ

(
c

1 + 1{m=2}φm + 1{k>0}kφk

)
(2.7)

Where 1{cond} is the indicator function that takes a value of one when ”cond” is

true and zero otherwise; φm and φk are equivalence scales which discount consumption

in married households and households with children respectively. If φm, φk < 1,

economies of scale in consumption exist in the household: expenditures to maintain

the level of per capita utility constant, grow proportionally less than the number of

household members.

The specific functional forms for ũ and g are given by

ũ(c) =
c1−ηc − 1

1− ηc
g(k) =

(1 + k)1−ηk − 1

1− ηk
(2.8)

Fertility. I use the following function for π (the probability of NO conception,

given effort x):

π(x|i,m, e) =





π+(x|i,m, e) if x > 0

π−(x|i,m, e) if x < 0
(2.9)

where

π+(x|i,m, e) =
exp{x}

exp{x}+ ϕ+
i,m,e exp{−x}

and

π−(x|i,m, e) =
exp{x}

exp{x}+ ϕ−i exp{−x}

In general, π is a modified logistic function with ϕ as a shift parameter. [44]

use a similar framework to study fertility choice in an equilibrium model. Note

that the higher ϕ+
i,m,e, the higher the probability of a pregnancy when effort (x) is

positive (females trying to avoid fertility), which means that I can parameterize higher

23



difficulty in controlling fertility by increasing ϕ+
i,m,e. However, if women are trying

to get pregnant (negative x), parameterizing π through the same ϕ+
i,m,e would not be

realistic, since it would mean that ability in using contraceptive methods is negatively

correlated with the ability of procuring a conception when it is desired. Hence, I use

a different shifter, ϕ−i for this case. Note that contraceptive ability ϕ+
i,m,e depends on

age, marital status and education and its parameterization is given by

ϕ+
i,m,e = ϕ̃+

i,m + 1{e=e}ϕi

While ability in using contraceptive technology might depend on marital status

and education, I assume that the technology of procuring a pregnancy depends mostly

on biological constraints. This is represented by ϕ−i depending only on age.

I parameterize these age profiles using polynomial approximations on age: given

the order for the polynomial (p, the same for all profiles) the number of parameters to

be determined is then p+ 1 (the number of polynomial coefficients) times 5 profiles:

for singles (ϕ̃+
i,1), for married (ϕ̃+

i,2), for divorced/widowed (ϕ̃+
i,3), for the extra risk

faced by the high school group (ϕi) and for the biological fertility profile ϕ−i . For

example, the profile for married individuals is given by

ϕ̃+
i,2 = α2

0 + α2
1i+ α2

2i
2 + . . .+ α2

pi
p

while the profile for the excess fertility risk faced by the high school group is

ϕi = α0 + α1i+ αi2 + . . .+ αpi
p

I reduce the number of parameters by assuming that the fertility control technol-

ogy for singles is the same than for divorced/widowed agents (ϕ̃+
i,1 = ϕ̃+

i,3).

On the other hand, I parameterize the utility cost of exerting contraceptive effort

as
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C(x) =
x2

2
ξ

This cost function is symmetric around zero, so I use it for both sides of the

fertility problem: when females want to prevent or are seeking a pregnancy. This is

not restrictive, given the asymmetric structure of π.

Earnings and Labor Supply. Endowments of labor efficiency profiles come from

the CPS (years 1990-1995). I calculate annual labor earnings for the two educational

groups (high school and college), by age and marital status. As in [27] and [26], I use

annual earnings since they capture differences in the intensive margin of earnings by

sex and marital status better than hourly earnings. To account for inflation, I adjust

nominal values by the GDP deflator for the year 2000.

I restrict attention to childless females throughout the sample period. For males,

I don’t make that distinction, since the change in income due to the presence of own

children in the household is not significant.

I attribute the time cost of child-rearing b(m, k) to annual labor income differ-

entials of females in fertile age (18 to 40) by number of children. This is different

than accounting for hours worked by number of children in the household; it stands

alternatively for different ways in which a child might change earnings ability of the

mother (e.g., getting a job with more flexible schedule but lower pay, getting a job

with lower pay but closer to home, not getting tenured at an academic job or not

being made partner at the firm, etc.) other than through hours worked per week.

The computed values are in table 2.1.

As seen from the table, time cost of children (or time away from the best paid

market alternative) is increasing in the number of children present in the household.

Note also that the cost increases faster in the number of kids for married women than

for single ones.

For earnings shocks, I use an AR(1) specification
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Children b(m = {1, 3}, k) b(m = 2, k)
0 0% 0%
1 5.9% 26.5%
2 16.9% 37.5%
3 41.0% 52.6%
4 61.3% 63.3%
5+ 81.2% 72.8%

Table 2.1: Time cost of Children (in terms of full time work), CPS 1990-1995.

ǫ′e = ρeǫe + µ′e (2.10)

where µe ∼ N(0, σe). These shocks are gender and education specific. I take

values of ρe, σe (for e = {e, e}) from [26], who uses the PSID between 1986-1992 to

compute maximum likelihood estimates. As is common, I discretize both continuous

processes using the method proposed by [52].

2.6 Estimation

Given the partial equilibrium nature of the exercise, I set several model parameters

exogenously. First, the rental price of efficiency units of labor w is normalized to 1.

I set the interest rate to equal the average of the 1-year Treasury Bill Rate (monthly

auction averages).22 I let the discount factor β to be 1/(1+r). For equivalence scales,

I use φm = 0.7 and φk = 0.5 (i.e., the OECD values).

The rest of the model parameters are determined jointly, by minimizing the square

difference between data and model moments. The procedure is standard in the lit-

erature: (i) select which data targets to use (ii) guess values for model parameters

(iii) solve the model and calculate optimal policies (iv) simulate life-cycles for a large

22Series id TB1YA, on the St. Louis Fed Economic Data webpage.
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number of individuals and compute model equivalents to the data targets (vi) calcu-

late the error of the iteration (the sum of square values of the difference between every

data and model moment) (vii) if the error is less than a pre-specified tolerance, exit;

if not, update parameters according to some predefined rule and repeat from step

(iii) until convergence. This is a simplified simulated method of moments estimation

procedure, where the weighting matrix for moments is the identity matrix.

The list of moments is as follows:

• Age profile of pregnancy rates for non-married females by education23: 46 mo-

ments = 23 ages × 2 education levels

• Age profile of pregnancy rates for married females by education: 46 moments

= 23 ages × 2 education levels

• Age profile of abortion rates by education: 46 moments = 23 ages × 2 education

levels

• Age profile of unplanned pregnancy rates by education: 46 moments = 23 ages

× 2 education levels

In total, there are 184 moments to match. On the other hand, the number of

model parameters depends on the choice of order for the polynomials that define age

profiles for fertility parameters. I chose p = 6, so each age profile is defined by 7

coefficients. Thus, the model has 34 parameters to be determined jointly:

• curvature in the utility of consumption ηc (1)

• curvature in the utility of children ηk (1)

• multiplicative parameter in utility of children γ (1)

• utility cost of an abortion κe (2)

23Note that I merge the statistics for both single and widowed/divorced females.
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• utility cost of contraceptive effort ξ (1)

• contraceptive ability parameter ϕ̃i,m (14 parameters = 7 coefficients × 2 marital

states)

• conception ability parameter φ−i (7)

• contraceptive ability shifter for low skill/education group ϕi (7)

Solution to the model is by backwards recursion. In the last period of life there is

no continuation value (I assume no bequests motives nor life insurance) hence optimal

policies and value functions can be calculated recursively from the next to last period.

Details of the procedure are in the Appendix.

2.7 Results and Experiments

The estimated parameters are in table 2.2. The full list of coefficients for the poly-

nomial functions used in parameterizing conception probabilities is in the Appendix.

In figure 2.6, I present instead the implied age profiles given by the estimated poly-

nomials.

Parameter value
ηc 1.79
ηk 1.45
γ 0.77
κHC 3.95
κCollege 1.42
ξ 0.95

Table 2.2: Model Parameters

The estimated curvature in the utility of consumption (ηc) equals 1.78, which is

in line with the rest of the literature (the usual number lays between 1.5 and 2).

Preferences are close to being homothetic: the value of ηk (1.45) is close to the one
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Figure 2.6: Estimated parameters for contraceptive technology and conception ability
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for ηc. Overall, the value of both parameters indicate that consumption and children

enter as complements in the utility function, so females enjoy the presence of children

more when consumption levels are higher. Given increasing wages during the earlier

stages of the life-cycle, this means that females would like to postpone childbearing

as much as possible.

The utility cost of an abortion is around two and a half times higher for high

school individuals than for college individuals (3.95 vs. 1.42 respectively).

Figure 2.6 shows the age-profiles that describe fertility technology and restrictions

during the life-cycle. All profiles are decreasing in age which is a reflection of decreas-

ing chances of conception late in the fertile stage of life. Contraceptive parameters for

married individuals are higher than for single ones, which means that birth control

is easier when there is no steady partner of the opposite sex in the household. With

respect to the risk faced by the high school group, results imply that females in that

group have 17% more chances (on average in their lifetime) of having an unwanted

pregnancy than their college counterparts. The calculation of this percentage comes

from using the age profile ϕi: the approximated probability of an unwanted pregnancy

(when exerting a very low amount of effort) for every age is given by ϕi/1 + ϕi (The

average for all ages is 17%).

Figures 2.7 to 2.9 show the goodness of fit of the model.

Overall, the model does a good job in replicating the stylized facts with respect to

the number and timing of births across educational groups. Both simulated abortion

and fertility rates follow closely their data counterparts; on the other hand, the rate

of unwanted pregnancies is overpredicted for the high school group but the overall

qualitative features of the data are preserved (differences among educational groups).

Relevant Margins Below I present exercises that show the importance of the

two main ingredients of my theory, namely differential fertility risk across educational

groups and self-insurance (the ability to save for the future).

Figure 2.10 shows the comparison between the baseline model and the case when
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Figure 2.7: Age specific fertility rates: Data and Model
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Figure 2.8: Abortion rates: Data and Model
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Figure 2.9: Unwanted rates: Data and Model
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Figure 2.10: Age-specific fertility rates, different models
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the model is calibrated to match the facts without extra risk for the high school

group (ϕi = 0, ∀i). As seen from the figure, the latter model is unable to match the

higher fertility rates of high school educated individuals, while the rates for the college

group are slightly overpredicted. In terms of timing of births, this alternative model

correctly accounts for the delay in childbearing by females in the college group as

opposed to those in the high school group; however, this difference is less pronounced

than in the baseline model.

In the model where the two educational groups face the same contraceptive tech-

nology, the ratio between their TFRs is 0.94 (1.56 and 1.67 for high school and college

educated individuals respectively) while the ratio in the data (and the baseline) is

closer to 0.7. Hence, differential fertility risk earlier in life accounts for most of the

differences in the number of births across educational groups during the life-cycle,

leaving a small role for differences in wages. This result hints that differences in wage

profiles help mostly in predicting the different timing of births: the flatter profiles of

life-cycle wages of high school educated females makes them choose early childbirth

(at the margin) given the complementarity between consumption and children.24 On

the other hand, college individuals face rapidly growing wage profiles, which induce

them to delay fertility.

In the next simulation, I take the baseline model, shut down the ability to save

and recalibrate the economy. Since I assume that after retirement agents don’t receive

any income other than past savings, I set the last period in the no-savings simulation

to be ir and discard the retirement stage (setting the value functions after age ir equal

to zero for any point in the state space).

The predicted fertility profiles of the no-savings case are in figure 2.11. Results

from simulating this version of the model (no savings but with differential fertility

risks) shows that the choice of assumption regarding capital markets changes the

predictions of fertility models in non-trivial directions. It also helps in understand

24After re-estimating the parameters, ηc = 1.17 and ηk = 1.11, so consumption and children are
still complements, but the extent of this complementarity is smaller than in the baseline
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Figure 2.11: Age-specific fertility rates, different models
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the intertemporal margins faced by individuals in the life-cycle.

Given the inability to save, all income has to be consumed at the end of each

period. For individuals in both educational groups, consumption in this setting is,

on average, higher than what they would have chosen had they been able to save.

For individuals in the high school group, this leads to marginal lower fertility rates

than in the baseline. The college group, however, faces increasing wage profiles, thus

increasing utility. Given complementarity between consumption and children in the

utility function, this ’forced’ higher consumption for the group leads them to conceive

more children to increase utility when wages and consumption are high. Since fertility

choice is dynamic and females are restricted to one child per period, the timing of first

child birth is shifted towards younger ages, which is a major counterfactual prediction

of this variation of the model.

Fertility Shocks as Source of Lifetime Inequality From the quantitative

exercise, ’fertility risk’ (understood as the inability to control fertility outcomes in a

perfect manner) arises as a type of uninsurable shock that has potential distributional

consequences for wealth inequality. These consequences are underscored by the fact

that ’fertility risk’ has a different magnitude depending on educational attainment.

In figure (2.12) I show simulated asset accumulation paths, by educational level of

the female and total number of children during their lifetime. To analyze inequality,

the figure shows the simple difference between percentiles 90 and 10 of the simulated

wealth distribution.

A clear trend that arises from the figure is a negative relationship between wealth

dispersion and family size, specially for the college educated group. This result comes

from the assumption of kids ’costing’ a fixed amount of time from mothers while they

live at home. Bigger families imply more time away from market work and less

exposure to idiosyncratic income shocks. Hence, children act as buffer from income

shocks to differences in wealth accumulation. As seen in figure (2.12), this effect is

stronger for college educated individuals, for whom income profiles are higher and
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steeper than those of their less educated counterparts.

Quantitative Experiments: In this section, I discuss the effect of banning abor-

tions and equating labor market opportunities across genders on total fertility rates,

separated by educational group. Table 2.3 below shows the rates after performing

each experiment.

Fertility Rates

HS College Total
Data 2.21 1.52 1.94
Benchmark 2.15 1.51 1.89

No abortions 2.25 1.66 2.02
No gender gap 2.43 1.94 2.26

Table 2.3: Results from quantitative experiments

In the case of banning abortion (by increasing κe to a level in which abortions are

prohibitive), the total fertility rate increases 6.87% with respect to the benchmark
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(1.89 versus 2.02).25 Given the sequential nature of the fertility process, rational

agents react to this environment by exerting higher levels of contraceptive effort in

order to avoid pregnancies that would have ended up in abortions otherwise. This is

why the total fertility rate increases by only a fraction of the original abortion rate

(around 15% of pregnancies).

In the second experiment, I endow all females with the job market prospects and

risks of male workers, in terms of age-specific wage profiles (by marital status and

education) as well as idiosyncratic wage shocks. This simulation entails an increase

in the total fertility rate of 19.58% (from 1.89 in the baseline to 2.26). Although in

this specification of the model females have higher wage profiles than in the baseline,

thus higher opportunity costs of their time to rearing children (hence less incentives

to give birth), fertility rates increase. The main reason for this result is that the

parameterization of the model implies strong income effects of higher wage profiles

(or ”permanent” increases in wages) during the life-cycle; this is due to the com-

plementarity between the utility of consumption and the utility of children in the

household, which creates incentives for higher fertility when the whole wage profile

increases (which is the case when we increase female profiles to eliminate the wage

gap) given that individuals enjoy more kids when consumption levels are higher.

25[36], uses difference in difference methods and exploits variation in Medicaid funding across U.S.
states to conclude that making abortion illegal would increase total fertility rates between 3 and 5%.
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2.8 Conclusion

In this chapter I study life-cycle fertility in the U.S., focusing on birth profile differ-

ences across educational groups (high school and college). To understand the facts

on timing and number of births during the life-cycle, I develop a structural model

where agents transit through different marital states, face idiosyncratic survival and

earnings risk and capital markets are incomplete (individuals cannot borrow against

their future earnings). In this setting, I embed a standard fertility model (the ”time

allocation of mothers” variety) and add the assumption of imperfect control of indi-

viduals over fertility outcomes. From the analysis, I conclude that differential fertility

risk (in the form of ability to control fertility plans) across education groups is the

main determinant of differences in timing and levels of fertility, while differences in

marriage/labor markets play minor roles. This shows that standard fertility theories,

which rely solely on substitution effects to produce negative skill-fertility relation-

ships, cannot account for life-cycle nor cross sectional facts.
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2.9 Appendix

2.9.1 Proofs

Proof of Lemma 2.3.1. Define the value of not increasing family size

∆V (a, w, k0) ≡ V (a, w, k0)− V (a, w, k1)

existence of w∗ comes from continuity of the log function and the use of the

intermediate value theorem. First,

lim
w→0

∆V = log

{
a+ w(1− b(k0))

a+ w(1− b(k1))

}
+ γ log{

k0

k1

}

= 0 + γ log{
k0

k1

}

< 0

On the other hand, limw→∞∆V > 0, by assumption 1. Hence, there must exist at

least one wage such that ∆V = 0. For uniqueness, we require ∂∆V
∂w

≥ 0, which comes

from using assumption 2 �

Proof of Lemma 2.3.2. This proof is analogous to the previous one. First,

note that lima→0∆V = log(k0/k1) < 0. On the other hand, lima→∞∆V > 0 by

assumption 1, so applying the same logic as above, a∗ exists. For uniqueness, we have

that

∂∆V

∂a
=

1

a+ w(1− b(k0))
−

1

a+ w(1− b(k1))

which is strictly negative, because b(k) is increasing. �
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2.9.2 Data

Figure 2.13 shows the profiles for labor endowments, computed from march supple-

ments of the Current Population Survey (years 1990 to 1995). In the figure I show

annual earnings for females, between ages 18 to 65, corrected for inflation using the

GDP deflator for the year 2000. These profiles are smoothed using a 5th order poly-

nomial.

To characterize the labor market, I also use gender and education specific idiosyn-

cratic labor shocks. These shocks come from estimates from [26], who uses labor

earnings data from the PSID to calculate the unobserved component of annual labor

earnings. I use a standard discretization of the continuous AR(1) described in the

paper. I choose to discretize the four processes (2 education groups and 2 genders)

by a 3 state markov system. The standard in the literature is to use at least 5 states,

but computational burden prevents me from using a more detailed shock structure.

However, results in the chapter don’t rely in the dimensionality of these shocks.

Also from the CPS, I calculate the proportion of females (by education) married

to college educated males (irrespective of presence of children in the household), in

order to measure positive assortative matching in the marriage market. As seen in

figure 2.14, marriage indeed shows the positive assortative matching property.

I compute yearly survival probabilities by educational group using the information

in [26]. I interpolate his 5 year values and smooth the resulting series with a second

order polynomial. The resulting probabilities for female individuals are in figure 2.15.

To calculate transitions through marital states, I use the Panel Study of Income

Dynamics (PSID) for the years 1990 through 1995. I use heads of household and

wives (as defined in the PSID) to compute the following probabilities, by education

and age: probability of remaining single, the probability of remaining married and

the probability of getting married conditional on being divorced/widowed. Given

these three probabilities, I can span all transitions (e.g., some probabilities are zero

by definition and others are just complements). I extrapolate these probabilities
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when necessary since the PSID doesn’t have many observations for young/old heads

of household. Given the short span of my chosen sample, individuals contribute at

most 5 observations/years, making these probabilities a cross-section description of

marital transitions during the mid 1990s in the U.S. Figures 2.16 and 2.17 show these

transitions.

I assume simple age and asset distribution of prospective male partners. For

ages I consider only 3 possible alternatives: same age, one year older and two years

older (i∗ = {i, i + 1, i + 2}), each occurring with probabilities P (i∗ = i) = 0.4,

P (i∗ = i + 1) = 0.41 and P (i∗ = i + 2) = 0.19, which come from CPS data. Age

of partners is important since they determine the extra income for the household in

terms of partner’s labor earnings and the probability of death (hence, transitioning

to widowhood status). Since the profiles for both characteristics are smoothed, the

tradeoff between accuracy and simplicity of the solution by assuming such a narrow

age distribution is lessen.

For assets, I calculate from CPS data the average annual non-labor income (div-

idends, interests and rents) for both single males and females. Single males have on

average 20% higher non-labor income than single females. Hence, I create a simple

three point distribution for assets of prospective partners a∗ = {1.1a, 1.2a, 1.3a}, cen-

tered around the fact that on average a∗/a = 1.2. This simple distribution is uniform

(equal probabilities for each point). Changing this distribution doesn’t alter any of

the qualitative results from the exercise.

A note on Total Fertility Rates and cohort effects: throughout the chapter, I as-

sume no cohort effects in fertility rates. Although fertility has experienced significant

changes during the 20th century, fertility rates for the cohorts considered in my anal-

ysis are quite stable. Figure 2.18 shows age specific fertility rates computed from the

internet release of Vital Statistics of the United States for the year 1995 (tables 1-7).

The figure shows both total fertility rates for the cross section in 1995 and for

cohorts (denoted by year of birth) across multiple survey years. The differences
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between the cross-sectional profile and actual cohort profiles is minimal. This comes

from the fact that I am considering a small window in the life-cycle of cohorts that

are close together (at most 20 years between births).
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2.9.3 Computation and Estimation details

To solve the model, I use a Chebyshev regression (as described in [33] and [25]) to

approximate the optimal policies for savings and contraceptive effort and the value

function along the asset space (the only continuous state variable in the model).

My approximation is described by 7 collocation points and the use of a Chebyshev

polynomial of degree 5. Increasing both the number of collocation points and/or the

order of the polynomial doesn’t improve the quality of the approximation significantly.

A note on the non-standard mapping between model periods and years: I adopt

this procedure to save on computational time. A similar feature is present in [35]. In

my model, if = 40 (last fertile age), ir = 45 (stands for a retirement age of 65 years)

and I = 48 (represents the age of 95, the last period of life).

I assume that an individual aged i ∈ {if + 1, ..., ir} experiences one model period

as the average of 5 real years; when i ∈ {ir + 1, ..., I}, the experience is that of 10

averaged years. The external data used (and described in the previous section) is

treated accordingly depending on the age of the individual: earnings, survival and

transition probabilities, etc., are averaged in groups of 5 or 10 years accordingly.

Some notes on the estimation: The parameterization of age profiles for contra-

ceptive and conception ability are in table 2.4

ϕ̃+
i,m={1,3} (not-married) ϕ̃+

i,2 (married) ϕi (High School) ϕ−i (conception)

constant 2.05E-02 -1.17E-01 4.74E-01 2.89E-01
i -3.86E-02 2.81E-01 -1.02E-01 4.34E-02
i2 2.99E-02 -8.57E-02 6.68E-02 -2.30E-02
i3 -5.34E-03 1.25E-02 -1.19E-02 3.58E-03
i4 3.98E-04 -9.12E-04 8.47E-04 -2.59E-04
i5 -1.35E-05 3.18E-05 -2.69E-05 8.85E-06
i6 1.71E-07 -4.24E-07 3.17E-07 -1.15E-07

Table 2.4: polynomial coefficients for parameterization of fertility profiles
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To accelerate the estimation algorithm, I use a Beowulf cluster with 20 processors.

I parallelize at the parameter level, using the APPSPACK software available free on

the web. See [19] and [37] for details.
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Figure 2.13: Labor Endowments by educational group
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Figure 2.14: Probability of being married to college male, by education of female
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Figure 2.15: Survival probability by education

48



0.5

0.6

0.7

0.8

0.9

1.0
1
8

2
3

2
8

3
3

3
8

4
3

4
8

5
3

5
8

6
3

6
8

7
3

7
8

8
3

8
8

9
3

age

p
ro

b
a
b
ili

ty

high school college

(a) single to single

0.5

0.6

0.7

0.8

0.9

1.0

1
8

2
3

2
8

3
3

3
8

4
3

4
8

5
3

5
8

6
3

6
8

7
3

7
8

8
3

8
8

9
3

age

p
ro

b
a
b
ili

ty

high school college

(b) married to married

Figure 2.16: Transition probabilities for marital states
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Figure 2.17: Transition probabilities for marital states
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Chapter 3

Aggregate Shocks: Labor Markets

3.1 Introduction

Most business cycle research is performed using the notion that factor shares of income

(capital and labor) are constant. This is usually achieved by assuming a Cobb-Douglas

production function and marginal productivities as factor prices. We can trace this

assumption choice from a generalized belief in [34]’s stylized facts about growth.

However, these facts represent (at best) gross generalizations of reality and fail to hold

under rigorous statistical scrutiny. As noted by [45], factor shares of income are not

constant. They identify an overshooting property: the impulse response of bivariate

vector autoregressions between the Solow residual and the labor share displays the

latter variable falling after a contemporaneous positive shock in technology, but then

labor share experiences a long-lasting and persistent increase in its value, peaking five

years later at a level larger (in absolute terms) than the initial drop. When looked in

detail the dynamic behavior of labor share is strongly influenced by the lagged and

strong behavior of employment and by the persistent response of output.

In this chapter (co-authored with José-Vı́ctor Ŕıos-Rull) we explore whether break-

ing one of the two assumptions that lead to constant factor shares, namely competitive

factor pricing induces dynamics of the labor share like those observed. Specifically,
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we explore the extent to which a family of real business cycles models where wages

are not set competitively tailored to replicate cyclical facts about the labor market,

is capable of generating the observed dynamics of labor share as described in [45].

We build upon [39], [3], [10], among others, who analyze models where factor prices

are not set competitively, employment lags productivity, and labor share falls with

productivity innovations.

In these models, frictions exist in the labor market and wages are non-competitive,

in the tradition of the Mortensen-Pissarides search and matching model.1 More specif-

ically, these models are characterized by labor markets where search frictions prevent

the seamless allocation of workers to jobs; also, the non-competitive wage setting

(usually, Nash Bargaining) introduces some rigidity in real compensations which in

turn creates a wedge between wages and average labor productivity.

We see this model as a natural extension of standard business cycle models and

a place where we can depart from constant factor shares of income by assuming

non competitive wages in a transparent and intuitive way. Moreover, and as we

will show below, the response of labor share to innovations in technology is hump

shaped, driven in a big part by the hump shaped response of employment and total

hours. This is not possible to replicate in models where labor inputs to production

adjust instantaneously to the cycle, hence the need for some kind of frictions in the

determination of aggregate employment. An additional benefit of taking the search

and matching framework as a baseline is that it naturally replicates the fact that

the immediate response of the labor share to productivity innovations is negative.2

Since labor share is comprised of the wage bill (real wages times labor input) over

total output, the negative instantaneous response of the simulated labor share to

positive innovations in technology is reproduced in the model because labor inputs

are fixed (given the search frictions) and wages react sluggishly to the cycle (given

Nash bargaining).

1See [43]
2This fact has been well documented in [39], [3], [10], [45], among others.
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Our results show that this class of models fails in replicating the overshooting

property of the labor share: unlike the data, responses in the model economy are

short-lived. Even though the model presented here is tailored to mimic the behavior of

labor share 5 to 10 periods after a shock in technology, it moves very little afterwards.

In other words, the model reverses almost immediately to one that looks more like

competitive pricing.

We calibrate our baseline model to average properties of the data, such as em-

ployment rates, fraction of GDP devoted to creating vacancies and the like. We also

calibrate our model so that it matches the observed response of employment and the

immediate response of labor share to productivity innovations. We do so not so much

to ask how good a model is this of labor fluctuations but to see whether a version

of this model capable of generating employment fluctuations generates the observed

dynamics of labor share. As we have said, it does not.

There has been a recent controversy on the ability of the Mortensen-Pissarides

search and matching type of models to replicate volatility of vacancies and unem-

ployment as seen in US data. This discussion relates closely to the work presented

here, since it addresses the same margins we study.

The main point was raised by [50], who performs a standard calibration of the

Mortensen-Pissarides model and finds that it cannot replicate the volatility of vacan-

cies and unemployment as seen in US data. [50] blames Nash bargaining, arguing that

equilibrium wages in that model are not ”rigid” enough: productivity increases are

followed closely by real wages, eroding profits and firms’ incentives to post vacancies

during the cycle. This point is underscored by [22] who studies a model where rigid

wages (in fact, wages in his chapter are static) generates high volatility of vacancies

and unemployment.

An alternative view is presented by [21] who show that a different calibration

of the model can deliver the facts: They point out that Shimer’s calibration (high

bargaining power of workers and low utility from leisure) effectively kills incentives
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for vacancy posting: the surplus of the match3 is high (given low value of leisure), so

increases in labor productivity increase the surplus by a proportional small amount.

Moreover, much of these increases are taken by workers with high bargaining

power. Hence, by setting a high value of leisure and a low bargaining power, [21]’s

version of the model produces accurate cyclical responses of vacancies and unemploy-

ment.

Our findings shed some light on the controversy, since our calibration strategy

imposes the response of employment observed in the data while freeing the value

of home production when not working. Our results confirm (in the context of the

present model) that in order to generate large employment responses, the outside

option value for the worker has to be quite large.4

We do explore some alternative calibration strategies to see whether the additional

discipline implied by the dynamics of labor share sheds some lights on the properties

of calibration strategies. We find that changing the baseline calibration to an alter-

native in the spirit of [21] where we target an extremely low value of the Nash weight

of the worker increases the cyclical response of vacancies and employment; neverthe-

less, increased responses of employment are matched with a lower-than-the-baseline

response in real wages, leaving the response of the labor share close to what is seen in

the baseline. The use of this alternative calibration strategy could be seen as a way

of affecting the hiring margin of the model.

We also explore a variant of the baseline, designed to increase real wages after a

positive technology shock and that we refer to as the ”Garrison” preferences where we

pose curvature in bodies making it increasing costly in utility terms to increase the

3in the Mortensen-Pissarides model, the static surplus of a match is labor productivity minus
utility from not working for the workers. In steady state, the surplus also depends on the average
duration of a match.

4An important alternative finding is that of [41] who poses a slight variation of the model wherein
workers who separate from a match, go to the pool of prospective hires immediately, and not on the
next period as is traditional in the literature. When the model is posed like this, the value of home
production implied solely by the utility of leisure is supplemented by a higher continuation value for
the workers, which in turn decreases the value of each match. By the logic presented in [21], this
helps in creating the incentives for high vacancy posting.
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fraction of the population working. This is an attempt to vary the wage margin in the

model. However, again we find that we cannot generate accurate dynamic responses

of labor share to productivity innovations, the reason being that while wages move

more employment move less.

We take the inability of the model to generate the observed dynamics of labor

share (under very distinct calibration strategies) as evidence that in non competitive

wage setting the hold up problems that create movements in the wedge between real

wages and labor productivity fades too quickly: in the model, firms have rational

expectations on what will happen with the cost of employment after a productivity

shock and they can act upon that by modifying vacancy posting; hence, the model

has embedded strong forces that nullify the effects of non competitive wages.

In addition, the failure of these models shows that the dynamics of the cyclical

behavior of factor shares in income poses a strict discipline that may be used to

discriminate between alternative classes of models. In this context, we think that

a next step is to explore models with technologies that are not Cobb-Douglas, and

that are susceptible to induce interesting dynamics: we present a variation from our

benchmark model, where we use a CES production function. This modification in

the baseline economy looks the most promising and points out to new directions for

future research.

This chapter is not the first one in modeling an endogenous non-constant labor

share5, nor the first one pointing out the necessity of understanding its cyclical be-

havior.6 However, it is (to the best of our knowledge) the first one trying to explain

the overshooting property, or in other words, the medium-run frequency movements

of endogenous labor market variables, identified as impulse response functions from

5See for example [18], [8], [14], [23], [28] and [2] among others.
6For example, [16] and [49] argue that the labor share is better suited than the output gap to

estimate inflation dynamics in environments where staggered contracts and rigidities in wages are
present, hence, the need to understand labor share dynamics in order to understand/predict trends
in inflation.

55



data. In doing this, we take into account both relative correlations and levels of en-

dogenous variables influenced by technological shocks; most of the existing literature

focuses only on correlations (and only in the short-run) and dismisses information

contained on impulse response functions.

The structure of the chapter is as follows: the next section discusses the data,

estimation procedures and facts about the labor share at quarterly frequency. Section

3.3 describes our baseline model. Section 3.4 discusses our calibration strategy while

section 3.5 shows properties of the model economy under the proposed calibration. In

section 3.6 we consider different calibration strategies in order to check for robustness;

we then propose a simple deviation from the baseline economy, which clarifies the link

between non-competitive wage setting through Nash-bargaining and the dynamics of

employment, hours and the labor share. We conclude in section last section.

3.2 Cyclical Behavior of the Labor Share: The

Facts

Here we briefly summarize the findings in [45]. The facts we are interested in can

be summarized in the following figures and tables that we have calculated from US

data, from the first quarter of 1964:I to the last quarter of 2004.7 Figure 3.1 shows

the labor share; Table 3.1 presents the standard business cycle statistics; the series

are in logs and then hp filtered.8

The facts can be summarized by

1. Labor share is quite volatile: its standard deviation is 42% that of output.

2. It is countercyclical: its correlation with contemporaneous output is -0.13.

3. It is highly persistent: Autocorrelation of 0.78

7We use the labor share as constructed by [45]. We use data from NIPA and BLS. Standard data
and standard construction of variables...

8Taking logs allows the interpretation of its volatility as percentages.
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Figure 3.1: The Labor Share, U.S. 1964.I-2004.IV

σx σx/σGNP ρ(x,GNP ) ρ(xt, xt−1)
GNP 1.56 1.00 1.00 .86
log Labor Share .66 .42 -.13 .78

Cross-correlation of GNPt with Labor Sharet+i
i =

−5 −4 −3 −2 −1 0 +1 +2 +3 +4 +5
-0.27 -0.29 -0.29 -0.25 -0.20 -0.13 0.10 0.27 0.39 0.45 0.45

Table 3.1: Business Cycle statistics of the labor share

4. It lags output by a year

5. It overshoots. When we estimate a vector autoregression (VAR) of order 1

(without constant) between the Solow residual and the labor share and then plot

the impulse response (IR) function for the labor share, we get figure 3.2. The

term ”overshooting” is due to the fact that, while the instantaneous response of

labor share to a technology shock is negative, the overall effect is positive and

long lasting.
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Figure 3.2: Response of Labor Share to a shock in the Solow residual

Basically, this ”hump-shaped” response of the labor share is due to the hump-

shaped response of employment during an expansion. Hours per worker and wages

have weaker responses. This is shown in figure 3.3, where each response function is

calculated from a bivariate VAR of order 1, between the variable of interest and the

solow residual.

We take these VARs as statistics from the data. In the results section, we will take

simulated data and construct these same figures and statistics and compare them.

3.3 The model

Here we describe the model that we take as a baseline. As pointed out in the intro-

duction, this model is appealing for the problem at hand because it has three main

ingredients: non competitive wages, a role for frictions in employment and forces that

create a countercyclical labor share.9

9See [43], [39], [3] and [10], among others.
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Figure 3.3: Response of Labor Share components to a shock in the Solow residual

The environment can be described as follows. Time is discrete and goes on forever.

There is a continuum of identical and infinitely lived large families, or households,

each of measure one. The household consumes (c), accumulates assets (a) which they

rent to the firms and depreciates at rate δ (in equilibrium, assets and capital are

the same) and provides labor: there is a fraction n of individuals in the family, or

household members, that is matched with firms or employed, the rest, 1 − n, is not

employed but willing to be assigned to any open job. The amount of hours worked

by those employed is determined in a decentralized way in the job.

Firms produce the unique good in the economy, using a constant returns to scale

technology, subject to aggregate and persistent productivity shocks (z):

y = ez F (k, nh) (3.1)

Inputs to this technology are capital k and labor in the form of workers, n, times

hours per worker, h. There are search frictions in the labor market: workers and
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firms need to be matched. Over time there is attrition of matches and firms post va-

cancies, v, that result in additional future matches according to a standard matching

function that depends on the aggregate level of vacancies and size of the non-working

population,M =M(V, 1−N). Following the literature, we assume that this function

is homogenous of degree one in both arguments (V and 1 − N) and that there is

an exogenous and constant separation rate χ between jobs and workers. The search

component of the model makes employment a predetermined state variable at the

beginning of each period; also, its value evolves according to the matching function.

When solving their problem, both the household and the firm take as given the

interest rate (r), which is determined in a perfectly competitive capital market. On

the other hand, the real wage (w) and hours per worker (h) are determined by a

pairwise Nash bargaining game between firms and individuals.

The assumption of large families helps us distinguishing employment and hours

per worker in equilibrium, as well as the employment status of individuals inside

the family. The latter provides a simple framework to understand labor search and

matching in this model, since we don’t have to distinguish between employed or

unemployed families, but rather employed or unemployed individuals.

The aggregate state in this economy is the aggregate shock, the amount of capital

and the fraction of the population matched to firms, S = {z,K,N} . The household

state is the aggregate state S and its own state variables which are its assets and the

fraction of its members that have a job, i.e. that are attached to a firm, sH = {a, n}.

Assets in this economy are both physical capital and firms. The latter have value

because they are matched to workers by posing costly vacancies in exchange for future

profits. Without loss of generality we close the stock market in this economy and post

the dividends (not the rental income of capital) as an endowment of households. This

simplifies dramatically the definition of equilibrium and avoids cumbersome notation.

Consequently, the household solves the following recursive problem:
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V (S, sH) = max
{c,a′}

u(c) + nν(1− h) + (1− n)ν(1) + βE [V (S ′, s′H)|z] (3.2)

s.t.

c+ a′ = w(S, sH)h(S, sH)n+ (1 + r − δ)a+ π(S) (3.3)

n′ = (1− χ)n+Ψ(S)(1− n) (3.4)

S ′ = G(S) (3.5)

z′ = ρz + ǫ′, ǫ ∼ iid(0, σ2
ǫ ) (3.6)

where u(c) is utility of consumption, a are the assets of the household, ν(·) is the

utility of leisure, π(S) are dividends from the firm to the households. We denote

with primes next period’s values of variables. G(S) is the law of motion of aggregate

variables, and Ψ(S) is the job-finding rate,. This rate is derived from the usual

matching function, i.e.,

Ψ =
M(V (S), 1−N)

(1− n)
(3.7)

The household takes as given by functions w(S, sH) and h(S, sH)n the allocation

of hours and the determination of wages. As we will see below they are set by

decentralized bargaining.

Since we use separable utility between consumption and leisure, the intra-household

consumption level doesn’t depend on employment status, that is, the household per-

fectly insures its non-working members. In equilibrium, this means that unemployed

individuals are better off than employed ones: they receive the same consumption

stream c and enjoy all the leisure, while the employed agents spend h working for

the firms. This issue was discussed by [10]10 but has no implications for our goal of

replicating the cyclical properties of the factor shares.

Turning now to the problem of firms, they rent the capital from the households

and post vacancies on the job market, which turn into matches with one period delay,

10In their paper, they introduce non-separable utility between consumption ad leisure, a la [46]
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an intrinsicly dynamic problem so the firm considers the future paths of vacancies and

unemployment in order to make its decisions today. The representative firm takes

the aggregate and individual state variables, S and sF = {n} respectively, and solves

the following dynamic problem:

Ω(S, sF ) = max
{v,k}

y − w(S, sF )h(S, sF )n− rk − cvv + E
[
R̃(S ′) Ω(S ′, s′F )|S

]
(3.8)

s.t.

y = ez F (k, nh) (3.9)

n′ = (1− χ)n+ Φ(S) v (3.10)

S ′ = G(S) (3.11)

z′ = ρz + ǫ′, ǫ ∼ iid(0, σ2
ǫ ) (3.12)

where cv is the cost of posting a vacancy, Φ is the job-filling rate (Φ ≡ M/V ), F

is the production function, and G is the law of motion of aggregate state variables

that in equilibrium is determined by the actions of individual households. The firm

also takes as given functions w(S, sF ) and h(S, sF )n that determine the allocation of

hours and the level of wages.

Note that, the discount factor for the firm is none other than the rate of return

of the economy which in equilibrium is given by the standard FOC using aggregate

variables

R̃′ ≡ β
uc[C(S

′)]

uc[C(S)]
. (3.13)

where uc(.) is the marginal utility of consumption for the households.

From the problem of the firm, we can derive the first order condition for vacancies

cv = β Φ(S) E

{
uc[C(S

′)]

uc[C(S)]
Ωn(S

′, n′)|S

}
(3.14)

where Ωn (and now we start omitting arguments to avoid exhausting notation) is the
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value of an additional worker to the firm, i.e.

Ωn =
∂y

∂n
− w h+ (1− χ) β E

[
u′c
uc

Ω′n

]
(3.15)

Equations (3.14) and (3.15) say that the firm posts vacancies until the (constant)

marginal cost of the vacancy equates the probability of getting a new worker times

the marginal benefit of that additional worker.

As stated before, in this model wages are not equal to the marginal productivity

of labor, but are determined by the outcome of a bilateral Nash bargaining game

between the firm and the individual.11 As opposed to the standard [43] model where

the outside option for the workers is a fixed parameter, in this model the value

of not engaging in production for a worker is determined endogenously; the outside

option for the worker is related to the extra leisure that unemployed individuals enjoy

(remember that their consumption is insured by the family unit) and the option value

of being matched to another job next period.

Specifically, the setup of the bargaining game has the following components. First,

the value of an additional worker for the household
(
≡ ∂V

∂n

)
is given by

Vn = ucw h− ν(1) + ν(1− h) + (1− χ−Ψ) β E [V ′n] (3.16)

and the value of an additional worker for the firm
(
≡ ∂Ω

∂n

)
is given by

Ωn = ynh h− w h+ (1− χ)βE

[
u′c
uc
Ω′n

]
(3.17)

where ynh =
∂y

∂(nh)
denotes the output produced by someone who works h hours. This

is an important assumption, that goes to the nature of the bargaining protocol.

With these elements, we can define the axiomatic Nash bargaining problem for

11This is important, specially if the production function is Cobb-Douglas, since competitive pricing
of the factors under that particular production function gives rise to constant factor shares.
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which the outcome determines both the wage and the hours per worker:

(w, h) = argmaxw,h (Vn/uc)
µ (Ωn)

1−µ (3.18)

where µ is the bargaining power of the worker. Note that the value of the marginal

worker for the household (Vn) is multiplied by uc (the marginal utility from consump-

tion) in order to transform everything into units of the consumption good.

Taking the derivatives with respect to real wages and hours, we get two conditions:

the first one is the ”sharing rule” of production surplus and the second is a static

condition for determining the length of the workweek,

µ uc Vn = (1− µ) Wn (3.19)

uc ynh = νh(1− h) (3.20)

To solve for the equilibrium wage, we have to use the first order condition for vacancies

(3.14) as well as the sharing rule (3.19) to get

w h = µ

[
∂y

∂n
+ cv

v

1− n

]
+ (1− µ)

[
ν(1)− ν(1− h)

uc

]
(3.21)

This is an analog to the wage equation derived by [43] in the simpler setup where

productivity and the outside option of the worker are constants. In words, the wage

bill is a weighted average of (i) the marginal productivity of the worker plus the

average savings in vacancy postings per unemployed individuals and (ii) the outside

option of the worker, which in this case is simply the forfeited leisure incurred by the

individual who works h hours at the firm.

The bargaining protocol that we have posed implicitly assumes that in case that

the negotiations break down between any specific worker and firm, the negotiations

of the firm (and the worker) with other workers and (firms) are unaffected. This is an

extreme assumption and an alternative has been posed nicely by [51] where firms and
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workers internalize that any breakdown of negotiations affects negatively the position

of the firm with other workers. Unfortunately, the simultaneous determination of

hours with this alternative bargaining protocol seems intractable.

To finalize we should impose the equilibrium conditions that both households and

firms are representative. We omit them since they are very well known.

3.4 Calibration of the Model

The calibration process consists of selecting functional forms, specifying parameter

values and the targets that the model economy has to satisfy that restrict the values

of those parameters. Of course, the number of targets has to be at least that of

parameters.

3.4.1 Functional Forms and Parameters

A model period is taken to be one quarter. The production function is Cobb-Douglas

with exponential depreciation. The utility function is separable in consumption

(where we use log utility) and leisure, with

ν(ℓ) =





γ ℓ
1−η

1−η
if ℓ ∈ [0, 1)

γu if ℓ = 1
(3.22)

We follow [3] and introduce a differentiated parameterization for the leisure in the

household. where γu is a constant. The different values for leisure of the employed ver-

sus the non-employed can be interpreted as differential efficiency in home production

given the labor force status12, commuting time or search costs. In practical terms,

this extra parameter allows for more flexibility in the calibration of the model since it

can be set independently from the leisure of the employed. The additional flexibility

becomes quite handy when noticing that it allows for accommodating the large lag

12See [3], page 115.
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implied by the model for workers that have been just separated from a match, in

joining the set of prospective hires (12 weeks) and the large group of non-workers in

this economy. As stated before, [41] uses a disciplined value of home production in an

environment where if a worker breaks up with a firm, it becomes immediately eligible

to search for another job.

The matching function has constant returns to scale, and it is also assumed to be

of the Cobb-Douglas form13.

M(V, 1−N) = ωV ψ(1−N)1−ψ (3.23)

Given these expressions, the equilibrium of the model is characterized by the following

system of nonlinear equations:

Y = ezKθ(Nh)1−θ

N ′ = (1− χ)N + ωV ψ(1−N)1−ψ

K ′ = (1− δ)K + I

Y = I + C + cvV

Φ = ωV ψ−1(1−N)1−ψ

1 = βE

[
C

C ′

(
1− δ + θ

Y ′

K ′

)]

cv
Φ

= βE

[
C

C ′

(
(1− θ)

Y ′

N ′
− w′h′ + (1− χ)

cv
Φ′

)]

(1− θ)
Y

Nh
= Cγ(1− h)−η

wh = µ

[
(1− θ)

Y

N
+ cv

V

1−N

]
+ (1− µ)C

[
γu − γ

(1− h)1−η

1− η

]

z′ = ρz + ǫ′

Given any parametrization, we solve this model with a first order approximation

of the system around the stochastic steady state.

13See [50] and [7]
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There are 13 parameters in this model that we have to specify. There are prefer-

ence, matching technology and bargaining parameters.

Preference parameters

1. β Discount factor.

2. γ Multiplicative coefficient of leisure.

3. γu Utility level of unemployment.

4. η Exponential Coefficient of leisure.

Production parameters

5. θ Coefficient of capital in the production function. Under competitive factor

prices, 1− θ is labor share. This is not the case in this model.

6. δ Depreciation rate.

7. σ2 Standard deviation of the innovation to the productivity shocks.

8. ρ Autocorrelation of the productivity shocks.

Matching Technology

9. cv Cost of posing a vacancy.

10. ω General level of job creation.

11. ψ Coefficient of vacancies in the matching function.

12. χ Job destruction rate.

Bargaining protocol

13. µ The weight of the firm in the bargaining process.
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3.4.2 Calibration Targets

We turn now to specify the targets that we chose to determine the values of these

parameters. Unlike traditional work in business cycle research we pose, not only

targets that are first moments, but also targets that are second moments. We defend

this choice below.

Household Targets

1. Annual rate of return of the economy, 4%.

2. Steady state hours per worker, 433 per quarter (1733 per year, about 1/3 of

total time).

3. Frisch elasticity of hours for those that work, .5.

4. Steady state employment rate, 75%. Depending on the definition of employment

and unemployment, different authors target different values for this variable.

[3], [39] and [10], among others, take 0.57 as their target; [50], [21] use a much

higher number (around 0.94). Our number is on the very high end of the

historical employment rate. We follow in this regard [38] and [42]. Although

the simulated volatility of vacancies and unemployment are sensitive to this

target, the responses of labor share to technology are not, so we settle on an

average employment rate.14

Production Targets

5. Consumption to output ratio, 75%.

6. Measured labor share of output, 67%.

7. Standard deviation of measured Solow residual, .64%.

14Alternatively we could have targeted the duration of unemployment or the transition of unem-
ployment to employment (as [3] and [10] do).
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8. Autocorrelation of measured Solow residual, .93.15

Employment Turnover Targets

For the targets below, we follow [3], [1] and [10].

9. Separation rate, 15% per quarter.

10. Vacancy expenditures to output ratio, .5%.

11. Job filling rate in the steady state of 0.9.

Business Cycle Targets

The targets listed so far are steady state targets (except for the implied process for

the Solow residual). For the last two targets, we impose two business cycle targets:

13. The immediate response of labor share to a productivity shock, −0.1263%.

14. The size of the response in employment to a productivity shock, 0.4326%.

We compute these last two targets (both with real and model simulated data) by

way of estimating vector autorregresions between the technological shock and log-

detrended variables (construction procedures described in [45]). We identify the im-

mediate response of labor share to a productivity shock as the first element of the

impulse response function of labor share in the VAR; the size of the response in

employment is taken as the maximum value of the corresponding impulse response

function. We choose these targets since they provide information on the workers’ bar-

gaining weight and the elasticity of the matching function to the number of vacancies,

respectively.

Our calibration strategy entails looking for parameter values in order to match all

of the targets above. There is a number of parameters that we can set in advance:

15This targets arise from our estimation of a VAR(1) between labor share and productivity, as
described in [45].
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parameter Description Value
β Discount Factor 0.990
δ dep. rate 0.012
ρ Autoregressive parameter of tech. shock 0.930
σǫ Std. dev. of tech. shock 0.0064
θ Share of Capital in Cobb-Douglas 0.327
χ Separation rate 0.150
ψ Elasticity of matching fnc. wrt vacancies 0.669
ω Scale parameter in matching function 0.718
η Curvature parameter in utility of leisure 4.000
γ Scale parameter in utility of leisure 0.663
γu Leisure utility of unemployed 0.326
cv Cost of posting a vacancy 0.037
µ Bargaining power of workers 0.410

Table 3.2: Parameter values

{β, δ, χ, η} while for the rest, we solve a system of 11 non-linear equations (model

targets) in 11 unknowns (model parameters). We hit all steady state targets almost

perfectly, while we approximate the business cycle ones very closely.16

3.4.3 Properties of the Calibrated Economy

It is useful to comment on the parameters obtained in the calibration process which

are ρ σǫ θ ψ ω γ γu cv µ. The properties of the shock while not identical are quite

similar to the ones that result from a direct estimation of the Solow residual. The

value of leisure is very high, it is so high in fact that there is no way to describe its

value in terms of commuting costs (for those who work). We can however describe

its value in terms of the consumption value of the discontinuity that it implies by

solving the following equation for x

u(c∗) + γ lim
ℓ→1

ℓ1−η

1− η
= u(c∗ + x) + γu. (3.24)

16The immediate response of labor share is −0.106% (−0.1263% in the data), and the size of the
response in employment is 0.4258% (0.4326% in the data).
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where c∗ is the steady state value of consumption. The implied value turns out to be

about 90% of c∗.

Another important feature of the calibrated parameters is that the Nash weight

of workers is .41, on the lower end of those in the literature. This value is right

between those used in the [50] vs. [21] debate. The former pairs a high weight for

workers (0.72) with a low value of home production or unemployment insurance; the

latter pair a high value of home production with a very low value of workers’ weight

(0.052). Hence, our calibration lays in between these two opposites: we have a very

high value for the utility of the non-employed and a bargaining weight for workers

that is a midpoint of the values used by [50] and [21].

Compare the values used in our environment (where upon the breakdown of a

match a worker has to stay out of the workforce for 3 months and afterwards joins

the 25% of the population that is willing to be matched) with those in [41], who poses

that when bargaining breaks, workers can join the rank of employable within the same

period. He models utility in the household without any sort of discontinuities with

respect to leisure17 and a very low value for the bargaining weight of the worker

(around 0.05). This type of calibration might seem insufficient to generate high

volatility of vacancies since the outside option of workers is low; but as noted earlier,

the fact that workers don’t have to sit-out one period after a match breaks, reduces

the surplus of each match by increasing the continuation value of the worker.

17[41] has non-separable utility between consumption and leisure, so equation (3.24) looks differ-
ently in his setup:

lim
ℓ→1

u(c∗, ℓ) = u(c∗ + x, 1)

Since there is no form of discontinuity between u(·, ℓ) and u(·, 1), x = 0.
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3.5 Business Cycle Behavior of the Baseline Model

Economy

We solve the model numerically by local approximation of the non-linear system of

equations presented above and simulate paths for all endogenous variables. We then

calculate statistics in the same manner for both real and model simulated data. Table

3.3 compares the cyclical properties of the model against quarterly US data, while

figure 3.5 compares impulse response functions.

Table 3.3 shows that the model replicates well the main features of the US busi-

ness cycle: standard deviation of output is closely replicated, as well as the cross-

correlation of output with all endogenous variables in the table. This is not surpris-

ing as we targeted the volatility of employment and as the model has built in the

propagation mechanism of a delayed response in employment.

As in [39], [3] and [10], key cyclical facts about the labor market are captured in the

baseline: total hours moves more than in a standard RBC model, but still less than in

the data; employment and hours per worker are pro-cyclical, with employment lagging

the cycle slightly by one quarter; labor share is countercyclical, again as targeted.
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The main finding of this chapter is shown in Figure 3.4. Labor share is flat after

four periods and most of the initial drop targeted in the calibration has disappeared

after one period. Moreover, the response of labor share never changes sign let alone

moves in the opposite direction in the amount that it does in the data.
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Figure 3.4: Dynamics of Labor Share

The four panels of figure 3.5 show the complete story. From 3.5(a), we see that we

hit very closely our target of employment response to a technological shock, although

the timing is not perfect. The model succeeds in hitting the high levels of employment

fluctuations, with a calibration that yields a relatively low value of the worker’s Nash

bargaining weight. This is partly due to a low target for employment, as pointed out

by [12]: we use a target of 0.75, which is above the historical target of 0.57 used by

[3] and [10], but below the one close to 0.95 used more recently by [50] and [21]. This

is also partly due to the implied high value of home production yielded by parameter

γu.

Even though employment creation might be sensitive to the choice of this target,

the ability of the model to produce ”overshooting” of the labor share is not, as it will
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be clear below.

In 3.5(c) and 3.5(d), we see that wages respond similarly to its value in the data

but hours do not. In particular, hours in the model respond immediately because

they substitute for bodies that cannot be increased. Once bodies are available, hours

go back to the steady state level.

Finally, 3.5(b), shows the response of output. As in the data, the baseline shows a

humped-shaped response, but with higher values at the beginning of the time period,

due mainly to the difference between responses in the data and the baseline of hours

per worker.

The failure of the baseline in replicating the overshooting of the labor share can

be attributed to a mix of failed model responses: employment and wages respond less

during the medium run (10 to 40 periods after the initial shock) but the main culprit

seems to be hours per worker.

3.6 Robustness and Extensions

We study the extent to which our results are affected by our particular calibration. We

recalibrate the model in the spirit of [21] and compare the implied model responses.

Then, we take a small departure from the baseline economy, in order to clarify the

possibility of increasing the response of labor share by varying the margins of the

wage setting protocol.

3.6.1 A Different Calibration

The main point argued by [21] with respect to the calibration of the model, is that

in order to increase the ability of the search and matching framework to propagate

technological shocks, incentives for the firm to post costly vacancies have to be signif-

icant. This implies a calibration where firms have small accountable profits but high

bargaining position. Hence, when there is a positive technological innovation, the
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(b) Output
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(c) Wages
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(d) Hours per Worker

Figure 3.5: Response to a Technological Shock: Data and Baseline
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Hagedorn Manovskii
parameter Baseline Calibration

θ 0.327 0.346
ψ 0.669 0.574
ω 0.718 0.693
γ 0.663 0.554
γu 0.326 0.389
cv 0.037 0.048
µ 0.410 0.050

Table 3.4: Parameter values, alternative calibrations

percentage of increase in profits is large for the firms; moreover, firms want to post

vacancies since they have the better bargaining position. By altering this margin in

the model, we want to see if we can achieve higher responses of labor share due to

increased responses in the extensive margin of employment.

We achieve this alternative parameterization of the model by setting the bargain-

ing power of workers µ to 0.05 which is the value used by [21]. We then recalibrate the

rest of the parameters by using the steady state targets described in section 3.4.2; in

order to maintain the spirit of the suggested calibration, we replace the business cycle

targets with a target for the firms profits of 0.03.18. The result of this calibration is

presented in table 3.4. Notice that now the value of home production while working

increases further although by a lot less than in the original discussion between those

authors which may be due in part to the fact that we started with a relatively low

bargaining power of workers.

Comparisons in model responses are shown in figures 3.6 and 3.7. As seen in figure

3.6, the use of this alternative calibration also fails in creating a positive response of

the labor share to a technology shock. Notice that since the initial drop in labor share

is not a target under the Hagedorn–Manovskii calibration, the model overreacts in

this dimension (compared to the baseline), but again, it goes back to its long run

18This target is used by [50] and [21]
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Figure 3.6: Dynamics of Labor Share

average pretty fast.

From figure 3.7 and its panels, we see that this alternative parameterization af-

fects mostly employment and real wages, leaving hours per worker and output fairly

untouched: Indeed, employment has a stronger response as opposed to the baseline,

while real wages are more sluggish under the new calibration. Combined, these re-

sponses leave the labor share as in the baseline. Hence, although the the insight

provided by [21] (namely, that a different calibration alone is able to create the in-

centives for the firm to create more employment during the cycle) also works in this

model, it doesn’t affect our goal of matching the dynamics of the labor share.

3.6.2 The ”Garrison” Effect

In this section we present a small deviation from the baseline model in order to un-

derstand better the reason for its inability in replicating the overshooting property of

the labor share. In the previous section we analyzed whether a different calibration

strategy would deliver. Here we go one step further and force some particular mecha-

nisms on the model. Below we describe this mechanisms, explain how we recalibrate
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(a) Output
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(b) Employment
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(c) Wages
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(d) Hours per Worker

Figure 3.7: Response to a Technological Shock: Data and Baseline with [21] Calibra-
tion
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the model and show its performance in terms of impulse response functions.

Recall that the instantaneous utility of the household was given by

U = U(c) +Nν(1− h) + (1−N)ν(1)

Consider the following alternative:

Ug = U(c) +Nν(1− h) + (1−N)κν(1)

where we denote κ ∈ [0, 1) as the ”Garrison” effect, since it captures the notion that

having N going to 1 (most members of the household working), might be increasingly

costly in terms of leisure, say, because of increasing returns to scale in household

production.

The ”Garrison” effect increases the in-household (non-working) option value for

the workers, hence affecting the wage bill. Denote b̃ as follows

b̃

(
≡ −

∂U

∂N

)
= ν(1)− ν(1− h)

With Garrison, we have that

b̃g

(
≡ −

∂Ug
∂N

)
= κ(1−N)κ−1ν(1)− ν(1− h)

hence, with κ < 1 the reluctance to work by unemployed increases with N . Basically,

through the ”Garrison” effect, we are forcing the firm to pay higher wages during an

expansion following a positive technology shock since the outside option value for the

worker improves more than in the baseline in an expansion.

Given the exercise nature of this extension to the baseline, we solve the model

for different values of κ instead of trying to calibrate it to some data target. We

let κ ∈ {0.25, 0.50, 0.75} and recalibrate the rest of the parameters in the model as

described in section 3.4. The resulting parameter values are in table 3.5.
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parameter κ = 0.25 κ = 0.50 κ = 0.75
θ 0.323 0.313 0.333
ψ 0.877 0.954 1.021
ω 0.823 0.878 0.919
γ 0.762 0.673 0.664
γu 0.393 0.344 0.301
cv 0.031 0.018 0.017
µ 0.619 0.671 0.644

Table 3.5: Parameter values, Baseline + Garrison

To get a better idea of the margins involved, in the next figures we plot model

responses of the option values for the workers under the parameterization when κ =

0.5. We label these option values as in-firm and in-household because they represent

the values of either working for the firm or staying at home enjoying leisure. They

also represent the components of the wage bill, as calculated in equation (3.21).

In figure 3.8, panel (a) shows the response to technology of the in-firm value:

∂y

∂n
+ cv

v

1− n

while panel (b) shows the response of the in-household value:

b̃g
uc
≡
κ(1−N)κ−1ν(1)− ν(1− h)

uc

Figure 3.9 shows the impulse response function of the labor share to a technology

shock while the four panels of figure 3.10 show the response of output, employment,

wages and hours per worker.19 As seen in the figure, the introduction of this tweak

in the model doesn’t change the fact that the response of the labor share fades too

quickly when compared to the data. The more telling story is in panel (b) of figure

19The calibration is not entirely successful: Maybe, a conflict of steady state targets given the
presence of κ prevents us from hitting all rbc targets.
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(a) In-firm Option Value
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(b) In-household Option Value

Figure 3.8: Response to a Technological Shock: Option Values for Workers

3.8, where the response of the in-household option value is depicted: through the Gar-

rison preferences, we are forcing this value to be higher than the baseline throughout

the transition back to the steady state. Nevertheless, we have two mechanisms that

work against a positive response of labor share to technology. First, the same link-

age between average labor productivity and real wages (through Nash bargaining)

depresses employment in the face of higher wages. This is the same insight provided

by [50]. In other words, although we force the model to produce real wages that

are higher than the baseline, firms react by posting less vacancies and creating less

employment.

Second, 3.8(b) shows that the effect of this artificial wedge is short-lived, given

the convergence of the responses by the baseline and Garrison models just after 15

periods.

However, again we find that we cannot generate accurate dynamic responses of

labor share to productivity innovations, the reason being that while wages move more

employment move less.
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Figure 3.9: Dynamics of Labor Share

3.6.3 CES Technology

Finally, we pose the same benchmark model but change the aggregate technology.

We want to ask whether an aggregate Cobb-Douglas production function imposes

movements in shares that are too restrictive; hence, we feel that analyzing a CES

(constant elasticity of substitution) production function might be a natural step in

that direction. We use the exact same model, but change the production function to

Y = ez
[
θK−ν + (1− θ)(Nh)−ν

]− 1

ν

For the simulation of this economy, we use the same calibration as in the bench-

mark, but calibrate θ in order to obtain the same steady state factor shares. We set

ν to 0.3 so to have an elasticity of substitution between capital and labor of 0.75 (in

the Cobb-Douglas case, such elasticity is one).

Figures 3.11 and 3.12 show the impulse response functions of labor share and its

components to a shock in technology when the aggregate production function is CES.

As seen in figure 3.12, the model with CES technology performs very similarly

to the benchmark economy. However, the biggest departure comes from the reaction
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(a) Output
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(b) Employment
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(c) Wages
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(d) Hours per Worker

Figure 3.10: Response to a Technological Shock: The Garrison Effect
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Figure 3.11: Dynamics of Labor Share

of the labor share (figure 3.11): it becomes positive after the 6th period and slowly

reverts to zero. This is in contrast to every model presented so far and although

the dynamics presented in the figure are not strong, they show that Cobb-Douglas

technology indeed seems to pose a rigid share structure for the artificial economy.

3.7 Conclusion

In this chapter we explore the extent to which models tailored to replicate cyclical

facts about the labor market, are capable of generating the observed dynamics of labor

share as described in [45]. We build upon [39], [3], [10], among others, who analyze

models where factor prices are not set competitively, employment lags productivity,

and labor share falls with productivity innovations.

Our results show that the search and matching framework, along with non com-

petitive wage setting fail in replicating empirical responses of the labor share to

technological shocks: unlike in the data, responses by the model labor share are

short-lived and fail to ”overshoot”. This negative result is robust to perturbations to

the benchmark model (different preferences/technology) and is linked to the fact that
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(a) Output
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(b) Employment
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(c) Wages

-0.2%

-0.1%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

0.9%

1.0%

1.1%

1.2%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

periods after shock

d
e

v
ia

ti
o

n
s
 f

ro
m

 S
S

US data Baseline Model CES technology

(d) Hours per Worker

Figure 3.12: Response to a Technological Shock: CES technology
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the wage setting protocol used in these type of models (Nash bargaining) is not able

to create a persistent wedge between real wages and labor productivity. Moreover,

the failure of these models shows that the dynamics of the cyclical behavior of factor

shares in income poses a strict discipline that may be used to discriminate between

alternative classes of models.

In relative terms, our best results are given by economies where the aggregate

production function is CES (instead of the standard Cobb-Douglas); we take this as

evidence that exploring different technologies might be a good direction for further

research.
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