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Causal Inference in Discretely Observed Continuous Time Processes

Abstract
In causal inference for longitudinal data, standard methods usually assume that the underlying processes are
discrete time processes, and that the observational time points are the time points when the processes change
values. The identification of these standard models often relies on the sequential randomization assumption,
which assumes that the treatment assignment at each time point only depends on current covariates and the
covariates and treatment that are observed in the past. However, in many real world data sets, it is more
reasonable to assume that the underlying processes are continuous time processes, and that they are only
observed at discrete time points. When this happens, the sequential randomization assumption may not be
true even if it is still a reasonable abstraction of the treatment decision mechanism at the continuous time
level. For example, in a multi-round survey study, the decision of treatment can be made by the subject and
the subject's physician in continuous time, while the treatment level and covariates are only collected in
discrete times by a third party survey organization. The mismatch in the treatment decision time and the
observational time makes the sequential randomization assumption false in the observed data. In this
dissertation, we show that the standard methods could produce severely biased estimates, and we would
explore what further assumptions need to be made to warrant the use of standard methods. If these
assumptions are false, we advocate the use of controlling-the-future method of Joffe and Robins (2009) when
we are able to reconstruct the potential outcomes from the discretely observed data. We propose a full
modeling approach and demonstrate it by an example of estimating the effect of vitamin A deficiency on
children's respiratory infection, when we are not able to do so. We also provide a semi-parametric analysis of
the controlling-the-future method, giving the semi-parametric efficient estimator.
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ABSTRACT

CAUSAL INFERENCE FOR DISCRETELY OBSERVED CONTINUOUS TIME

PROCESSES

Mingyuan Zhang

Supervisers: Dylan Small and Marshall Joffe

In causal inference for longitudinal data, standard methods usually assume that the

underlying processes are discrete time processes, and that the observational time

points are the time points when the processes change values. The identification of

these standard models often relies on the sequential randomization assumption, which

assumes that the treatment assignment at each time point only depends on current

covariates and the covariates and treatment that are observed in the past. However,

in many real world data sets, it is more reasonable to assume that the underlying

processes are continuous time processes, and that they are only observed at discrete

time points. When this happens, the sequential randomization assumption may not

be true even if it is still a reasonable abstraction of the treatment decision mechanism

at the continuous time level. For example, in a multi-round survey study, the decision

of treatment can be made by the subject and the subject’s physician in continuous

time, while the treatment level and covariates are only collected in discrete times by
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a third party survey organization. The mismatch in the treatment decision time and

the observational time makes the sequential randomization assumption false in the

observed data. In this dissertation, we show that the standard methods could produce

severely biased estimates, and we would explore what further assumptions need to

be made to warrant the use of standard methods. If these assumptions are false, we

advocate the use of controlling-the-future method of Joffe and Robins (2009) when

we are able to reconstruct the potential outcomes from the discretely observed data.

We propose a full modeling approach and demonstrate it by an example of estimating

the effect of vitamin A deficiency on children’s respiratory infection, when we are not

able to do so. We also provide a semi-parametric analysis of the controlling-the-future

method, giving the semi-parametric efficient estimator.
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Chapter 1

Introduction

1.1 Standard Causal Inference in Longitudinal Data

In a cross-sectional observational study of the effect of a treatment on an outcome,

a usual assumption for making causal inferences is that there are no unmeasured

confounders, i.e., that conditional on the measured confounders, the data is gener-

ated as if the treatment was assigned randomly. Under this assumption, a consistent

estimate of the average causal effect of the treatment can be obtained from a cor-

rect model of the association between the treatment and the outcome conditional on

the measured confounders (Cochran, 1965). In a longitudinal study, the analogue

of the no unmeasured confounders assumption is that at the time of each treatment

assignment, there are no unmeasured confounders; this is called the sequential ran-

domization or sequential ignorability assumption:

(A1) The longitudinal data of interest are generated as if the treatment is random-

ized in each period, conditional on the current values of measured covariates and the

1



history of the measured covariates and the treatment.

The sequential randomization assumption implies that decision on treatment assign-

ment is based on observable history and contemporaneous covariates and that people

have no ability to peek into the future. Robins (1986) has shown that for a longitu-

dinal study, unlike for a cross-sectional study, even if the sequential randomization

assumption holds, the standard method of estimating the causal effect of the treat-

ment by the association between the outcome and the treatment history conditional

on the confounders can provide a biased and inconsistent estimate. This bias can

occur when we are interested in estimating the joint effects of all treatment assign-

ments and when the following conditions hold:

(c1) conditional on past treatment history, a time-dependent variable is a predictor

of the subsequent mean of the outcome and also a predictor of subsequent treatment;

(c2) past treatment history is an independent predictor of the time-dependent vari-

able.

An example in which the standard methods are biased is the estimation of the causal

effect of the drug AZT (zidovudine) on CD4 counts in AIDS patients. Past CD4

count is a time-dependent confounder for the effect of AZT on future CD4 count,

since it not only predicts future CD4 count but also subsequent initiation of AZT

therapy. Also, past AZT history is an independent predictor of subsequent CD4

count (Hernán, Brumback and Robins, 2002).

To eliminate the bias of standard methods for estimating the causal effect of

2



treatment in longitudinal studies where sequential randomization holds but there

are time-dependent confounders satisfying conditions (c1) and (c2) (e.g., past CD4

counts), Robins (1992, 1994, 1998, 1999) developed a number of innovative meth-

ods, including g-computation algorithm, structural nested models (SNMs) with g-

estimation, and marginal structural models (MSMs) with IPTW (inverse probability

of treatment weighted) estimation.

A significant portion of this thesis focuses on structural nested models (SNMs)

and their associated methods of g-testing and g-estimation. The basic idea of the g-

test is the following. Given a hypothesized treatment effect and a deterministic model

of the treatment effect, we can calculate the potential outcome that a subject would

have received if she never received the treatment; if the hypothesized treatment effect

is the true treatment effect, then this potential outcome will be independent of the

actual treatment the subject received conditional on the confounder and treatment

history, under the sequential randomization assumption (A1). G-estimation involves

finding the treatment effect that makes the g-test statistic have its expected null

value. A formal description of g-estimation is given in Section 2.2.1 of Chapter 2.

G-estimation is very attractive because researchers are usually only required to

model the propensity score for the treatment. The estimate is consistent when the

model of the treatment assignment is correct. It is also possible to construct a g-

estimator that is locally efficient doubly robust. As long as we can correctly model

either the propensity score for the treatment or the conditional distribution for the

3



potential outcomes conditional on the covariates, the estimator will be consistent,

asymptotically normal and regular. The researchers get “two shots” rather than

one to get a consistent estimate. Moreover, if we can correctly model the both the

propensity score and the conditional distribution of the potential outcomes simulta-

neously, the estimator achieves the semi-parametric efficiency bound under the sole

restriction that the assumption (A1) is true. In another word, there exists no other

estimator that is more efficient than the locally efficient doubly robust g-estimator.

1.2 When the Longitudinal Data are Discrete Time Obser-

vations from Continuous Time Processes

Intriguing as the standard methods are, they are mostly designed for discrete time

models. The discrete time models assume that the treatment, covariates and outcome

processes can only change values at discrete time points, and that these discrete time

points are fully observed. If at these observational time points we are able to measure

all the covariates that is needed for the input of the decision making mechanism, we

could reasonably assume assumption (A1) in the data, and in principle we might

be able to model the decision making mechanism correctly given enough data. The

standard methods would apply. Lok (2007) has extended the theory to continuous

time processes, under the condition that the full continuous time paths of treatment

and covariates are observed.

In this thesis, we consider causal inference in longitudinal data, but we assume

4



that the longitudinal data are discrete time observations of continuous time processes.

In many real world problems, this is a more realistic assumption. For example, in

the example of the effect of Zidovudine (AZT) on CD4 count, a data set from the

Multi-center AIDS Cohort Study (Kaslow et al., 1987) can be used. In the study, the

patients might visit the doctors any time during the years, and the doctors would

decide the use of AZT at the time of the visits. However, the organization who

collected the data only regularly collected them once every six months. It is more

reasonable to assume that the treatment, covariates and outcomes processes are in

continuous time, but only observed at discrete time points. More details on this

study and other real world examples are in Chapter 2 and Chapter 3.

When this setting is true, standard methods that ignore the continuous time

structure could produce severely biased estimates. In particular, we identify two

important sources of the bias:

∙ Unmeasured Confounders:

The identification of the standard methods rely crucially on sequential random-

ization assumption in the data. In the setting that is of interest in this disser-

tation, the sequential randomization assumption could be a reasonable abstrac-

tion at the treatment decision level, i.e., the continuous time level. However,

It is unlikely to be true in the observed data in discrete times. The covariates

in between two consecutive time points are not measured and they could be

important unmeasured confounders that associated with both the treatment

5



and the outcomes. As a result, the standard discrete time methods could be

biased.

∙ Treatment Measurement Error:

When the treatment process is only observed at discrete time points, the

amount of treatment that the subject receives may not be known precisely.

For example, when the treatment affects the outcome cumulatively, discretely

observed treatment process will not give us exact amount of cumulative treat-

ment; when the treatment has direct or indirect effect on future outcomes, the

past treatment affecting the outcomes at the discrete observational time points

may not be observed. The treatment measurement error problem also includes

the case when we do observe the whole continuous time treatment process, but

the treatment effect varies with covariate processes, which might be unobserved

in between two consecutive observational time points. In all these cases, even

given the true parameters in the causal model, we will not be able to accurately

reconstruct the counterfactual outcomes, or the mimicking counterfactual out-

comes in case of non-rank preserving models (see Lok 2004), or the mean of

counterfactual outcomes in case of mean models (see Hernán, Brumack and

Robins, 2002). Any comparison among the counterfactuals might be biased.

This dissertation discusses conditions and methods that could eliminate or reduce

these two sources of bias in several scenarios. In particular, it is organized as follows.

Chapter 2 focuses on the problem of unmeasured confounder. We assume that the

6



covariate and outcome processes are observed in discrete time points while the full

continuous time treatment process is observed. This is practical when the treatment

is a binary process and at the observational time points we are able to ask subjects

about their treatment history (e.g., time of initiation and time of cessation). Under

certain rank preserving models, we are free of the treatment measurement error prob-

lem. We discuss the use of standard methods in this scenario, and focus especially

on SNMs and their associated g-test and g-estimation. Conditions on the continuous

time processes are given in the chapter to warrant the use of a modified g-estimation.

When these conditions fails, we propose the controlling-the-future method of Joffe

and Robins (2009), which are based on a relaxed discrete time sequential randomiza-

tion assumption that allows the treatment to depend on future potential outcomes

given the past treatment and covariates. We show that the method can be used

to correct or reduce bias from the unmeasured confounders in our continuous time

setting. The content of this chapter is based on a working paper by Zhang et al.

(2009).

Chapter 3 considers a case when we do not have the full continuous time treat-

ment process and both the unmeasured confounder and the treatment error problems

arise. We propose a full modeling approach for causal inference, demonstrated by an

example of analyzing causal effect of vitamin A deficiency on children’s respiratory

infection from a longitudinal data collected in Indonesia in 1983 (see Sommer et al.,

1983). The level of vitamin A deficiency could change any time in the years, while

7



the data were only collected once every season. Important covariates that predict the

change in the levels of vitamin A deficiency and are related to the outcomes may be

unobserved causing the unmeasured confounder problem. The treatment in between

two observational time points are unobserved, causing the treatment error problem.

The treatment error problem is worsened by the fact that we only observe a coarsened

vitamin A deficiency level. In this chapter, we model the data generating process

as a continuous time Markov process observed at discrete time points. We design

an MCMC algorithm to estimate the Markov model. The content of this chapter is

based on a working paper by Zhang and Small (2009).

Chapter 4 revisits the controlling-the-future method we used in Chapter 2. We

view the relaxed sequential randomization assumption and the controlling-the-future

method as a powerful extension of the standard g-estimation for dealing with unmea-

sured confounders. In this chapter, we provide a theoretical analysis of this method

using the semi-parametric theory. In parallel to the standard theory for g-estimation,

we derive the nuisance tangent space under the sole restriction of the relaxed sequen-

tial randomization assumption, and we calculate the efficient score under a single

period semi-parametric model. We also propose a locally efficient doubly robust es-

timator for the controlling-the-future method. The calculation of nuisance tangent

space and the efficient score are then extended to multi-period model with repeated

outcomes. Chapter 4 can be viewed as a theoretical supplement for Joffe and Robins

(2009).

8



Chapter 5 is the appendices, which include related the technical proofs in previous

chapters.
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Chapter 2

Causal Inference for Continuous Time Processes

when Covariates Are Observed Only at Discrete

Times

In this chapter, we study assumptions and methods for making causal inferences

about the effect of a treatment that varies in continuous time when its full history of

continuous time treatment process is observed but its time-dependent confounders

are observed only at discrete times. In the framework of Section 1.2, we have un-

measured confounders, and under the causal models we will assume for this chapter

(see Section 2.7), we are free of the measurement error problems. In such settings,

standard discrete time g-estimation usually do not work, except when certain condi-

tions are assumed for the continuous time process. In this chapter, we formulate such

conditions. When these conditions do not hold, we propose a controlling-the-future

method that can produce consistent estimates when g-estimation is consistent, and
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is still consistent in some cases when g-estimation is severely inconsistent.

2.1 Motivations and the Basic Setup

First, we describe two motivating examples when treatment changes values in con-

tinuous time while covariates are only observed at discrete times.

2.1.1 Examples of Treatments Varying in Continuous Time where Co-

variates are Observed Only at Discrete Times

Example 1: The effect of AZT (Zidovudine) on CD4 counts. The Multicenter AIDS

Cohort Study (Kaslow et al., 1987) has been used to study the effect of AZT on CD4

counts (Hernán, Brumback and Robins, 2002; Brumback et al. 2004). Participants

in the study are asked to come semi-annually for visits at which they are asked

to complete a detailed interview including a complete history of AZT use, as well

as take a physical examination and provide blood samples from which CD4 counts

are obtained. Decisions on AZT use are made by subjects and their physicians, and

switches of treatment might happen any time between two visits. These decisions are

based on the values of diagnostic variables, possibly including CD4 and CD8 counts,

presence of certain symptoms, and other related time-dependent covariates. However,

these covariates are only measured by MACS at the time of visits; the values of these

covariates at the exact times that treatment decisions are made between visits are

not available.
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Example 2: The effect of diarrhea on children’s height. Diarrheal disease is one

of the leading causes of childhood illness in developing regions of the world (Kosek,

Bern and Guerrant, 2003). Consequently, there is considerable concern about the

effects of diarrhea on a child’s physical and cognitive development (Moore et al.,

2001; Guerrant et al., 2002). A data set which provides the opportunity to study the

impact of diarrhea on a child’s height is a longitudinal household survey conducted

in Bangladesh in 1998-1999 after Bangladesh was struck by its worst flood in over

a century in the summer of 1998 (del Ninno et al., 2001; del Ninno and Lundberg,

2005). The survey was fielded in three waves from a sample of 757 households: round

1 in November, 1998; round 2 in March-April, 1999; and round 3 in November, 1999.

The survey recorded all episodes of diarrhea for each child in the household in the

past six months or since the last interview by asking the families at the time of each

interview. In addition, the survey recorded at each of the three interview times several

important time-dependent covariates for the effect of diarrhea on a child’s future

height: the child’s current height and weight, the amount of flooding in the child’s

home and village; and the household’s economic and sanitation status. The child’s

current height and weight in particular are time-dependent confounders that satisfy

conditions (c1) and (c2) in Section 1.1, making standard longitudinal data analysis

methods biased (see Martorell and Ho, 1984 and Moore et al., 2001 for discussion of

evidence for and reasons why current height and weight satisfy conditions (c1) and

(c2)). The time-dependent confounders of current height and weight are available
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only at the time of the interview, and changes in their value that might affect the

exposure of the child to the “treatment” of diarrhea, which varies in continuous time,

are not recorded in continuous time.

2.1.2 An Model Data Generating Process

In both the examples of AZT and diarrhea, the exposure or treatment process hap-

pens continuously in time and a complete record of the process is available, but the

time-dependent confounders are only observed at discrete times. There could be var-

ious interpretations of the relationship between the data at the treatment decision

level and the data at the observational time level. To clarify the problem of interest

in this chapter, we consider the following model data generating process:

(a1) A patient takes a certain medicine under the advice of a doctor.

(a2) A doctor continuously monitors and records a list of health indicators of her

patient, and decides the initiation and cessation of the medicine solely based

on current and historical records of these conditions, the historical use of the

medicine, as well as possibly random factors unrelated to the patient’s health.

(a3) A third party organization asks a collection of patients from various doctors

to visit the organization’s office semi-annually. The organization measures the

same list of health indicators for the patients at the time of the visits, and asks

the patients to report the detailed history of the use of the medicine between

two visits.
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(a4) We are only provided with the third party’s data.

Note that in (a2), we assume the sequential randomization assumption (A1) at the

treatment decision level.

The AZT example can be approximated by the above data generating process. In

the AZT example, (a1) and (a2) approximately describes the joint decision making

process by the patient and the doctor in the real world. (a3) can be justified by

reasonably assuming that the staffs at the MACS receive similar medical training

and use similar medical equipment as the patients’ doctors. In the diarrhea example,

the patient’s body, rather than a doctor determines whether the patient gets diar-

rhea. Assumption (a3) then is saying that the third party organization (the survey

organization) collects enough health data, and that if all the history of such health

data are available, the organization will be able to predict as well as is possible with

current medical knowledge whether a patient gets diarrhea at the time of the survey.

2.1.3 Difficulties Posed by Treatments Varying in Continuous Time when

Covariates Are Observed Only at Discrete Times

Suppose our data are generated as in the previous section, and we apply discrete

time g-estimation at the discrete times at which the time-dependent covariates are

observed; we will denote these observation times by 0, . . . , K. In discrete time g-

estimation, we are testing whether the observed treatment at time t (t = 0, . . . , K)

is, conditional on the observed treatments at times 0, 1, . . . , t − 1 and observed co-
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variates at times 0, . . . , t, independent of the putative potential outcomes at times

t + 1, . . . , K calculated under the hypothesized treatment effect, where the putative

potential outcomes considered are what the subject’s outcome would be at times

t + 1, . . . , K if the subject never received treatment at any time point (see Sec-

tion 1.1). The difficulty with this procedure is that even if sequential randomization

holds when the measured confounders are measured in continuous time (as is as-

sumed in (a2)), it may not hold when the measured confounders are measured only

at discrete times. For the discrete time data, there can be unmeasured confounders.

In the MACS example, the diagnostic measures at the time of AZT initiation are

missing unless the start of AZT initiation occurred exactly at one of the discrete

times that the covariates are observed; the diagnostic measures at the initiation time

are clearly important confounders for the treatment status at the subsequent ob-

servational time. In the diarrhea example, the nutrition status of the child before

the start of a diarrhea episode is missing unless the start of the diarrhea episode

occurred exactly at one of the discrete times that covariates are observed; this nutri-

tion status is also an important confounder for the diarrhea status at the subsequent

observational time. Continuous time sequential randomization does not in general

justify sequential randomization holding for the discrete time data, meaning that

discrete time g-estimation can produce inconsistent estimates even when continuous

time sequential randomization holds.

In this chapter, we approach this problem from two perspectives. First, we give
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conditions on the underlying continuous time processes under which discrete time se-

quential randomization is implied, warranting the use of discrete time g-estimation.

Second, we propose a new estimation method called the controlling-the-future method

that can produce consistent estimates whenever discrete time g-estimation is consis-

tent and produce consistent estimates in some cases when discrete time g-estimation

is inconsistent.

Our discussion focuses on a binary treatment and repeated continuous outcomes.

We also assume that the cumulative amount of treatment between two visits is ob-

served. This is true for Examples 1 and 2, the AZT and diarrhea studies respectively.

If cumulative treatment is not observed, there will often be a measurement error prob-

lem in the amount of treatment, as is discussed in Section 1.2. Chapter 3 will present

an example dealing with measurement error problems.

The organization of the chapter is as follows: Section 2.2 reviews the standard

discrete time structural nested model and g-estimation, introduces settings for contin-

uous time studies, and shows what we mean by applying discrete time g-estimation on

discrete time observed data when the underlying process is in continuous time; Sec-

tion 2.3 proposes conditions on the continuous time processes such that discrete time

g-estimation works, and discusses their interpretability and usefulness; Section 2.4

describes our controlling-the-future method; Section 2.5 presents a simulation study;

Section 2.6 provides an application to the diarrhea study discussed in Example 2;

Section 2.7 concludes the chapter.
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2.2 Standard Discrete Time Structural Nested Model and

G-estimation and Their Versions with Underlying Con-

tinuous Time Processes

In this section, we review the discrete time SNM and g-estimation, introduce the

notation for a continuous time study, formally define continuous time sequential

randomization and explain the application of discrete g-estimation on the discrete

time observations from the continuous time process.

2.2.1 Discrete Time Structural Nested Model and G-estimation

We describe a deterministic structural nested model, assuming all variables can only

change at discrete, observable times. To save notation for the continuous time model,

we use a star superscript on every variable in this section.

We assume that the study starts at time 0 and ends at time K. All variables can

only change values at time 0, 1, 2, ..., K. We use A∗k to denote the binary treatment

decision at time k. Under the discrete time setup, A∗k is assumed to be the constant

level of treatment between time k and time (k+1). We use Y 0∗
k to denote the baseline

counterfactual outcome of the study at time k, if the subject does not receive any

treatment throughout the study, and use Y ∗k to denote the actual outcome at time

k. In this chapter, we assume that all Y 0∗
k ’s and Y ∗k ’s are continuous variables. Let

L∗k be the vector of covariates collected at time k. As a convention, Y ∗k is included in

L∗k.
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We consider a simple deterministic model for illustration purpose. Generalizations

of the results in this chapter for more complicated models are in Section 2.7. The

model we consider is

Y ∗k = Y 0∗
k + Ψ

k−1∑
i=0

A∗i (2.2.1)

where Ψ is the causal parameter of interest, and can be interpreted as the effect of

one unit of the treatment on the outcome. In this model, the treatment affects the

outcome cumulatively.

Model (2.2.1) is a rank-preserving model. It assumes that for subject i and j,

with the same observed treatment history up to time k, if we observe Yk,i < Yk,j, we

must have Y 0∗
k,i < Y 0∗

k,j .

The general purpose of causal inference is to estimate Ψ from the observables,

the A∗k’s and L∗k’s (note that the Y ∗k ’s are included in L∗k’s). One way to achieve the

identification of Ψ is to assume sequential randomization (A1).

Given this notation and model (2.2.1), a mathematical formulation of (A1) is

pr(A∗k∣L̄∗k, Ā∗k−1, Y
0∗
k+) = pr(A∗k∣L̄∗k, Ā∗k−1) (2.2.2)

where L̄∗k = (L0, L1, ..., Lk), Ā
∗
k−1 = (A0, A1, ..., Ak−1), and Y 0∗

k+ = (Y 0∗
k+1, Y 0∗

k+2, ...,

Y 0∗
K ).

For any hypothesized value of Ψ, we define a putative counterfactual

Y 0∗
k (Ψ) = Y ∗k −Ψ

k−1∑
i=0

Ai
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Then under (2.2.1) and (2.2.2), the correct Ψ should solve

E[U(Ψ)] ≡ E{
∑

k<m≤K
1≤i≤N

[A∗i,k − pk(X∗i,k)]g(Y 0∗
i,m(Ψ), X∗i,k)} = 0 (2.2.3)

where i is the index for each subject and there are N subjects, X∗i,k = (L̄∗i,k, Ā
∗
i,k−1),

pk(X
∗
i,k) = Pr(A∗i,k = 1∣X∗i,k) is the propensity score for subject i at time k, and g is

any function. This estimating equation can be generalized with g being a function

of any number of future Y 0∗
i,m(Ψ)’s and X∗i,k.

To estimate Ψ, we solve the empirical version of (2.2.3):

U(Ψ) ≡
∑

k<m≤K
1≤i≤N

[A∗i,k − pk(X∗i,k)]g(Y 0∗
i,m(Ψ), X∗i,k) = 0 (2.2.4)

The method is known as g-estimation. The efficiency of the estimate depends on

the functional form of g. The optimal g function that produces the most efficient

estimation can be derived (Robins, 1992).

In real applications, the treatment assignment scheme, or the true propensity

score pk(X
∗
k) is usually unknown, and is parameterized as pk(X

∗
k , �). Then additional

estimating equations are needed to identify �. One may use various g functions to

construct these estimating equations, as long as these equations are not linearly

correlated. For example, the following estimating equations could be used:

U(Ψ, �) =
∑

k<m≤K
1≤i≤N

[A∗i,k − pk(X∗i,k)][Y 0∗
i,m(Ψ), X∗i,k]

T = 0 (2.2.5)

The formulas for estimating the covariance matrix of (Ψ̂, �̂) are given in the

appendices in Section 5.1.
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2.2.2 A Continuous Time Deterministic Model and Continuous Time

Sequential Randomization

We now extend the model in Section 2.2.1 to a continuous time model, and define

a continuous time version of the sequential randomization assumption (A1) as a

counterpart of (2.2.2).

Same as before, we assume that the continuous time study starts at time 0 and

ends at an integer time K, but now the variables can change their values at any real

time between 0 and K. The model in Section 2.2.1 is then extended as follows:

∙ {Yt; 0 ≤ t ≤ K} is the continuous time continuously valued outcome process.

∙ {Lt; 0 ≤ t ≤ K} is the continuous time covariate process. It can be multi-

dimensional, and Yt is an element of Lt.

∙ {At; 0 ≤ t ≤ K} is the continuous time binary treatment process.

∙ {Y 0
t ; 0 ≤ t ≤ K} is the continuous time continuously valued potential out-

come process if the subject does not receive any treatment from time 0 to

time K. It can be thought of as the natural process of the subject, free of

treatment/intervention.

A natural extension of model (2.2.1) is

Yt = Y 0
t + Ψ

∫ t

0

Asds (2.2.6)

20



where Ψ is the causal parameter of interest. Ψ can be interpreted as the effect rate

of the treatment on the outcome.

In this continuous time model, a continuous time version of the sequential ran-

domization assumption (A1) can be formalized, though it does not have the simple

form similar to Equation (2.2.2). It was noted by Lok (2007) that a direct extension

of the formula (2.2.2) involves “conditioning null events on null events”.

Lok (2007) formally defined continuous time sequential randomization when there

is only one outcome at the end of the study. We propose a similar definition for studies

with repeated outcomes under the deterministic model (2.2.6).

Following Lok (2007), we assume that all the continuous time stochastic processes

are càdlàg processes (continue à droite, limitée à gauche, i.e., continuous from the

right, having limit from the left), throughout this chapter. Let Zt = (Lt, At, Y
0
t ).

Let �(Zt) be the �-field generated by Zt, i.e., the smallest �-field that makes Zt

measurable. Let �(Z̄t) be the �-field generated by
∪
u≤t �(Zu). Similarly, �(Z̄t, Y

0
t+)

is the �-field generated by �(Z̄t)
∪
�(Y 0

t+), where �(Y 0
t+) is the �-field generated by∪

u>t �(Y 0
u ). By definition, the sequence of �(Z̄t), 0 ≤ t ≤ K, forms a filtration.

The sequence of �(Z̄t, Y
0
t+), 0 ≤ t ≤ K, also forms a filtration, because �(Z̄t, Y

0
t+) ⊂

�(Z̄s, Y
0
s+), for t < s (note that this is true under the deterministic model (2.2.6) but

not in general).

Let Nt be a counting process determined by At. It counts the number of jumps

in the At process. Let �t be the intensity process of Nt with respect to �(Z̄t).
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(The explicit definition of Nt and an explicit formula for �t is in the appendices in

Section 5.2.) Mt = Nt −
∫ t

0
�sds will be a martingale w.r.t. �(Z̄t).

Definition 2.2.1. With Nt, �t and Mt defined as above, the càdlàg process Zt ≡

(Lt, At, Y
0
t ), 0 ≤ t ≤ K is said to satisfy the continuous time sequential ran-

domization assumption, or CTSR, if Mt is also a martingale w.r.t. �(Z̄t, Y
0
t+). Or,

equivalently, �t is also the intensity of Nt, w.r.t. the filtration of �(Z̄t, Y
0
t+).

In this definition, given A0, the counting process {Nt}T0 offers an alternative

description of the treatment process {At}T0 . The intensity process �t, which models

the jumping rate of Nt, plays the same role as the propensity scores in discrete

time model, which models the switching of the treatment process. Definition 2.2.1

formalizes the assumption (A1) in the continuous time model, by stating that �t does

not depend on future potential outcomes. It is worth noting that the definition here

is only for a rank preserving model. A generalization of this definition is given in

Section 5.6.

2.2.3 Modified G-estimation on Discrete Time Observed Data from the

Continuous Time Model

In this chapter, we assume that the continuous process defined in Section 2.2.2 can

only be observed at integer times, namely, times 0, 1, 2, ..., and K. We use the

same set of starred notation as in Section 2.2.1, but interpret them as discrete time

observations from the model in Section 2.2.2. Specifically,
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∙ {A∗k, k = 0, 1, 2, ..., K} denotes the set of treatment assignments observable at

times 0, 1, 2, ..., K. We use Ā∗k to denote the observed history of observed dis-

crete time treatment up to time k, i.e., (A∗0, A∗1, ..., A∗k). Additionally, we use

cumA∗k =
∫ k−

0
Asds to denote the cumulative amount of treatment up to time

k. Note that in the continuous time model, cumA∗k ∕=
∑k−1

k′=0A
∗
k′ , as it would

in discrete time models. We let cumA
∗
k = (cumA∗1, cumA

∗
2, ..., cumA

∗
k). We

note that in practice, people sometimes use Ã∗k = cumA∗k+1 − cumA∗k as the

treatment at time k, when applying discrete time g-estimation on discrete time

observational data. Such use of g-estimation usually requires stronger condi-

tions than the conditions discussed in this chapter. Throughout this chapter,

we define the treatment at time k as A∗k.

∙ We define L∗k, the observed covariates at time k to be Lk−, the left limit of L at

time k, following the convention that in discrete model, people usually assume

that the covariates are measured before the treatment decision. Y ∗k and Y 0∗
k

are also defined as Yk− and Y 0
k− respectively, following the same convention.

L̄∗k denotes (L∗0, L
∗
1, ..., L

∗
k), and Ȳ ∗k and Ȳ 0∗

k are defined accordingly. Y 0∗
k+ =

(Y 0∗
k+1, Y

0∗
k+2, ..., Y

0∗
K ).

With this notation, following the spirit of g-estimation, which controls all observed

history in the propensity score model for the treatment, we propose the following
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estimating equation:

U(Ψ) ≡
∑

k<m≤K
1≤i≤N

[A∗i,k − pk(X∗i,k)]g(Y 0∗
i,m(Ψ), X∗i,k) = 0 (2.2.7)

where X∗i,k is the collection of L̄∗i,k, Ā
∗
i,k−1 and cumA

∗
i,k, pk(X

∗
i,k) = Pr(A∗i,k = 1∣X∗i,k),

and Y 0∗
i,m(Ψ) = Y ∗i,m −ΨcumA∗i,k.

In practice, pk(X
∗
i,k) is unknown and has to be parametrized as pk(X

∗
i,k; �), and

we use different functions g to identify the all the parameters, as in Section 2.2.1.

The covariance matrix of estimated parameters can be estimated as in Appendix A.

The estimating equation has the same form as (2.2.4), except for two important

differences. First, the propensity score model in this section conditions on additional

cumA
∗
i,k. In the discrete time model of Section 2.2.1, cumA

∗
i,k would be a transformed

version of Ā∗i,k−1, and was redundant information. However, with continuous time

underlying processes, cumA
∗
i,k is new information on the treatment history. Second,

the putative counterfactual Y 0∗
i,m(Ψ) is calculated by subtracting the cumA∗i,k from

Y ∗i,m, instead of
∑k−1

l=0 A
∗
i,l. We will refer later to the g-estimation in this section

as the modified g-estimation (although it is the true spirit of g-estimation). The

justification and limitation of using the modified g-estimation will be discussed in

Section 2.3.

We refer to the g-estimation in Section 2.2.1 as naive g-estimation, when it is

applied to data from continuous time model. When the data come from a continuous

time model, the naive g-estimation can be severely biased, as we will show in our

simulation study and the diarrhea application. One source of bias is a measurement

24



error problem,
∑k−1

l=0 A
∗
i,l is not the correct measure of the treatment; another source

of bias is that important information cumAi,k is not conditioned on in the propensity

score. Although we would not expect researchers to use the naive g-estimation when

the true cumulative treatments are available, we present the simulation and real

application results using this method as a reference to show how severely biased

the estimates would be had we not known the true cumulative treatments and the

measurement error problem had dominated.

2.3 Justification of the Use of the Modified Discrete Time

G-estimation

Given discrete time observational data from continuous time underlying processes,

solving equation (2.2.7) provides an estimate for Ψ. For this Ψ estimate to be con-

sistent, an analogue to condition (2.2.2) is needed:

pr(A∗k∣L̄∗k, Ā∗k−1, cumA
∗
k, Y

∗0
k+) = pr(A∗k∣L̄∗k, Ā∗k−1, cumA

∗
k) (2.3.1)

Condition (2.3.1) is a requirement on the observed variables at discrete times. It

is not a condition at the level of the data-generating process, and cannot be easily

used to determine the appropriateness of using the modified g-estimation by domain

knowledge. This contrasts with the case of discrete time ignorability for the discrete

time data. In this section, we will seek conditions at the data generating process

level that can justify the use of g-estimation.
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2.3.1 Sequential Randomization at Any Finite Subset of Time Points

Recall the data generating process described in Section 2.1.2. The third party or-

ganization periodically (e.g., semi-annually) collects the health data and treatment

records of the patients. Suppose a researcher thinks (2.3.1) holds for the time points

at which the third party organization collects these data. If the time points have

not been chosen in a special way to make (2.3.1) hold, then the researcher will often

be willing to make the stronger assumption that (2.3.1) would hold for any finite

subset of time points at which the third party organization chose to collect data. For

example, for the diarrhea study, the survey was actually conducted in November,

1998, March-April, 1999 and November, 1999. If a researcher thought (8) held for

these three time points, then she might be willing to assume that (2.3.1) should also

held if instead the survey was conducted in December, 1998, February, 1999, May,

1999 and October, 1999.

Before formalizing the researcher’s assumption on any finite subset of time points,

we observe that

Proposition 2.3.1. Under the deterministic model assumption (2.2.6), the true

model for the propensity score has the following property:

pr(A∗k = 1∣L̄∗k, Ā∗k−1, cumA
∗
k) = pr(A∗k = 1∣L̄∗k, Ā∗k−1, Ȳ

0∗
k ) (2.3.2)

Proof. Under the deterministic assumption (2.2.6) and the correct Ψ, (L̄∗k, Ā
∗
k−1,

cumA
∗
k) is a one-to-one transformation of (L̄∗k, Ā

∗
k−1, Ȳ

0∗
k ).
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Using Proposition 2.3.1, we state sequential randomization assumption at any

finite subset of time points as

Definition 2.3.2. A càdlàg process Zt ≡ (Lt, At, Y
0
t ), 0 ≤ t ≤ K is said to satisfy

the finite time sequential randomization assumption, or FTSR, if for any finite

subset of time points, 0 ≤ t1 < t2 < ⋅ ⋅ ⋅ < tn < tn+1 < ⋅ ⋅ ⋅ < tn+l ≤ K, we have

pr(Atn∣L̄tn−, Ātn−1 , Ȳ
0
tn−, Y

0
tn+) = pr(Atn∣L̄tn−, Ātn−1 , Ȳ

0
tn−) (2.3.3)

where L̄tn− = (Lt1−, Lt2−, ⋅ ⋅ ⋅ , Ltn−), Ātn−1 = (At1 , At2 , ⋅ ⋅ ⋅ , Atn−1), Ȳ 0
tn− = (Y 0

t1−,

Y 0
t2−, ⋅ ⋅ ⋅ , Y

0
tn−), and Y 0

tn+ = (Y 0
tn+1−, Y

0
tn+2−, ⋅ ⋅ ⋅ , Y

0
tn+l−).

Finite time sequential randomization assumption obviously justifies the use of g-

estimation in the settings described in Section 2.2.2. It does not refer to continuous

time sequential randomization directly. However, the following theorem shows that

it is a stronger assumption than the CTSR assumption.

Theorem 2.3.3. If a continuous time càdlàg process Zt satisfies finite time sequen-

tial randomization, under some regularity conditions, it will also satisfy continuous

time sequential randomization.

Proof. See the appendices in Section 5.3. The regularity conditions are also stated

in Section 5.3.

The result of Theorem 2.3.3 is natural. As mentioned in Section 2.1.3, the contin-

uous time sequential randomization does not imply FTSR, because in discrete time
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observations, we do not have the full continuous time history to control. To compen-

sate for the incomplete data problem, some stronger assumption on the continuous

time processes has to be made if identification is to be achieved.

2.3.2 A Markovian Condition

Given the finite time sequential randomization assumption described above, two im-

portant questions arise. First, Theorem 2.3.3 shows that the FTSR assumption is

stronger than the continuous time sequential randomization assumption. It is natu-

ral to ask how much stronger it is than the CTSR assumption. Secondly, the FTSR

assumption has a descriptive nature, and unlike the usual sequential randomization

assumption (A1), it is not an assumption on the data generating process and thus is

not useful for incorporating domain knowledge to justify itself. A condition at the

data generating process level will be more helpful for researchers in deciding whether

g-estimation is valid.

We answer both questions partially in the following theorem.

Theorem 2.3.4. Assuming that the process (Y 0
t , Lt, At) follows the continuous time

sequential randomization assumption, and that the process (Y 0
t−, Lt−, At) is Marko-

vian, for any time t and t+ s, s > 0, we have

pr(At∣Lt−, Y 0
t−, Y

0
t+s) = pr(At∣Lt−, Y 0

t−), (2.3.4)

which implies the finite time sequential randomization assumption.

Proof. The proof can be found in the Section 5.4.
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We make the following comments on the theorem.

∙ The theorem partially answers our first question - the FTSR assumption is

stronger than the CTSR assumption, but the gap between the two assump-

tions is less than a Markovian assumption. The result is not surprising, as with

missing covariates between observational time points, we would hope that the

variables at the observational time points well summarize the missing informa-

tion. The Markovian assumption guarantees that variables at a observational

time point summarize all information prior to that time point.

∙ The theorem also partially answers our second question. The CTSR assump-

tion is usually justified by domain knowledge of how treatments are decided.

Theorem 2.3.4 suggests that the researchers could further look for biological

evidence that the process is Markovian to validate the use of g-estimation. The

Markovian assumption can also be tested. One could first use the modified

g-estimation to estimate the causal parameter, construct the Y 0 process at the

observational time points, and then test whether the full observational data of

A,L, Y 0 come from a Markov process. A strict test of whether the discretely ob-

served panel data come from a continuous time (usually non-stationary) Markov

process could be difficult and is beyond the scope of this chapter. As a starting

point, we suggest Singer’s trace inequalities (Singer, 1981) as a criterion to test

for the Markovian property. A weaker test of the Markovian property is to test

conditional independence of past observed values and future observed values
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conditioning on current observed values.

∙ In the theorem, equation (2.3.4) looks like an even stronger version of continu-

ous time sequential randomization assumption - the treatment decision seems

to be based only on current covariates and current potential outcomes. One

could of course directly assume this stronger version of randomization and ap-

ply g-estimation. However, Theorem 2.3.4 is more useful as we are assuming

a weaker untestable CTSR assumption and a Markovian assumption that is

testable in principle.

∙ The theorem suggests that it is sufficient to control for current covariates and

current potential outcomes for g-estimation to be consistent. In practice, we

advise controlling for necessary past covariates and treatment history. The

estimate would still be consistent if the Markovian assumption is true, and it

might reduce bias when the Markovian assumption is not true. As a result,

we do control for previous covariates and treatments in our simulation and

application to the diarrhea data.

∙ It is worth noting that the labeling of time is arbitrary. In practice, researchers

can label whatever they have controlled for in their propensity score as the

“current” covariates, which could include covariates and treatments that are

measured or assigned previously in physical time. In this case the dimension

of the process that needs to be tested for the Markovian property should also
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be expanded to include older covariates and treatments in physical time.

∙ Finally, we note that a discrete time version of the theorem is implied by Corol-

lary 4.2 of Robins (1997), if we set, in his notation, Uak to be the covariates

between two observational time points and Ubk to be the null set.

As a discretized example, we illustrate the idea of Theorem 2.3.4 by a directed

acyclic graph (DAG) in part (a) of Figure 2.1, which assumes that all variables

can only change values at time points 0, 1/2, 1, 3/2, 2, ...,m. Note that we do not

distinguish the left limit of variables and themselves in all DAGs of this chapter,

for reasons discussed in Appendix C. We also assume that the process can only be

observed at time 0, 1, 2, ...,m. It is easy to verify that the DAG satisfies sequential

randomization at the 0, 1/2, 1, 3/2, 2, ...,m time level. The DAG is also Markovian

in time. For example, if we control A1, L1, Y
0

1 , any variable prior to time 1 will be

d-separated from any other variable after time 1.

Part (b) of Figure 2.1 verifies that A1 is d-separated from Y 0
m,m > 1 by the

shaded variables, namely, L1 and Y 0
1 , which justifies equation (2.3.2). As implied

by Theorem 2.3.4, the modified g-estimation works for data observed at the integer

times if they are generated by the model defined by this DAG.

It is true that the Markovian condition that justifies the g-estimation equation

(2.2.7) is restrictive as will be discussed in the following section. However, our simula-

tion study shows that g-estimation has some level of robustness when the Markovian

assumption is not seriously violated.
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(a) DAG of a Markovian Process

(b) Verification of Equation (2.3.2)

Figure 2.1: Directed Acyclic Graph

2.4 The Controlling-the-future Method

In this section, we consider situations in which the observational time sequential

randomization fails and seek methods that are more robust to this failure than the

modified g-estimation given in Section 2.2.3. The method we are going to introduce

is proposed by Joffe and Robins (2009), which deals with a more general case of the

existence of unmeasured confounders. It can be applied to deal with unmeasured

confounders coming from either a subset of contemporaneous covariates or a subset

of covariates that represent past time, the latter case being of interest for this chap-
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ter. The method, which we will refer to as the controlling-the-future method (the

reason for the name will be more clear later on), gives consistent estimates when

g-estimation is consistent, and it produces consistent estimates in some cases even

when g-estimation is severely inconsistent.

In what follows, we will first describe an illustrative application of the controlling-

the-future method, and then discuss its relationship with our framework of g-estimation

in continuous time processes with covariates observed at discrete times.

2.4.1 Modified Assumption and Estimation of Parameters

We assume the same continuous time model as in Section 2.2.2. Following Joffe

and Robins (2009), we consider a revised sequential randomization assumption on

variables at the observational time points

pr(A∗k∣L̄∗k, Ā∗k−1, cumA
∗
k, Y

0∗
k+) = pr(A∗k∣L̄∗k, Ā∗k−1, cumA

∗
k, Y

0∗
k+1) (2.4.1)

This assumption relaxes (2.3.1). At each time point, conditioning on previous

observed history, the treatment can depend on future potential outcomes, but only

on the next period’s potential outcome. In Joffe and Robins’ extended formulation,

this can be further relaxed to allow for dependence on more than one period of future

potential outcomes, as well as other forms of dependence on the potential outcomes..

If the revised assumption (2.4.1) is true, we obtain a similar estimating equation

as (2.2.7). For each putative Ψ, we map Y ∗k to

Y 0∗
k (Ψ) = Y ∗k −ΨcumA∗k
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the potential outcome if the subject never received any treatment under the hypoth-

esized treatment effect Ψ.

Define the putative propensity score as

pk(Ψ) ≡ pr(A∗k = 1∣L̄∗k, Ā∗k−1, cumA
∗
k, Y

0∗
k+1(Ψ)) (2.4.2)

Under assumption (2.4.1), the correct Ψ should solve

U(Ψ) = E{
∑

1≤i≤n
k+1<m≤K

[A∗i,k − pi,k(Ψ)]g(Y 0∗
i,m(Ψ), X∗i,k, ℎi,k)} = 0 (2.4.3)

where X∗i,k = (L̄∗i,k, Ā
∗
i,k−1, cumA

∗
i,k), ℎi,k = Y 0∗

i,k+1(Ψ), and g is any function and

can be generalized to functions of X∗i,k, ℎi,k and any number of future potential

outcomes that are later than time k + 1, e.g. g(Y 0∗
i,k+2(Ψ), Y 0∗

i,k+3(Ψ), X∗i,k, ℎi,k). In

most real applications, the model for pk(Ψ) = E[A∗k∣X∗k , ℎk] is unknown, and is usually

estimated by a parametric model

pi,k(Ψ; �X , �ℎ) = E[Ai,k∣X∗i,k, ℎi,k; �X , �ℎ].

We can solve the following set of estimating equations to obtain the estimates of

Ψ, �X and �ℎ

U(Ψ, �X , �ℎ) (2.4.4)

=
∑

1≤i≤n
k+1<m≤K

(A∗i,k − pi,k(Ψ; �X , �ℎ))[g(Y 0∗
i,m(Ψ), X∗i,k, ℎi,k), X

∗
i,k, ℎi,k]

T = 0

The estimation of the covariance matrix of Ψ, �X and �ℎ is similar to the usual

standard g-estimation, which is described in Appendix A.
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Two important features of estimating equation (2.4.4) distinguish it from es-

timating equation (2.2.7). First, in (2.4.4) there is a common parameter Ψ in

both pk’s model and Y 0∗
m (Ψ), caused by the fact that the treatment depends on

future potential outcome. Second, in (2.4.4), the sum over m and k is restricted to

m > k + 1, while in (2.2.7) we only need m > k. If we use m = k + 1 in (2.4.4),

E{[A∗i,k − pi,k(Ψ)]g(Y 0∗
i,k+1(Ψ), X∗i,k, ℎi,k)} = 0 usually does not lead to the identifica-

tion of Ψ, unless certain functional forms of the propensity score model are assumed

to be true (see Joffe and Robins 2009).

2.4.2 The Controlling-the-future Method and the Markovian Condition

Joffe and Robins’ revised assumption (2.4.1) is an assumption on the discrete time

observational data. It relaxes the observational time sequential randomization (2.3.1)

because (2.3.1) always implies (2.4.1). At the continuous time data generating level,

(2.4.1) allows less stringent underlying stochastic processes than the Markovian pro-

cess in Theorem 2.3.4.

In particular, we identify two important scenarios where the relaxation happens.

One scenario is to allow for more direct temporal dependence for the Y 0 process,

which we will refer to as the non-Markovian-Y 0 case. The other scenario is to allow

colliders in L, which we will refer to as the leading-indicator-in-L case. We illustrate

both cases by modifying the directed acyclic graph (DAG) example in Figure 2.1.

The Non-Markovian-Y 0 Case

35



(a) Not control for future Y 0
t

(b) Control for future Y 0
t

Figure 2.2: Directed Acyclic Graph with Non-Markovian Y 0
t

Assume for example, our data is generated from the DAG in Figure 2.2 where

we allow the dependence of Y 0
2 on Y 0

1 , even if Y 0
3/2 is controlled. In part (a) of

Figure 2.2, we control for observed covariates (L0, L1), treatment (A0, A1/2) and

current and historical potential outcome (Y 0
0 , Y

0
1 ) for treatment at time 1 (A1), i.e.,

we have controlled for all historically observed covariates, treatment and cumulative

treatment as suggested in the comments for Theorem 2.3.4. In this case, the modified

g-estimation fails, because the paths like A1 ← L1/2 ← Y 0
1/2 → Y 0

3/2 → Y 0
2 → ...→ Y 0

m

36



are not blocked by the shaded variables. In part (b) of Figure 2.2, we control for the

additional Y 0
2 . A1 is not completely blocked from Y 0

m, but some paths that are not

blocked in part (a) are now blocked, for example, the path of A1 ← L1/2 ← Y 0
1/2 →

Y 0
3/2 → Y 0

2 → Y 0
5/2 → ...→ Y 0

m. Also, no additional paths are opened by conditioning

on Y 0
2 . We would usually expect that the correlation between A1 and Y 0

m is weakened.

Under the framework of Joffe and Robins (2009), we can control for more than one

period of future potential outcomes, and expect to further weaken the correlation

between A1 and Y 0
m. A modification of assumption (2.4.1) that conditions on more

future potential outcomes may be approximately true.

The scenario relates to real world problems. For instance, in the diarrhea exam-

ple, Y 0
t is the natural height growth of a child without any occurrence of diarrhea.

Height in the next month not only depends on current month’s height, but also de-

pends on previous month’s height: the complete historical growth curve of the child

provides information on genetics and nutritional status, and provides information

about future natural height beyond that of just current natural height. Therefore,

the potential height process for the child is not Markovian. (For a formal argument

why children’s height growth is not Markovian, see Gasser, T. et al. 1984.) By the

reasoning we discussed above, g-estimation fails. However, if we assume that the

delayed dependence of natural height wanes out after a period of time (like in Figure

2.2), controlling for the next period potential height in the propensity score model

might weaken the relationship between current diarrhea exposure and future potential
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height later than the next period, and the assumptions of the controlling-the-future

method might hold approximately.

(a) Not control for future Y 0
t

(b) Control for future Y 0
t

Figure 2.3: Directed Acyclic Graph with Leading Indicator in Lt

The Leading-indicator-in-L Case

In Figure 2.1, we do not allow any arrows from future Y 0 to previous L, which

means that among all measures of the subject, there is no elements in L that contain

any leading information about future Y 0. This means that Y 0 is a measure that is

ahead of all other measures. This is not realistic in many real world problems. In

the example of the effect of the diarrhea on height, weight is an important covariate.
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While both height and weight reflect the nutritional status of a child, malnutrition

usually affects weight more quickly than height, i.e., the weight contains leading

information for the natural height of the child. Figure 2.1 is then not an appropriate

model for studying the effect of the diarrhea on height.

In Figure 2.3, we allow arrows from Y 0
1/2 to L0, from Y 0

1 to L1/2 and so on, which

assumes that L contains leading indicators of Y 0, but the leading indicators are

only ahead of Y 0 for less than one unit of time. Part (a) of Figure 2.3 shows that

controlling for history of covariates, treatment and potential outcomes does not block

A1 from Y 0
m. On the path of A1 ← L1/2 → L1 ← Y 0

3/2 → Y 0
2 → Y 0

5/2 → ...→ Y 0
m, L1

is a controlled collider. However, in part (b), if we do control for Y 0
2 additionally, the

same path will be blocked. In general, if we assume that there exist leading indicators

in covariates and that the leading indicators are not ahead of potential outcomes for

more than one time unit, g-estimation will fail, but the controlling-the-future method

will produce consistent estimates.

The fact that the controlling-the-future method can work in the leading infor-

mation scenario can also be related to the discussion of Section 3.6 of Rosenbaum

(1984). The main reason for g-estimation’s failure in the DAG example is that L1/2

is not observable and cannot be controlled. If L1/2 is observed, it is easy to verify

that the DAG in Figure 2.3 satisfies sequential randomization on the finest time grid.

The idea behind the controlling-the-future method is to condition on a “surrogate”

for L1/2. The surrogate should satisfy the property that Y 0
m is independent of the un-
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observed L1/2 given the surrogate and other observed covariates, (similar to formula

3.17 in Rosenbaum (2007)). In the leading information case, when m > k+ 1 and we

have covariates L̄k that are only ahead of the potential outcome until time at most

k+ 1, then the future potential outcome Y 0
k+1 is a surrogate. It is easy to check that

in Figure 2.3, L1/2 is independent of Y 0
m, given Y 0

2 , L1, A0, and cumA1 (equivalently

Y 0
1 ).

It is worth noting that we do not need to control for anything except Y 0
2 in Fig-

ure 2.3 to get a consistent estimate. It is possible to construct more complicated

DAGs in which controlling for additional past and current covariates is necessary,

which involves more model specifications for the relationships among different co-

variates and deviates from the main point of this chapter.

In Section 2.5, we will simulate data in cases of non-Markovian-Y 0
t and leading-

indicator-in-Lt respectively, and show that the controlling-the-future method does

produce better estimates than the g-estimation. However, it worth noting that when

the modified g-estimation in Section 2.2.3 is consistent, the controlling-the-future

estimation is considerably less efficient, because it uses less data and estimates more

parameters.

2.5 Simulation Study

We set up a simple continuous time model that satisfies sequential ignorability in

continuous time, and simulate and record discrete time data from variations of the
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simple model. We estimate causal parameters from both the modified g-estimation

and the controlling-the-future estimation. We also present the estimates from naive

g-estimation in Section 2.2.1, where we ignore the continuous time information of the

treatment processes, as a reference to show the severity of the bias in presence of the

measurement error problem. The results support the discussions in Section 2.3 and

Section 2.4

In the simulation models below, M1 satisfies the Markovian condition in Theorem

2.3.4. It also serves as a proof that there exist processes satisfying the conditions in

Theorem 2.3.4.

2.5.1 The Simulation Models

We first consider a continuous time Markov model, which satisfies the CTSR assump-

tion.

∙ Y 0
t is the potential outcome process if the patient is not receiving any treatment.

We assume that

Y 0
t = g(V, t) + et

where g(V, t) is a function of baseline covariates V and time t. Let g(V, t) be

continuous in t, and et follows an Ornstein-Uhlenbeck process, i.e.

det = −�etdt+ �dWt

where Wt is the standard Brownian motion.
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∙ Yt is the actual outcome process and follows the deterministic model (2.2.6):

Yt = Y 0
t + Ψ

∫ t

0

Asds

∙ At is the treatment process, taking binary values. The jump of the At process

follows the following formula:

pr(As jumps once from (t, t+ ℎ]∣Āt, Ȳt, Ȳ 0) = s(At, Yt)ℎ+ o(ℎ)

pr(As jumps more than once from (t, t+ ℎ]∣Āt, Ȳt, Ȳ 0) = o(ℎ)

where Āt and Ȳt are the full continuous time history of treatment and outcome

up to time t, and Ȳ 0 is the full continuous time path of potential outcome from

time 0 to time K. By making s(.) independent of Ȳ 0, we make our model

satisfy the continuous time sequential randomization assumption.

In this model, the only time-dependent confounder is the outcome process itself.

We also consider several variations of the above model (denoted as M1 in below):

∙ Model (M2) extends (M1) to the non-Markovian-Y 0
t case. Specifically, we

consider et in the model of Y 0
t follows a non-Markovian process, namely an

Ornstein-Uhlenbeck process in random environments, which is defined as the

following:

1. Jt is a continuous time Markov process taking values in a finite set {1, ...,m},

which is the environment process.

2. we have m > 1 sets of parameters �1, �1, ..., �m, �m.
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3. et follows an Ornstein-Uhlenbeck process with parameters �j, �j, when

Jt = j; the starting point of each diffusion is chosen to be simply the end

point of the previous one.

∙ Model (M3) extends (M1) to another setting of non-Markovian Y 0
t process,

where

Y 0
t = g(V, t) + 0.8et−1 + 0.2et

et follows the same Markovian Ornstein-Uhlenbeck process as in M1. Every

other variable is the same as in M1.

∙ Model (M4) considers the case with more than one covariate. In M4, we keep

the assumptions on Y 0
t as in (M1) and the deterministic model of Yt. We add

one more covariate, which is generated as follows

L−t = 0.2Yt + 0.8Y 0
t+0.5 + 0.5�t

�t follows an Ornstein-Uhlenbeck process independent of the Y 0
t process. In this

specification, the covariate L−t contains some leading information about Y 0, but

it is only ahead of Y 0 for 0.5 length of a time unit. Here we use L−t instead of

Lt to denote that it is the covariate other than Yt itself. The simulation model

for At process is given in Appendix E.

In all these models, to simulate data, we use g(V, t) = C a constant, Ψ = 1, a time

span from 0 to 5, and a sample size of 5000. Details of other parameter specifica-

tions can be found in Section 5.5. We generate 5000 continuous paths of Yt and At
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(and L−t in M4), from time 0 to time 5, and record Y ∗0 , A
∗
0, Y

∗
1 , A

∗
1, ..., Y

∗
4 , A

∗
4, Y

∗
5 and

cumA∗1, ..., cumA
∗
5 (and L−∗0 , ...L−∗4 in M4) as the observed data.

2.5.2 Estimations and Results under M1

Figure 2.4 shows a typical continuous time path of Y 0
t , Yt and At. The treatment

switches around time 0.7 and time 2.8.

Figure 2.4: Example of Continuous Time Paths Under M1

We apply three estimating methods on data simulated from M1: the naive discrete

time g-estimation described in Section 2.2.1, which ignores the underlying continuous

time processes; the modified g-estimation described in Section 2.2.3, which controls

for the all the observed discrete time history; and the controlling-the-future method

in Section 2.4.1 of controlling for the next period’s potential outcome in addition to
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the discrete time history.

For estimation, even though we know the data generating process, it is too com-

plicated to use the correct model for the propensity score, i.e., the correct functional

form for pk(Ψ) ≡ pr(A∗k∣L̄∗k, Ȳ ∗k , Ā∗k−1, cumA
∗
k, Y

0∗
k+(Ψ)). Therefore, we use the follow-

ing approximations (Note that we control for past treatment and covariates as well.

See comments for Theorem 2.3.4):

1. Standard g-estimation ignoring continuous time processes (naive g-estimation)

logit(pk(Ψ)) = �0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k

2. G-estimation controlling for all observed history (modified g-estimation)

logit(pk(Ψ)) = �0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k + �4cumA

∗
k

3. The controlling-the-future method, controlling for next period potential out-

comes (controlling-the-future estimation)

logit(pk(Ψ)) = �0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k + �4cumA

∗
k + �5Y

0∗
k+1(Ψ)

We plug these models for the propensity scores in estimation equations (2.2.5),

(2.2.7) and (2.4.4) respectively. (Note in equation (2.2.5), Y 0∗
k (Ψ) = Y ∗k −Ψ

∑k−1
l=0 A

∗
l ,

while in the other two, Y 0∗
k (Ψ) = Y ∗k −ΨcumA∗k.)

The first panel of Table 2.1 shows a summary of the estimates of causal param-

eters for 1000 simulations from M1. The naive g-estimation gives severely biased

estimates. Controlling for all observed history and controlling for additional next
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period potential outcome both give us unbiased estimates. As we discussed at the

end of Section 2.4.2, the controlling-the-future method has lower efficiency.

The last row of the first panel in Table 2.1 shows the coverage rate of 95% confi-

dence interval estimated from the 1000 independent simulations. Naive g-estimation

has a zero coverage rate, while the other two methods have coverage rates around

95%.

2.5.3 Simulation Results under M2 and M3

In M2, we generate data from a non-Markovian Y 0
t , namely the Ornstein-Uhlenbeck

process in random environment. The results in the second panel of Table 2.1 are

typical for different values of parameters under M2. The naive g-estimation performs

badly, while both the other methods still work fine with the data generated from M2.

This shows that the modified g-estimation and the controlling-the-future method

have some level of robustness to mild violations of the Markovian assumption.

The third part of Table 2.1 shows the results of simulation from M3, where Y 0

violates Markov property more substantially. In this case, we can see that the mean

of the modified g-estimates is biased, but the mean of the controlling-the-future

estimates is almost unbiased. In last row of the third panel, the coverage rate for the

modified g-estimation drops to 0.855, while the controlling-the-future method still

has a coverage rate of 0.956.
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Table 2.1: Estimated Causal Parameters from Data Generated by M1-4
Simulation Results from M1

True Parameter = 1
Naive g-est. mod. g-est. ctr-future est.

Mean Estimate† 0.7728 1.0005 0.9988
S.D. of Estimates‡ 0.0183 0.0191 0.0403
S.D. of the Mean Estimate∗ 0.0005 0.0006 0.0013
Absolute Bias ∗∗ 0.2272 0.0005 0.0012
Coverage⋄ 0 0.946 0.956

Simulation Results from M2
True Parameter = 1

Naive g-est. mod. g-est. ctr-future est.

Mean Estimate† 0.7651 1.0016 1.0000
S.D. of Estimates‡ 0.0132 0.0158 0.0371
S.D. of the Mean Estimate∗ 0.0004 0.0005 0.0012
Absolute Bias∗∗ 0.2349 0.0016 0.0000
Coverage⋄ 0 0.953 0.950

Simulation Results from M3
True Parameter = 1

Naive g-est. mod. g-est. ctr-future est.

Mean Estimate† 0.7580 0.9845 1.0026
S.D. of Estimates‡ 0.0149 0.0180 0.0487
S.D. of the Mean Estimate∗ 0.0005 0.0006 0.0015
Absolute Bias∗∗ 0.2420 0.0155 0.0026
Coverage⋄ 0 0.855 0.956

Simulation Results from M4
True Parameter = 1

Naive g-est. mod. g-est. ctr-future est.

Mean Estimate† 0.7816 1.0853 1.0085
S.D. of Estimates‡ 0.0201 0.0289 0.0806
S.D. of the Mean Estimate∗ 0.0006 0.0009 0.0025
Absolute Bias∗∗ 0.2184 0.0853 0.0085
Coverage⋄ 0 0.115 0.948

† Averaged Over Estimates from 1000 Independent Simulations of Sample Size 5000.
‡ Sample Standard Deviation of the 1000 Estimates.
∗ Sample S.D/

√
1000.

∗∗ Absolute Value of (1-Mean Estimates).
⋄ Coverage Rate of 95% Confidence Intervals for 1000 Simulations.
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2.5.4 Estimations and Results under M4

In M4, we create a covariate L−t that has leading information about Y 0
t . In the data

simulated from M4, the observational time sequential randomization (2.3.1) no longer

holds, although the data are generated following continuous time sequential random-

ization. This simulation serves as a numerical proof to the claim that continuous time

sequential randomization does not imply discrete time sequential randomization.

To show this, we run the following two logistic regression model for k = 2 and

m = 4

∙ Not controlling for the next period potential outcome (used in modified g-

estimation)

Logit(P (A∗k = 1)) =�0 + �1cumA
∗
k + �2L

−∗
k−1 + �3L

−∗
k + �4A

∗
k−1 (2.5.1)

+ �5Y
∗
k + �6Y

∗
k−1 + �8Y

0∗
m

∙ Controlling for the next period potential outcome (used in controlling-the-

future estimation)

Logit(P (A∗k = 1)) =�0 + �1cumA
∗
k + �2L

−∗
k−1 + �3L

−∗
k + �4A

∗
k−1 (2.5.2)

+ �5Y
∗
k + �6Y

∗
k−1 + �7Y

0∗
k+1 + �8Y

0∗
m

We can use the true values of Y 0∗
k+1 and Y 0∗

m in the regression to test the discrete time

ignorability, since the data are simulated by us. Table 2.2 shows the estimates of �7

and �8 in both regression models. The result shows that the coefficient of Y 0∗
m , �8, is
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Table 2.2: Verification of Observational Time Sequential Randomization Under M4
Reg. Model 2.5.1∗ Reg. Model 2.5.2∗

�7 0.1868
p-value 5.56e-05
�8 0.0936 0.0134

p-value 0.0006 0.691
∗ Simulation sample size = 10000

significant if we do not control for the future potential outcome, and is not significant

if we control for the future potential outcome. This shows that observational time

sequential randomization (2.3.1) does not hold, while the revised assumption (2.4.1)

holds.

The estimation results from M4 are in the fourth panel of Table 2.1. In applying

these methods we use the following propensity score models separately.

1. G-estimation ignoring the underlying continuous time processes (naive g-esti-

mation)

logit(pk(Ψ)) = �0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k + �5L

−∗
k−1 + �6L

−∗
k

2. G-estimation controlling for all observed history (modified g-estimation)

logit(pk(Ψ)) = �0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k + �4cumA

∗
k + �5L

−∗
k−1 + �6L

−∗
k

3. The controlling-the-future method controlling for next period potential out-

comes (controlling-the-future estimation)

logit(pk(Ψ)) =�0 + �1A
∗
k−1 + �2Y

∗
k−1 + �3Y

∗
k + �4cumA

∗
k + �5L

−∗
k−1

+ �6L
−∗
k + �7Y

0∗
k+1(Ψ)
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Both the naive g-estimation and the modified g-estimation give us estimates with

severe bias, and have coverage rate of 0 and 0.115 separately, for the 95% confidence

interval constructed from them. It is worth noting that model 3 is misspecified

but, nevertheless, leads to much less biased estimates and the controlling-the-future

method has a coverage rate of 0.948.

2.6 Application To The Diarrhea Data

In this section, we apply the different approaches to the diarrhea example mentioned

in Section 2.1 (Example 2). We use a set of 224 children with complete records

between age 3 and age 6 from 757 households in Bangaldesh around 1998. The

outcomes, Y ∗k , are the heights of the children in centimeters measured at round k

of the interviews, for k = 1, 2, 3. The treatment A∗k at the interview k is defined

as A∗k = 1 if the child was sick with diarrhea during the past two weeks of the

interview, and A∗k = 0 otherwise. The cumulative treatment cumA∗k is the number

of days the child suffered from diarrhea from four months before the first interview

(July 15tℎ, 1998) to the ktℎ interview. Baseline covariates V include age in months,

mother’s height and whether the household was exposed to the flood. Time dependent

covariates other than the outcome, i.e., L−∗k , include mid-upper arm circumference,

weight for age z-score, type of toilet (open place, fixed place, unsealed toilet, water

sealed toilet or other), garbage disposal method (throwing away in own fixed place,

throwing away in own non-fixed place, disposing anywhere or other method), water
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purifying process (filter, filter and broil, or other), and source of cooking water (from

pond or river/canal, or from tube well, ring well or supply water).

We apply naive g-estimation, modified g-estimation and the controlling-the-future

method to this data set. Since we only have three rounds, the actual propensity score

models and the estimating equations for the three methods are

∙ Naive g-estimation uses the following propensity score model

logit{pr[A∗k = 1∣V, L−∗k , Y ∗k ]} = �0 + �V V + �LL
−∗
k + �Y Y

∗
k

where k = 1, 2.

The estimating equations follow the form of (2.2.5) in Section 2.2.1:

∑
1≤k<m≤3

1≤i≤n

[A∗k,i − pr(A∗k,i = 1∣Vi, L−∗k,i , Y
∗
k,i)]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y 0∗
m,i(Ψ)

Vi

L−∗k,i

Y ∗k,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

where Y 0∗
m,i(Ψ) = Y ∗m,i −Ψ

∑m−1
l=1 Al.

∙ Modified g-estimation uses this propensity score model

logit{pr[A∗k = 1∣V, L−∗k , Y ∗k , cumA
∗
k]}

=�0 + �V V + �LL
−∗
k + �Y Y

∗
k + �cumAcumA

∗
k

where k = 1, 2.
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The estimating equations follow the form of (2.2.7) in Section 2.2.3.

∑
1≤k<m≤3

1≤i≤n

[A∗k,i − pr(A∗k,i = 1∣Vi, L−∗k,i , Y
∗
k,i, cumA

∗
k,i)]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y 0∗
m,i(Ψ)

Vi

L−∗k,i

Y ∗k,i

cumA∗k,i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0

where Y 0∗
m,i(Ψ) = Y ∗m,i −ΨcumAm.

∙ Controlling-the-future estimation uses the following propensity score model

logit{pr[A∗1 = 1∣V, L−∗1 , Y ∗1 , cumA
∗
1, Y

0∗
2 (Ψ)]}

=�0 + �V V + �LL
−∗
1 + �Y Y

∗
1 + �cumAcumA

∗
1 + �Y 0Y 0∗

2 (Ψ)

The estimating equations follow (2.4.4) in Section 2.4

∑
1≤i≤n

[A∗1,i − pr(A∗1,i∣Vi, L−∗1,i , Y
∗

1,i, cumA
∗
1,i, Y

0∗
2,i (Ψ))]

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y 0∗
3,i (Ψ)

Vi

L−∗1,i

Y ∗1,i

cumA∗1,i

Y 0∗
2,i (Ψ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

where Y 0∗
3,i (Ψ) = Y ∗3,i −ΨcumA3.

The interpretation of Ψ in the last two models is that one day of suffering from

diarrhea reduces the height of the child by Ψ centimeters. For naive g-estimation,
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Table 2.3: Estimation of Ψ from the Diarrhea Data Set
Method Estimate Std Err

Naive g-est. -0.3991 0.2469
Modified g-est. -0.3481 0.2832

controlling-the-future est. -0.0840 0.1894

the underlying data generating model treats the exposure at the observational time

as the constant exposure level for the next six months, which does not make sense in

the context. Ψ in this model should be interpreted as the effect of having diarrhea

at the time of visits, as oppose to having diarrhea at any time, on the height of the

child, which does not make too much sense either.

The estimated Ψ and its standard deviation are reported in Table 2.3. Modified

g-estimation estimates Ψ̂ = −0.3481, which means that the height of the child is

reduced by 0.35cm if the child has one day of diarrhea. Our controlling-the-future

method produces an estimate of Ψ̂ = −0.0840. Although all the estimates are not

significant because of the small sample size, the sign and magnitude of the estimate

from the controlling-the-future method are consistent with other research on diar-

rhea’s effect on height (e.g. Moore et al. 2001).

In addition, we notice that the standard deviation of the modified g-estimate is

higher than that of the controlling-the-future estimate. As discussed at the end of

Section 2.4.2, if the modified g-estimation is consistent, we would expect that the

controlling-the-future estimation will have larger standard deviation. The standard

deviations in Table 2.3 provide evidence that the modified g-estimation is not con-

sistent.
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2.7 Conclusion

In this chapter, we have studied causal inference from longitudinal data when the

underlying processes are in continuous time but the covariates are only observed at

discrete times. We have investigated two aspects of the problem. One is the validity

of the discrete time g-estimation. Specifically, we investigate a version of g-estimation

that follows the spirit of standard discrete time g-estimation but is modified to incor-

porate the information of the underlying continuous time treatment process, which

we referred to as modified g-estimation throughout the chapter. We have shown that

an important condition that justifies this g-estimation is the finite time sequential

randomization assumption at any subset of time points, which is strictly stronger

than the continuous time sequential randomization. We have also shown that a

Markovian assumption and the continuous time sequential randomization would im-

ply the FTSR assumption. The Markovian condition is more useful than the FTSR

assumption, in the sense that it can potentially help researchers decide whether the

application of g-estimation is appropriate. The other aspect is the controlling-the-

future method that we propose to use when the condition to warrant g-estimation

does not hold. Controlling-the-future method can produce consistent estimates when

g-estimation is inconsistent and is less biased in other scenarios. In particular, we

identified two important cases in which controlling the future is less biased, namely,

when there is delayed dependence in the baseline counterfactual process and when

there are leading indicators of the counterfactual process in the covariate process.
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In our simulation study, we have shown the performance of the modified g-

estimation and the controlling-the-future estimation. The results confirm our dis-

cussion in earlier sections. The simulation results have also warned about the danger

of applying naive g-estimation, which is usually severely biased and inconsistent when

its underlying assumptions are violated, as in the situations considered.

We have applied the g-estimations and the controlling-the-future method to es-

timating the effect of diarrhea on a child’s height, and estimated that its effect is

negative but not significant. The real application also provides some evidence that

the modified g-estimation is not consistent.

All the discussion in this chapter are based on a particular form of causal model

- equation (2.2.6). However, all the arguments could apply to a class of more general

rank preserving models, with necessary adjustments in various equations. If we

assume a generic rank preserving model with Yt = f(Y 0
t , ℎ(Āt−); Ψ), where Āt− is

the continuous time path of A from time 0 to t−, ℎ is some functional (e.g., in

our chapter ℎ(Āt−) =
∫ t

0
Asds), and f is some strictly monotonic function with

respect to the first argument(e.g., in our chapter, f(x, y; Ψ) = x + Ψy), we map

Y ∗k to Y 0∗
k = f−1(Y ∗k , ℎ(Āk−); Ψ), where f−1 is the inverse of f(x, y; Ψ) with respect

to x for any given y. We can then substitute all cumA∗k’s in this chapter by the

ℎ(Āk−)’s. All the discussions and formulas in the chapter would still work, under the

assumption that we observe all ℎ(Āk−)’s, which can be easily satisfied with detailed

continuous time records of the treatment. It should be noted that the argument does
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not work if a time-varying covariate modifies the effect of treatment. For example,

if Yt = Y 0
t + Ψ

∫ t
0
L2
sAsds, where Ls is a time varying covariate, observing the full

continuous time treatment process is not enough. Some imputation for the Ls process

is necessary.

The methods considered here have several limitations. These include rank preser-

vation, a strong assumption that the effects of treatment are deterministic. This

assumption facilitates interpretation of models. In other work on structural nested

distribution and related models (e.g., Robins, 2008), rank preservation has been

shown to be unnecessary in settings in which one is not modeling the joint distri-

bution of potential outcomes under different treatments. We expect that this is the

case here as well, and work justifying this more formally is in progress.

In this chapter, we also require that cumulative amount of treatment (or the full

continuous time treatment process, if using other causal models mentioned above)

between the discrete time points when the covariates are observed is known. In a

word, we are free of the treatment measurement error problem mentioned in Sec-

tion 1.2. The next chapter presents an example of getting causal inference when we

do have the treatment measurement error problem.
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Chapter 3

Causal Inference for a Discretely Observed

Continuous Time Non-stationary Markov Process

In this chapter, we consider an example when both the treatment process and the

covariate process are only observed at discrete time points. The problems of un-

measured confounders and the treatment measurement error both arise. In order to

identify causal effect in this scenario, it is natural to expect that more modeling as-

sumptions are needed. In this chapter, we propose a continuous time non-stationary

Markov model to infer the effect of vitamin A deficiency on respiratory infection

among young children. An MCMC algorithm is developed to estimate the model

from the discretely observed data. Our simulation and real application show that

the model and the estimation algorithm work reasonably well, and we are able to

infer a strong effect of vitamin A deficiency on respiratory infection.
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3.1 Introduction

Vitamin A deficiency has been reported to have significant consequences in developing

countries in terms of child’s mortality and morbidity (Vijayaraghavan et al., 1990;

West et al., 1991; Daulaire et al., 1992). Severe vitamin A deficiency is usually

identified by its ocular manifestation, xerophthalmia, the signs of which include night

blindness, conjunctival or corneal xerosis. Beginning in the early 1980s, it has been

revealed that even subclinical vitamin A deficiency has broad consequences in child’s

mortality and morbidity (Humphrey, 1992). In this chapter, we use a subset of the

cohort studied by Somer, Katz and Tarwotjo (see Sommer et al., 1983) to study the

causal effect of vitamin A deficiency on the occurrence of respiratory disease for young

children. In this longitudinal data set, 250 preschool children were examined up to

six consecutive quarters for the occurrence of respiratory infection and the presence

of xerophthalmia. The covariates of interest include ages in months (centered at 36),

gender, cosine and sine terms for annual cycle, and presence of stunting (defined as

being below the 85th percentile in height for age of the National Center for Health

Statistics (NCHS) standard), which indicates longer term nutritional status.

The same data set has been analyzed by Zeger and Karim (1991) using a logistic

model with random effect (we have dropped the variable height for age to simplify

computation) and by Zeger and Liang (1991) with a feedback time series model, and

important discoveries have been found from this data set. In Zeger and Karim’s work,

they found significant association between xerophthalmia and respiratory infection
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conditional on other covariates, by carefully incorporating within-subject correla-

tions with a random effect term in their logistic regression model. In Zeger and

Liang’s work, they studied the feedback relationship among xerophthalmia, respira-

tory infection and diarrheal disease using a multivariate time series model, and found

significant evidence for a feedback cycle between xerophthalmia and diarrheal disease

but not for a feedback cycle between xerophthalmia and respiratory infection. Both

analysis are associational (see Robins et al., 1999).

In this chapter, we would like to make causal inferences of vitamin A deficiency

on respiratory infection, while incorporating the dynamic nature of the subject evolv-

ing with the time. In particular, we hope to properly adjust for baseline covariates,

seasonality and possible feedback cycles among time dependent covariates simulta-

neously, and answer questions like, what is the probability of a child suffering from

respiratory disease a year later, if the child starts taking vitamin A supplement that

effectively eliminates any vitamin A deficiency, as compared with the same probabil-

ity if the child does not take any vitamin A supplement and grows naturally.

To achieve this goal, we model the longitudinal data under Rubin’s counterfac-

tual framework (Rubin, 1974), and assume that the covariates, vitamin A deficiency

levels, actual outcomes and counterfactual outcomes for the occurrence of respiratory

infection follow a continuous time Markov process that is only partially observed at

the six discrete follow-up times. Two features of this model make our study novel

and of particular interest for its generalization to other problems. First, we try to

59



infer the causal effect of vitamin A deficiency level, which is latent, and the symptom

of xerophthalmia is only a surrogate for vitamin A deficiency, indicating whether vi-

tamin A deficiency level is above some threshold (see the discussion section of Zeger

and Liang (1991)). Secondly, we only observe this surrogate and other time depen-

dent covariates at discrete time points, even though everything changes in continuous

time.

These two features distinguish our model from the established semi-parametric

methods for longitudinal data developed by Robins and his collaborators (Robins,

1986, 1992, 1994, 1998; Robins et al., 1999). In most of Robins’ work, data are as-

sumed to be generated from a discrete time process, and at each time point, all the

confounders are observed such that the treatment looks as if it is randomly assigned

conditional on all the covariates and historical treatment levels (the ignorability as-

sumption, see assumption (A1) in Section 1.1). In our data set, the presence/absence

of respiratory disease, the presence/absence of stunting and the level of vitamin A

deficiency can all switch at any time between two consecutive time points, and it is

more reasonable to assume that the whole process is in continuous time and only

observed at discrete times. In Chapter 2, we have shown that even if the ignorability

assumption is true in continuous time, it may not hold at discrete observational times

and thus the standard g-estimation of Robins may be biased.

The model in this chapter also differs from the ones discussed in Chapter 2. In

Chapter 2, the full continuous time history of the exact amount of treatment is
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assumed to be known, in which case a modified ignorability assumption and the

controlling-the-future method of Joffe and Robins (Joffe and Robins, 2009) can be

used to identify the causal effect semi-parametrically in some scenarios. However,

the luxury of observing the exact amount of treatment is not available in our data

set, as the treatment level, the real vitamin A deficiency level, is unobserved. Only

when the deficiency reached a level high enough can xerophthalmia be observed and

recorded in the data, and xerophthalmia itself is not recorded in continuous time -

it is observable only at the time of the visits. In a word, we are suffering from the

measurement error problem discussed in Section 1.2. While standard semi-parametric

approach fails to adjust for the measurement error, more assumptions are needed for

identification. In this chapter, we choose to use a full parametric model.

This chapter also contributes to the literature of estimating a discretely observed

continuous time Markov process. Vast amount of research work has been done on

various cases of the problem, including discretely observed continuous time diffu-

sions, e.g., (Johannes et al., 2009; Elerian et al., 2001; Blackwell, 2003; Aı̈t-Sahalia,

2002), discretely observed stationary continuous time Markov chain, e.g., (Bladt and

Sørensen, 2005), and discretely observed two-state non-stationary continuous time

Markov chain, e.g., (Singer, 1981). In our model, we are facing a discretely ob-

served 32-state non-stationary continuous time Markov chain. We are able to find

an MCMC algorithm to estimate the parameters for our particular problem. It will

be of great interest to search for more general and more efficient algorithms for esti-
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mating discretely observed non-stationary continuous time Markov process in future

research.

The organization of the chapter is as follows: Section 3.2 describes our continuous

time Markov model under the counterfactual framework; Section 3.3 describes our

MCMC algorithm for estimating the model; Section 3.4 is a simulation study of our

computational algorithm; Section 3.5 reports the results for applying our model to

the vitamin A deficiency data; Section 3.6 concludes the chapter.

3.2 A Markov Model

In this chapter, we denote the level of vitamin A deficiency at time t by an ordinal

latent variable A∗t with d states (e.g., d = 4 and the states are 0, 1, 2, 3). We define

At to be a binary indicator of xerophthalmia, which will take value 1 if A∗t ≥ c and

0 if A∗t < c (e.g., c = 2 if d = 4). Let Lt be the binary indicator of whether the child

is stunted at time t, and Yt be the binary variable that indicates whether the child is

suffering from respiratory infection at time t. Consider the counterfactual outcome

Y
Ā∗s−,0
t , t ≥ s, which is the potential outcome for respiratory infection status at time

t, if the subject receives the realized treatment A∗l from time 0 to just prior to time

s and keeps the treatment level at the lowest (i.e., 0) from time t and on.
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3.2.1 The Causal Model

We assume the following model for the causal relationship between A∗t and Yt.

P (Yt = 1∣Y Ā∗t−,0
t , A∗t ) =

⎧⎨⎩
1 if Y

Ā∗t−,0
t = 1

0 if Y
Ā∗t−,0
t = 0, A∗t = 0

�j if Y
Ā∗t−,0
t = 0, A∗t = j (j > 0)

(3.2.1)

The model describes how the treatment levels affect the realized outcome Yt, given

the baseline potential outcome at time t. The �’s are the causal effect of At on Yt.

In (3.2.1), we assume that if Y
Ā∗t−,0
t = 1, Yt = 1, i.e., if the child would suffer

from respiratory infection even without any vitamin A deficiency, any vitamin A

deficiency could only make the child worse. If Y
Ā∗t−,0
t = 0, different levels of vitamin

A deficiency results in different levels of risk for the child to get respiratory infection,

and we would expect that the higher the level of vitamin A deficiency is, the higher

risk of respiratory infection the child has. It is worth noting that in this model, Yt = 0

if Y
Ā∗t−,0
t = 0 and A∗t = 0, which is a consistency assumption that is often assumed

in most causal research work (e.g., Robins et al. (2000)). For example, with a single

outcome Y observe, people usually assume that Y observe = Y a if A = a, where Y a is the

counterfactual outcome under treatment level a.

3.2.2 Continuous Time Markov Process

We assume that (A∗t , Y
Ā∗t−,0
t , Lt, Yt) follows a continuous time Markov process, which

will be described below. Note that At is only a coarsened observation of A∗t . We
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also assume that the observational times are 0, 1, ⋅ ⋅ ⋅ , K. At each time point k, only

(Ak, Yk, Lk) are observed. Any variables in between two consecutive time points and

any potential outcomes are not observable. Figure 3.1 shows a discretized example of

the data generating process from this model. In the example, (A∗t , Y
Ā∗t−,0
t , Lt, Yt) can

change values at time 1, 1.5, 2, 2.5, 3 and 3.5, but only (Ak, Yk, Lk) can be observed

at time 1, 2, and 3.

Figure 3.1: Discretized Example of Data Generating Process

The Transition Rate Matrix Q

The continuous time Markov process (A∗t , Y
Ā∗t−,0
t , Lt, Yt) has 32 states (4 by 2 by 2

by 2), each state being denoted by a vector s = (a∗, y0, l, y)T , where a∗ ∈ {0, 1, 2, 3},

y0 ∈ {0, 1}, l ∈ {0, 1} and y ∈ {0, 1}. We model the Markov process by specifying

how we construct the transition rate matrix Q(t). Q(t) is a 32 by 32 matrix, which

may depend on covariates like time, age and gender. Note that unlike stunting, time,

age and gender are not time-dependent confounders. They are not modeled as the

state of the Markov process, but are conditioned on when calculating the transition
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rate matrix.

We denote Xt = (A∗t , Y
Ā∗t−,0
t , Lt, Yt) and consider the elements in Q(t):

qt(s1, s2) = lim
ℎ↓0

Pr(Xt+ℎ = s2∣Xt = s1, age, sex)

ℎ

for s1 ∕= s2, and

qt(s, s) = −
∑
s′ ∕=s

qt(s, s
′)

We factorize

P (Xt+ℎ∣Xt, age, sex)

=P (A∗t+ℎ, Y
Ā∗

(t+ℎ)−,0

t+ℎ ∣Xt, age, sex)P (Lt+ℎ∣Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ )

× P (Yt+ℎ∣Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ , Lt+ℎ)

=P (A∗t+ℎ∣Xt, age, sex)P (Y
Ā∗

(t+ℎ)−,0

t+ℎ ∣Xt, A
∗
t+ℎ, age, sex)

× P (Lt+ℎ∣Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ )× P (Yt+ℎ∣A∗t+ℎ, Y
Ā∗

(t+ℎ)−,0

t+ℎ ).

Note that with this factorization, we have assumed that Yt+ℎ is independent of

Xt, sex, age and Lt+ℎ conditional on A∗t+ℎ and Y
Ā∗

(t+ℎ)−,0

t+ℎ . This assumption means

that causal effect of At+ℎ on Yt+ℎ does not depend on any pre-treatment covariate.

Similar assumptions have been assumed in many causal researches (e.g. the model

of additive effect discussed in the Section 2 of Rosenbaum (2002) is such a model).

We model each component in the factorization as

∙ Model for the jump of A∗t

P (A∗t+ℎ = j∣Xt, age, sex) (3.2.2)

65



=

⎧⎨⎩
ℎ�(A∗t+ℎ;A

∗
t , Lt, Yt, age, sex, t) + o(ℎ), ∣A∗t − j∣ = 1

o(ℎ), ∣A∗t − j∣ > 1

The model assumes that the level of vitamin A deficiency can only switch to

an adjacent level when it switches.

∙ Model for the jump of Y
Ā∗

(t)−,0

t

P (Y
Ā∗

(t+ℎ)−,0

t+ℎ = j∣Xt, A
∗
t+ℎ, age, sex) (3.2.3)

=ℎ�(Y
Ā∗

(t+ℎ)−,0

t+ℎ ;Xt, age, sex, t) + o(ℎ), Y
Ā∗t−,0
t ∕= j;

∙ Model for the jump of Lt

P (Lt+ℎ = j∣Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ ) (3.2.4)

=ℎ
(Lt+ℎ;Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ , t) + o(ℎ), Lt ∕= j.

∙ P (Yt+ℎ∣A∗t+ℎ, Y
Ā∗

(t+ℎ)−,0

t+ℎ ) is defined in (3.2.1). We denote

py(y; a, y0) = P (Yt+ℎ = y∣A∗t+ℎ = a, Y
Ā∗

(t+ℎ)−,0

t+ℎ = y0).

Remark 3.2.1. By assuming that the � function is not a function of Y
Ā∗t−,0
t and

is a function of Yt and Lt, and that the � function is not a function of A∗t+ℎ, we

have assumed continuous time ignorability for our model, i.e., the treatment only

depends on realized past covariates and past treatments and does not depend on

future potential outcomes. For a formal definition of continuous time ignorability

assumption and the proof that the model conforms with the ignorability assumption,

see Section 5.6.
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Given (3.2.2), (3.2.3) and (3.2.4), the elements of the transition rate matrix Q(t)

are, for s1 ∕= s2

qt(s1, s2) =

⎧⎨⎩

�t(a2; a1, l1, y1)py(y2; a2, y
0
2) if ∣a1 − a2∣ = 1, l1 = l2, y

0
1 = y0

2

�t(y
0
2; s1)py(y2; a2, y

0
2) if y0

1 ∕= y0
2, a1 = a2, l1 = l2


t(l2; s1, a2, y
0
2)py(y2; a2, y

0
2) if l1 ∕= l2, a1 = a2, y

0
1 = y0

2

0 otherwise

where

�t(a2; a1, l1, y1) =�(A∗t+ℎ = a2;A∗t = a1, Lt = l1, Yt = y1, age, sex, t)

�t(y
0
2; s1) =�(Y

Ā∗
(t+ℎ)−,0

t+ℎ = y0
2;Xt = s1, age, sex, t)


t(l2; s1, a2, y
0
2) =
(Lt+ℎ = l2;Xt = s1, age, sex,A

∗
t+ℎ = a2,

Y
Ā∗

(t+ℎ)−,0

t+ℎ = y0
2, t).

Initial Conditions and the Conditional Likelihood Function

For a complete model, we also need to give the initial probability distribution for

(A∗0, Y
Ā∗0−,0

0 , L0, Y0). The causal relationship and the feedback cycles are already en-

coded in (3.2.1) and the definition of Q(t). It would be reasonable to make inference

from a conditional likelihood that conditions on the initial states. However, A∗0, Y
Ā∗0−,0

0

are unobserved, and only (A0, L0, Y0) are observed. We hereby assume that

P (A∗0, Y
Ā∗0−,0

0 ∣A0, L0, age, sex) =
1

2
× 1

2
× IA0=(A∗0≥c) (3.2.5)

This initial distribution claims that A∗0 is uniform on {0, 1} if A0 = 0, and uniform on

{2, 3} if A0 = 1, and that Y
Ā∗0−,0

0 is uniform on {0, 1}, conditional on the value of A0
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and L0. This assumption gives the levels of A∗ certain physical meaning. If we view

the true level of vitamin A deficiency as a continuous measure and xerophthalmia

as an indicator whether the true level is above a threshold, (3.2.5) assumes that the

cut-point between A∗ = 1 and A∗ = 0 is the median of the conditional distribution

of the true level, conditioning on A = 0, and that the cut-point between A∗ = 2 and

A∗ = 3 is the median of the conditional distribution of the true level, conditioning

on A = 1.

With equation (3.2.5) and model (3.2.1), P (A∗0, Y
Ā∗0−,0

0 ∣A0, L0, Y0, age, sex) can be

calculated. Given P (A∗0, Y
Ā∗0−,0

0 ∣A0, L0, Y0, age, sex), a conditional likelihood function

of the observed data can be calculated as

f(A1, ..., AK , L1, ..., LK , Y1, ..., YK ∣A0, L0, Y0, age, sex)

=

∫ ∫
P (A∗0, Y

Ā∗0−,0

0 ∣A0, L0, Y0, age, sex)

× P (A1, ..., AK , L1, ..., LK , Y1, ..., YK ∣A∗0, Y
Ā∗0−,0

0 , L0, Y0, age, sex)dA∗0dY
Ā∗0−,0

0

P (A1, ..., AK , L1, ..., LK , Y1, ..., YK ∣A∗0, Y
Ā∗0−,0

0 , L0, Y0, age, sex) can be determined by

Q(t) and model (3.2.1), even though a direct computation is almost infeasible. We

will discuss our approach in Section 3.3.

To summarize, our model assumes that (A∗t , Y
Ā∗t−,0
t , Lt, Yt) follows a continuous

time non-stationary Markov process defined by the transition rate matrix Q(t), and

that At is determined deterministically by A∗t . We only observe the (At, Yt, Lt) at

time 0, 1, ⋅ ⋅ ⋅ , K. Different subjects are assumed to be independent realizations of

the process conditional on their baseline covariates and initial conditions.
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3.3 Estimation: MCMC with Data Augmentation

To estimate the model defined in Section 3.2, we parametrize �i = exp(�̃i)

1+exp(�̃i)
, � = �(�̃),

� = �(�̃) and 
 = 
(
̃). Denote Θ = (�̃1, �̃2, �̃3, �̃, �̃, 
̃). Θ is the collection of

parameters that needs to be estimated.

Even if we know the true value of Θ, it is quite difficult to evaluate the likelihood

of the observed data in our model. The difficulty lies in the fact that the Markov

process is non-stationary and that it depends on baseline covariates. For a stationary

continuous time Markov process with finite number of states and without covariates,

transition matrix from time t to time t + 1 is simply eQ, where Q is the transition

rate matrix. With eQ calculated once, the problem becomes a standard discrete time

hidden Markov model, where the transition matrix between states is eQ and the

emission matrix easily defined since At, Yt, Lt are deterministic observations from the

states of the Markov model. With a non-stationary Markov process, the transition

matrix does not usually have a simple form (for two-state process, there is one, see

Singer (1981); for a more general process, see discussions in Wei and Norman (1963,

1964)). One practical approach may be discretizing the process and approximate the

transition matrix from time t to time t + 1 by
∏n

i=1[ 1
n
Q(t + i−1

n
) + I], which will be

quite time consuming, and considering that fact that we have covariates and we need

to do this computation for every subject in every time interval, it quickly becomes

computationally infeasible.

In this section, we propose a Monte Carlo Markov Chain approach with data
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augmentation for estimation (see more about data augmentation in van Dyk and

Meng (2001)). In our algorithm, we also need to discretize the continuous time

Markov process and approximate the process by an embedded Markov chain.

3.3.1 Discretization Scheme

Denote Zt = (A∗t , Y
Ā∗t−,0
t , Lt, At, Yt) (notice that Zt is also a Markov process under

the model defined in Section 3.2). We discretize the continuous time Markov process

at the time grid of 1
n
, i.e., we consider the embedded discrete time Markov chain Z0,

Z 1
n
, Z 2

n
, ⋅ ⋅ ⋅ , Zn−1

n
, Z1, Zn+1

n
, ⋅ ⋅ ⋅ , ZK . We approximate the transition probability of

the discretized chain by (to simplify notation, we define Y 0
t = Y

Ā∗t−,0
t )

Pr(Zm+1
n
∣Zm

n
)

≈[
1

n
�(A∗m+1

n
;A∗m

n
, Lm

n
, age, sex, Ym

n
,
m

n
)]
IA∗m+1

n

∕=A∗m
n

× [1− 1

n
(1 + IA∗m

n
∕∈{0,d−1})�(A∗m+1

n
;A∗m

n
, Lm

n
, age, sex, Ym

n
,
m

n
)]
IA∗m+1

n

=A∗m
n

× [
1

n
�(Y 0

m+1
n

;Xm
n
, age, sex, Ym

n
,
m

n
)]
I
Y 0
m+1
n

∕=Y 0
m
n

× [1− 1

n
�(Y 0

m+1
n

;Xm
n
, age, sex, Ym

n
,
m

n
)]
I
Y 0
m+1
n

=Y 0
m
n

× [
1

n

(Lm+1

n
;Xm

n
, age, sex, Ym

n
, A∗m+1

n
, Y 0

m+1
n
,
m

n
)]
ILm+1

n
∕=Lm

n

× [1− 1

n

(Lm+1

n
;Xm

n
, age, sex, Ym

n
, A∗m+1

n
, Y 0

m+1
n
,
m

n
)]
ILm+1

n
=Lm

n

× Pr(Am+1
n
∣A∗m+1

n
)× Pr(Ym+1

n
∣Y 0

m+1
n
, A∗m+1

n
)

where Pr(Am+1
n
∣A∗m+1

n

) = IAm+1
n

=IA∗m+1
n

≥c , and Pr(Ym+1
n
∣Y 0

m+1
n

, A∗m+1
n

) is decided by

equation (3.2.1).
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3.3.2 The MCMC Algorithm

Notice that after discretizing the process, if we do observe full Zt process, the evalua-

tion of the full likelihood is relatively easy, as we would avoid matrix multiplications.

Motivated by this fact, we consider an MCMC algorithm with data augmentation.

Denote the observed data by O, where O = (A0, Y0, L0, A1, Y1, L1, ⋅ ⋅ ⋅ , AK , YK , LK),

the full data by Z, where Z = (Z0, Z 1
n
, Z 2

n
, ⋅ ⋅ ⋅ , ZK), and the missing data by U ,

where U = Z −O.

To fit into the Bayesian framework, we assume a proper prior distribution for

Θ. In our implementation, the prior distribution � is assumed to be a multi-normal

distribution, with mean (0, 0, ⋅ ⋅ ⋅ , 0) and covariance matrix �I, where I is the iden-

tity matrix. We view the proper prior distribution as a regularization in estimating

the parameters. It has been recognized for a long time that maximum likelihood

estimates for discretely observed continuous time Markov process could be very un-

stable (see Kalbfleisch and Lawless, 1985). For example, in the case of stationary

Markov process, if the transition rate matrix has large elements and the time interval

between two observations is too long, the transition probability between two observa-

tional time points could be close to the stationary distribution. Then the transition

rate matrix multiplied by any large positive number would explain the data very well.

MLE could have huge variance or not even exist. See Bladt and Sørensen (2005) for

a concrete example when MLE does not exist. In their example, the Markov model

is saturated, i.e., there is no constraint on the transition rate matrix. Although we
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have assumed structures for our transition rate matrix, we suspect that our likelihood

function is not well behaved either, as our experiments on MCMC with a flat prior

distribution fails to converge even after a huge number of iterations.

With the setup, a sketch of a general MCMC algorithm with data augmentation

is in Figure 3.2.

Figure 3.2: MCMC with Data Augmentation

1. Initialize Θ and U .

2. Given U , we update Θ by simulating from P (Θ∣U,O).

3. Given Θ, we update U by simulating from P (U ∣Θ, O).

4. Repeat 2-3.

Here P (Θ∣U,O) ∝ �(Θ)P (U,O∣Θ) and P (U ∣Θ, O) ∝ P (U,O∣Θ). P (U,O∣Θ) can

be easily calculated using the formula in Section 3.3.1. Under certain regularity

conditions, the limiting marginal distribution of Θ will be the posterior distribution

P (Θ∣O).

With our model, it is quite difficult to simulate directly from P (Θ∣U,O) and

P (U ∣Θ, O). We therefore substitute step 2 and 3 by Metropolis-Hasting steps.

∙ Step 2 Given U and Θold, we simulate Θnew from a proposal distribution

q(Θ∣Θold), and calculate

r1 = min(1,
P (Θnew∣U,O)q(Θold∣Θnew)

P (Θold∣U,O)q(Θnew∣Θold)
).
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We update Θ by Θnew with probability r1, and by Θold with probability 1− r1.

∙ Step 3 Given Θ, and Uold, we simulate Unew from a proposal distribution

q(U ∣Uold), and calculate

r2 = min(1,
P (Unew∣Θ, O)q(Uold∣Unew)

P (Uold∣Θ, O)q(Unew∣Uold)
).

We update U by Unew with probability r2, and by Uold with probability 1− r2.

In our implementation, the proposal distribution q(Θ∣Θold) is taken to be the multi-

normal distribution with mean Θold and covariance matrix being a diagonal matrix.

In this case, the calculation of r1 simplifies to

r1 = min(1,
P (Θnew∣U,O)

P (Θold∣U,O)
).

The proposal distribution q(U ∣Uold) is more complicated, which we describe in

the following section.

3.3.3 Proposal Distributions for the Augmented Data

To find a good proposal distribution for U , we first need to be able to simulate a

whole path of the discretized Markov chain, such that the values of the path match

the observed values at the observational times, namely 0, 1, ⋅ ⋅ ⋅ , K. Secondly, the

path we simulate has to have a significant probability to occur under the Markov

model. There are available methods for simulating paths that match the end points in

continuous time stationary Markov process (see Blackwell, 2003; Bladt and Sørensen,

2005; Nielsen, 2002; Hobolth, 2008). In this chapter, we have designed a proposal
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distribution that works well for our model, which is a continuous time non-stationary

Markov process.

Rather than simulating the paths of states for the whole chain, our proposal

distribution simulates the A∗t , Lt, Y
0
t , Yt and At separately. Also, we do not simulate

the whole path altogether, but rather we update the path piece by piece, i.e., for one

subject, we update (A∗i , Y
0
i , Zi+ 1

n
, ⋅ ⋅ ⋅ , Zi+n−1

n
) once at a time, with the sequence of

i = 0, 1, 2, ⋅ ⋅ ⋅ , K − 1, and then update (A∗K , Y
0
K).

Specifically, for any i = 0, 1, 2, ⋅ ⋅ ⋅ , K−1, we simulate the missing data as follows:

∙ If Ai = 1, simulate A∗i = 2 + Bernoulli(0.5); if Ai = 0, simulate A∗i =

Bernoulli(0.5). Let q1 = 0.5.

∙ If Yi = 0, simulate Y 0
i = 0, and let q2 = 1; if Yi = 1, simulate Y 0

i =

Bernoulli(0.5). Let q2 = 0.5.

∙ To simulate the path for L, we consider xj = Li+ j
n
−Li+ j−1

n
, i.e., {xj}nj=1 is the

first order difference of {Li+ j
n
}nj=0. Each xj must be +1, 0 or −1, Li +

∑m
j=1 xj

must be either 1 or 0, and
∑n

j=1 xj = Li+1−Li. We would like to simulate the

xj’s satisfying these constraints with certain control over the number of non-

zeros in them (or equivalently, the number of jumps in L), as we are expecting

the number of jumps to be small for our particular problem.

If Li = Li+1, the number of jumps for the L process must be 0, 2, 4, ⋅ ⋅ ⋅ , 2× [n
2
].

Define q∗L(x) to be a probability distribution on 0, 2, 4, ⋅ ⋅ ⋅ , 2× [n
2
], where [x]

is the largest integer smaller than x. Simulate M from q∗L. Randomly pick M
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positions from n positions. Those M positions will be the non-zero xj’s. With

M and those M positions, a x sequence and the L sequence are determined.

We denote the proposal probability by

q3 = q∗L(M)
1⎛⎜⎜⎝n

M

⎞⎟⎟⎠
.

If Li ∕= Li+1, the number of jumps for the L process must be 1, 3, 5, ⋅ ⋅ ⋅ ,

2× [n
2
]− 1. A similar procedure can be adopted.

∙ Simulating Y 0
t uses exactly the same procedure as for simulating Lt. Let q4 be

the probability from the proposal distribution.

∙ To simulate the path for A∗, let xj = A∗
i+ j

n

− A∗
i+ j−1

n

. Each xj must be +1, 0

or −1 (A∗ are only allowed to switch to adjacent levels), A∗i +
∑m

j=1 xj must

be between 0 and 3 inclusively, and
∑n

j=1 xj = A∗i+1 − A∗i . We first simulate

the number of switches in the A∗ process. If ∣A∗i − A∗i+1∣ = k, the number of

non-zeros in xj must be one of (k, k + 2, ..., 2 × [n−k
2

] + k). Define q∗A to be

a probability distribution on them. We simulate M from q∗A, and randomly

sample M positions from n for the non-zero xj’s. However, since A∗ is not

binary, there could be many paths that has M jumps and jump at the sampled

positions. We randomly sample one from the qualified paths. We denote the
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number of qualified paths by nq, and let

q5 = q∗A(M)
1⎛⎜⎜⎝n

M

⎞⎟⎟⎠
1

nq
.

Conditional on M and the M positions, randomly sampling one path from

all qualified paths is not so straightforward. We describe our solution to this

problem Section 5.7.

∙ The simulation of Y follows the causal model (3.2.1). Let

q6 =
n−1∏
j=1

py(Yi+ j
n
;Y 0

i+ j
n

, A∗
i+ j

n

).

∙ The simulation of A is deterministic: Ai+ j
n

= IA∗
i+

j
n

>c. Let q7 = 1.

Let qnew =
∏7

j=1 qj. We have simulated a set of Ui = (A∗i , Y
0
i , Zi+ 1

n
, ⋅ ⋅ ⋅ , Zi+n−1

n
)

from our proposal distribution and calculated the proposal probability as qnew. With

the proposal distribution, it is also easy to calculate the probability of the old paths

under the proposal distribution. We denote it as qold.

We then calculate, for i > 0,

r2,i = min(1,
P (Ai, Yi, U

new
i , Zi+1∣Θ, Zi− 1

n
)qold

P (Ai, Yi, U old
i , Zi+1∣Θ, Zi− 1

n
)qnew

)

for i = 0

r2,i = min(1,
P (Y 0

0,new, A
∗
0,new∣A0, L0, Y0)P (Unew

i , Zi+1∣Θ, Zi,new)qold

P (Y 0
0,old, A

∗
0,old∣A0, L0, Y0)P (U old

i , Zi+1∣Θ, Zi,old)qnew
)

and keep Unew
i with probability r2,i.

To update (A∗K , Y
0
K), we simulate them as follows,
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∙ If AK = 1, simulate A∗K = 2 + Bernoulli(0.5); if AK = 0, simulate A∗K =

Bernoulli(0.5). Let q1 = 0.5.

∙ If YK = 0, simulate Y 0
K = 0, and let q2 = 1; if YK = 1, simulate Y 0

K =

Bernoulli(0.5). Let q2 = 0.5.

qnew = q1q2, and qold is calculated accordingly. Define

r2,K = min(1,
P (ZK,new∣ZK− 1

n
,Θ)qold

P (ZK,old∣ZK− 1
n
,Θ)qnew

)

we keep (A∗K,new, Y
0
K,new) with probability r2,K .

In this proposal distribution, we separate the simulation of the number of jumps

and the positions of the jumps, which gives us a better control over the proposal

distribution. We can incorporate our intuition of how frequent of the process jumps

into the proposal distribution and efficiently walk through the space of all possible

U . There are also shortcomings of this approach. As each component is simulated

separately, it is possible that several components jump together, which is a rare event

in the original model and makes our algorithm less efficient. For the particular study

in this chapter, our proposal distribution seems to be working fine.

As a summary, our full MCMC algorithm with data augmentation is in Figure 3.3.
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Figure 3.3: Full MCMC Algorithm with Data Augmentation

1. Initialize Θ and U .

2. Given U and Θold, we simulate Θnew from a proposal distribution q(Θ∣Θold),

and calculate

r1 = min(1,
P (Θnew∣U,O)q(Θold∣Θnew)

P (Θold∣U,O)q(Θnew∣Θold)
).

We update Θ by Θnew with probability r1, and by Θold with probability 1− r1.

3. Given Θ, for every subject, we update U by the algorithm described in Sec-

tion 3.3.3.

4. Repeat 2-3.

3.4 Simulation

In this section, we present one particular parametrization for the �, � and 
 functions.

The same parametrization will be used in our application to the vitamin A deficiency

data in the next section. We simulate a similar data set as the vitamin A deficiency

data from our Markov model, i.e., by setting the parameter values to be the estimates

from the real data, and the number of subjects to be the number of subjects in the

real data. We then estimate the parameters from the simulated data to see if our

MCMC algorithm can correctly reconstruct the true values.

The models for �, � and 
 are:

�(A∗t+ℎ;A
∗
t , Lt, Yt, age, sex, t; �̃)
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= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t) + �̃7 sin(t))

/{2[1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t)

+ �̃7 sin(t))]}

�(Y
Ā∗

(t+ℎ)−,0

t+ℎ ;Xt, age, sex, t; �̃)

= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t))

/{1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t))}


(Lt+ℎ;Xt, age, sex,A
∗
t+ℎ, Y

Ā∗
(t+ℎ)−,0

t+ℎ , t; 
̃)

= exp(
̃0 + 
̃1A
∗
t + 
̃2Lt + 
̃3Yt + 
̃4Y

Ā∗t−,0
t + 
̃5A

∗
t+ℎ + 
̃6Y

Ā∗
(t+ℎ)−,0

t+ℎ

+ 
̃7(age) + 
̃8(sex) + 
̃9 cos(t) + 
̃10 sin(t))

/{2[1 + exp(
̃0 + 
̃1A
∗
t + 
̃2Lt + 
̃3Yt + 
̃4Y

Ā∗t−,0
t + 
̃5A

∗
t+ℎ + 
̃6Y

Ā∗
(t+ℎ)−,0

t+ℎ

+ 
̃7(age) + 
̃8(sex) + 
̃9 cos(t) + 
̃10 sin(t))]}

In this formulation, We assume that all of A∗t , Y
0
t and Lt could depend on age,

sex, and seasonal factor cos(t) and sin(t). Also note that the values of function � and


 are always between 0 and 0.5, and that the value of function � is always between 0

and 1. The general model we proposed in Section 3.2 only requires these functions to

be positive. The validity of the more stringent models here relies on our belief that

vitamin A deficiency, counterfactual respiratory infection and stunting switch states
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infrequently. The models also prevents problems in discretization, as it guarantees

that, for example, 1
n
� is always a probability.

Using the set of parameters we estimated from the vitamin A deficiency data, we

simulate from the above model for 250 subject from time 1 to time 6, with baseline

covariates and baseline variables generated randomly, and record At, Yt and Lt at the

integer times. We then estimate the model using our MCMC algorithm with a prior

distribution N(0, I), i.e., we assume the prior distribution for every parameter is

independent standard normal. We repeat 10 independent simulations, and estimate

parameters by posterior mean from the 10 simulated data sets.

The estimation results from our simulated data sets are reported in Table 3.1. The

second and the third columns of Table 3.1 show the true parameter values and the

mean estimates. While the prior distribution obviously causes bias on some param-

eter estimates, the fourth column shows that most of the biases are non-significant.

Considering the fact that we used a proper prior distribution as regularization and

the size of our data set, we believe that our MCMC algorithm is doing a decent job

in estimating the parameters.

3.5 Application

This section reports the result of our vitamin A deficiency analysis.
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Table 3.1: Simulation Result for the MCMC Algorithm

Parameter True Value Average Estimates⋄ t-statistic†

�̃1 -3.3 -3.19 1.25

�̃2 -2.01 -1.69 2.13

�̃3 -0.77 -1.03 -1.94
�̃0 -3.07 -2.18 4.64∗

�̃1 2.00 1.59 -3.62∗

�̃2 -0.13 -0.02 0.53
�̃3 0.34 0.12 -1.29
�̃4 0.05 0.04 -1.71
�̃5 -1.11 -1.11 -0.04
�̃6 0.04 0.01 -0.4
�̃7 -0.35 -0.42 -0.73

�̃0 -2.54 -2.08 7.11∗

�̃1 -0.7 -0.61 1.43

�̃2 -0.17 -0.19 -0.24

�̃3 0.91 0.32 -1.49

�̃4 4.17 3.89 -1.11

�̃5 -0.04 -0.04 1.24

�̃6 -0.62 -0.75 -1.21

�̃7 1.07 0.67 -4.59∗

�̃8 0.82 0.53 -4.17∗


̃0 -2.79 -2.62 2.24

̃1 -0.32 -0.42 -0.73

̃2 2.5 2.27 -1.71

̃3 0.09 -0.25 -5.49∗


̃4 -0.02 0.12 1.25

̃5 -0.29 -0.18 0.96

̃6 0.15 0.02 -1.15

̃7 -0.01 -0.01 -1.3

̃8 -0.02 -0.22 -1.56

̃9 0.18 0.06 -1.27

̃10 -0.52 -0.49 0.21

⋄ Average estimates for 10 simulations.
† Average bias / SD of the 10 estimated biases ×

√
10, compared with t0.975,9 = 2.26.

∗ denotes significance at 5% level.
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3.5.1 Estimation Result

We estimate the model described in Section 3.2 and Section 3.4, using the real vita-

min A deficiency data. The independent standard normal distribution is also used

as the prior distribution for parameters. Note that the original data may have miss-

ing visits for particular subjects. We assume that the missing visits are missing at

random, i.e., for any subject, which visits are missing is independent of all the co-

variates, treatment, potential outcomes and outcomes. With such an assumption,

the application of our model and estimation algorithm is straightforward, as missing

visits simply means that the observational times are at a coarser time grid.

We have run multiple MCMC paths up to two million steps for each path, and

calculated the Gelman-Rubin statistics for each parameter as a criteria for judging

convergence. The Gelman-Rubin statistics for all parameters are smaller than 1.04.

The estimates are in Table 3.2.

In Table 3.2, the first panel are estimates for the �̃’s, which are the logit of the �’s.

Recalling equation (3.2.1), the �’s represent the effect of current vitamin A deficiency

on current respiratory infection status. Our estimates show that for Y 0
t = 0, if A∗t = 1,

i.e., the subject is suffering from mild vitamin A deficiency, the probability of Yt = 1,

i.e., the subject suffers from respiratory infection, is exp(−3.28)
1+exp(−3.28)

= 3.6%. If A∗t = 2,

the probability of Yt = 1 is 11.8%. If A∗t = 3, the probability of Yt = 1 is 31.6%.

As expected, the higher level of vitamin A deficiency is causes higher probability of

respiratory infection. This shows a strong causal effect of vitamin A deficiency on
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Table 3.2: Estimation Result from the Vitamin A Deficiency Data

Parameter Posterior Mean 95% Credible Set

�̃1 -3.30 ( -4.27 , -2.57 )

�̃2 -2.01 ( -3.39 , -1.00 )

�̃3 -0.77 ( -2.34 , 0.85 )
�̃0 -3.07 ( -4.10 , -2.16 )
�̃1 2.00 ( 1.20 , 2.93 )
�̃2 -0.13 ( -1.42 , 1.45 )
�̃3 0.34 ( -1.34 , 1.88 )
�̃4 0.05 ( 0.02 , 0.08 )
�̃5 -1.11 ( -2.16 , -0.11 )
�̃6 0.04 ( -0.68 , 0.78 )
�̃7 -0.35 ( -1.09 , 0.35 )

�̃0 -2.54 ( -3.23 , -1.90 )

�̃1 -0.70 ( -1.84 , 0.27 )

�̃2 -0.17 ( -1.46 , 0.95 )

�̃3 0.91 ( -0.64 , 2.59 )

�̃4 4.17 ( 2.53 , 5.64 )

�̃5 -0.04 ( -0.06 , -0.01 )

�̃6 -0.62 ( -1.46 , 0.14 )

�̃7 1.07 ( 0.38 , 1.78 )

�̃8 0.82 ( 0.19 , 1.55 )

̃0 -2.79 ( -3.57 , -2.12 )

̃1 -0.32 ( -2.03 , 1.1 )

̃2 2.50 ( 1.61 , 3.45 )

̃3 0.09 ( -1.39 , 1.47 )

̃4 -0.02 ( -1.45 , 1.53 )

̃5 -0.29 ( -1.70 , 1.24 )

̃6 0.15 ( -1.81 , 1.93 )

̃7 -0.01 ( -0.03 , 0.02 )

̃8 -0.02 ( -0.88 , 0.77 )

̃9 0.18 ( -0.54 , 0.87 )

̃10 -0.52 ( -1.26 , 0.18 )
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the respiratory infection.

We also notice that �̃0, �̃0 and 
̃0 are large negative numbers, which means that

all of A∗t , Y
0
t and Lt switch states infrequently. This in turn reassures us for our

particular choice of the �, � and 
 models in Section 3.4.

The credible set of �̃1 does not include zero, which indicates that the effect of

current A∗t level on the jump probability in the next instant is significant. The

positive coefficient shows that subject is less stable in higher vitamin A deficiency

levels. �̃4 is significantly positive and �̃5 is significantly negative, which shows that

the older and the female children are less stable in the levels of vitamin A deficiency.

In the model for counterfactual respiratory infection, a significantly positive �̃4

shows that respiratory infection usually do not last long. A significantly negative �̃5

shows that younger children are prone to be on and off with respiratory infections.

The significance of �̃7 and �̃8 shows that the respiratory infection is highly seasonal.

In the model for stunting, 
̃2 is significantly positive, which indicates that stunting

usually does not last long either.

3.5.2 Simulation Based Causal Interpretation

With the estimated model, we get an estimate of the effect of A∗t on Yt from the

�’s. Moreover, equipped with the full parametric model, we can answer many other

causal questions by simulation.

Example Assume that Ben is 48-month old at time 1. He is not stunting, not
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suffering from respiratory infection, but has mild vitamin A deficiency (A∗ = 1).

What is the probability that Ben will be suffering from respiratory infection at time

4, if he starts taking vitamin A supplements and effectively controls his deficiency

level at minimum (A∗ = 0)? What if he grows naturally without taking any vitamin

A supplements? What if his deficiency level is kept constantly at 2?

The answer to the example question can be easily given provided that our model is

true and we have the parameter values. We can use the information in the example as

the initial condition and simulate what would happen at time 4 based on our model.

For this particular example, we can use posterior mean as our parameter value.

The simulation results that answer the example questions are in Table 3.3. The

numbers show that if Ben is able to control his vitamin A deficiency at either level

0 or 1, it would benefit him in terms of the probability of suffering from respiratory

infection. Note the probabilities of Y4 = 1 for different levels of A∗ are close to

but different from the �’s. The numbers in Table 3.3 fully incorporate the dynamic

evolvement of all variables.

The 95% credible set is obtained by simulation with parameters values being

samples from the posterior distribution of the parameters, which are available from

our MCMC algorithm. This takes the uncertainty of estimated parameters into

account.

For a standard causal comparison, the improvement in P (Y4 = 1) for controlling

A∗ at 0 over growing naturally is around 4.8%, with a 95% credible set (1.8%, 7.8%).
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Table 3.3: Simulation Based Causal Interpretation for the Example

A∗ level P (Y4 = 1) 95% Credible Set
grow naturally 7.0% (4.6%, 10.3%)

0 2.2% (0.9%, 6.3%)
1 5.4% (3.4%, 9.6%)
2 13.2% (3.5%, 23.9%)
3 32.2% (9.9%, 75.5%)

The improvement in P (Y4 = 1) for controlling A∗ at 1 over growing naturally is

around 1.6%, with a 95% credible set (−0.1%, 4.6%). The credible set is also obtained

by simulations from the posterior distribution of the parameters.

3.5.3 Model Assumptions Revisited

We have made many assumptions in our model and our causal interpretation relies

heavily on the soundness of these assumptions. In this section, we experiment with

a few variations of our model. These results largely confirm that the model we used

in Section 3.2 is a reasonable and consistent description of the data.

Number of Levels for Vitamin A Deficiency

We estimated our model by assuming that vitamin A deficiency has four levels. The

lower two levels do no exhibit xerophthalmia, while the upper two levels do. It is

natural to ask if such a discretization is sufficient or necessary. We could consider

two alternatives of our model:

∙ 2-level A∗ We assume that A∗t only has two levels, 0 and 1. At = 1 if A∗t = 1,

and At = 0 if A∗t = 0. Assuming other model specifications are the same as
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before, we do not have any hidden levels of treatment.

∙ 6-level A∗ We assume that A∗t has six levels, 0, 1, 2, 3, 4, and 5. At = 1 if

A∗t > 2, and At = 0 if A∗t < 3, and that other model specifications are the same

as before.

Under the 2-level A∗ model, we assume that if At = 0, Yt is solely decided by Y 0
t ,

and that we only need to estimate parameter �1 that is associated with A∗t = 1.

Under the 6-level A∗ model, we need to estimate parameters �j, j = 1, ..., 5, which

are associated with A∗t = 1, ..., 5 respectively.

We estimate the both models using our MCMC algorithm and summarize the

estimates for �̃’s in Table 3.4. In the table we denote our original model as the 4-level

A∗ model. The 95% credible interval for each parameter is below its estimate. From

the estimates in the table, we believe that the 4-level A∗ is a reasonable choice. In

the middle column, �̃2 and �̃3 are distinct enough from each other, and grouping them

together as in the 2-level A∗ model is over-simplification. One evidence is that in the

4-level A∗ model estimates, �̃3 does not fall into the CI for �̃2. However, using the

6-level A∗ model is un-necessary. For example, in the 6-level A∗ model, �̃4 and �̃5 are

very close to each other, and their CI’s cover each other; �̃2 and �̃3 are also so close

to each that their CI’s cover each other. This shows that the 4-level A∗ model has

captured more structures than the 2-level A∗ model and that the 6-level A∗ model is

not capturing more structures.
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Table 3.4: Estimates of �̃ from Different Models
2-level A∗ 4-level A∗ 6-level A∗

�̃1 -3.30 �̃1 -3.39
( -4.27 , -2.57 ) ( -4.29 , -2.59 )

�̃2 -2.87
( -3.81 , -2.11 )

�̃1 -2.08 �̃2 -2.01 �̃3 -1.79
( -3.27 , -1.12 ) ( -3.39 , -1.00 ) ( -2.98 , -0.83 )

�̃3 -0.77 �̃4 -0.88
( -2.34 , 0.85 ) ( -2.86 , 0.99 )

�̃5 -0.35
( -2.15 , 1.58 )

The same phenomenon can be observed in terms of estimated causal effect. It is

difficult to directly compare the difference in counterfactual outcomes under different

models, as the treatment levels mean different things in these models. We consider

the following causal comparison as a fair comparison:

Example Consider all the boys who are 48-month old at time 1, not stunting, not

suffering from respiratory infection, but has symptoms of xerophthalmia (A1 = 1).

We randomly pick any one of them and randomly pick an A∗ level that corresponds to

A = 0, and treat him with vitamin A supplement such that his vitamin A deficiency

level is kept at that A∗ level. At time 4, what is the expected difference between

the probability of getting respiratory infection if the child grows naturally and the

probability of getting respiratory infection if the child’s vitamin A deficiency is kept

at the randomly picked A∗ level?

Note that the expectation is taken over the population of all such boys and the A∗

levels that corresponds to A = 0. We recall that in Section 3.2.2, we have assumed
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Table 3.5: Estimates of the Average Causal Difference for Different Models
2-level A∗ 4-level A∗ 6-level A∗

Causal Difference 3.2% 12.9% 20.4%
CI (1.0%, 9.5%) (4.6%, 24.8%) (10.4%, 38.8%)

that the initial distribution of A∗ given A is uniform over the corresponding levels.

The expected causal effect is the simple average of causal difference for all possible

combinations of A∗ levels corresponding to A = 1 and A∗ levels corresponding to

A = 0.

We summarize our simulation-based estimate of the average causal difference in

Table 3.5. The estimated causal differences for the 4-level A∗ model and the 6-level

A∗ model are close to each other, as their credible intervals cover each other. The

estimated causal difference for the 2-level A∗ model is significantly different from the

other two estimates. As a result, we believe that discretizing vitamin A deficiency

into four levels in our analysis is appropriate.

Continuous Time Ignorability

We assumed continuous time ignorability in our model (see Remark 3.2.1). With

a fully parametric model, we do not need the assumption for identification. For

example, we can assume that the � and � functions as the follows:

�(A∗t+ℎ;A
∗
t , Lt, Yt, Y

0
t , age, sex, t; �̃)

= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t)

+ �̃7 sin(t) + �̃8Y
0
t )
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/{2[1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t)

+ �̃7 sin(t) + �̃8Y
0
t )]}

�(Y
Ā∗

(t+ℎ)−,0

t+ℎ ;A∗t+ℎ, Xt, age, sex, t; �̃)

= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t) + �̃9A
∗
t+ℎ)

/{1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t) + �̃9A
∗
t+ℎ)}

By allowing � depending on Y 0
t and � depending on A∗t+ℎ, we are no longer assuming

the continuous time ignorability assumption (see Remark 3.2.1).

With this model, we summarize our estimates in Table 3.6. For comparison,

we include the estimates from the original model. The results show that the new

parameters �̃8 and �̃9 are not significant at all. The new estimates of other parameters

are close to the original estimates. This indicates that continuous time ignorability

might be a reasonable assumption.

Functional Form of Q

With the similar idea, different functional forms of Q can be experimented to see

if we have missed out any relationship in our estimated model. For example, one

concern is that our models for � and � should contain interaction terms. One might

expect that if the child is having respiratory infection, the influence of vitamin A
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Table 3.6: Estimation Result from the Vitamin A Deficiency Data without Contin-
uous Time Ignorability

Parameter Original Estimate New Posterior Mean 95% Credible Set

�̃1 -3.30 -3.27 ( -4.06 , -2.58 )

�̃2 -2.01 -1.85 ( -3.11 , -0.85 )

�̃3 -0.77 -0.87 ( -2.85 , 0.86 )
�̃0 -3.07 -3.02 ( -4.02 , -1.93 )
�̃1 2.00 1.95 ( 1.11 , 2.85 )
�̃2 -0.13 -0.20 ( -1.52 , 1.29 )
�̃3 0.34 0.49 ( -1.01 , 1.98 )
�̃4 0.05 0.05 ( 0.02 , 0.08 )
�̃5 -1.11 -1.15 ( -2.20 , -0.18 )
�̃6 0.04 0.05 ( -0.65 , 0.79 )
�̃7 -0.35 -0.35 ( -1.03 , 0.32 )
�̃8 0.04 ( -2.1 , 1.74 )

�̃0 -2.54 -2.59 ( -3.35 , -1.93 )

�̃1 -0.70 -0.3 ( -1.88 , 1.18 )

�̃2 -0.17 -0.06 ( -1.33 , 1.24 )

�̃3 0.91 2.59 ( 1.25 , 4.00 )

�̃4 4.17 3.19 ( 1.81 , 4.63 )

�̃5 -0.04 -0.04 ( -0.07 , -0.02 )

�̃6 -0.62 -0.65 ( -1.63 , 0.23 )

�̃7 1.07 1.18 ( 0.50 , 1.96 )

�̃8 0.82 0.93 ( 0.18 , 1.69 )

�̃9 -0.86 ( -2.26 , 0.66 )

̃0 -2.79 -2.79 ( -3.53 , -2.07 )

̃1 -0.32 -0.21 ( -1.64 , 1.24 )

̃2 2.50 2.51 ( 1.67 , 3.45 )

̃3 0.09 -0.04 ( -1.6 , 1.57 )

̃4 -0.02 0.13 ( -1.41 , 1.72 )

̃5 -0.29 -0.37 ( -1.85 , 0.97 )

̃6 0.15 0.02 ( -1.54 , 1.78 )

̃7 -0.01 -0.01 ( -0.03 , 0.01 )

̃8 -0.02 -0.01 ( -0.83 , 0.81 )

̃9 0.18 0.18 ( -0.51 , 0.85 )

̃10 -0.52 -0.53 ( -1.19 , 0.1 )
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deficiency on the child’s transition probability may be different from that if the child

is not having respiratory infection. To see if this is the case, we parametrize � and

� as

�(A∗t+ℎ;A
∗
t , Lt, Yt, Y

0
t , age, sex, t; �̃)

= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t)

+ �̃7 sin(t) + �̃8A
∗
tYt)

/{2[1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4(age) + �̃5(sex) + �̃6 cos(t)

+ �̃7 sin(t) + �̃8A
∗
tYt)]}

�(Y
Ā∗

(t+ℎ)−,0

t+ℎ ;A∗t+ℎ, Xt, age, sex, t; �̃)

= exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t) + �̃9A
∗
tYt)

/{1 + exp(�̃0 + �̃1A
∗
t + �̃2Lt + �̃3Yt + �̃4Y

Ā∗t−,0
t + �̃5(age) + �̃6(sex)

+ �̃7 cos(t) + �̃8 sin(t) + �̃9A
∗
tYt)}

The estimating results from this model is in Table 3.7. The results suggest that

the interaction term, A∗tYt, is not significant in either the � model or the � model.

Estimates of other parameters are close to the original estimates. We do not find

significant evidence against our original plain vanilla model.
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Table 3.7: Estimation Result from the Vitamin A Deficiency Data with a Different
Q

Parameter Original Estimate New Posterior Mean 95% Credible Set

�̃1 -3.30 -3.39 ( -4.33 , -2.66 )

�̃2 -2.01 -1.73 ( -2.72 , -0.86 )

�̃3 -0.77 -1.04 ( -3.06 , 0.70 )
�̃0 -3.07 -2.97 ( -4.09 , -1.94 )
�̃1 2.00 1.78 ( 0.93 , 2.66 )
�̃2 -0.13 -0.27 ( -1.59 , 1.29 )
�̃3 0.34 0.14 ( -1.33 , 1.6 )
�̃4 0.05 0.05 ( 0.02 , 0.08 )
�̃5 -1.11 -1.01 ( -2.01 , 0.01 )
�̃6 0.04 0.03 ( -0.69 , 0.72 )
�̃7 -0.35 -0.40 ( -1.11 , 0.29 )
�̃8 0.89 ( -0.31 , 2.29 )

�̃0 -2.54 -2.56 ( -3.37 , -1.85 )

�̃1 -0.70 -1.16 ( -2.38 , -0.05 )

�̃2 -0.17 -0.18 ( -1.67 , 1.14 )

�̃3 0.91 2.49 ( 1.05 , 3.86 )

�̃4 4.17 3.05 ( 1.62 , 4.42 )

�̃5 -0.04 -0.04 ( -0.07 , -0.02 )

�̃6 -0.62 -0.70 ( -1.63 , 0.21 )

�̃7 1.07 1.26 ( 0.59 , 1.99 )

�̃8 0.82 0.90 ( 0.21 , 1.66 )

�̃9 0.69 ( -0.49 , 1.97 )

̃0 -2.79 -2.86 ( -3.67 , -2.18 )

̃1 -0.32 -0.20 ( -2.02 , 1.32 )

̃2 2.50 2.50 ( 1.64 , 3.39 )

̃3 0.09 -0.08 ( -1.49 , 1.31 )

̃4 -0.02 0.24 ( -1.33 , 1.90 )

̃5 -0.29 -0.26 ( -1.89 , 1.37 )

̃6 0.15 0.08 ( -1.56 , 1.70 )

̃7 -0.01 -0.01 ( -0.03 , 0.02 )

̃8 -0.02 -0.02 ( -0.81 , 0.80 )

̃9 0.18 0.17 ( -0.49 , 0.89 )

̃10 -0.52 -0.54 ( -1.17 , 0.13 )
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3.6 Conclusion

In this chapter, we have considered a data set where it is reasonable to assume that

the treatment process, covariates, counterfactual outcome and the outcome follow

a continuous time process. However, only a coarsened indicator of the treatment

level, the covariates and the outcome are observed and they are only observed at the

discrete observational time points. We are facing problems with

1) Unmeasured confounders caused by the missing data in between two consecu-

tive observational time points, and

2) Measurement error in treatment levels, as the amount of treatment is not di-

rectly observable and the treatment levels in between two observational time

points are not observable.

In Chapter 2, we have shown that 1) would cause problems in standard longitudinal

estimations that are based on ignorability assumption in the observational data. Even

if the continuous time ignorability holds, the observational time ignorability may not

hold. 2) usually causes a even more severe problem in standard semi-parametric

methods, as one does not even know exactly how much treatment the subject has

received.

With both 1) and 2) in our data set, it requires more modeling assumption than

standard causal methods. We have chosen to fully model the process by a continu-

ous time non-stationary Markov process and assume that the data are discrete time
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observations of the process. We have also designed a MCMC algorithm with data

augmentation to estimate the parameters by constructing a reasonable proposal dis-

tribution for the augmented data. The Markov model and the MCMC algorithm

work well for our vitamin A deficiency data, as we have shown that in Section 3.4

the MCMC algorithm does produce estimates that are close to the true values and

that in Section 3.5 our estimates make sense in the context of vitamin A deficiency

and respiratory infection.

In the vitamin A deficiency study, we find that the levels of vitamin A deficiency

has a strong causal effect on the respiratory infection, as is evidenced by the values of

�1, �2 and �3. By simulation, we are also able to estimate the causal effect for certain

treatment regime through time. For example, we can estimate the difference in the

probabilities of having respiratory disease between keeping vitamin A deficiency at

the lowest level and keeping vitamin A deficiency at the highest level. The luxury

comes with the cost of more extensive modeling assumptions.

This chapter serves as an example for causal inference in longitudinal data with a

full model, when standard semi-parametric methods are not applicable. In particu-

lar, we have dealt with binary outcomes, binary covariates (it could be generalized to

discrete covariates), discrete treatment levels and that the treatment does not affect

the outcome in a cumulative way. Many other examples have yet to be worked out,

e.g., examples with continuous covariates, examples with continuous outcomes, etc..

When working on a full causal model, domain knowledge, e.g., the biological relation-
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ships among different variables, plays the most important role. Still, some modeling

considerations and computational techniques in this chapter could be borrowed and

generalized to other real world problems.
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Chapter 4

Controlling-the-future Revisited: the Optimal

Estimating Equation

The relaxed sequential randomization assumption (2.4.1) and the controlling-the-

future estimating equation (2.4.3) are powerful generalization of the standard g-

estimation. As we have shown in Chapter 2, they are especially useful in correcting

the bias caused by the unmeasured confounders in our setting of inferring causal

effect from discretely observed continuous time processes. In this chapter, we re-

visit the controlling-the-future method from a theoretical point of view. We would

develop a semi-parametric theory that is parallel to the standard g-estimation, in-

cluding the derivation of the efficient score function and the locally efficient doubly

robust estimator. This chapter justifies that the estimating equation (2.4.3) we used

in Chapter 2 would produce
√
n consistent and asymptotically normal and regular

estimators.

The organization of this chapter is as follows: in Section 4.1, we consider a single
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period model with relaxed ignorability assumption and derive its nuisance tangent

space and the efficient score; Section 4.2 proposes a useful estimator that is motivated

by the efficient score function and proves that the estimator is locally efficient and

doubly robust; in Section 4.3, we consider two special cases of the general theory;

Section 4.4 extends the model to multi-period case; Section 4.5 concludes the chapter.

4.1 A Single Period Semi-parametric Model Under Relaxed

Ignorability Assumption

4.1.1 The Single Period Model

We consider a one-period deterministic model, with two outcomes Y1 and Y2. Let

(Y 0
1 , Y

0
2 ) denote the potential outcomes if the subject does not receive any treatment,

and (Y1, Y2) denote the observed outcome. Let A be the treatment assignment and

X be the collection of pre-treatment covariates.

We assume that ℎ1 and ℎ2 are the blip-down functions, such that Y 0
1 = ℎ1 (Y1, A,

X; Ψ0), and that Y 0
2 = ℎ2(Y2, Y1, A,X; Ψ0). Here ℎ1 and ℎ2 are parametrized by Ψ.

When Ψ takes its true value Ψ0, the functions correctly blip Y1 and Y2 down to Y 0
1 and

Y 0
2 respectively. We denote Y 0

1 (Ψ) = ℎ1(Y1, A,X; Ψ) and Y 0
2 (Ψ) = ℎ2(Y2, Y1, A,X; Ψ)

as functions of Ψ. In what follows, we use lower case to denote the realization of

these random variables.
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We assume the following version of ignorability

Y 0
2 ∐ A∣X, Y 0

1 (4.1.1)

With this model, the likelihood function of the observed variables for one subject

can be written as

fY1,Y2,A,X(y1, y2, a, x) =
∂ℎ1

∂y1

∂ℎ2

∂y2

fY 0
1 ,Y

0
2 ,A,X

(y0
1, y

0
2, a, x) (4.1.2)

=
∂ℎ1

∂y1

∂ℎ2

∂y2

fX,Y 0
1

(x, y0
1(Ψ0); �10)

× fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0); �20)fA∣X,Y 0

1
(a∣x, y0

1(Ψ0); �30)

Here, the parameters of our model are Ψ, �1, �2, �3. Their true values are Ψ0, �10,

�20, and �30. The parameter of interest is Ψ. We assume that Ψ is a q dimensional

vector. �1, �2, �3 are nuisance parameters, possibly infinite dimensional. (4.1.2) here

describes the semi-parametric model under the sole condition that (4.1.1) is true.

4.1.2 Characterization of the Nuisance Tangent Space

Consider any parametric submodel:

fY1,Y2,A,X(y1, y2, a, x; Ψ, 
1, 
2, 
3)

=
∂ℎ1

∂y1

∂ℎ2

∂y2

fX,Y 0
1

(x, y0
1(Ψ); 
1)

× fY 0
2 ∣X,Y 0

1
(y0

2(Ψ)∣x, y0
1(Ψ); 
2)fA∣X,Y 0

1
(a∣x, y0

1(Ψ); 
3)

where 
1, 
2, 
3 are of dimension n1, n2 and n3 respectively.
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The nuisance score of this parametric submodel is

S
0 = {ST
10
, ST
20

, ST
30
}T

where

S
10 =
∂ log fX,Y 0

1
(x, y0

1(Ψ0); 
10)

∂
1

,

S
20 =
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0); 
20)

∂
2

,

and

S
30 =
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0); 
30)

∂
3

.

Define the following sub-spaces:

Λ
0 = {Bq×(n1+n2+n3)S
0}

Λ
10 = {Bq×n1S
10}

Λ
20 = {Bq×n2S
20}

Λ
30 = {Bq×n3S
30}

It is easy to see that Λ
0 = Λ
10 ⊕ Λ
20 ⊕ Λ
30 . We define Λ,Λ1,Λ2,Λ3 to be the

mean-square closure of all Λ
0 ,Λ
10 ,Λ
20 ,Λ
30 , respectively. It can also be shown that

Λ = Λ1 ⊕ Λ2 ⊕ Λ3 (see the argument on page 77 of Tsiatis (2006)). Here Λ is the

nuisance tangent space.

Λ1, Λ2 and Λ3 can be characterized as follows:

Lemma 4.1.1.

Λ1 = {a1(X, Y 0
1 (Ψ0)) : E[a1(X, Y 0

1 (Ψ0))] = 01×q}
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Λ2 = {a2(Y 0
1 (Ψ0), Y 0

2 (Ψ), X) : E[a2(Y 0
1 (Ψ0), Y 0

2 (Ψ0), X)∣X, Y 0
1 (Ψ0)] = 01×q}

Λ3 = {a3(A,X, Y 0
1 (Ψ0)) : E[a3(A,X, Y 0

1 (Ψ0))∣X, Y 0
1 (Ψ0)] = 01×q}

where a1, a2, a3 all have finite variance.

The proof of this lemma is routine and is omitted. See Tsiatis (2006).

We also notice that Λ1, Λ2 and Λ3 are orthogonal to each other, which can be

proved as follows.

∙ For Λ1 ∐ Λ2, pick any a1 ∈ Λ1 and a2 ∈ Λ2.

E[a1a
T
2 ] = E[a1E[aT2 ∣X, Y 0

1 (Ψ0)]] = 0

∙ For Λ1 ∐ Λ3, pick any a1 ∈ Λ1 and a3 ∈ Λ3.

E[a1a
T
3 ] = E[a1E[aT3 ∣X, Y 0

1 (Ψ0)]] = 0

∙ For Λ2 ∐ Λ3, pick any a2 ∈ Λ2 and a3 ∈ Λ3.

E[a2a
T
3 ] = E[a2E[aT3 ∣Y 0

1 (Ψ0), Y 0
2 (Ψ0), X]] = E[a2E[aT3 ∣Y 0

1 (Ψ0), X]] = 0

The second equality is because of the ignorability assumption.

4.1.3 The Space that is Orthogonal to the Nuisance Tangent Space

The Hilbert space ℋ = Λ ⊕ Λ⊥. Consider any function g(A,X, Y 0
1 , Y

0
2 ) ∈ ℋ. Its

projection on to Λ is

∏
(g∣Λ) =

∏
(g∣Λ1) +

∏
(g∣Λ2) +

∏
(g∣Λ3)
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We then show the following facts.

Lemma 4.1.2.

∏
(g∣Λ1) = E[g∣X, Y 0

1 (Ψ0)]∏
(g∣Λ2) = E[g∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]− E[g∣X, Y 0

1 (Ψ0)]∏
(g∣Λ3) = E[g∣A,X, Y 0

1 (Ψ0)]− E[g∣X, Y 0
1 (Ψ0)]

Proof. For
∏

(g∣Λ1) = E[g∣X, Y 0
1 (Ψ0)], we can show that for any a1 ∈ Λ1

E[{g − E[g∣X, Y 0
1 (Ψ0)]}aT1 ]

=E{E[(g − E[g∣X, Y 0
1 (Ψ0)])aT1 ∣X, Y 0

1 (Ψ0)]}

=E{E[(g − E[g∣X, Y 0
1 (Ψ0)])∣X, Y 0

1 (Ψ0)]aT1 }

=0

For
∏

(g∣Λ2) = E[g∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] − E[g∣X, Y 0
1 (Ψ0)], we can show that for

any a2 ∈ Λ2,

E[{g − E[g∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[g∣X, Y 0
1 (Ψ0)]}aT2 ]

=E{E[(g − E[g∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[g∣X, Y 0
1 (Ψ0)])aT2 ∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]}

=E{a2(E[(g − E[g∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[g∣X, Y 0
1 (Ψ0)])∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)])T}

=E{a2(E[g∣X, Y 0
1 (Ψ0)])T}

=0

The last equality is because Λ1 and Λ2 are orthogonal to each other and E[g∣ X,

Y 0
1 (Ψ0)] ∈ Λ1.
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For
∏

(g∣Λ3) = E[g∣A,X, Y 0
1 (Ψ0)]− E[g∣X, Y 0

1 (Ψ0)], given any a3 ∈ Λ3,

E[{g − E[g∣A,X, Y 0
1 (Ψ0)] + E[g∣X, Y 0

1 (Ψ0)]}aT3 ]

=E{E[{g − E[g∣A,X, Y 0
1 (Ψ0)] + E[g∣X, Y 0

1 (Ψ0)]}aT3 ∣A,X, Y 0
1 (Ψ0)]}

=E{a3(E[{g − E[g∣A,X, Y 0
1 (Ψ0)] + E[g∣X, Y 0

1 (Ψ0)]}∣A,X, Y 0
1 (Ψ0)])T}

=E{a3(E[g∣X, Y 0
1 (Ψ0)])T}

=0

The last equality is because Λ1 and Λ3 are orthogonal to each other.

Therefore,

∏
(g∣Λ) = E[g∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)] + E[g∣A,X, Y 0

1 (Ψ0)]− E[g∣X, Y 0
1 (Ψ0)],

and

∏
(g∣Λ⊥) = g − E[g∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]− E[g∣A,X, Y 0

1 (Ψ0)] + E[g∣X, Y 0
1 (Ψ0)].

It can be concluded that

Λ⊥ = {g − E[g∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)]− E[g∣A,X, Y 0
1 (Ψ0)] + E[g∣X, Y 0

1 (Ψ0)], g ∈ ℋ}.

(4.1.3)

4.1.4 The Efficient Score

Consider the score function of our interest

SΨ0 =
∂ log(fY1,Y2,A,X)

∂Ψ
(4.1.4)
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=
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂Ψ

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂Ψ
+
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))

∂Ψ
.

Note that SΨ0 is a q dimensional vector.

The efficient score is then

Seff = SΨ0 − E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[SΨ0 ∣X, Y 0
1 (Ψ0)]− E[SΨ0∣A,X, Y 0

1 (Ψ0)].

We do a few more steps of calculation to see what the efficient score looks like.

First, re-write SΨ0 as

SΨ0 =
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

∂ℎ2(Ψ0)

∂Ψ

+
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

Then, if we factorize the likelihood as

fY1,Y2,A,X(y1, y2, a, x)

=
∂ℎ1

∂y1

∂ℎ2

∂y2

fX,Y 0
1

(x, y0
1(Ψ0))

× fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))fA∣X,Y 0

1 ,Y
0
2

(a∣x, y0
1(Ψ0), y0

2(Ψ0)),

obviously,

E[
∂ log fA∣X,Y 0

1 ,Y
0
2

(a∣x, y0
1(Ψ0), y0

2(Ψ0); �30)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)] = 0q×1.
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It is easy to see that

E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)]

=E[
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

E[
∂ℎ2(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)].

If we factorize the likelihood as

fY1,Y2,A,X(y1, y2, a, x)

=
∂ℎ1

∂y1

fX,Y 0
1

(x, y0
1(Ψ0))fA,Y2∣X,Y 0

1
(a, y2∣x, y0

1(Ψ0)),

obviously

E[
∂ log fA,Y2∣X,Y 0

1
(a, y2∣x, y0

1(Ψ0))

∂Ψ
∣X, Y 0

1 (Ψ0)] = 0q×1

It is easy to verify that

E[SΨ0 ∣X, Y 0
1 (Ψ0)]

=E[
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
∣X, Y 0

1 (Ψ0)] +
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣X, Y 0

1 (Ψ0)].

Similarly, if we factorize the likelihood as

fY1,Y2,A,X(y1, y2, a, x)

=
∂ℎ1

∂y1

fX,Y 0
1

(x, y0
1(Ψ0))fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))fY2∣A,X,Y 0
1

(y2∣a, x, y0
1(Ψ0)),
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obviously

E[
∂ log fY2∣A,X,Y 0

1
(y2∣a, x, y0

1(Ψ0))

∂Ψ
∣A,X, Y 0

1 (Ψ0)] = 0q×1

It is easy to see that

E[SΨ0∣A,X, Y 0
1 (Ψ0)]

=
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ
.

Then we consider

Seff

=SΨ0 − E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[SΨ0∣X, Y 0
1 (Ψ0)]− E[SΨ0∣A,X, Y 0

1 (Ψ0)]

=
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

∂ℎ2(Ψ0)

∂Ψ

+
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

−
{
E[
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

E[
∂ℎ2(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

}
+
{
E[
∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
∣X, Y 0

1 (Ψ0)]
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+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

E[
∂ℎ1(Ψ0)

∂Ψ
∣X, Y 0

1 (Ψ0)]
}

−
{∂ log ∂ℎ1(Ψ0)

∂y1

∂Ψ
+
∂ log fY 0

1 ,X
(y0

1(Ψ0), x)

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

+
∂ log fA∣X,Y 0

1
(a∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

∂ℎ1(Ψ0)

∂Ψ

}
After a lot of cancelations among the terms, the final expression for Seff is that

Seff (4.1.5)

=
{∂ log ∂ℎ2(Ψ0)

∂y2

∂Ψ
− E[

∂ log ∂ℎ2(Ψ0)
∂y2

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

}
+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

(∂ℎ1(Ψ0)

∂Ψ
− E[

∂ℎ1(Ψ0)

∂Ψ
∣X, Y 0

1 (Ψ0)]
)

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

(∂ℎ2(Ψ0)

∂Ψ
− E[

∂ℎ2(Ψ0)

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0)]

)
For the convenience of later discussion, we also consider writing Seff as

Seff (4.1.6)

=
∂ log fY2∣X,Y 0

1
(y2∣x, y0

1(Ψ0))

∂Ψ
− E

(∂ log fY2∣X,Y 0
1

(y2∣x, y0
1(Ψ0))

∂Ψ

∣∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)
)

4.2 Locally Efficient Doubly Robust RAL Estimator

4.2.1 The Estimator that Achieves Semi-parametric Efficiency Bound

Given the efficient score function (4.1.5) we derived in the previous section, we can

define

Seff,i(Ψ)

=
{∂ log ∂ℎ2(Ψ)

∂y2

∂Ψ
− E[

∂ log ∂ℎ2(Ψ)
∂y2

∂Ψ
∣Y 0

2 (Ψ), X, Y 0
1 (Ψ)]

}
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+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ)∣x, y0

1(Ψ))

∂y0
1(Ψ)

(∂ℎ1(Ψ)

∂Ψ
− E[

∂ℎ1(Ψ)

∂Ψ
∣X, Y 0

1 (Ψ)]
)

+
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ)∣x, y0

1(Ψ))

∂y0
2(Ψ)

(∂ℎ2(Ψ)

∂Ψ
− E[

∂ℎ2(Ψ)

∂Ψ
∣Y 0

2 (Ψ), X, Y 0
1 (Ψ)]

)
where i indicates each subject.

We solve for Ψ̂ such that
∑

i Seff,i(Ψ̂) = 0 and . Ψ̂ will be the RAL estimator that

achieves the semi-parametric efficiency bound, under the sole condition that (4.1.1)

is true. The semi-parametric efficiency bound is given by E[Seff (Seff )
T ]−1. However,

this estimating equation requires that we know the true density function fY 0
2 ∣X,Y 0

1
and

that we can evaluate the conditional expectation involved in the estimating equation

under the true distribution, which are usually unpractical.

4.2.2 Construction of a Locally Efficient Doubly Robust RAL Estimator

A more practical approach would be that we posit certain parametric model for

fY 0
2 ∣X,Y 0

1
and fA∣X,Y 0

1
. Let p1(y0

2∣x, y0
1;�1) be the working model for fY 0

2 ∣X,Y 0
1

, and let

p2(a∣x, y0
1;�2) be the working model for fA∣X,Y 0

1
. We assume that �1 if of dimension

m1 and �2 is of dimension m2. We can estimate �1 and �2 by maximizing the working

conditional likelihood functions:

�̂1 = argmin
∏
i

p1(y0
2(ΨI)∣x, y0

1(ΨI);�1)

�̂2 = argmin
∏
i

p2(a∣x, y0
1(ΨI);�2)

where i indicates different individuals and ΨI is some initial estimate of ΨI that is

root-n consistent.
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We then define

U(Ψ) =
{∂ log ∂ℎ2(Ψ)

∂y2

∂Ψ
−
∫ ∂ log ∂ℎ2(Ψ)

∂y2

∂Ψ
p2(a∣x, y0

1(Ψ); �̂2)da
}

(4.2.1)

+
∂ log p1(y0

2(Ψ)∣x, y0
1(Ψ); �̂1)

∂y0
1(Ψ)

(∂ℎ1(Ψ)

∂Ψ
−
∫
∂ℎ1(Ψ)

∂Ψ
p2(a∣x, y0

1(Ψ); �̂2)da
)

+
∂ log p1(y0

2(Ψ)∣x, y0
1(Ψ); �̂1)

∂y0
2(Ψ)

(∂ℎ2(Ψ)

∂Ψ
−
∫
∂ℎ2(Ψ)

∂Ψ
p2(a∣x, y0

1(Ψ); �̂2)da
)

We then consider estimator for Ψ obtained by solving

∑
i

Ui(Ψ) = 0 (4.2.2)

where i indicates different subjects. We will show that this estimator is locally

efficient and doubly robust.

4.2.3 Locally Efficiency

The estimator obtained from (4.2.2) is locally efficient in the sense that if the working

models p1(y0
2∣x, y0

1;�1) and p2(a∣x, y0
1;�2) are the correct models for fY 0

2 ∣X,Y 0
1

and

fA∣X,Y 0
1

, the estimator will be an RAL estimator that has the influence function

proportional to the efficient score (4.1.5). No other estimators will have a smaller

asymptotic variance under the sole restriction that (4.1.1) is true.

Before proving the result, we show the following useful lemma.

Lemma 4.2.1. Assume that Z1, Z2, ..., Zn are i.i.d. with finite mean and variance

and that g(z, �) is smooth with respect to � and that ∂g(z,�)
∂�

is bounded. If E[g(Zi, �)] =

0 for � in a neighborhood of �0 and �n converges to �0 with
√
n rate in probability,
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where �n could be a function of Z1, ..., Zn, then

n∑
i=1

[g(Zi, �n)− g(Zi, �0)] = Op(1).

Proof. By the assumption, with high probability, ∣�n − �0∣ ≤ C√
n
. Then with high

probability,

∣
n∑
i=1

[g(Zi, �n)− g(Zi, �0)]∣ ≤ sup
∣�′−�0∣≤ C√

n

∣
n∑
i=1

[g(Zi, �
′)− g(Zi, �0)]∣

Consider the variance of
∑n

i=1[g(Zi, �
′)− g(Zi, �0)]. Since E[g(Zi, �

′)] = 0 and E[ g(

Zi, �0)] = 0,

V ar{
n∑
i=1

[g(Zi, �
′)− g(Zi, �0)]}

=
n∑
i=1

E{[g(Zi, �
′)− g(Zi, �0)]2}

=n(�′ − �0)2E[g′(Zi, �
∗)]

≤C∗

for ∣�′ − �0∣ ≤ C√
n
, where C∗ is some positive constant.

This shows that with high probability the variance of
∑n

i=1[g(Zi, �n)− g(Zi, �0)]

is also finite. Therefore

n∑
i=1

[g(Zi, �n)− g(Zi, �0)] = Op(1).

Lemma 4.2.2. If p1(y0
2∣x, y0

1;�10) and p2(a∣x, y0
1;�20) are the correct models for

fY 0
2 ∣X,Y 0

1
and fA∣X,Y 0

1
, where �10 and �20 are the true parameter values, under cer-

tain regularity conditions on the smoothness of p1 and p2 with respect to �1 and �2
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respectively, the estimator Ψ̂ by solving (4.2.2) have the influence function that is

proportional to the efficient score (4.1.5).

Proof. If p1 and p2 are the true models, under mild regularity conditions, our maxi-

mum likelihood estimates �̂1 and �̂2 are
√
n consistent estimates for �10 and �20.

Denote

p(y2∣x, y0
1(Ψ);�1) =

∂ℎ2(Ψ)

∂y2

p1(y0
2(Ψ)∣x, y0

1(Ψ);�1).

Each individual U(Ψ0) in (4.2.2) can be written as

U(Ψ0) =
∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
p2(a∣x, y0

1; �̂2)da

(4.2.3)

We add and subtract a few terms

U(Ψ0)

=
{∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
p2(a∣x, y0

1;�20)da
}

(4.2.4)

+
{∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
(4.2.5)

−
∫ (∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
p2(a∣x, y0

1;�20)da
}

−
{∫ ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
}

(4.2.6)

−
{∫ (∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
(4.2.7)

×
[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
}
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If p1 and p2 are the true models, The first term (4.2.4) is the efficient score function.

Consider the second term (4.2.5).

∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

−
∫ (∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
p2(a∣x, y0

1;�20)da

=
{∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
p2(a∣x, y0

1(Ψ0);�20)da
}

−
{∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
p2(a∣x, y0

1(Ψ0);�20)da
}

Define the following g1 function

g1(Z, �1)

=
∂ log p(Y2∣X, Y 0

1 (Ψ0);�1)

∂Ψ
−
∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�1)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�20)da

where Z = (A,X, Y 0
1 , Y

0
2 ). If p1 and p2 are smooth enough, g will satisfy the smooth-

ness condition in Lemma 4.2.1. We calculate

E[g1(Z, �1)] =E{∂ log p(Y2∣X, Y 0
1 (Ψ0);�1)

∂Ψ

− E[
∂ log p(Y2∣X, Y 0

1 (Ψ0);�1)

∂Ψ
∣X, Y 0

1 (Ψ0), Y 0
2 (Ψ0)]}

=0

Note that the expectations are calculated under the true distribution. Referring to

Lemma 4.2.1, we can show that

Op(1) =
∑
i

{∂ log p(Y2∣X, Y 0
1 (Ψ0); �̂1)

∂Ψ
− ∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

−
∫ (∂ log p(Y2∣X, Y 0

1 (Ψ0); �̂1)

∂Ψ
− ∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

)
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× p2(a∣X, Y 0
1 ;�20)da

}
Similarly, for (4.2.6), we define

g2(Z, �2) =

∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�2)da.

Under regularity conditions, g2 is smooth enough in �2. We compute

E[g2(Z, �2)] =E[

∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�2)da]

=E{E[

∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�2)da∣X, Y 0
1 (Ψ0)]}

=E{
∫
E[
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
∣X, Y 0

1 (Ψ0), A = a]

× p2(a∣X, Y 0
1 (Ψ0);�2)da}

=0

By Lemma 4.2.1,

Op(1)

=
∑
i

{∫ ∂ log p(y2∣x, y0
1(Ψ0);�10)

∂Ψ

[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
}

For (4.2.7),

∣∣ ∫ (∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
×
[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
∣∣

=
∣∣(�̂1 − �10)(�̂2 − �20)

∂

∂�2

∫
∂2 log p(y2∣x, y0

1(Ψ0);�∗1)

∂Ψ∂�1

p2(a∣x, y0
1(Ψ0);�∗2)da

∣∣
Under certain smoothness regularity condition,

∣∣ ∂
∂�2

∫
∂2 log p(y2∣x, y0

1(Ψ0);�∗1)

∂Ψ∂�1

p2(a∣x, y0
1(Ψ0);�∗2)da

∣∣
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could be bounded by a constant C ′. Then (4.2.7) could be bounded by C ′
∣∣(�̂1 −

�10)(�̂2 − �20)
∣∣. Considering that

∣∣(�̂1 − �10)
∣∣ is Op(

1√
n
) and

∣∣(�̂2 − �20)
∣∣ is also

Op(
1√
n
), we get,

∑
i

{∫ (∂ log p(Y2∣X, Y 0
1 (Ψ0); �̂1)

∂Ψ
− ∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

)
×
[
p2(a∣X, Y 0

1 (Ψ0); �̂2)− p2(a∣X, Y 0
1 (Ψ0);�20)

]
da
}

=n[Op(
1√
n

)]2

=Op(1)

Combining all the results above, we have

∑
i

Ui(Ψ0) =
∑
i

Seff,i(Ψ0) +Op(1)

Notice that
∑

i Seff,i is of order Op(
√
n). Therefore, Ψ̂ that solve

∑
i Ui(Ψ) = 0 will

have the same influence function as the estimator that solves
∑

i Seff,i(Ψ) = 0. Ψ̂

achieves the semi-parametric bound under the sole condition of (4.1.1).

Hence, Lemma 4.2.2 proves that the estimator from (4.2.2) is locally efficient, in

the sense that if both p1 and p2 are the correct model, the estimator achieves the

semi-parametric efficiency bound. However, if p1 and p2 are both wrong the estimator

may not be consistent. In the following section, we will show that the second best

thing for the estimator is true, i.e., as long as one of p1 and p2 is the correct model,

the estimator will be consistent.
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4.2.4 Double Robustness

In this section, p1 and p2 may not be the true distribution, but we still assume that

our estimated �̂1 and �̂2 converge to some �10 and �20 respectively with
√
n rate.

We do Taylor expansion for Ψ around Ψ0 with
∑

i Ui(Ψ) = 0.

0 =
1

n

∑
i

{∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
p2(a∣x, y0

1; �̂2)da
}

(4.2.8)

+
{ 1

n

∑
i

∂

∂Ψ

(∂ log p(y2∣x, y0
1(Ψ∗); �̂1)

∂Ψ

−
∫
∂ log p(y2∣x, y0

1(Ψ∗); �̂1)

∂Ψ
p2(a∣x, y0

1; �̂2)da
)T}

(4.2.9)

× (Ψ̂−Ψ0)

where Ψ∗ is between Ψ̂ and Ψ0. Denote (4.2.9) to be Bn. Under certain regularity

conditions, Bn will be nonsingular and ∣Bn∣−1 will be bounded.

Then,

Ψ̂−Ψ0

=B−1
n

1

n

∑
i

{∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
p2(a∣x, y0

1; �̂2)da
}

(4.2.10)

=B−1
n ×{
1

n

∑
i

{∂ log p(y2∣x, y0
1(Ψ0);�10)

∂Ψ
−
∫
∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ
p2(a∣x, y0

1;�20)da
}

(4.2.11)
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+
1

n

∑
i

{∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

−
∫ (∂ log p(y2∣x, y0

1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
p2(a∣x, y0

1;�20)da
}

(4.2.12)

− 1

n

∑
i

{∫ ∂ log p(y2∣x, y0
1(Ψ0);�10)

∂Ψ

×
[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
}

(4.2.13)

− 1

n

∑
i

{∫ (∂ log p(y2∣x, y0
1(Ψ0); �̂1)

∂Ψ
− ∂ log p(y2∣x, y0

1(Ψ0);�10)

∂Ψ

)
×
[
p2(a∣x, y0

1(Ψ0); �̂2)− p2(a∣x, y0
1(Ψ0);�20)

]
da
}}

(4.2.14)

Since �̂1 → �10 with
√
n rate, each term in (4.2.12) will be of order 1√

n
. The

summation will be of order
√
n, and (4.2.12) itself is of order 1√

n
. Similarly, we can

argue that (4.2.13) and (4.2.14) are of order 1√
n
. It is worth noting that if both p1

and p2 are true models, by the proof of Lemma 4.2.2, (4.2.12), (4.2.13) and (4.2.14)

are of order 1
n
. When p1 and p2 are not the true models, this is not true. However,

we only need them to be of order 1√
n

for the purpose of this section.

(4.2.11) is the average of n i.i.d. random variables. By the law of large numbers,

it will converge to its expectation with
√
n rate,

E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
−
∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�20)da
]
.

(4.2.15)

If this expectation is 0, the right hand side of (4.2.10) is converging to 0 with
√
n

rate. Thus, Ψ̂ will be
√
n consistent.
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It is easy to show that (4.2.15) is 0 if either p1 or p2 is the true model.

If p1 is the correct model,

∂ log p(Y2∣X, Y 0
1 (Ψ0);�10)

∂Ψ
=
∂ log p(Y2∣A,X, Y 0

1 (Ψ0);�10)

∂Ψ

because of ignorability (4.1.1). It is the true conditional score function conditional

on A,X, Y 0
1 (Ψ0). Thus,

E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

−
∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�20)da
]

=E
{
E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

−
∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�20)da
∣∣X, Y 0

1 (Ψ0)
]}

=E
{
E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

∣∣X, Y 0
1 (Ψ0)

]
−
∫
E
[∂ log p(Y2∣A = a,X, Y 0

1 (Ψ0);�10)

∂Ψ

∣∣A = a,X, Y 0
1 (Ψ0)

]
× p2(a∣X, Y 0

1 (Ψ0);�20)da
}

=0

If p2 is the correct model

E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ

−
∫
∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
p2(a∣X, Y 0

1 (Ψ0);�20)da
]

=E
[∂ log p(Y2∣X, Y 0

1 (Ψ0);�10)

∂Ψ
− E

(∂ log p(Y2∣X, Y 0
1 (Ψ0);�10)

∂Ψ
∣X, Y 0

1 (Ψ0)
)]

=0
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Therefore, as long as one of p1 and p2 is the correct model, Ψ̂ from solving (4.2.2)

will be
√
n consistent. Ψ̂ is doubly robust.

To summarize, we have constructed an RAL estimator that is locally efficient and

doubly robust. It is worth noting that our locally efficiency is “weaker” than the lo-

cally efficiency in standard g-estimation. Our estimator achieves the semi-parametric

efficiency bound under the sole condition that ignorability (4.1.1) is true. In stan-

dard g-estimation, the semi-parametric efficiency bound under the sole restriction of

standard ignorability is the same as the semi-parametric efficiency bound under the

restriction that both standard ignorability and the propensity score model are true

(see Robins et al., 1992). However, this is not the case with our relaxed ignorability

(4.1.1), as the propensity score model in our setting also involves Ψ.

4.3 Important Special Cases

4.3.1 When the Treatment is Binary

If the treatment is binary, the efficient score can be simplified.

Seff

=SΨ0 − E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0)] + E[SΨ0 ∣X, Y 0
1 (Ψ0)]− E[SΨ0∣A,X, Y 0

1 (Ψ0)]

=A× E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0), A = 1]

+ (1− A)× E[SΨ0∣Y 0
2 (Ψ0), X, Y 0

1 (Ψ0), A = 0]

− P (A = 1∣X, Y 0
1 (Ψ0))× E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 1]
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− (1− P (A = 1∣X, Y 0
1 (Ψ0)))× E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 0]

+ P (A = 1∣X, Y 0
1 (Ψ0))× E[SΨ0∣X, Y 0

1 (Ψ0), A = 1]

+ (1− P (A = 1∣X, Y 0
1 (Ψ0)))× E[SΨ0 ∣X, Y 0

1 (Ψ0), A = 0]

− A× E[SΨ0∣X, Y 0
1 (Ψ0), A = 1]− (1− A)× E[SΨ0 ∣X, Y 0

1 (Ψ0), A = 0]

=
[
A− P (A = 1∣X, Y 0

1 (Ψ0))
]

×
{
E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 1]− E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 0]

}
−
[
A− P (A = 1∣X, Y 0

1 (Ψ0))
]

×
{
E[SΨ0∣X, Y 0

1 (Ψ0), A = 1]− E[SΨ0∣X, Y 0
1 (Ψ0), A = 0]

}
=
[
A− P (A = 1∣X, Y 0

1 (Ψ0))
]

×
{
E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 1]− E[SΨ0∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 0]

− E[SΨ0∣X, Y 0
1 (Ψ0), A = 1] + E[SΨ0∣X, Y 0

1 (Ψ0), A = 0]
}

If we plug in the functional form of SΨ0 , the efficient score can be further simplified

to

Seff =
[
A− P (A = 1∣X, Y 0

1 (Ψ0))
]

×
{
E[
∂ log fY2∣X,Y 0

1
(y2∣x, y0

1(Ψ0))

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 1]

− E[
∂ log fY2∣X,Y 0

1
(y2∣x, y0

1(Ψ0))

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 0]

}
Using the general theory in Section 4.2, we can consider the following estimating

equation ∑
i

(A− P (A = 1∣X, Y 0
1 (Ψ); �̂))g(Y 0

2 (Ψ), Y 0
1 (Ψ), X) = 0
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where �̂ can be estimated by maximizing conditional likelihood as in Section 4.2.2,

and g is any function. The estimator will be consistent, as long as our propensity

score model is correct. It is also locally efficient in the sense that if function g happens

to be

E[
∂ log fY2∣X,Y 0

1
(y2∣x, y0

1(Ψ0))

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 1]

− E[
∂ log fY2∣X,Y 0

1
(y2∣x, y0

1(Ψ0))

∂Ψ
∣Y 0

2 (Ψ0), X, Y 0
1 (Ψ0), A = 0],

the influence function for the estimator will be proportional to the efficient score

function.

4.3.2 Special Blip-down Functions

We now assume that ∂ℎ2(Ψ0)
∂y2

= 1, ∂ℎ1(Ψ0)
∂Ψ

= −A, and ∂ℎ2(Ψ0)
∂Ψ

= −cA, where c is a

constant. Note that this implicitly assumes that Ψ is of one dimension. The efficient

score becomes

Seff =− (A− E[A∣X, Y 0
1 (Ψ0)])

∂ log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))

∂y0
1(Ψ0)

− c(A− E[A∣X, Y 0
1 (Ψ0)])

∂ log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))

∂y0
2(Ψ0)

=− (A− E[A∣X, Y 0
1 (Ψ0)])

× [
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
1(Ψ0)

+ c
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

]

Assuming we can correctly model E[A∣X, Y 0
1 (Ψ0)] as E[A∣X, Y 0

1 (Ψ0);�0], the fol-

lowing estimating equation can also be used for any g function,

∑
i

(A− E[A∣X, Y 0
1 (Ψ); �̂])g(Y 0

2 (Ψ), Y 0
1 (Ψ), X) = 0.
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where �̂ can be estimated using least square principle. Under mild regularity condi-

tions, �̂ is
√
n consistent. The estimator for Ψ by solving the estimating equation will

be
√
n consistent. It is also locally efficient in the sense that if function g happens

to be

∂ log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))

∂y0
1(Ψ0)

+ c
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

,

the influence function for the estimator is the efficient score.

4.3.3 Identification Issue

The semi-parametric efficiency bound is E[Seff (Seff )
T ]−1. Therefore, for Ψ to be

identifiable, Seff must not be a constant, i.e., 0.

This implies that

A− E[A∣X, Y 0
1 (Ψ0)] ∕= 0

and that

∂ log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))

∂y0
1(Ψ0)

+ c
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

∕= 0.

The former equation is a usual assumption. The latter equation might be violated

if e.g.,

log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0)) = C − (y0

2(Ψ0)− cy0
1(Ψ0)− �x)2

2�

i.e., assuming a normal regression model for Y 0
2 ∣X, Y 0

1 and the regression coefficient

for Y 0
1 is exactly c. This will induce

∂ log fY 0
2 ∣X,Y 0

1
(y0

2(Ψ0)∣x, y0
1(Ψ0))

∂y0
1(Ψ0)

+ c
∂ log fY 0

2 ∣X,Y 0
1

(y0
2(Ψ0)∣x, y0

1(Ψ0))

∂y0
2(Ψ0)

= 0.

121



And hence Ψ will not be identifiable.

One example when the above case is true is that, assuming A is binary, Y 0
2 =

cY 0
1 + �X + �, where � is normal with zero mean, Y 1

2 = Y 0
2 + cΨ, and Y 1

1 = Y 0
1 + Ψ.

It is easy to see that Y 1
2 = cY 1

1 + �X + �. Therefore, knowing (Y 0
1 , Y

1
1 ) is equivalent

to knowing (Y 0
2 , Y

1
2 ). Y2 does not contain more information about the causal effect

Ψ, which makes Ψ un-identifiable.

However, if Y 0
2 = cY 0

1 + �X + �, Y 1
2 = Y 0

2 + dΨ, d ∕= c, and Y 1
1 = Y 0

1 + Ψ, Ψ will

be identifiable. Now Y 1
2 = cY 1

1 + (d− c)Ψ + �X + �, and (Y 0
2 , Y

1
2 ) contain additional

information about the causal effect Ψ.

4.4 Extension to Multi-period Case

We consider a K-period study, assuming that

∙ A0, A1, ..., AK−1 are the treatment levels at time 0, 1, ..., K − 1.

∙ Y0, Y1, ..., YK are the actual outcomes at time 0, 1, ..., K.

∙ L0, L1, ..., LK−1 are the covariates at time 0, 1, ..., K − 1. Lt does not include

Yt.

∙ Y ā
k is the counterfactual outcome at time k under treatment regime ā = (a0,

a1, ..., aK−1).

∙ Y k,0
t is the counterfactual outcome at time t ≥ k + 1, under treatment regime

ā = (A0, A1, ..., Ak, 0, ..., 0).
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Note that consistency assumption requires that Y k,0
k+1 = Yk+1.

We assume a rank preserving model:

Y k,0
k+2 = ℎk,k+2(Y k+1,0

k+2 , Y k,0
k+1, L̄k, Ȳk, Āk; Ψ0)

⋅ ⋅ ⋅

Y k,0
m = ℎk,m(Y k+1,0

m , Ȳ k,0
(k+1):(m−1), L̄k, Ȳk, Āk; Ψ0),m > k + 1

where L̄k = (L0, ..., Lk), Āk = (A0, ..., Ak), Ȳ
k,0

(k+1):(m−1) = (Y k,0
k+1, Y

k,0
k+2, ⋅ ⋅ ⋅ , Y

k,0
m−1), and

ℎk,m’s are known rank preserving functions. We assume Ψ is the parameter of our

interest and is a q dimensional vector. Ψ achieves its true value at Ψ0.

We next show that with this model, given Ym, L̄m−1, Ȳm−1, Ām−1 and ℎk,m’s, we

are able to blip Ym down to Y 0̄
m.

∙ With function ℎk−2,k, 2 ≤ k ≤ m and Yk, 1 ≤ k ≤ m, we can get Y k−2,0
k , 2 ≤

k ≤ m.

∙ With function ℎk−3,k, 3 ≤ k ≤ m and Y k−2,0
k , 2 ≤ k ≤ m, we can get Y k−3,0

k , 3 ≤

k ≤ m.

∙ ...

∙ With function ℎ0,m−1 and ℎ1,m and the counterfactuals above, we can get Y 0̄
m−1

and Y 1,0
m .

∙ With function ℎ0,m and the counterfactuals we obtained above, we can get Y 0̄
m.
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We denote

Y 0̄
m = ℎm(Ym, L̄m−1, Ȳm−1, Ām−1; Ψ)

We also assume the following ignorability assumption

Y k,0
m ∐ Ak∣L̄k, Ȳk, Āk−1, Y

k−1,0
k+1 ,m > k + 1 (4.4.1)

With the rank preserving model described above, the ignorability assumption is

equivalent to

Y 0̄
m ∐ Ak∣L̄k, Ȳk, Āk−1, Y

0̄
k+1,m > k + 1 (4.4.2)

4.4.1 Likelihood Function

We consider the likelihood function of ĀK−1, L̄K−1 and ȲK , for one subject. We note

the convention that Ā−1 = � and L̄−1 = �.

fĀK−1,L̄K−1,ȲK (āK−1, l̄K−1, ȳK)

=fĀK−1,L̄K−1,Ȳ
0̄
K

(āK−1, l̄K−1, ȳ
0̄
K(Ψ))

∏
1≤m≤K

∂ℎm
∂ym

=(
∏

1≤m≤K

∂ℎm
∂ym

)× fȲ 0̄
K

(ȳ0̄
K(Ψ))

×
K−1∏
k=0

fLk∣L̄k−1,Āk−1,Ȳ
0̄
K

(lk∣l̄k−1, āk−1, ȳ
0̄
K(Ψ))fAk∣L̄k,Āk−1,Ȳ

0̄
K

(ak∣l̄k, āk−1, ȳ
0̄
K(Ψ))

=(
∏

1≤m≤K

∂ℎm
∂ym

)× fȲ 0̄
K

(ȳ0̄
K(Ψ))

×
K−1∏
k=0

fLk∣L̄k−1,Āk−1,Ȳ
0̄
K

(lk∣l̄k−1, āk−1, ȳ
0̄
K(Ψ))fAk∣L̄k,Āk−1,Ȳ

0̄
k+1

(ak∣l̄k, āk−1, ȳ
0̄
k+1(Ψ))

=(
∏

1≤m≤K

∂ℎm
∂ym

(Ψ))× fȲ 0̄
K

(ȳ0̄
K(Ψ); �y)
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×
K−1∏
k=0

fLk∣L̄k−1,Āk−1,Ȳ
0̄
K

(lk∣l̄k−1, āk−1, ȳ
0̄
K(Ψ); �lk)

× fAk∣L̄k,Āk−1,Ȳ
0̄
k+1

(ak∣l̄k, āk−1, ȳ
0̄
k+1(Ψ); �ak)

The third equality is because of ignorability assumption and the rank preserving

model. Note that in practice, under rank preserving model, we usually do the fol-

lowing parametrization

fA0∣L0,Ȳ 0̄
1

(a0∣l0, ȳ0̄
1(Ψ); �a0) = fA0∣L0,Y0,Y 0̄

1
(a0∣l0, y0, y

0̄
1(Ψ0); �∗a0)

and

fAk∣L̄k,Āk−1,Ȳ
0̄
k+1

(ak∣l̄k, āk−1, ȳ
0̄
k+1(Ψ); �ak) = fAk∣L̄k,Āk−1,Ȳk,Y

0̄
k+1

(ak∣l̄k, āk−1, ȳk, y
0̄
k+1; �∗ak).

Denote the true values of the parameters as Ψ0, �y0, �lk0 and �ak0.

4.4.2 Nuisance Tangent Space

Consider any parametric sub-model

fĀK−1,L̄K−1,ȲK (āK−1, l̄K−1, ȳK)

=(
∏

1≤m≤K

∂ℎm
∂ym

(Ψ))× fȲ 0̄
K

(ȳ0̄
K(Ψ); 
y)

×
K−1∏
k=1

fLk∣L̄k−1,Āk−1,Ȳ
0̄
K

(lk∣l̄k−1, āk−1, ȳ
0̄
K(Ψ); 
lk)

× fAk∣L̄k,Āk−1,Ȳ
0̄
k+1

(ak∣l̄k, āk−1, ȳ
0̄
k+1(Ψ); 
ak)

where 
y is of dimension ny, 
lk is of dimension nlk, and 
ak is of dimension nak.
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The nuisance score of this parametric submodel is

S
 = S(āK−1, l̄K−1, ȳK ; Ψ0, 
0) =
∂ log fĀK−1,L̄K−1,ȲK (āK−1, l̄K−1, ȳK ; Ψ0, 
0)

∂

∣
=
0

Denote

S
y =
∂ log fȲ 0̄

K
(ȳ0̄
K(Ψ); 
y)

∂
y

S
lk =
∂ log fLk∣L̄k−1,Āk−1,Ȳ

0̄
K

(lk∣l̄k−1, āk−1, ȳ
0̄
K(Ψ); 
lk)

∂
lk

S
ak =
∂ log fAk∣L̄k,Āk−1,Ȳ

0̄
k+1

(ak∣l̄k, āk−1, ȳ
0̄
k+1(Ψ); 
ak)

∂
ak

Define

Λ
 = {Bq×(ny+
∑
nak+

∑
nlk)S
}

Λ
y = {Bq×nyS
y}

Λ
lk = {Bq×nlkS
lk}

Λ
ak = {Bq×nakS
ak}

By definition, it is easy to see that

Λ
 = Λ
y ⊕ {⊕K−1
k=0 Λ
lk ⊕ Λ
ak}.

We define Λ,Λy,Λlk,Λak to be the mean-square closure of all Λ
,Λ
y ,Λ
lk ,Λ
ak , re-

spectively. It can also be proved that

Λ = Λy ⊕ {⊕K−1
k=0 Λlk ⊕ Λak}.

Here Λ is the nuisance tangent space.

We also notice that Λy, Λlk, Λak can be characterized as follows:
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Lemma 4.4.1.

Λy = {ay(Ȳ 0̄
K(Ψ)) : E[ay(Ȳ

0̄
K(Ψ))] = 0}

Λlk = {alk(L̄k, Āk−1, Ȳ
0̄
K(Ψ)) : E[alk(L̄k, Āk−1, Ȳ

0̄
K(Ψ)∣L̄k−1, Āk−1, Ȳ

0̄
K(Ψ)] = 0}

Λak = {aak(Āk, L̄k, Ȳ 0̄
k+1(Ψ)) : E[aak(Āk, L̄k, Ȳ

0̄
k+1(Ψ))∣Āk−1, L̄k, Ȳ

0̄
k+1(Ψ)] = 0}

The proof of this lemma is exactly the same as the proofs from Tsiatis (2006). It

can also be proved that these subspaces are orthogonal to each other, using properties

of conditional expectation and the ignorability assumption.

For example, to prove that Λlk1∐Λak2 , k1 ≤ k2, pick any ℎ1 ∈ Λlk1 and ℎ2 ∈ Λak2 .

E[ℎ1ℎ
T
2 ] = E{E[ℎ1ℎ

T
2 ∣L̄k1 , Āk1−1, Ȳ

0̄
K(Ψ)]}

= E{ℎ1E[ℎT2 ∣L̄k1 , Āk1−1, Ȳ
0̄
K(Ψ)]}

= E{ℎ1E[E{ℎT2 ∣L̄k2 , Āk2−1, Ȳ
0̄
K(Ψ)}∣L̄k1 , Āk1−1, Ȳ

0̄
K(Ψ)]}

= E{ℎ1E[E{ℎT2 ∣L̄k2 , Āk2−1, Ȳ
0̄
k2+1(Ψ)}∣L̄k1 , Āk1−1, Ȳ

0̄
K(Ψ)]}

= E{ℎ1E[01×q∣L̄k1 , Āk1−1, Ȳ
0̄
K(Ψ)]}

= 0

The third equality is because k1 ≤ k2. The fourth equality uses the ignorability

assumption. Proofs for the orthogonality of other pairs follow the same fashion.
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4.4.3 The Efficient Score

Consider the score function of interest

SΨ0 =
∂ log(fĀK−1,L̄K−1,ȲK )

∂Ψ

The efficient score is

Seff = SΨ0 −
∏

(SΨ0 ∣Λy)−
K−1∑
k=0

[
∏

(SΨ0∣Λlk) +
∏

(SΨ0∣Λak)].

We then show the following facts.

Lemma 4.4.2.

∏
(SΨ0∣Λy) = E[SΨ0∣Ȳ 0̄

K ]∏
(SΨ0∣Λlk) = E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
K ]− E[SΨ0∣L̄k−1, Āk−1, Ȳ

0̄
K ]∏

(SΨ0∣Λak) = E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1]− E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1]

Proof. For
∏

(SΨ0∣Λy) = E[SΨ0∣Ȳ 0̄
K ], we can show that for any ℎ ∈ Λy

E[{SΨ0 − E[SΨ0∣Ȳ 0̄
K ]}ℎT ]

=E{E[(SΨ0 − E[SΨ0∣Ȳ 0̄
K ])ℎT ∣Ȳ 0̄

K ]}

=E{E[(SΨ0 − E[SΨ0∣Ȳ 0̄
K ])∣Ȳ 0̄

K ]ℎT}

=0
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For
∏

(SΨ0∣Λlk) = E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
K ]−E[SΨ0∣L̄k−1, Āk−1, Ȳ

0̄
K ], we can show that

for any ℎ ∈ Λlk,

E[{SΨ0 − E[SΨ0 ∣L̄k, Āk−1, Ȳ
0̄
K ] + E[SΨ0∣L̄k−1, Āk−1, Ȳ

0̄
K ]}ℎT ]

=E{E[(SΨ0 − E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
K ] + E[SΨ0 ∣L̄k−1, Āk−1, Ȳ

0̄
K ])ℎT ∣L̄k, Āk−1, Ȳ

0̄
K ]}

=E{E[(SΨ0 − E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
K ] + E[SΨ0 ∣L̄k−1, Āk−1, Ȳ

0̄
K ])∣L̄k, Āk−1, Ȳ

0̄
K ]ℎT}

=E{E[E[SΨ0∣L̄k−1, Āk−1, Ȳ
0̄
K ]∣L̄k, Āk−1, Ȳ

0̄
K ]ℎT}

=E{E[SΨ0∣L̄k−1, Āk−1, Ȳ
0̄
K ]ℎT}

=0

For
∏

(SΨ0∣Λak) = E[SΨ0 ∣L̄k, Āk, Ȳ 0̄
k+1]−E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1], we can show that

for any ℎ ∈ Λak

E[{SΨ0 − E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1] + E[SΨ0 ∣L̄k, Āk−1, Ȳ

0̄
k+1]}ℎT ]

=E{E[(SΨ0 − E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1] + E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1])ℎT ∣L̄k, Āk, Ȳ 0̄

k+1]}

=E{E[(SΨ0 − E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1] + E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1])∣L̄k, Āk, Ȳ 0̄

k+1]ℎT}

=E{E[E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
k+1]∣L̄k, Āk, Ȳ 0̄

k+1ℎ
T}

=E{E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
k+1]ℎT}

=0

By the previous lemma, we get

Seff =SΨ0 − E[SΨ0 ∣Ȳ 0̄
K ]
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−
K−1∑
k=1

{E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
K ]− E[SΨ0∣L̄k−1, Āk−1, Ȳ

0̄
K ]}

−
K−1∑
k=1

{E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1]− E[SΨ0 ∣L̄k, Āk−1, Ȳ

0̄
k+1]}

=
K−1∑
k=0

{E[SΨ0∣L̄k, Āk, Ȳ 0̄
K ]− E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
K ]

− E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1] + E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1]}.

Let

Seff (Ψ) =
K−1∑
k=0

{E[SΨ∣L̄k, Āk, Ȳ 0̄
K(Ψ)]− E[SΨ∣L̄k, Āk−1, Ȳ

0̄
K(Ψ)]

− E[SΨ∣L̄k, Āk, Ȳ 0̄
k+1(Ψ)] + E[SΨ∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ)]}

The efficient estimate of Ψ is thus given by the solution from
∑

i Seff (Ψ) = 0, where

i indicates different individuals. This is the optimal estimating equation for the

controlling-the-future method.

We would like to simplify the formula for Seff . The following formulas are ob-

tained using the similar trick of factorization of the likelihood as before.

E[SΨ0∣L̄k, Āk, Ȳ 0̄
K(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

+ E[
∂ log[fL̄k,Āk,Ȳ 0̄

K
(l̄k, āk, ȳ

0̄
K(Ψ0))]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)] +
∂ log[fL̄k,Āk,Ȳ 0̄

k+1
(l̄k, āk, ȳ

0̄
k+1(Ψ0))]

∂Ψ
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+ E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

Similarly

E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
K(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

+ E[
∂ log[fL̄k,Āk−1,Ȳ

0̄
K

(l̄k−1, āk−1, ȳ
0̄
K(Ψ0))]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

+ E[
∂ log[fL̄k,Āk−1,Ȳ

0̄
k+1

(l̄k−1, āk−1, ȳ
0̄
k+1(Ψ0))]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

+ E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k−1, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk−1, Ȳ
0̄
K(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

+ E[
∂ log[fL̄k,Āk−1,Ȳ

0̄
k+1

(l̄k−1, āk−1, ȳ
0̄
k+1(Ψ0))]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ0)]

+ E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k−1, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk−1, Ȳ
0̄
K(Ψ0)]

E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1(Ψ0)]

=
∑

1≤m≤k+1

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
+
∂ log[fL̄k,Āk,Ȳ 0̄

k+1
(l̄k, āk, ȳ

0̄
k+1(Ψ0))]

∂Ψ
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and that

E[SΨ0∣L̄k, Āk−1, Ȳ
0̄
k+1(Ψ0)]

=
∑

1≤m≤k+1

E[
∂ log[∂ℎm

∂ym
(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ0)]

+ E[
∂ log[fL̄k,Āk−1,Ȳ

0̄
k+1

(l̄k, āk−1, ȳ
0̄
k+1(Ψ0))]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ0)]

Given the above and with a lot of cancelation, we get

E[SΨ0∣L̄k, Āk, Ȳ 0̄
K(Ψ0)]− E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

− E[SΨ0∣L̄k, Āk, Ȳ 0̄
k+1(Ψ0)] + E[SΨ0∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ0)]

=E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

− E[
∑

1≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

−
∑

1≤m≤k+1

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
+

∑
1≤m≤k+1

E[
∂ log[∂ℎm

∂ym
(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
k+1(Ψ0)]

+
{
E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk, Ȳ 0̄
K(Ψ0)]

− E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k−1, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk−1, Ȳ
0̄
K(Ψ0)]

}
=E[

∑
k+2≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

− E[
∑

k+2≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]
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+
{
E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk, Ȳ 0̄
K(Ψ0)]

− E[
∂ log[f{Y 0̄

t }Kt=k+2∣L̄k,Āk−1,Ȳ
0̄
k+1

({y0̄
t (Ψ0)}Kt=k+2∣l̄k−1, āk−1, ȳ

0̄
k+1(Ψ0))]

∂Ψ

∣L̄k, Āk−1, Ȳ
0̄
K(Ψ0)]

}
≡Seff,k

Thus

Seff,k

=E[
∑

k+2≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]

− E[
∑

k+2≤m≤K

∂ log[∂ℎm
∂ym

(Ψ0)]

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]

+
K∑

t=k+2

(∂ log[f{Y 0̄
t }Kt=k+2∣Āk−1,L̄k,Ȳk+1

({y0̄
t (Ψ0)}Kt=k+2∣āk−1, l̄k, ȳk+1)]

∂Y 0̄
t

× {E[
∂Y 0̄

t (Ψ0)

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]− E[
∂Y 0̄

t (Ψ0)

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]}

)
+
(∂ log[f{Y 0̄

t }Kt=k+2∣Āk−1,L̄k,Ȳk+1
({y0̄

t (Ψ0)}Kt=k+2∣āk−1, l̄k, ȳk+1)]

∂Y 0̄
k+1

× {E[
∂Y 0̄

k+1(Ψ0)

∂Ψ
∣L̄k, Āk, Ȳ 0̄

K(Ψ0)]− E[
∂Y 0̄

k+1(Ψ0)

∂Ψ
∣L̄k, Āk−1, Ȳ

0̄
K(Ψ0)]}

)
We get an efficient score that is a natural extension of the efficient score in the

single period case. Locally efficient estimators that are doubly robust can be con-

structed in a similar way as in Section 4.2, which we omit here.
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4.5 Conclusion

In this chapter, we have developed the semi-parametric theory for the relaxed ignor-

ability assumption and the controlling-the-future method we used in Chapter 2. In

particular, we have characterized the nuisance tangent space under the sole restric-

tion that the relaxed ignorability (4.1.1) is true, and calculated the efficient score and

the semi-parametric efficiency bound. Motivated by the form of the efficient score

function, we propose a locally efficient and doubly robust estimator.

The multi-period generalization of the theory is straightforward. It is worth

noting that even though we have only considered ignorability assumption that only

allows treatment assignment depend on the next period potential outcome given the

historical treatment and covariates, the formulas and the derivation are almost the

same for extended assumptions that allows treatment assignment to depend on more

than one period of future potential outcomes (see extended formulations in Joffe

and Robins (2009)). Similar locally efficient and doubly robust estimator can be

constructed in the same fashion as in the single period model.

We admit that the discussion in this chapter is incomplete. In this chapter, we

have required that there are more than one outcomes associated with the treatment,

and our discussion of the multi-period case has focused on studies with repeated

measurements of the outcomes. In the extended formulation of Joffe and Robins

(2009), it is possible to extend the ideas of the basic controlling-the-future method to

cases when we only have a single measurement of outcome and the treatment could
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depend on the potential outcome in known functional form, possibly parametrized by

a finite dimensional parameter. This extension does not always lead to identification.

Work is in progress studying when identification can be achieved and how to construct

useful estimator with good properties.
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Chapter 5

Appendices

5.1 Estimating Covariance Matrix of Estimated Parameters

The formulas in this section can be used to estimate the covariance matrix of the

estimated parameters from naive g-estimation of Section 2.2.1, modified g-estimation

of Section 2.2.3, and the controlling-the-future estimation of Section 2.4.1.

We denote � = (Ψ, �). In Section 2.2.1 and Section 2.2.3, � is the parameter in

the propensity score model. In Section 2.4.1, � = (�X , �ℎ) is the parameter in the

propensity score model. Let U(�) be the vector of the left hand side of the estimating

equations (Equation (2.2.5) in Section 2.2.1, Equation (2.2.7) in Section 2.2.3, and

Equation (2.4.4) in Section 2.4.1, respectively). We also denote

Ui,k,m(�) ≡ (A∗i,k − pi,k(�))[g(Y 0∗
i,m(Ψ), X∗i,k), X

∗
i,k]

T ,

for the naive g-estimation and the modified g-estimation, and denote

Ui,k,m(Ψ; �X , �ℎ) ≡ (A∗i,k − pi,k(Ψ; �X , �ℎ))[g(Y 0∗
i,m(Ψ), X∗i , ℎi), X

∗
i,k, ℎi,k]

T ,

136



for the controlling-the-future estimation. Then U(�) =
∑
Ui,k,m.

Let B(�) = E[∂U(�)
∂�

], which can be estimated as

B̂(�) = −
∑
i,k,m

{∂Ui,k,m
∂�

}∣�=�̂

where �̂ is the solution from the corresponding estimating equations, and k < m in

both g-estimations and k < m − 1 in controlling-the-future estimation. Then the

covariance matrix of the estimator �̂ can be estimated as

Cov(�̂) = B̂−1(�) ˆCov[U(�)]B̂−1(�)′

by the Delta-method, where Cov[U(�)] is estimated by

ˆCov[U(�)] =
∑
i

Ui(�̂)Ui(�̂)
′

where Ui =
∑

k,m Ui,k,m(�̂), k < m in both g-estimations and k < m−1 in controlling-

the-future estimation.

5.2 Definition of Nt and Explicit Formula of �t

This section gives the definition of Nt, the counting process that counts the number of

changes in the treatment process, and an explicit formula of �t, the intensity process

of Nt with respect to the filtration of �(Z̄t). The definitions will be used in the proof

of Theorem 2.3.3.

Following the standard definition of a counting process defined from a càdlàg

process, we first define a sequence of stopping times:

�1 = inf
t>0
{t : At ∕= A0}
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�2 = inf
t>�1
{t : At ∕= A�1}

�3 = inf
t>�2
{t : At ∕= A�2}

⋅ ⋅ ⋅

Then, Nt can be defined as

{Nt = k} = {�k ≤ t < �k+1} (5.2.1)

Assume At is a binary càdlàg process such that Nt defined in (5.2.1) is a counting

process on [0, K], satisfying

∙ Nt is a non-negative integer.

∙ Ns ≤ Nt for s ≤ t.

∙ dNt = Nt −Nt− is either 0 or 1.

∙ E[Nt] <∞.

Given Nt, �t is the intensity process with respect to �(Z̄t). We will give a formula

for �t in terms of At, which can then be explicitly related to the propensity score of

At. First, we denote

rt(�) = (1− At−)At+� + At−(1− At+�).

Then define

�t ≡ lim
�↓0

E[rt(�)∣�(Z̄t−)]

�
(5.2.2)
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As a regularity condition, we assume that the limit on the right hand side of (5.2.2)

always exists and is finite. The following lemma shows that the so-defined �t is the

intensity process for Nt.

Lemma 5.2.1. �t defined in Equation (5.2.2) is the intensity process for counting

process Nt, w.r.t. �(Z̄t). In other words,

lim
�↓0

Pr(Nt+� −Nt− = 1∣�(Z̄t−))

�
= �t

Proof. The proof is simple.

Pr(Nt+� −Nt− = 1∣�(Z̄t−))

=Pr(�Nt−+1 ≤ t+ � < �Nt−+2∣�(Z̄t−))

=Pr(At+� ∕= At−∣�(Z̄t−))− Pr(At+� ∕= At−, Nt+� −Nt− ≥ 2∣�(Z̄t−))

=Pr(At+� ∕= At−∣�(Z̄t−))−O(�2)

=E[rt(�)∣�(Z̄t−)]−O(�2)

Divide both sides by � and take the limit with � ↓ 0, we can get the desired

result.

5.3 Proof of FTSR Implying CTSR

We assume that Zt is a càdlàg process, and everything we discuss is in an a.s. sense.

By the definition of continuous time sequential randomization in Definition 2.2.1,

we only need to prove that �t defined in the Appendix B is also the intensity process

for Nt with respect to the filtration of �(Z̄t, Y
0
t+).
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First, we denote

ℋt− ≡ �(Z̄t−)

ℱt−,t+ ≡ �(Z̄t−, Y
0
t+)

We also define

�t ≡ lim
�↓0

E[rt(�)∣ℱt−,t+]

�
.

As a regularity condition, we assume that �t exists and is finite. By a similar proof as

in Lemma 5.2.1, �t is the intensity process of Nt with respect to the filtration ℱt−,t+.

Therefore, proving Theorem 2.3.3 is equivalent to proving that �t = �t.

To bridge our intuition in the discrete time case into the continuous time case,

we assume the following regularity conditions:

1. We assume that �t defined above always exists and is positive random functions.

We also assume that �t is bounded by some constant that is independent of t.

(Note that by the Dominated Convergence Theorem of conditional expectation,

�t also exists and is positive, and can be bounded by the same constant.)

2. We assume that for any finite sequence of time points, t1 ≤ t2 ≤ t3 ≤ ⋅ ⋅ ⋅ ≤ tn,

the density pr(Zt1 = z1, Zt2 = z2, ⋅ ⋅ ⋅ , Ztn = zn) is well-defined, and is locally

uniformly bounded, i.e. there exists a constant D and a rectangle B ≡ [t1 −

�1, t1 + �1]× [t2− �2, t2 + �2]×⋅ ⋅ ⋅× [tn− �n, tn+ �n], for any (t′1, t
′
2, ⋅ ⋅ ⋅ , t′n)T ∈ B

and for any possible value of (z1, z2, ⋅ ⋅ ⋅ , zn)T ,

pr(Zt′1 = z1, Zt′2 = z2, ⋅ ⋅ ⋅ , Zt′n = zn) ≤ D
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For any conditional expectation involving finite sequence of time points, we

choose the version that is defined by the joint density.

3. Given any finite sequence of time points, t1 ≤ t2 ≤ t3 ≤ ⋅ ⋅ ⋅ ≤ tn and any

possible value of (z1, z2, ⋅ ⋅ ⋅ , zn)T , we assume that the following convergence is

uniform in a closed neighborhood of t̃ ≡ (t1, t2, t3, ⋅ ⋅ ⋅ , tn)

pr(Zt′1 = z1, Zt′2 = z2, ⋅ ⋅ ⋅ , Zt′n = zn)

= lim
Δ↓0

Pr(Zt′1 ∈ [z1, z1 + Δ1], Zt′2 ∈ [z2, z2 + Δ2], ⋅ ⋅ ⋅ , Zt′n ∈ [zn, zn + Δn])

Δ1 ×Δ2 × ⋅ ⋅ ⋅ ×Δn

where (t′1, t
′
2, ⋅ ⋅ ⋅ , t′n)T is in a neighborhood of t̃.

4. Given any finite sequence of time points, t1 ≤ t2 ≤ t3 ≤ ⋅ ⋅ ⋅ ≤ ti ≤ ⋅ ⋅ ⋅ ≤ tn and

any possible value of (z1, z2, ⋅ ⋅ ⋅ , zn)T , we define

f(�) =
pr(Ati+� ∕= Ati ∣Zt1 = z1, Zt2 = z2, ⋅ ⋅ ⋅ , Ztn = zn)

�
.

We assume that lim�↓0 f(�) exists and is positive and finite. We also assume

that f(�) is finite and is right-continuous in �, and the continuity is uniform

with respect (�, ti) in [0, �0]×B(ti), where B(ti) is a closed neighborhood of ti.

Further, we assume that the above assumption is true if any of the Z in f is in

its left-limit value rather than the concurrent value.

Remark 5.3.1. The third regularity condition is needed when we want to prove con-

vergence in density. For example, consider that when � ↓ 0, we have Zt2+� → Zt2 .
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Then, we can see that

lim
�↓0

pr(Zt1 = z1, Zt2+� = z2, Zt3 = z3)

= lim
�↓0

lim
Δ1↓0
Δ2↓0
Δ3↓0

Pr(Zt1 ∈ [z1, z1 + Δ1], Zt2+� ∈ [z2, z2 + Δ2], Zt3 ∈ [z3, z3 + Δ3])

Δ1Δ2Δ3

= lim
Δ1↓0
Δ2↓0
Δ3↓0

lim
�↓0

Pr(Zt1 ∈ [z1, z1 + Δ1], Zt2+� ∈ [z2, z2 + Δ2], Zt3 ∈ [z3, z3 + Δ3])

Δ1Δ2Δ3

= lim
Δ1↓0
Δ2↓0
Δ3↓0

Pr(Zt1 ∈ [z1, z1 + Δ1], Zt2 ∈ [z2, z2 + Δ2], Zt3 ∈ [z3, z3 + Δ3])

Δ1Δ2Δ3

=pr(Zt1 = z1, Zt2 = z2, Zt3 = z3)

The validity of interchanging the limits at second equality is because of the third

regularity condition. The third equality comes from the fact that probabilities are

expectations of indicator functions and that dominated convergence theorem applies.

Next, we notice the following lemma:

Lemma 5.3.2.

E[�t∣ℋt−] = �t

Proof.

E[�t∣ℋt−] =E[lim
�↓0

E[rt(�)∣ℱt−,t+]

�
∣ℋt−]

= lim
�↓0

E[rt(�)∣ℋt−]

�

=�t
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The second equality is because of Dominant Convergence Theorem and Tower

Property of conditional expectation (see Rogers and Williams 1994, p139-140), since

ℋt− ⊂ ℱt−,t+.

Remark 5.3.3. If �t is also ℋt−-measurable, we will have

�t = E[�t∣ℋt−] = �t

Therefore, the main step to prove Theorem 2.3.3 is to prove that �t isℋt−-measurable,

when finite time sequential randomization is true.

Before proving �t is ℋt−-measurable, we need two more lemmas.

Lemma 5.3.4. If the càdlàg process Zt follows the finite time sequential ran-

domization as defined in Definition 2.3.2, then the following version of FTSR is

also true,

pr(Atn∣L̄tn−1 , Ltn−, Ātn−1 , Ȳ
0
tn−1

, Y 0
tn−, Y

0
tn+) (5.3.1)

=pr(Atn∣L̄tn−1 , Ltn−, Ātn−1 , Ȳ
0
tn−1

, Y 0
tn−)

where L̄tn−1 = (Lt1 , Lt2 , ⋅ ⋅ ⋅ , Ltn−1), Ātn−1 = (At1 , At2 , ⋅ ⋅ ⋅ , Atn−1), Ȳ 0
tn−1

= (Y 0
t1

, Y 0
t2

,

⋅ ⋅ ⋅ , Y 0
tn−1

), and Y 0
tn+ = (Y 0

tn+1
, Y 0

tn+2
, ⋅ ⋅ ⋅ , Y 0

tn+l
).

Remark 5.3.5. The difference between (5.3.1) and the original definition of FTSR

is that in (5.3.1) most L’s and Y 0’s are stated in their concurrent values, while in

Definition 2.3.2, they are all stated in their left limits. Lemma 5.3.4 is only for

technical convenience.
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Proof. Without loss of generality, we only need to prove that if we have

pr(At2∣Lt1−, Lt2−, At1 , Y 0
t1−, Y

0
t2−, Y

0
t3−) = pr(At2 ∣Lt1−, Lt2−, At1 , Y 0

t1−, Y
0
t2−)

for any t1 < t2 < t3, we will have

pr(At2 ∣Lt1 , Lt2−, At1 , Y 0
t1
, Y 0

t2−, Y
0
t3

) = pr(At2∣Lt1 , Lt2−, At1 , Y 0
t1
, Y 0

t2−).

Or equivalently, if we have

pr(At2 , Lt1−, Lt2−, At1 , Y
0
t1−, Y

0
t2−, Y

0
t3−)pr(Lt1−, Lt2−, At1 , Y

0
t1−, Y

0
t2−) (5.3.2)

=pr(At2 , Lt1−, Lt2−, At1 , Y
0
t1−, Y

0
t2−)pr(Lt1−, Lt2−, At1 , Y

0
t1−, Y

0
t2−, Y

0
t3−)

for any t1 < t2 < t3, we need to prove that

pr(At2 , Lt1 , Lt2−, At1 , Y
0
t1
, Y 0

t2−, Y
0
t3

)pr(Lt1 , Lt2−, At1 , Y
0
t1
, Y 0

t2−) (5.3.3)

=pr(At2 , Lt1 , Lt2−, At1 , Y
0
t1
, Y 0

t2−)pr(Lt1 , Lt2−, At1 , Y
0
t1
, Y 0

t2−, Y
0
t3

)

Since (5.3.2) is true for any triple of t1 < t2 < t3, we hope to find a sequence of

t1,k → t1 and t3,k → t3, such that Lt1,k− → Lt1 , Y 0
t1,k− → Y 0

t1
and Y 0

t3,k− → Y 0
t3

.

Considering Lt1 for example, since Lt is a càdlàg process, we choose any t1,k ↓ t1.

We then choose s1,k ∈ (t1, t1,k), such that ∣Ls1,k − Lt1,k−∣ < 1
k
. Notice that

∣Lt1 − Lt1,k−∣ ≤ ∣Lt1 − Ls1,k ∣+ ∣Ls1,k − Lt1,k−∣

Let k →∞, since L is right continuous, the first term on the right hand side converges

to zero, and the second term is controlled by 1
k
. Therefore, Lt1,k− converges to Lt1 ,

a.s.. (Note that the proof is for a point-wise convergence. s1,k may be a random
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function of !, but t1,k is a deterministic sequence.) Similar proofs holds for Y 0
t1

and

Y 0
t3

.

By definition, (5.3.2) holds for every set of (t1,k, t2, t3,k). Therefore, we can take

the limit to both sides of (5.3.2) when k → ∞. Using a similar argument as in

Remark 5.3.1, we can take limit inside the density function and thus prove that

(5.3.3) is true.

Lemma 5.3.6. Suppose FTSR is true. If we define

ℱ = �(Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Zt−, Y
0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

ℋ = �(Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Zt−)

we have

lim
�↓0

E[rt(�)∣ℱ ]

�
= lim

�↓0

E[rt(�)∣ℋ]

�
(5.3.4)

Proof. First, we notice that the limits on both sides of equation (5.3.4) exist and

finite. This fact follows from the regularity condition 1 that �t exist and is finite.

Take lim�↓0
E[rt(�)∣ℱ ]

�
for example.

lim
�↓0

E[rt(�)∣ℱ ]

�

= lim
�↓0

E[E[rt(�)∣�(Z̄t−, Y
0
t )]∣ℱ ]

�

=E[lim
�↓0

E[rt(�)∣�(Z̄t−, Y
0
t )]

�
∣ℱ ]

=E[�t∣ℱ ]

The existence is guaranteed by the dominated convergence theorem, and E[�t∣ℱ ] is

obviously finite.
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Given equation (2.3.3) and Lemma 5.3.4, we always have

E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ
0
t−, Y

0
t+] = E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ

0
t−] (5.3.5)

where L̄t− = (Lt1 , Lt2 , ⋅ ⋅ ⋅ , Ltn−1 , Ltn , Lt−)T , Ātn = (At1 , At2 , ⋅ ⋅ ⋅ , Atn)T ,

Ȳ 0
t− = (Y 0

t1
, Y 0

t2
, ⋅ ⋅ ⋅ , Y 0

tn , Y
0
t−)T , and Y 0

t+ = (Y 0
tn+1

, Y 0
tn+2

, ⋅ ⋅ ⋅ , Y 0
tn+l

)T .

In the regularity conditions, since we assumed existence of joint density, the usual

definition of conditional probability is a version of the conditional expectation defined

using �-fields. In our case, we have

lim
�↓0

E[rt(�)∣ℱ ]

�

= lim
�↓0

pr(At+� ∕= At−∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Zt−, Y
0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

�

= lim
�↓0

lim
tn↑t−

pr(At+� ∕= Atn∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Ztn , Lt−, Y
0
t−, Y

0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

� + (t− tn)

= lim
tn↑t−

lim
�↓0

pr(At+� ∕= Atn∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Ztn , Lt−, Y
0
t−, Y

0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

� + (t− tn)

= lim
tn↑t−

pr(At ∕= Atn∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Ztn , Lt−, Y
0
t−, Y

0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

t− tn

= lim
tn↑t−

E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ 0
t−, Y

0
t+]

t− tn

The second equality is guaranteed by the third regularity condition. The interchange-

ability of limits are guaranteed by the fourth regularity condition, since we have

lim
�↓0

pr(At+� ∕= Atn∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Ztn , Lt−, Y
0
t−, Y

0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

� + (t− tn)

=
pr(At ∕= Atn∣Zt1 , ⋅ ⋅ ⋅ , Ztn−1 , Ztn , Lt−, Y

0
t−, Y

0
tn+1

, ⋅ ⋅ ⋅ , Y 0
tn+l

)

t− tn

being uniform in tn.
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Similarly, we can prove that

lim
�↓0

E[rt(�)∣ℋ]

�
= lim

tn↑t−

E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ 0
t−]

t− tn

Therefore, we have

lim
�↓0

E[rt(�)∣ℱ ]

�
= lim

tn↑t−

E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ 0
t−, Y

0
t+]

t− tn

= lim
tn↑t−

E[IAt ∕=Atn ∣L̄t−, Ātn , Ȳ 0
t−]

t− tn

= lim
�↓0

E[rt(�)∣ℋ]

�

Now we prove the final key lemma

Lemma 5.3.7. Given FTSR, �t is ℋt−-measurable.

Proof. We prove the result by the definition of a measurable function with respect

to a �-field.

For any a ∈ ℛ, consider the following set

B ≡ {! : �t ≤ a}

Since �t is measurable w.r.t. ℱt−,t+, B ∈ ℱt−,t+.

By Lemma (25.9) (Rogers and Williams, 1994), B is a �-cylinder, and it can be

decided by variables from countably many time points. Suppose the collection of

these countably many time points is S. S = S1

∪
S2, where t1,i < t for t1,i ∈ S1, and

t2,j > t for t2,j ∈ S2.

147



Let ℱS denote the �-field generated by (Zt1,i , i ∈ N ;Zt−;Y 0
t2,j
, j ∈ N ). We have

augmented the �-field generated by variables from S with Zt−.

Next define the following series of �-fields:

ℱ1 = �(Zt1,1 , Zt−, Y
0
t2,1

)

ℱ2 = �(ℱ1, Zt1,2 , Y
0
t2,1

)

⋅ ⋅ ⋅

ℱ∞ = ℱS

Considering the following sets:

B1 = {! : E[�t∣ℱ1] ≤ a}

B2 = {! : E[�t∣ℱ2] ≤ a}

⋅ ⋅ ⋅

BS = B∞ = {! : E[�t∣ℱS] ≤ a}

We have Bk ∈ ℱk.

It’s easy to see that

B1 ⊃ B2 ⊃ ⋅ ⋅ ⋅ ⊃ BS

because

E[E[�t∣ℱk]∣ℱk−1] = E[�t∣ℱk−1]

and taking conditional expectation preserves the direction of inequality.
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Also, with the above definitions, ℱk ↑ ℱS. Therefore, by Theorem (5.7) from

Durrett 2005, Chapter 4, we know that

E[�t∣ℱk]→ E[�t∣ℱS] a.s.

Then, it is easy to see that IB1 → IBS a.s., and that

BS =
∞∩
i=1

Bi

with difference up to a null set.

We now claim that

BS = B (5.3.6)

with difference up to a null set.

Obviously B ⊂ BS. Suppose Pr(BS −B) > 0. Since BS −B ∈ ℱS, we have∫
BS−B

�tPr(d!) =

∫
BS−B

E[�t∣ℱS]Pr(d!)

Then

LHS > aPr(BS −B)

and

RHS ≤ aPr(BS −B)

This is a contradiction.

Therefore, B =
∩∞
i=1Bi with difference up to a null set.

Next, we define

ℋ1 = �(Zt1,1 , Zt−)
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ℋ2 = �(ℋ1, Zt1,2)

⋅ ⋅ ⋅

Given FTSR, by Lemma 5.3.6, we have

E[�t∣ℱk] = E[�t∣ℋk]

Therefore, every Bk ∈ ℋk, and thus Bk ∈ ℋt−.

Since B =
∩∞
i=1Bi, B ∈ ℋt− as well. By the definition of a measurable function,

�t is measurable with respect to ℋt−.

Combining all the results in this Appendix, we have proved Theorem 2.3.3.

5.4 Proof of Theorem 2.3.4

Proof. Denote Gt = �(Y 0
t−, Lt−, At−) and Gt0,t = �({Y 0

l− : t0 ≤ l ≤ t}, {Ll− : t0 ≤ l ≤

t}, {Al : t0 ≤ l < t}). Recall the definition of rt(�) = (1−At−)At+� +At−(1−At+�),

and Zt = (Y 0
t , Lt, At)

T . By the Markovian property, we have

E[rt(�)∣�(Z̄t−)] = E[rt(�)∣Gt0,t],

for any t0 < t. Since Gt0,t ↓ Gt, by Durrett 2005 (Chapter 4, Theorem 6.3),

E[rt(�)∣Gt0,t] → E[rt(�)∣Gt]. Therefore,

E[rt(�)∣�(Z̄t−)] = E[rt(�)∣Gt],

Similarly, we can show that

E[rt(�)∣�(Z̄t−, Y
0
t+s)] = E[rt(�)∣�(Gt, Y 0

t+s)].
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Therefore, we have a reduced form of continuous time sequential randomization

lim
�↓0

E[rt(�)∣�(Gt, Y 0
t+s)]

�
= lim

�↓0

E[rt(�)∣�(Z̄t−, Y
0
t+s)]

�

= lim
�↓0

E[rt(�)∣�(Z̄t−)]

�

= lim
�↓0

E[rt(�)∣Gt]
�

First, we notice that if we can prove

pr(Y 0
t+s, At−∣Y 0

t−, Lt−)pr(At∣Y 0
t−, Lt−) = pr(Y 0

t+s, At∣Y 0
t−, Lt−)pr(At−∣Y 0

t−, Lt−),

(5.4.1)

we can conclude (2.3.4). The reason is as follows: assuming that we have (5.4.1) to

be true, we integrate At− out on both sides of the equation. We will get

pr(Y 0
t+s∣Y 0

t−, Lt−)pr(At∣Y 0
t−, Lt−) = pr(Y 0

t+s, At∣Y 0
t−, Lt−).

Divide the above equation by pr(Y 0
t+s∣Y 0

t−, Lt−), we obtain (5.4.1).

Consider

g(�1, �2) ≡ pr(Y 0
t+s∣At+�1 = a1, At−�2 = a2, Y

0
t−, Lt−)

where �1 > 0 and �2 > 0.

We observe that

lim
�1↓0

lim
�2↓0

g(�1, �2)

= lim
�1↓0

pr(Y 0
t+s∣At+�1 = a1, At− = a2, Y

0
t−, Lt−)

= lim
�1↓0

pr(Y 0
t+s, At+�1 = a1∣At− = a2, Y

0
t−, Lt−)

pr(At+�1∣At− = a2, Y 0
t−, Lt−)
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=pr(Y 0
t+s∣At− = a2, Y

0
t−, Lt−) lim

�1↓0

pr(At+�1 = a1∣Y 0
t+s, At− = a2, Y

0
t−, Lt−)

pr(At+�1 = a1∣At− = a2, Y 0
t−, Lt−)

=

⎧⎨⎩

pr(Y 0
t+s∣At− = a2, Y

0
t−, Lt−)× lim�1↓0

1−pr(At+�1 ∕=At−∣Y
0
t+s,At−=a2,Y 0

t−,Lt−)

1−pr(At+�1 ∕=At−∣At−=a2,Y 0
t−,Lt−)

if a1 = a2

pr(Y 0
t+s∣At− = a2, Y

0
t−, Lt−)× lim�1↓0

pr(At+�1
∕=At−∣Y

0
t+s,At−=a2,Y

0
t−,Lt−)

�
pr(At+�1

∕=At−∣At−=a2,Y
0
t−,Lt−)

�

if a1 ∕= a2

=pr(Y 0
t+s∣At− = a2, Y

0
t−, Lt−)

Here taking limit inside density is guaranteed by the third regularity condition, and

the last equality is because of continuous time sequential randomization assumption.

We also observe that

lim
�2↓0

lim
�1↓0

g(�1, �2)

= lim
�2↓0

pr(Y 0
t+s∣At−�2 , At, Y 0

t−, Lt−)

= lim
�2↓0

pr(Y 0
t+s∣At, Y 0

t−, Lt−)

=pr(Y 0
t+s∣At, Y 0

t−, Lt−)

The second equality used the Markov property.

If we can interchange the limits, then

pr(Y 0
t+s∣At−, Y 0

t−, Lt−) = pr(Y 0
t+s∣At, Y 0

t−, Lt−).

Equation (5.4.1) follows from the definition of conditional density.
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We now establish the fact that

lim
�2↓0

lim
�1↓0

g(�1, �2) = lim
�1↓0

lim
�2↓0

g(�1, �2)

by showing that lim�1↓0 g(�1, �2) is uniform in �2.

Define g1(�2) = lim�1↓0 g(�1, �2), then

∣g(�1, �2)− g1(�2)∣

=

∣∣∣∣pr(Y 0
t+s, At+�1 = a1∣At−�2 = a2, Y

0
t−, Lt−)

pr(At+�1 = a1∣At−�2 = a2, Y 0
t−, Lt−)

−
pr(Y 0

t+s, At = a1∣At−�2 = a2, Y
0
t−, Lt−)

pr(At = a1∣At−�2 = a2, Y 0
t−, Lt−)

∣∣∣∣
=pr(Y 0

t+s∣At−�2 = a2, Y
0
t−, Lt−)

×
∣∣∣∣pr(At+�1 = a1∣At−�2 = a2, Y

0
t−, Lt−, Y

0
t+s)

pr(At+�1 = a1∣At−�2 = a2, Y 0
t−, Lt−)

−
pr(At = a1∣At−�2 = a2, Y

0
t−, Lt−, Y

0
t+s)

pr(At = a1∣At−�2 = a2, Y 0
t−, Lt−)

∣∣∣∣
Consider the ratio

pr(At+�1=a1∣At−�2=a2,Y 0
t−,Lt−,Y

0
t+s)

pr(At+�1=a1∣At−�2=a2,Y 0
t−,Lt−)

. We claim that it converges to

pr(At=a1∣At−�2=a2,Y 0
t−,Lt−,Y

0
t+s)

pr(At=a1∣At−�2=a2,Y 0
t−,Lt−)

uniformly in �2.

If a1 = a2, density pr(At+�1 = a1∣At−�2 = a2, Y
0
t−, Lt−) is bounded from below by

a positive number. By the third regularity condition,

pr(At+�1 = a1∣At−�2 = a2, Y
0
t−, Lt−, Y

0
t+s)

→ pr(At = a1∣At−�2 = a2, Y
0
t−, Lt−, Y

0
t+s)

and

pr(At+�1 = a1∣At−�2 = a2, Y
0
t−, Lt−)→ pr(At = a1∣At−�2 = a2, Y

0
t−, Lt−)
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uniformly in �2, as �1 ↓ 0. When the denominators are bounded from below by a

positive number, the ratio also converges uniformly.

If a1 ∕= a2, by the fourth regularity condition,

pr(At+�1 = a1∣At−�2 = a2, Y
0
t−, Lt−, Y

0
t+s)

�1 + �2

→
pr(At = a1∣At−�2 = a2, Y

0
t−, Lt−, Y

0
t+s)

�2

and

pr(At+�1 = a1∣At−�2 = a2, Y
0
t−, Lt−)

�1 + �2

→
pr(At = a1∣At−�2 = a2, Y

0
t−, Lt−)

�2

uniformly in �2, as �1 ↓ 0. Also the denominator
pr(At+�1=a1∣At−�2=a2,Y 0

t−,Lt−)

�1+�2
is bounded

from below by a positive number. Hence we establish the uniformly convergence of

the ratio.

Combining the two cases above, ∣g(�1, �2)− g1(�2)∣ is bounded by O(�1) that does

not depend on �2, so g(�1, �2)→ g1(�2) uniformly in �2. Therefore,

lim
�2↓0

lim
�1↓0

g(�1, �2) = lim
�1↓0

lim
�2↓0

g(�1, �2)

By the argument at the beginning of the proof, we have proved the first part of the

theorem.

To show that (2.3.4) implies FTSR, without of loss of generality, we consider

pr(At∣Lt−, Y 0
t−, At−m, L(t−m)−, Y

0
(t−m)−, Y

0
t+s)

=
pr(At, Lt−, Y

0
t−, At−m, L(t−m)−, Y

0
(t−m)−, Y

0
t+s)∑

i=0,1 pr(At = i, Lt−, Y 0
t−, At−m, L(t−m)−, Y

0
(t−m)−, Y

0
t+s)
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=
pr(Y 0

t+s∣At, Lt−, Y 0
t−)pr(At, Lt−, Y

0
t−, At−m, L(t−m)−, Y

0
(t−m)−)∑

i=0,1 pr(Y
0
t+s∣At = i, Lt−, Y 0

t−)pr(At = i, Lt−, Y 0
t−, At−m, L(t−m)−, Y

0
(t−m)−)

=
pr(Y 0

t+s∣Lt−, Y 0
t−)pr(At, Lt−, Y

0
t−, At−m, L(t−m)−, Y

0
(t−m)−)∑

i=0,1 pr(Y
0
t+s∣Lt−, Y 0

t−)pr(At = i, Lt−, Y 0
t−, At−m, L(t−m)−, Y 0

(t−m)−)

=
pr(At, Lt−, Y

0
t−, At−m, L(t−m)−, Y

0
(t−m)−)∑

i=0,1 pr(At = i, Lt−, Y 0
t−, At−m, L(t−m)−, Y

0
(t−m)−)

=pr(At∣Lt−, Y 0
t−, At−m, L(t−m)−, Y

0
(t−m)−)

The second equality is because of Markov property. The third equality used equation

(2.3.4). We have proved the second half of the theorem.

5.5 Simulation Parameters

In all simulation models from M1 to M4, we specify parameters as follows:

∙ Let g(V, t) = C, a constant. Let C = 100.

∙ For M1 (also in M3 and M4), let � = 0.2 and � = 1.

∙ For M2, let m = 2, �1 = 0.2, �1 = 1 and �2 = 1, �2 = 0.5. The transition

probability of Jt would be P (t) = eAt, where A =

⎛⎜⎜⎝−1 1

1 −1

⎞⎟⎟⎠.

∙ For initial value, e0 is generated from N(0, �√
2�

).

∙ The causal parameter Ψ = 1.

∙ In M1, M2 and M3, s(At, Yt) = e�0+�1At+�2Yt+�3AtYt . Let �1 = −0.3, �2 =

−0.005, �3 = 0.007 and �0 = −0.2.
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∙ In M4, At is generated as follows: if Yt−0.5 > 101 and Yt > 101, At jumps

to 0 with probability 0.7, if At has not been 0; if Yt0.5 < 99 and Yt < 99, At

jumps to 1 with probability 0.7, if it has not been 1; otherwise, At is generated

following the same model as similar to that in M1, except that s(At, L
∗
t ) =

e�0+�1At+�2L∗t+�3AtL∗t . The values of the �’s are the same as before.

∙ In M4, �t follows an Ornstein-Uhlenbeck process with parameters � = 0.2 and

� = 1.

∙ For initial value, A0 is generated from Bernoulli(expit(�0 + �2Y0)).

∙ K = 5 is the number of periods.

∙ Number of subjects n = 5000.

5.6 Continuous Time Ignorability

In this section, we give a technical definition of continuous time ignorability assump-

tion, and prove a sufficient condition for a Markov process to satisfy the continuous

time ignorability assumption.

This definition of continuous time ignorability follows and extends the formula-

tions by Lok (Lok, 2008), whose formulation is only for a single outcome. It also

generalizes the formulation in Chapter 2, whose definition is for a rank preserving

model.
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Definition 5.6.1 (Continuous Time Ignorability). Assume that Xt = (A∗t , Lt, Yt,

Y
Ā∗t−0

t )T is a continuous time càdlàg process and that A∗t is a discrete jumping process.

Let

ℱt,ℎ = �(L̄t−, Ȳt−, Ā
∗
t−, Y

Ā∗
(t+ℎ)−,0

t+ℎ ),

and

ℱt = �(L̄t−, Ȳt−, Ā
∗
t−).

Assume that

E[IA∗s jumps more than once within [t,t+ℎ]∣ℱt,ℎ] = o1(ℎ).

where o1(ℎ)/ℎ→ 0 a.s. when ℎ→ 0.

We say that the process satisfies continuous time ignorability assumption,

if

E[IA∗t+ℎ ∕=A∗t−∣ℱt,ℎ] = ℎs(L̄t−, Ȳt−, Ā
∗
t−) + o2(ℎ)

where s(.) is a nonnegative functional, bounded and measurable with respect to ℱt,

and o2(ℎ)/ℎ→ 0 a.s. when ℎ→ 0.

The definition basically states that treatment at time t only depends on observable

historical covariates, outcomes and treatments prior to time t, and does not depend

on the future potential outcome.

The following lemma can be used to prove that our model follows the continuous

time ignorability.
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Lemma 5.6.2. Assume that Xt = (A∗t , Lt, Yt, Y
Ā∗t−0

t )T is a continuous time Markov

process and that it satisfies the regularity conditions in Definition 5.6.1. Let

Gt,ℎ = �(Lt−, Yt−, A
∗
t−, Y

Ā∗t−,0
t− , Y

Ā∗
(t+ℎ)−,0

t+ℎ ),

and

ℋt = �(Lt−, Yt−, A
∗
t−).

If

E[IA∗t+ℎ ∕=A∗t− ∣Gt,ℎ] = ℎs∗(Lt−, Yt−, A
∗
t−) + o3(ℎ), (5.6.1)

where s∗(.) is a nonnegative functional, bounded and measurable with respect to ℋt,

and o3(ℎ)/ℎ→ 0 a.s. when ℎ→ 0, then the Markov process satisfies the continuous

time ignorability.

Proof. Let Gt = �(Lt−, Yt−, A
∗
t−, Y

Ā∗t−,0
t− ), ℱ ′t = �(L̄t−, Ȳt−, Ā

∗
t−, Ȳ

Ā∗t−,0
t− ), and ℱ ′t,ℎ =

�(L̄t−, Ȳt−, Ā
∗
t−, Ȳ

Ā∗t−,0
t− , Y

Ā∗
(t+ℎ)−,0

t+ℎ ).

We claim that

E[IA∗t+ℎ ∕=A∗t− ∣ℱ
′
t,ℎ] = E[IA∗t+ℎ ∕=A∗t−∣Gt,ℎ]

For any finite set of t1 < t2 < ⋅ ⋅ ⋅ < tn < t, let

ℱ ′n,t,ℎ = �(Lt1 , ..., Ltn , Lt−, Yt1 , ..., Ytn , Yt−, A
∗
t1
, ..., A∗tn , A

∗
t−, Y

Ā∗t1−
,0

t1 , ...,

Y
Ā∗tn−,0

tn , Y
Ā∗t−,0
t− , Ȳ

Ā∗
(t+ℎ)−,0

(t+ℎ)− ).

It is easy to see that

E[IA∗t+ℎ ∕=A∗t− ∣ℱ
′
n,t,ℎ] = E[IA∗t+ℎ ∕=A∗t− ∣Gt,ℎ], a.s.,
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because of the Markov property of Xt and the equivalence of conditional expectation.

By the definition of conditional expectation,∫
B

IA∗t+ℎ ∕=A∗t−dP =

∫
B

E[IA∗t+ℎ ∕=A∗t−∣Gt,ℎ]dP, a.s.

for any B ∈ ℱ ′n,t,ℎ. Since ℱ ′t,ℎ is generated by all such ℱ ′n,t,ℎ’s, by dominated con-

vergence theorem, the above equation is true for any B ∈ ℱ ′t,ℎ. Therefore, we have

proved that

E[IA∗t+ℎ ∕=A∗t− ∣ℱ
′
t,ℎ] = E[IA∗t+ℎ ∕=A∗t−∣Gt,ℎ]

Therefore,

E[IA∗t+ℎ ∕=A∗t−∣ℱ
′
t,ℎ] = ℎs∗(Lt−, Yt−, A

∗
t−) + o3(ℎ)

and

E[IA∗t+ℎ ∕=A∗t−∣ℱt,ℎ] = E{E[IA∗t+ℎ ∕=A∗t− ∣ℱ
′
t,ℎ]∣ℱt,ℎ}

= ℎs∗(Lt−, Yt−, A
∗
t−) + E[o3(ℎ)∣ℱt,ℎ]

As we have assumed that o3(ℎ)/ℎ → 0 a.s. as ℎ → 0, E[o3(ℎ)/ℎ∣ℱt,ℎ] → 0 a.s. as

ℎ→ 0 by dominated convergence theorem. Denote o4(ℎ) = E[o3(ℎ)∣ℱt,ℎ]

We have proven that

E[IA∗t+ℎ ∕=A∗t−∣ℱt,ℎ] = ℎs∗(Lt−, Yt−, A
∗
t−) + o4(ℎ)

which satisfies the definition of the continuous time ignorability.

Using Lemma 5.6.2 to prove that our model satisfies Definition 5.6.1 is straightfor-

ward. It is easy to see that the model we defined in Section 3.2 guarantees equation

(5.6.1).
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5.7 Simulation of Endpoint-Conditioned Bounded Simple Ran-

dom Walk

This section describes how we simulate the path of A∗ given the number of switches

in the path and that the path matches certain starting point and ending point. We

reformulate the problems as the follows. We need to simulate a series of binary

x′1, x
′
2, ⋅ ⋅ ⋅ , x′M being either +1 or −1, such that sk =

∑k
j=1 x

′
j is always between L

and U inclusively, L < U , and that sM = N , assuming all qualifying paths have the

same probability.

We start by considering all the paths that only matches the end points, and

assume all these paths have the same probability. We denote the proportion of these

paths that are bounded between L and U to be p(M,N,L, U). It is then very easy

to get a recursive equation

p(M,N,L, U) =
M −N

2M
p(M − 1, N + 1, L+ 1, U + 1) (5.7.1)

+
M +N

2M
p(M − 1, N − 1, L− 1, U − 1)

with boundary conditions properly defined.

If the function q(M,N,L, U) can be calculated easily, we can calculate

P (x′1 = 1∣{x′j}Mj=1 is a qualified path.)

=
P (x′1 = 1, {x′j}Mj=1 is a qualified path.)

P ({x′j}Mj=1 is a qualified path.)

=
P (x′1 = 1)p(M − 1, N − 1, L− 1, U − 1)

p(M,N,L, U)
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=
M+N

2M
p(M − 1, N − 1, L− 1, U − 1)

p(M,N,L, U)
,

and

P (x′2 = 1∣x′1 = 1, {x′j}Mj=1 is a qualified path.)

=
P (x′2 = 1∣x′1 = 1)P ({x′j}Mj=1 is a qualified path.∣x′1 = 1, x′2 = 1)

P ({x′j}Mj=1 is a qualified path.∣x′1 = 1)

=
M+N−1

2M−2
p(M − 2, N − 2, L− 2, U − 2)

p(M − 1, N − 1, L− 1, U − 1)
.

Similarly, we can calculate any

P (x′k = 1∣x′1 = i1, ⋅ ⋅ ⋅ , x′k−1 = ik−1, {x′j}Mj=1 is a qualified path.)

in a similar fashion, and thus simulate x′j sequentially.

The key to the computation is how to evaluate p(M,N,L, U) efficiently. The

recursive equation (5.7.1) with proper boundary conditions can be used to evaluate

the function, but it is very inefficient. Instead, we give a closed form formula for

p(M,N,L, U), which can be evaluated much faster. Define nq as the number of

qualifying paths. Using reflection principle repeatedly, it can be shown that

nq =
M∑
k=0

[⎛⎜⎜⎝ M

k(U + 1)− k(L− 1) + (M +N)/2

⎞⎟⎟⎠

−

⎛⎜⎜⎝ M

(k + 1)(U + 1)− k(L− 1) + (M +N)/2

⎞⎟⎟⎠

−

⎛⎜⎜⎝ M

k(U + 1)− (k + 1)(L− 1) + (M −N)/2

⎞⎟⎟⎠
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+

⎛⎜⎜⎝ M

(k + 1)(U + 1)− (k + 1)(L− 1) + (M −N)/2

⎞⎟⎟⎠
]

Then

p(M,N,L, U) =
nq⎛⎜⎜⎝ M

(M +N)/2

⎞⎟⎟⎠
Here nq can be used to calculate the proposal distribution in Section 3.3.3.
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