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Enhancing Meniscus Repair through Biomaterial Design

Abstract
The knee meniscus is prone to damage, which leads to pain and inhibits mobility in the joint long term. Due to
the minimal vascularity, low cellularity and large mechanical forces imparted on the meniscus with normal
use, endogenous repair is limited. Resection of the damaged region of the tissue (meniscectomy) remains the
most common treatment for a torn meniscus, but this procedure results in cartilage degradation and other
adverse changes in the knee joint. Given the prevalence of meniscus damage, there is thus a pressing need for
novel approaches to meniscus repair. To address this issue, this thesis developed in vitro techniques to analyze
the time-varying properties of the aging meniscus, and to address how the meniscus repair interface might be
modulated through the use of growth factors. Further, electrospun scaffolds were designed to replicate key
architectures of the native tissue while providing controlled release of biologic factors. Our findings
demonstrated marked biological, biochemical, and structural changes in meniscus with age. These findings
pointed to key factors that could play a role in meniscus integration (ie repair) capacity after meniscus injury;
these factors were evaluated in the context of meniscus repair using a mechanical in vitro model. To address
situations where substantial meniscus tissue would be removed, we tested the integration capacity of
electrospun scaffolds with native tissue and maturation of these scaffolds in response to growth factor
regimens, as well as how changes in scaffold characteristics (i.e. porosity and organization) and cell seeding
techniques influence integration potential. Finally, we developed novel techniques to deliver bioactive growth
factors and other molecules from components of electrospun scaffolds, including entrapped microspheres,
with distinct release profiles. These novel, bioactive scaffolds were utilized to orchestrate complex regenerative
signaling cascades from the scaffolds, with demonstration of efficacy via improved vascular density in an in
vivo model. This work provides new approaches for the treatment of meniscus tears using novel electrospun
materials, bringing us one step closer to new clinical options for meniscus repair.
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Abstract 
 

ENHANCING MENISCUS REPAIR THROUGH BIOMATERIAL DESIGN 

Lara Ionescu Silverman 

Supervisor: Dr. Robert Mauck 

The knee meniscus is prone to damage, which leads to pain and inhibits mobility in the 

joint long term. Due to the minimal vascularity, low cellularity and large mechanical 

forces imparted on the meniscus with normal use, endogenous repair is limited. 

Resection of the damaged region of the tissue (meniscectomy) remains the most 

common treatment for a torn meniscus, but this procedure results in cartilage 

degradation and other adverse changes in the knee joint. Given the prevalence of 

meniscus damage, there is thus a pressing need for novel approaches to meniscus repair. 

To address this issue, this thesis developed in vitro techniques to analyze the time-

varying properties of the aging meniscus, and to address how the meniscus repair 

interface might be modulated through the use of growth factors. Further, electrospun 

scaffolds were designed to replicate key architectures of the native tissue while providing 

controlled release of biologic factors. Our findings demonstrated marked biological, 

biochemical, and structural changes in meniscus with age. These findings pointed to key 

factors that could play a role in meniscus integration (ie repair) capacity after meniscus 

injury; these factors were evaluated in the context of meniscus repair using a mechanical 

in vitro model.  To address situations where substantial meniscus tissue would be 

removed, we tested the integration capacity of electrospun scaffolds with native tissue 

and maturation of these scaffolds in response to growth factor regimens, as well as how 

changes in scaffold characteristics (i.e. porosity and organization) and cell seeding 

techniques influence integration potential. Finally, we developed novel techniques to 

deliver bioactive growth factors and other molecules from components of electrospun 

scaffolds, including entrapped microspheres, with distinct release profiles.  These novel, 

bioactive scaffolds were utilized to orchestrate complex regenerative signaling cascades 

from the scaffolds, with demonstration of efficacy via improved vascular density in an in 

vivo model. This work provides new approaches for the treatment of meniscus tears 

using novel electrospun materials, bringing us one step closer to new clinical options for 

meniscus repair.  
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1: Introduction 

 

1.1 Meniscus Structure and Function 

The menisci are two semilunar cartilaginous structures in the knee that function to 

transmit and distribute load from the femur to the tibia [1, 2], maintain knee joint 

stability [3], and provide shock absorption [4]. The organization and composition of the 

meniscus allows it to withstand both tensile and compressive forces [5] in order to 

distribute load and protect the cartilage surfaces. The compressive equilibrium modulus 

ranges from 25-350 kPa [6, 7] and the tensile modulus ranges from 100-300 MPa [4, 8], 

depending on the species, sample location and testing parameters.  

 

The tissue is composed primarily of water (72% of wet weight), as well as collagens (22% 

of wet weight), proteoglycans (0.8% of wet weight), and a number of other trace 

components that contribute to meniscus function [5, 9]. Meniscus is made up of sparsely 

populated fibrochondrocytes that vary in shape according to region [10]. Further, it 

withstands its complex loading environment with a carefully tuned architecture that 

features circumferentially oriented collagen bundles opposing tensile deformation [11] 

and glycosaminoglycans (GAG) concentrated in the inner region withstanding 

compressive deformation [12-14]. In the adult, the meniscus has a limited vascular 

supply, with vessel infiltrating only to the outer third [15].  

 

1.2 Meniscus Injury and Repair 

Tears or injury to the meniscus are very common, with 600,000 meniscus surgeries 

annually in the US [16] and meniscus surgery being the most prevalent of all orthopedic 

surgeries [17]. A typical procedure to address meniscus damage involves removal of the 

injured portion, since tears, particularly in the inner avascular region, rarely heal [18]. 
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Unfortunately, resection changes load bearing and presages the long-term development 

of osteoarthritis [19, 20], prompting surgical methods towards maintaining as much of 

the original structure as possible [21]. Sutures [22], arrows or screws [23], and the use of 

the collagen implant [24] or a cadaveric allograft [25] in extreme cases, have all been 

explored with moderate clinical success.  

 

Over and above stabilizing the damaged segment, many clinical solutions have been 

predicated on expanding the vascular supply to the damaged area to promote natural 

healing, since tears in the vascular region of the meniscus heal [18, 26-28]. Solutions 

such as rasping [29], vascular channels [26, 27], and the application of fibrin glue [30] 

all utilize this idea. The concept seems particularly promising as young patients with a 

more completely vascularized meniscus [15, 18, 26, 31, 32] rarely present with meniscal 

injuries [33].  

 

Many interesting techniques have been recently explored that may some day be used in 

the clinic. Rather than connecting a meniscus tear with a fabricated material such as a 

suture, a biological ‘glue’ such as platelet rich plasm (PRP) [34] may support biomimetic 

integration. Further, rather than adding a material to promote repair, chemicals could be 

delivered locally that promote integration. For example, chemicals to suppress MMPs 

and cytokines could be used in order to bolster natural healing [35-39].  

 

1.3 Tissue Engineering Strategies for Meniscus Repair to Date 

In the instance where damage is too great, a meniscus replacement would be necessary 

to replace the resected tissue. This material could be permanent and impermeable to 

cells; however, such materials would likely face long-term issues such as dislodging, 

immune responses, wear, fatigue and failure. In contrast, a tissue engineering approach 
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could be utilized, where the combination of a temporary scaffold, chemical/mechanical 

cues and cells could be used to create meniscus tissue [40]. The integration of such a 

material into the existing tissue is of paramount importance in order to reestablish the 

mechanical and structural capabilities of the tissue. Other important factors are relevant 

mechanical properties as well as favorable conditions for the proliferation and matrix 

deposition by fibrochondrocytes or stem cells induced to become fibrochondrocyte-like 

cells. While many envision a temporary material to replace a region of meniscus, it may 

also be possible to design a full meniscus replacement that would feature bone insertions 

mimicking meniscal horns; however, such a material would provide significantly more 

design challenges.  

 

Numerous materials have been tested for meniscus tissue engineering, including 

collagen [24], small intestinal submucosa (SIS) [41-43], dermis [44], estane [45], 

polyurethane [46], agarose gels [47] and alginate [48], to name a few [49]. While it is 

evident that many strategies have been explored, none except for the collagen meniscus 

implant has reached clinical availability, although its efficiency is not yet clearly 

demonstrated [24].  

 

To expand the palette of materials for meniscus tissue engineering, we have developed a 

nanofibrous electrospun scaffold. This material mimics the mechanical properties of the 

tissue relatively well and emulates the collagen bundle architecture of native meniscus. 

The fabrication technique is relatively simple and robust, and it could be easily modified 

to incorporate other features, such a sacrificial fibers, microspheres, biological factors or 

cells. In these scaffolds, MFCs and mesenchymal stem cells infiltrate and deposit ordered 

matrix, generating an engineered tissue with physiologically relevant mechanical 

properties [50-53].  
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1.4 Thesis Overview and Specific Aims 

In this thesis, we will explore the physiological properties of aging meniscus as well as 

potential biomaterials for its repair. Specifically, we will analyze changes in biochemical 

content and matrix formation capacity in the tissue with aging, and will test the repair 

potential mechanically using an in vitro integration model (Chapter 2, 3). These 

chapters address Aim 1: Characterize fetal, juvenile and adult meniscus to define native 

tissue and cell properties, and potential limiters of adult healing. We will also identify 

fundamental differences between immature and mature meniscus cells in both ovine and 

bovine tissue, and subsequently choose relevant growth factors that successfully bolster 

the repair of an avascular meniscus tear in vitro (Chapter 3, 4) according to Aim 3: 

Promote meniscus integration in vitro through modulation of adult extracellular 

matrix (ECM) and soluble environment. Next, we will apply the in vitro integration 

model to electrospun scaffolds, and analyze the role of growth factors in scaffold 

integration and maturation (Chapter 4). We will also modify the characteristics of the 

scaffold (porosity, alignment) and the cell seeding technique, and identify optimal 

conditions for repair (Chapter 5). Chapter 4 and 5 address Aim 4: Investigate the 

integration and maturation of electrospun composites adjacent to native meniscus 

tissue in vitro. In order to transition to the in vivo environment, we will review current 

techniques for delivering molecules from electrospun scaffolds, with a special focus on 

growth factors (Chapter 6). Next, we will present a novel fabrication technique to 

entrap drug-delivering microspheres between structural electrospun fibers (Chapter 7) 

that addresses Aim 2: Create a microsphere/nanofiber composite scaffold with drug 

delivering capacity. Finally, we will deliver growth factors from these microspheres, as 

well as from the fibers themselves, and stimulate both proliferation and angiogenesis in 

vivo (Chapter 8) as described in Aim 5: Evaluate biomaterial-driven meniscus repair 

in an in vivo model. This work represents significant steps forward in our understanding 
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of the knee meniscus and in the potential of using electrospun scaffold for meniscus 

tissue engineering.  
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2: The Differential Regenerative Potential of Fetal and 

Adult Meniscus Fibrochondrocytes 

2.1 Abstract 

The adult knee meniscus is prone to injury and has limited intrinsic healing potential, 

with few successful therapeutic options for repair. In order to direct the development of 

new approaches for meniscus repair, we investigated the properties of the fetal and adult 

meniscus tissue and isolated meniscus fibrochondrocytes (MFCs). While little data exists 

on meniscus repair potential as a function of age, other related fibrous and cartilaginous 

tissues have been shown to heal regeneratively in the fetal environment. Further, 

significantly fewer young patients present clinically with meniscus tears compared to 

adults. We hypothesized that fetal meniscus cells would be more active than their adult 

counterparts. Our results showed that while meniscus structure changed with 

development, cellular characteristics such as migration and proliferation were 

comparable. However, when cultured in three-dimensional pellets, adult cells responded 

less robustly than fetal cells to the addition of the chondrogenic growth factor TGF-β, 

with markedly lower improvements in weight, DNA, glycosaminoglycan (GAG), and 

collagen content after 42 days, supporting our hypothesis. Taken together, this work 

demonstrates that while the proliferative and migratory capacity of MFCs do not 

diminish with age in the ovine meniscus, the ability to deposit matrix in the presence of 

TGF-β decreases by adulthood. These findings may provide novel directions for adult 

meniscus repair strategies through the promotion of matrix deposition as well as guide 

the development of tissue engineered meniscus repair approaches. 
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2.2 Introduction 

The menisci are two semilunar cartilaginous structures in the knee that function to 

transmit and distribute load from the femur to the tibia [1, 2], maintain knee joint 

stability [3], and provide shock absorption [4]. The organization and composition of the 

meniscus allows it to withstand both tensile and compressive forces [5] in order to 

distribute load and protect the cartilage surfaces. The tissue is composed primarily of 

water (72% of wet weight), as well as collagens (22% of wet weight), proteoglycans (0.8% 

of wet weight), and a number of other trace components that contribute to meniscus 

function [5, 9]. The meniscus withstands its complex loading environment with a 

carefully tuned architecture that features circumferentially oriented collagen bundles 

opposing tensile deformation [11] and glycosaminoglycans (GAG) concentrated in the 

inner region withstanding compressive deformation [12-14]. In the adult, the meniscus 

has a limited vascular supply, with vessel infiltration only to the outer third [15].  

 

Tears or injury to the meniscus are very common and lead to degenerative changes in the 

knee such as osteoarthritis [19, 20]. A typical procedure to address meniscus damage 

involves removal of the injured portion, since tears, particularly in the inner avascular 

region, rarely heal [18]. However, resection changes load bearing and presages the long-

term development of osteoarthritis, prompting surgical methods towards maintaining 

maintain as much of the original structure as possible [21]. Sutures [22], arrows or 

screws [23], and the use of a collagen implant [24] or allograft [25] in extreme cases, 

have all been explored with moderate clinical success.  

 

Over and above stabilizing the damaged segment, many clinical solutions have been 

predicated on expanding the vascular supply to the damaged area to promote natural 
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healing. Solutions such as rasping [29], vascular channels [26, 27], and the application of 

fibrin glue [30] all utilize this concept. The concept seems particularly promising as 

young patients with a more completely vascularized meniscus [31] rarely present with 

meniscal injuries. In addition to vascular supply, other factors, such as cell density, 

extracellular matrix (ECM) properties and sensitivity to growth factors, may also 

distinguish healing in the young meniscus from the failure to heal in the adult meniscus. 

In fact, it has been observed that related fiber-reinforced fetal tissues with similarly 

limited vascular supply heal regeneratively, including articular cartilage [54] and tendon 

[55, 56]. Those findings suggest that meniscus may also heal regeneratively during fetal 

development based on factors not associated with is vascular network.  

 

In this work, we explored how fetal and adult ovine menisci and meniscus 

fibrochondrocytes (MFCs) vary with development. Previous studies have shown that 

cells from related tissues, such as ACL fibroblasts [57], tendon fibroblasts [58], and 

chondrocytes [59, 60], lose the capacity to proliferate and/or migrate with age, while 

other tissues such as dermal fibroblasts do not [61]. Additional studies have 

demonstrated a marked decrease in matrix forming capacity with development [57-59, 

61, 62]. Based on these findings, we hypothesized that the proliferation, migration and 

matrix forming capacity of meniscus fibrochondrocytes (MFCs) would decrease with age. 

To test this hypothesis, we extracted MFCs from fetal and adult ovine menisci and 

performed migration and proliferation studies. Further, we cultured pellets of MFCs in a 

chemically defined media with the addition of the chondrogenic growth factors TGF-β1 

or -β3, known to be involved uniquely in the fetal environment and in adult healing [63, 

64]. We found major changes in the ECM distribution and cell density between fetal and 

adult ovine menisci. However, fetal and adult MFCs proliferated and migrated at the 

same rate once extracted from the tissue. When grown in pellets, fetal MFCs responded 
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more robustly to TGF-β than adult cells by proliferating and depositing more ECM, 

particularly GAG. Our findings suggest that while adult MFCs do not lose the ability to 

migrate or proliferate to an injury site, a diminished capacity to deposit matrix may be a 

limiting factor in meniscus healing in adult tissue. Such findings may direct novel clinical 

solutions for meniscus injury repair in adults. 

  

2.3 Materials and Methods   

2.3.1 Tissue Source 

Hinds limbs from mid gestation (~75 days) ovine fetuses and skeletally mature adults 

were isolated from waste tissue from an unrelated study. Approval from the Institutional 

Animal Care and Use Committee (IACUC) at the University of Pennsylvania was 

obtained for the transfer and use of all tissue. 

 

2.3.2 Histological Analysis of Meniscus as a Function of Age 

To establish baseline histological features of the meniscus as a function of age, hind 

limbs were isolated from ovine fetuses and disarticulated. The tibial plateau with 

adjoining menisci were fixed for 2-3 days in 4% paraformaldahyde and paraffin 

embedded. Similarly, maternal hind limbs were disarticulated and the medial menisci 

were carefully removed by cutting the horns and exterior rim of the synovium, fixed, and 

prepared for histology as above. Tissue was sectioned to 7 µm thickness in the axial and 

coronal directions and affixed to glass slides. Sections were stained with either Alcian 

Blue to identify proteoglycans (PG), Picrosirius Red to identify collagens, or hematoxylin 

and eosin (H&E) to identify cell nuclei and matrix structure.  
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2.3.3 Analysis of Migratory and Replicative Capacity of Fetal and Adult Meniscus 

Fibrochondrocytes 

For cell culture studies, medial menisci from twin ~75 day old sheep fetuses and the 

corresponding maternal sheep were aseptically dissected. Care was taken to remove any 

remaining synovium from the outer rim of the menisci, and the entire meniscus tissue 

was plated due to the small size of the fetal tissue and resulting inability to separate 

inner and outer regions. The menisci were diced into 1 mm3 pieces and plated onto tissue 

culture plates in a basal medium (BM) consisting of high glucose DMEM supplemented 

with 10% fetal bovine serum (FBS) and 1% penicillin/streptomyosin/fungizone (PSF). To 

determine the rate of emergence of MFCs from the tissue, ~20 mg of diced menisci was 

cultured for 7 days (ensuring sub-confluency) and the cells were trypsinized and 

counted. MFCs from each twin fetus and from the maternal source were maintained 

separately. Cell number was normalized by the initial tissue mass. For further studies, 

MFCs were expanded to passage 2 in BM. 

 

To determine whether proliferation rate was age dependent, 20,000 passage 2 cells from 

each fetal and the maternal menisci were plated in BM in individual wells of a 6-well 

tissue-culture treated plate. Every day, in triplicate, MFCs were lysed with distilled 

water, dislodged with a cell scraper, and analyzed for DNA content using the PicoGreen 

dsDNA assay (Invitrogen, Carlsbad, CA). To assess migration capacity, confluent layers 

of cells on tissue-culture treated plastic were scratched using the tip of a 0.1-10 µl sterile 

plastic pipette. The wells were washed twice with PBS to remove cell debris and filled 

with BM. Light microscope images were captured at the onset and after 15 hours to 

observe cell migration into the gap. All studies were performed in triplicate, with one 

representative study shown. 
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2.3.4 Analysis of Matrix Accumulation in 3D Pellet Culture 

After expansion through passage 2, 250,000 cells from each fetal meniscus and the 

maternal adult meniscus (fetus 1, fetus 2, adult) were formed into pellets in 96-well 

conical plates (Nunc, Thermo Scientific, Waltham MA). Pellet culture has been used 

previously as a three-dimensional chondrogenic environment that fosters meniscus-like 

tissue deposition [65]. Pellets were maintained in four media conditions: BM 

supplemented with 50 mg/ml ascorbate 2-phosphate; a chemically defined media (CDM-

; high glucose DMEM with 1X PSF, 0.1 mM dexamethasone, 50 mg/ml ascorbate 2-

phosphate, 40 mg/ml L-proline, 100 mg/ml sodium pyruvate, 6.25 mg/ml insulin, 6.25 

mg/ml transferrin, 6.25 ng/ml selenous acid, 1.25 mg/ml bovine serum albumin, and 

5.35 mg/ml linoleic acid); CDM supplemented with 10 ng/ml TGF-β1 (CDM+β1); CDM 

supplemented with TGF-β3 (CDM+β3).  

 

At 2 week intervals, pellets were removed from culture, situated in agarose, paraffin 

embedded, sectioned and stained as described above. On additional sections, 

immunohistochemical analysis was carried out to visualize the location of Collagen I and 

Collagen II [66]. Briefly, samples underwent antigen retrieval with 300 mg/mL 

hyaluronidase (Type IV, Sigma, St. Louis, MO), 3% H2O2, and blocking reagent (DAB150 

IHC Select, Millipore, Billerica, MA). Samples were then treated with antibodies (5 

µg/mL) to Col I (MAB3391, Millipore) or Col II (11e-116B3, Developmental Studies 

Hybridoma Bank, Iowa City, IA) in 3% BSA (control sections treated with 3% BSA only). 

Finally, biotinylated goat anti-rabbit IgG secondary antibody conjugated with 

streptavidin horseradish peroxidase was localized to primary antibodies, and color 

developed with 3,30-diaminobenzidine (DAB) chromagen reagent (DAB150 IHC Select, 

Millipore). 
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Biochemical content of pellets from each condition was determined after papain 

digestion. The digestate was analyzed for DNA content (Picogreen Assay, Invitrogen, 

Carlsbad, CA), sulfated glycosaminoglycan (s-GAG) content (DMMB Assay [67]) and 

collagen content (OHP assay [68] using a conversion factor 7.14 to convert to collagen 

content. This work was performed in triplicate with n=3 (2 to 3 pellets per n), with the 

results of one representative study shown.  

2.3.5 Statistical Analysis 

Two-way analysis of variance (ANOVA) was carried out using SYSTAT software 

(Chicago, IL) with Bonferonni’s post-hoc tests (n=3), with significance set at p < 0.05.  

 

2.4 Results  

2.4.1 Histological Analysis of Meniscus as a Function of Age 

Histological analysis revealed considerable changes from the fetal meniscus to the 

mature, adult meniscus. Developmentally, the meniscus is distinct in composition from 

the underlying cartilaginous tibial plateau (Fig 2-1A). The fetal meniscus stained 

strongly for collagen (red) while the cartilage below stained strongly for proteoglycans 

(PG, blue). Further, only a faint quantity of PG was observed in the inner tip of the fetal 

meniscus (Fig 2-1A). Similarly, the adult meniscus stained strongly for collagen, but in 

contrast, PG was present throughout the meniscus, although less dense in the central 

region of the tissue (Fig 2-1B). Closer inspection revealed that the fetal meniscus was 

densely populated with cells located between thin and undulating collagen bundles (Fig 

2-1C). In the adult meniscus, the cell density was considerably lower and the collagen 

bundles appeared linear and were larger and more robust (Fig 2-1D). Indeed, sectioning 
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for histology was more difficult when cutting perpendicular to the collagen bundles in 

the adult compared to the fetal meniscus.   

 

Figure 2-1 Histological sections of fetal (A) and adult (B) ovine meniscus, stained with Picrosirius 
Red for collagens and Alcian Blue for proteoglycans (PG). The meniscus increases in size as the 
animal matures and an increase in PG content and distribution is evident. (Adult: 13mm, Fetal: 
1.5mm). Hematoxylin and eosin (H&E) staining of fetal (C) and mature adult (D) meniscus 
demonstrates a decrease in cell density and increase in collagen bundle thickness as the animal 
matures (Scale = 50 µm). After plating minced fetal (E) and adult (F) meniscus, light micrographs 
reveal significantly more cells emerging from the fetal tissue which were larger in size and more 
spindly. Quantification of the outgrowth indicated that over the first 7 days, 200 times the 
number of cells emerged from fetal compared to adult tissue, per gram of tissue. (Scale = 100 
µm). 

 
 
2.4.2 Migration and Proliferation Capacity of Adult and Fetal MFCs 

When fetal and adult meniscus tissue was plated on tissue-culture treated plastic in basal 

media, MFCs emerged over the first few days of culture. Cells that emerged from the fetal 

meniscus were more spindle-like in appearance. When normalized to tissue weight, 200 

times more MFCs emerged from the fetal tissue compared to the adult tissue (Fig 2-1E, 

F). Once removed from the tissue, however, proliferation rates of extracted fetal and 

adult MFCs did not differ over 12 days (Fig 2-2A). When a gap was introduced to a 

confluent monolayer, cells filled the new space completely within 24 hours (data not 

shown). Images acquired at 15 hours (prior to closure) showed equivalent migration by 

cells of both ages (Fig 2-2B).  
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Figure 2-2: (A) Proliferation of fetal and adult MFCs in monolayer culture are comparable over 12 
days (N=3, performed in triplicate). (B) Migration of fetal and adult MFCs into an artificial 
‘wound’ occurred over a similar time course. (Scale = 200 µm). 

 

2.4.3 Matrix Elaboration by Fetal and Adult MFCs in Pellet Culture 

MFCs were formed into pellets and cultured in 4 different media types for 6 weeks. 

When cultured in basal media, fetal pellets did not remain viable, disintegrating by day 

42. Adult pellets, on the other hand, remained viable though very little matrix deposition 

occurred (Fig 2-4). When cultured in the presence of CDM-, both fetal and adult cell 

pellets remained small, with comparable collagen (red) and PG (blue) deposition (Fig 2-

3, 2-4).  

 

Upon the addition of TGF-β, adult cell pellets increased in size by day 42 (Fig 2-3). 

Adult cells had a moderate response to TGF-β with 2 to 4-fold increases in pellet weight 

compared to CDM- conditions (Fig 2-4A). DNA content decreased, although not 

significantly, with the addition of TGF-β compared to CDM- conditions (Fig 2-4B). GAG 

and collagen content (normalized to DNA content) in adult pellets increased, although 
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not significantly, compared to CDM- condition (Fig 2-4C, D). TGF-β1 promoted the 

deposition of both collagen I and II, while TGF-β3 resulted in the deposition of collagen I 

with no deposition of collagen II (Fig 2-3). Overall, the addition of TGF-β bolstered 

deposition of a meniscus-like fibrocartilaginous extracellular matrix in adult MFC 

pellets.  

 

Figure 2-3: Histological sections of fetal and adult MFC cell pellets in CDM-, TGF-β1, and TGF-β3 
media after 42 days in culture. Fetal MFCs produce larger pellets with more PG compared to adult 
MFCs (Scale = 500 µm). Inlays: Immunohistochemical staining for Collagen I and Collagen II. 
Collagen I and II are deposited in fetal tissue with exposure to both TGF-β isoforms, while adult 
MFCs produce only collagen I in with exposure to TGF-β1. Work was performed in triplicate, with 
one representative set shown. (Scale = 1000 µm) 

 

Fetal pellets responded more robustly to the addition of TGF-β than adult pellets by day 

42. Histological analysis showed a significant increase in deposition of PG and a 3 to 4-

fold increase in pellet diameter with TGF-β compared to CDM- conditions (Fig 2-3). 

Pellet weights from Fetus 1 and 2 were 10- and 30-fold higher than CDM- conditions by 

day 42, respectively (Fig 2-4A). Further, the weight of fetal pellets was significantly 

higher than the adult pellets for both TGF-β isoforms. In contrast to adult MFC pellets, 

DNA content increased significantly in the presence of TGF-β1 and -β3 (Fig 2-4B). The 
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quantity of GAG and collagen produced per fetal cell was significantly higher in the 

presence of TGF-β compared to the CDM- condition. Further, this growth factor caused 

fetal MFCs to deposit significantly more matrix than adult MFCs (Fig 2-4 C,D), with the 

exception of fetus 2 pellets that had comparable collagen deposition. While the quantity 

of GAG deposited varied considerably between media conditions and tissue age, 

biochemical analysis and histological staining for picrosirius red alone (data not shown) 

showed that changes in collagen levels were less pronounced. Both collagen I and II were 

produced by fetal pellets in the presence of either TGF-β isoform (Fig 2-3). Overall, 

TGF-β had a stronger influence on fetal MFC pellets than adult MFC pellets, with 

significant increases in proliferation and meniscus-like fibrocartilaginous matrix 

deposition. However, even between twin fetuses, biological variability was observed in 

the magnitude of the response to these exogenous growth factors.  
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Figure 2-4 Biochemical analysis of fetal and adult MFC pellets. Serum-containing media did not 
support fetal pellet growth. With the addition of TGF-β, fetal pellets increased with size and 
matrix deposition compared to adult pellets. (A) Weight of all fetal pellets and TGF-β1-treated 
adult pellets increased compared to CDM-. (B) DNA content by day 42 increased with the 
addition of TGF-β for fetal cells compared to the CDM- condition and compared to adult MFCs. 
(C) GAG content (normalized to DNA) increased in all cases compared to CDM-, with fetal MFCs 
producing significantly more GAG/DNA compared to adult MFCs. (D) Collagen content 
(normalized to DNA) increased for fetus 1 MFCs and for adult MFCs. Fetus 1 also increased in 
collagen content with TGF-β compared to adult MFCs. * indicates significant difference via 2-way 
ANOVA compared to day 42 CDM- with p < 0.05. # indicates significant difference via 2-way 
ANOVA compared to adult with same TGF-β isoforms with p < 0.05. 
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2.5 Discussion  

In this work, we explored tissue-, matrix- and cell-level differences between the fetal and 

adult ovine meniscus and the response of ovine MFCs to exogenous growth factors TGF-

β1 and -β3 in three-dimensional culture. Because young patients rarely present with 

meniscus tears, understanding differences in cell behavior and ECM structure and 

production by age may better guide the development of meniscus healing algorithms 

through recapitulation of successful repair mechanisms in the younger meniscus. The 

work is further motivated by the observation that complete regenerative healing occurs 

for a number of tissues in the fetus including cartilage [54], tendon [55, 56], skin [69, 70] 

and bone [71]. Even in juvenile tissue, work has shown improved (although not scarless) 

healing compared to adult tissue in anterior cruciate ligaments [72]. While direct 

exploration of in vivo fetal meniscus healing has proved challenging, extraction of the 

meniscus to a controlled in vitro environment allows one to probe various aspects of cell 

and tissue behavior as a function of developmental stage. 

 

Our results demonstrate that in situ, cell density and ECM distribution changed 

significantly with meniscus tissue maturation, from a cell-dense structure with thin 

collagen bundles and limited PG content (Fig 2-1C), to a cell-sparse structure filled with 

thick collagen bundles and significant PG distributed throughout the tissue (Fig 2-1D). 

Melrose and coworkers reported similar changes in PG deposition and collagen structure 

throughout development in sheep meniscus, although that work did not extend to the 

analysis of fetal meniscus specimens [73]. Clark and Ogden investigated human fetuses 

and young cadavers and described the progressive development of collagen bundles and 

decrease in cell density [31]. These findings are consistent with our observations and 

suggest that the sheep is a good model for the study of meniscus development.  
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When cells were extracted from the tissue, fetal and adult MFCs proliferated and 

migrated at the same rate (Fig 2-2). Previous work by Webber showed that juvenile and 

adult rabbit MFCs proliferate at the same rate [74], although they did not explore fetal 

cells. Interestingly, cells emerged from fetal tissue at a much faster rate compared to 

adult tissue. Because proliferation and migration did not vary between fetal and adult 

MFCs in monolayer, the high cellular density of the fetal tissue may explain the markedly 

higher cell emergence rate from fetal tissue. Further, limited GAG and smaller collagen 

bundles may create in a more porous ECM that is permissive for cell migration within 

and out of the tissue and onto the tissue culture plastic compared to dense adult tissue. 

Clinically, the apparent healing of meniscus in children may relate to the ability of cells 

to migrate, repopulate and ultimately heal injured regions in less dense immature 

meniscus. In contrast, cells in the adult meniscus tissue might be effectively trapped 

inside the dense matrix of their own creation. Work is ongoing to further explore this 

hypothesis, and preliminary findings suggest enhanced injury repair in immature bovine 

tissue using an in vitro meniscus defect model [75, 76]. 

 

When in pellet format, fetal and adult MFCs responded very differently to the chemical 

environment in which they were cultured. Barry and coworkers found that mesenchymal 

stem cells successfully differentiated in chondrocytes given the following three 

conditions: three-dimensional culture environment, serum-free medium, and exposure 

to a member of the TGF-β superfamily [77]. To maintain phenotype, meniscus 

fibrochondrocytes are often cultured under the same conditions [65]. In this work, when 

MFCs were cultured in a three-dimensional format in the presence of serum, fetal pellets 

were not viable. Histology of the fetal meniscus tissue revealed minimal PG deposition 

(Fig 2-1A), a hallmark of meniscus ECM, suggesting that fetal cells were not yet fully 

differentiated. Absent a committed fibrochondrogenic-like phenotype, the cells were 
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unable to withstand three-dimensional culture conditions without a chemically defined 

and pro-chondrogenic supplement such as TGF-β. In contrast, adult pellets remained 

viable but proliferated poorly and deposited little PG (Fig 4). Previous work by Mauck 

also demonstrated juvenile bovine meniscus fibrochondrocytes in pellet culture with 

serum were viable for 21 days, but exhibited little matrix accumulation [65]. Adult MFC 

pellets remained viable in serum-containing media, but serum alone could not support 

or maintain fetal MFCs in pellet form. 

 

Pellets were also grown in a pro-chondrogenic chemically defined media without the 

addition of the essential growth factor TGF-β (CDM-). Both fetal and adult pellets 

showed little growth over time under these conditions. In fact, fetal pellets decreased in 

weight with culture time, perhaps showing a similar sensitivity to the lack of TGF-β as 

seen in the serum-containing media culture conditions. When TGF-β was added, growth 

and matrix production was significantly improved, particularly for fetal pellets (Fig 2-3, 

2-4). Interestingly, Vavkin and coworkers found a decrease in TGF-β receptor density 

with increased donor age in ACL tissue, although fetal tissue was not assessed [78]. 

Numerous studies have demonstrated that the addition of TGF-β increases the quantity 

of DNA [79] and GAG  [80-82] over time in meniscus cells. While distinctions between 

TGF-β isoforms 1 and 3 have been identified, no major differences in growth or matrix 

deposition were found in this cell type under the given conditions, with only a slight (but 

not significant) improvement with isoform 1 in adult pellets. TGF-β1 has been associated 

with an increase in matrix synthesis and a decrease in the production of matrix-

degrading proteases in adults in fibroblasts [83, 84] as well as fibrotic scar healing of 

tendon [56, 85]. TGF-β3 has been shown to be more effective at inducing 

chondrogenesis than TGF-β1 in mesenchymal stem cells [86] and has been associated 
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with scarless fetal healing in skin [87]. Our work showed that MFCs responded similarly 

to both isoforms of TGF-β. 

 

While this work presents compelling similarities and differences in meniscus tissue and 

cells through development, some limitations do exist. First, it is known that multiple cell 

types can be identified in the meniscus based on region [10, 79]. However, we did not 

account for these variations, and instead observed the cell populations in bulk. Further, 

we used cells at passage 2, where inherent differences may have already been erased due 

to dedifferentiation with culture expansion. Earlier passage cells may have revealed more 

about the in situ behavior of the cells. In this work, we did not analyze gene expression, 

which may provide mechanistic insight into the response of the MFCs by age and in 

response to TGF-β. Also, even when studying twins, the sensitivity to TGF-β was 

variable, suggesting that even wider variations would be observed between unrelated 

animals. Lastly, our work only studied the effects of TGF-β. A number of other growth 

factors might be relevant to explore and could provide additional insight into the 

differential response of fetal and adult MFCs. For example, Webber found that FGF [10], 

PDGF and IGF [88] all upregulate MFC proliferation. Despite these limitations, the 

present work advances our knowledge of meniscus architecture and sensitivity of 

meniscus cells to soluble factors through development. 

2.6 Conclusions 

Overall, this study highlights the changing regenerative potential of the meniscus and 

MFCs from fetal to adult stages. The tissue undergoes significant structural changes, 

with increases in collagen fiber thickness and decreases in cell density, along with 

changes in PG distribution. Further, the sensitivity to exogenous growth factors 

decreases significantly with maturity. Fetal MFC pellets were larger and contained 



 

22 

higher levels of GAG and collagen that increased progressively over 42 days. Taken 

together, this work suggests that TGF-β induced stimulation of MFC matrix production 

capacity decreases in adult tissue, and that clinical strategies to bolster matrix 

production may create a more regenerative state to promote adult meniscus healing.  
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3: Maturation State Dependent Alternations in Meniscus 

Integration: Implications for Scaffold Design and 

Tissue Engineering 

3.1 Abstract 

The knee meniscus is a crucial component of the knee that functions to stabilize the 

joint, distribute load, and maintain congruency.  Meniscus tears and degeneration are 

common, and natural healing is limited. Notably, few children present with meniscus 

injuries, and other related fibrocartilaginous tissues heal regeneratively in immature 

animals and in the fetus. In this work, we evaluated fetal, juvenile, and adult bovine 

meniscus properties and repair capacity in vitro, and hypothesized that the properties 

and repair capacity would be modulated with age. While no changes in cell behavior 

(migration, proliferation) were noted with age, drastic alterations in the density and 

distribution of the major components of meniscus tissue (proteoglycan, collagen, and 

DNA) occurred with development. Coincident with these marked tissue changes, the in 

vitro healing capacity of the tissue decreased with age. Fetal and juvenile meniscus 

formed a robust repair over 8 weeks on both a histological and mechanical basis, despite 

a lack of vascular supply. In contrast, adult meniscus did not integrate over this period. 

However, integration was improved significantly with the addition of growth factor TGF-

β3. Finally, to evaluate engineered scaffold integration in the context of aging, we 

monitored cellular infiltration from native tissue into engineered nanofibrous constructs. 

Our findings suggest that maturation processes that enable load bearing in the adult 

limit endogenous healing potential and identify new metrics for the development of 

tissue engineered meniscus implants. 
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3.2 Introduction   

The meniscus is a fibrocartilage found in the knee whose primary function is mechanical, 

withstanding both compressive and tensile forces that arise with locomotion [5]. The 

extracellular matrix (ECM) is complex in architecture and composition, and is comprised 

of circumferentially-oriented collagen bundles interspersed with a dense proteoglycan 

(PG) network [4]. When acute injury or degenerative changes occur, meniscus load-

bearing capacity is compromised [9]. Clinically, patients with meniscal tears are treated 

surgically, with the torn or frayed portion resected or, when possible, reattached [22, 23, 

89]. When significant damage occurs, meniscus allografts can be utilized as a total 

replacement [90]. However, despite restoration of pain free motion with these 

interventions, the joint compartment remains predisposed to the development of 

osteoarthritis, as joint mechanics remain altered and non-ideal motion and mechanical 

forces are imparted to the surrounding tissues [19, 20, 91]. 

 

The adult meniscus has limited vascularity and healing capacity [18], and so simple 

repairs often fail over time. To better study meniscus healing, in vitro models have been 

developed. Early work by Webber and coworkers [92] demonstrated that meniscus 

sections remain viable in culture media supplemented with bovine serum or in a 

chemically defined media. Kobayashi and coworkers showed that outer meniscus defects 

heal better than inner meniscus, at least on a histological basis [93]. More recently, 

Hennerbichler and coworkers adopted a method commonly employed to assess 

cartilage-to-cartilage integration [94] to mechanically evaluate meniscus repair in vitro. 

This method involves the formulation of a cylindrical full thickness concentric defect 

within a meniscus explant [95]. Integration strength is determined by measuring the 

force required to extrude the inner core from the outer ring. Using this approach, no 
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measurable differences in mechanical integration were noted comparing the inner and 

outer regions. This technique has also been used to study the influence and interplay of 

inflammatory cytokines and matrix metalloproteinases in meniscus healing [35-39]. The 

organ culture model allows for the careful analysis of healing by region, the influence of 

soluble factors, and how repair changes over time—factors that are difficult to observe or 

control in the joint space.  

 

While adult meniscus healing is limited, a number of observations in immature meniscus 

and related tissues suggest that young fibrocartilage may possess a greater healing 

potential. First, younger patients rarely present with acute meniscal tears [33]. The 

repair capacity may be due to the more complete vascular infiltration of immature 

meniscus compared to adult meniscus, which is only vascularized in the outer third of 

the tissue [31, 32]. Indeed, repairs to the more vascular outer region of the adult 

meniscus can have long-term success [26]. Further, in vitro studies have shown that 

juvenile cartilage heals better than adult cartilage even in the absence of a blood supply 

[96, 97]. Similarly, immature rat lateral collateral ligament heals better than mature 

ligament in vivo [98]. In the fetus, complete regenerative healing of tendon and cartilage 

has been observed [54-56]. Taken together, these findings motivated us to evaluate 

differences in healing potential between fetal, juvenile, and adult meniscus, as well as to 

characterize the properties of the meniscus and associated meniscus fibrochondrocytes 

(MFCs) as a function of age. 

 

Beyond evaluation of natural tissue healing, this in vitro meniscus culture system can be 

used as a test bed for meniscus tissue engineering, similar to approaches used in 

cartilage tissue engineering [99-101]. Numerous materials have been tested for meniscus 

tissue engineering, including collagen [24], small intestinal submucosa (SIS) [42, 43], 
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estane [45], polyurethane [46], hyaluronic acid [102], agarose gels [47] and alginate 

[48]. However, due to the complex loading environment many of these approaches have 

shown limited success in vivo. The only material translated to the clinic in the U.S. is the 

Collagen Meniscus Implant (Menaflex), although its efficiency is not yet clearly 

demonstrated [24]. A polyurethane foam product (Orteq) is also available in Europe, 

although its use has not been approved by the US FDA. To expand the palette of 

materials for meniscus tissue engineering, we have developed a nanofibrous electrospun 

scaffold, with aligned fibers that mimic the native collagen architecture of meniscus. In 

these scaffolds, MFCs and mesenchymal stem cells infiltrate and deposit ordered matrix, 

generating an engineered tissue with physiologically relevant mechanical properties [50-

53].  

 

In this work, we evaluated cellular and architectural changes in the meniscus as a 

function of age. Further, we used an in vitro integration model to assess the healing 

capacity of fetal, juvenile and adult bovine meniscal defects. To expedite integration, we 

evaluated the effect of the exogenous addition of the chondrogenic growth factor TGF-β 

[35, 80-82] in explants of different ages. Finally, we established a test bed for the in vitro 

optimization of a tissue engineered meniscus construct by modifying the meniscus 

integration model to include an electrospun scaffold.  

3.3  Materials and Methods 

3.3.1 Age-Dependent Characteristics of Bovine Meniscus Fibrochondrocytes 

Menisci from fetal (mid-gestation), juvenile (0-3 months) and adult (skeletally mature) 

cows were sterilely dissected with care taken to remove adherent synovium from the 

meniscal rim. A 5 mm radial slice was cut, minced into 3 mm3 pieces and plated onto 

tissue culture plastic (Corning, Sigma-Aldrich, St. Louis MO) in basal media (DMEM 
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with 10% fetal bovine serum and 1% penicillin/streptomyosin/fungizone). MFCs 

emerged onto the plate and divided.  

 

After one passage, cells from each age were used to assess proliferation and migration 

capacity [103]. Briefly, for proliferation, 20,000 cells were expanded in basal media in 

individual tissue-culture treated 6-well plates. Each day, in triplicate, the cells were 

dislodged using a cell scraper and DNA content analyzed using the PicoGreen assay 

(Invitrogen, Carlsbad, CA). The experiment was performed with three different donors, 

with one donor data set shown. To assess migration capacity, a defined ‘wound’ was 

created in a confluent monolayer with a 0.1-10 µl pipette. The wells were washed to 

remove cell debris and filled with basal media. Initial light microscope images were 

captured of the regions and the locations were marked on the plate. Over 15 hours, the 

same regions were photographed. Extent of infiltration was determined in duplicate 

using ImageJ (Wayne Rasband, NIH, USA) by measuring the change in area of the gap in 

a given sample over time.  

  

3.3.2 Histological and Mechanical Alterations in Bovine Meniscus as a Function of 

Age 

Axial and radial samples of meniscus (thickness = 5 mm) from each age were fixed in 

paraformaldahyde, embedded with paraffin and sectioned. Radial sections were stained 

with a mixture of Alcian Blue for proteoglycans (PG) and Picrosirius Red for collagens. 

Axial sections were stained with hematoxylin and eosin (H&E) to identify nuclei.  

 

Unconfined compression testing was performed on native tissue as in [104]. A 4 mm 

circular explant was taken from the central region of the meniscus in the vertical axis 

using a dermal punch. The top and bottom of the explant was removed on a freezing 
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stage sledge microtome to produce cylindrical samples with parallel surfaces (3 mm 

height, n=6/age). Height was measured using a digital caliper before mechanical testing. 

Next, a creep test was performed in a PBS bath with a 0.05N load applied for 5 minutes, 

with displacement noted at equilibrium. Finally, a stress relaxation test was performed 

by applying three step-wise compressive deformations of 3% of the post-creep thickness 

(at 0.05%/s) followed by 800 seconds of relaxation to equilibrium. The compressive 

equilibrium modulus was calculated from the equilibrium stress and strain values.  

 

3.3.3 Biochemical Analysis of Bovine Meniscus as a Function of Age 

To assess biochemical content of meniscus by age, radial sections from different menisci 

(n=6/age) were divided into three regions (inner, middle and outer) and weighed (Fig 3, 

top). After lyophilization, samples were reweighed to determine water content and 

digested in a buffer containing 2% papain at 60°C. The resulting digestate was used to 

assess DNA content (PicoGreen Assay, Invitrogen, Carlsbad, CA), glycosaminoglycan 

(GAG) content using the DMMB Assay [105] and collagen content using the OHP assay 

with a conversion factor of 7.14 [68]. Results are reported normalized to sample dry 

weight. 

 

3.3.4 Integration Potential of Bovine Meniscus as a Function of Age 

Fetal, juvenile and adult menisci were isolated as above. Using a sterile 8 mm diameter 

dermal punch, circular explants were excised from the tissue in the vertical axis. The top 

and bottom portions of the explant were removed with a scalpel to create parallel 

surfaces, creating a 3 mm tall cylinder. A 4 mm diameter dermal punch was used to 

create an inner core, with care taken to ensure that the cut was complete and that 

minimal rotation occurred (Fig 3-4A). Explants were cultured for 8 weeks in basal 

media supplemented with 50 µg/ml ascorbate-2-phosphate. At bi-weekly intervals, 2 
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constructs were processed for histology as above. Picrosirius Red stained sections were 

viewed under polarized light to assess collagen bundle organization at the injury site. At 

bi-weekly intervals, 7-12 samples were tested for mechanical integration using a custom 

testing device (Fig 4B) [75, 76, 106].  Briefly, an Instron 5848 was outfitted with a 3.5 

mm diameter indenter in series with a 50 N load cell.  This indenter was placed above a 

plate with a 5 mm diameter hole. The meniscus sample was placed onto the plate, and 

the indenter progressed through the defect site at a rate of 0.0833 mm/sec [95]. 

Integration strength was determined by normalizing the maximum force by the contact 

area between the core and annulus. This study was conducted in duplicate, with one 

representative data set presented. 

 

3.3.5 Integration Potential in the Presence of TGF-β 

To assess the influence of the proliferative and pro-chondrogenic growth factor TGF-β3 

on the long-term culture and integration potential of meniscus, juvenile and adult 

meniscus explants were constructed as described above and cultured in either basal 

media supplemented with 50 µg/ml ascorbate-2-phosphate or basal media 

supplemented with 50 µg/ml ascorbate-2-phosphate and 10 ng/mL TGF-β3 for 8 weeks. 

Every 4 weeks, 2 samples were fixed for histology and 7-18 samples were tested for 

integration strength as above. After testing, both portions of the explant were digested 

for biochemical analysis. Likewise, histological analysis was conducted on fresh samples 

from each condition and time point. 

 

3.3.6 Integration Potential of a Fibrous Scaffold 

To assess the migratory potential of meniscus cells out of native tissue and through a 3-

dimensional engineered structure, 8 mm diameter explants of juvenile and adult menisci 

were generated. As before, a 4 mm diameter internal core was created, but this time the 
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core was removed and replaced with an electrospun aligned poly(ε-caprolactone) multi-

lamellar column (Fig 3-8A). The column was created by spot-welding multiple 4 mm 

discs of 1 mm thick scaffold at the center point and press-fitting the column into the 

meniscus annulus. At 4 and 8 weeks, samples were fixed in paraformaldehyde and frozen 

in OCT sectioning medium. Sections from the top, middle and bottom of each explant 

were stained with DAPI (Prolong Gold, Invitrogen, Carlsbad CA) to identify cell nuclei. A 

custom MATLAB program based on [107] was used to quantify cell infiltration by 

dividing the scaffold into 4 concentric zones with radii equating 25%, 50%, 75%, or 100% 

of the total scaffold radius. Images were converted to a binary image (Fig 3-8B), and for 

each zone, the cell density (cells/pixel) was normalized by the native tissue density in 

three 100x100 pixel squares of native tissue, and multiplied by the average native tissue 

cell count to allow for comparisons across sections and between juvenile and adult 

tissue.  

 

3.3.7 Statistical Analysis 

All statistical analysis was performed using SYSTAT (Chicago, IL) with Bonferonni’s 

post-hoc tests and p < 0.05. One-way ANOVA was used to compare the compressive 

modulus of meniscus by age. For biochemical analysis, one-way ANOVA for age-related 

differences and two-way ANOVA for age and region differences were employed. 

Integration strength was compared with a two-way ANOVA with age and culture 

duration as independent variables. For the TGF-β integration studies, 3-way ANOVA was 

utilized. Finally, significant differences in cellular distribution in the scaffolds were 

evaluated via 2-way ANOVA.  
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3.4  Results  

3.4.1 Age-Dependent Characteristics of Bovine Meniscus Fibrochondrocytes 

The proliferation and migration capacity of MFCs isolated from fetal, juvenile and adult 

bovine menisci were compared. Across all ages, proliferation rates were consistent over 

14 days (Fig 3-1A). Further, no difference in migration into an artificial ‘wound’ was 

observed (Fig 3-1B, 3-1C). 

 

Figure 3-1: Proliferation and migration of fetal, juvenile and adult bovine MFCs are comparable. 
(A) MFCs proliferate over 14 days at similar rates (n=3/age). (B) Cell migration into a gap was 
tracked over 15 hours. Example images of the initial gap and appearance after 6 hours for MFCs 
from each age (Scale = 200 µm). (C) Image analysis of (B) demonstrates similar cell migration 
rates between MFC ages (n=3/age). 

 
3.4.2 Histological and Mechanical Alterations in Bovine Meniscus as a Function of 

Age 

Histological analysis revealed dramatic structural changes in meniscus through 

development. The meniscus increased in size with age, particularly in the medial-lateral 

direction (Fig 3-2A). In fetal and juvenile menisci, proteoglycan (PG) was concentrated 
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in the inner-most tip of the tissue (Fig 3-2, arrows) with little staining throughout the 

rest of the tissue. Adult menisci stained darkly for PG throughout the tissue. H&E 

staining showed a progressive decline of cell density with advancing age (Fig 3-2B). 

Morphologically, the thickness of collagen bundles increased through development (Fig 

3-2B). The age-dependent changes observed histologically were concurrent with 

mechanical changes, with ~5-fold improvements in the equilibrium compressive 

modulus between each age tested. 

 

Figure 3-2 Histological and mechanical properties of bovine meniscus are modulated by age. (A) 
Radial sections from the central region of the meniscus stained with Picrosirius Red (top), Alcian 
Blue (middle), and a combination of the two (bottom) reveals changes in tissue size and PG 
distribution (blue) with age (Scale: 10 mm). Arrows indicate concentration of Alcian Blue staining 
at the inner tip. (B) Transverse sections of meniscus stained with H&E reveal decreasing cell 
density with age (Scale: 100 µm). (C) Compressive equilibrium modulus increases significantly 
with each increase in age (n=6). * indicates difference from fetal with p<0.0001. # indicates 
difference from juvenile with p<0.0001. 

 
3.4.3 Biochemical Analysis of Bovine Meniscus as a Function of Age 

Samples from the inner, middle and outer region of the meniscus were digested to 

elucidate biochemical changes with development. Overall, water content did not change 

with age (Fig 3-3A). In contrast, fetal and juvenile meniscus contained significantly 
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lower GAG content than adult meniscus (Fig 3-3B). Fetal meniscus had significantly 

more GAG in the inner region than the outer region, although by the juvenile stage, 

difference by region was less pronounced. Adult meniscus also had significantly more 

GAG in the inner region compared to outer region. Further, the relative proportion of 

GAG in the middle region of the meniscus increased in adult specimens. The overall 

collagen content increased significantly from fetal to juvenile meniscus, but remained 

the same between juvenile and adult meniscus (Fig 3-3C). The outer region of the fetal 

meniscus had significantly less collagen than the other regions, perhaps due a blending 

of the synovial rim with the tissue early in development. By juvenile and adult stages, 

there were no differences in collagen content between regions. Finally, adult meniscus 

had significantly less DNA content than fetal or juvenile meniscus (Fig 3-3D). Cell 

density in the fetal meniscus showed the largest distribution with location, with 

significantly more DNA found in the inner region compared to the outer region. With 

maturation, the distribution of DNA equilibrated.  
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Figure 3-3 Biochemical content and distribution of the bovine meniscus is modulated by age. (A) 
Water content as a function of tissue wet weight. (B) GAG, (C) collagen content as a percent of dry 
weight. (D) DNA content per dry weight. N = 6/region/age.  – indicates significant differences 
between groups with p<0.05. 

 

3.4.4 Integration Potential of Bovine Meniscus as a Function of Age 

For each age, circular meniscus explants with concentric full-thickness defects were 

formed and cultured for up to 8 weeks. Histology revealed continual improvements in 

matrix connectivity at the injury site in fetal and juvenile tissue. In contrast, no 

integration was seen in adult samples through 8 weeks (Fig 3-5A). Viewing the ‘best’ 
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integrated samples (juvenile, week 8) under polarized light microscopy showed that 

while new collagen was deposited at the injury site, this new matrix was not aligned or 

contiguous with the surrounding collagen bundles (Fig 3-5A, green arrows).   

 

Figure 3-4 Experimental design for meniscus integration studies. (A) Cylindrical explants (8 mm) 
were removed sterilely from fetal, juvenile and adult meniscus. After flattening surfaces, central 
cores were punched with a 4mm dermal punch, removed, and replaced into the original position 
to simulate a full-thickness meniscus injury. (B) A custom mechanical testing device was used to 
measure the force required to extrude the inner core from the meniscus explant. 

 
The mechanical testing results mirrored these histological observations. Fetal explants 

improved in integration strength over 8 weeks, with significant improvements at 6 and 8 

weeks compared to week 0 (p < 0.05). Integration strength of juvenile defects increased 

at a slower pace, with significant improvements by week 8. The integration strength of 

adult samples did not change (Fig 3-5B).   
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Figure 3-5 Age-dependent integration of bovine meniscus. (A) H&E staining of the injury site at 
week 8 shows signs of repair in fetal and juvenile tissue, but not in adult tissue (Scale = 200 µm). 
Lower right: Picrosirius Red staining of 8 week juvenile sample viewed under polarized light 
reveals lack of collagen continuity at the injury site.  (B) Integration strength as a function of 
meniscus age with time in culture. Integration strength increases significantly for fetal and 
juvenile samples, but not for adult samples. (C) Mechanical testing results demonstrating 
variability in response between specimens. N = 7-12. * indicates significant difference (p < 0.05) 
from week 0. # indicates significant difference (p < 0.05) compared to adult week 8. 

 

3.4.5 Integration Potential in the Presence of TGF-β 

To further improve repair, juvenile and adult meniscus explants were cultured with and 

without 10 ng/mL TGF-β3, a concentration previously shown to promote matrix 

deposition in meniscus fibrochondrocytes [50, 51, 65]. Addition of TGF-β3 increased 

matrix deposition at the injury site in both juvenile and adult samples (Fig 3-6A, B). 

Picrosirius Red staining revealed no major changes in collagen levels (Fig 3-6C, D). 

However, Alcian Blue staining of PG was significantly greater in explants cultured in the 
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presence of TGF-β (Fig 3-6C, D). Even in the presence of TGF-β, some sections of the 

injuries appeared to be disconnected. It is unclear if this is an artifact from histology, or 

if these regions contribute to the variability seen in the mechanical testing results. 

 

 

Figure 3-6 Histological analysis of integration in the presence or absence of TGF-β after 8 weeks 
of in vitro culture. (A) H&E staining reveals that while the juvenile sample appears to have healed 
across the injury site, no obvious integration is visible in the adult sample. (B) The addition of 
TGF-β improved cell and matrix formation at the injury site for both juvenile and adult samples. 
Scale = 100 µm. (C and D) Picrosirius Red staining (left) is consistent across samples at 8 weeks. 
However, Alcian Blue staining (right) of PG reveals significant depletion in the presence BM 
compared to TGF-β in both juvenile and adult specimens. Scale = 500 µm. 

 

 The integration strength of both juvenile and adult meniscus explants improved 7-fold 

by 8 weeks with the addition of TGF-β, reaching 97 kPa and 57 kPa, respectively (Fig 3-

7A). Continued exposure to TGF-β for 8 weeks resulted in significant improvements 

from week 4 and compared to basal media alone. Further, juvenile meniscus integration 
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strength was significantly higher than adult meniscus integration strength by 8 weeks. 

Biochemical analysis of the tissue after mechanical testing showed that GAG content 

decreased over time when cultured in basal media; GAG content was far below native 

tissue, particularly for adult tissue (Fig 3-7B, dotted line). Conversely, addition of TGF-

β maintained native levels of GAG in the explants. Due to the lower initial concentration 

of GAG in juvenile tissue, the quantity of GAG in the explants cultured in TGF-β did not 

increase significantly. However, adult explants had almost 2-fold more GAG by 8 weeks 

than explants cultured in basal media alone. Further, adult explants contained 

significantly more GAG than juvenile explants cultured in the same conditions, similar to 

the trend in native tissue. These quantitative measures of GAG content correlate well 

with histological staining (Fig 3-6C and 3-6D). Even in the presence of TGF-β, DNA 

content in explants fell below native levels (Fig 3-7C). Similar to native tissue, adult 

explants had significantly less DNA than juvenile explants. As shown via histology (Fig 

3-6C, 3-6D) and by quantification (Fig 3-7D), collagen content did not change between 

groups or over time.   
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Figure 3-7 TGF-β improves integration strength and preserves explant GAG content after 8 weeks 
of in vitro culture. (A) Integration strength of juvenile and adult defects improved in the presence 
of TGF-β (n = 7-18) compared to basal media (BM). (B) GAG content was depleted in the absence 
and maintained in the presence of TGF-β (n = 6) compared to native tissue (dashed line). (C) 
DNA content decreased in all conditions. (D) Collagen content remained consistent across all 
conditions. (E) Appearance of explants after 8 weeks in culture. Scale = 5 mm. * indicates 
significant difference (p < 0.05) between ages within a given media condition and time point. # 
indicates significant difference (p < 0.05) between media conditions at a given time point. – 
indicates significant difference (p < 0.05) between time points within a given media condition and 
age. 
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3.4.6 Integration Potential of a Fibrous Scaffold 

To evaluate integration between engineered materials and native meniscus, PCL was 

electrospun in 1mm thick aligned sheets and cut into 4mm diameter discs. These discs 

were subsequently spot-welded to one another to form columns (Fig 3-8A) that were 

situated inside juvenile and adult meniscus explants and cultured for 1, 3 and 6 weeks. 

Despite the significantly higher native tissue density of juvenile tissue, similar numbers 

of cells populated the scaffolds by 6 weeks (Fig 3-8D). The infiltration was progressive 

and occurred more quickly for juvenile compared to adult explants, with significantly 

fewer cells in the adult scaffold than in the juvenile scaffold at 3 weeks. No differences 

were detected in cell density between the bottom, middle and top of the column, 

suggesting uniform infiltration from the exterior circular wall of the native tissue. In 

terms of location (Fig 3-8E), most cells were located in the outer-most zone (1) adjacent 

to the native tissue and the fewest cells reached the center region (4). Although juvenile 

tissue had almost 5-fold higher average cell density, the zonal cell density was similar 

between juvenile and adult tissue. 
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Figure 3-8 Comparable cellular infiltration in juvenile and adult meniscus defects repaired with 
nanofibrous scaffolds. (A) Cylindrical meniscus explants were formed, and a central core was 
removed and replaced with a column of electrospun poly(ε-caprolactone) nanofibrous scaffold 
disks welded together at the central point. (B) Cell infiltration into the cylindrical constructs was 
quantified using a custom MATLAB program. Left: Excerpt of image of the DAPI-stained 
composite with the electrospun scaffold (ES) region divided to quantify cell infiltration from the 
surrounding native tissue (NT). Right: Cells were counted in binary images by zone. Native tissue 
density was determined using 3 regions from each image (boxes) and averaged across all samples. 
(C) Left: DAPI staining of integration zone between native tissue (NT) and scaffold (Sc). Scale bar 
= 100 µm. Right: H&E staining of integration zone. Scale bar = 500 µm. (D) Significant cell 
infiltration was seen after 3 and 6 weeks for juvenile and adult meniscus defects, respectively. By 
week 6, scaffold infiltration was comparable between ages (n=9/age/timepoint). (E) Juvenile cells 
populated the scaffold more rapidly than adult scaffolds, although the overall densities were 
comparable despite a significantly higher starting density in juvenile native tissue. * indicates 
significant difference (p < 0.05) from week 1. # indicates significant difference (p < 0.05) between 
ages. α indicates significant difference (p < 0.05) from zone 1. 
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3.5  Discussion  

While injury to the meniscus is the leading cause for orthopedic surgery [17], therapeutic 

options are limited and still often lead to the development of osteoarthritis [19, 20, 108, 

109]. In this work, we characterized cell behavior, tissue architecture, and integration 

potential of the meniscus as a function of age given prior evidence of healing in 

immature meniscus [33] and in related juvenile [72, 96, 98] and fetal [54-56] 

fibrocartilaginous tissues. Further, we established a test bed for the optimization of a 

tissue engineered scaffold.  

 

When bovine MFCs were extracted from fetal, juvenile and adult menisci, age did not 

alter their behavior in monolayer culture. Consistent with these findings, we have 

previously shown that in the ovine model, fetal and adult MFCs proliferate and migrate 

at the same rate [103]. In contrast, related cell types, such as ACL fibroblasts and dermal 

fibroblasts, lose proliferation and migration capacity with age [57, 58].  

 

At the tissue level, meniscus size and architecture changed with development. In fetal 

and juvenile meniscus, cell density was higher, collagen bundles were smaller, and PG 

was concentrated in the inner tip of the tissue. In adult tissue, PG filled the majority of 

the tissue, DNA content decreased and became more uniform, and collagen fiber bundles 

increased in thickness. The majority of these changes occurred upon skeletal maturity 

(i.e. from juvenile to adult), rather than progressively through early development. Our 

findings are corroborated by other work in the field; similar changes in PG deposition 

and collagen development were noted by Melrose and coworkers in an ovine model [73]. 

Chen and coworkers found that PG content increased with age, DNA content decreased, 

and collagen content increased in the inner region of the meniscus from the fetus to 
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adult in bovine meniscus tissue [110]. Further, Clark and Ogden observed progressive 

changes in collagen bundle thickness and cell density in human fetal and juvenile 

meniscus [31]. 

 

These architectural changes corresponded to functional improvements in the 

compressive moduli concomitant with the increasing weight-bearing demands in the 

joint. The equilibrium compressive modulus (163 kPa) for adult bovine tissue was higher 

than that found in human tissue (25-37 kPa) [6] and is similar to that reported for 

porcine meniscus (170-350 kPa) [7]. Chen and coworkers found similar compressive 

properties for fetal tissue, but a significantly lower compressive modulus (30 kPa) in the 

adult [110]. The differences in adult compressive modulus may be attributed the location 

from which the samples were obtained; Chen and coworkers tested explants from the 

inner region perpendicular to the femoral surface of the meniscus, while we tested 

explants taken from the middle region of the meniscus perpendicular to the tibial 

surface. 

 

The similarities between fetal and juvenile meniscus were also apparent in the explant 

integration studies (Fig 3-5). Both fetal and juvenile defects increased in integration 

strength by 8 weeks, although fetal explants improved at a faster rate. In contrast, and as 

is seen clinically in the avascular region, adult meniscus showed very little healing [26]. 

Interestingly, DiMicco and coworkers demonstrated that fetal cartilage does not heal as 

well as juvenile cartilage in vitro [96], suggesting that although the meniscus and 

cartilage are related, the healing mechanisms at young ages may be different between 

these tissues. 
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TGF-β is known to promote the deposition of a fibrocartilaginous matrix and the 

maintenance of phenotype in MFCs [65, 79, 80, 82]. Exposure of meniscus explants to 

10 ng/mL of TGF-β3 for 8 weeks improved integration strength significantly, to 7 times 

the level of basal media alone (~100 kPa) (Fig 3-7A). Adult meniscus healed 

significantly better with the addition of TGF-β, though juvenile meniscus improved more 

than adult meniscus. Previously, McNulty and coworkers utilized a similar in vitro 

model to evaluate the dose responsivity (0.1-10 ng/mL) to TGF-β1 and found a small but 

significant improvement at the 1 ng/mL dose (12 kPa) after 14 days. TGF-β played a 

number of roles that may contribute to the observed improvement in healing. First, it 

maintained the PG content of explants over 8 weeks (Fig 3-6D) compared to basal 

media alone. Imler and coworkers previously showed that the addition of TGF-β to 

meniscus explants increases sulfate incorporation [111]. Interestingly, GAG content in 

the explants cultured in basal media were comparable between ages at 8 weeks, despite 

significantly higher initial GAG content in adult explants. Further, the loss was 

progressive, with adult meniscus segments failing to maintain native levels of GAG at 8 

weeks, even in the presence of TGF-β. While leaching or degradation of PG may an 

artifact of in vitro culture, the power of TGF-β to promote PG deposition to native levels 

may contribute to the regeneration of meniscus-like ECM at the site of injury. In keeping 

with these findings, Wilson and coworkers recently showed that PG levels in meniscus 

explants decreased over time in culture, and that the addition of TGF-β increased PG 

levels in the tissue [112]. Further, exposure to a broad-spectrum metalloproteinase 

inhibitor significantly reduced PG loss over time [113].  

 

While no quantitative improvements in collagen content were found, histology of the 

injury site suggested that more collagen was deposited with exposure to TGF-β3. 

Further, we have previously found that immature ovine MFCs deposit more collagen 
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than adult MFCs in the presence of TGF-β when cultured in pellets [103]. DNA levels 

decreased in all explants to 50-75% of native levels. Cell death may occur early in culture 

due to the lack of physiologically relevant stimuli, impaired nutrition, or from the 

process of defect formation itself. These observations are another artifact of in vitro 

culture, but must be considered when endeavoring to develop in vitro protocols for 

meniscus repair. 

 

Translating this work to tissue engineering approaches, we incorporated electrospun 

scaffolds into this in vitro defect model. These scaffolds support MFC proliferation and 

matrix deposition over time, and increase in mechanical properties in vitro using both 

bovine and human cells [50, 51]. Despite marked differences in tissue structure and 

composition, implanting these scaffolds into juvenile and adult meniscus defects yielded 

surprisingly similar results. While the infiltration of the scaffold was somewhat faster in 

younger tissue, after 8 weeks the average cell number within was comparable, despite 

significantly more cells adjacent to the scaffold in the juvenile tissue (Fig 3-8C). Similar 

to the behavior in monolayer culture (Fig 3-1), migration into and subsequent 

proliferation in the scaffold were comparable by age, although perhaps slightly better 

distributed in the scaffold containing adult MFCs. The finding suggests that while 

heightened cell density at the injury site may promote integration, it may not improve 

colonization and maturation of a tissue engineered scaffold.  

 

Identifying distinguishing features of immature, healing meniscus may provide new 

directions for advancing repair in the adult and tailoring engineered scaffolds to advance 

regeneration. Specifically, we noted a simultaneous loss of healing capacity with 

increased GAG concentration, decreased DNA content, and thickening of collagen 

bundles. Modifying the structure of mature meniscus to more closely resemble immature 
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meniscus might promote healing. While depletion of GAG appears to be an interesting 

therapeutic option, GAG levels depleted quickly and significantly during in vitro culture 

(Fig 3-7B). The addition of TGF-β maintained near-native levels of GAG content and 

improved integration, suggesting that GAG depletion may in fact hinder meniscus repair 

rather than promote it. Similarly, the quantity of DNA dropped in all meniscus samples 

with in vitro culture. While the addition of TGF-β did not change the overall DNA 

content of the explants, it is possible that small local increases in cell density occurred at 

the injury sites and bolstered healing. Drug delivery of TGF-β directly to the site of injury 

at high doses through a system such as the one described in [114] may support local 

proliferation at the injury site. While bulk collagen content did not change progressively 

with tissue maturation, the bundle size increased. No major changes in collagen content 

were observed during in vitro culture, even in the presence of TGF-β. However, it is 

possible that small increases in collagen content occurred at the injury site. It may be 

speculated, but remains to be seen, that decreasing collagen bundle size through partial 

degradation might enhance tissue healing.  

 

Although this work contributes to our knowledge of the meniscus and develops an in 

vitro test bed for the integration of tissue engineered materials with native tissue, some 

limitations do exist. First, we only analyzed overall collagen and GAG content, rather 

than considering individual components that may vary with development. While 

culturing explants for 8 weeks allowed us to evaluate the reparative capacity of the 

tissue, this in vitro environment is artificial, with no mechanical loading and loss of PG 

and cellularity. Also, we have only explored one concentration of TGF-β, whereas other 

concentrations may have yielded different or improved integration levels. Given that 

matrix formation, integration, and healing will depend on both anabolism and 

catabolism, it will be important to explore expression and activity of matrix 
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metalloproteinases (MMPs) and other matrix modulating enzymes in future studies. 

Further, although cells infiltrated the electrospun scaffold, minimal matrix was 

deposited (data not shown) due to a lack of additional matrix stimulating factors in the 

media that might also influence migration, proliferation, and tissue formation. Finally, 

while this in vitro test bed provides a facile system for understanding meniscus healing 

and optimizing scaffold design, it may not translate directly to the in vivo articular 

environment. Future work will include extending these experiments to clinically relevant 

large animal models, as well as models involving human meniscus tissue to ensure that 

our in vitro findings translate to clinical applicability.  

3.6  Conclusions 

Overall, this study explored developmental changes in bovine meniscus in terms of tissue 

architecture, extracellular matrix distribution and content, and cell behavior. These 

changes corresponded to differential integration capacity of the meniscus with aging. 

Integration was significantly enhanced by the addition of the exogenous growth factor 

TGF-β, which also served to better maintain overall explant properties. Moreover, we 

showed that in vitro models such as this can be test beds for optimizing engineered 

meniscus scaffolds before in vivo implantation. To glean instructive information 

regarding healing with age, we noted that while cell behavior did not change with age, 

the overall balance between cells, GAG and collagen content in the meniscus changed 

markedly. While loss of GAG content to immature meniscus levels (a natural 

consequence of the in vitro culture system) did not promote adult meniscus healing, 

increasing local DNA content or decreasing collagen fiber diameter remain viable targets 

for enhancing repair. As such, this work identifies new targets for meniscus tissue 

engineering as well as a method for testing and optimizing potential clinical solutions for 

meniscus repair. 
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4: Growth Factor Supplementation Improves Native and 

Engineered Meniscus Repair in Vitro 

4.1 Abstract  

Few therapeutic options exist for meniscus repair after injury. Local delivery of growth 

factors may stimulate repair and create a favorable environment for engineered 

replacement materials. In this study, we hypothesized that basic fibroblast growth factor 

(bFGF) (a pro-mitotic agent) and transforming growth factor beta 3 (TGF-β3) (a pro-

matrix formation agent) would modulate meniscus repair and the integration/ 

maturation of electrospun poly(ε-caprolactone) (PCL) scaffolds for meniscus tissue 

engineering. Circular meniscus defects were formed and refilled with either native tissue 

or scaffolds. Constructs were cultured in serum-containing media for 4 and 8 weeks with 

various growth factor formulations, and assessed for mechanical strength, biochemical 

content and histological appearance. Our results showed that either short-term delivery 

of bFGF or sustained delivery of TGF-β3 increased integration strength for both juvenile 

and adult bovine tissue, with similar findings for engineered materials. While TGF-β3 

increased proteoglycan content in the explants, bFGF did not increase DNA content after 

8 weeks. This work suggests that in vivo delivery of bFGF or TGF-β3 may stimulate 

meniscus repair, but that the timecourse of delivery will strongly influence success. 

Further, electrospun scaffolds are a promising material for meniscus tissue engineering 

with comparable or superior integration properties compared to native tissue.  
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4.2 Introduction 

The meniscus is a C-shaped fibrocartilage in the knee that distributes load from the 

femur to the tibia [1, 2]. Its unique architecture, composed of aligned collagen bundles 

and centrally-located proteoglycan, allow it to withstand both tensile and compressive 

forces in order to maintain joint stability during movement [3]. Due to the strong forces 

imparted on the tissue [5], both acute and degenerative tears are common, and natural 

repair capacity is limited, especially in the inner avascular regions [15]. Of the 850,000 

meniscus surgeries performed annually in the US [115], resection is the most common 

technique to alleviate symptoms associated with meniscal tears. However, the procedure 

can result in joint incongruency and significantly increased loads on the surrounding 

cartilage, which can lead to osteoarthritis [19, 20]. Few procedures exist to repair the 

meniscus and none have gained widespread acceptance. Thus, there is a need for novel 

repair strategies for meniscus repair. 

 

Delivery of biological factors may stimulate tissue repair either alone or in combination 

with mechanical stabilization. Early work delivered vascular endothelial growth factor 

(VEGF) from sutures to stimulate blood vessel formation in the damaged region [116]. 

However, delivery of VEGF from sutures failed to improve healing in vivo in a number of 

studies, perhaps due to suboptimal timecourse of delivery [117, 118]. Rather than 

modulating the vascular supply, another approach is to alter the biochemical properties 

of the tissue using different growth factors. During repair, new matrix must be formed by 

nearby cells to bridge the wound edges, creating a mechanically stable interface across 

the damaged region. Increasing the amount of matrix deposited by each cell or 

increasing the overall number of cells (or a combination of the two) would improve 

repair. One of the most potent stimulators of matrix deposition by meniscal cells is 
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transforming growth factor beta 3 (TGF-β3) [65, 77, 80, 104, 111], although other growth 

factors such as bFGF, PDGF-AB, IGF-1 and EGF all increase matrix production to a 

lesser extent [119]. Basic fibroblast growth factor (bFGF) strongly stimulates 

proliferation of meniscus cells in monolayer culture as well as in tissue engineered 

constructs [10, 119-121]. Both TGF-β3 and bFGF were identified as potential repair 

factors for meniscus by Kasemkijwattana et al [122], and Imler et al showed that TGF-β3 

stimulated protein and proteoglycan deposition more than bFGF in meniscus explants 

[111]. Due to the ability of these growth factors to stimulate matrix deposition and 

improve cell density, they are promising candidates for repairing avascular meniscus 

tears as well as promoting the maturation and integration of engineered materials in 

vivo.  

 

Another important parameter is the timecourse for delivery of these factors. Many 

growth factors function during a very specific window and at precise doses, and may 

work in concert with other cues [123]. Clinically, growth factors could be delivered with a 

bolus injection or via sustained release from a biomaterial over a given period of time; 

continual delivery of growth factors over a long period of time is not a clinically relevant 

dosing regimen. Fortunately, recent work suggests that short-term exposure to growth 

factors may actually have superior efficacy compared to continual delivery, perhaps due 

to reduced receptor desensitization [124]. For example, agarose hydrogels containing 

bovine chondrocytes were exposed to 2 weeks of TGF-β3, and had more matrix 

deposition than continual delivery of TGF-β3 for 2 months [125]. Similar results were 

found when dynamic loading was applied [126] and with mesenchymal stem cells [127]. 

  

Chemical cues alone may not be sufficient to restore meniscus function in situations 

where repair is not possible. To address this issue, tissue engineering generates 
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structures that, with time in situ, recapitulate native tissue architecture and behavior 

[14]. Recently, biodegradable scaffolds composed of porous collagen (Menaflex) or 

porous polyurethane (ActiFit) were developed to replace regions of resected meniscus, 

but their use is limited due to questions surrounding their efficacy. Another promising 

approach to meniscus repair utilizes electrospun scaffolds, which are fabricated by 

collecting nano-sized synthetic and biological polymeric fibers on electrically charged 

surfaces [53]. These scaffolds are amenable to cell attachment, proliferation and 

infiltration [107, 128, 129]. Further, they can be functionalized to release chemicals such 

growth factors [130-132]. More work is needed to understand how electrospun scaffolds 

become colonized by native cells, what is the strength of the scaffold/meniscus interface, 

and what are the key modulators in this integration process. 

 

Because large animal studies of meniscus repair are quite costly, smaller in vitro 

experiments are beneficial for assessing the potential of novel therapies [94]. Early work 

demonstrated that meniscus tissue remains viable when cultured in proper media 

conditions [92]. Later, concentric explants were used to test the influence of 

inflammatory cytokines and matrix metalloproteinases on meniscus integration [35]. 

More recently, we have used this model to demonstrate that, in accordance to 

observations made clinically [33], immature meniscus heals better than mature 

meniscus in vitro [128] and that TGF-β3 bolsters that integration [35, 128]. Also, we 

filled meniscus rings with electrospun scaffolds and demonstrated increased colonization 

of scaffolds with time in culture [128]. While juvenile tissue is significantly more cellular 

than adult tissue, both were colonized at the same rate, suggesting at innate speed for 

colonization despite starting cell density [128]. In order to further functionalize these 

scaffolds, we also developed a technique to deliver drugs from PLGA microspheres 

entrapped between electrospun fibers using a sacrificial fiber population, with limited 
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impact on mechanical properties and independent release profiles [114]. These 

microspheres could eventually release growth factors to promote repair in meniscus. 

 

To further these lines of inquiry, we treated juvenile and adult bovine meniscus defects 

with TGF-β3 and bFGF for both short-term (1 week) and sustained (8 weeks) 

timecourses, alone and in combination, and assessed the mechanical integration 

strength of the repair as well as the biochemical content of the repair material. Further, 

we ‘repaired’ meniscus defects with electrospun scaffold and tested the mechanical 

integration of the two materials under various growth factor delivery schemes and 

timecourses. If successful, growth factors found to improve repair could be released from 

fibers or entrapped microspheres in vivo. We hypothesized that bFGF would improve 

integration properties by increasing the cell density in the tissue, and that short-term 

delivery of the growth factors would result in comparable integration to continual 

delivery. Further, mechanical integration of electrospun scaffolds would be comparable 

to tissue integration.  

 

4.3 Materials and Methods 

4.3.1 Evaluation of Meniscus-to-Meniscus Repair with Growth Factor Addition 

Menisci were dissected from the knee joints of juvenile (0-3 months old) and adult 

(skeletally mature) bovine limbs in a sterile manner. Cylinders (8 mm diameter x 3 mm 

thick) were excised centrally in the axial direction using a dermal punch (Miltex, 

Plainsboro, NJ), as shown in Figure 4-1A. To simulate a meniscus tear, a full-thickness 

inner columnar defect (4 mm diameter) was made and the core reinserted with care to 

maintain fiber alignment, as shown in Figure 4-1B-C. 

 



 

54 

 

Figure 4-1 Experimental set-up and design. (A) 8 mm cylinders were excised from bovine 
meniscus. (B) The cylinders were flattened and a smaller biopsy punch was used to remove a 4 
mm core. (C) The core was either reinserted back into the tissue (left), or replaced with a 1 mm 
thick disc of electrospun PCL (right, inlay scale = 20 µm). (D) Temporal schematic of media 
formulations over 8 weeks and testing timepoints. 

 
Meniscus repair constructs were cultured in control media (Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% fetal bovine serum (FBS), 1% penicillin/streptomysin/ 

fungizone (PSF), 50 µg/mL ascorbate-2-phosphate) supplemented with 5 different 

growth factor regimens: continual 50 ng/mL bFGF, 1 week of bFGF, continual 10 ng/mL 

TGF-β3, combined continual bFGF and TGF-β3, combined 1 week bFGF and continual 

TGF-β3, or 1 week of TGF-β3 (Figure 4-1D). After 4 and 8 weeks of culture, the 

mechanical integration strength was evaluated using a custom testing device [128]. 

Briefly, an Instron 5848 was outfitted with a 3.5 mm diameter indenter in series with a 

50 N load cell.  This indenter was placed above a plate with a 5 mm diameter through-

hole. The meniscus sample was placed onto the plate, and the indenter progressed 

through the defect site at a rate of 0.0833 mm/sec. Integration strength was calculated 

as: 
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where r was the core radius (2 mm). Height (h) of the interface was determined by 

averaging four caliper measurements of the construct prior to testing (n=5-8/condition, 

work performed in triplicate for control, TGF-β3 and bFGF conditions, duplicate for all 

other conditions, all data shown). 

 

4.3.2  Biochemical and Histological Analysis of Meniscus-to-Meniscus Repair 

After testing, the meniscus-to-meniscus construct was reassembled and prepared for 

biochemical analysis by lyophilizing and digesting the tissue in a buffer containing 2% 

papain at 60°C. The resulting digestate was used to assess DNA content (PicoGreen 

Assay, Invitrogen, Carlsbad, CA), glycosaminoglycan (GAG) content (DMMB Assay [67]) 

and collagen content (OHP assay with a conversion factor of 7.14 [68]). Results were 

normalized to sample dry weight. Histological analysis was conducted on fresh, untested 

samples at each condition and time point. Constructs were fixed in phosphate-buffered 

4% paraformaldahyde (PFA), embedded in paraffin and cut into 8 µm sections that were 

placed onto glass slides. Samples were stained with Alcian blue for proteoglycans (PG), 

Picrosirius red for collagen, and DAPI (Prolong Gold, Invitrogen, Carlsbad, CA) or a 

mixture of hematoxylin and eosin (H&E) to identify cell nuclei. Immunohistochemical 

staining for anti-phospho-histone H3 (Sigma-Aldrich, Saint Louis, MO), a proliferation 

marker, was performed after antigen retrieval (2% hyaluronidase), followed by exposure 

to hydrogen peroxide and background blocking (Background Buster, American Master 

Tech, Lodi, CA) for 10 minutes each, using 8 µm sections of rat spleen as a positive 

control (data not shown). The primary antibody was incubated for 90 minutes at room 

temperature, with subsequent secondary antibody incubation and color development 

using the SuperPicture DAB kit (Invitrogen, Carlsbad, CA). Images were acquired at 20X 

using a Nikon Eclipse 50i microscope with NIS Elements F3.0 software 
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4.3.3 Formation of Electrospun Scaffolds 

To generate electrospun scaffolds for meniscus repair, 14.3% w/v poly(ε-caprolactone) 

(PCL, 80 kDa, Sigma-Aldrich, St. Louis MO) in a 1:1 mixture of tetrahydrofuran (THF, 

Fisher Chemical, Fairlawn NJ) and N,N-dimethylformamide (DMF, Fisher Chemical) 

was mixed overnight. A 20 mL syringe was filled with PCL electrospinning solution and 

fitted with a stainless steel 18G blunt-ended needle that served as a charged spinneret. A 

flow rate of 2.5 mL/h was maintained with a syringe pump (KDS100, KD Scientific, 

Holliston, MA). A power supply (ES30N-5W, Gamma High Voltage Research, Inc., 

Ormond Beach, FL) applied a +13 kV potential difference between the spinneret and the 

grounded mandrel located at a distance of 12 cm from the spinneret. Additionally, two 

aluminum shields charged to +10 kV were placed perpendicular to and on either side of 

the mandrel to better direct the fibers towards the grounded mandrel. The mandrel was 

rotated via a belt mechanism conjoined to an AC motor (Pacesetter 34R, Bodine Electric, 

Chicago, IL) at a speed of 10 m/sec to form 800 µm thick mats. 

 

4.3.4 Evaluation of Meniscus-to-Scaffold Repair 

After scaffold fabrication, 4 mm scaffold discs were excised using a dermal punch and 

sterilized under UV light for 10 minutes. Meniscus constructs were created as previously 

described, but instead of reinserting the central core of the construct, a disc of scaffold 

was press fit into the defect (Figure 4-1C). The scaffold repair constructs were cultured 

in 5 different growth factor regimens: control, continual 50 ng/mL bFGF, 1 week of 

bFGF, continual 10 ng/mL TGF-β3, or combined 1 week bFGF and continual TGF-β3 

(n=8-10/condition, performed in duplicate for control and TGF-β3 conditions). After 4 

weeks, mechanical integration was assessed as described above, with h of the scaffold 

disc measured using an OptoNCDT laser measuring device (Micro-Epsilon, Raleigh, NC) 

after testing. Scaffolds were digested and analyzed for biochemical content as previously 
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described. Similarly, histology was performed by fixing samples in 4% PFA, embedding 

in Cryo-OCT Compound (Tissue Tek, Fisher, Fairlawn, NJ) with an axial orientation, 

sectioning and staining as previously described.  

 

4.3.5 Statistical Analysis 

For this work, 2-way ANOVAs were performed using SYSTAT software (Chicago, IL) to 

compare timepoints and conditions using Tukey’s post-hoc test. In some conditions, 

non-TGF-β3 groups were considered separately from TGF-β3 groups, as indicated. 

Significance was set at p ≤ 0.05. 

 

4.4 Results  

4.4.1 Evaluation of Meniscus-to-Meniscus Repair with Growth Factor Addition 

Meniscus-to-meniscus repair constructs were formed and cultured in vitro. Overall, and 

similar to previous findings [128], juvenile tissue integrated to a greater extent than 

adult tissue, with 2- to 4-fold differences in integration strength after 8 weeks (Figure 

4-2A,B). After 8 weeks, short-term (1 week) delivery of 50 ng/mL bFGF resulted in 

better integration compared to control conditions or continual addition of bFGF for both 

juvenile and adult tissue. Exposure to TGF-β3 resulted in more extensive improvements 

in integration strength compared to all non-TGF-β3 groups after 4 weeks in juvenile and 

after 8 weeks in adult meniscus-to-meniscus samples. In this context, transient bFGF did 

not further improve repair. Interestingly, continual delivery of bFGF in the context of 

continual TGF-β3 resulted in integration properties comparable to those found in the 

absence of TGF-β3. Transient delivery of TGF-β3 resulted in comparable integration 

strength to continual TGF-β3 exposure after 4 weeks but not after 8 weeks.  
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Figure 4-2 Integration properties of meniscus-to-meniscus repair constructs. (A) Juvenile 
integration strength. (B) Adult integration strength. Growth factors and timecourse of delivery 
strongly influenced integration properties, with TGF-b3 increasing integration strength the most, 
followed by transient bFGF. Continual bFGF or a mixture of bFGF and TGF-β3 did not improve 
integration. ‡ indicates difference from control and continual bFGF, comparisons made only 
between non-TGF-β3 groups. θ indicates difference from all non-TGF-β3 groups and bFGF+TGF-
β3. Line indicates difference between timepoints. # indicates difference from TGF-β3 and 
transient bFGF+TGF-β3. For all comparisons, p < 0.05; n = 10-24/condition. 

 

Biochemical analysis revealed minor fluctuations in DNA content across all groups, with 

increases after 4 weeks in the continual presence of bFGF and in conditions of transient 

bFGF. However, these effects were no longer apparent at 8 weeks (Figure 4-3B). GAG 

content was higher and closer to native levels in all samples exposed to TGF-β3, with 

some variations in the group containing TGF-β3 and bFGF (Figure 4-3C). Juvenile and 

adult tissue responded in similar patterns to the different media formulations in terms of 

biochemical content. 
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Figure 4-3 Biochemical content of meniscus-to-meniscus repair constructs. (A) Short term and 
continual bFGF increased DNA content at 4 weeks, but the effect mostly subsided by 8 weeks. (B) 
Continual delivery of TGF-β3 stimulated GAG deposition in the constructs. Data normalized to 
dry weight. * indicates difference from control. For all comparisons, p < 0.05. 

 
Histologically, cells populated the injury rim in all conditions, with more tissue bridging 

the injury region in constructs cultured with continual TGF-β3 alone. No connections 

formed when TGF-β3 and bFGF where delivered simultaneously (Figure 4-4Ai). The 

injury region did not stain strongly for proliferating cells, despite the presence of bFGF 

(Figure 4-4Aii). While few significant differences were noted between groups at the 

injury region, there were major differences at the exterior edge of the tissue, where a 

thick cell sheath formed in the presence of TGF-β3 (Figure 4-4Bi) that stained strongly 

for proliferating cells only when bFGF was added (Figure 4-4Bii). Because continual 

combined delivery TGF-β3 and bFGF also resulted in sheath development and exhibited 

low integration strength, the sheath alone does not account for the large forces required 

to separate the tissue explants. In contrast, only a very thin layer of cells stained 

positively for proliferation in the presence of bFGF alone. Overall, the groups exposed to 

TGF-β3 had the greatest PG staining in the bulk of the tissue (Figure 4-4Biii) 

compared to non-TGF-β3 groups. 
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Figure 4-4 Histology of meniscus-to-meniscus repair constructs. (A) The injury region and (B) the 
outer edge after 8 weeks in either control media or media supplemented with bFGF, both bFGF 
and TGF-β3, or TGF-β3. H&E (i) identifies cell nuclei, PHH3 (ii) identifies cells in mitosis, and 
Alcian Blue (iii) stains for glycosaminoglycans. Scale = 200 µm. 

 
 
4.4.2 Evaluation of Meniscus-to-Scaffold Repair with Growth Factor Addition 

Aligned PCL electrospun scaffolds (Figure 4-5A) were used to fill meniscus defects in 

order to form meniscus-to-scaffold repair constructs. Generally, the integration 

properties of meniscus-to-scaffold constructs in various media conditions followed the 

same pattern as meniscus-to-meniscus repair constructs (Figure 4-5A). In control 

conditions, meniscus-to-scaffold integration strength was 2- to 3-fold greater than 

meniscus-to-meniscus integration. Unlike meniscus-to-meniscus repair constructs, 

transient application of bFGF did not further improve integration strength. Similar to 
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meniscus-to-meniscus repair, the continual addition of bFGF significantly decreased 

integration strength. The addition of TGF-β3 resulted in 2-fold improvements in 

integration strength that were comparable to meniscus-meniscus construct integration. 

Similar to previous findings, transient bFGF did not improve integration in the presence 

of TGF-β3. Unlike the native tissue, biochemical content of the scaffolds did not vary 

significantly, with inclusion of bFGF only slightly improving cellularity and TGF-β3 

producing small increases in GAG and collagen content compared to controls (Figure 

4-5B).  

 

 

Figure 4-5 Integration properties of meniscus-to-scaffold repair constructs. (A) Scaffold-to-
meniscus integration is better than meniscus-to-meniscus integration in the absence of TGF-β3 
after 4 weeks. Integration strengths are comparable in the presence of TGF-β3. (B) Cell density 
and collagen content does not change in different media conditions; TGF-β3 increases GAG 
content slightly. Line indicates difference between groups and * indicates difference from control 
and transient bFGF, considering only non-TGF-β3 groups. ‡ indicates difference from non-TGF-
β3 groups. For all comparisons, p < 0.05; n = 8-20/condition. 
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Histologically, we observed that meniscus cells from the tissue colonized the scaffold, 

populating the outer regions most densely after 4 weeks (Figure 4-6C). Both collagen 

(red) and proteoglycan (blue) were found throughout the scaffold (Figure 4-6D), 

particularly when constructs were cultured in the presence of TGF-β3 (Figure 4-6E). In 

the absence of TGF-β3, little tissue was found bridging the scaffold and the native tissue 

compared to constructs exposed to TGF-β3 (Figure 4-6F).   

 

 

Figure 4-6 Histology of meniscus-to-scaffold repair constructs. (A) SEM of electrospun scaffolds 
(scale = 10 µm). (B) Schematic of sectioning plane for histology. (C) DAPI staining reveals cells in 
the scaffold (‘S ’) and in the meniscus (‘M ’) after 4 weeks (scale = 500 µm, TGF-β3 treated). (D) 
Collagen (red) and GAGs (blue) are found in the scaffold, although are not as dense as the native 
meniscus tissue (M) (scale = 500 µm, TGF-β3 treated). (E) Matrix deposition in the scaffold in 
various media conditions (scale = 200 µm). (F) Neo-tissue (white arrows) bridges the scaffold and 
meniscus in TGF-β3 conditions, but not in control or bFGF conditions (scale = 200 µm). 
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4.5 Discussion  

Clinical techniques to repair or replace the knee meniscus remain limited. Here, we 

explored how delivery of various growth factors, their combination and the duration of 

delivery might modulate the repair response. First, we studied growth factors in the 

context of acute, avascular meniscal tears, which represents 2/3 of the tissue [26]. 

Hypercellular juvenile and hypocellular adult meniscus tissue were studied, and patterns 

of repair were similar across both groups, with juvenile tissue healing twice as strongly 

as adult tissue [128]. These findings suggest that there are no innate differences to 

growth factor response by age. Growth factors were provided to the tissue through the 

aqueous environment; however, in vivo delivery will require a finite delivery time course, 

and so short-term, 1-week delivery schemes were also explored. Short-term delivery of 

bFGF was superior to continual bFGF and control conditions, although neither bFGF 

conditions resulted in a sustained increase in cell density beyond 4 weeks, contrary to 

our hypothesis. This finding suggests that cells in meniscus explants are not as sensitive 

to the mitogenic effects of bFGF as cell in monolayer [10, 119-121]. Perhaps the 

differences in response can be associated with modification of cell phenotype when in 

monolayer expansion; Kato et al found that chondrocytes, a related cell population, only 

had elevated matrix synthesis with exposure to bFGF during the logarithmic cell 

expansion phase and not after becoming confluent [133]. Supporting this theory, cells in 

bFGF-containing media did not stain more for the proliferation marker PHH3 within the 

bulk of the tissue or at the injury site, but only at the very exterior of the tissue. 

 

In contrast to the 2- to 4-fold increases in integration strength resulting from short-term 

bFGF exposure, the addition of TGF-β3 resulted in greater than 10-fold improvements in 

integration strength in meniscus-to-meniscus repair constructs. Unfortunately, 

combining these two successful regimens did not result in further, synergistic 



 

64 

improvements. While long-term delivery of TGF-β3 improves integration the most, 

short-term delivery of bFGF offers some important benefits over that delivery scheme. 

bFGF is significantly less expensive than TGF-β3 and requires a shorter time of 

exposure, resulting in less volume of growth factor overall. Further, while the primary 

effect of bFGF may be mitosis, it also stimulates matrix deposition, although not as 

robustly as TGF-β3 [111, 121, 134]. Interestingly, combined continual delivery of TGF-β3 

and bFGF decreased the integration properties compared to continual TGF-β3 alone, 

demonstrating that together, the growth factors would not support repair in vivo. Also, 

short-term TGF-β3 did not improve integration strength past 4 weeks, contrary to our 

hypothesis. Previous work that examined fibrochondrocytes in agarose gels from the 

temporomandibular joint, a related structure, found continuous TGF-β3 exposure 

improved properties better than intermittent exposure in agarose gels [135], consistent 

with the findings of the present study.  Taken together, these findings illustrate the 

importance of delivery duration and growth factor combination when repairing meniscus 

tears. 

 

In addition to meniscus-to-meniscus integration, we evaluated the integration and 

maturation of electrospun PCL scaffolds as a meniscus repair material. Such a therapy is 

useful for instances where meniscus damage is too severe for repair to be attempted. In 

these cases, it would be beneficial for the damaged portion to be replaced with a 

synthetic material capable of mimicking the ECM of native tissue and sustaining cell 

viability. Further, this electrospun scaffold could be used to deliver growth factors to the 

repair site through the use of heparin binding, emulsion electrospinning, coaxial 

electrospinning or other novel techniques [130-132]. Cells from the native tissue densely 

colonized the exterior of the scaffold and then uniformly infiltrated the scaffold, without 

favoring the region closest to the tissue itself (Figure 4-6C). However, a practical 
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limitation of implanting an acellular scaffold is that patient mobility would be limited to 

minimize scaffold compression prior to cell infiltration and matrix deposition. Scaffold 

preseeding techniques are currently being explored.  

 

The meniscus-to-scaffold repair constructs integrated equivalently or better than the 

meniscus-to-meniscus repair constructs, as hypothesized. Similar to native tissue, 

integration strength increased with short-term exposure to bFGF, and increased further 

with continual TGF-β3 delivery, where new tissue bridged the scaffold with the native 

meniscus (Figure 4-6F, arrows). While growth factors influenced the integration 

properties of meniscus-to-scaffold repair constructs, they did not result in significant 

changes in the bulk characteristics of the scaffold after 4 weeks. In contrast, Pangborn et 

al demonstrated that exposure to TGF-β1, an isoform of TGF-β3, stimulated significantly 

more collagen and proteoglycan deposition than exposure to bFGF in scaffold-based 

approaches to meniscus engineering [136]. Also, bFGF was found to increase cell density 

in PLLA scaffolds compared to control conditions [134]. However, these studies and 

other work from our group that demonstrated more significant matrix deposition [50] 

utilized serum-free media, suggesting that serum may have mitigated the effect of growth 

factors in our experiment.  

 

Although this work represents novel approaches to identifying targets for meniscus 

repair and replacement, some drawbacks can be identified. The work was performed on 

bovine rather than human tissue, so some differences may develop when this work is 

translated to humans. Further, the synovial environment of the knee was not captured in 

the culture system. Finally, while growth factors are extremely potent, their half-life 

tends to be short, so they will need to be stabilized in some way. Previous work tried to 

overcome the problem through gene therapy approaches [122].  
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4.6 Conclusions 

Identifying novel approaches to meniscus repair and replacement require the screening 

of many candidate molecules and materials. This work clearly shows that growth factor 

regimen and timecourse of delivery play a key role in repair success. Future work will 

translate this research into large animal studies, as we continue to develop our 

understanding for how to bolster repair mechanisms in tissue and promote successful 

formation and maturation of synthetic meniscus. With this work, we hope to develop 

novel approaches to meniscus repair and replacement. 
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5: Porosity and Preseeding Influence in vitro 

Electrospun Scaffold Maturation and Integration 

Capacity  

5.1 Abstract  

Electrospinning generates fibrous scaffolds ideal for engineering soft orthopedic tissues, 

such as the knee meniscus. By modifying the electrospinning apparatus, scaffolds with 

many different structures can be created. For example, fibers can be aligned in one 

direction, or the porosity of the scaffold can be modified through the use of multi-jet 

electrospinning and the removal of sacrificial fibers. In this work, we investigated the 

role of fiber alignment and scaffold porosity on construct maturation and integration 

within in vitro meniscus defects. Further, we explored the effect of preseeding expanded 

meniscus fibrochondrocytes (MFCs) onto the scaffold at a high density prior to in vitro 

repair. Our results showed that high porosity electropun scaffolds integrated better to 

native tissue and matured to a greater extent than low porosity scaffolds, while scaffold 

alignment did not influence integration or maturation. Further, the addition of expanded 

MFCs to scaffolds prior to in vitro repair improved integration with native tissue, but did 

not influence maturation. In contrast, preculture of these same scaffolds for 1 month 

prior to repair decreased integration with native tissue, but resulted in a more mature 

scaffold compared to cellular scaffolds or acellular scaffolds. This work informs scaffold 

selection in future in vivo studies, bringing us closer to identifying an ideal scaffold for 

meniscus tissue engineering. 

 

 



 

68 

5.2 Introduction 

Interest in electrospun scaffolds for fibrous tissue engineering has grown dramatically in 

recent years. In this technique, electrostatic forces are used to generate nano- to micron-

sized fibers that resemble the collagen fibers found in orthopedic soft tissues, including 

the knee meniscus. Electrospun scaffolds can mimic both the anisotropy of fibrous 

tissues as well as withstand the high loads that are imposed on the tissues during 

physiologic deformation [52]. Depending on the choice of material, cells will attach, 

proliferate and deposit matrix in these structures, improving the mechanical properties 

of the scaffolds over time [53]. Further, electrospun scaffolds have been used in a wide 

range of applications, including cardiovascular, orthopedic, skin and neurological tissue 

engineering [137-140]. The ability to electrospun a wide range of materials, including 

synthetic and natural polymers, the potential to include drug delivery components, and 

the ease of tuning fiber properties provide a wide array of scaffolds to explore [53]. 

 

Previously, we assessed the role of fiber alignment on electrospun scaffold maturation in 

vitro. By collecting fibers onto a rotating mandrel rather than on a flat surface, one can 

form aligned architectures that resemble native tissue structures. When cells were 

seeded onto these scaffolds and cultured for 10 weeks in vitro, total matrix production 

was comparable between disorganized and aligned scaffolds, increasing with time in 

both conditions. However, the tensile modulus in the fiber direction of aligned scaffolds 

was 7-fold higher than disorganized scaffolds, approaching that of native meniscus [50]. 

These findings indicate that scaffold architecture can dictate long term maturation 

properties. Beyond internal organization, sheets of electrospun fibers can be organized 

into tissue-like structures. For example, bilayers of electrospun scaffold were assembled 

into rings and filled with a hydrogel to form an engineered intervertebral disc, a fibrous 

tissue related to the meniscus, with histological and mechanical properties similar to the 
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native tissue [129]. Also, sheets of electropun scaffold can be folded into a wedge-shaped 

structure resembling native meniscus [141].  

 

For meniscus tissue engineering, different cell types can be isolated, expanded and 

manually seeded onto the surface of electrospun scaffolds prior to implantation in order 

to expedite the regenerative process. Over time, these cells (along with host cells) will 

migrate into the scaffold, depositing both proteoglycan and collagen [50]. There are a 

number of potential cell sources for meniscus tissue engineering. One option is to use 

autologous meniscus fibrohcnodrocytes (MFCs). This would require a surgery prior to 

implantation to isolate the cells, followed by a period of expansion prior to seeding, 

maturing and implanting the scaffold. While MFCs are already conditioned for the 

specific mechanical environment and nutrient levels in the knee, and will produce 

appropriate extracellular matrix, this approach has a number of drawbacks, including 

the costs associated with a second knee surgery and cell handling, and potential MFC 

dedifferentiation during expansion. Another cell source is mesenchymal stem cells 

(MSCs). These cells can be differentiated into numerous musculoskeletal phenotypes 

[142]. When bovine MSCs were seeded onto electrospun scaffolds in a pro-chondrogenic 

media, higher amounts of matrix were deposited compared to expanded MFCs [50]. 

Notably, the behavior of MSCs on electrospun scaffolds appears to differ by species; 

while bovine MSCs performed better than their associated MFCs, human MSCs 

performed significantly worse than their associated MFCs, with limited cell infiltration 

and matrix deposition over 9 weeks [143]. Finally, cells from related tissues, such as 

synovial cells, chondrocytes or fibroblasts, could also be a viable cell source with 

potentially beneficial properties [144, 145].  
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Regardless of the starting cell source, one drawback of electrospun materials is that the 

structure is quite dense, which can limit cell infiltration into the center of the scaffold. 

Uneven distribution of cells prevents the development of a homogeneous matrix, and so 

limits the improvement of tensile strength over time. To promote cell infiltration and 

matrix production, we have explored a number of different techniques. One approach is 

to modify the culture conditions; culturing these materials on a rocking bioreactor after 

seeding resulted in better cell infiltration, although the technique limited matrix 

accumulation over time [146]. Alternatively, multi-jet electrospinning can be used to 

create scaffolds with distinct fibers populations that degrade at different rates. Slow-

degrading poly(ε-caprolactone) (PCL) fibers can be intermixed with water-soluble 

poly(ethylene oxide) (PEO) fibers. Upon hydration, these ‘sacrificial’ PEO fibers dissolve, 

leaving a more porous architecture of PCL fibers. Scaffolds of varying porosities can be 

fabricated by changing the relative percentage of sacrificial PEO fibers. Previously, we 

found that increased porosity resulted in better cell infiltration and matrix distribution, 

although there was an associated decrease in mechanical strength and architectural 

stability at very high sacrificial levels [107]. This finding might be remedied with the 

inclusion of a third fiber population (e.g. PLGA) that has an intermediate degradation 

rate, helping to maintain higher mechanical properties within a dynamic scaffold that 

changes in porosity over a longer period of time [147].  

 

While cell-seeded electropun scaffolds will mature in vitro, another equally important 

consideration is how such materials integrate with native meniscus tissue. If electrospun 

scaffolds are to replace regions of resected tissue (as is commonly done during 

meniscectomy, the most prevalent orthopedic surgery in the US [115]), their initial and 

long term integration with native structures is of paramount importance. Previously, we 

utilized an explant defect model to assess the integration potential of native tissue as a 
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function of age [128]. In this system, the force required to separate apposing pieces of 

tissue formed into concentric circles (i.e. the integration strength) was determined. This 

approach has been used in both meniscus and cartilage tissue engineering to assess 

tissue-tissue and tissue-biomaterial integration [35-37, 94]. In our prior study, we also 

replaced the inner core of the meniscus defect with a disc of electrospun scaffold, and 

found that native meniscus cells infiltrated the material well after 6 weeks of in vitro 

culture. In this work, we expanded upon this model to test the mechanical integration 

strength between electrospun scaffold and native tissue. We hypothesized that increasing 

scaffold porosity would improve both the maturation and integration strength of the 

scaffolds in vitro.  

 

Clinically, the implantation of an acellular material into a meniscal defect would be the 

simplest and most cost effective approach for repair. As previously noted, prior studies 

have demonstrated that nanofibrous materials are readily populated by native meniscus 

cells in vitro. Indeed, other acellular scaffolds, such as the collagen meniscus implant 

(CMI) [24], have been implanted adjacent to the meniscus and became colonized by 

endogenous cells. However, acellular electrospun scaffolds are delicate materials, and 

are particularly susceptible to compaction upon exposure to compressive forces. Thus, 

post-operative rehabilitation will require a significant period of non-weight bearing, 

similar to the post-operative procedure for the CMI. As the scaffold becomes colonized 

by local cells and matrix is deposited, the new extracellular matrix will reinforce the 

nanofibrous architecture. As previously discussed, one approach to reduce the non-

weight bearing period would be to implant mature scaffolds that are already colonized 

with cells. Pre-seeded or pre-matured scaffolds might also integrate more rapidly with 

native tissue given the increase in early cell number at the construct border. To address 

this issue, we evaluated the effect of the direct addition of expanded MFCs to the scaffold 
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immediately prior to in vitro defect repair, as well as placement after a 1-month 

preculture period. With this work, we hope to better understand the optimal properties 

for electrospun scaffolds with respect to both maturation and integration with native 

tissue. These findings will guide our selection for material implantation in future large 

animal studies. 

5.3 Materials and Methods 

 
Figure 5-1 Schematics of experiments. (A) Multiple scaffold architectures were tested after 4 and 
8 weeks of in vitro culture in the presence of FBS and TGF-β3 to determine the scaffold with the 
best maturation and integration properties (scale = 20 µm). (B) Different seeding techniques were 
utilized, including a 1-month preculture prior to construct assembly, to determine the most 
appropriate cellular context for implantation. 

 
 
5.3.1 Fabrication of Electrospun Scaffolds with Varying Alignment and Porosity 

To create electrospun scaffolds, two separate solutions (14.3% w/v poly(ε-caprolactone) 

(PCL, 80 kDa, Sigma-Aldrich, St. Louis MO) in a 1:1 mixture of tetrahydrofuran (THF, 

Fisher Chemical, Fairlawn NJ) and N,N-dimethylformamide (DMF, Fisher Chemical) 

and 10% polyethylene oxide (PEO, 200 kDa, Polysciences, Warrington PA) in 90% 
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EtOH) [107] were mixed overnight prior to electrospinning. Four scaffolds with distinct 

fiber architectures were created (Figure 5-1A) with two alignment schemes 

(disorganized, aligned) and 3 levels of PEO fiber fraction (0, 30%, 60%) to change the 

porosity. To create disorganized PCL scaffolds, a 20 mL syringe was filled with PCL 

electrospinning solution and fitted with a stainless steel 18G blunt-ended needle that 

served as a charged spinneret. A flow rate of 2.5 mL/h was maintained with a syringe 

pump (KDS100, KD Scientific, Holliston, MA). A power supply (ES30N-5W, Gamma 

High Voltage Research, Inc., Ormond Beach, FL) applied a +13 kV potential difference 

between the spinneret and the grounded mandrel located at a distance of 12 cm from the 

spinneret. Additionally, two aluminum shields charged to +10 kV were placed 

perpendicular to and on either side of the mandrel to better direct the electrospun fibers 

towards the grounded mandrel. The mandrel was rotated via a belt mechanism 

conjoined to an AC motor (Pacesetter 34R, Bodine Electric, Chicago, IL) at a speed of 

0.34 m/sec, slow enough to limit any pronounced alignment. 

 

To fabricate the remaining three aligned scaffolds, a custom trijet electrospinning device 

[147] was utilized to generate an intermingled composite of PCL and PEO fibers. Three 

syringes were fitted with needles, as described previously, and were directed at a single 

central rotating mandrel (10 m/s) equidistant from each other and separated by shields 

(+5 kV charge). The speed of the mandrel was sufficiently fast to align the collecting 

fibers into a single direction. A flow rate of 2 mL/h and a +15 potential difference 

between the needles and mandrel was utilized. The distance between the mandrel and 

the needle was 12 cm. The needles followed a reciprocating path using a custom fanner in 

order to better disperse the fibers along the length of the mandrel. As depicted in Figure 

5-1A, the following configurations were used to create each of the three aligned 

scaffolds: 3 jets of PCL to create ‘Low Porosity’, 1 jet of PCL/1 jet of PEO to create 
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‘Medium Porosity’, and 1 jet of PCL/2 jets of PEO to create ‘High Porosity’ scaffolds. The 

resulting PCL content was 100%, 70%, and 30%, respectively. The grading (low, 

medium, high) indicates the relative porosity of the material after PEO removal. A total 

volume of 20 mL of spinning solution was used to generate each mat with a final 

thickness of ~1 mm prior to PEO removal. After fabrication, 4 mm discs were excised 

using a dermal punch and stored in a desiccator until use. The percent of PEO 

incorporation was verified by measurement of mass loss following exposure to aqueous 

solution. 

 

5.3.2 Formation of Meniscus/Scaffold Constructs 

Menisci were dissected from the knee joints of juvenile (3 months old) bovine limbs in a 

sterile manner. Cylinders (8 mm diameter x 3 mm thick) were excised centrally in the 

axial direction using a dermal punch (Miltex, Plainsboro, NJ). A smaller dermal punch 

(4 mm diameter) was used to remove a central core from the cylinder to form a ring, and 

an electrospun disc was press-fit into the meniscus ring as depicted in Figure 5-1A 

[128]. Prior to insertion, scaffolds were sterilized with UV light for 10 minutes.  

 

5.3.3 Optimization of Scaffold Alignment and Porosity 

Electrospinning was carried out as described above to generate disorganized low 

porosity, aligned low porosity, aligned medium porosity and aligned high porosity 

scaffolds (n=7-9/condition, all work performed in duplicate, one representative data set 

shown). In order to assess if the presence of tissue influenced scaffold maturation, 

tissue-free control scaffolds were cultured by seeding meniscus fibrochondrocytes 

(MFCs) directly onto both sides of the four types of scaffold discs at a density of 3333 

MFCs/mm2 scaffold per side (n=6-7/condition, work performed in duplicate, one 

representative data set shown). MFCs were extracted from a 5 mm radial slice of sterile 
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juvenile meniscus by mincing the tissue into 2 mm3 pieces and allowing the cells to 

migrate out onto the tissue culture plastic (Corning, Sigma-Aldrich, St. Louis MO) to 

establish primary cultures over the course of a few weeks. For expansion, cells were 

cultured in basal media (Dulbecco’s modified Eagles medium (DMEM) with 10% fetal 

bovine serum (FBS) and 1% penicillin/streptomycin/fungizone (PSF)). After formation, 

the tissue-free control scaffolds and scaffold/meniscus repair constructs were cultured in 

DMEM with 10% FBS, 1% PSF, 50 µg/mL ascorbate-2-phosphate (vitamin C) and 10 

ng/mL TGF-β3. After 4 and 8 weeks, samples were removed from culture and prepared 

for histology (control scaffolds and repair constructs) or tested mechanically (repair 

constructs only). The mechanical integration strength between the scaffold and native 

meniscus tissue was measured using a custom push-through testing device [128]. Briefly, 

an Instron 5848 was outfitted with a 3.5 mm diameter indenter in series with a 50 N 

load cell.  This indenter was placed above a plate with a 5 mm diameter hole. The 

construct was placed onto the plate, and the indenter progressed through the defect site 

at a rate of 0.0833 mm/sec. Integration strength was calculated using the following 

formula: 

hr

NforceMaximum
StrengthnIntegratio

⋅
=

π2
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The height (h) of the scaffold disc was measured using an OptoNCDT laser measuring 

device (Micro-Epsilon, Raleigh, NC) after pushout.  

 

After testing, the native tissue was discarded and the scaffold was lyophilized and 

digested in a buffer containing 2% papain at 60°C. The resulting digest was used to 

assess DNA content (PicoGreen Assay, Invitrogen, Carlsbad, CA), glycosaminoglycan 

(GAG) content (DMMB assay [67]) and collagen content (OHP assay with a conversion 

factor of 7.14 [68]). Results were normalized to sample dry weight. To assess cell and 
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matrix distribution, 1-2 fresh constructs per condition were prepared for histology by 

fixing the samples in 4% paraformaldahyde overnight, embedding in OCT freezing media 

(Tissue-Tek, Fisher, Fairlawn, NJ) and cryosectioning onto glass slides (12 µm thick) 

perpendicular to the plane of the electrospun disc. Slides were stained with Alcian blue 

for proteoglycan, Picrosirius red for collagen and DAPI (Prolong Gold, Invitrogen, 

Carlsbad, CA) to identify cell nuclei.  

 

5.3.4 Optimization of Scaffold Seeding Method 

In order to assess the role of cell seeding (Figure 5-1B) on maturation and integration, 

juvenile bovine MFCs were seeded onto aligned Low and High porosity scaffolds as 

previously described. Scaffold discs were seeded and immediately implanted (‘Cellular’), 

or seeded and cultured for 4 weeks prior to implantation (‘Preculture’). Acellular 

scaffolds were also inserted as a control (‘Acellular’) (n=7-8/group, performed in 

duplicate, one representative data set shown). After 4 and 8 weeks, constructs were 

processed for histology and mechanical integration as previously described.   

 

5.3.5 Statistical Analysis 

For all work, 1 and 2-way ANOVAs were performed using SYSTAT software (Chicago, IL) 

to compare timepoints and conditions using Tukey’s post-hoc test. Significance was set 

at p ≤ 0.05. 

 

5.4 Results  

5.4.1 Optimization of Scaffold Architecture: Alignment and Porosity 

Four types of electrospun scaffolds were created with various alignments and porosities. 

The disorganized scaffold had no prevailing fiber direction, whereas the aligned scaffolds 



 

77 

had a single predominant fiber direction (Figure 5-2A). When scaffolds were seeded 

with expanded MFCs and cultured for 8 weeks, histology revealed the formation of cell- 

and matrix-dense capsules around the scaffolds. While no differences were seen 

histologically between disorganized and aligned scaffolds, higher porosity scaffolds had 

better cell infiltration (Figure 5-2B) and more uniform matrix deposition (Figure 5-

2C). Further, increasing porosity resulted in incrementally higher quantities of cells and 

matrix in the scaffold (p < 0.05) (Figure 5-2D). 

 

Figure 5-2 Tissue-free control scaffolds seeded with MFCs. (A) SEM images of scaffold fiber 
morphology (scale = 20 µm). Cross section of scaffolds with (B) DAPI staining for cell nuclei and 
(C) Picrosirius red / Alcian blue staining for matrix deposition indicates superior properties in 
high porosity scaffolds, with no difference based on alignment (scale = 200 µm). A thick capsule 
was observed around all scaffolds. (D) DNA (top) and GAG (bottom) content increased relative to 
scaffold weight with alignment and in higher porosity scaffolds. Line indicates significant 
difference, with p< 0.05; n=6-7/condition. 
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To test the impact of scaffold architecture and porosity on cell colonization directly from 

native tissue, we inserted discs of acellular scaffold into circular meniscus defects and 

evaluated infiltration into the scaffold and mechanical integration with the native tissue. 

This approach mimics the implantation of an acellular scaffold in vivo. We measured the 

force required to displace the inner scaffold disc from the outer meniscus ring, and 

calculated the integration strength based on the construct geometry at 4 and 8 weeks. 

High porosity scaffolds integrated with native tissue to a much greater degree than low 

porosity scaffolds, with a 3-fold improvements in integration strength at 8 weeks (p < 

0.05) (Figure 5-3A). Fiber alignment did not modulate the integration capacity for the 

low porosity scaffolds. Scaffolds pushed out of meniscus rings were digested and the 

biochemical content measured after 8 weeks in vitro. Quantification confirmed that 

twice as many cells per weight of scaffold populated high porosity scaffolds compared to 

low porosity scaffolds (p < 0.05) (Figure 5-3B). Further, scaffold porosity strongly 

affected matrix deposition, with low, medium and high porosity scaffolds containing 

incrementally more matrix (Figure 5-3C).  
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Figure 5-3 Optimization of scaffold architecture: Mechanical properties and biochemistry. (A) 
Integration with native tissue was greater for high porosity scaffolds than for disorganized or 
aligned low porosity scaffolds. (B) DNA content was higher in high porosity scaffolds compared to 
disorganized and aligned low porosity scaffolds after 8 weeks. (C) Scaffold porosity (but not 
alignment) influenced GAG deposition, with differences found between low, medium and high 
porosity scaffolds after 8 weeks. Line indicates significant difference, with p < 0.05; n = 7-
8/condition.  

 

Thin capsules of cells and matrix formed around the scaffold in this in vitro defect, but it 

was less pronounced than in tissue-free control scaffolds (Figure 5-4A, B). New 

ancillary tissue was deposited between the scaffold and native tissue, creating a bridge of 

matrix that influenced integration properties (Figure 5-4A). The ancillary tissue was 

more pronounced in high porosity scaffolds (data not shown). Furthermore, high 

porosity scaffolds showed the best cell distribution, with similar cell density to native 

meniscus tissue after 8 weeks in culture and almost uniform cell distribution throughout 

the material (Figure 5-4B, lower-right image).  
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Figure 5-4 Optimization of scaffold architecture: Histology. (A) Alcian blue and Picrosirius red 
staining of high porosity scaffold discs cultured in meniscus defects for 8 weeks in vitro revealed 
significant matrix deposition in the scaffold and the formation of surrounding ancillary tissue 
(scale = 500 µm). (B) High porosity scaffolds had better cell distribution through the depth 
compared to low porosity scaffolds, and alignment did not affect cell infiltration (scale = 500 µm). 
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5.4.2 Optimization of Scaffold Seeding Method 

Aligned low and high porosity scaffolds were next used to determine whether the seeding 

method influenced scaffold maturation and integration. While low porosity scaffolds are 

the easiest to fabricate and are most extensively tested, high porosity scaffolds 

demonstrate superior integration and maturation properties. Three different 

scaffold/meniscus repair constructs were formulated: acellular implantation, the 

addition of expanded MFCs immediately prior to insertion (‘cellular’), and 4 weeks of 

preculture of seeded scaffolds prior to insertion (‘preculture’).  

Mechanical testing revealed that, as previously shown, high porosity acellular scaffolds 

integrated to a greater extent than low porosity scaffolds after 8 weeks in vitro (p < 0.05) 

(Figure 5-5A). Seeding the scaffold immediately prior to implantation with a high 

density of expanded MFCs resulted in significantly better integration in low porosity 

scaffolds, but did not further improve high porosity scaffold integration capacity. 

Preculturing scaffolds for 4 weeks prior to implantation resulted in significantly lower 

integration strengths for both scaffold types compared to cellular conditions (p < 0.05).  

Biochemical analysis of scaffolds revealed variable maturation based upon seeding 

technique. Seeding expanded MFCs onto the scaffold (‘cellular’ and ‘preculture’ 

conditions) resulted in lower cell densities in the scaffolds after 8 weeks compared to 

acellular controls, where MFCs populated the scaffold directly from the tissue (Figure 

5-5B). One extra month of preculture did not bolster DNA content; however, it greatly 

increased GAG content in the scaffold, suggesting that the cells were steadily forming 

matrix that accumulated in the scaffold, with little proliferation, during the preculture 

period (Figure 5-5C).  
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Figure 5-5 Optimization of seeding method: Mechanical properties and biochemistry. (A) For low 
porosity scaffolds, cellular scaffolds integrated significantly better than acellular or preculture 
scaffolds after 8 weeks. For high porosity scaffolds, acellular and cellular scaffolds had 
comparable integration strength. Both low and high porosity precultured scaffolds exhibited 
significantly lower integration strength with native tissue compared to cellular scaffolds. (B) 
Scaffolds seeded with expanded MFCs (cellular and preculture conditions) contained less DNA 
per dry weight than acellular scaffolds, which were populated by MFCs that migrated directly 
from the surrounding meniscus ring. (C) Precultured scaffolds contained more GAG overall than 
acellular or cellular scaffolds after 8 weeks. (D) High porosity scaffolds weighed less than low 
porosity scaffolds; preculture scaffolds were heavier than acellular and cellular scaffolds (dry 
weight). Line indicates difference, with p > 0.05. 

 

Histologically, cellular and preculture constructs had incrementally thicker cell capsules 

surrounding the scaffold compared to acellular controls (Figure 5-6B). Examination of 

the scaffold/meniscus interface showed that the cellular capsule in precultured samples 

appeared to prevent integration with native tissue in preculture constructs. In contrast, 

cellular scaffolds had a tight connection with the native tissue (Figure 5-6C, arrows). 
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Figure 5-6 Optimization of seeding method: Histology. (A) Schematic of histology sectioning 
planes. (B) DAPI staining reveals better cell infiltration in high porosity scaffolds and thicker cell 
capsules in precultured samples (scale = 500 µm). (C) Alcian blue and Picrosirius red staining 
shows robust integration (arrows) between cellular scaffolds and native tissue. In contrast, 
limited integration was observed between the preculture scaffolds and native tissue, likely due to 
the formation of a cell capsule (arrows) during preculture (high porosity scaffold shown, scale = 
250 µm). 

 

5.5 Discussion  

Electrospinning is an extremely versatile fabrication method that can produce scaffolds 

with a wide array of properties. By changing the collection surface, the type of polymer, 

and the number of spinnerets in the electrospinning apparatus, many different scaffold 

architectures can be created and evaluated. Over the years, our lab and others have 

explored a number of different types of electrospun scaffolds for use in fibrous tissue 

engineering. These tissues, such as the knee meniscus, suffer from low intrinsic repair 

capacity, low cell metabolic activity and density, and experience extremely high 
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mechanical stresses in vivo, so advanced materials must be used to engineer 

replacement tissues that can successfully promote repair and reestablish joint 

mechanics.  

 

In this work, we employed a concentric explant model wherein a disc of electrospun 

scaffold was cultured inside a ring of bovine meniscus. We used this approach to assess 

both maturation (histology, biochemical content of the scaffold after 8 weeks) and 

integration of the scaffold to native tissue (mechanical integration strength after 4 and 8 

weeks). Specifically, we explored the role of scaffold alignment, porosity and seeding 

technique on these outcomes. In this context, we found that scaffold alignment did not 

influence maturation or integration capacity. Also, the alignment of the fibers in the 

scaffold with respect to the alignment of the collagen fibers in the tissue did not influence 

integration (data not shown), although we hypothesize that it could influence the tensile 

load transmission under more physiologic loading scenarios. We also found that higher 

porosity scaffolds mature faster and integrated better with native tissue than their less 

porous counterparts. When considering different cell seeding techniques, the addition of 

cells immediately prior to implantation enhanced integration strength, particularly with 

low porosity scaffolds. While precultured scaffolds had the highest matrix content, 

integration with native tissue was markedly reduced. In future work, the outer rim of the 

precultured scaffolds might be removed to improve the integration properties of these 

more mature construct. 

  

While the concentric explant model has been used by us and other groups to assess 

integration, it does not represent the most physiologically relevant damage force in the 

knee. A tissue engineering meniscus patch would primarily experience compressive 

forces and tensile forces, rather than shear extrusion. However, the technique does 
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provide us with comparative information on the relative integration potential between 

scaffold types, which can motivate other studies. While bioreactors and subcutaneous 

studies can mimic the in situ environment of the knee, direct implantation of the 

material into a meniscus defect will give us the best information on its repair potential. 

Indeed, preliminary data from an ovine implantation suggest that high porosity 

constructs integrate better than low porosity constructs in situ [148]. 

 

During in vitro testing, the composition of the culture media will influence the results of 

the experiment profoundly. All of the constructs in this study were cultured in the 

presence of fetal bovine serum, rather than in a chemically defined media, in order to 

more closely mimic the complexity of the in vivo environment. Notably, a thicker capsule 

was seen around the scaffolds and less pronounced matrix deposition was seen 

throughout the scaffolds compared to prior work that employed a pro-chondrogenic, 

chemically defined media [50, 129]. This capsule confounds the biochemical analysis, as 

we were unable to remove it prior to digestion. Also, we included TGF-β3 to the media in 

order to stimulate matrix production and a chondrogenic phenotype; without this 

growth factor, limited matrix would be deposited (data not shown). In vivo, local 

delivery of TGF-β3 could be accomplished through entrapped drug-delivering 

microspheres [114] or other delivery techniques from electropun fibers [53], in order to 

ensure that sufficient matrix is deposited to support the scaffold during compression and 

reinforce the fibers during tension. 

 

Further, in this work, we employed two distinct cell populations. MFCs were either 

extracted from the tissue, expanded in monolayer and than added back to the scaffold at 

a high density, or acellular scaffolds were colonized by MFCs directly from the adjacent 

tissue. The expanded MFCs are likely phenotypically different from the native MFCs due 
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to dedifferentiation during monolayer expansion [149]. Thus, it is unclear if the 

maturation differences seen between tissue-free control scaffolds and scaffold-meniscus 

constructs are due to changes in cells themselves with passaging, or to the presence of 

the native tissue in the culture well. The tissue extracellular matrix is known to store a 

number of growth factors and those molecules could be released and alter cell behavior 

[150]. Alternatively, living MFCs within the meniscus ring may produce factors and 

signal to the adjacent scaffold [151]. 

 

While this work represents an important step towards identifying the optimal 

electrospun scaffold for meniscus tissue engineering, a few drawbacks exist. First, bovine 

meniscus rather than human meniscus was used. While bovine tissue has been used 

previously for in vitro meniscus work [107, 128, 152], differences in bovine MFC 

behavior compared to human MFCs has been identified [51]. Further, while the 

mechanical properties of meniscus from humans and domesticated animals like the cow 

are similar, the exact composition and the distribution of matrix elements are not 

identical [153]. Also, in this work, only one form of mechanical testing was explored. Lap 

testing or uni-axial tensile testing could all be explored by using different construct 

geometries, and could be related more closely to the specific mechanical challenges 

experienced by an implanted scaffold during normal knee motion; however, these 

constructs have proven challenging to test consistently in previous studies. Finally, 

young (0-3 month) tissue was used for this study. We have previously shown that this 

tissue is hypercellular and has a distinct matrix composition compared to mature bovine 

meniscus tissue, which is more clinically relevant to the aged human population that 

typically presents with meniscus tears. However, despite these differences, we can still 

learn a significant amount about how the different scaffolds mature and integrate with 

meniscus tissue.  
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5.6 Conclusions 

In this work, we considered the effect of scaffold alignment, porosity and seeding 

technique on scaffold maturation and integration with native tissue. While in vitro 

techniques are valuable in assessing the relative potential of various scaffold 

architectures and implantation schemes, other key factors will need to be considered 

when implanting such materials in vivo, including the immune response, 

vascularization, and the response to the synovial environment. With this work, we 

identified several optimal material attributes that may further our efforts to replace 

resected meniscus in a manner that promote regeneration and reestablishes joint 

mechanics. These scaffolds may one day limit the development of cartilage erosion after 

meniscectomy, forestalling the onset of osteoarthritis and the need for total knee 

arthroplasty. 
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6: The Delivery of Molecules from Electrospun Scaffolds: 

A Review of Techniques and Biological Findings 

 
6.1 Abstract 

As previously shown, electrospun scaffolds are a versatile and promising material for 

fibrous tissue engineering. Multi-jet electrospinning and different seeding techniques, as 

well as exposure to various growth factors, can modulate the maturation of the scaffold 

and its integration with native tissue. However, these scaffolds would be more powerful 

if they could also harbor chemical cues that recruit cells, drive behavior or maintain 

appropriate cell phenotypes over time. Due to the large interest in electrospinning 

polymers, a wide range of drug delivery techniques have been developed. Many different 

kinds of molecules can be delivered, including antibiotics, analgesics, cancer 

therapeutics, and proteins. Recently, significant advances have been made in the 

encapsulation and release of growth factors, particularly useful in guiding cell behavior in 

tissue engineered materials. This review will assess the current landscape for drug 

delivery from electrospun scaffolds. 

 

6.2 Delivery of Antibiotics 

One of the first classes of molecules to be delivered from electrospun fibers are 

antibiotics, since scaffolds could be easily applied as wound dressings or formed into 

sutures and designed to release antibiotics slowly to prevent infection at the site of 

injury. Kenawy 2002 demonstrated for the first time the release of tetracycline 

hydrochloride (tet), a broad-spectrum antibiotic, from poly(lactic acid) (PLA), 

poly(ethylene-co-vinyl acetate) (PEVA) or a 50:50 blend of the two by adding tet to the 
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electrospinning solution and stabilizing the mixture with methanol. Drug release was 

seen over 5 days, with a significant burst release at day 1 [154]. 

 

 The significant burst release has been observed by a number of groups mixing 

antibiotics directly into the electrospinning solution to form a blended fiber. Zong 2002 

released Mefoxin from poly(L-lactic acid) (PLLA) fibers and demonstrated that the 

concentration and ionic salt addition had the largest influences on fiber morphology. 

However, they were unable to remove the large burst effect [155]. Similarly, Kim 2004 

showed that Mefoxin released from poly(lactide-co-glycolide) (PLGA) fibers with a burst 

effect. However, this effect could be minimized by the addition of the amphiphilic block 

copolymer (PEG-b-PLA). Staphylococcus aureus cultures exposed to fibers demonstrated 

that the antibiotic remained bioactive upon release, with significant bacterial 

suppression at early timepoints [156].  

 

However, it has been shown that the addition of molecules to the fibers can change the 

mechanical properties of the fibers. To combat this problem, Hong 2008 created 

nanofibrous sheets composed of two fiber populations. Biodegradable poly(ester 

urethane) urea (PEUU) fibers and PLGA fibers loaded with tet were co-electrospun into 

a single mat. Mechanical properties, such as breaking strengths, tensile strength and 

suture retention capacity, were greatly improved by the dual-scaffold over PLGA-tet fiber 

system alone. An in vivo study demonstrated that implantation of the tet-releasing 

scaffold could prevent abscess formation in a contaminated rat abdominal wall [157]. 

 

While significant effort has been made to incorporate tet, other antibiotics with variable 

properties have also been blended into electrospun scaffolds. Zeng 2003 found that 

adding surfactants or proteinase K decreased the burst release of the antibiotic rifampin 
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from PLLA fibers [158]. Also, Katti 2003 explored how fabrication parameters, such as 

needle gauge size, concentration, density and voltage influences loading of the antibiotic 

cefazolin [159].   

 

Although adding the antibiotic directly to the electrospinning solution is a simple 

process, it would be desirable to decrease the burst release seen from most system. So, 

an alternate system of electrospinning a co-axial fiber, with an inner core containing the 

antibiotic and a protective outer shell modulating release properties. This method can 

decrease exposure of drugs to harsh fabrication conditions, as well as create a coating to 

decrease burst release and extend release times. He 2006 created nanofibers with a 

PLLA outer shell and tet encapsulated in the interior fiber. The resulting fibers showed a 

sustained release profile of tet, with almost no burst effect [160]. Huang 2006 compared 

the release of resveratrol (antioxidant) and gentamycin sulfate (antibiotic) from the 

inner core surrounded by a poly(capro-lactone) (PCL) shell. The degradation rate was 

found to be closely related to the hydrophilicity of the drug in the core, and the 

miscibility of the solvents used influenced mechanical properties of the fibers [161]. 

 

Some contest that a sustained release is ideal, but He 2009 argues that different release 

profiles have uses in unique applications. By fabricating fibers using either a blending or 

coaxial technique in order to create sutures, he found that the blended fibers with an 

initial burst could be applicable to antibacterial release, where the drug is needed more 

early on, whereas coaxial fabrication results in more sustained release appropriate for 

growth factor delivery or therapeutic agents [162].  
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6.3 Delivery of Analgesics 

Analgesics have also been incorporated into electrospun fibers as well. Jiang 2004 

demonstrated that by covalently conjugating ibuprofen with poly(ethylene glycol)-g-

chitosan (PEG-g-CHN) and electrospinning with PLGA, sustained release of the drug 

could be attained over 16 days [163].  Also, Qi 2008 created acid-labile electrospun fibers 

that released an analgesic (paracetanol) more completely and at a faster rate when 

placed in acidic environments. Natural decreases in local pH often accompany 

inflammation, tumor growth, and myocardial ischemia, suggesting that such a system 

may provide sophisticated drug delivery capability [164]. The incorporation of 

paracetanol was also more closely explored [165], and it was determined that thicker 

fibers resulted in longer zero-order release profiles.  

 

6.4 Delivery of Cancer Therapeutics 

Another important class of molecules that have been incorporated and released from 

electrospun fibers treats cancer. Systemic administration of anti-cancer medications 

often leads to debilitating side-effects, suggesting that local delivery through a 

biodegradable patch may be less damaging to the patient. In a series of experiments, 

Zeng explored the incorporation of anticancer drugs into PLLA fibers. It was found that 

paclitaxel incorporated uniformly into the scaffolds, whereas doxorubicin hydrochloride, 

a hydrophilic drug, appeared to phase-separate onto the surface of the fibers, leading the 

scientists to propose that the solubility of the drug in the polymer/solvent liquid was 

essential for uniform fiber fabrication [166, 167]. Another interesting application by Xie 

2006 incorporated paclitaxel into electrospun PLGA nanofibers and demonstrated 

cytotoxicity against C6 glioma cell lines for local applications in brain tumor destruction 

[168]. Also, Xu 2006 released BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea from PEG–

PLLA ultrafine fibers and demonstrated sustained release and decreased cell viability of 
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Glioma C6 cells over time [169]. Xu 2005 also demonstrated that doxorubicin 

hydrochloride could be loaded into amphiphilic poly (ethylene glycol)-poly (l-lactic acid) 

(PEG-PLLA) diblock copolymer at 1-5 wt% of the fibers, with release controlled by a 

combined diffusion mechanism and enzymatic degradation mechanism, that proved 

cytotoxic to Glioma C6 cells [170]. 

 

6.5 Delivery of Growth Factors  

Recently, there have been significant advances in the ability to deliver growth factors 

from electropun scaffolds. This type of molecule is particularly challenging to deliver 

because it is prone to denaturation during the electrospinning process; growth factors 

are large and delicate molecules. To that end, a number of different techniques have 

been developed to release growth factors from electrospun materials, including the use of 

annealed fibers, blended fibers, coaxial fibers and multi-component scaffolds.  

6.5.1 Annealed Fibers 

One approach to functionalizing nanofibers is to modify the fibers after electrospinning 

in order to promote growth factor attachment. Growth factors can be immobilized on the 

fiber, reversibly attached via heparin bound to the fiber, or temporarily adsorbed to the 

fiber itself. Reversible attachment through heparin molecules seems to provide the 

highest loading and most sustained release over time. 

 

The most extreme attachment of growth factors is via amine-conjugation of the proteins 

directly to the fibers. While this approach appears to maintain bioactivity of the growth 

factors, it limits exposure to cells directly attached to the fibers. One of the first 

approaches by Choi et al used a PEG-PCL amine-terminated block copolymer to improve 

wound healing in diabetic mice by binding EGF to the fibers using  EDC/HOBt coupling 
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technique [171]. Later work by Cho et al released NGF bound to PEG-PCL fibers through 

EDC/NHS chemistry to promote a neuronal phenotype in mesenchymal stem cells, with 

clearly no release of growth factor over 1 week [172]. Also, simply soaking the fibers in 

NGF resulted in complete release after 1 day, suggesting that some chemical coupling is 

necessary to delivery growth factors in a sustained manner [172].  Futher, Tigli et al and 

Gumusderelioglu  et al immobilized EGF via NHS on PCL and PCL/collagen electrospun 

scaffolds, and demonstrated improved cell spreading, proliferation and wound healing, 

with no proof of release over time [173, 174]. Interestingly, Lee et al first coated PLGA 

fibers with polypyrrole, a conductive material, and then attached NGF using EDC/NGF 

chemistry. A combination of NGF and electrical stimulated resulted optimal neutrite 

outgrowth, compared to NGF alone [175]. In another unique approach, Casper et al 

demonstrated that low molecular-weight heparin (LMWH) functionalized with PEG 

prior to electrospinning with PEO or PLGA improved bFGF retention over time 

compared to non-PEG LMWH [176]. 

 

While these approaches influence cell behavior, they only act upon cells in immediately 

contact with the fibers, thus limiting their influence. In order to release growth factors 

rather than immobilize them, similar chemistry can be used to immobilize heparin and 

heparin sulfate to fibers. Heparin is a glycosaminoglycan that reversibly binds a 

multitude of different growth factors [177]. By using EDC/NHS chemistry to attach 

heparin to electrospun fibers, growth factors can be reversibly attached, with sustained 

release over time. For example Kim et al found that heparin-conjugated PCL/gelatin 

fibers released more bFGF in a sustained manner than soaking the unmodified fibers in 

the growth factors, where release was low and abrupt.  Further, heparin-fixed bFGF 

fibers stimulated proliferation in a number of different cell types for a longer amount of 

time than bFGF soaked fibers [130]. Similarly, Lam et al demonstrated that while PLLA 
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fiber/heparin-bound bFGF and EGF resulted in neural differentiation and axon growth, 

growth factor adsorption alone did not [178]. Rather than conjugating the PCL fibers 

after electrospinning, Ye et al conjugated prior to electrospinning and loaded bFGF, 

stimulating cell proliferation and cell adhesion in vitro better than growth-factor free 

controls [179]. Interestingly, molecules related to heparin can also be used to reversibly 

bind growth factors. For example, Casper et al demonstrated that attachment of perlecan 

was 10-fold better than heparin at attaching high concentrations of bFGF to 

collagen/gelatin fibers [180]. Further, one novel approach by Almodovar et al uses 

polyelectrolyte multilayer coating of heparin and chitosan to attach bFGF to fibers, 

rather than EDC/NHS chemistry. While the technique successfully attached the growth 

factor, it is unclear how it compares to the traditional method [181]. 

 

6.5.2 Blended Fibers 

While surface modifications and coatings are a promising approach to protein delivery 

from electrospun fibers, another technique is to blend the proteins directly in the fibers. 

A major drawback to this technique is that many electrospinning solutions contain harsh 

organic solvents, so extra steps must be taken to prevent denaturing of growth factors. 

One of the first techniques was to include bovine serum albumin in the electrospinning 

solution. Chew et al was able to maintain bioactivity and sustained release for 3 months 

by electrospinning a mixture of BSA, NGF and copolymer of ε-caprolactone/ethyl 

ethylene phosphate (PCLEEP) [182]. Further, they improved bridging of a critical gap in 

rat neurons via glial cell-derived neurotrophic factor (GDNF) delivery compared to 

growth-factor free controls in vivo [183]. In contrast, Koh et al was unable to 

demonstrate clear benefit from delivery of NGF from BSA-containing PLGA electrospun 

fibrous bilayers in vivo. Specifically, encapsulated levels of NGF were low, perhaps due 
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to denaturing of the protein while interacting with the organic solvent or being exposed 

to high electric potentials during electrospinning [184, 185].  

 

Another technique that has produced more consistent results is to create an oil/water 

emulsion prior to electrospinning that creates pockets of aqueous media for growth 

factors to reside. This technique is used to fabricate growth-factor laden polymeric 

microspheres with clear success [186]. Sahoo et al delivered bFGF from PLGA fibers by 

first emulsifying a mixture of an aqueous mixture of buffered bFGF and BSA with PLGA 

in HFIP. The resulting emulsion was then electrospun and the growth-factor laden 

scaffold stimulated BMSC proliferation over 2 weeks [187] and also demonstrated 

favorable properties for tendon/ligament tissue engineering applications [131]. Similarly, 

Valmikinathan et al electrospun an emulsion of aqueous NGF with PCL in HFIP. 

Inclusion of BSA in the emulsion improved release profiles over 1 month and helped 

maintained bioactivity as measured by a PC12 neurite outgrowth assay [188]. Li et al 

showed related results using poly(l-lactide-co-caprolactone) chloroform/Span80, and 

also found that the emulsion technique influence growth factor release properties from 

the fibers [189].  

 

Certain polymers that can be electrospun in aqueous solutions can also be electrospun 

into growth factor delivery systems. Li et el electrospun mixtures of silk, poly(ethylene 

oxide) (PEO) and BMP-2 that resulted in higher calcium deposition and enhanced 

transcript levels of bone-specific markers than in the controls [190]. Madduri et al 

delivered NGF and GNDF from electrospun silk/PEO conduits over 28 days [191]. 

Because PEO fibers are instantly soluble, they can be used to enhance porosity in 

electrospun scaffolds [107] or to provide a quick release of drugs such as antibiotics 

[157]. Early work suggests that such fibers may be a valuable tool for other forms of drug 
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delivery. For example, Kluge et al released FGF from PEO/silk scaffolds stimulated cell 

infiltration in a subcutaneous rat model [192] and Qu et al delivered the enzyme trypsin 

from PEO fibers to degrade GAGs in cartilage in vitro [193].  

 

6.5.3 Coaxial Fibers 

Rather than creating a uniform fiber, coaxial electrospinning may offer additional 

protection to growth factors and prevent burst release by entrapping drugs in a central 

vein, although the technique is more technically challenging than regular fiber 

electrospinning. Early work by Liao et al encapsulated an aqueous mixture of PDGF and 

BSA in a PCL/PEG outer shell with zero-order release kinetics [132]. Both Liu et al and 

Sahoo et al elicited biological responses from a core-shell nanofiber scaffold with an 

aqueous core of NGF/solid shell of poly(lactic acid-caprolactone) (P(LLA-CL)) [194] and 

aqueous core of bFGF-BSA/solid shell of PLGA [187].  

 

Recently, many investigators have utilized solid/solid coaxial structures rather than 

liquid/solid described above to extend the delivery period of the growth factor. For 

vascular tissue engineering, 28 days of bioactive release were demonstrated by Jia et al 

from the dextran-VEGF core/PLGA shell fibers [195] and by Li et al from dextran-PDGF 

core/PLCL shell fibers [196]. Yang et al promoted wound healing in diabetic rats by 

treating with cyclodextrin-bFGF core/PELA shell electrospin fibers [197]. Wang et al 

delivered NGF from an inner PEG core and an outer PLGA shell, and similar to Liu et al 

[194] found that nerve regeneration was comparable to autograph but better than 

control in a rat scientic nerve model [198].  

 

In a different approach, Lu et al combined a number of different techniques to create an 

optimized fiber system. Specifically, they created a central core of PCL, to enhance 
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morphological stability and mechanical strength, with an outer shell of cationized gelatin 

which was amenable to heparin adsorption. Sustained release of VEGF was observed in 

the presence of adsorbed heparin, and release profiles were controllable through changes 

in cross-linking duration and pH [199]. 

 

6.5.4 Multi-Component Scaffolds 

Another approach for growth factor delivery is to incorporate distinct delivery 

components into or between electrospun fibers. Early work by Dong demonstrated the 

feasibility of incorporating multiple microsphere populations into fibers [200]. A similar 

system by DeVolder et al was used to promote vascularity in chick embryos by releasing 

VEGF from PLGA microparticles contained inside PLA fibers [201]. Qi et al developed a 

modified form of emulsion electrospinning where large Ca-alginate bubbles in PLLA 

fibers released BSA, but most of the protein was released in the first day [202]. Rather 

than incorporating microspheres inside of fibers, Ionescu et al entrapped PLGA 

microspheres between PCL fibers to create a composite scaffold and demonstrated 

sustained release over 30 days of BSA and chondroitin sulfate [114], therefore decoupling 

the drug-deliver component from the fibers themselves. 

 

Finally, nanofibers have been used to improve the behavior of drug-delivering hydrogels 

for tissue engineering. Specifically, nanofibers can promote tissue-like cell alignment and 

elongation, and promote the deposition of organized, anisotropic matrix [XXX]. 

Kolambkar et al delivered BMP from an alginate hydrogel embedded around an 

electrospun PCL nanofibrous tube and demonstrated synergistic effects of both drug 

delivery from the hydrogel and contact guidance by the fibers [203]. 
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6.6 Delivery of Other Molecules 

Moving beyond antibiotics, anticancer drugs and proteins, other unique molecules have 

been incorporated. Luu released plasmid DNA from a mixture of predominantly PLGA 

random copolymer and a PLA–PEG block copolymer. Release of plasmid DNA from the 

scaffolds was sustained over a 20-day study period with a significant burst release [204]. 

Also, Nie 2007 encapsulated DNA into chitosan nanoparticles that were electrospun into 

PLGA/hydroxylapetite fibers and optimized the system for cell attachment, viability and 

transfection efficiency [205]. Liang 2005 created a variation where the nanoparticles had 

a core-shell structure in order to better protect the contained DNA from the harsh 

electrospinning process [206]. Luong-Van 2005 created blended PCL-heparin fibers 

with applications in preventing vascular smooth muscle cell (VSMC) proliferation and 

graft occlusion. It was found that releasant from fibers prevented proliferation of VSMC 

in a bioassay in a concentration dependent manner over 6 days [207]. Also, Gandhi 2009 

demonstrated that anti-integrin antibodies could be incorporated into PCL fibers and 

successfully transfect human umbilicial endothelial cells [208].  

 

While most systems utilize biodegradable polymers, it may not be possible to incorporate 

some molecules into such systems. Verreck 2003 demonstrated that poorly water-

soluble molecules such as the antifungal Itraconazole and the serotonin antagonist 

ketanserin could be released in a sustained manner from nonbiodegradable segmented 

polyurethane fibers [209]. 

 

Rather than incorporating the molecule into the fiber, some groups have looked at 

coating the fibers with the desired molecule. Casper functionalized PEG with low 

molecular weight heparin and demonstrated improved binding of b-FGF [176]. Casper 

when on to show that natural polymers, such as collagen or gelatin, could be 
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functionalized with the perlican domain I were 10 times as effective at binding b-FGF 

[180].  

 

Finally, some groups have tried to better understand the physics drug release from 

electrospun fibers. Srikar 2008 proposed that the conventional belief that release occurs 

via solid-state diffusion of the encapsulated compound from the fibers into the 

surrounding aqueous bath may not be true, due to often seen incomplete release of 

molecules over time. Instead, they demonstrate that delivery of fluorescent dye 

rhodamine 610 chloride occurs via the desorption of the embedded compound from 

nanopores in the fibers or from the outer surface of the fibers in contact with the water 

bath [210]. Also, Gandhi 2009 extended this hypothesis to incorporate BSA as well 

[208].  

 

6.7 Conclusions 

Many different approaches have been developed to deliver a broad range of molecules 

from electrospun fibers. Each approach seeks to maintain the biological activity of the 

molecule during the electrospinning process or finds a way to integrate the molecule 

with the fibers without exposing it to electrostatic forces. Growth factors are an 

especially important class of molecules that can be used to drive cell behavior for tissue 

engineering applications. Recent work identifies a number of potential ways to 

incorporate these molecules; however, many of these approaches have significant 

drawbacks, including changing fiber morphology, suboptimal release profiles and 

complex manufacturing processes. In the next two chapters, we will present novel 

approaches to deliver growth factors from electrospun scaffolds for meniscus tissue 

engineering. 
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7: An Anisotropic Nanofiber/Microsphere Composite 

with Controlled Release of Biomolecules for Fibrous 

Tissue Engineering 

7.1 Abstract 

Aligned nanofibrous scaffolds can recapitulate the structural hierarchy of fiber-

reinforced tissues of the musculoskeletal system. While these electrospun fibrous 

scaffolds provide physical cues that can direct tissue formation when seeded with cells, 

the ability to chemically guide a population of cells, without disrupting scaffold 

mechanical properties, would improve the maturation of such constructs and add 

additional functionality to the system both in vitro and in vivo. In this study, we 

developed a fabrication technique to entrap drug-delivering microspheres within 

nanofibrous scaffolds. We hypothesized that entrapping microspheres between fibers 

would have a less adverse impact on mechanical properties than placing microspheres 

within the fibers themselves, and that the composite would exhibit sustained release of 

multiple model compounds. Our results show that microspheres ranging from 10~20 

microns in diameter could be electrospun in a dose-dependent manner to form 

nanofibrous composites. When delivered in a sacrificial PEO fiber population, 

microspheres remained securely entrapped between slow-degrading PCL fibers after 

removal of the sacrificial delivery component. Stiffness and modulus of the composite 

decreased with increasing microsphere density for composites in which microspheres 

were entrapped within each fiber, while stiffness did not change when microspheres 

were entrapped between fibers. The release profiles of the composite structures were 

similar to free microspheres, with an initial burst release followed by a sustained release 

of the model molecules over 4 weeks. Further, multiple model molecules were released 
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from a single scaffold composite, demonstrating the capacity for multi-factor controlled 

release ideal for complex growth factor delivery from these structures. 

 

7.2  Introduction 

Fibrous tissues of the musculoskeletal system are characterized by aligned collagen 

bundles that impart non-linear and anisotropic mechanical properties, which enable 

load bearing functionality in demanding mechanical environments over a lifetime of use. 

Recapitulation of these fundamental structural and mechanical anisotropies is a key 

determinant in the development of successful engineered analogues for repair or 

replacement of these tissues. One scaffold fabrication technique, electrospinning, can 

produce nano- to micron-sized fibers, similar in length scale to native collagen, from a 

host of natural and synthetic polymers [52, 53, 211, 212]. Collection of these nanofibers 

onto a rotating mandrel [213-215] or implementation of specialized collection surfaces 

[216, 217] can further refine scaffolds by aligning fibers to create structural and 

mechanical anisotropy within the forming network.  By modifying fiber elements such as 

composition, diameter, and organization, a wide range of mechanical properties can be 

achieved, which in turn can be tuned to tissue-specific applications. Indeed, such fibrous 

scaffolds have been used in a wide range of fibrous tissue engineering applications, 

including constructs for replacement of the knee meniscus [50], the annulus fibrosus 

[129, 218], tendons and ligaments [219], blood vessels [220] and articular cartilage [221, 

222]. When seeded with cells, nanofibrous scaffolds have demonstrated excellent 

potential for directing ordered ECM deposition, resulting in improved mechanical 

properties of the engineered construct with time during in vitro culture [50, 51, 223].  
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Despite the potential of these aligned micropatterns to guide new tissue formation, 

further functionalization might be necessary to expand their general utility, both in vitro 

and with in vivo implantation.  One key area for expansion is the ability of nanofibrous 

scaffolds to release select molecules in a controlled fashion. Previous work in other 

scaffold formats demonstrates the potential of such an approach, for example by 

promoting neo-vascularization of porous scaffolds through the dual release of pro-

angiogenic factors (VEGF and PDGF) [123].  Recent work by several groups has 

demonstrated that nanofibrous scaffolds can be modified to achieve a degree of 

controlled release (as reviewed in [53, 224]). In most cases, molecules or biologic agents 

(i.e., antibiotic, growth factors) are delivered from the fibers themselves. This is a 

sensible approach, given the high surface area of fibers relative to the volume of the 

construct, and the close proximity of the fibers to seeded or infiltrating cells. Specific 

examples of delivery from nanofibrous scaffolds to date include antibiotics [155-158, 160, 

225, 226], anticancer therapeutics [166-168, 170], proteins [227-231], DNA [204-206], 

and growth factors [232, 233]. These successes have been achieved either through direct 

blending of the molecule of interest into the polymer solution before electrospinning 

[226], or via the utilization of coaxial electrospinning, wherein a customized spinneret is 

employed to trap a secondary fluid layer (containing labile biofactors) within the core of 

the forming nanofiber [227].  For example, Li and coworkers electrospun silk fibroin 

fiber scaffolds containing a core of bone morphogenetic protein 2 (BMP-2) and 

demonstrated increased osteogenic differentiation after one month by seeded human 

mesenchymal stem cells [234].   

 

Despite this progress, the incorporation of molecules into the electrospun fibers may 

have adverse consequences. For example, retinoic acid added at low levels increased the 

mechanical properties of single poly(caprolactone-co-ethyl ethylene phosphate) fibers, 



 

104 

while bovine serum albumin incorporated at higher concentrations decreased fiber 

properties [233]. In another study, Huang and co-workers co-axially electrospun two 

drugs into PCL fibers and demonstrated that, based on the limited miscibility of the two 

solvents, mechanical properties were significantly altered [235]. Still other issues may 

arise when release rates and mechanics are incompatible. For example, Hong and 

colleagues co-electrospun two populations of fibers, biodegradable poly(ester urethane) 

urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA fibers were loaded 

directly with the antibiotic tetracycline hydrochloride (PLGA-tet). The PLGA fibers alone 

had a modulus that was too high and a breaking strain that was too low for the intended 

application (wound closure in the abdomen). However, addition of a PEUU fiber family 

decreased the modulus and improved the breaking strain, resulting in more ideal 

mechanical properties. While promising, this work shows that the remnant fibers 

contribute to the overall scaffold mechanics, and that drug elution rates are dependent 

on the fiber properties.  

 

If a fibrous scaffold is to serve the dual roles of load bearing and drug delivery 

simultaneously, then this issue is paramount and must be considered in the fabrication 

of scaffolds with defined mechanical characteristics.  We report herein a new 

modification of the electrospinning system to allow for the decoupling of scaffold 

mechanics from biofactor delivery. This fabrication method is based on the well-

established ability of microspheres to carry and deliver molecules of therapeutic interest 

[236].  In this system, drug releasing microspheres are delivered and entrapped within 

the fibrous network of the scaffold using sacrificial fibers that are removed upon 

hydration. We have previously demonstrated that removal of these sacrificial fibers, at 

the proper percentage [107], can act to increase cellular infiltration into these dense 

fibrous networks. We hypothesize that entrapping microspheres amongst these 
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sacrificial fibers, rather than releasing the drug from the fiber or placing the 

microspheres inside the fibers, will mitigate any major changes to scaffold properties. 

Further, this method will decouple the degradation rate of the fibers from microspheres, 

thus allowing for additional flexibility when designing optimal release profiles. The 

system is developed so that compatible solvent systems enable polymeric fiber formation 

from organic solvents, while the solvent for sacrificial fibers (water) can maintain PLGA 

microsphere in their native form. Finally, by including two populations of microspheres, 

we show that multiple factors can be released independently from one another, 

providing further design parameters for tissue-specific applications.  

 

7.3  Materials and Methods 

7.3.1 Materials 

Polystyrene (PS) microspheres (MS) were from either Bangs Laboratories (diameters: 

1.94 µm (fluorescent dragon green) and 8.31 µm, Fishers, IN) or Microsphere-

Nanosphere (diameter: 15.7 µm, Cold Springs, NY). For nanofiber formation, 

polyethylene oxide (PEO, 200 kDa) was from Polysciences (Warrington, PA) and poly(ε-

caprolactone) (PCL, 80 kDa) was from Sigma-Aldrich (St. Louis MO). Tetrahydrofuran 

(THF) and N,N-dimethylformamide (DMF), used to dissolve PCL, were from Fisher 

Chemical (Fairlawn, NJ).  Poly lactide co-glycolide 50:50 (PLGA, inherent viscosity: 0.61 

dL/g in HFIP) for microsphere fabrication was from DURECT Corp (Pelham, AL). 

Dichloromethane for microsphere fabrication, bovine serum albumin (BSA, Cohen V 

fraction), chondroitin 6-sulfate sodium salt (CS), poly vinyl alcohol (PVA, 87-89% 

hydrolyzed), and fluorescein (free acid) were all from Sigma-Aldrich (Allentown, PA). 

The bicinchoninic acid (BCA) assay kit was purchased from Pierce Protein Research 
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Products (Thermo Scientific, Rockford, IL). Dulbecco’s phosphate-buffered saline (PBS) 

was purchased from Gibco (Invitrogen, Grand Island, NY). 

 

7.3.2 Electrospinning Nanofibrous Scaffolds using Pre-Fabricated Microspheres 

To electrospin fibers containing pre-fabricated microspheres, a high concentration of PS 

microspheres (19-109 MS/mL) was dispersed in 10% PEO in 90% ethanol or in 35.7% w/v 

PCL in a 1:1 mixture of THF and DMF. The suspension was sonicated for 3 minutes to 

disperse the MS and electrospun as in [50]. Briefly, a 10 mL syringe was filled with the 

electrospinning solution and fitted with a stainless steel 18G blunt-ended needle that 

served as a charged spinneret. A flow rate of 2.5 mL/h was maintained with a syringe 

pump (KDS100, KD Scientific, Holliston, MA). A power supply (ES30N-5W, Gamma 

High Voltage Research, Inc., Ormond Beach, FL) applied a +15 kV potential difference 

between the spinneret and the grounded mandrel located at a distance of 12 cm from the 

spinneret. The mandrel was rotated via a belt mechanism conjoined to an AC motor 

(Pacesetter 34R, Bodine Electric, Chicago, IL). Additionally, two aluminum shields 

charged to +10 kV were placed perpendicular to and on either side of the mandrel to 

better direct the electrospun fibers towards the grounded mandrel.  

 

7.3.3 Fabrication and Electrospinning of PLGA Microsphere-Laden Nanofibrous 

Scaffolds 

Degradable PLGA microspheres were fabricated using a double-emulsion 

water/oil/water technique based on [236]. Briefly, 0.5 grams of 75:25 PLGA was 

dissolved in 1 to 4 ml of DCM. The solution was further supplemented with 0.5 ml of 10% 
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BSA and homogenized at Speed 5  for 30 seconds using a Homogenizer 2000 (Omni 

International, Kennesaw GA). One to 2 mL of 1% PVA was then added and the entire 

mixture re-emulsified by homogenization for 1 minute at Speed 1. Hardened 

microspheres were collected after gentle stirring for 3 hours in 100 ml of 0.1% PVA. The 

collected microsphere solution was then passed through a 70 µm nylon filter (BD 

Biosciences, Bedford, MA), centrifuged, and washed 3 times in water. Fabricated 

microspheres were lyophilized and stored at -20oC until use. Light microscope images 

were taken after fabrication, after filtration, and before lyophilization, and diameters 

determined using a custom MATLAB program.  Microsphere density in formed 

nanofibers was determined after electrospinning from solutions containing 0.01, 0.03, 

0.05, 0.07 and 0.09 g MS/mL PEO solution onto a glass slide for 5 seconds (n=3). For 

each condition, three light microscope images were obtained with similar fiber density 

per slide, and microspheres were counted in each image. 

 

7.3.4 Fabrication of PCL/MS Composite Nanofibrous Scaffolds  

Composite nanofibrous scaffolds (PCL/PCL and PCL/PEO) containing PS microspheres 

(15.7 micron diameter) were formed by dual-electrospinning from two opposing 

spinnerets onto a common rotating mandrel as in [107].  In one configuration, a PCL jet 

(2.5 mL, +15 kV, 12 cm) and a PCL jet with microspheres (2.5 mL/hr, +11 to +16 kV, 6 

cm) were electrospun together. In the second configuration, a PCL jet and a PEO jet with 

microspheres (2 mL/hr, +16 kV, 6 cm) were electrospun together. Microsphere densities 

in the spinning solutions were 0, 0.05, 0.1 and 0.2 g PS microspheres/mL 

electrospinning solution. After fabrication, scaffold samples containing PEO were taken 

along the length of the scaffold, weighed, hydrated in 50% ethanol for 10 minutes to 

remove PEO, lyophilized and reweighed to determine PEO content as a function of 
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position. Scaffolds were imaged via SEM (Philips XL20 by FEI, Hillsboro, Oregon) 

before and after PEO elution to visualize MS inclusions.  

 

7.3.5 Mechanical Properties of PCL/MS Composite Nanofibrous Scaffolds 

For mechanical testing, 30 x 5 mm strips of scaffold were excised with their long axes 

oriented in the fiber direction (along the circumference of the collecting mandrel). For 

PCL/PEO-MS scaffolds, strips containing ~15% PEO were utilized. Prior to mechanical 

testing, all samples were soaked in 50% ethanol for 10 minutes, and then stored in PBS 

until testing. The cross-sectional area of each sample was measured using an OptoNCDT 

laser measuring device (Micro-Epsilon, Raleigh, NC) combined with a custom Matlab 

program [237]. Samples were loaded into an Instron 5848 Microtester equipped with 

serrated vise grips and a 50 N load cell (Instron, Canton, MA). Strips were pre-loaded for 

2 minutes to 0.5N, after which the gauge length was noted. Samples were then 

preconditioned with extension to 0.5% of the gauge length at a frequency of 0.1 Hz for 10 

cycles. Finally, samples were extended to failure at a rate of 0.1% of the gauge length per 

second. Stiffness was determined from the linear portion of the force-elongation curve, 

and modulus calculated by considering sample cross-sectional area and gauge length.  

 

7.3.6 Dual Release from Composite Nanofibrous Scaffolds 

PLGA microspheres were formed containing two representative molecules, bovine serum 

albumin (BSA) and chondroitin sulfate (CS). BSA-containing microspheres were 

prepared as above with a 10% mass/volume BSA solution encapsulated in 50:50 PLGA. 

CS-containing microspheres were prepared from a 20% mass/volume CS solution that 
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was mixed with 100 µl of 1% PVA with encapsulation in 50:50 PLGA.  The initial 

encapsulation efficiency of BSA was determined by dissolving 50 mg of fresh MS in 0.1N 

NaOH containing 5% SDS with vigorous agitation for 16 hours.  The supernatant was 

assessed via the BCA assay, with standards containing 0.1N NaOH with 5% SDS.  To 

determine CS encapsulation efficiency, 50 mg of MS were dissolved in 8 mL of a 1:1 

solution of DCM and H20 with vigorous agitation for 4 hours. After overnight phase 

separation, the aqueous phase was removed and CS content determined using the 

DMMB assay [67].   

 

Long term release of CS or BSA from PLGA microspheres was evaluated via incubation 

in PBS (30 mg MS per 1 mL PBS) at 37°C on a 3-D mini-rocker (Denville Scientific, 

South Plainfield, NJ). At defined intervals over 5 weeks, microspheres were pelleted by 

centrifugation and the supernatant tested for CS content (via the DMMB assay) or BSA 

content (via the BCA assay) as above. At each sampling, fresh PBS was added and MS re-

dispersed by gentle vortexing. Next, composites were formed to evaluate release from 

MS when entrapped in a PCL network.  In preliminary studies, to image the composite, 

PCL was doped with fluorescein and PLGA microspheres were fabricated with 

rhodamine B.  Fluorescent and light micrographs were overlaid to identify each 

component within the composite system. Subsequently, three microsphere-laden 

nanofibrous composites were constructed: one with CS-containing microspheres, one 

with BSA-containing microspheres, and one with a 1:1 mixture of CS- and BSA-

containing microspheres. For these studies, rectangles of scaffold (80 mg) were cut 

across the length of the mandrel to ensure sample uniformity.  Scaffolds were soaked in 5 

ml of 50% ethanol for 10 minutes and washed in PBS to remove PEO. Scaffolds were 

then transferred to PBS (1 mL) and incubated as above for the MS release study. At set 

intervals, the supernatant was removed and CS and BSA quantified as above. 



 

110 

7.3.7 Statistical Analyses 

One-way analysis of variance (ANOVA) was carried out using GraphPad Prism software 

(Graphpad Software, La Jolla, CA) with Bonferonni’s post-hoc tests (n=3 for 

characterization of MS density, n=5 for mechanical testing, n=5 for evalution of release 

kinetics), with significance set at p < 0.05.  

 

 

7.4 Results  

7.4.1 Formation of Nanofibers with Microspheres 

Electrospinning from a solution of PEO and pre-fabricated fluorescent polystyrene 

microspheres resulted in the formation of fibers with embedded microspheres (Figure 

7-1A).  Similar findings were noted when PS microspheres were electrospun from a PCL 

solution, with thickened regions of PCL visible around the microsphere via SEM (Figure 

7-1B).  
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Figure 7-1 Fabrication of microsphere-laden nanofibrous scaffolds.  (A) Composite light and 
fluorescent micrograph showing electrospun PEO fibers with embedded PS microspheres 
(diameter 2 microns) distributed along the fiber length (Scale bar = 50 µm). (B) SEM micrograph 
demonstating alterations in PCL fiber morphology local to the inclusion of an 15.7 micron 
diameter PS microsphere (Scale bar = 25 µm). 

 

PLGA microspheres were fabricated via the water/oil/water double emulsion process 

(Figure 7-2A).  Microsphere diameters were on the order of 10-20 microns (Figure 7-

2B), with little change through the washing process (data not shown). Increasing the 

density of PLGA microspheres in the PEO electrospinning solution increased the density 

of microspheres in the resulting fibers (Figure 7-2C,D).  Microsphere numerical density 

within the fibrous scaffold was higher for solutions starting with microspheres at 0.07 

and 0.09 g/mL compared to those starting with lower microsphere concentrations 

(Figure 7-2C, p<0.05).   

 



 

112 

 

Figure 7-2 Dose-dependent inclusion of PLGA microspheres in nanofibrous mats. (A) SEM 
micrograph showing PLGA microspheres fabricated by the double emulsion technique (Scale bar 
= 50 µm). (B) Histogram of microsphere diameter. (C) PLGA microsphere density with a field of 
view (FOV) of a PEO fiber mat increases with increasing microsphere density in the 
electrospinning solution. *indicates significant difference compared with lower values, p<0.05. 
(D) Bright-field images of PEO fiber mats formed from solutions of increasing PLGA MS density 
(Scale bar = 500 µm). 

 

7.4.2 Fabrication and Electrospinning of Microsphere-Laden Nanofibrous Scaffolds  

As described above, and shown schematically in Figure 7-3, a fabrication system was 

developed to entrap microspheres within a fibrous scaffold.  In this technique, the 

sacrificial PEO fiber population containing microspheres is co-electrospun with PCL 

fibers onto a common rotating mandrel. Fluorescent labeling of PCL fibers (green) and 

microspheres (blue), while the PEO component remained unlabelled, identifies the blend 

of the three components (Figure 7-4A).  Upon hydration, the sacrificial PEO fibers 

dissolve away, resulting in a structure in which microspheres are entrapped between 

aligned PCL fibers. SEM images of composites before (Figure 7-4B) and after (Figure 

7-4C,D) PEO removal shows that microspheres remain entrapped between the aligned 

fibers throughout the fabrication process. Notably, this dispersion is seen through the 

thickness of the composite when cross sections are viewed end on (Figure 7-4D). 
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Figure 7-3 An approach for decoupling drug delivery from scaffold mechanics. Composite 
scaffolds are formed from microspheres delivered through a sacrificial PEO fiber fraction coupled 
with a stable PCL fiber fraction (Pre-Wash).  With dissolution of the PEO (After-Wash), MS 
remain entrapped within the slow degrading and surrounding fibrous PCL fibrous network.   

 

 

 

 

Figure 7-4 Realization of composite MS-laden scaffolds with sacrificial content.  Bright-field with 
overlaid fluorescent image (A, 4X, Scale bar = 50 µm) and SEM (B, Scale bar = 20 µm) of 
PEO/PCL/MS composite. In (A), blue shows MS, green shows PCL fibers, and black shows 
sacrificial PEO fibers within the composite structure.  After PEO removal, microspheres remain 
entrapped and distributed between the remaining PCL fibers (C and D, arrows, Scale bar = 10 
µm). 
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7.4.3 Mechanical Properties of Composite Scaffolds as a Function of Microsphere 

Inclusion 

To better understand the mechanical consequences of microsphere inclusion, networks 

were formed in which a graded concentration of polystyrene microspheres was 

entrapped either within or between the nanofibers of the scaffold. PS microspheres (15.7 

µm diameter) were used here because PLGA microspheres would dissolve when mixed 

into the solvents employed for electrospinning PCL.  Scaffolds were fabricated as 

depicted in Figure 7-5A and 7-5D, with one jet used to produce a PCL fiber 

population, and a second jet used to produce a microsphere-containing fiber population 

of either PCL or PEO. Tensile testing showed that when microspheres were included 

within the PCL fiber population, both the stiffness and modulus decreased with each step 

of increasing microsphere density (Figure 7-5B and C).  Conversely, in composites 

where the microspheres were entrapped between fibers after sacrificial fiber removal, no 

change in stiffness was observed at any microsphere density (Figure 7-5E).  Likewise, 

modulus in these composites did not differ from control values at Low microsphere 

densities.   
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Figure 7-5 Construction and mechanical analysis of composite MS-laden scaffolds.  (A) Schematic 
of electrospinning PCL/PCL-MS scaffold. (B) Stiffness of scaffold decreases with increasing MS 
density (Control = 0, Low = 0.05, Med = 0.1, High = 0.2 g MS/mL electrospinning solution). (C) 
Modulus decreases with increasing MS density. (D) Schematic of electrospinning PCL/PEO-MS 
scaffold. (E) Stiffness does not change with increasing MS density. (F) Modulus decreases at 
medium and high density MS inclusion, but not at low inclusion density. *indicates p < 0.05 from 
control. 

 

7.4.4 Controlled Release from Microsphere-Laden Nanofibrous Composites 

To determine if molecules could be released from the composite in a controlled fashion, 

BSA- and CS-containing PLGA microspheres were fabricated and release rates 

determined for both free microspheres and microspheres entrapped within the 

composite structures. The encapsulation rate for each molecule was 13% and 11%, 

respectively, with a burst release occurring over the first day for free microspheres, 

followed by a sustained release over 27 days (Figure 7-6B). The initial burst release was 

larger from the CS-containing microspheres compared to BSA-containing microspheres. 

By day 27, free microspheres had degraded to the point where clumping of the polymer 

was apparent (data not shown). When either BSA- or CS-containing microspheres were 

electrospun into the composite, a slightly-more gradual release profile was observed over 

the first 5 days, with sustained released occurring thereafter (Figure 7-6C) perhaps due 

to washing steps that occurred during PEO removal. Contrary to free microspheres, 
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microspheres entrapped in nanofibrous scaffolds remained distinct, most likely due to 

physical protection and isolation when media was changed (data not shown). When the 

microsphere populations were mixed 1:1 and electrospun into a single nanofibrous 

composite (Figure 7-6D, black = CS, red = BSA), a similar graded release profile for 

each molecule was observed over 35 days.  

 

Figure 7-6 Controlled release from composite MS-laden scaffolds. (A) Overlay of light and 
fluorescent micrographs showing mixed MS population (BSA MS = red, CS MS = black, scale bar 
= 250 µm). (B) Sustained release of bovine serum albumin (BSA) or chondroitin sulfate (CS) from 
PLGA microspheres with time in physiologic conditions. (C) Sustained release of BSA and CS 
from composite PCL/PEO-MS scaffold containing either BSA or CS microspheres.  (D) Sustained 
release of both BSA and CS from a single composite system containing both BSA and CS 
microspheres at a 1:1 ratio. 
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7.5  Discussion 

Electrospun nanofibrous scaffolds are a promising tool for fibrous tissue engineering as 

they provide excellent structural cues and can foster development of anisotropic 

mechanical properties similar to native tissues [50]. Indeed, we have grown constructs in 

vitro, under chemically defined conditions and with the addition of matrix-promoting 

growth factors that reach 50-100% of the tensile properties of native meniscus and 

annulus fibrosus [53, 129].  Simply providing a guided micropattern for tissue formation 

may not be enough, however, as both tissue development and regeneration occur in the 

context of a host of biologic factors whose timing and doses vary considerably. Moreover, 

upon implantation of a scaffold, our ability to control the chemical environment (i.e., the 

provision of pro-matrix forming growth factors in culture medium) is lost.  Further 

functionalization of these scaffolds to enable delivery of drugs, growth factors or other 

chemicals would further our ability to both guide construct maturation and dictate cell 

behavior in vivo and in vitro.  

 

Several recent reports have shown that micro-and nano-particles can be incorporated 

into electrospun nanofibers.  In one report, Lim and colleagues demonstrated that silica 

particles ranging in size from 100-1000 nanometers could be electrospun from a solution 

of polyacrylimide to create a ‘bead on a string’ fiber morphology [238]. Also, Dong et al. 

incorporated two distinct populations of nanospheres into electrospun polyurethane 

fibers, suggesting the ability to multiplex delivered factors, but did not evaluate release 

[200]. Towards drug delivery, Melaiye et al. incorporated silver(I)-imidazole cyclophane 

gem-diol complexes into tecophilic polymer electrospun fibers, and demonstrated that 

release of this molecule from particles within the fibers could prevent microbial growth 

[239]. Finally, Qi et al. fabricated BSA-loaded Ca-alginate microspheres and emulsion 
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electrospun the spheres within PLLA fibers.  In this context, BSA released at a slower 

rate and with a lower initial burst than from free Ca-alginate microspheres [202]. While 

these previous studies represent early efforts to protect a molecule during fabrication 

and release it from a particle in a fiber, they did not address the mechanical 

characteristics of the system or how to decouple the fiber function, degradation, and 

microsphere release kinetics.  

 

Given the mechanical roles these scaffolds must play upon in vivo placement (where the 

tensile moduli of fiber reinforced tissues are on the order of 100 MPa [240]), we 

endeavored to create a system where microspheres could be delivered without 

significantly disrupting the overall scaffold mechanics. The inclusion of particles within 

fibers disrupts individual fiber architecture (Figure 7-1B) and creates local stress 

concentrations, thereby modifying the overall mechanical properties of the scaffold. 

When the microspheres were included within the load-bearing PCL fibers, scaffold 

stiffness decreased even at low microsphere concentrations (Figure 7-5B). Conversely, 

in our composite system that contains particles between the fibrous network but not the 

fibers themselves, stiffness remained unchanged (Figure 7-5E) at all microsphere 

densities explored. Of note, while stiffness did not change in our composite, the modulus 

did decrease at the medium and high microsphere concentrations. This result was due to 

a slight increase in scaffold cross sectional area with microsphere inclusion caused by 

decreased fiber packing, and may be considered a limitation of our design.  

 

Spatial and temporal control of growth factor presentation is an important consideration 

in directing cell behavior during development and repair. Delivery of particles within a 

fiber may complicate release by coupling molecular diffusion within a fiber and/or fiber 

degradation with the release kinetics of the factor from the particle itself.  Our approach 
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delivers particles via a sacrificial fiber population that is removed immediately upon 

hydration.  When particles are of sufficient size (20 microns, in this case), they remain 

entrapped within the fibrous network but are exposed directly to the aqueous 

environment.  This approach decouples the release kinetics of the microspheres from the 

degradation kinetics of the fibers themselves.  Furthermore, using PEO allows for a 

compatible solvent system (water) for sacrificial fiber production, such that the PLGA 

microsphere structure is not disrupted with exposure to organic solvents (i.e., the 

DMF/THF solution used to dissolve PCL). When two model agents, BSA and CS, were 

included in microspheres in the composite, release kinetics were independent from one 

another and comparable to free microspheres, suggesting that release is indeed 

independent of the surrounding fiber population (Figure 7-6).    

 

The potential applications of a composite nanofibrous system that can deliver multiple 

factors in a controlled fashion while maintaining mechanical functionality are 

enumerable.  For example, a cascade of growth factors (i.e., PDGF followed by VEGF) 

might be delivered to promote vascularization of the implanted construct [123]. This 

would be particularly suited for the knee meniscus, whose dense structure and limited 

vascularity does not allow for endogenous repair.  Alternatively, one might engineer the 

system to provide for instantaneous release of mitogenic (i.e., FGF) or migratory factors, 

followed by a delayed release of a pro-matrix forming compound (i.e., TGF-β).  This 

construction would promote cell infiltration from surrounding tissue and division during 

an initial period of repair, followed by transition towards a matrix deposition phase of 

development. Delivered factors also need not be solely anabolic/growth promoting.  For 

example, microparticles might be designed to deliver proteases locally to engender local 

matrix disruption to enhance bridging of new matrix between the host tissue and the 

implanted material.  Similarly, the distribution of particles need not be homogenous, 
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with gradients of local release established both through the depth and along the fiber 

plane. 

 

While the results of this study are promising, and the system meets our stated design 

criteria, some issues remain to be optimized. First, it is not clear how microsphere size 

influences mechanical properties; in this work, microspheres were on the order of 20-30 

microns.  Larger microsphere sizes might further disrupt mechanical properties, while 

smaller particles could be lost from the scaffold through the porous structure.  Additional 

studies are required to examine this variable. Another point of optimization involves the 

steric and biologic influence of the particles themselves.  We have previously 

demonstrated that both meniscus fibrochondrocytes and mesenchymal stem cells attach 

to and infiltrate electrospun PCL scaffolds [50, 107, 129, 218].  While the microspheres in 

this formulation are composed of a biocompatible material (PLGA), local pH changes 

with PLGA degradation might influence cellular activity.  Further, sacrificial fibers were 

used here to deliver microspheres.  We previously utilized these sacrificial fibers (at a 

level of ~40-60% of the composite) to increase scaffold porosity and enhance cell 

infiltration into the depth of the aligned nanofibrous structure [107]. For microsphere 

inclusion, our highest PEO content was on the order of 15%.  It remains to be determined 

how this low level of sacrificial fibers (and the potential decrease in fiber packing due to 

the microspheres themselves) influences cell infiltration.  Future iterations may utilize a 

multiple spinneret system comprised of one source jet delivering PCL or another slow-

degrading structural fiber population, one source jet delivering PEO fibers, and the final 

jet delivering microspheres through additional sacrificial PEO fibers. Such a multi-jet 

system would also allow for the provision of additional mechanical functionality via 

variation in the mechanical properties of the PCL or slow eroding component [241]. A 

final point of optimization is the microspheres themselves.  We used a traditional 
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fabrication technique (water/oil/water emulsions) to entrap model compounds in order 

to demonstrate multi-factor release.  While sufficient for proof of principle, we did 

observe the commonly seen burst release with each compound.  Others have shown that 

microsphere fabrication methods can be tuned to enable release with a multitude of 

profiles, including constant, early burst, and late burst [242]; such methods would be 

useful in further tuning towards the intended biologic applications described above.   

7.6  Conclusions 

Overall, this study describes an approach for the creation of drug-delivering anisotropic 

nanofibrous scaffolds for fibrous tissue engineering. In this fabrication method the 

inclusion of microspheres does not significantly modify the mechanical properties of the 

scaffold or the release properties of the microspheres entrapped within the composite. 

Importantly, multiple populations of microspheres releasing unique factors can be 

incorporated, allowing for the complex control of cellular behavior through spatially and 

temporally-tuned release. Vascular recruitment, cellular phenotype and matrix 

elaboration may all be dictated via the proper release of single or multiple factors from 

these composites. Rather than creating a simple template for new ECM deposition, this 

advanced composite provides higher order functionality for mechanical and biologic 

guidance of tissue regeneration.  
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8: Vascularization of VEGF-Loaded Electrospun Scaffolds 

for Fibrous Tissue Repair Using Sacrificial Fibers and 

Entrapped Microspheres 

8.1 Abstract  

Aligned electrospun scaffolds provide an instructive environment for fibrous tissue 

engineering. Additional functionalization, such as the ability to deliver growth factors 

from these materials, would further guide cell behavior and expand the clinical 

applications of such materials. Because biofactor inclusion can alter the mechanics of the 

scaffold fibers, our goal was to identify alternative delivery techniques for applications in 

orthopedic tissues, where scaffold mechanics are important. In this work, composite, 

aligned fibrous scaffolds composed of both slow-degrading poly(ε-caprolactone) (PCL) 

fibers and sacrificial poly(ethylene oxide) (PEO) fibers were formed via multi-jet 

electrospinning. PEO fibers within the composite scaffold were used to directly deliver 

biologic factors (burst release) or to entrap poly(lactide-co-glycolide) (PLGA) 

microspheres containing these same factors (controlled release). Composites delivering 

basic fibroblast growth factor (bFGF) stimulated the proliferation of meniscus 

fibrochondrocytes (MFCs) in vitro. When evaluated in vivo, delivery of vascular 

endothelial growth factor (VEGF) from these composites enhanced blood vessel density 

in the peri-implant space in a dose-dependent manner. This system has the potential to 

deliver different combinations of growth factors, inflammatory regulators, antibiotics 

and other chemical cues to create a regenerative environment at the site of injury, 

restoring tissue function in situations where endogenous repair capacity is limited. 
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8.2 Introduction 

Tissue engineering of dense fibrous structures of the musculoskeletal system, such as the 

knee meniscus and annulus fibrous, presents a particularly difficult challenge. Not only 

must the temporary scaffold architecture provide a defined anisotropic mechanical 

environment, but the scaffold must also drive the ordered behavior of cell populations 

that typically have low density and metabolic activity [52]. Many orthopedic structures, 

such as the knee meniscus, exist in challenging environments typified by little vascular 

support, high mechanical loads, and consequently, minimal repair potential [119]. 

Successful repair in this context requires that natural and synthetic scaffolds recruit 

and/or maintain a highly active cell population to infiltrate the material and to deposit 

organized matrix that regenerates the original tissue structure. In situ cell recruitment is 

simpler and more cost effective than implanting scaffolds already loaded with expanded 

cells. Significant progress has been made towards matching the mechanical environment 

of such fibrous tissues with engineered materials; however, the ability to direct cells, 

activate differentiation and promote cell recruitment in these settings is also of 

paramount importance [14].  

 

Electrospinning is a simple method to generate polymeric nano- to micron-sized fibers 

via electrostatic forces [53]. Various synthetic and biological polymers can be employed 

that create a permanent structure or degrade over defined timescales [52, 53, 211, 243]. 

Fibers can be collected on a variety of surfaces to control organization and alignment, 

and multiple fibers can be spun into a single composite scaffold from multiple polymer 

sources [52, 107, 213-215]. Electrospinning has been used in many tissue engineering 

applications, including blood vessels, tendons, meniscus, annulus fibrosus, and cartilage 

[50, 129, 218-222].  
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Previously, we have developed a number of different electrospun scaffolds with unique 

benefits for orthopedic tissues. We have created scaffolds composed of 100% poly(ε-

caprolactone) (PCL) fibers that possess relevant anisotropic mechanical properties and 

long-term degradation profiles (Figure 8-1A). When seeded with meniscus 

fibrochondrocytes (MFCs) or mesenchymal stem cells and cultured in vitro under 

defined conditions, the tensile modulus of the neotissue formed was close to that of 

native meniscus tissue, with robust matrix deposition and cell distribution throughout 

the structure [50, 51]. To further improve the properties of this structure, a multi-jet 

apparatus was developed, where multiple fiber populations were collected onto a single 

rotating mandrel to generate an aligned, composite scaffold (Figure 8-1B) [107, 147]. In 

one illustration, scaffolds containing a blend of PCL fibers and poly(ethylene oxide) 

(PEO) fibers resulted in a more porous structure upon hydration, as PEO fibers instantly 

dissolved away. Dissolution of the PEO fibers created voids between the PCL fibers, and 

with this additional porosity, composite scaffolds were better infiltrated and had 

increased matrix deposition with time in vitro compared to scaffolds containing PCL 

fibers alone [107]. While extensive in vitro work has been performed, it is not yet clear 

how these scaffolds will perform in vivo. In this work, we hypothesized that electrospun 

scaffolds containing PCL and PEO would be well tolerated in vivo and would be 

populated by cells from the subcutaneous space. Also, we posited that composite 

scaffolds containing both PCL and PEO fibers would be better infiltrated than those 

containing only PCL fibers, due to the increase in porosity [148]. 

 

In addition to fostering cell infiltration, scaffolds should promote cell recruitment and 

activation at the repair site. Interestingly, many of the polymers used in electrospinning 

have also been used in drug delivery applications as well, suggesting that such scaffolds 
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could provide biologic as well as structural cues. Unfortunately, electrospinning utilizes 

harsh organic solvents that can denature large molecules such as growth factors [244]. 

Direct addition of growth factors to the polymer solution prior to electrospinning does 

not consistently produce bioactive scaffolds, with several groups demonstrating a 

marked loss of activity after spinning [183-185]. In order to overcome this limitation, 

alterations to the fabrication process can be implemented, for example through an initial 

water/oil emulsion step prior to electrospinning [187, 188], or through post-fabrication 

chemical modification of the fibers [130, 171]. Alternatively, specialized coaxial 

electrospinning devices can be employed that protect growth factors within a central 

channel in the fiber, although the equipment needed can be complex to build and use 

[132, 195, 196].  

 

As another option to the approaches mentioned above, we developed two distinct 

methods to deliver active biologic factors from aligned nanofibrous scaffolds. The first, 

most direct method involved modifying to our sacrificial fibers to enable electrospinning 

of PEO in water, without the use of organic solvents or alcohol. We hypothesized that 

this all-aqueous formulation would uniquely harbor and release functional growth 

factors without any additional fabrication steps (Figure 8-1C). This method represents 

a simple technique to release growth factors with an immediate ‘burst’ from sacrificial 

fibers. 

 

An alternative approach for delivering bioactive growth factors from fibers is to 

incorporate secondary structures in or between the fibers that protect these delicate 

molecules during the fabrication process. Approaches include the use of bubbles, 

microparticles and microspheres [114, 200-202]. Previously, we developed a technique 

to entrap degradable poly(lactide-co-glycolide) (PLGA) microspheres (MS) between 
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electrospun PCL fibers by loading the MS into the sacrificial PEO fiber population. The 

result is a MS-composite scaffold containing distinct PCL fibers and PLGA microspheres 

after PEO removal through hydration (Figure 8-1D) [114]. This technique limits the 

mechanical perturbations to the scaffold as the microspheres reside outside the 

structural elements, while also creating drug delivery capabilities that are materially 

distinct from the structural fibers. PLGA microspheres are FDA approved for use in 

humans, and can deliver a broad range of chemicals with diverse release profiles, 

including growth factors [245-250]. Multiple microsphere populations can be mixed into 

the scaffold, a useful property when delivering time- and dose-sensitive molecules that 

work best in concert [123, 251, 252]. Previously, we simultaneously delivered the small 

molecules bovine serum albumin (BSA) and chondroitin sulfate (CS) over a month from 

a single MS-composite scaffold with distinct release profiles [114]. 

  

 

Figure 8-1 Schematics of the fiber populations, pre- and post-wash scaffold structures, and 
hypothetical drug release profiles for scaffolds capable of delivery. (A) PCL scaffold. (B) 
Composite scaffold. (C) Composite scaffold with drug delivery. (D) MS-composite scaffold with 
drug delivery. 
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Having established this delivery framework, the current study sought to deliver growth 

factors from the novel MS-composite scaffolds in order to elicit biologic responses both 

in vitro and in vivo. Because shear forces and phase separation during microsphere 

fabrication, and electrostatic forces during electrospinning, can all result in growth factor 

degradation [253], we first assayed for bioactivity in vitro. To do so, basic fibroblast 

growth factor (bFGF) was delivered from MS alone and MS-composite scaffolds. bFGF 

has a strong mitogenic effect on MFCs and is relatively inexpensive for optimization 

studies [10, 111]. Upon confirmation of bioactivity and a favorable response in vivo for 

composite scaffolds and MS-composite scaffolds, we next focused on the delivery of 

vascular endothelial growth factor (VEGF) from both sacrificial fibers and microspheres 

in composite scaffolds, hypothesizing that this growth factor would improve 

vascularization of scaffolds in vivo. VEGF is an important factor in the molecular cascade 

that controls angiogenesis [254-256], and could play a vital role in healing and 

integration after scaffold or neotissue implantation [117, 118]. Previously, VEGF has been 

shown to improve vascularity in engineered materials [123, 257-259], with an optimal 

release profile similar to that of our MS-composite scaffolds [260]. We hypothesized that 

the two techniques (delivery from sacrificial fibers and from entrapped MS) would result 

in distinct delivery profiles; while sacrificial PEO fibers dissolve instantly, PLGA 

microspheres degrade over weeks or months. Further, the effect of dosage was explored 

by including different fiber fractions of PEO-VEGF fibers within the composite scaffolds, 

and we hypothesized that vascularization would occur in a dose-dependent manner. The 

effects of VEGF were assessed via semi-quantitative histological analysis inside 

macropores that transit the scaffolds and serve as vascular conduits. Results from this 

work validate this technology as a multifunctional scaffold capable of both mechanical 

and biologic instruction for fibrous tissue engineering.  
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8.3 Materials and Methods 

8.3.1 Fabrication and Characterization of Microspheres  

Microspheres (MS) were fabricated using a double emulsion technique [114]. Briefly, 

0.5g 75:25 DL-lactide/glycolide copolymer (Purasorb PDLG 7502, generously provided 

by Purac Biomaterials, Gorinchem, Netherlands) was dissolved in 1 mL dichloromethane 

(DCM, Sigma-Aldrich, Allentown, PA). Next, this solution was combined with 0.5 mL 

10% bovine serum albumin containing 0 or 20 µg basic fibroblast growth factor (bFGF, 

Peprotech, Rocky Hill, NJ) and sonicated for 5 seconds at speed 10 to form a primary 

emulsion. Polyvinyl alcohol (1 mL 1%, PVA, Sigma-Adrich, St. Louis, MO) was added, 

and the mixture sonicated again, and subsequently poured into 100 mL 0.1% PVA to stir 

gently for 3 hours while hardening. Afterwards, microspheres were filtered to below 70 

µm in diameter, centrifuged, lyophilized and frozen until ready for use. The 

microspheres were visualized using a scanning electron microscope (SEM, Philips XL20 

by FEI, Hillsboro, Oregon) to confirm round, smooth spheres. The average microsphere 

diameter was 20 µm [114]. To characterize release from microspheres, 1.5 mL tubes 

containing 50 µg microspheres and 1 mL phosphate-buffered saline (PBS) were 

incubated at 37°C on a rocker for 7 days. At set timepoints, the tubes were centrifuged, 

and the supernatant was removed, stored, and replaced. bFGF concentration in the 

supernatant was measured with an ELISA kit (Quantikine, R&D Systems, Minneapolis, 

MN). The assay work was performed in triplicate over several distinct fabrications to 

ensure consistency of release profile (n=3).  

 

To determine if bFGF remained bioactive after encapsulation, a meniscus 

fibrochondrocyte (MFC) proliferation assay was employed. Briefly, 0-3 month old bovine 

meniscus tissue was dissected in a sterile fashion, with care taken to remove all 

surrounding synovial tissue. The meniscus was minced and plated on tissue-culture 
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plastic (Corning, Sigma-Aldrich, St. Louis, MO) in basal media (Dulbecco’s modified 

Eagle’s medium containing 10% fetal bovine serum and 1% 

penicillin/streptomysin/fungizone). MFCs emerged onto the plate and proliferated over 

the course of 2 weeks. For the proliferation assay, 40,000 MFCs were cultured in basal 

media (control), plus 50 ng/mL of aqueous FGF, plus 50 mg control microspheres, or 

plus 50 mg bFGF microspheres. The microspheres were suspended above the cells with a 

hanging cell culture insert (Millicell, Millipore, Billerica, MA). After 3 days, the relative 

cell density was determined using the colorimetric MTT assay ((3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide), Invitrogen, Carlsbad, CA) by normalizing to the 

control condition (n=3/group, 3 replicates, one representative data set shown).  

 

8.3.2 Fabrication and Characterization of Scaffolds, Composite Scaffolds and MS-

Composite Scaffolds containing bFGF 

To fabricate composite scaffolds, three electrospinning solutions were prepared and 

mixed overnight prior to fabrication: 14.3% w/v poly(ε-caprolactone) (PCL, 80 kDa, 

Sigma-Aldrich, St. Louis MO) in a 1:1 mixture of tetrahydrofuran (THF, Fisher Chemical, 

Fairlawn NJ) and N,N-dimethylformamide (DMF, Fisher Chemical), 10% poly(ethylene 

oxide) (PEO, 200 kDa, Polysciences, Warrington PA) in 90% ethanol (EtOH), and 10% 

PEO in ddH2O. A custom-built trijet electrospinning device was used that forms an 

interpenetrating mesh of distinct polymer fibers [147]. A total of 20 mL of 

electrospinning solution was added to syringes that were fixed with 18G needles and 

loaded into syringe pumps (2 mL/hr). The needles were charged (+15kV) and 

reciprocated using custom fanners to better disperse the fiber jets. A vertical, centrally-

located rotating mandrel (10 m/s) was placed between 3 vertical metallic shields (+5kV), 

which helped to guide fibers onto the mandrel. Composite scaffolds with different fiber 

fractions were produced with the following configurations: three jets of PCL to form a 
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‘PCL Scaffold’, 1 jet of PCL and 2 jets of PEO in EtOH to form a ‘Composite Scaffold’, 1 jet 

of PCL and 2 jets of PEO with 0.05g MS/mL PEO solution in ddH2O to form a ‘MS-

Composite Scaffold’. The PEO fibers constituted 50% of the composite scaffold and 25% 

of the MS-composite scaffold weight immediately after electrospinning, as measured by 

mass loss following incubation in an aqueous environment. The difference in PEO 

content was attributed to the mass of microspheres remaining in the MS-composite 

scaffold after PEO removal, as well as differences in the width of the fiber cloud extruded 

from the needles due to the inclusion of microspheres. Both control and bFGF 

microspheres were formed into composite scaffolds. After fabrication, all scaffolds were 

stored at -20°C. SEM images were captured (Philips XL20 by FEI, Hillsboro, Oregon) 

after incubation in 90% alcohol for 2 hours to remove the soluble PEO. Bioactivity was 

assessed as described above, using the following conditions: basal media (control), plus 

50 ng/mL of aqueous bFGF, plus 80 mg PCL of scaffold, plus 80 mg of blank composite 

scaffold, or plus 80 mg of bFGF MS-composite scaffold (n=3/group, 2 replicates, one 

representative data set shown). 

 

8.3.3 In Vivo Implantation of Composite Scaffolds and MS-Composite Scaffolds 

containing bFGF 

PCL scaffolds, composite scaffolds, blank MS-composite scaffolds and bFGF MS-

composite scaffolds were implanted subcutaneously in the dorsum of Sprague-Dawley 

rats, with approval from the VA Animal Use Committee. All scaffolds underwent 15 

minutes of UV sterilization prior to implantation. Each scaffold was placed within a 

distinct pouch, and the anatomic location was randomized. After 2 weeks, rats were 

sacrificed and the samples dissected with care to maintain the surrounding tissue 

capsule (n=3/scaffold type/time point, 2 replicates). Samples were frozen in OCT media, 

sectioned onto glass slides and stained for DAPI (Prolong Gold, Invitrogen, Carlsbad, 
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CA) to identify cell nuclei. Blood vessels and proliferating cells were identified via 

immunohistochemical detection of alpha smooth muscle actin (aSMA, 1:200 dilution, 

Abcam, Cambridge, MA) and anti-phospho-histone H3 (PHH3, 1:500 dilution, Sigma-

Aldrich, Saint Louis, MO), respectively, using the rabbit SuperPicture kit (Invitrogen, 

Carlsbad, CA). The PHH3 samples were counterstained with hematoxylin.  

 

8.3.4 In Vivo Implantation of Composite Scaffolds and MS-Composite Scaffolds 

containing VEGF 

The previously described MS-composite scaffolds were fabricated to contain 

recombinant rat VEGF 165 (R&D Systems), at either 0 or 16 µg VEGF added per 0.5g 

PLGA. Composite scaffolds with PEO fibers containing VEGF were also fabricated to 

assess the effect of immediate VEGF release (at differing dosages). The following 

configurations were employed with the multijet electrospinner: 2 jets of PEO in 90% 

EtOH and 1 jet of PCL to form a ‘Control Composite Scaffold’, 1 jet of PEO in 90% EtOH 

and 1 jet of PEO containing 2.2 µg VEGF/mL PEO in ddH2O and 1 jet of PCL to form a 

‘Low VEGF Composite Scaffold’, and 2 jets of PEO containing 2.2 µg VEGF/mL PEO in 

ddH2O and 1 jet of PCL to form a ‘High VEGF Composite Scaffold’ (see Figure 8-4A). 

To determine release profiles, 10-20 mg of composite scaffold (control, low VEGF and 

high VEGF), microspheres alone, and MS-composite scaffold (control and VEGF) were 

maintained in 1 mL of PBS at 37°C for 1 week. At set timepoints, the tubes were 

centrifuged, supernatant removed and fresh PBS was added back. Growth factor release 

was determined with a rat VEGF ELISA Quantikine Kit (R&D Systems, Minneapolis, 

MN), and normalized to starting biomaterial weight (n=3/group, performed in duplicate, 

one representative data set shown). 
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After fabrication, rectangles (1mm x 10mm x 15mm) of scaffold were prepared for 

implantation. Blood vessel pores were created by cutting 8 equally-spaced 1 mm holes 

using a biopsy punch as shown in Figure 8-5B [261]. Constructs were implanted 

subcutaneously into rats for 2 weeks as previously described. Upon sacrifice, samples 

were excised, embedded in OCT and sectioned en face. Samples were stained for 

Picrosirius red for collagens and DAPI for cell nuclei, as described above, as well as with 

von Willebrand factor (vWF, 1:1000 dilution, Abcam, Cambridge, MA) using the 

SuperPicture Kit to identify blood vessels, as previously described.  

 

In order to semi-quantitatively assess vessel formation in the constructs, samples were 

stained with aSMA (n=4-7 pores/construct, 3 constructs/scaffold type; or 12-21 

pores/scaffold type total). Using GIMP image software (GNU Image Manipulate 

Program, www.gimp.org), the scaffold and background color was removed using the 

‘Color Threshold’ function, leaving only the aSMA stain as shown in Figure 8-6A. 

‘Positive’ staining was defined as greater than 0.05% color in a given field of view, which 

included 1 pore per image. Also, the number of lumens per pore were counted manually 

in triplicate (per pore) and averaged across samples.  

 

8.3.5 Statistical Analysis 

Significance was determined via 1-way ANOVA for the MTT proliferation assay and 

lumen quantification with p < 0.05, followed by Tukey’s post-hoc test. When analyzing 

the percent of pores staining positively for aSMA, Fisher’s exact test was used with p < 

0.005 to account for 10 direct comparisons possible in the data set. All calculations were 

performed SYSTAT software (Chicago, IL).  
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8.4 Results  

8.4.1 Fabrication and Characterization of Microspheres, Composite Scaffolds and 

MS-Composite Scaffolds containing bFGF 

PLGA microspheres encapsulating bFGF were fabricated using the double-emulsion 

technique. Microspheres were smooth and round in shape (Figure 8-2A), with a similar 

size profile to prior studies (~20 µm diameter) [114]. bFGF was released in a sustained 

manner over 7 days (Figure 8-2B). When cocultured with MFCs for three days, bFGF 

MS stimulated cell proliferation, with a 40% increase in cell density that was comparable 

to the addition of 50 ng/mL aqueous bFGF (p < 0.001) (Figure 8-2C). Next, the 

microspheres were mixed with PEO electrospinning solution and simultaneously 

electrospun with PCL to form a MS-composite scaffold. Also, PCL scaffolds and 

composite scaffolds were fabricated to serve as controls. SEM images revealed increased 

porosity in composites after PEO removal, consistent with previous findings [107], and 

microspheres were entrapped between the PCL fibers in the MS-composite scaffolds 

(Figure 8-2D) [114]. The proliferation rate of MFCs did not change with 3 days of 

exposure to PCL or composite scaffolds (Figure 8-2E). In contrast, MS-composites 

scaffolds containing bFGF increased MFC density by 50%, to levels comparable to the 

direct addition of aqueous bFGF (p < 0.001) (Figure 8-2E). This study demonstrated 

that bFGF encapsulated in microspheres and MS-composite scaffolds remained 

bioactive, despite the fabrication procedures used to create the biomaterials. 
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Figure 8-2 Characterization and in vitro bioactivity of microspheres and MS-composite scaffolds. 
(A) SEM image of PLGA microspheres (scale bar = 50 µm). (B) Cumulative release of bFGF from 
microspheres over 7 days, as measured by ELISA. (C) Exposure to aqueous bFGF and bFGF MS 
result in higher cell density after 3 days, as measured by normalized MTT. (D) Schematic and 
SEM images of PCL scaffolds, composite scaffolds and MS-composite scaffolds containing 
microspheres (circle) (scale bar = 20 µm). (E) Cell density increased after 3 days in conditions 
containing bFGF, demonstrating the maintenance of growth factor bioactivity through the 
fabrication process. * indicates significant difference from control, p < 0.001. 

 

8.4.2 In Vivo Implantation of Composite Scaffolds and MS-Composite Scaffolds 

containing bFGF 

PCL scaffolds, composite scaffolds, blank MS-composite scaffolds and bFGF MS-

composite scaffolds were implanted subcutaneously in rats for 2 weeks. Upon sacrifice, 

all samples were well integrated with the adjacent tissue and surrounded by a thin 

vascularized capsule (Figure 8-3A). DAPI staining showed sparse infiltration of the 

PCL scaffolds by cells from the subcutaneous space after 2 weeks. Increased scaffold 

infiltration was seen for composite scaffolds and MS-composite scaffolds, both of which 

contain sacrificial PEO fibers that increased porosity (Figure 8-3C). This finding was 

consistent with our past observation that increased porosity improves infiltration in 

vitro [107]. Of note, the composite scaffold and MS-composite scaffold appeared to be 
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slightly compressed compared to PCL scaffolds (double arrows, Figure 8-3C), despite 

all groups starting with the same thickness at implantation. Also, sacrificial PEO was not 

removed from the scaffold prior to implantation. In order to assess the effects of bFGF 

delivery from MS-composite scaffolds, the proliferation marker PHH3 was used. 

Histology revealed an increased number of proliferating  cells within the bFGF MS-

composite scaffolds compared to other groups, demonstrating the bioactivity of the 

encapsulated growth factor in vivo (Figure 8-3D). Also, vascularity was confirmed in 

the capsule via aSMA staining (Figure 8-3E, arrows). Notably, vessels did not penetrate 

the scaffold under any condition. 

 

Figure 8-3 In vivo response to MS-composite scaffolds containing bFGF. (A) All scaffolds were 
well integrated with the adjacent tissue and surrounded by a thin, vascularized capsule. (B) 
Schematic of histological sections from the materials. (C) Cells were better distributed through 
composite scaffolds (which contain sacrificial PEO) than PCL scaffolds after 2 weeks (scale = 100 
µm). (D) More cells stained for the proliferation marker PHH3 in the bFGF composite scaffold 
compared to blank composite scaffolds (PHH3 - brown, hematoxylin counterstain - purple, scale 
= 50 µm). (E) Blood vessels were identified in the capsules of all samples (aSMA staining, scale = 
500 µm). 

 

 



 

136 

8.4.3 In Vivo Implantation of Composite Scaffolds and MS-Composite Scaffolds 

containing VEGF 

We next investigated the effect of incorporating VEGF in composite scaffolds and MS-

composite scaffolds on vascularization. For this, we utilized delivery from both the 

sacrificial PEO fibers (using 2 distinct doses) and from entrapped MS (Figure 8-4A). 

When electrospun into PEO fibers, the majority (85-93%) of VEGF was released on the 

first day (Low = 50 and High = 175 pg VEGF/mg scaffold). In contrast, the release 

profiles from the MS-composite scaffolds (as well as the microspheres alone) exhibited a 

slower, more sustained release over 7 days to a total of 400 pg/mg (for MS alone) and 5 

pg/mg (for MS-composite scaffolds) (Figure 8-4B), with attenuation of release in the 

MS-composite scaffold compared to the microspheres alone, as previously observed 

[114].  

 

Figure 8-4 Delivery of VEGF from composite scaffolds and MS-composite scaffolds. (A) 
Schematic depicting contents for each jet in the electrospinner that collect on a rotating mandrel 
to form an intermingled mesh for each type of scaffold fabricated. (B) Cumulative VEGF release 
over 7 days as measured by ELISA from composite scaffolds (left), and both microspheres alone 
and MS-composite scaffolds (note differences in scale for y-axes) (right). 
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Four types of composites containing VEGF were implanted subcutaneously (Figure 8-

5A). After 2 weeks, cells colonized the macropores created as vascular conduits and 

deposited collagen (Figure 8-5C,D). Cells and collagen decreased in density with 

increasing depth into the scaffold, from both the outer edge of the scaffold and from the 

pore perimeter (solid and dashed arrows, respectively, Figure 8-5D). A greater amount 

of vWF staining was observed in VEGF-containing scaffolds compared to control 

scaffolds, demonstrating the stimulation of blood vessel formation with VEGF delivery 

(Figure 8-5F,G). Within the pore, cell organization changed with increased VEGF 

delivery, with circular structures reminiscent of lumens identified at high VEGF doses 

(arrows, Figure 8-5H). aSMA staining confirmed the presence of blood vessels, with 

more lumens present in VEGF composite scaffolds compared to control composite 

scaffolds (Figure 8-5I). Similar staining patterns were observed in VEGF MS-

composite scaffolds (Figure 8-5J), where VEGF scaffolds exhibited significantly more 

staining for aSMA than control scaffolds. 
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Figure 8-5 In vivo response to MS-composite scaffolds containing VEGF. (A, B) Schematics of 
different electropun materials, and the areas that were analyzed histologically in C-D, F-G. (C) 
DAPI staining and (D) Picrosirius red staining of a pore in the scaffold, showing cells and 
collagen, respectively (scale = 500 µm). (E) Schematic of the area analyzed histologically in H-J. 
(F, G) vWF staining of pores show improved vascularity in the composite scaffolds containing 
VEGF. (H) DAPI staining shows progressively more organization of cells into lumen-like 
structures (arrows) with increased VEGF delivery (scale = 100 µm). (I, J) aSMA staining of pores 
show significantly more vessels in VEGF-containing scaffolds (scale = 100 µm).      

 

Image analysis was used to quantify the aSMA staining prevalence and the number of 

lumens per pore (Figure 8-6A). While there was variability in the magnitude of 

vascularization between animals, the trends were similar (Figure 8-6B). ‘Positive 

staining’ was defined as >0.05% color per image, which included a single pore. For 

control composite scaffolds, only 30% of pores stained positively for aSMA. Conversely, 

60% of pores for low VEGF composite scaffolds and 100% of pores from high VEGF 

composite scaffolds stained positively for aSMA, demonstrating a dose-dependent 

response in vessel recruitment after 2 weeks in vivo. Similarly, VEGF MS-composite 

scaffolds resulted in 95% of pores staining positively for aSMA, compared to only 54% 

for control MS-composite scaffolds (Figure 8-6C). The aSMA stain identified both early 
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capillary formation, seen as non-distinct shapes within the pore, as well as organized 

circular lumens, representing competent blood vessels. Significantly more lumens were 

found in the presence of both high VEGF composite scaffolds and VEGF MS-composite 

scaffolds, demonstrating the efficacy of VEGF delivery from both fibers and 

microspheres (Figure 8-6D).  

 

Figure 8-6 Quantification of enhanced vascularization through VEGF delivery. (A) Representative 
image demonstrating the image processing used to clarify the aSMA staining. (B) The amount of 
aSMA staining in composite scaffolds varied in magnitude between animals, but followed a 
similar pattern (2 representative animals shown). (C) High VEGF composite scaffolds and VEGF 
MS-composite scaffolds stimulated vascularity compared to other groups (positive stain threshold 
> 0.05% color, * indicates difference from respective control, p < 0.005). (D) Similarly, high 
VEGF composite scaffolds and VEGF MS-composite scaffolds had more lumens per pore 
compared to control conditions (line indicates difference, p < 0.05). 
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8.5 Discussion  

The ability to control cell behavior in engineered tissues may be critical to successful 

tissue regeneration. This is particularly true in fibrous tissues, where extreme 

mechanical forces, reduced metabolic activity, and little access to blood supply pose 

significant challenges. Further, mechanical cues alone from the surrounding 

environment may not be sufficient to control cell fate. For example, mesenchymal stem 

cells, which are easily accessible and possess a number of appealing properties, may need 

significant chemical guidance to develop a stable and appropriate phenotype [262]. With 

this work, we present a range of techniques for delivery of bioactive growth factors from 

electrospin fibrous scaffolds (Figure 8-1) that do not affect the overall mechanical 

properties of the scaffold, and that can be tuned to deliver different types of factors with 

time-varying release profiles. 

 

Because only small molecules were previously delivered from electrospun MS-composite 

scaffolds [114], we first demonstrated that active growth factors could be encapsulated 

and released from the materials, eliciting a biological response both in vitro and in vivo. 

Exposure to microspheres and MS-composite scaffolds containing bFGF stimulated MFC 

proliferation to similar levels as the addition of 50 ng/mL aqueous bFGF, despite 

differences in dosage (Figure 8-2). Further, while previous work washed out the PEO 

fibers prior to cell seeding, we did not remove PEO prior to use, further simplifying the 

scaffold preparation process. Allowing the PEO to dissolve in situ did not adversely affect 

cell proliferation or morphology, or affect in vivo behavior (data not shown). In contrast, 

while control PLGA microspheres did not affect cell behavior in vitro, PLGA 

microspheres caused a heightened immune response in vivo, stimulating in a slight 

increase in vascularity for all MS-containing scaffolds, perhaps due to the acidic by-

products of PLGA degradation. An increased number of immune cells were identified 
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using H&E in MS-composite scaffolds compared to composite scaffolds without MS 

(data not shown). Finally, we demonstrated that similar to prior in vitro work, scaffolds 

containing sacrificial PEO fibers resulted in better cell infiltration in vivo due to an 

increase in the porosity of the scaffold. 

 

Interestingly, the doses of VEGF that stimulated vessel formation were significantly 

lower than previous reports [123, 263, 264]. While we attempted to encapsulate 

comparable levels of VEGF to prior work, a significant proportion of the growth factor 

dosage was either excluded during fabrication or denatured, according to ELISA 

measurements. Despite the low quantity of VEGF delivered from both sacrificial fibers 

and entrapped microspheres, the angiogenic response in vivo was robust for all 

conditions, suggesting that either the ELISA results were misleading or that significantly 

lower doses of VEGF are needed to stimulate a vascular response than previously 

reported. Indeed, many reports only describe the theoretical VEGF loading prior to 

biomaterial fabrication, and they may also experience similar decreases in growth factor 

dosage after material fabrication.  

 

Two distinct release profiles elicited similar responses in vivo. A relatively large initial 

burst of VEGF from composite scaffolds resulted in similar vascularization as a much 

smaller, sustained release of VEGF from MS-composite scaffolds (a 40-fold difference in 

dosage). Aside from minimizing growth factor expense, the materials used here present 

unique opportunities for designing delivery schemes that closely resemble natural 

biological cascades in vivo. For example, a burst of VEGF could be followed by a 

sustained release of platelet-derived growth factor, which demonstrated improved vessel 

maturation compared to VEGF alone [123, 265]. Or, an initial burst of antibiotic could 

help prevent infections associated with surgery [266].  
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While this work presents a number of interesting new techniques to deliver growth 

factors from electrospun fibers with distinct release profiles, some limitations do exist. 

First of all, it is unclear whether the vessels present at 2 weeks would continue to mature 

or recede with time in vivo. Using our system, we could deliver additional growth factors 

that promote vessel maturation, such as the VEGF/PDGF combination mentioned 

earlier. Further, it is unclear if the 1 mm pores would be sufficient to sustain the 

metabolic needs of the cells in the scaffold, and more testing must be conducted to 

understand the effect of such pores on the mechanical properties of the material. 

Another approach to promote vascular invasion would be to include a large-diameter 

sacrificial fiber population that creates pores wide enough to harbor capillaries and other 

blood vessels. Finally, the subcutaneous space is significantly different from the synovial 

environment of the knee, so biomaterial degradation, release profiles and biological 

response will also need to be studied in that context. Large animal studies are on-going 

to assess the role of both composite scaffolds and growth factor delivery from such 

scaffolds. 

 

8.6 Conclusions 

Growth factors are a powerful tool to control cell behavior in tissue engineering 

materials. Because fibrous tissues are especially challenging to engineer, incorporating 

the capability to deliver growth factors from electrospun scaffolds without compromising 

mechanical properties will improve the success of such materials. Two novel approaches, 

one simple method that allows for a burst release and a more complex method that 

allows for sustained release, can be combined in a wide array of ways to generate unique 

delivery schemes that mimic natural cascades or promote regenerative behavior in the 
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neotissue. With this work, we hope to bring electrospun scaffolds closer to a clinically 

successful therapy for fibrous tissue repair. 
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9: Conclusions and Future Work 

 
Meniscus repair remains elusive in medicine today. Since meniscus tears are one of the 

most prevalent injuries in orthopedics, a successful meniscus treatment will prove 

extremely valuable and lucrative, and will have a significant impact on the orthopedic 

field. However, despite major efforts by many researchers around the world, we have not 

been able to engineer a structure that mimics the complexity of the native tissue itself or 

regenerates the tissue in a functional way. Not only is the meniscus composed of various 

specialized cell populations, multiple layers of uniquely-oriented collagen fibers, and 

distinct regions of proteoglycan that all blend seamlessly together, but also the overall 

shape of the tissue features curves and arches that must precisely match the overlaying 

femoral condyles and underlying tibial plateau in order to successfully balance joint 

mechanics, creating an architectural challenge on many levels.  

 

Three potential repair schemes exist for a degradable tissue engineering meniscus 

therapy. In the simplest case, a tear is filled with a degradable material (Figure 9-1A) 

that restores continuity of the tissue across the injury region, either through the material 

itself or by delivering chemical cues locally. In cases where complex tears require entire 

regions to be resected, a patch of material would be inserted (Figure 9-1B) that can 

harbor cells and also match the surrounding physiological characteristics. Finally, in the 

most extreme situations, the entire meniscus can be removed and replaced (Figure 9-

1C) by a complete meniscus construct, complete with insertion sites to the bone. 
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Figure 9-1 Potential treatments after a meniscus injury. (A) A material is used to promote 
integration across a clean meniscus tear. (B) After meniscectomy, the removed tissue is replaced 
with new material, capable of recapitulating the function of the resected tissue. (C) In extreme 
cases, complete meniscus replacement is required, with insertions into the tibial plateau at the 
meniscus horns. 

 

 

We believe that the most promising approach is to create a meniscus patch (Figure 9-

1B), due to the prevalence of meniscectomy after injury. By maintaining a majority of the 

original tissue, joint mechanics are minimally changed, and guide patch insertion and 

geometry. Based on the work described in this thesis, as well as other work performed in 

the lab, we recommend the repair procedure described in Figure 9-2. Specifically, an 

electrospun patch should include sacrificial fibers to increase porosity, which promote 

maturation and result in better integration properties with native tissue. Hastening these 

properties will decrease the amount of time a patient is non-weight bearing after 

implantation. Also, drug-delivering microspheres should be entrapped between the 

fibers in the scaffold, and vascular conduits formed to support cell metabolism during 

regeneration. The addition of expanded cells to the exterior of the scaffold will further 

improve integration, although the cost associated with isolating and expanding 

autologous cells may outweigh this benefit. Based on current work, we also recommend 

that a cocktail of growth factors are delivered from the electrospun material. These 
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chemicals should promote the properties of immature, healing meniscus in the 

neotissue, and create a regenerative environment that stimulates optimal tissue 

formation. Specifically, we propose a short-term release of bFGF (to increase cell density 

around the repair site) and VEGF (to stimulate early vascularization that supports 

regeneration) from sacrificial fibers, along with delivery of both TGF-β (to stimulate 

matrix production) and PDGF (to mature /sustain existing blood vessels) from 

entrapped microspheres. With this approach, vasculature would be continuously present 

from early timepoints, and integration/maturation properties would slowly improve over 

time. Eventually, as the original tissue is regenerated through matrix deposition, the 

scaffold and associated vascularity will recede, leaving a tissue that is functionally similar 

to the original tissue. 

 

Figure 9-2 A potential meniscus repair scheme. 
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Future work can explore the delivery of other types of molecules from electropun 

scaffolds to promote meniscus repair. For example, early work suggests that enzymes 

such as hyalurodinase could be used to decrease matrix density at the repair site [267], 

allowing for more cell migration and new matrix deposition that spans the injury region. 

Further, regulators of the immune response, such as dexamethasone, could be delivered 

locally, tempering inflammatory processes that might inhibit regenerative behavior. 

Because both short- and long-term delivery schemes are possible, with multiple fibers 

and microsphere populations in a single scaffold, this biomaterial provides a significant 

amount of flexibility in terms of delivery of different factors that support regeneration. 

 

Despite the progress that has been made to date in creating a meniscus repair patch, a 

number of challenges remain. Specifically, our current fabrication technique creates thin, 

flat sheets of scaffold, and it is unclear how these can be formed into the 3-sided c-shape 

of the meniscus. Once we have identified a way to create the overall architecture, other 

surgical realities must be tackled. Current technology allows for measurement of the 

exterior rim of a resected region using an arthroscopic measuring tape (used in the 

Menaflex procedure), but a new device would be needed to measure the radial thickness. 

Further, we need to develop a way to cut the scaffold to the correct dimensions, with 

minimal damage to the remaining scaffold. The material currently requires delicate 

handling, which is unlikely in an orthopedic OR. It ideally must also be inserted 

arthroscopically, as opening the knee is costly and time-consuming, and will significantly 

limit the use of such a therapy. Finally, while we have demonstrated that new matrix will 

interface the scaffold and native tissue, temporary sutures or a glue may help ensure 

scaffold stability prior to maturation and must be thoroughly tested. 
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Prior to human studies, a number of large animal studies will be crucial in 

understanding the potential for success. The in vitro work performed in this thesis 

provides a significant amount of information for designing in vivo studies. However, the 

synovial environment is very different from both the in vitro culture conditions and the 

subcutaneous space in a rat, so we must test the behavior of cells on these scaffolds in the 

knee, as well as the effects on the material properties and degradation rates of the 

polymers that are used. Preliminary studies in an ovine model show some cell infiltration 

into the scaffolds, but that the scaffolds become dislodged over time [148].  Further, we 

will need to test if local growth factor delivery stimulates cell behavior in ways similar to 

in vitro and subcutaneous in vivo studies, which is not a liquid environment like the 

knee.  

 

Finally, while a patch may restore joint mechanics and minimize pain to the patient, the 

ultimate goal is to extend the period of time before a patient must receive a knee 

replacement, ideally removing the need for that surgery entirely. While total knee 

arthroplasty (TKA) is relatively routine and has a high success rate, it is a major surgery 

with large associated costs both in medical expenses as well as in lost wages during 

recovery. Also, revision surgeries are tricky and expensive, and with the population 

aging, so we must delay the need for such extreme surgeries as much as possible. 

Delaying the onset of osteoarthritis, and subsequent TKA surgery, by maintaining joint 

mechanics through the use of such a patch will make this therapy a success, and will 

likely result in the therapy being embraced by both surgeons who would finally have a 

clinical option for their patients beyond resection, and payers who would be happy to 

decrease the number of expensive TKAs.  
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Overall, I must believe that successful meniscus regeneration will some day exist, 

because we have been able to conquer many other challenging conditions. The problem 

is lofty: meniscus repair requires a mix of architectural, chemical and biological 

optimization and design. It is evident that the solution will not be straightforward, but 

the successful design and implementation of such a therapy will certainly revolutionize 

the field of orthopedics.  
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