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Permuted Inclusion Criterion: A Variable Selection Technique

Abstract
We introduce a new variable selection technique called the Permuted Inclusion Criterion (PIC) based on
augmenting the predictor space X with a row-permuted version denoted Xpi. We adopt the linear regression
setup with n observations on p variables. Thus, our augmented space has p real predictors and p permuted
predictors. This has many desirable properties for variable selection. For example, this preserves relations
between variables, e.g. squares and interactions and equates the moments and covariance structure of X and
Xpi. More importantly, Xpi scales with the size of X. We motivate the idea with forward selection. The first
time we select a predictor from Xpi, we stop. As this depends on the permutation, we simulate many times and
create a distribution of models and stopping points. This has the added benefit of quantifying how certain we
are about stopping. Variable selection typically penalizes each additional variable by a prespecified amount.
Our method uses a data-adaptive penalty. We apply this method to simulated data and compare its predictive
performance to other widely used criteria such as Cp, RIC, and the Lasso. Viewing PIC as a selection scheme
for greedy algorithms, we extend the PIC to generalized linear regression (GLM) and classification and
regression trees (CART).
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ABSTRACT

Permuted Inclusion Criterion: A Variable Selection Technique

Shaun Lysen

Andreas Buja, Advisor

We introduce a new variable selection technique called the Permuted Inclusion Cri-

terion (PIC) based on augmenting the predictor space X with a row-permuted version

denoted Xπ. We adopt the linear regression setup with n observations on p variables.

Thus, our augmented space has p real predictors and p permuted predictors. This has

many desirable properties for variable selection. For example, this preserves relations

between variables, e.g. squares and interactions and equates the moments and covariance

structure of X and Xπ. More importantly, Xπ scales with the size of X. We motivate

the idea with forward selection. The first time we select a predictor from Xπ, we stop.

As this depends on the permutation, we simulate many times and create a distribution of

models and stopping points. This has the added benefit of quantifying how certain we

are about stopping. Variable selection typically penalizes each additional variable by a

prespecified amount. Our method uses a data-adaptive penalty. We apply this method to

simulated data and compare its predictive performance to other widely used criteria such

as Cp, RIC, and the Lasso. Viewing PIC as a selection scheme for greedy algorithms, we

extend the PIC to generalized linear regression (GLM) and classification and regression

trees (CART).
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Chapter 1

Introduction

Variable selection has been of great interest to the statistical community for decades. It

is one of the most fundamental problems in statistical applications and has received a

great deal of theoretical input. Suppose we have n observations of a response variable y

along with a potentially large number of predictor variables X1,X2, . . . ,Xp and we seek

a model relating the predictors to the response. Not every predictor should be included

in the model and there are a few reasons why. First, a predictor may have no relation

to the response and thus has no reason to be included in the model. Second, although a

predictor may have a relation to the response, after we adjust for the variables already

included in the model, this relation becomes negligible. This often happens when our

predictors are highly correlated. Third, we desire simple models with as few predictors

as possible. This has a philosophical underpinning with Occam’s Razor, but also a sta-

tistical underpinning with the bias-variance tradeoff – simple models are less variable.
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Identifying which subset of variables is “best” to build a model is precisely the variable

selection problem. For this reason, variable selection is synonymously known as subset

selection. More generally, subset selection is a special case of model selection where

each model corresponds to a distinct subset of the variables. In all that follows, our pri-

mary goal with variable selection will be prediction and we will measure goodness-of-fit

by squared error.

A fundamental problem with building a model is that we use the same data to both

select the subset and to evaluate its error rate, introducing bias into the selection problem.

As a result, the error rate will almost certainly be larger on a new data set. To correct

for this, many selection procedures have been developed. We propose a new selection

scheme called the Permuted Inclusion Criterion (PIC) that mitigates selection bias with

a penalty that adapts to the dimensionality and correlation structure of the data set. The

fundamental idea behind the PIC is the generation of a reference data set to serve as

fake data that has no relation to the response variable. We augment the predictor space

with this fake data so that we now have 2p variables. Suppose the real data has no

signal to explain the response. Then in theory, we should have no preference whether we

select a real predictor or a fake predictor. We will make all of this much more precise

in the following chapters, but this fundamental concept of augmenting the dataset with

nonsense predictors is essential. We will show this idea is much more general and can be

used with any greedy algorithm that selects a “best” variable.

As variable selection is best understood and most often studied with linear regression,
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we will motivate the PIC from this context. We will in later chapters, however, extend

the idea to generalized linear regression (GLM) and classification and regression trees

(CART).

This thesis is organized as follows. The remainder of Chapter 1 presents the need

and reasons for variable selection and the most common ways to build candidate models.

Chapter 2 provides an extensive overview of the most commonly used variable selection

criteria. In Chapter 3 we introduce and describe in detail the Permuted Inclusion Cri-

terion. Chapters 4 and 5 illustrate various extensions to the PIC including how under a

slightly different assumption, we can consider rotated versions of the data set. We also

extend it to Generalized Linear Models. In Chapter 6, we perform extensive simulations

and compare the performance of the PIC to other common schemes. We also illustrate

its use in the p > n case. In Chapter 7, we extend the PIC and apply it to building

Classification and Regression trees.

1.1 The Need for Variable Selection

We now consider a few reasons why variable selection is so important. Squared error

decouples into the squared bias plus the variance. These quantities nearly always trade

off against one another. When we include too few predictors in our model, we have

underfit which results in high bias with low variance. On the other hand, if we include too

many predictors, we have overfit which results in low bias with high variance. Delicately

balancing the bias-variance tradeoff is at the heart of variable selection. For example,
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suppose that we have a variable X j that has a weak relationship with the response. By

including it in the model, we will decrease the bias. However, the addition of an extra

variable increases the model’s variance, and if this increase is larger than the decrease

in bias, we would be better off excluding this variable. Much of the variable selection

literature is devoted to balancing this tradeoff and developing good selection criteria to

select an optimal number of predictors.

An additional goal is interpretatation. The fewer predictors we include in our linear

model, the more interpretable the model is. In many scientific studies, the relationship

between inputs (predictors) and output (response) is paramount and this relationship is

better understood with fewer predictors. We clearly do not want to omit any important

variables, but we desire as simple of a model as possible.

Related to interpretability is a philosophical motivation from Occam’s razor that seeks

“the hypothesis with the fewest assumptions and fewest entities among competing hy-

potheses”. In our case, all the models have the assumptions of normally distributed inde-

pendent errors and a linear in β relationship between predictors and response. The fewest

entities then correspond to the model with the fewest number of nonzero coefficients. All

else equal, we seek the most parsimonious model.

Finally, in the increasingly common case where the number of predictors p is greater

than the number of observations n, variable selection is a requirement. Including all

p variables is impossible since we have at most n linearly independent variables. We

have different subsets of variables giving the same predictions. We need some way to

4



intelligently choose which variables appear in our model.

1.2 Variable Selection in Linear Regression

As variable selection is most frequently studied in the linear regression case, we develop

our ideas in this framework. Linear regression models are the most prevalent in appli-

cations and often serve as a good first appoximation to nonlinear models. In all that

follows, we will assume the data is centered so that we do not concern ourselves with an

intercept1.

Consider the traditional linear regression setup:

y = µ + ε = Xβ + ε where y = (y1, y2, . . . yn)T ∈ Rn

X = (X1,X2, . . .Xp) ∈ Rn×p ε ∈ Rn with ε ∼ Nn(0, σ2In)

We adopt the residual sum of squares (RSS) as our error rate defined by:

RSS(β) = (y − Xβ)T(y − Xβ)

Variable selection requires two phases. First, we need to build a pool of candidate

models and second, we need to select the best model from this pool. In this chapter we

discuss building candidate models, devoting all of Chapter 2 to the selection problem.

1Equivalently, we could force the intercept into all models we build and not consider it as a predictor
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1.3 Building Candidate Models – Common Algorithms

One of the primary problems of subset selection is that we have 2p possible models to

consider. For p of even moderate size, an exhaustive search is infeasible. For example,

with p = 30, we have a billion potential models. Moreover, suppose we did generate all

2p models. Unless p is small, this is generally a bad idea. The larger the pool of models

we select from, the larger the selection bias. Consequently, we seek a balance between

a computationally feasible strategy that also discovers “good” models. We next discuss

the most common methods: All Subsets, Forward Selection, Backward Elimination, and

Stepwise.

1.3.1 All Subsets

All Subsets seeks the best fitting model from all possible subsets of variables. Since we

build all possible models, all subsets is guaranteed to contain the globally optimal model.

No other model building strategy can guarantee this. When we have a small number of

predictors, all subsets can be a good idea. For example, suppose we have 10 predictors

and when looking at the best subsets of size 5, we always see the same 3 predictors

appearing in the list. This gives strong evidence these three variables should be in the final

model. Additionally, when we have a larger number of predictors, clever methods exist

for speeding up the algorithm such as branch and bound techniques (Furnival and Wilson,

1974), which eliminate infeasible models from consideration. However, all subsets still

quickly grows computationally infeasible and exposes the model to greater selection bias.
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1.3.2 Stepwise Methods

Forward Selection and Backward Elimination are similar methods that sequentially add

or delete one variable at a time, respectively. In Forward Selection, we start with the

null model with no predictors. At each step, we add the variable most correlated with

the current residual vector. We then orthogonalize the residual vector and all other pre-

dictor variables not yet selected with respect to the variable just added. The variable

“most correlated with the current residual vector” is equivalent to the most significant

predictor from software output. That is, we seek the variable with the smallest p-value

or equivalently, largest t-statistic in absolute value. We will however, focus on the square

of the t-statistic or the F-statistic for reasons that will be clear. We continue adding vari-

ables until we have added them all or we satisfy a stopping criterion. The most widely

used stopping criterion is the F-to-enter. We prespecify the F-to-enter before building the

model, and the first time the largest F-statistic is smaller than the F-to-enter, we stop.

Backward Elimination proceeds with all variables in the model and sequentially deletes

the variable least correlated with the current residual vector. We continue until we have

dropped them all or we have reached some stopping criterion. Analogous to forward

selection, the most widely used stopping criterion is the F-to-delete. We prespecify the

F-to-delete and the first time the smallest F-statistic is larger than the F-to-delete, we stop.

In the case p > n, backward elimination fails because we have ambiguity about where to

start. Any n linearly independent variables span the entire space and yield a residual sum

of squares of 0.
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Forward Selection and Backward elimination strike a sensible balance between com-

putational feasibility and finding good models but they do have their drawbacks. They

can select vastly different models. For example, we can create a data set where the first

variable to be added with Forward Selection is also the first variable to be deleted with

Backward Elimination. As a result, we often combine these two strategies into one al-

gorithm called Stepwise regression. Stepwise regression alternates between adding the

most significant variable and then deleting the least significant variable. One reason Step-

wise can be better than Forward Selection or Backward Elimination alone is collinearity.

That is, once a variable is added to the model, it may have made other variables already

in the model much less significant because of this collinearity and they should be re-

moved from the model. If we were strictly moving in a forward direction, this would not

be possible. Put another way, while all three of these strategies are greedy algorithms,

Stepwise is less greedy than Forward Selection or Backward Elimination alone. Since

we both add and delete variables, Stepwise requires both an F-to-enter and an F-to-delete

criteria. One natural question to ask is will this algorithm converge? With Forward Se-

lection and Backward Elimination, it’s clear when we stop. With Stepwise, we may not

be able to add an additional variable, but once we delete the least significant variable,

the F-statistics all change, meaning we may be able to add a variable now. A sufficient

condition for convergence is that the F-to-delete is smaller than the F-to-enter.

An additional problem with all three of these algorithms is that there is no reason

why the best subset of k variables has any relation to the best subset of k + 1 variables.
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In fact, we can construct an example where the best subset of k variables has an empty

intersection with the best k + 1 variables. The above stepwise procedures would require

the best k variables to be a subset of the best k + 1 variables since we only consider the

addition or deletion of a single variable at a time. We might consider adding or deleting

2 or 3 variables at a time, but this increases the computational complexity, which was

one of the main reasons we decided on these methods in the first place. We can think of

these stepwise methods as sensible quick and dirty ways to build candidate models, but

to understand there is no reason to believe we will be anywhere near the global optimum.

For the rest of this paper, we will focus on Forward Selection as it is the clearest

framework to describe our method, and works in the case where p > n. We now describe

it in much more detail.

Forward Selection

Forward Selection starts out with the null model with no predictors selected. Then at

each step, we select the variable most correlated with the current residual vector.

We have the standard regression setup with n observations of a response y and p pre-

dictors arranged in a matrix X. We introduce the following notation. Let I = {1, 2, . . . p}

and let A be a subset A ⊆ I and Ac = I \ A. That is, I is the index set of all the

variables, and we defineA as the active index set of variables currently in the model, and

Ac is the index set of variables yet to enter the model. We define A j as the active index

set for the first j variables to enter. Thus we have the relation
∣∣∣A j

∣∣∣ = j. More precisely,
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we let i j be the index of the jth variable to enter. ThusA j =
{
i1, i2, . . . i j

}
. Because we are

working with Forward Selection where we do not delete variables we have the relation

A1 ⊆ A2 ⊆ . . . ⊆ Ap

Result: Forward Selection

Step 0. We initializeA0 = ∅, µ̂0 = 0, X0 = X

for j =1 to min(p, n) do

1. i j = argmaxi∈Ac
j−1

∣∣∣∣cor
(
y − µ̂ j−1,X j−1

i

)∣∣∣∣
2. A j = A j−1 ∪ i j

3. Let H j = 1
X j−1T

i j
X j−1

i j

X j−1
i j

X j−1T
i j

4. µ̂ j = µ̂ j−1 + H j

(
y − µ̂ j−1

)
5. X j =

(
In − H j

)
X j−1

end
Algorithm 1: Forward Selection Algorithm: Step 1 selects the variable index most

correlated with the current residual vector. Step 2 adds that index to the active set. Step

3 computes the projection matrix to orthogonalize. Step 4 updates the current model fit

and Step 5 orthogonalizes all remaining variables not yet selected.

This algorithm gives a set of min(p, n)+1 models. From this set we need to choose our

“best” model. The following chapter gives common selection techniques. The interested

reader can find a nice, succinct overview of variable selection (George, 2000), or for a

more detailed account see (Miller, 2002).

10



Chapter 2

Selection Criteria – When To Stop?

All of the variable selection algorithms proposed in the last chapter share one big question

– When do we stop? We introduced the F-to-enter idea but without giving any idea to how

large it should be. We now put this question in terms of the canonical variable selection

problem.

2.1 The Need for a Penalty

There is an inherent problem with the RSS criterion. For a fixed number of k nonzero

coefficients, this is a sensible criterion to compare models. However, the addition of

a (k+1)st variable to the model will always have a smaller RSS than the model with k

variables. Therefore, in order to select between models of different sizes we need to

penalize the addition of a new variable. More specifically, consider the following

11



β∗k,λ = arg minβ
(y − Xβ)T (y − Xβ)

σ2 + λk

where k is the number of nonzero predictors and λ is the penalty. Each additional

variable is penalized by the constant term λ. This framework encompasses many of the

most common variable selection techniques with different choices of λ. Note that we

divide the RSS by the noise variance. Using this criterion with Forward Selection, we

add a variable if and only if

RSSk+1

σ2 + λ(k + 1) ≤
RSSk

σ2 + λk

or equivalently if

RSSk − RSSk+1

σ2 ≥ λ

Practically speaking, we never know the noise variance and thus must use an estimate σ̂2.

We then have

(RSSk − RSSk+1) /σ2

σ̂2/σ2

which follows the form of an F statistic. Under the null hypothesis that all remaining

variables have zero coefficients, this follows the F distribution on 1 and n-k degrees of

freedom. The estimate σ̂ is typically taken as the Root Mean Square Error (RMSE) of

the model with k variables. Therefore, we see that we add a variable to the model if its

F-statistic is larger than λ. We have a direct correspondence between λ and the F-to-enter

criterion from the previous chapter. We now consider several popular variable selection

12



schemes that can roughly be broken into 3 groups: constant λ, λ as a function of p, and λ

as a function of both p and k.

2.1.1 Constant λ

Searching for Significance: λ ≈ 4

We start with a method that does not have a strong theoretical basis, but remains ubiq-

uitous in introductory regression courses. We term this “searching for significance.” We

start with a null model and keep adding the variable with the smallest p-value until no

variables have a p-value smaller than α = .05. Using this cutoff, we add a variable if its

t-statistic is above approximately 2 in absolute value. This corresponds to an F-statistic

of 4. We mention it briefly to serve as an anchor for other methods, as we are certain it is

a criterion you have encountered in the past.

Mallows’ Cp: λ = 2

We define Cp as

Cp =
RSSk

σ̂2 − n + 2k

We see that this is exactly the variable selection formulation we have above with λ = 2

with the exception of subtracting n. Since the number of observations is the same for all

models we consider, this does not affect the ranking of models by Cp. Mallows motivated

this statistic as an unbiased estimate of the model error scaled by the noise variance:

1
σ2 ‖Xβ − Xβ̂‖2 =

1
σ2 ‖µ − µ̂‖

2

13



To directly show the bias-variance breakdown, we expand this (dropping the σ2 for now)

E‖µ − µ̂‖2 = E‖µ − E(µ̂) + E(µ̂) − µ̂‖2 = E‖µ − E(µ̂)‖2 + E‖E(µ̂) − µ̂‖2

These two terms are precisely the squared bias and the variance, respectively. The vari-

ance is exactly equal to kσ2. The squared bias can be estimated by RSSk − (n − k)σ2.

Practically speaking we have to estimate σ2 which we typically take as the residual vari-

ance from fitting the full model. Plugging this value in for σ2 and dividing both sides by

it, we derive Cp.

The bias we mention above is bias from omitting a variable. The other bias to be

very aware of is selection bias. While Cp is an unbiased estimate of the model error1, the

moment we use it to choose among many models, it’s no longer unbiased. Mallows took

great care to warn against using Cp to select a best model.

“The discussion above does not lend any support to the practice of tak-

ing the lowest point on a Cp plot as defining a “best” subset of terms. The

present author feels that the greatest value of the device is that it helps the

statistician to examine some aspects of the structure of his data and helps

him to recognize the ambiguities that confront him.”

Despite this, Cp is often used to select a best model, and moreover, attributed to him! See

also (Mallows, 1995)
1assuming σ2 is known
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AIC: λ = 2

Akaike (1973) formulated the Akaike Information Criterion (AIC) from an information

theory perspective. Suppose that the data was truly generated from a density g. If we

consider any other density f , the Kullback Leibler Divergence (KL) is defined as

KL(g|| f ) =

∫ ∞

−∞

g(x) log
g(x)
f (x)

dx =

∫ ∞

−∞

g(x) log g(x) −
∫ ∞

−∞

g(x) log f (x)

= Eg log g(x) − Eg log f (x)

where Eg denotes expectation with respect to g. We assume f is parameterized by θ ∈ Θ.

Our goal is to choose θ to minimize the KL between g and f . Note that the first term

Eg log g(x) only depends on g and is common to all models. Thus minimizing the KL is

equivalent to minimizing −Eg log f (x) – the expected negative log likelihood of f under

g. One key problem is that we do not know g. However, we have a sample from it and

can form the sample mean

1
n

n∑
i=1

log f (xi)

In the traditional linear regression setup and assuming σ2 is known, log f (x) is given by

the RSS/2σ2 with some constants that do not matter. By doing a Taylor series expansion

to second order around the expectation of the minimizer, we arrive at

−Eg log f (x) ≈ −
RS S
2σ2 + k

where k is the dimensionality of θ. In our regression setup, θ is the β vector. Since

multiplying by a positive scalar does not affect our optimal choice, we often see AIC as
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double the above quantity.

−2 log f (x) + 2k

Consequently, this gives a penalty of λ = 2. We note that AIC is much more general

applying to any model with a parameterized likelihood. We only applied it to linear

regression in this context. Hurvich and Tsai (1989) derive a bias-corrected AIC more

appropriate for small sample sizes given by

AICC = AIC +
2(p + 1)(p + 2)

n − p − 2

BIC: λ = log(n)

While BIC does not have constant λ it’s often mentioned with AIC, and falls best within

this group. Schwarz (1978) motivated the Bayesian Information Criterion (BIC) from a

model consistency framework. That is, asymptotically we select the correct model with

probability approaching one. For n ≥ 8 it penalizes models more harshly than does AIC.

BIC is derived by the fact that maximum likelihoood estimators (MLE) are asymptotic

limits of Bayes estimators for a certain class of priors. If we expand these estimators to

a second term, we get the BIC penalty. BIC is asymptotically equivalent to selection by

Bayes factors.

BIC is further justified from a coding theory perspective. Rissanen (1978) formulated

linear regression from a compression perspective called the Minimum Description Length

(MDL). Simply stated, we prefer the model that compresses the data the most. MDL

consists of two steps. First, we select a model H to use, and then, we communicate the
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dataD under the modelH up to a prespecified precision (MacKay, 2003). Optimal codes

communicate the string s in
⌈
− log2 p(s)

⌉
bits, where p is the probability of s (Cover and

Thomas, 2006). Ignoring rounding issues, this is precisely the negative log likelihood.

In the standard linear regression setup,H corresponds to which coefficients are nonzero.

Rissanen postulated a precision of log(
√

n) per parameter. Consequently, we have

−p(D|H) + |H| log(
√

n) = −
RSS
2σ2 +

1
2

log(n) k

If we multiply this by 2, this is equivalent to BIC.

2.1.2 λ as a function of p

Suppose all p variables are normally distributed and orthogonal. That is

XT
j Xk = 0 ∀i , j

Additionally, we assume that we have a null model

y = ε ε ∼ N(0, σ2)

where all of the variables have a zero coefficient. AIC and other constant penalties notori-

ously include too many irrelevant predictors (Breiman and Freedman, 1983). A desirable

goal for our selection procedure would be to not overfit in this completely nonsense case.

It we let Fi denote the F-statistic from including the ith variable in the model, we correctly

select the null model if

Fi ≤ λ ∀i
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or equivalently,

max
i∈1,2,...p

Fi ≤ λ

Our choice of whether we add a variable to the model depends on the distribution of

the maximum of p (nearly) independent F statistics2. This distribution can look vastly

different from the F distribution. To quote Miller (2002), changing notation to match

ours,

“The use of the terms ‘F-to-enter’ and ‘F-to-delete’ suggests that the ra-

tios Fi have an F-distribution under the null hypothesis, i.e. that the model is

the true model, and subject to the true residuals being independently, identi-

cally and normally distributed. This is not so. Suppose that after k variables

have been entered, these conditions are satisfied. If the value of Fi is cal-

culated for one of the variables chosen at random, then the distribution is

the F-distribution. However, if we choose that variable which maximizes

Fi, then the distribution is not an F-distribution or anything remotely like an

F-distribution.”

Below we show precisely what that distribution looks like for various values of p. We

fix the number of observations n at 100.

2Technically speaking, all F-statistics share the same denominator so they are not independent. Pro-

vided n is not too small, this effect should be negligible
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Figure 2.1: Distribution of the maximum F-statistic for p independent normal random

variables with a response y that is also a normal random variable. This represents the

maximum F to enter in a model that is pure noise.

The above figure clearly shows that our choice of λ should be increasing in p. This

is intuitively clear since the larger our pool of variables to select from, the larger we

expect this maximum to be. The leftmost distribution corresponds to p = 1. This is the

F-distribution that all standard software packages would calculate p-values with respect

to. While this plot intuitively motivates the idea that λ should be increasing in p, The
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Risk Inflation Criterion makes it rigorous.

RIC: λ = 2 log(p)

George & Foster motivate the Risk Inflation Criteria (Foster and George, 1994) by con-

sidering the worst possible inflation of risk due to selection, relative to the true model.

More specifically, define the Risk Inflation (RI) as

RI(β̂) = sup
β

E‖Xβ − Xβ̂‖2

E‖Xβ − Xβ̂∗‖2

where we define β̂∗ to be the estimated β vector if an oracle told us precisely which

coefficients are nonzero. Choosing λ = 2 log(p) in the canonical variable selection prob-

lem yields a model that is minimax with respect to RI when the predictors are orthogonal.

This penalty is important. It is the first one that grows with the size of the predictor space.

As the graphs above demonstrate, this is a desirable trait. Additionally, the expected value

of the maximum F-statistic is asymptotically 2 log p motivating this penalty even more.

This penalty also coincides with the universal threshold for wavelets developed indepen-

dently by Donoho and Johnstone (1994). Another illuminating connection is between the

RIC and the Bonferroni correction. When we are in a multiple testing framework with

p tests and seek control over the Familywise Error Rate (FWER) at level α, we conduct

each individual test at level α/p. If we translate the α/p quantile to the F-distribution, this

is asymptotically sandwiched for large p between 2 log p and 2 log p − log log p (Foster

and Stine, 2004).
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2.1.3 λ as a function of p and k

Now suppose we remove the restriction of a null model so that the β vector might have

nonzero entries and that we have added the first variable. Is it fair to penalize the next

variable by the same 2 log p penalty? If the remaining p-1 variables truly have zero

coefficients, we are now selecting an F-statistic from one of two distributions. First,

if we added the first variable correctly, then we are selecting the largest of p − 1 F-

statistics. If instead we added the first variable incorrectly, then we are selecting the

2nd largest of p F-statistics. Additionally, each of these distributions are truncated at the

value of the maximum F-statistic. In either case, we are selecting from a distribution that

is stochastically smaller than the largest F-statistic. The truncation only accentuates this

fact. So, intuitively, we should relax the penalty. We illustrate this graphically below.

We now ask more generally, suppose we have added k variables, how should we

penalize the addition of the (k+1)st variable.

False Discovery Rate

The penalty decreasing in k can be motivated from an important statistical perspective –

the false discovery rate (FDR) (Benjamini and Hochberg, 1995). The false discovery rate

is a multiple testing procedure that controls the proportion of falsely rejected hypotheses.

In the variable selection context, a rejected hypothesis corresponds to adding a variable to

the model. A falsely rejected hypothesis corresponds to adding a variable that we should

not have. Consequently, each additional rejection, if its false, impacts the false discovery
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Figure 2.2: Distribution of various order statistics for the F-distribution for 100 observa-

tions of 25 independent normal random variables with a response y that is also a normal

random variable. This motivates the idea why λ should be decreasing in k.

by a smaller amount since the total number of rejections – the denominator of the FDR –

is increasing. For example, the addition of the first variable causes the FDR to be either

0 or 1 – a difference of 1; whereas the addition of the tenth variable causes the FDR to

differ by 1/10. Each variable added impacts the FDR less so we are more tolerant of an

error. This corresponds to a λ that decreases in k.
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Modern Methods: λ = 2 log(p/k)

Many of the most recently developed variable selection penalties share this trait. The

penalty λ should be increasing in p while decreasing in k as we add additional variables.

Precisely, under the assumption that the number of nonzero predictors grows at a slower

asymptotic rate than the number of predictors, i.e. k = o(p), we have a family of penalties

that are approximately λ = 2 log(p/k). For the first variable, the penalty is the same as

RIC.

Foster and Stine (1999) derive the penalty λ = 1/k
∑k

i=1 2 log(p/k) from information

theory. Assuming k = o(p), this is asymptotic to 2 log(p/k).

Tibshirani and Knight introduced the Covariance Inflation Criterion (CIC) (Tibshirani

and Knight, 1999b) which adjusts for overfitting by subtracting the average covariance

between the predicted and actual response on permuted versions of the dataset. When the

predictors are orthogonal, the penalty is λ = 2/k
∑k

i=1 2 log(p/k). This penalty is twice as

large as Foster and Stine’s penalty.

George and Foster (2000) propose an Empirical Bayes approach where coefficients

are drawn from the mixture prior (1−w)δ0+w N(0,C). δ0 is a point mass at 0 representing

a variable not in the model. They estimate the hyperparameters w and C from the data.

They argue that this estimator penalizes the kth variable by a quantity close to 2 log((p +

1 − k)/k).

Birge and Massart (2001) studied model selection under a class of penalties including

λ = 2 log(p/k) and developed nonasymptotic risk bounds over lp balls.
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Abramovich et al. (2005) connect asymptotic minimaxity and multiple testing for a

wide range of sparsity classes under a False Discovery Rate framework that penalizes

models closely to 2 log(p/k)

2.2 Other Variable Selection Schemes

2.2.1 L1 methods

All of the preceding methods can be viewed in another way: regularization of the β vector

by the L0 norm. That is we select β to minimize

β∗k,λ = arg minβ
(y − Xβ)T(y − Xβ)

σ2 + λ ‖β‖0

where ‖β‖0 =
∑p

i=1 I(βi , 0)

As discussed above, one of the inherent difficulties of this problem is searching over

all 2p subsets which grows exponentially in p. One way to generalize this criterion is to

consider a different norm. Suppose we replace the L0 norm with a general Lq norm.

β∗q,λ = arg minβ
(y − Xβ)T(y − Xβ)

σ2 + λ ‖β‖q

This is exactly what is known as bridge regression (Frank and Friedman, 1993). Com-

mon specific cases correspond to q = 2: Ridge regression (Hoerl and Kennard, 1970) and

q = 1: the Lasso (Tibshirani, 1996).

We can gain additional insight by considering a few base cases. Assume that the

columns of X have unit norm and are orthogonal – that is XT X = I. Then we can relate
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common methods to the ordinary least squares estimates (OLS)

1. Ridge: q=2

β̂
Ridge
j = (1 + λ)−1β̂OLS

j

2. Lasso: q=1

β̂Lasso
j = sgn(β̂OLS

j )(|β̂OLS
j | − λ

2 )+

3. Subset Selection (SS): q=0

β̂S S
j = βOLS

j I(|β̂OLS
j | ≥ λ)

Ridge shrinks the β vector by a multiplicative factor, but never setting any coefficients

to 0. The Lasso performs soft thresholding, shrinking each coefficient towards zero by

a constant amount. If this constant is greater than β̂ j, it sets the coefficient to 0. Subset

Selection performs hard thresholding, or the “keep or kill” strategy, by either leaving

each coefficient unchanged or setting it equal to 0.

Lasso

One fact about Bridge regression is when q ≥ 1, this penalized criterion performs shrink-

age of the β vector as we see with the Lasso and Ridge penalties. The literature on the

benefits of shrinkage is vast. See (Stein and James, 1961; Lehmann et al., 1998) for its

origins in estimating the sample mean. For many shrinkage examples in modern statistics

where shrinkage improves prediction, see (Hastie et al., 2001). An additional benefit is

that the penalized criterion is convex. For subset selection q = 0, which is non-convex,
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finding the “best” subset is NP-hard. Changing to a convex penalty, the solution is more

easily found through widely available convex optimization software. For a good refer-

ence on convex optimization see Boyd and Vandenberghe (2004).

On the other hand, Bridge regression when q ≤ 1, performs selection of the β vector,

setting some coefficients equal to 0. The Lasso with q = 1 sits right at the boundary of

these two operations. In fact, that is what Lasso stands for: Least Absolute Shrinkage

and Selection Operator. The Lasso can be viewed as the closest convex approximation

to the variable selection problem, replacing the L0 norm with the L1 norm. Additionally,

the L1 penalty is continuous so that we are able to see the entire profile of regression

coefficients as we vary the penalty λ. At the two extremes, λ = 0 yields the full OLS

model while λ = ∞ yields the null model. Figure 2.3 is an example. We also include the

more common Lasso coefficient profile where the x-axis is the fraction relative to the full

OLS fit.

Least Angle Regression

Least Angle Regression (LARS) (Efron et al., 2004) is one of the most fascinating recent

developments in the linear model literature. LARS can be viewed as a smooth, continuous

less-greedy version of Forward Selection. Forward Selection and LARS both start by

selecting the variable that is most correlated with the response. Where they differ is how

much they move in that direction. Forward Selection moves along that direction until

the residual vector is orthogonal to it. If we instead imagine smoothly moving in that
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Figure 2.3: Coefficient profile for the Lasso as we vary λ on the left, and as we vary the

fraction relative to the full OLS fit on the right. This is the diabetes data taken from Efron

et. al (2004)

direction until we reach a point where another variable is equally correlated, we stop and

change directions to the one that is equiangular to the two equally correlated variables.

This is best illustrated with a geometric example.

We have a response variable y with two predictor variables X1 and X2. The variable

most correlated with y is equivalent to the variable which forms the smallest angle with

it. In this case, we select X2 first. Both Forward Selection (FS) and LARS proceed in this

direction. They differ by how far they travel.

Here we see the precise path that FS and LARS take. Forward Selection proceeds

along X2 until the residual vector is orthogonal to it. It then moves in this orthogonal

direction until it reaches y. In contrast, LARS proceeds along X2 until the point that the
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Figure 2.4: Both Forward Selection and Least Angle Regression select X2 as the direction

to move. Forward Selection travels until the residual vector is orthogonal. Least Angle

Regression travels to the point where the residual vector is equally correlated with X1 and

X2 and then moves along their angle bisector

28



residual vector is equally correlated – equivalently forms the same angle – with X1 and

X2. It then proceeds in the direction equiangular to X1 and X2 – the angle bisector. Un-

fortunately, we can only view this in two dimensions but the LARS algorithm generalizes

to more than two directions. We add a new variable to the model each time its correlation

with the current residual vector matches the correlation with those variables already in

the model. We then recompute the equiangular direction with the new variable added,

and proceed in that direction. LARS, just like Forward Selection, eventually reaches the

Ordinary Least Squares (OLS) solution. It just does so in a less greedy manner. The

geometric reasoning behind LARS is what gives it its name. At any given point in the

algorithm, those variables that form the least angle with the current residual vector are

included in the model. Any variables forming a larger angle are excluded.

Even more remarkable, with slight modifications of the algorithm, we can derive the

entire path of Lasso solutions and the infinitesimal forward stagewise solutions. We point

the interested reader to the original paper (Efron et al., 2004) and to a follow-up equating

Lasso and Forward Stagewise in an expanded predictor space (Hastie et al., 2007).

Dantzig Selector

The Dantzig Selector (Candes and Tao, 2007) is a recent development especially suited to

the p > n case, where we can recover the nonzero components of the β vector with large

probability under the uniform uncertainty principle on X. More formally, the Dantzig
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Selector is defined to be the solution to the convex problem

min
β∈Rp
‖β‖l1 subject to

∥∥∥Xtr
∥∥∥

l∞
≤ λσ

where r = y−Xβ is the residual vector. They recommend λ =
√

2 log p, which coincides

with the RIC penalty. Candes and Tao showed that the program can be recast as a linear

program, speeding up computation time. A remarkable result is that the mean squared

error of β is within a logarithmic factor of the mean squared error if an oracle told us

precisely which coefficients were nonzero. This result is not asymptotic. We should

note the mean squared error above is for the β vector, not the Xβ vector for prediction.

Efron et al. (2007) show the predictive performance of the Dantzig Selector relative to the

Lasso to be similar in some cases and inferior in others. In the rejoinder, Candes and Tao

specifically note the applications in biomedical imaging, genomics, and data conversion

where estimating β is paramount.

2.2.2 Data Resampling Methods

Resampling methods attack variable selection from a different perspective by sampling

repeatedly from the data to mimic what would happen with new data.

Cross Validation

The fundamental idea behind cross-validation (CV) is to divide the data into two parts and

use the first part to build the model and the second part to evalute the fit. We generally

focus on K-fold cross-validation which divides the data set randomly into K equal (or
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nearly equal) parts. We denote these parts by Γ1, . . .ΓK and let Γ(k) be the data with

Γk deleted, k = 1, . . . ,K. Suppose we have a sequence of forward selection models

M0,M1, . . .Mp with M j the model with j variables. Then for each k, we carry out forward

selection on Γ(k) generating models Mk
0,M

k
1 . . . Mk

p with respective sizes 0, 1, . . . p. Note

that there is no reason for Mk
j to have the same j variables as M j since Forward Selection

may select different variables on different subsets. Then for each model size j we evaluate

its cross-validated error (ĈV) as

ĈV( j) =
1
n

K∑
k=1

∑
(yi,xi)∈Γk

(yi − µ̂k(xi,Mk
j ))

2

where µ̂k is the predictand evaluated on the left out subset Γk under model Mk
j .

We select model size k = arg min j ĈV( j). Stone (1977) showed that leave-one-out

cross-validation (K = n) is asymptotically equivalent to AIC. However, Breiman and

Spector (1992) recommend five-fold cross validation for variable selection based on sim-

ulation results because leave-one-out CV tends to select the same model as the entire data

too often.

Both leave-one-out and five-fold CV are inconsistent for model selection. Shao

(1993) showed that they tend to include too many variables. He proves we can ensure

model consistency by letting the number of observations left out nv satisfy nv/n → 1 as

n→ ∞.
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Bootstrap

The bootstrap attacks the variable selection problem by sampling with replacement from

the empirical distribution. The bootstrap is typically applied in one of two ways. First,

we can bootstrap the residuals. We start by fitting the full model estimating regression

coefficients β̂ and the residuals ei, i = 1, . . . n. We then studentize the residuals defined by

e∗i = ei/
√

1 − hi where hi is the ith diagonal element of the hat matrix H = X(XT X)−1XT .

We then generate for each observation, a new y∗j = x jβ̂ + e∗j where e∗j is sampled with

replacement from the studentized residuals. Crucial to bootstrapping residuals is that

they have constant variance. This method is suitable if we treat X as fixed.

Second, we can bootstrap by sampling with replacement from the observed (xi, yi)

pairs. This method is appealing if we are working in the random-X case. It also makes

no assumptions on the model, unlike the homoscedastic error assumption above. Conse-

quently, we can view bootstrapping (x, y) pairs as “more nonparametric” than bootstrap-

ping residuals. One problem that may arise in the p > n case is each bootstrapped data

set has rank on average about 63% as large as the original data set.

Shao (1996) showed that this bootstrap scheme is not consistent. If we bootstrap

residuals, we can ensure consistency by increasing the variability of the residuals. If

we bootstrap pairs, we can ensure consistency by constructing smaller bootstrap samples

with size nb with nb/n → 0 as n → ∞. For a thorough treatment of the bootstrap see

(Efron and Tibshirani, 1997).
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Little Bootstrap

Breiman (1992) introduced the little bootstrap as an alternative to Cp that does not suffer

from such severe selection bias. Suppose we fit a model with j coefficients denoted µ̂ j.

The model error can be written as

ME(µ̂ j) = ‖µ − µ̂ j‖
2 = RSS j − RSSp + ‖µ − µ̂p‖

2 − 2(ε, µ̂p − µ̂ j)

where the subscript p denotes the full model with all predictors included and (·, ·) is

the inner product. We also estimate the residual variance from the full model fit µ̂p. The

first two RSS terms are directly computed. We can estimate ‖µ − µ̂p‖
2 as pσ̂2 assuming

the full model has no bias. We need an estimate for this last term. Breiman proposes the

little bootstrap to estimate this term. We generate bootstrapped responses as

ỹi = yi + ε̃i where ε̃i ∼ N(0, t2σ̂2)

Note that we add the error term to the original response y and not the predicted response

ŷ like the residual bootstrap of the previous section. We then fit the model using forward

selection to the (ỹi, xi) pairs with j variables and all p variables as above. Call these fits

µ̃ j and µ̃p. We then calculate

1
t2 (ε̃, µ̃p − µ̃ j)

Repeat this B times and average. Breiman showed that

1
t2 E(ε̃, µ̃p − µ̃ j) ≈ E(ε, µ̂p − µ̂ j)

for small t. Consequently, we plug this estimate in for the final term in the model error
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expression above.

M̂E(µ̂ j) = RSS j − RSSp + pσ̂2 −
2
B

B∑
b=1

(ε̃b, µ̃b
p − µ̃

b
j)

where the superscript b corresponds to a particular bootstrap sample. Based on simula-

tions, Breiman recommends t = 0.6 and B = 40. The best model is then chosen with

respect to this model error estimate.

2.2.3 Bayesian Methods

The Bayesian view on variable selection has seen a great deal of research in the past two

decades. The fully Bayesian approach is as follows. Suppose that we have 2p models

denoted by M1,M2, . . . ,M2p each of which corresponds to a distinct subset of the vari-

ables {X1,X2, . . .Xp}. We need two prior probabilities. First, we need a prior probability

for the model Mγ which we denote π(Mγ) and given the model, we need priors for each

regression coefficient, denoted by π(β j|Mγ), j = 1, 2, . . . p. The posterior probability for

model Mγ is given by

π(Mγ|y,X) =
pγ(y|X)π(Mγ)∑2p

k=1 pk(y|X)π(Mk)

where

pγ(y|X) =

∫
p(y|βγ,X)πγ(βγ|Mγ)dβγ

Selection occurs based on these posterior probabilities. The clear obstacle is then

how do we choose the priors. Mitchell and Beauchamp (1988) introduced “spike and

slab” priors, which for each predictor, consist of a a mixture between a point mass at 0
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(the spike) and a uniform distribution between −c and c for some constant c (the slab).

One obvious drawback is the finite support of the prior. One common alternative is to put

normal priors on those variables appearing in the model. For the model itself, we put a

binomial probability

P(Mγ) = wk(1 − w)p−k

where k is the number of variables in model Mγ. With this setup and fixing σ2, Chipman

et al. (2001) showed that under different parameterizations, we can generate the variable

selection problem for any penalty λ (e.g. AIC, BIC, RIC). Berger and Pericchi (1996)

take a different approach, similar to cross-validation, by proposing to use part of the data

to estimate the prior distributions and the remaining data to generate posterior probabili-

ties.

Research prior to the advent of Markov Chain Monte Carlo (MCMC) methods fo-

cused on developing priors that minimally influence the posterior. The development of

MCMC methods shifted the attention to fully specified prior distributions. The use of

MCMC allows for much easier posterior calculations. Consequently, the primary obsta-

cle now is how to intelligently search through the posterior. Markov Chain Monte Carlo

model composition (MC3) (Madigan et al., 1995; Raftery et al., 1997) proceeds similarly

to Efroymson’s stepwise algorithm. We start with a random subset of the variables. At

each step, just like stepwise, we either add or delete a variable. The key difference is the

choice of what variable to add or delete is stochastically guided. An alternative to MC3

is Gibbs sampling. George and McCulloch (1993) modify the spike and slab prior by
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allowing a mixture of two normal distributions, one with a very small variance. If the

regression coefficient is sampled from this distribution, we can safely say its coefficient

is 0 and should be left out of the model.

A related line of research in this context is Bayesian Model Averaging (Hoeting et al.,

1999) where we take a weighted average of models sampled by the posterior. While this

often gives better predictions, we lose our parsimonious goal of variable selection. Most

or all variables will appear in the averaged model. For a general overview of Bayesian

methods, see (Gelman et al., 2004).

2.3 False Selection Rate

We now discuss the the False Selection Rate (FSR) (Wu et al., 2007), a variable selection

scheme most similar to the one we propose in the next chapter. We develop the FSR in

detail in this section so that later we can contrast specific points with our method. We

define the important variables as those for which β j , 0 and unimportant variables as

those for which β j = 0. Ideally, we select all important variables and no unimportant

variables. The FSR attempts to control the proportion of falsely selected unimportant

variables. Suppose we specify an F-to-enter value that corresponds to significance level

α and perform forward selection. The model selects k(α) variables of which kI(α) are

important and kU(α) are unimportant. kU(α) + kI(α) = k(α). We of course do not observe

kU or kI . We define the False Selection Rate (FSR) as the expected value of the proportion
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of falsely selected variables, given by

γ(α) = E
(

kU(α)
1 + k(α)

)

We add 1 to the denominator to account for the intercept which is typically forced

in the model and to avoid division by zero. In their paper, Wu, et al. consider two

definitions, one the expectation of the ratio and another the ratio of expectations. We

focus on the expectation of the ratio as it is the one they use in their simulations. The key

goal is to select α∗ so that γ(α∗) = γ0 for some prespecified false selection rate γ0. To

ensure uniqueness, we take

α∗ = sup{α : γ(α) ≤ γ0}

For example, (kI , kU) = (3, 1) and (kI , kU) = (7, 2) both give an FSR of 0.2. We prefer the

larger model.

To control the FSR, they augment the predictor space with pseudo-variables that by

design have no relation to the response. Consequently, by monitoring the number of

pseudo-variables selected, and under the assumption that the pseudo-variables behave

like the unimportant real predictors, we can estimate the FSR. We make our notation

precise. Whenever we use p we mean the total number of predictors. If we attach a

subscript to p, we mean the total number of predictors of that type, e.g. pI is the total

number of important predictors, pU unimportant. We also introduce Z to be the pseudo-

predictors. Consequently, we have a total of p = pI + pU + pZ predictors and at entry

significance level we select a model size of k(α) = kI(α) + kU(α) + kZ(α). Ideally we want
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to control

γ(α) =
kU(α)

1 + kU(α) + kI(α)

The denominator does not need to be estimated since we know how many total vari-

ables we selected k(α) and we know how many of those are pseudo-predictors kZ(α), so

the denominator is simply 1 + k(α) − kZ(α). The numerator requires more effort. We

need to make an assumption that on average the proportion of selected unimportant real

predictors is equal to the proportion of selected pseudo-predictors for all α. That is,

E
kU(α)

pU
= E

kZ(α)
pZ

and if we solve for kU(α), we get

kU(α) =
pU

pZ
kZ(α)

Unfortunately, we also do not know pU . So, we take an optimistic estimate and assume

that among real predictors selected, we only selected important ones, i.e. kU(α) = 0. That

is

p̂U = pU + pI − kU(α) − kI(α) = p − pZ + k(α) − kZ(α)

Every quantity on the right hand side is directly observable. In practice, we repeat

this many times, generating new pseudo-variables and taking averages to estimate p̂U ,

k(α), and kZ(α). Wu et al. use B = 500. We denote these averages as ¯̂pU , k̄(α) and k̄Z(α),

respectively.

We now have our estimate of the FSR

γ̂(α) =
¯̂pU k̄Z(α)/pZ

1 + k̄(α) − k̄Z(α)
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We then select

α∗∗ = sup{α : γ̂(α) ≤ γ0}

Note that we estimate α∗∗ from the augmented space with pseudo-predictors and that

it does not coincide with α∗ estimated from the actual data. The final model is selected

by running forward selection with a p-to-enter of α∗∗ on the real data.

One key issue we postponed until now involves the pseudo-variables. Namely, how

many of them do we include and how do we generate them? Wu et al. propose four

different methods.

1. Generate independent normal variables

2. Randomly permute the rows of X

3. Generate independent normal variables and orthogonalize with respect to X

4. Randomly permute the rows of X and orthogonalize with respect to X

The last two methods are simply the first two methods adjusted to ensure that every

pseudo-variable has zero correlation with every real predictor. The last two methods can

not be used in the case p > n, and also suffer in the case p > n/2 since the rank of the

pseudo-variables is at most n − p which is smaller than the rank of X. Methods 2 and 4

also restrict the number of pseudo-variables to be precisely the same as the number of real

variables pZ = pI + pU . In their simulations results, Wu et al. selected the fourth method

based on simulations. We will have more to say about the generation of pseudo-variables

later. Our method selects a variant of method 2.
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Chapter 3

Permuted Inclusion Criterion

We now get into the heart of this thesis, describing the data augmentation procedure and

how we apply our variable selection scheme. We will show that in the univariate case,

our method coincides with Pitman’s classic permutation test. We will then go into detail

about how to adjust our predictors after each step of Forward Selection. In the last section

of this chapter, we will compare and contrast our method with the False Selection Rate.

3.1 Augmenting the Data by Permutation

Our procedure begins by augmenting the predictor space X, which we will call the actual

or real data with a copy of X, denoted Xπ, in which the rows have been randomly per-

muted. We will call Xπ the permuted data or the fake data. We now have an augmented

predictor space X̃ =
(
X | Xπ

)
which consists of n observations on 2p variables. For each

actual predictor X j, we have a corresponding permuted predictor Xπ j. Both versions have
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the same marginal distributions since we only permuted the data. Additionally, if we let

var(X) = S,

var(X) = var(Xπ) = S

The covariance structure is exactly the same, because the inner products are left un-

changed. This is an extremely desirable property for variable selection because the dis-

tribution of test statistics depends on the correlation structure of the data. Furthermore,

Xπ preserves transformations and interactions between other variables. For example, sup-

pose X3 = X2 ·X1, then Xπ3 = Xπ2 ·Xπ1. Lastly, a trivial yet important observation is that

Xπ scales with the size of X. Both have p variables. The larger the pool of predictor vari-

ables to select from, the larger the pool of fake predictors to penalize variable selection.

This coincides with the intuition of RIC that the penalty λ should be increasing in p.

3.2 Forward Selection with the PIC

Forward Selection proceeds in a greedy fashion. We start out with the null model with

no predictors selected. Then at each step, we select the variable most correlated with

the current residual vector. Now suppose that instead of selecting the most correlated

predictor from X, we select the most correlated predictor from the augmented data X̃. As

long as we have not yet chosen a permuted predictor from Xπ, this procedure is equivalent

to selecting from X, since the order of variable entry is fixed conditional on observing X.

We propose a simple stopping criterion: as soon as we would select a predictor from Xπ,

we stop. We call this the Permuted Inclusion Criterion (PIC). Clearly, this depends on
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the realized permutation. Thus, we will simulate many permutations and create an entire

distribution of model sizes to select our final model. Ideally, we would sample from all

n! permutations. However, this is prohibitively large for moderate n, so we simulate N

times. This seemingly ad-hoc stopping criterion possesses many sensible properties.

Suppose we have the null hypothesis that y is a complete noise model: y = ε. Now

consider selecting from X and from Xπ separately. For X we select the variable with

the largest absolute correlation from a pool of p predictors with covariance matrix S that

has no relation to the response under the null hypothesis. For Xπ we select the variable

with the largest absolute correlation from a pool of p predictors with covariance matrix

S that has no relation to the response because we broke the relationship by permuting.

They only differ in the reasons why they have no relationship with the response y – one

hypothetical under the null hypothesis, and one actual because we manipulated the data

through permutation. If the largest absolute correlation from X is larger than the largest

absolute correlation from Xπ, we add that variable to the model. Otherwise, we stop and

select the null model. Under the null hypothesis, we would expect the choice between X

and Xπ to be equally likely.

Before we delve into the details of how to adjust the variables and select a model, we

draw an illuminating connection in the case of a single predictor.
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3.3 PIC applied to a single predictor

Suppose we have a single predictor variable denoted by lowercase x, and its permuted

analog by xπ. If we adopt the forward selection framework, we have two possible models

M0 : y = ε or M1 : xβ + ε

For a given permutation π, we select M0 if |cor(y, xπ)| > |cor(y, x)|. Otherwise, we se-

lect M1. Suppose we now take N total permutations and let π j denote the jth permutation.

We sample π j from the universe of all n! permutations, which we denote Πn. Let C0 be

the count for the number of times we select M0. We have the following algorithm.

Result: Permuted Selection with a Single Predictor

We initialize N total permutations, and count variable C0 = 0

for i =1 to N do
Sample πj from Πn

if |cor(y, xπ j)| ≥ |cor(y, x)| then
Select M0

C0 ← C0 + 1

else
Select M1

end

end
Algorithm 2: Permuted Inclusion Criterion: Single Predictor Variable. We augment

the predictor space with xπ j and we count the number of times that it has a larger

absolute correlation than the actual data
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This looks strikingly familiar to the permutation test for correlation between x and y

(Pitman, 1937). In fact, let

P̂ =
C0 + 1
N + 1

then P̂ is the P-value for the test of correlation between x and y. This P-value is exact

up to simulation error and does not depend on the error distribution. The only fact we

need is independent data. We add one to the numerator and denominator because the

observed correlation is typically included in the reference set. Under the null hypothesis,

C0 is uniformly distributed on the integers {0, 1, . . .N}. This connection should not be

surprising since adding a variable to the model is equivalent to testing whether its slope

is 0, and testing whether a slope is 0 is equivalent to testing whether its correlation is

0. We often view a permutation test for correlation by considering many realizations

of xπ alone, not augmented with x. However, we see that this alternative framework of

augmenting the data and then selecting is equivalent for the single predictor case. Before

we extend the PIC to the multivariate case, we develop some notation.

3.4 Permutation Framework

We define Π to be the space of all row permutations. Note

|Π| = n!

We suppress the dependence on n since we typically view the number of observations as

constant. Let π ∈ Π be an element of this space. Thus Xπ is a realized row-permutation
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of X.

Different realizations of Xπ will give different stopping points for Forward Selection.

We defineΠ j to be the subset ofΠ such that we have not stopped after j steps. That is, we

have yet to select a variable from Xπ after j variables have been selected. For example,

Π2 corresponds to those permutations where the first two variables selected came from

X. Since we stop the first time we select from Xπ, we have the relation that

Π = Π0 ⊇ Π1 ⊇ Π2 . . . ⊇ Πp ⊇ Πp+1 = ∅

Clearly, Π0 consists of all the permutations since we have not selected any variables yet.

Also, since we have p real variables to select from, Πp+1 corresponds to the empty set.

3.5 The Multivariate Case

Until now, we avoided an important issue with forward selection. Recall that in tradi-

tional forward selection, we adjust not only the current residual vector but also all other

predictors yet to enter the model. We now examine how to adjust the augmented space

X̃ and how it impacts the selection of later variables. We adopt notation from chapter 1.

Let X j and X j
π denote the real and permuted spaces after we adjust for the first j variables

entered in FS.

We have three desired goals with PIC.

1. At each step in the algorithm, we want var(X j) = var(X j
π) ∀ j
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2. Assuming X j has no signal to explain the response, the choice between X j and X j
π

is equally likely

3. At step j, X j
π corresponds to a permutation π ∈ Π j

We mention these three goals because unfortunately, we will only be able to simul-

taneously satisfy at most 2 of these goals for different adjustment schemes. We desire

the first goal because one of the main motivations for the PIC over traditional methods

is that it adapts to the covariance structure of X. This means the F statistics have the

same correlations throughout all steps of forward selection. Traditional selection criteria

mentioned in chapter 2 do not address correlated test statistics. We already mentioned

the benefit of augmenting with permuted data is that var(X) = var(Xπ). This is true at

the start of the algorithm. However, as we proceed with Forward Selection this may not

continue to hold. It depends on how we adjust.

We desire the second goal because under the assumption that X j posseses no more

signal to explain the current residual vector, we should be indifferent between X and Xπ.

We desire the third goal because we want to be sampling from the right subset. For

example, why would we consider adding a 4th variable if we already stopped after the

2nd variable. This goal essentially prevents us from re-permuting at each step of Forward

Selection.

We adopt the notation X2:1 to mean X2 adjusted for X1. In regression terms, this

means we regress X2 on X1 and take the residuals. This is the part of X2 that is orthogonal

to X1. Without loss of generality, suppose that the columns of X are ordered as they
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would enter in Forward Selection, e.g. X1 is the first variable to enter, X2 the second, etc.

Suppose that we add X1 to the model. The pertinent question is how do we adjust Xπ?

We propose three methods and discuss their relative merits.

The most natural choice would be to adjust all predictors X̃ with respect to X1. This

is how common software routines would implement Forward Selection if we just aug-

mented the predictor space with Xπ. Unfortunately, we then lose our first goal. We do

not have equal covariances. While this effect might be small after the first variable is

selected, it becomes much more dramatic as we add more variables. One clear way to see

the covariance structure is not preserved is by considering X1 vs. Xπ1. After adjustment,

X1:1 = ~0 clearly. However, Xπ1 , ~0 unless π is the identity mapping. Consequently,

X1 now has p − 1 nonzero columns while X1
π has p nonzero columns. This adjustment

scheme has the additional downside that after k steps Xk has rank p−k while Xk
π has rank

p, unfairly biasing towards Xπ in the case of no signal – a violation of our second goal.

More rigorously, we define the rank-1 matrix H1 = 1
XT

1 X1
X1XT

1 . This is the projection

matrix into the direction of X1. Consequently, the matrix In−H1 is the adjustment matrix,

where In is the n × n identity matrix. Assume that the columns of X are centered. Then,

Var ((In − H1) X) = XT (In − H1)T (In − H1) X = XT (In − H) X = XT X − XT H1X

because (In − H1) is symmetric and idempotent. Similarly for Xπ,

Var ((In − H1) Xπ) = XT
π (In − H1)T (In − H1)Xπ = XT

π (In − H1)T Xπ = XT
πXπ − XT

π H1Xπ

Note that the first terms in each of these are equivalent XT X = XT
πXπ since inner

products are preserved under row permutations, but it’s the second term where they differ.
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Specifically if we expand and factor XT H1X, we have

1
xT

1 x1
(xT

1 X)T (xT
1 X)

Note that xT
1 X is a linear combination of the rows of X with weights given by elements

of x1. For the second equation, we substitute Xπ wherever X was

1
xT

1 x1
(xT

1 Xπ)T (xT
1 Xπ)

and we see we have the same linear combination of rows, only for Xπ. Since the rows of

Xπ do not coincide with the rows of X this second term is not equal. We lose our goal of

equal covariances, which is one of the primary motivations for the PIC.

We propose two ways to fix this. After we adjust X for X1, we could re-permute the

adjusted data matrix X1. Sample a new permutation π′ ∈ Π to give a new X1
π′ which

will share an identical covariance matrix with the adjusted X1. We preserve the first goal

mentioned above. Unfortunately, we violate the third goal. At step j we will be sampling

π′ from the entire universe of permutations Π and not from the subset Π j. Why would

we base our decision to add a new variable at step j from a subset Π \ Π j that has zero

probability of the model reaching that point? We instead take a different route.

The alternative way to preserve equal covariance matrices across each step is to adjust

Xπ differently than X. Rather than adjust Xπ with respect to X1, we will adjust it with

respect to Xπ1. Adjusting Xπ this way ensures the covariance matrices are identical across

all steps of Forward Selection. Additionally, because Xπ1:π1 is the zero vector, we pre-

serve the number of nonzero variables. At step k both Xk and Xk
π will have p− k nonzero
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variables. This is extremely important. As k increases, the number of nonzero predictors

of Xk
π decreases. Since Xk

π functions as a reference set to penalize Forward Selection,

on average, the penalty is decreasing in k. However, with this adjustment scheme we

unfortunately lose the second goal. Because the response variable y and X are adjusted

with respect to X1, they will lie in the same (n − 1)-dimensional space. Xπ is adjusted

with respect to Xπ1 and consequently will not be orthogonal to X1 – the residual space.

This means that even if X1 has no relation to the current residual vector, the probability of

selecting from X1 will be greater than the probability of selecting from X1
π. Fortunately,

unless the sample size is small, this will have a minimal effect. Therefore, this is the

adjustment scheme that we adopt for the PIC.

3.6 PIC as an adaptive choice of λ

The PIC differs from traditional variable selection methods where the F-statistic for the

variable to enter must be above some pre-specified threshold, e.g. λ = 2 for Mallows’

Cp. In contrast, the PIC yields a data-dependent choice of λ that adapts to the correlation

structure and dimensionality of X. Recall from Chapter 2 our criterion for adding a

(k+1)st variable:

(RSSk − RSSk+1) /σ2

σ̂2/σ2 ≥ λ

Simply stated, we add a variable if its F-statistic is larger than λ. Let F∗k+1 denote the

largest F statistic selected from Xk, the predictor space adjusted for the first k variables.

Similarly, let Fπ
∗
k+1 denote the largest F statistic selected from Xk

π, the permuted space

49



adjusted for the first k variables. For a given simulation for the PIC, we add the (k+1)st

variable if F∗k+1 ≥ Fπ
∗
k+1. Consequently, λ = Fπ

∗
k+1.

Suppose we have the complete noise model y = ε and the predictors are orthogo-

nal. Then the PIC asymptotically coincides with the RIC penalty of 2 log p. Our result,

however, is not asymptotic and we have finer control over what quantile of this maximal

distribution to use as a cutoff. We illustrate this below by showing which quantile the

RIC cutoff corresponds for various values of n and p.

We now compare how both the RIC (λ = 2 log p) and what we term the modified RIC

(λ = 2 log(p/k)) penalty relate to the .95 quantile for more than just the first variable to

enter. We simulated 1000 datasets of complete noise and performed Forward Selection

on each of them, recording what the maximum F-statistic was at each stage. This mimics

how large our data-dependent λ would be calculated from Xπ. Each dataset consisted

of 100 observations on 25 variables and we considered two correlation schemes. First,

we considered uncorrelated data, which we denote ρ = 0. This data corresponds to the

red circles below. Second, we simulated data with an autoregressive correlation structure

where the correlation matrix has entries ρi, j = ρ|i− j|. We took ρ = 0.9. This data corre-

sponds to the blue triangles. RIC is the dashed horizontal cyan line. Modified RIC is the

dotted pink line. Modified RIC tracks the uncorrelated data remarkably well.

We note that these curves do not indicate how the various λ penalties will perform on

prediction at all. We were curious how they related to various quantiles of the ordered

F-distributions. The first two plots show the theoretical maximum F distribution in the
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Figure 3.1: This shows the quantile corresponding to 2 log(p) for the maximum F-

statistic as p increases for different levels of n. First, we note that clearly n has a big

impact for small sample sizes. Second, for moderate sample sizes, the curves are ap-

proaching a value around 0.8. This corresponds to a significance level of 0.20 for adding

the first variable.

idealized case of orthogonal predictors. Even if the data is truly generated from an uncor-

related distribution, the sample will be correlated. That is why we simulated the λ cutoff
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Figure 3.2: This shows the quantile corresponding to 2 log(p) for the maximum F-

statistic as n increases for different levels of p. We note the steep slope up until about

n = 100. Again we have to be careful of small sample sizes.

for different values of k and to see how correlation impacts λ. We next discuss how to

select our model.
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Figure 3.3: This plot shows the 0.95 quantile for λ as k increases. This is based on

simulated data for two different correlation schemes. We see that clearly RIC is too harsh

of a penalty as we add more variables. The modified RIC curve tracks the ρ = 0 curve

extremely well, while the correlated ρ = 0.9 curve is consistently above the penalty. Note
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3.7 How to Select the Model

We have discussed when to stop Forward Selection for a given permutation but we simu-

late this many times, creating a distribution of stopping points, and have not yet discussed

how we select our final model. We propose a simple criterion: Specify a proportion α.

The selected model size is chosen as the last point we have at least a 1 − α proportion of

our models. More rigorously, let N be the total number of simulations and let Nk denote

the number of simulations that added at least k variables. Then the model size we choose

is

k∗ = sup
k
{k :

Nk

N
≥ 1 − α}

Clearly, the choice of α is important. The smaller it is, the more parsimonious the model

is.

3.8 Choice of α

We now investigate how to choose α based on simulations. This is the same setup for

a set of simulations we will use later. Every model has 21 predictors generated from a

multivariate normal distribution with mean 0 and autoregressive covariance structure

cov(xi, x j) = ρ|i− j|

We consider ρ = 0 and ρ = 0.7. We center all predictor variables as well as the response

so that we do not have to worry about an intercept. The nonzero coefficients are clustered
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around X7 and X14 with values given by

β7+ j = (h − j)2 and β14+ j = (h − j)2 for | j| < h

We consider h = 0, 1, 2, 3, and 4 and denote these models H0,H1,H2,H3, and H4. These

correspond to models with 0, 2, 6, 10, and 14 nonzero coefficients, respectively. For each

model we scale the coefficients so that the theoretical R2 is 0.75 where

R2 =
(Xβ)T (Xβ)

(Xβ)T (Xβ) + nσ2

We also consider a varying number of observations with n = 50, 150, and 500.

We simulate each of these 30 models 50 times and take the average of the model error

defined as

ME(β̂) = ‖Xβ − Xβ̂‖2

We calculate this for α = .05, .10, .15, . . . .95, and plot the results for each of the 5 models.
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Figure 3.4: Average Model Error for different values of α
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We notice for a large sample size, the choice of α is not that important, so we will

concern ourselves more with the red (n = 50) and blue (n = 150) curves. Note the null

H0 and sparse H1 models have error rates that are increasing in α. This is especially

pronounced for the small sample size. The curve really steepens at α = .25. On the other

hand the relatively saturated H3 and H4 models have error rates that are decreasing in

α. The decrease roughly plateaus around α = .30. Model H2 is relatively indifferent

to the choice of α. Based on this, we recommend α = 0.20 to avoid the gross errors

which are evident for small α in Model H4, while still maintaining sparsity. We could

conceivably choose α anywhere in the range 0.10 to 0.40. Note that α = 0.20 corresponds

approximately to the quantile of the maximum F-statistic for the RIC in the orthogonal

predictor case.

3.9 Relation to the False Selection Rate

We mentioned that the False Selection Rate is similar to the PIC in the previous chapter.

We now expand on this point. The idea of adding noise variables to compare variable

selection methods is not new, see e.g. (Miller, 2002). However, the FSR and PIC differ

from these methods because they use the noise variables directly to tune and select a

model. Both methods augment the data set with predictors that have no relation to the

response. If we do not have too many predictors and we use a relatively small FSR, we

might expect the two methods to approximately coincide. For example, if we have 20

predictors and an FSR of .05, then we might expect to include at most 20 × .05 = 1 false
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predictor.

We take a few issues with the FSR. First, the dichotomy of important β , 0 and unim-

portant β = 0 predictors is not completely fair. Often, even if a coefficient is nonzero, we

are better off leaving it out of the model. The decrease in bias is not worth the increase in

variance. This can happen when the coefficient is small, or in the presence of collinearity,

its effect is already accounted for by other predictors.

Additionally, one downside to methods like the FSR and Cross-validation when it is

used to select a model size is that we estimate the size from a different model than our

final one. We mentioned this idea above in the Cross-validation section. For example,

when using Forward Selection on one of the folds, there is no reason why the variables

should enter in the same order, or even be the same variables, as they would on the full

data set. Similarly, the FSR does not stop the first time it selects a noise variable. This

means after we adjust for the noise variable, we face a random residual space. This may

not be that pronounced for a small number of predictors p, but we believe in the large

p > n case, this could be severe. Our method naturally extends to the p > n case. We

also believe strongly that augmenting Xπ is the most natural way to augment for reasons

mentioned above.
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Chapter 4

Rotations vs. Permutations

We now extend the idea of augmenting the predictor space with permuted data to a more

general family – rotated data. Consider the same setup as before with X the actual data

and Xπ the row-permuted data. Another way to express Xπ is

Xπ = PX

with P a n × n permutation matrix with exactly one 1 in each row and column with the

rest of the entries 0. Let pi j be the entry in the ıth row and th column of P. Then if pi j = 1,

the ıth row of Xπ equals the jth row of X.

One characteristic of permutation matrices is that PT P = I, or that its transpose is

the inverse. This is precisely the algebraic reasoning why Xπ and X share the same

correlation structure1.

XT
πXπ = XT PT PX = XT X

1Assuming the data has been centered
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The fact that PT P = I is a property of a more general matrix family – orthogonal ma-

trices. Let us denote an arbitrary orthogonal matrix by Q. Q is constructed by taking any

set of n orthonormal vectors in Rn and joining them as the columns of Q. Consequently,

QX has the same correlation structure as X. A permutation matrix is a special case of a

rotation matrix.

We will adopt the notation of Langsrud (2005) and call a matrix Q a rotation ma-

trix.2 We now consider when do permutations and rotations apply for valid inference?

Since rotation matrices are more general than permutation matrices, we would expect

less stringent assumptions on the data. We will see that the fundamental idea is the same

– we generate datasets that have equal probability with respect to a null hypothesis. Con-

sequently, any test statistics we construct, when ranked, are uniform and lead to exact

p-values. In practice, we will never sample the entire distribution of permutations or

rotations and thus our p-values will be exact up to simulation error.

Most every classical test statistic for multiple regression is a function of 3 quantities:

yT y,XT X, and XT y. This includes the standard t-statistics, as well as multivariate gener-

alizations such as Hotelling’s T 2, Wilks’ Lambda, Roy’s largest root, and various trace

statistics. As we showed above, XT X, and similarly yT y is invariant to multiplication by

Q. The only quantity affected by the random rotation is XT y. Suppose we rotate X by

multiplying by Q. Then

(QX)T y = (XT QT )y = XT (QT y)
2Technically, rotation matrices have determinant equal to 1. We also allow the determinant to be -1.
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so we see that multiplying X by Q is equivalent to multiplying y by QT. As QT is the

inverse of Q, QT is also a rotation matrix. Consequently, whether we rotate X or y, or

both is inconsequential.

4.1 When is Permutation Valid?

Suppose that we have an independent sample from a joint distribution (yi, xi) ∼ fY,X

where yi ∈ R and xi ∈ R
p, and i = 1, 2, . . . n. Under the null hypothesis of independence

between x and y we write

H0 : fX,Y(x, y) = fX(x) fY(y)

where fX and fY are the marginal distributions of X and y respectively.

Consequently, for any permutation π ∈ Π,

fX,Y(Xπ,Y) = fX(Xπ) fY(Y) = fX(X) fY(Y) = fX,Y(X,Y)

because of the fact that fX(Xπ) = fX(X) with independent data. Reordering the data does

not affect the joint probability.

This means that from whatever distribution the data is generated, under the null hy-

pothesis of independence, the permuted data has the same probability as the actual data.

Consequently, any test statistic, such as the maximum F-statistic, constructed from the

permuted data will have the same distribution as the test statistic constructed from the ac-

tual data. We are generalizing Pitman (1937) who derived this for the correlation between

y and a univariate x.
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4.2 When is Rotation Valid?

In multiple linear regression, probability enters through the error vector. We want to

generate datasets by rotation that have the same probability as the original data. This

means for any orthogonal matrix Q, we have the relation

fε(ε) = fε(Qε)

That is, the error distribution is invariant with respect to rotations. This is equivalent to

fε(ε) = fε(‖ε‖)

or the error distribution is solely a function of its length. This is more commonly known

as a spherically symmetric distribution.

Now under the null

H0 : y = ε ε ∼ fε(‖ε‖)

any test statistic T̂ (X, y) has the same distribution as T̂ (QX, y).

Consequently, we could alternatively augment the predictor space

X̃ =
(
X | QX

)
and proceed with the PIC as discussed in Chapter 3. The key difference lies in the as-

sumptions we make. To permute, we require independent observations from an arbitrary

error distribution. To rotate, we require a spherically symmetric error distribution.

We still use permutations in all that follows because they are cheaper to compute. For

more on rotation tests see (Langsrud, 2005).
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Chapter 5

Extending the PIC

5.1 Generalized Linear Models

Variable selection is most frequently discussed in the context of linear regression. In

fact, predictive criteria like Mallows’ Cp and RIC were developed specifically for linear

regression. Information based criteria e.g., AIC and BIC, and Data-resampling methods

e.g., cross-validation and the bootstrap, are more widely applicable. In this chapter, we

show that the PIC is also widely applicable and show its use with Generalized Linear

Models.

Generalized Linear Models (McCullagh and Nelder, 1989) extend linear models by

relating a function of the mean of y linearly to X. This function is called the link function

and we denote it by g. Members of the GLM family have the form

g(E(y)) = Xβ
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Common examples include logistic regression, g(z) = log(z/(1 − z)) and Poisson regres-

sion g(z) = log(z). Linear regression is simply the identity function g(z) = z.

When selecting the best variable under forward selection in linear regression, we

choose the variable with the largest F-statistic. This is equivalent to selecting the variable

that decreases error the most. In linear regression, the error is the residual sum of squares.

In Generalized Linear Models, the error is the deviance. The deviance is defined as

D(y) = −2
[
log

(
p(y|θ̂k)

)
− log

(
p(y|θ̂n)

)]
or -2 times the difference in log likelihoods between the current model fit with parameter

vector denoted by θ̂k and the full model fit if we used a parameter for every observation

with parameter vector θ̂n. We use the subscript n to denote all n observations. The

deviance subtracts the full model log-likelihood so that a deviance of 0 is meaningful.

5.2 PIC with GLM

The PIC can be extended to Generalized Linear Models easily with one slight modifi-

cation. We begin by augmenting the predictor space X with a row-permuted version of

it Xπ just like before. We proceed with Forward Selection with the augmented space X̃

and select the best variable at each step. As soon as the best variable comes from Xπ, we

stop. We define the best variable to be the one that decreases the deviance the most. This

is equivalent to the most significant variable from the log likelihood ratio test between

two models – one with the variable and one without it. We mention this because GLM
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has different test statistics for individual coefficients. For example, in logistic regression

we can use the Wald test or the Score test for an individual coefficient. They both have

asymptotic χ2 distributions and while they give similar results, they are not the same. We

might have ambiguity about which varaible is best. Our choice of using the deviance

directly coincides with linear regression, assuming σ2 is known.

One key difference with GLM is we do not have the linear algebraic framework of

linear regression with orthogonal residual spaces. Consequently, we do not adjust our

predictors after each one enters the model. This presents a problem. Suppose again

without loss of generality, the variables in X are arranged as they would enter in Forward

Selection (X1 enters first, etc.). One side effect of the linear regression adjustment scheme

was that when we adjusted Xπ with respect to Xπ1, the first permuted predictor Xπ1:π1 gets

annihilated to the zero vector. This ensured that for a model with k variables, both Xk and

Xk
π have p − k remaining variables. The current proposal for PIC applied to GLM does

not possess this trait. Xk
π still has the full p variables for all k. Consequently, if the actual

data Xk has no remaining signal to explain y, we would be more likely to select our next

variable from Xk
π which has more predictors than Xk. Ideally, we want this probability to

be equal between the two. Therefore, we propose a simple amendment. As soon as we

select Xk to enter the model, we drop Xπk from further consideration. This ensures that Xk

and Xk
π have the same number of predictors at each stage of Forward Selection. Moreover,

their correlation structure directly coincide for each k. With this slight modification, we

proceed as before.
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The remaining details of how to select the final model remain the same as linear

regression. We refer the reader to Section 3.7
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Chapter 6

Simulation Results

We now apply the Permuted Inclusion Criterion to various simulations and compare it

with well-known selection techniques.

6.1 Simulation Setup

We begin studying the performance of the PIC through a wide range of Monte Carlo sim-

ulations. We mimic the setup of Wu et al. (2007), which was initially used by Tibshirani

and Knight (1999a). Every model has 21 predictors generated from a multivariate normal

distribution with mean 0 and autoregressive covariance structure

cov(xi, x j) = ρ|i− j|

We consider ρ = 0 and ρ = 0.7. We center all predictor variables as well as the response

so that we do not have to worry about an intercept. The nonzero coefficients are clustered
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around X7 and X14 with values given by

β7+ j = (h − j)2 and β14+ j = (h − j)2 for | j| < h

We consider h = 0, 1, 2, 3, and 4 and denote these models H0,H1,H2,H3, and H4.

These correspond to models with 0, 2, 6, 10, and 14 nonzero coefficients, respectively.

We illustrate these coefficients for H1,H2,H3, and H4 below. H0 is the null model.

For each model we scale the coefficients so that the theoretical R2 is 0.75 where

R2 =
(Xβ)T (Xβ)

(Xβ)T (Xβ) + nσ2

We also consider a varying number of observations with n = 50, 150, and 500. In

total, we consider 2 different correlation structures on 5 different models for 3 different

sample sizes yielding 30 different models. We simulate each model 50 times and take the

average error rate and average model size.

Next, we discuss our selection schemes. For each model we select by 9 different

methods: AIC (λ = 2), BIC (λ = log(n)), RIC (λ = 2 log(p)), modified RIC (λ =

2 log(p/k)), PIC (α = 0.20), False Selection Rate (γ0 = .05), 5-fold Cross-validation, the

Lasso, and the Random Oracle.

For AIC, BIC, RIC, and modified RIC, we stop the first time the maximum F-statistic

is below λ. For 5-fold Cross-validation, we select the model with the smallest cross-

validated sum of squares. To select the “best” model, we adopt the Random Oracle idea

(Benjamini and Gavrilov, 2009). The random oracle assumes that we know the true β
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Figure 6.1: Regression coefficients for β1, β2 . . . β21 for the 4 different models (ρ = 0)

vector. Consequently, we directly calculate the model error as

ME(µ̂k) = ‖µ̂k − µ‖
2 = ‖Xβ̂k − Xβ‖2

since we know β and consequently µ exactly. We just restrict ourselves to the p + 1 mod-

els generated by Forward Selection, and select the best one. Note that every selection
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scheme, other than the Lasso, that we consider also selects a model from Forward Selec-

tion. Consequently, the Random Oracle will never have a larger error rate. The Lasso,

however, could outperform the Random Oracle.

Because the plots of 9 curves gets cluttered, we broke the average error and average

model size plots into 3 different sets of plots. First, we look at how the PIC compares

to the False Selection Rate. The error curves, adopted from Wu et al., are defined as the

average error for the Random Oracle divided by the average error for the given procedure.

Consequently, the closer the curve is to 1, the better. For the error curves, we disregarded

model H0 because often the oracle error rate was 0. The PIC and FSR give strikingly

similar results. For a large sample size they virtually coincide. In terms of model size,

again they are strikingly similar. The main difference is in model type H4, the PIC prefers

more parsimonious models. These are models with many small coefficients.
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Next we analyze how the PIC compares to AIC, BIC, and RIC. We lump these se-

lections schemes together because they use a λ penalty. The PIC and RIC behave quite

similarly as we might expect. Both penalties grow with p. As we move down the plots,

the sample size is increasing and consequently, the BIC is enforcing a harsher penalty.

For n = 500, the PIC, RIC, and BIC practically coincide. As we might expect, the AIC

performs quite differently from the other selection schemes. Not surprisingly, the AIC

performs worst when we have a sparse model (H1) and does the best when our model is

saturated (H4). In terms of model size, we see what we would expect. AIC always selects

the most variables while BIC converges to where the PIC and RIC lie as n increases. The

PIC and RIC have the same average model size in almost every point of every curve. The

notable exception is model H4 when n = 50 and ρ = 0.7.
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Lastly, we analyze how the PIC compares to 5-fold Cross-Validation and the Lasso.

We lump these two together because they are most unlike the other schemes. For model

error, all 6 of these plots have a similar pattern. The PIC tends to dominate for models

H1 and H2, but loses out for the more dense model H4. This is especially true in the

correlated small sample data. In terms of model size, we have a uniform ranking over all

of the plots with the PIC preferring the most parsimonious model and the Lasso selecting

the most predictors. Cross-validation lies somewhere in between with similar model sizes

to the PIC for H1 and H2 and less so for H4
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Figure 6.6: Average Error Rate for the PIC, 5-fold Cross-Validation and the Lasso
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Figure 6.7: Average Model Size for the PIC, 5-fold Cross-Validation and the Lasso
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6.2 Simulations: p > n

In this section, we investigate the performance of the PIC in a case where the number of

variables is much larger than the number of observations. We use the same setup as the

Candes & Tao paper with 72 observations on 256 variables where y and X1,X2, . . .X256

are generated as independent standard normal variables. The X variables are scaled to

have unit norm. We have 8 nonzero variables and we set a noise standard deviation of

1/9.

Method Model Error (SE) Average Model Size (SE)

PIC (α = .20) .0021 (.00021) 8.48 (.119)

RIC .0021 (.00021) 8.44 (.111)

mRIC .0074 (.0040) 16.1 (.651)

RandOrac .0014 (.00008) 8 (0)

DS .1639 (.0043) 7 (.1639)

DS-Gauss .0308 (.0026) 7 (.1639)

Table 6.1: Average Model Error and Model Size for a wide dataset p = 256, n = 72. We

note the extremely similar performance between the PIC and RIC.

The PIC and RIC performed almost exactly the same only differing in 2 of the 50

simulations. Their error rate was not far from the Random Oracle either. We see that the

Dantzig Selector performs poorly relative to the other methods. This was noted by Can-

des and Tao in their original paper where the selected variables exhibited a soft thresh-
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olding behavior. Consequently, they proposed a two-stage procedure where the Dantzig

Selector selects the variables to include and then we perform ordinary least squares on

that subset. This is the DS-Gauss line above. This cut the average error rate by more

than a factor of 5. We remark that we also considered AIC in these simulations but it

nearly always selected all 72 predictor variables. We also note that in the p > n case, the

modified RIC does not perform that well. Too often, it was including irrelevant predictor

variables.
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Chapter 7

Permuted Selection and Trees

In this chapter, we apply the Permuted Inclusion Criterion to a very different family of

models – Classification and Regression Trees (CART) (Breiman et al., 1984).

7.1 CART

CART is a nonparametric technique that recursively partitions the predictor space into

rectangles by using binary splits and predicts a constant within each rectangle. We define

the node being split as the parent node, and the two resulting nodes, the child nodes. We

begin CART with all of the data together at the top of the tree, known as the root node.

CART then searches over all possible split points of all possible variables and selects the

best one. Intuitively, the best split is the one that makes the data within the same child

node as similar as possible, while making the data in different child nodes as different

as possible. Each resulting child node now becomes a parent node and in turn gets split
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into two child nodes. This is the recursive nature of CART. For example, suppose CART

selects X1 < 3 as the best split point. Then all observations satisfying this inequality are

sent down the tree to the left child node while the other observations not satisfying the

inequality are sent to the right child node. Then, we repeat within each node. In the left

child node, we select X2 < 4 as the best split, while in the right child node, we select

X2 < 2 as the best split. We now have 4 terminal nodes which correspond to rectangles.

Perhaps the greatest benefit of CART is its highly interpretable visual representation as a

tree. Here is an example of the model that we just described, both as rectangles and as a

tree.

1 2 3 4 5

1
2

3
4

5

X1

X
2

R1

R2

R3

R4

|X1< 3

X2>=4 X2>=2

R1 R2 R3 R4

Figure 7.1: CART: Displayed as rectangles on the X1-X2 plane on the left and as a Tree

on the right

The tree is much more interpretable. We ask simple yes/no questions and we follow a

path down the tree based on the answer. Its representation is popular among the medical
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community as Hastie et al. (2001) note “because it mimics the way that a doctor thinks.”

CART is suited for both continuous responses and categorical responses. When we

deal with continuous responses, we typically use squared error as our error measure.

Consequently, our prediction for a given node is the mean of the data falling within it.

For categorical responses, we typically choose either misclassification rate or a smoother

differentiable criteria, such as the Gini index or relative entropy. Our prediction for a

given node is the modal category in that node.

CART, just like Forward Selection, proceeds in a greedy fashion. At each step we

choose the best split point, subject to some predefined constraints. One of the biggest

questions with CART, like Forward Selection, is when do we stop? Unlike the linear

model in regression where coefficients have distributional theory justified from the Cen-

tral Limit Theorem, CART has no inferential basis. Suppose we have a continuous re-

sponse variable. By using a measure like residual sum of squares, every split results in a

decrease. We need a sensible way to know when to stop growing the tree.

7.1.1 Traditional CART Stopping Criteria: Pruning

The most common stopping criteria for CART is to purposely overgrow the tree, and

then sequentially prune nodes. We use weakest link pruning by successively collapsing

the non-terminal node that results in the smallest increase in error. Each time we collapse,

we create a new subtree. We continue until all that remains is the root node. We then

use cross-validation to select which tree among all subtrees predicts best. We propose an
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alternative method to select a tree.

7.1.2 Permuted CART Stopping Criterion

The idea of augmenting the predictor space to mitigate selection bias is not unique to

linear regression. In fact, this idea can be applied to any algorithm where decisions

involve selecting a “best” variable. As CART searches over all split points of all possible

variables, it naturally falls under this framework. As before, we augment the predictor

space X with a row-permuted version of it called Xπ.

Our algorithm is simple. We build a CART tree with the augmented predictor space.

At each node we search over all split points, both from X and Xπ. If the best split is real,

we select that split and continue the CART algorithm. This is the same split point that

would have been selected had Xπ not been part of our data. However, if the best split is

from Xπ, we do not split that node further. That node becomes a terminal node. Once this

occurs for every node, we have our CART tree. As this clearly depends on the realized

permutation, we simulate this many times to create an entire distribution over nodes and

measure how frequently it is split.

This provides an added benefit not typically available to CART – a quantitative mea-

sure of how certain we are about a split. We know how many of the trees reach a given

node and how many of those trees further split that node by selecting a real predictor.

For example, suppose we simulate 100 trees and 90 of them reach a given node. Addi-

tionally, suppose that 82 of those 90 trees select a real predictor. Then we have a sample
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proportion of 82/90 trees selecting from X instead of Xπ – strong but not overwhelming

evidence that the split is real. We have this measure for every node. Traditional CART

just splits nodes without any measure of how strong the split is. In linear regression with

Forward Selection, we have p-values as a measure of strength for each variable, even if

the p-value has no interpretation as a probability because of selection bias.

Since we always stop before stepping into permuted space, the trees are nested in the

sense that every node either selects the exact same split point as other trees, is a terminal

node because it selected a permuted predictor, or was never reached because one of its

ancestors selected a permuted predictor.

7.1.3 How to Adjust and Select a Model

Recall that with linear regression, we had a choice of how to adjust the variables after

each step. We have to make a similar choice with CART, and unlike linear regression,

the most natural choice is to re-permute after each split. The clearest way to motivate

why is with an example. Suppose that we have a categorical predictor like gender which

has two categories: Male and Female, and that we select it as the first split. As a result,

one child node has only Male for its gender, while the other child node has only Female.

Consequently, neither node can be further split on gender. Now consider the permuted

space Xπ and the permuted version of gender. In both child nodes the permuted gender

has both Male and Female observations and so it could be selected as a split point further

down the tree. Xπ has more variables to select splits from than does X. This is undesir-

85



able. More generally, consider a continuous predictor. If we re-permute at each node,

then the potential split points for X directly coincide with the potential split points for Xπ

for every node. This is the most natural setup and the one we will adopt. It also supports

one of the main motivations for the PIC. Under a null assumption that X has no relation

to y, selecting from X versus Xπ should be equally probable.

Lastly, we select our CART model the same way we select our regression models.

We specify a proportion α as our cutoff. Our selected tree consists of precisely of those

nodes that appear in at least 1 − α of the trees and excludes all other nodes. This is best

shown with an example.

7.1.4 Example

We illustrate the PIC applied to CART with two examples. First, we consider the classic

Boston housing data (Harrison and Rubinfeld, 1978) taken from 506 census tracts around

the Boston area for the 1970 Census. The goal of this data set is to predict the median

housing price based on 13 covariates. These variables are:
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Variable Description

CRIM Per capita crime rate

ZN Proportion of residential land zoned above 25,000 sq ft

INDUS Proportion of non-retail business acres

CHAS Dummy variable for on Charles River

NOX Nitric Oxide concentration (parts per 10 million)

RM Average number of rooms

AGE Proportion of units built prior to 1940

DIS Weighted distance to 5 Boston employment centers

RAD Index of accessibility to radial highways

TAX Property tax per $10,000

PTRATIO Pupil to teacher ratio

B 1000(B − 0.63)2 where B is Black proportion

LSTAT Percentage of lower status in population

MEDV Median value of homes

Table 7.1: Boston Housing Data taken from Harrison and Rubinfeld

We built a CART tree with α = 0.10. For each split point, we also include the fraction

of augmented data sets that selected the real split point, instead of one of the permuted

predictors. The terminal nodes give the predictions which are the mean of the response

for observations falling in that node.
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Figure 7.2: CART with PIC for the Boston Housing Data. α = 0.10
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We see that for the first three split points all 1, 000 of our trees selected the actual

splits – overwhelming evidence that these splits are real. If we look at the split for DIS

on the left hand side, we are relatively less certain about this split point with 902 of the

1000 trees selecting this split. We also see a common manifestation of greedy algorithms.

Although we are less sure about the DIS split, once we select it, its two child nodes are

selected 901/902 and 902/902 times – almost always. We would sometimes like to look

two or three steps ahead with greedy algorithms. We see here the best one step ahead

move was not overwhelming but once we selected it, its next moves were.

We next illustrate the PIC on a complete noise example. We have 100 observations on

10 variables where the response y and each predictor variable X1, X2, . . . X10 is generated

as a standard normal random variable. We also set a very large α = 0.995 so that we can

see the fully grown tree and the sample selection proportions for each node. This means

we show all nodes that appeared in at least 5 of the 1, 000 trees.
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Figure 7.3: CART with PIC for complete noise data. α = 0.995
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We see that none of the splits have selection proportions near 1 except for the split on

X1 in the middle of the plot. Again, we see an illustration of how one-step ahead greedy

algorithms can behave. Although the split on X6 appears in only 220 out of 709 trees,

once we select that split, every single one of the 220 trees selected X1. We also note that

none of its child nodes were selected for a split meaning less than 5 of the trees selected

a real split. We also see another dramatic example on the right side. Of the 500 trees that

reach the split on X2, only 7 trees selected that split.

7.1.5 Choice of α

The choice of α for CART has no relation to the choice of α for Forward Selection.

A key difference with Forward Selection is that we stop as soon as we would step into

permuted space. With CART, we do not stop until every terminal node would next step

into permuted space. Consequently, we might imagine choosing a smaller α much like

we did with the Boston housing data.

However, we instead advocate the PIC with CART primarily as a diagnostic tool to

quantify the certainty of splits. We believe this is its greatest benefit because CART is

nonparametric and does not have a measure like this. We could even use weakest link

pruning to select our final tree and use the PIC to measure each split. Alternatively, we

could use cross-validation to select α.
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7.2 Tree Extensions

While CART gives highly interpretable graphical representations, it’s no longer state-of-

the-art in terms of performance. However, many modern algorithms that are state-of-the-

art use CART as a building block in ensemble methods that build a collection of trees

and average them. We highlight three of those algorithms: Bagging (Breiman, 1996),

Random Forests (Breiman, 2001), and Boosting (Freund and Schapire, 1996).

Bagging starts by taking bootstrap samples of the data, and for each bootstrap sample

we build a CART tree. Typically we let each tree grow fully. Note that since each

bootstrap sample has around 63% of the observations, we will not predict perfectly. We

build B trees, e.g. B = 500, and to predict, we take the predictions from each tree and

average them. The key intuition for why bagging works is that trees are highly variable.

Any split that occurs at the top of the tree propagates down to all future splits. Suppose

at the top of the tree two splits are equally good. The trees that result should we choose

one split over the other can be vastly different. Consequently, our predictions can vary

greatly. By injecting randomness via the bootstrap we create multiple trees so that we can

sample both splits. By taking an average, we decrease this large variance at the expense

of an increase in bias. Typically, this decrease in variance more than offsets the increase

in bias, and performance improves.

Random Forests can be viewed as an extension to Bagging where we try to decrease

the correlation between trees. Random Forests begins just like the Bagging by taking

bootstrap samples and building CART trees fully. The key difference takes place at the
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split points of the trees. In Random Forests, we take a random sample of the predictor

variables at each split point and select the best among them. This allows us to explore

tree space more fully. The trees are less correlated than they were in bagging because

of this extra randomness and consequently, have smaller variance. Random Forests have

two sources of randomness: the bootstrap, and the random predictors.

Boosting attacks the problem from a different direction. Boosting has many variants.

We will focus on Adaboost. Suppose we have a categorical response. Adaboost starts by

growing a simple tree, often a stump which consists of a single split, and then predicts

the response y. Points that are classified correctly are down-weighted while misclassified

points are up-weighted. We then repeat the process and fit another simple tree to this

weighted data and again down-weight or up-weight. After we have built many trees, e.g.

500, our final prediction is then based on a weighted average of the trees.

We only briefly touched on these methods to illustrate one key point: they all use

trees as a building block. However, they could not be more different as to how they

build them. Both Bagging and Random Forest grow trees fully. Even though they are

based on a bootstrap sample, the trees have on the order of 2/3n terminal nodes. On

the other hand, boosting creates trees with a small number of terminal nodes, frequently

as small as two. This is even more striking when we consider Breiman’s conjecture in

his original Random Forest paper that Adaboost is a Random Forest. The fact that these

two ensemble methods, properly tuned, perform so well, yet have tree sizes on opposite

ends of the spectrum, makes me wonder whether we can more intelligently choose the
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tree size. If we let the data adaptively choose the size of the tree, like the PIC applied to

CART, perhaps we can obtain even better performance.
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Chapter 8

Conclusions

We have developed a new framework for variable selection that possesses close ties to

permutation testing theory and asymptotically coincides with the Risk Inflation Criterion.

We have seen its performance is on par with many other well-known variable selection

techniques and additionally performs well in the p > n case. The PIC can be viewed as a

data-adaptive penalty where the penalty is increasing in p and decreasing in k coinciding

with many state of the art model selection schemes.

Additionally, we have extended our method to generalized linear models and to a

framework not typically viewed as variable selection – building CART trees. We have

added a new dimension to CART by quantifying how certain we are about splits.

The fundamental idea behind the PIC is to generate a reference data set that has no

relation to the response. This reference data set should have all of the same options avail-

able to it as the real data set. In the linear regression context, this meant the same number
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of variables, p−k at the kth step of Forward Selection that has the same covariance struc-

ture as the real data. For CART, this meant the same possible split points at each node.

Thus, if the real data has no signal remaining, our decision between the real and fake data

should be approximately equal. Additionally, the algorithm must stop whenever the next

best variable is a permuted variable. By not stepping into permuted space, the algorithm

selects one of the models that would be generated if run on the real data alone. Viewing

the PIC as a data-adaptive penalty for greedy-algorithms that involve selecting a “best”

variables leaves much room for future work. For example, we could apply the PIC to

the Least Angle Regression family as an alternative to the Cp type penalty. We have also

thought how we might generalize this to backwards elimination. For example, we might

consider dropping a variable if we were to replace it with a permuted version of itself

and the model fit actually improves. This scheme does not create nested model, however,

because we may have a choice about which variables to drop, influencing the next choice.

We can not just stop the first time we drop a real variable. If we could develop a back-

wards version of this scheme, then we could naturally extend it to Stepwise regression

where we add and delete variables. This also falls under the framework of the Lasso. We

could extend the PIC with CART trees by using them in Random Forests or Boosting.

Because α controls the size of the trees, we might choose a small α with boosting and a

large α with Random Forests.
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Appendix A

Simulation Results

ρ Method H0 H1 H2 H3 H4

0 AIC 0.2003 0.2206 0.2821 0.3131 0.3175

BIC 0.0817 0.1238 0.2373 0.3010 0.3128

RIC 0.0366 0.0694 0.2309 0.3398 0.3661

mRIC 0.0471 0.1419 0.2628 0.3186 0.3229

PIC 0.0312 0.0646 0.2303 0.3394 0.3717

FSR 0.0172 0.0549 0.2342 0.3468 0.3793

CV 0.0383 0.1034 0.2514 0.3533 0.3513

Lasso 0.0256 0.2908 0.3145 0.3302 0.3105

RandOrac 0.0000 0.0448 0.1716 0.2270 0.2529

0.7 AIC 0.2719 0.2828 0.3135 0.3517 0.3855

BIC 0.1391 0.1593 0.2339 0.3116 0.4253

RIC 0.0695 0.0791 0.2223 0.3774 0.5577

mRIC 0.0814 0.1931 0.3162 0.3681 0.4383

PIC 0.0426 0.0750 0.2395 0.4467 0.7014

FSR 0.0279 0.0683 0.2439 0.3713 0.5216

CV 0.0374 0.0989 0.2822 0.3775 0.4321

Lasso 0.0353 0.3905 0.2670 0.3321 0.3980

RandOrac 0.0000 0.0317 0.1496 0.2417 0.2989

Table A.1: Average Error Rate (n = 50)

98



ρ Method H0 H1 H2 H3 H4

0 AIC 0.0684 0.0844 0.0902 0.1136 0.1239

BIC 0.0187 0.0362 0.0774 0.1153 0.1414

RIC 0.0150 0.0284 0.0744 0.1209 0.1624

mRIC 0.0175 0.0559 0.0819 0.1165 0.1292

PIC 0.0142 0.0268 0.0751 0.1212 0.1574

FSR 0.0097 0.0262 0.0775 0.1177 0.1382

CV 0.0220 0.0321 0.0870 0.1171 0.1327

Lasso 0.0081 0.2088 0.1350 0.1345 0.1451

RandOrac 0.0000 0.0157 0.0501 0.0844 0.0981

0.7 AIC 0.0922 0.0968 0.1125 0.1063 0.1329

BIC 0.0294 0.0357 0.0764 0.0851 0.1367

RIC 0.0152 0.0283 0.0667 0.0855 0.1450

mRIC 0.0254 0.0654 0.1151 0.1209 0.1389

PIC 0.0111 0.0259 0.0673 0.0842 0.1436

FSR 0.0056 0.0274 0.0731 0.0910 0.1353

CV 0.0172 0.0234 0.0822 0.0978 0.1423

Lasso 0.0089 0.2539 0.1020 0.1077 0.1280

RandOrac 0.0000 0.0137 0.0530 0.0677 0.1032

Table A.2: Average Error Rate (n = 150)
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ρ Method H0 H1 H2 H3 H4

0 AIC 0.0148 0.0222 0.0250 0.0349 0.0361

BIC 0.0022 0.0060 0.0179 0.0329 0.0419

RIC 0.0022 0.0062 0.0179 0.0329 0.0408

mRIC 0.0022 0.0143 0.0238 0.0373 0.0383

PIC 0.0025 0.0060 0.0182 0.0328 0.0401

FSR 0.0014 0.0060 0.0187 0.0325 0.0374

CV 0.0027 0.0082 0.0188 0.0357 0.0392

Lasso 0.0013 0.1320 0.0257 0.0430 0.0430

RandOracle 0.0000 0.0038 0.0142 0.0246 0.0275

0.7 AIC 0.0210 0.0243 0.0309 0.0326 0.0406

BIC 0.0037 0.0080 0.0225 0.0302 0.0400

RIC 0.0037 0.0080 0.0225 0.0297 0.0400

mRIC 0.0041 0.0155 0.0335 0.0383 0.0436

PIC 0.0032 0.0078 0.0231 0.0296 0.0408

FSR 0.0017 0.0080 0.0232 0.0291 0.0405

CV 0.0032 0.0073 0.0254 0.0318 0.0414

Lasso 0.0016 0.3014 0.0292 0.0362 0.0471

RandOracle 0.0000 0.0039 0.0154 0.0214 0.0295

Table A.3: Average Error Rate (n = 500)
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ρ Method H0 H1 H2 H3 H4

0 AIC 3.06 4.90 5.80 6.36 6.60

BIC 0.76 2.84 3.76 4.30 4.68

RIC 0.26 2.24 3.00 3.44 3.62

mRIC 0.40 3.28 4.76 6.02 6.22

PIC 0.22 2.20 2.92 3.38 3.52

FSR 0.10 2.10 2.92 3.38 3.46

CV 0.44 2.58 3.68 5.76 5.90

Lasso 2.20 6.94 9.06 9.12 10.32

RandOracle 0.00 2.04 3.70 4.94 5.94

0.7 AIC 4.28 5.98 7.36 8.58 9.86

BIC 1.40 3.32 4.84 6.12 7.00

RIC 0.54 2.32 3.88 4.84 5.34

mRIC 0.70 4.06 7.40 10.12 11.60

PIC 0.30 2.28 3.64 4.56 4.58

FSR 0.20 2.22 3.76 5.14 6.26

CV 0.34 2.84 4.02 6.86 8.70

Lasso 3.38 7.34 10.38 12.68 13.62

RandOracle 0.00 2.00 4.16 6.12 9.84

Table A.4: Average Model Size (n = 50)
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ρ Method H0 H1 H2 H3 H4

0 AIC 2.76 4.88 6.16 7.88 8.78

BIC 0.38 2.48 4.44 5.36 6.26

RIC 0.28 2.26 4.06 5.08 5.74

mRIC 0.36 3.32 5.64 8.22 10.18

PIC 0.26 2.22 4.08 5.10 5.90

FSR 0.16 2.22 4.22 5.32 6.36

CV 0.64 2.48 5.42 6.80 9.78

Lasso 1.80 6.02 9.12 10.76 12.50

RandOracle 0.00 2.00 4.48 6.32 8.14

0.7 AIC 4.00 5.52 7.92 9.64 11.56

BIC 0.74 2.50 5.10 6.94 8.72

RIC 0.32 2.28 4.58 6.72 8.26

mRIC 0.70 3.78 8.44 11.60 14.90

PIC 0.22 2.22 4.60 6.84 8.46

FSR 0.10 2.26 4.84 7.30 9.98

CV 0.76 2.20 5.26 7.86 10.50

Lasso 2.76 6.72 10.92 13.68 16.18

RandOracle 0.00 2.00 4.56 7.22 10.18

Table A.5: Average Model Size (n = 150)
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ρ Method H0 H1 H2 H3 H4

0 AIC 2.14 4.48 6.64 8.80 10.28

BIC 0.14 2.14 4.38 6.52 7.86

RIC 0.14 2.16 4.38 6.54 7.90

mRIC 0.14 3.10 6.36 9.78 12.74

PIC 0.16 2.14 4.46 6.58 8.00

FSR 0.08 2.14 4.52 6.88 8.78

CV 0.24 2.42 4.84 8.70 11.00

Lasso 1.18 6.30 9.14 11.92 13.94

RandOracle 0.00 2.00 4.58 7.10 9.82

0.7 AIC 3.00 4.96 8.40 9.92 13.00

BIC 0.22 2.26 5.50 7.94 10.36

RIC 0.22 2.26 5.50 7.96 10.36

mRIC 0.26 3.24 9.30 12.64 16.14

PIC 0.18 2.24 5.60 8.12 10.70

FSR 0.08 2.26 5.90 8.54 12.24

CV 0.20 2.28 6.08 9.02 12.34

Lasso 1.58 6.10 12.00 14.16 16.64

RandOracle 0.00 2.00 5.94 8.30 11.30

Table A.6: Average Model Size (n = 500)
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