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NIR-Emissive Polymersomal Markers for Molecular-Level Detection of
Metastasis

Abstract
Noninvasive imaging technologies, capable of visualizing early carcinoma or dormant or latent metastatic
tumor cells and evaluating the efficacy of cancer therapies are becoming increasingly important. In this thesis,
NIR-emissive polymersomes are engineered for optimal cellular uptake to enable fluorescence-based tumor
targeting. A series of benzothiadiazole conjugated porphyrin oligomers with high emission dipole strength
and exceptional large quantum yields in the NIR region are synthesized for optimized emissive output would
be greatly enhanced. Furthermore, this thesis established for the first time a class of universal chemistry
modification methods to directly attach antibody to polymersomes surface with very high antibody coupling
efficiency and precise control of antibody density on polymersomes. These antibody conjugated NIR-
emissive polymersomes exhibit ideal cell-surface adhesion dynamics and enables future in vivo tracking of
labeled tumor cells by NIR fluorescence based imaging. Ultimately, tracking residual disease in vivo requires
biodegradable polymersomes. Towards this goal, we fabricated analogous nanoscale NIR-emissive, soft-
matter-based vesicles based on already FDA-approved materials poly(caprolactone) (PCL) and
poly(trimethylene carbonate ) (PTMC) blocks, and involves copolymer synthesis, evaluation of vesicle
physical properties, and polymersome functionalization. Finally, a new emissive polymersomes platform is
designed by quantitative incorporation of quantum dots into the polymersomes bilayer membranes, featuring
a wide range of applications for in vivo diagnostic and drug-delivery applications. In summary, this synthesis
developed functionalized nanoscale NIR-emissive polymersomes with optimal fluorescence output and
ability to detect limited target cell numbers under clinically relevant diagnostic conditions, and define new
tools for the study of metastatic disease.
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ABSTRACT 

 

NIR-EMISSIVE POLYMERSOMAL MARKERS FOR MOLECULAR-LEVEL 

DETECTION OF METASTASIS 

 

Wei Qi 

Michael. J. Therien 

 

Noninvasive imaging technologies, capable of visualizing early carcinoma or 

dormant or latent metastatic tumor cells and evaluating the efficacy of cancer therapies 

are becoming increasingly important. In this thesis, NIR-emissive polymersomes are 

engineered for optimal cellular uptake to enable fluorescence-based tumor targeting. A 

series of benzothiadiazole conjugated porphyrin oligomers with high emission dipole 

strength and exceptional large quantum yields in the NIR region are synthesized for 

optimized emissive output would be greatly enhanced. Furthermore, this thesis 

established for the first time a class of universal chemistry modification methods to 

directly attach antibody to polymersomes surface with very high antibody coupling 

efficiency and precise control of antibody density on polymersomes. These antibody 

conjugated NIR-emissive polymersomes exhibit ideal cell-surface adhesion dynamics and 

enables future in vivo tracking of labeled tumor cells by NIR fluorescence based imaging. 

Ultimately, tracking residual disease in vivo requires biodegradable 

polymersomes. Towards this goal, we fabricated analogous nanoscale NIR-emissive, 

soft-matter-based vesicles based on already FDA-approved materials poly(caprolactone) 
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(PCL) and poly(trimethylene carbonate ) (PTMC) blocks, and involves copolymer 

synthesis, evaluation of vesicle physical properties, and polymersome functionalization. 

Finally, a new emissive polymersomes platform is designed by quantitative incorporation 

of quantum dots into the polymersomes bilayer membranes, featuring a wide range of 

applications for in vivo diagnostic and drug-delivery applications. 

In summary, this synthesis developed functionalized nanoscale NIR-emissive 

polymersomes with optimal fluorescence output and ability to detect limited target cell 

numbers under clinically relevant diagnostic conditions, and define new tools for the 

study of metastatic disease.  
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CHAPTER 1. Introduction to Molecular-Level Detection of 

Metastasis and the Specific Aims of the Thesis Dissertation 

1.1. Molecular Imaging Sciences 

1.1.1. Concept of Molecular Biology and Imaging 

Molecular imaging is a new discipline that combines molecular biology and in 

vivo imaging. Molecular imaging utilizes new molecular agents with traditional imaging 

tools for the visualization, characterization, and measurement of biological processes at 

molecular and cellular levels in the body. Molecular imaging differs from traditional 

imaging in that new biomarkers are used as imaging probes to help image particular 

targets or pathways. Biomarkers interact with their surroundings and in turn produce the 

image according to molecular interactions occurring within the area of interest. This 

process has significant advantages over the previous imaging methods which primarily 

imaged differences in qualities such as density or water content. This ability to image fine 

molecular and cellular pathways in vivo opens up an incredible number of exciting 

possibilities for medical applications, including earlier detection and characterization of 

metastasis by visualizing the cellular function and following up the molecular process in 

living organisms without perturbing them. As a result, we will have a better 

understanding of biology pathology, prospective evaluation of treatment, and basic 

pharmaceutical development. The multiple and numerous potentialities of this field are 

applicable to the diagnosis of diseases such as cancer, and neurological and 

cardiovascular diseases. This technique also contributes to improving the treatment of 
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these diseases by optimizing the pre-clinical and clinical tests of new medication. They 

are also expected to have a major economic impact due to earlier and more precise 

diagnosis. Furthermore, molecular imaging allows for quantitative tests, provides 

important insights for diagnosis, prognosis, and therapeutic design. 

1.1.2. Advantages of Optical Imaging 

A number of imaging modalities have current been used in clinical diagnostics, 

including image via means of x-ray (x-ray computer tomography or CT), sound 

(ultrasound), magnetism (magnetic resonance imaging or MRI),  radiolabeled molecules 

that produce signals by means of radioactive decay by nuclear imaging (positron 

emission tomography or PET, and single-photon emission computed tomography or 

PPECT),  and light (optical techniques of bioluminescence and fluorescence).The 

transparency of date reduction to form the desired images by using these techniques are 

shown in Figure 1.1.  
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Figure 1.1 A. Comparison of the utility of several commonly available radiological 

imaging modalities for anatomical, physiological, and molecular-level investigation.  CT 

- x-ray computer tomography; US - ultrasonography; MRI - magnetic resonance imaging; 

Nuclear - nuclear imaging; Optical - optical imaging. B. Size range of a few common 

biology molecules. 
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Therefore, among these different strategies, only MRI, nuclear imaging (PET or 

PPETC), and optical imaging are suitable for molecular-level investigations. These 

imaging technologies differ in five main aspects: (1) spatial resolution; (2) depth 

penetration; (3) sensitivity (4) availability of injectable/biocompatible molecular probes; 

and (5) tissue safety and facility of use (time and cost), as described in Table 1.1. 

Considering the key advantages and disadvantages of these main available imaging 

modalities, optical imaging holds the most promise for molecular imaging. 

Optical molecular imaging offers significant advantages to nuclear imaging and 

MRI‟s capabilities for life science and pre-clinical application. Nuclear imaging requires 

the expensive process of creating radioisotopes, delivering these radioisotopes for use 

within a very limited time frame to avoid decay, and the use of a very expensive 

instrument to examine the results.  MRI has the advantages of having very high spatial 

resolution and has been widely used at morphological imaging and functional imaging. 

However, MRI has a low sensitivity compared to other types of imaging due to the fact 

that the difference between atoms in the high energy state and the low energy state in 

MRI is very small. Therefore, MRI imaging normally requires long acquisition times of 

limited regions of interest.
1
 This means a priori information is necessary to find and 

image the cells of interest, and whole body imaging is not feasible for MRI. 

In contrast to both MRI and nuclear imaging which started in the clinic and were 

adapted for small animal studies, optical imaging emerged from techniques already 

established at the molecular and cellular level. The development of fluorescence-based 

optical imaging methods that utilize exogenous fluorescent dyes has gained a great deal 

of attention. When introduced within the body, excited with laser diodes, the fluorescent 
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dyes emit photons that can be detected externally by photomultiplier tubes (PMTs) or 

with highly sensitive charge- coupled device (CCD) cameras.
2-13

 Optical imaging with 

fluorescent light is particular attractive as the detectors are highly sensitive towards the 

emitted photons and, hence, require only small amounts of contrast agents (nM) as 

compared to with MR imaging (mM). Besides, the instruments and probes for optical 

imaging are generally much cheaper, and can be made more mobile, when compared to 

those for MRI and nuclear imaging.
14

 Further, emission of low-energy photons is 

concentration-dependent, occurs on the time scale of the fastest molecular processes, and 

is inherently dependent upon the emissive environment of the fluorescent agent.
9, 10, 14, 15

 

At shallow depths, picomole quantities of the light emitting source can be detected. There 

is also no harmful radiation or strong electromagnetic fields, thereby making it a safe 

method for both the operator and study subjects.
5-7, 12, 16

 Image acquisition times are very 

fast, enabling multiple animals to be imaged in one session. Notely, optical imaging can 

detect diseases at a very early stage, long before other imaging modalities by allowing 

nearly real-time monitering of cellular activity. It therefore holds enormous promise for 

faster treatment of disease and better therapeutic outcomes. Longitudinal studies are 

easily performed without limitations. Finally, the equipment is very affordable for 

universities in comparison to the nuclear and MRI instruments.  

As a result, fluorescence-based optical imaging is the overall superior modality 

for small animal imaging research as its enables highly sensitive, safe, and affordable 

detection of dynamic molecular-level events, with only minimal losses in spatial 

resolution and signal attenuation due to short optical path lengths.  
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Table 1.1 Comparison of different molecular imaging approaches. 

Imaging 

Technique  

EM Radiation 

Spectrum 

Advantages  Disadvantages 

 CT X-rays Bone and tumor imaging; 

anatomic imaging 

Limited 'molecular' 

applications; limited soft 

tissue resolution; radiation 

Ultrasound  High-frequency 

sound 

Real time; low cost Limited spatial resolution; 

mostly morphologic although 

targeted microbubbles under 

development 

Nuclear 

imaging 

gamma rays Most established molecular 

imaging method; high sensitivity 

(eed μM contrast agent); many 

molecular probes available; can 

image multiple probes 

simultaneously; may be adapted 

to clinical imaging systems 

Low spatial resolution (mm); 

radiation of subject; 

expensive equipment 

 

MRI Radio waves Highest spatial resolution (μm); 

combines morphologic and 

functional imaging. 

Relatively low sensitivity; 

long scan and post-processing 

time; Need mass quantity 

(mM) of contrast probes. 

Optical imaging Visible light or 

near-infrared 

Highest sensitivity (need only 

nM contrast agent); quantitative 

analysis with high throughput; 

safe, quick, easy, low cost and 

mobile equipment 

Minimal losses in spatial 

resolution and signal 

attenuation due to short optical 

path lengths. 
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1.2. NIR Emissive Polymersomes as Optical Probes for in vivo Imaging 

1.2.1. NIR Fluorescence for in vivo Optical Imaging 

The goal for optically based method is to collect light emission in a spatially 

resolved manner. The energy (E) of each photon of light is inversely proportional to its 

wavelength (λ) according to the relationship, E = hλ, where h is Planck's constant. The 

penetration of photons through a material such as the tissues in the human body is highly 

dependent on the wavelength, or the energy. In vivo imaging with visible fluorophores is 

inherently limited to very superficial tissue depths as a result of significant light 

scattering and optical absorption. The main absorbing molecules in the tissue include 

water, hemoglobin, and deoxyhemoglobin. Absorbance as a function of wavelength for 

each of these molecules is depicted in Figure 1.2. With increasing wavelengths, light 

scattering decreases appreciably and photon absorption of hemoglobin, and 

deoxyhemoglobin lessens, approaching a nadir over the near-infrared spectrum (600 - 

1000 nm). Therefore, fluorescence-based imaging in this near-infrared spectral has 

outstanding signal-to-noise ratios (SNR) due to minimum interference from tissue 

autofluorescence, as seen in Figure 1.3. As a result, near-infrared optical imaging can 

prospectively be used to resolve molecular events through deep tissue volumes at depths 

of up to 12 cm.
14

  Realization of the full potential for fluorescence-based in vivo imaging 

will be dependent upon the design of contrast agents that both absorb and emit in NIR.
5, 7, 

9, 11, 17
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Figure 1.2 The NIR window is ideally suited for in vivo imaging because of minimal 

light absorption by hemoglobin (<650 nm) and water (>900 nm). 
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Figure 1.3 Wavelength-dependent autofluorescence of vital organs and bodily fluids. 

(a) Immediately after sacrifice, the viscera of a hairless, athymic nu/nu mouse were 

exposed. Tissue autofluorescence was then imaged using three different 

excitation/emission filter sets: (b) blue/green (460–500 nm/505–560 nm); (c) green/red 

(525–555 nm/590–650 nm); and (d) NIR (725–775 nm/790–830 nm). The fluence rate 

provided by each filter set was adjusted to 2 mW/cm
2
. To compensate for differences in 

emission filter wavelength width and camera sensitivity, exposure times were adjusted 

accordingly. Fluorescence images have identical normalization. For orientation, the white 

light color image of the animal is shown in (a). Arrows mark the location of the 

gallbladder (GB), small intestine (SI) and bladder (Bl).
18
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1.2.2. NIR Fluorescence Imaging Probes 

The earliest NIR imaging applications utilized fluorochrome indocyanine green 

(ICG) for the non-invasive detection of tumors in both animals and patients.
5
 ICG is a 

small molecule (Mw = 775 g/mol) that emits NIR light at 800 nm upon optical excitation 

at 780 nm.
19

  It exhibits strong albumin binding and shows preferential uptake and 

retention in tumors as a result of increased vascular permeability through surrounding 

leaky blood vessels.
20

 However, ICG possesses a short circulation half-life due to its 

susceptibity to the body's first-pass metabolism, resulted in rapid clearance from the 

blood.
21

 In addition, ICG's spectra are altered
22

 and its quantum yield significantly 

decreases when bound to albumin.
23

  In order to improve these optical characteristics and 

to augment ICG's tumor uptake and contrasting capabilities, dye derivatives that possess 

better water solubility, decreased protein binding, and more favorable pharmacokinetics 

have been synthesized.
23, 24

 In general, ICG and its derivatives offer basic physiological 

information such as tissue perfusion and accumulation effects with no additional 

molecular information. 

The energy gap law states that as the energy difference between a fluorophore's 

ground and excited state decreases, non-radiative decay pathways increasingly dominate 

its excited state relaxation.
25

 As a result, there is a relative small number of organic-based 

NIR fluorophores, while the existing ones such as ICG and derivatives often lack the 

ideal properties for generating strong fluorescent signals though deep tissue sections, 

necessary for both large animal and clinical imaging applications.  

One alternative strategy to solve the problems associated with NIR imaging with 

organic fluorophores is to use inorganic semicondutor nanoparticles (i.e. quantum dots)  
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Quantum dots are nanocrystals with a core/shell structure comprised of transition metals 

(e.g. Cd, Se, S, and/or Zn) surrounded by a water-soluble organic coating. 
3, 26-29

  By 

controlling the size of quantum dots, the band gap can be adjusted and enables tuning of 

its narrow fluorescence emission band (25-35 nm) with considerable accuracy.  In 

addition to large extinction coefficients and high fluorescence quantum yields, NIR-

emissive quantum dots also possess high photobleaching thresholds.
30

 Further, the ready 

commercial availability of these agents offers exciting opportunities for detection of 

molecular targets both in vitro and in vivo.
3, 31-33

  However, quantum dots tend to 

aggregate in aqueous solution, thereby losing their fluorescence.
34

 In addition, quantum 

dots are normally constructed from toxic elemental materials,
35

 and the relatively large 

sizes of their NIR compositions are too large to be cleared via renal filtration, resulting in 

high fluorescence background noise and increased potential for in vivo toxicity.
36

 

1.2.3. Novel NIR Emissive Polymersomes 

The ideal NIR agent should possess: (1) Large NIR absorption extinction 

coefficients; (2) High NIR fluorescence quantum yields; (3) High photo-bleaching 

thresholds; (4) No photo-based cellular toxicity; (5) Good water solubility; (6) Safe and 

complete in vivo clearance. Towards this goal, lots of effort has been devoted to NIR 

emissive nanocarriers as fluorescence probes, as displayed in Figure 1.4.
37
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Figure 1.4 a, A whole range of delivery agents are possible but the main components 

typically include a nanocarrier, a targeting moiety conjugated to the nanocarrier, and a 

cargo (such as the desired chemotherapeutic drugs). b, Schematic diagram of the drug 

conjugation and entrapment processes. The chemotherapeutics could be bound to the 

nanocarrier, as in the use of polymer–drug conjugates, dendrimers and some particulate 

carriers, or they could be entrapped inside the nanocarrier. 
37
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Nanocarriers have been classified based on their physical forms to liposomes, 

polymersomes, microspheres, nanoparticles and etc. Among all these different types of 

nanocarriers, our lab focused on developing self-assembling polymeric vesicles housing 

porphyrin-based NIR fluorophores in the hydrophobic bilayer.
38-45

 There are significant 

advantages of using this porphyrin incorporated NIR emissive polymersomes over 

quantum dots or other types of emissive nanocarries. 

Porphyrin is an organic molecule containing four pyrrole (C4H5N) rings. The 

heme structure of hemoglobin is an example of a porphyrin in biology. Nitrogen atoms of 

porphyrin molecules coordinate to complex with metals such as iron by hemoglobin. By 

synthesizing porphyrin macromolecules based on conjugating multiple zinc binding 

porphyrin chromophores together, we can tune their spectral properties including excited-

state absorptivity, NIR fluorescence, and achieve high quantum yields in the near-

infrared regime.  

The most important polymersome feature with regard to fluorophore 

incorporation is the thick hydrophobic membrane core for incorporation of a large 

amount of fluorescent contrast agents. For example, the 800 nm NIR dye porphyrin 

trimer (PZn3) is a nanometric macromolecule at 3.2 nm in length
46

 which is too large for 

incorporation into liposome membranes.
39

 Polymersomes easily accommodate PZn3 with 

little change to the fluorescence spectral properties or polymersome mechanical 

properties. Intermolecular fluorophore quenching is minimized by using high polymer to 

porphyrin ratios 40:1. 
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Properties of polymersomes which make them optimal delivery vehicles also 

include the 100% hydrophilic, non-immunogenic PEGylated surfaces with well-proven 

shielding capacity against protein opsonization,
47

  as well as the tunable size from 10 μm 

to 50 nm in diameter, lead to longer in vivo circulation times in comparison to liposomes, 

the biological counterpart to polymersomes.  

In addition to housing fluophores, the vesicular nature of polymersomes makes 

them adaptable for making multifunctional reagents. These polymer vesicles are 

multifaceted with mechanically robust membranes, have an ability to sequester both 

hydrophobic and hydrophilic reagents. Therefore, a second imaging contrast agent could 

be encapsulated into the aqueous center yielding a dual modality agent. Alternatively, 

drug can be loaded into the hydrophilic core to combine drug delivery with in vivo 

monitoring of vesicle biodistributions. Attaching receptor ligands on the PEO brush 

would provide in vivo targeted vesicles to the complimentary receptor for diagnostic 

purposes. Finally, conjugating tumor targeting antibodies to the exterior brush of the 

polymersomal nanoscale vesicles would enable cellular uptake and effectively generate 

NIR-emissive cells.  

1.3. Principles of Targeted Delivery 

1.3.1. Advantages of Targeted Delivery 

The development of successful targeting agents will have dramatic impacts for a 

number of medical applications, particularly the diagnostic capabilities of imaging agents 

and improving the specificity of highly toxic drugs used to treat diseases.
48

 By far the 

greatest benefits occurs with the use of chemotherapeutics to treat cancer. Currently, 

general protocols for the treatment of cancer rely on administering chemotherapeutic 



15 

 

agents as either single agents or in combination with other drugs. Frequently, the use of 

novel therapeutics in medicine is limited by the lack of efficiency in delivery of these 

therapeutic agents to the target organs. After a therapeutical agent is administered to the 

body, it undergoes even bio-distribution throughout the body. In order to reach the 

therapeutical site, these agents have to cross several biological barriers in the body such 

as organs, tissues, cells etc., where these agents could be adsorbed, metabolized or 

excreted out of the body.
49-51

 Therefore, to increase the effectiveness of drugs, the doses 

for these agents are, in most instances, administered at the drug's maximum tolerated 

dose. The unfortunate impact of treating at such high doses is the undesirable side effects 

which can be life-threatening. Therefore, most chemotherapeutic agents exhibit very 

narrow therapeutic windows due to the drug toxicity and poor therapeutic activity at 

nontoxic doses.  

Targeted drug delivery can address the above problems by localizing drugs to a 

specific target site to provide a major advancement for anti-cancer drug therapy, as it will 

allow for more effective treatments to be given at doses that are better tolerated. During 

the last three decades there has been intense effort directed towards the development of 

targeted drug delivery systems to efficiently transport the drug to its therapeutical site by 

the appropriate choice of carrier, route, and target. The use of a carrier system for 

delivering drugs to the body provides several opportunities for achieving the goal of drug 

targeting. Some potential advantages of targeted drug delivery are: (a) Smaller amounts 

of drug dosages and facilitation of administration; (b) Maintenance of constant drug 

levels in the therapeutical range; (c )Reduction of drug toxicity and fewer side effects 



16 

 

when targeted to specific tissues or organs; (d) Protection of biologically active drug 

molecules like peptides and proteins from degradation during transport.
49, 52

  

1.3.2. Passive Targeting vs. Active Targeting 

Due to its macromolecular nature, nano-sized delivery vehicles such as micelles, 

liposomes and polymersomes can accumulate passively in target tissues such as the 

reticuloendothelial system (RES) through nonspecific uptake by macrophages, or in 

extravascular disease sites including sites of infection, inflammation, and tumors by a 

process called the enhanced permeability and retention (EPR) effect.
53, 54

 The mechanism 

of the EPR effect has been summarized according to the following cascade of events: (i) 

tumor angiogenesis results in hypervasculature, providing increased blood flow to the 

tumor; (ii) tumor vasculature becomes highly permeable for nano-sized delivery vehicles 

to escape through blood vessel walls into tissues.; (iii) leaky blood vessels and defective 

lymphatic drainage, causing nano-sized delivery vehicles to accumulate in them. These 

factors result in larger carriers having decreased renal clearance, thereby taking longer to 

be eliminated from the body.
55

 Through passive targeting, the nano-sized delivery 

vehicles accumulation can result in a much larger amount of drug delivery compared to 

the injection of the same dose of free drug, protecting healthy tissue and greatly reducing 

adverse side effects.
56, 57

 However, the majority of localized nontargeted delivery vehicles 

do not interact with target cells directly, and the therapeutic activity is a consequence of 

drug release from nanoparticles within the disease site, a process that does not require 

direct binding or association with diseased cells.
58

 

The facilitation of the binding of the delivery vehicles to target cells through the 

use of ligands that are capable of recognizing and binding to cells of interest, such as 
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monoclonal antibodies or peptides, to increase localization of drug and target cell is 

referred to as active targeting. Active targeting can direct delivery vehicles to tissues 

where they would not normally accumulate and increasing drug accumulation in the 

desired tissues and organs.
59

 Active targeting can be combined with passive targeting to 

further reduce the interaction of carried drugs with healthy tissue. Nanotechnology-

enabled active and passive targeting can also increase the efficacy of a chemotherapeutic, 

achieving greater tumor reduction with lower doses of the drug. 

Two qualities are important for an active targeting system. One is the specificity 

of actively targeted delivery vehicles that is dependent upon the surface ligand's affinity 

for a target cell marker. The second is the ability to enable the deliver the required dose 

of drug for the required period of time and to overcome biological delivery barriers
50, 51

, 

an important issue for all imaging modalities. Possible solutions
60

 to this include targeted 

local delivery and development of long circulating compounds that provides a more 

homogeneous distribution of agent. Therefore, the development of targeted probes are 

composed directly against a specific moiety targeted to the molecule, receptor or enzyme 

of interest and an imaging component that provides the physical contrast with a 

prolonged circulation time of the delivery vehicles in vivo.  

1.3.3. Polymer Functionalization for Targeted Delivery 

Polymersomes are a great choice as drug carriers for targeted delivery. 

Polymersomes have several advantages over other drug delivery systems due to their 

biocompatibility, capability of self-assembly, ability for loading hydrophobic and 

hydrophilic encapsulates, broad range of tunable physical properties and a wide diversity 

of chemistries for polymer modification. These NIR polymersome characteristics led us 
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to investigate the application of these optical agents for drug delivery and specific tumor 

cell targeting. 

It has been shown that a number of drug molecules improved their therapeutic 

effects and their targeted delivery in vivo when encapsulated inside polymersomes.
61

 

Such improvement is achieved by (1) retaining the drug molecules inside the 

polymersomes, therefore avoiding the exposure to tissues or blood and minimizing the 

nonspecific uptake of drug molecules by normal undiseased tissues; (2) selectively 

targeting the tissue of interest and releasing the content at the targeted region. These two 

criteria have been primary reasons for use of polymersomes as drug delivery cargo. In 

order to make the polymersomes selective for certain tissues and cells, it is important to 

functionalize the polymersome surface with site-specific ligands.   

Functionalized polymersomes provides a versatile carrier platform for the targeted 

delivery of therapeutics to the interior of the tumor cell and offers the possibility to 

greatly improve treatment outcomes for diseases by enhancing specificity and minimizing 

side effects compared to conventional drugs and liposomes. 

1.4. Specific Aims of the Thesis Dissertation 

The detection of early carcinoma or dormant or latent metastatic tumor cells 

remains an elusive but important clinical goal.  We seek to develop further revolutionary 

new nanotechnology that enables optically based detection of metastatic cancer cells.  

Towards this goal, we will further refine design criteria for near infrared (NIR) emissive 

polymersomes, a promising new soft matter nanoscale platform for in vivo diagnostic and 

drug-delivery applications.  This program will develop (i) nanoscale NIR-emissive 

polymersomes having optimized emissive output; (ii) targeted nanoscale (diameter ≤ 100 
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nm) NIR-emissive polymersomes; (iii) prototype targeted nanoscale vesicles in which the 

polymeric building blocks are based-upon FDA-approved materials; (iv) targeted NIR-

emissive polymersomes with ideal cell-surface adhesion dynamics; and (v) methods and 

technology that provide not only new insights into metastatic disease, but define an 

evolvable nanoscale platform for in vivo dormant tumor cell detection, diagnosis, and 

treatment. These efforts involve correlating NIR fluorophore structure and photophysics, 

polymersome composition of matter, vesicle mechanical and biological properties, 

nanoscale NIR-emissive polymersome fluorescence output, and the nature of the cellular 

targeting motif, with in vivo function and efficacy. As such, the experimental approach 

we pursue is cross-cutting and integrative, encompassing supramolecular chemical 

synthesis, photophysical characterization, in vivo imaging, bioengineering, biology, and 

medicine. We strive to establish design principles that will ultimately enable real-time 

detection and identification of limited target cell numbers under clinically relevant 

diagnostic conditions, and define new tools for the study of metastatic disease. 

1.4.1. Aim 1- Chapter 2: Engineering and Design of Porphyrin Based Fluorophores 

for Optimized NIR Emission Output 

The first aim of this thesis dissertation involves the synthesis of high emission 

dipole strength porphyrin-based fluorophores with great enhancement of emission 

intensity and luminescence quantum yields. A class of quinoidal spacer conjugated 

(porphinato)zinc(II) (PZn-(BTD-PZn)n, (PZn)2-(BTD-(PZn)2)n) and  (BTD-(PZn)n-

BTD) complexes that possess intervening conjugated BTD spacer with varying degrees 

of porphyrin conjugation have been synthesized. These BTD conjugated porphyrin 

species possess large magnitude NIR S1 → S0 fluorescence quantum yields superior to 
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the highest reported for NIR laser dyes in the 750−900 nm regime. The synthesis, optical 

spectroscopy, potentiometric studies, and electronic structural calculations are reported 

and show that the magnitudes of the potentiometric HOMO−LUMO gap (Ep) and 

quantum yields in conjugated organic materials can both be modulated. 

1.4.2. Aim 2 - Chapter 3: Develop Antibody-Conjugated Polymersomes for 

Immunochemical Applications 

We aim to develop a series of chemical modification procedures to functionalize 

the hydrophilic PEO terminus with selected activated functional groups.  These activated 

moieties will enable covalent attachment of these species to proteins or antibodies. The 

optimized procedures for the maximum antibody conjugation efficiency and 

polymersomes yield are established. The impacts of reactive hydrophilic surface 

functionality and antibody concentration on maximal loading of targeting antibodies are 

also assessed to give controlled antibody conjugation degree on polymersomes surface. 

Antibody conjugation to a functionalized NIR-emissive polymersome having a diameter 

less than 100 nm provides a nanoscale object targeted to a cell-surface-specific structure. 

We aim at test the ability of using these antibody-conjugated NIR-emissive 

polymersomes to label cells and measure fluorescence signal intensity in tumor cells. We 

will demonstrate the efficiency of these polymersomes to detect metastatic tumor cells 

and provide fundamental new information regarding metastasis. These studies will 

correlate NIR optical signal intensity with absolute tumor cell numbers. Detection 

sensitivity levels will be determined, and the potential for using antibody-conjugated 

NIR-emissive polymersomes as a detection system for early tumors, as well as dormant 

or latent metastases, will be assessed.   
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1.4.3. Aim 3 - Chapter 4:  Elaboration of First-Generation Targeted Nanoscale 

Emissive Polymersomes on Which the Polymeric Vesicular Building Blocks 

are Based-Upon FDA-Approved Biodegradable Polymers  

The fouth aim of this thesis dissertation involves the formation of functionalized 

polymersomes through self-assembly of an amphiphilic bioresorbable polymer consisting 

of previously FDA-approved building blocks: poly(ethyleneoxide) (PEO) , poly(ε-

caprolactone) (PCL) and poly(1,3-trimethylene carbonate) (PTMC). A varies of PEO-b-

PCL, PEO-b-PTMC diblock copolymers and PEO-b-P(CL-co-TMC)triblock copolymers 

are synthesized and their ability to self-assembly into meso- and nano-scale 

polymersomes are examined. Further, we synthesize vinyl sulfone functionalized PEO-b-

PCl diblock copolymers which can be readily used for peptide conjugation and tumor 

targeting. As such, these bioresorbable polymersomes hold promise as nanomaterials for 

future imaging, targeting and drug delivery applications. 

1.4.4. Aim 4 - Chapter 5: Develop Nanoparticles Incorporated Polymersomes with 

Quantitative Membrane Loading 

We aim at incorporating various nanoparticles within the thick bilayered 

membranes of polymer vesicles for wide-ranging potential applications in cellular 

imaging and manipulation. Methodology for the generation of polymer vesicles with 

various nanoparticles including different sized CdSe/ZnS quantum dots and gold 

nanoparticles loaded in the bilayer membrane through a teflon-based thin-film-

rehydration method is established.  Quantum dots with no aqueous solubility can be 

quantitatively and reproducibly loaded within polymersome membranes at prescribed 

molar ratios. The effects of vesicle loading on the absorptive and emissive properties of 
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quantum dots, as well as whole polymersomal ensembles, are examined.  Nanoparticles-

loading-dependent changes on vesicle thermodynamic and mechanical stabilities are 

further tested and the results reported. 
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CHAPTER 2. Synthesis, Characterization and Properties of 

Conjugated (Porphinato)zinc(II) Compounds Featuring 

Benzothiadiazole Spacer Units 

2.1. Summary 

Imaging in the NIR region (700–1100 nm) have numerous advantages for 

biomedical applications because of low background absorption, low scattering and cheap 

illumination sources.
1, 2

 In the design and synthesis of NIR emissive compounds, 

problems have been encountered such as aggregation,
3
 photobleaching,

4
 and low 

fluorescence quantum yields.
5
 There is a pressing need for the identification of highly 

effective NIR emissive materials. Towards this purpose, we report the synthesis, optical, 

electrochemical, electronic structural, and transient optical properties of a class of 

conjugated (porphinato)zinc(II) complexes with an induced spacer group 1,3-

benzothiadiazole (BTD) that regulate frontier orbital energy levels and progressively 

increase the extent of the quinoidal resonance contribution to the ground and 

electronically excited states, augmenting the magnitude of electronic communication and 

optimize their optical properties. For (porphinato)zinc(II)-BTD-(porphinato)zinc(II) 

(PZn-(BTD-PZn)n  and (PZn)2-(BTD-(PZn)2)n) complexes that featuring the BTD 

spacer in-between the porphyrin monomers and dimers, the potentiometrically 

determined HOMO-LUMO gaps (E1/2
0/+

 – E1/2
–/0

) display correspondingly diminished 

energy separations with an increasing in the porphyrin conjugation length, with the 

emission spectra greatly red-shifts with increasing numbers of conjugated monomeric 

units, penetrating well into the NIR. Furthermore, these compounds possess very high 
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oscillator strength and extraordinary large NIR fluorescence quantum yields of 17%-38% 

in THF, and 18-59% in toluene, while overcoming solvent and stability issues associated 

with most other NIR laser dyes.
6
 The results are remarkable and demonstrate that the S1

→Sn transition manifolds of these species span an unusually broad spectral domain of the 

NIR. These data highlight the unusually large quinoidal resonance contribution to the 

low-lying electronically excited singlet states of these BTD conjugated porphyrin species. 

To better understand how the BTD spacer reduces and tunes energy gaps between 

the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular 

orbital (LUMO) of such π-conjugated species and increase the quantum yield, we further 

design another series of BTD-(porphinato)zinc(II)-BTD (BTD-(PZn)n-BTD) 

supermolecules with the BTD spacer at the end positions of the conjugated 

multiporphyrin oligomers. These BTD conjugated multiporphyrin compounds show 

futher red-shifts of the respective x-polarized Q state (S0→S1) transition manifold 

maxima in the NIR region relative to the BTD spaced porphyrin oligomers, together with 

very high quantum yields. Electronic structural differences, as well as the relative 

magnitudes of the optical (Eop) and potentiometric (Ep) band gaps of all these BTD 

conjugated porphyrin structures are rationalized within the context of perturbation theory. 

The fact that the quantum yields of these BTD conjugated porphyrin possess NIR S1→Sn 

manifold absorptions lower in energy with respect to those of classic conducting 

polymers, yet with an exceptional high quantum yields, underscore the unusual 

electrooptic properties of these conjugated structures. 
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2.2. Introduction 

Low band gap organic materials can be used as photonic devices with a wide 

range of applications as photovoltaics,
7, 8

 LEDs,
9, 10

 electro-optic modulators
11, 12

, optical 

limiters,
13, 14

, and especially in vivo biomedical imaging probes.
15

 All these applications 

necessitate highly conjugated materials that manifest at least one type of singlet manifold 

transition with unusual intensity in the near-infrared (NIR). The excited-states of active 

conjugated, low band-gap materials usually have shortened excited-state lifetimes due to 

large magnitude Franck-Condon mediated nonradiative decay, congruent with the energy 

gap law.
16, 17

 Most available NIR-emissive fluorophores possess modest quantum yields 

with additional undesirable limitations of low chemical and photostability, and a marked 

sensitivity to solvent polarity.
5, 6

 Relative few organic oligomers or polymers have been 

identified to possess excited singlet states which absorb strongly in the NIR. To enhance 

electrical properties, small band gap materials have become a synthetic goal in 

organic/polymer electronics. Construction of either polymers consisting of donor and 

acceptors or oligomers that have mid gap states is one means to tune the band gap of 

photonic materials. Another possible method is by addition of monomer repeat units to a 

monomer unit that possess modest optical, Eop, and electropotential, Epo, band gaps. Upon 

addition of monomer repeat units, the band gap sufficiently decreases. 

A great candidate for small Eop and Epo oligomer and polymer electronic material 

is porphyrins. Porphyrins are a tetrapyrrolic-conjugated macrocycles with large π-

conjugated ring systems and heteroatoms that give rise to porphyrin-porphyrin π-

interactions and possess modest potentiometrically determined HOMO-LUMO gaps (Ep; 

E1/2
0/+

 – E1/2
–/0

), relative to those of the common monomeric aromatic building blocks 
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used to construct traditional electronic polymers.  The electronic properties of 

(porphinato)metal compounds can be modulated extensively by variation of the 

macrocycle peripheral meso- or β-substituents, as well as by selection of the central metal 

ion; further, a variety of modes of porphyrinoid-porphyrinoid connectivity provides 

sufficiently strong interchromophore electronic interactions to facilitate extensive 

electronic delocalization.
18-31

  In addition, an established means to further reduce the Eop 

and Ep gaps of π-conjugated materials involves introducing quinoid-like character into 

the conjugation main-chain.
32-34

 Porphyrin-to-porphyrin bridging motifs involving 

ethynes and spacers that induce a quinoidal structural perturbation with appropriately 

positioned frontier orbital energy levels, can greatly enhance ground- and excited-state π-

conjugation, and effect further reduction in Eop and Ep in the corresponding oligomeric 

and polymeric structures.
35

  

Our group has synthesized conjugated (porphinato)zinc(II)-spacer-

(porphinato)zinc(II) (PZn-Sp-PZn) complexes feature Sp moieties 4,7-

diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E), 6,13-diethynylpentacene (E-PC-E), 4,9-

diethynyl-6,7-dimethyl[1,2,5]thiadiazolo[3,4-g]quinoxaline (E-TDQ-E), and 4,8-

diethynylbenzo[1,2-c:4,5-c„]bis([1,2,5]thiadiazole) (E-BBTD-E).  Among these different 

spacers, BTD was found to demonstrate the highest quantum yield. Thus, we further 

developed a new class of BTD featured porphyrin supermolecules with both BTD spacer 

in-between the porphyrin oligomers such as (PZn-(BTD-PZn)n  and (PZn)2-(BTD-

(PZn)2)n), as well as BTD spacer at the end positions of the conjugated multiporphyrin 

oligomers (BTD-(PZn)n-BTD). As we expected, all these compounds exhibit very large 

quantum yields that are superior to the highest reported quantum yields for organic 
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chromophores in the NIR regime.
36

 The synthesis, optical spectroscopy, potentiometric 

studies, and electronic structural calculations are reported and show that the magnitudes 

of the potentiometric HOMO−LUMO gap (Ep) and quantum yields in conjugated organic 

materials can both be modulated. 

2.3. Experimental Methods 

2.3.1. Materials 

All manipulations were carried out under argon previously passed through an O2 

scrubbing tower (Schweitzerhall R3-11 catalyst) and a drying tower (Linde 3-Å 

molecular sieves) unless otherwise stated.  Air sensitive solids were handled in a Braun 

150-M glove box.  Standard Schlenk techniques were employed to manipulate air-

sensitive solutions.  Unless otherwise noted, all solvents utilized in this work were 

obtained from Fisher Scientific (HPLC grade); tetrahydrofuran (THF) was distilled from 

K/4-benzoylbiphenyl under N2.  Diisopropylamine, Triethylamine, MeOH, CHCl3 and 

CH2Cl2 were distilled from CaH2 under N2.  Pyridine and piperidine was also dried over 

CaH2 and distilled under reduced pressure.  The catalysts tetrakis (triphenylphosphine) 

palladium Pd(PPh3)4, bis(triphenylphosphine) palladium chloride Pd(PPh3)2Cl2, 

tris(dibenzylideneacetone) dipalladium(0) Pd2dba3, copper iodide CuI, triphenylarsine 

AsPh3 and triphenylphosphine P(o-tol)3 were purchased from Strem Chemicals and used 

as received. 4-bromo-benzo[c][1,2,5]thiadiazole, 4,7-

Dibromobenzo[c][1,2,5]thiadiazole,
37

 were prepared by literature methods. All NMR 

solvents were used as received.  The supporting electrolyte used in the electrochemical 

experiments, tetra-n-butylammonium hexafluorophosphate, was recrystallized twice from 
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ethanol and dried under vacuum at 70 ˚C overnight prior to use.  All the other chemicals 

were used as received. 

 Chemical shifts for 
1
H NMR spectra are relative to tetramethylsilane (TMS) 

signal in the deuterated solvent (TMS = 0.00 ppm).  All J values are reported in Hertz.  

Flash and size exclusion column chromatography were performed on the bench top, using 

respectively silica gel (EM Science, 230–400 mesh) and Bio-Rad Bio-Beads SX-1 as 

media. MALDI-TOF spectroscopic data were obtained with a Perspective Voyager DE 

instrument in the Laboratory of Dr. W. Degrado (Department of Biophysics, University 

of Pennsylvania); samples for these experiments were prepared as micromolar solutions 

in THF or CH2Cl2, and dithranol in THF or cyano-4-hydroxycinnamic acid in 

CH2Cl2/isopropyl alcohol (4:1) were utilized as the matrix. 

2.3.2. Instrumentation 

Electronic absorption spectra were recorded on a Shimazu UV/vis/near-IR 

spectrophotometry system that is based on the optics of a Cary 14 spectrophotometer.  

NMR spectra were recorded on 500 MHz DMX-300 Brüker spectrometers.  Cyclic 

voltammetric measurements were carried out on an EG&G Princeton Applied Research 

model 273A Potentiostat/Galvanostat.  The electrochemical cell used for these 

experiments utilized a platinum disk working electrode, a platinum wire counter electrode, 

and a saturated calomel reference electrode (SCE).  The reference electrode was 

separated from the bulk solution by a junction bridge filled with the corresponding 

solvent/supporting electrolyte solution. The ferrocene/ferrocenium redox couple was 

utilized as an internal potentiometric standard. 
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Figure 2.1 Structures of the BTD conjugated porphyrin compounds. 

 

 

 

 

 

 

N N

NN

R

R

N N

NN

R

R

N
S

N

Zn Zn N N

NN

R

R

N N

NN

R

R

N
S

N

Zn Zn
N N

NN

R

R

N
S

N

Zn

N N

NN

R

R

N N

NN

R

R

N
S

N

Zn Zn
N N

NN

R

R

N
S

N

Zn
N N

NN

R

R

N
S

N

Zn
N N

NN

R

R

N
S

N

Zn

N N

NN

R

R

N
S

N

Zn

N
S

N

N N

NN

R

R

N
S

N

Zn
N N

NN

R

R

Zn

N
S

N
N N

NN

R

R

N
S

N

Zn
N N

NN

R

R

Zn
N N

NN

R

R

Zn

N
S

N

N N

NN

R

R

Zn
N N

NN

R

R

Zn
N N

NN

R

R

Zn
N N

NN

R

R

N
S

N

Zn
N N

NN

R

R

Zn

N
S

N

N N

NN

R

R

Zn
N N

NN

R

R

Zn

N
S

N

N N

NN

R

R

Zn
N N

NN

R

R

Zn

N N

NN

R

R

Zn
N N

NN

R

R

Zn

N
S

N

N N

NN

R

R

Zn
N N

NN

R

R

Zn

N
S

N

N N

NN

R

R

Zn
N N

NN

R

R

Zn

R =

O

O
PZnE-BTD-EPZn PZnE-BTD-EPZnE-BTD-EPZn

PZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZn

BTD-EPZnE-BTD BTD-EPZnE-PZnE-BTD BTD-EPZn-EPZnE-PZnE-BTD

BTD-EPZn-EPZnE-PZn-EPZnE-PZnE-BTD

PZn-EPZnE-BTD-EPZnE-PZnE

PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn



34 

 

2.3.3. Synthesis 

Previously made porphyrin compounds see supplemental of literatures.
38, 39

 

4,7-Bis[(10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’-

butyloxy)phenyl]porphinato)zinc(II)-5-ylethynyl]benzo[c][1,2,5]thiadiazole (PZnE-

BTD-EPZn) (1). (5-Ethynyl-10, 20-bis[2‟,6‟-bis(3,3-dimethyl-1-

butyloxy)phenyl]porphinato)zinc(II) (0.100g, 1.05×10
-4

 mol), 4,7-

dibromobenzo[c][1,2,5]thiadiazole (12.9 mg, 4.4×10
-5

 mol) were charged into a Schlenk 

Flask with Pd2dba3 (12.1 mg, 1.32×10
-5

 mol) and AsPh3 (32.3 mg, 1.05×10
-4

 mol). THF: 

iPr2NH (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min prior to 

solvent transfer.  Once solvent was transferred, the reaction mixture was stirred at 50 ºC 

overnight under Ar. After the solvent was evaporated, the residue was chromatographed 

on silica gel using 5:1 hexanes:THF as the eluant. Yield = 82 mg (91.6 % based on 12.9 

mg of the dibromobenzo[c][1,2,5]thiadiazole starting material).  
1
H NMR (500 MHz, 

CDCl3): 10.12 (d, 4H, J = 4.4 Hz, β-H), 10.04 (s, 2H, meso-H), 9.21 (d, 4H, J = 4.4 Hz, 

β-H), 9.06 (d, 4H, J = 4.5 Hz, β-H), 8.92 (d, 4H, J = 4.3 Hz, β-H), 8.37 (s, 2H, Ph-H), 

7.74 (t, 4H, J = 8.6 Hz, Ph-H), 7.04 (d, 8H, J = 8.6 Hz, Ph-H), 3.94 (t, 16H, J = 7.2 Hz, -

O-CH2-C), 0.87 (t, 16H, J = 7.6 Hz, -O-C-CH2-C), 0.24 (s, 72H, -C-CH3). MALDI-TOF 

MS m/z : 2029.98 (M
+
) (calcd 2028.884). 

 

(5-[7’-Bromobenzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -10,20-bis[2’,6’-

bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (2). (5-Ethynyl-10,20-

bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.100g, 1.05×10
-4

 

mol), 4, 7-dibromobenzo[c][1,2,5]thiadiazole (123.7 mg, 4.21×10
-4

 mol) were charged 
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into a Schlenk Flask with Pd2dba3 (14.4 mg, 1.57×10
-5

 mol) and AsPh3 (38.5 mg, 

1.26×10
-4

 mol). THF: iPr2NH (9:1 ml) solvent mixture was degassed with an Ar purge 

for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture, 

was stirred at 50 ºC overnight under Ar. After the solvent was evaporated, the residue 

was chromatographed on silica gel using 5:1 hexanes:THF as the eluant. Yield = 0.118 g 

(96.6 % based on 100 mg of the porphyrin starting material). 
1
H NMR (500 MHz, 

CDCl3): 10.06 (s, 1H, meso-H), 10.01 (d, 2H, J = 4.4 Hz, β-H), 9.22 (d, 2H, J = 4.4 Hz, 

β-H), 9.02 (d, 2H, J = 4.5 Hz, β-H), 8.91 (d, 2H, J = 4.5 Hz, β-H), 8.07 (d, 1H, J = 7.4 Hz, 

Ph-H), 8.01(d, 1H, J = 7.5 Hz, Ph-H), 7.71 (t, 2H, J = 8.6 Hz, Ph-H), 7.01 (d, 4H, J = 8.6 

Hz, Ph-H), 3.90 (t, 8H, J = 7.3 Hz, -O-CH2-C), 0.87 (t, 8H, J = 7.0 Hz, -O-C-CH2-C), 

0.22 (s, 36H, -C-CH3).   

 

(5, 15-Bis[7’-([10’’’,20’’’-bis[2’’’’,6’’’’-bis(3’’’’’,3’’’’’-dimethyl-1’’’’’-

butyloxy)phenyl]porphinato)zinc(II)-5’’-ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-

4’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) 

(PZnE-BTD-EPZnE-BTD-EPZn) (3). Compound 2 (0.100g, 8.59×10
-5

 mol), (5, 15-

diethynyl-10, 20-bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (34.9 

mg, 3.58×10
-5

 mol) were charged into a Schlenk Flask with Pd2dba3 (9.83 mg, 1.07×10
-5

 

mol) and P(o-tol)3 (26.1 mg, 8.59×10
-5

 mol). THF: TEA (9:1 ml) solvent mixture was 

degassed with an Ar purge for 30 min prior to solvent transfer.  Once solvent was 

transferred, the reaction mixture was stirred at 60 ºC overnight under Ar. The reaction 

mixture was then poured down a short silica gel column using CHCl3: MeOH (49:1 mL) 

as the eluent.  A large band was collected and the solvent stripped and then the residue 
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was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) 

and chromatographed gravimetrically.  The first band was collected and solvent removed 

via vacuum and the residue was purified by silica gel chromatography using CHCl3: 

MeOH (49:1 mL) as the eluent.  Yield = 114 mg (58% based on diethynyl starting 

material). 
1
H NMR (500 MHz, CDCl3): 10.02 (d, 4H, J = 4.4 Hz, β-H), 9.94 (d, 4H, J = 

4.5 Hz, β-H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β-H), 8.96 (d, 4H, J = 4.3 Hz, 

β-H), 8.86 (d, 4H, J = 4.5 Hz, β-H), 8.81(d, 4H, J = 4.2 Hz, β-H), 8.26 (s, 4H, Ph-H), 

7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, 

Ph-H), 3.89 (m, 24H, -O-CH2-C), 0.87 (m, 24H, -O-C-CH2-C), 0.34 (s, 36H, -C-CH3), 

0.30 (s, 72H, -C-CH3). MALDI-TOF MS m/z: 3136.72 (M
+
) (calcd 3133.32). 

 

(5-Ethynyl-15-[7’-Bromobenzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -10,20-

bis[2’,6’-bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II)  (4). (5-Ethynyl-

15-Triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3,3-dimethyl-1-

butyloxy)phenyl]porphinato)zinc(II) (0.100g, 0.94×10
-4

 mol), 4, 7-

dibromobenzo[c][1,2,5]thiadiazole (110.7 mg, 3.77×10
-4

 mol) were charged into a 

Schlenk Flask with Pd2dba3 (12.9 mg, 1.40×10
-5

 mol) and AsPh3 (34.5 mg, 1.13×10
-4

 

mol). THF: iPr2NH (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min 

prior to solvent transfer.  Once solvent was transferred, the reaction mixture, was stirred 

at 50 ºC overnight under Ar. After the solvent was evaporated, the residue was 

chromatographed on silica gel using 5:1 hexanes:THF as the eluant. Yield = 0.117 g 

(92.4 % based on 100 mg of the porphyrin starting material). 
1
H NMR (500 MHz, 

CDCl3): 9.85 (d, 2H, β-H), 9.57 (d, 2H, J = 4.6 Hz, β-H), 8.83 (d, 2H, J = 4.5 Hz, β-H), 
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8.79 (d, 2H, J = 4.7 Hz, β-H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 1H, Ph-H), 7.29 (m, 

1H, Ph-H), 6.98 (d, 4H, J = 8.6 Hz, Ph-H), 1.43(m, 42H, -SiCH(CH3)2), 3.88 (t, 8H, J = 

7.4 Hz, -O-CH2-C), 0.87 (t, 8H, J = 7.3 Hz, -O-C-CH2-C), 0.24 (s, 36H, -C-CH3). 

  

5, 15-Bistriisopropylsilylethynyl- (5, 15-Bis[7’-([10’’’,20’’’-bis[2’’’’,6’’’’-

bis(3’’’’’,3’’’’’-dimethyl-1’’’’’-butyloxy)phenyl]porphinato)zinc(II)-5’’-

ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-4’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II) (5). Coumpound 4 (0.100g, 7.44×10
-5

 mol), (5, 

15-diethynyl-10, 20-bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) 

(30.3 mg, 3.10×10
-5

 mol) were charged into a Schlenk Flask with Pd2dba3 (8.52 mg, 

0.93×10
-5

 mol) and P(o-tol)3 (22.6 mg, 7.44×10
-5

 mol). THF: TEA (9:1 ml) solvent 

mixture was degassed with an Ar purge for 30 min prior to solvent transfer.  Once solvent 

was transferred, the reaction mixture was stirred at 60 ºC overnight under Ar. The 

reaction mixture was then poured down a short silica gel column using CHCl3: MeOH 

(49:1 mL) as the eluent.  A large band was collected and the solvent stripped and then the 

residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, 

SX-1) and chromatographed gravimetrically.  The first band was collected and solvent 

removed via vacuum and the residue was purified by silica gel chromatography using 

CHCl3: MeOH (49:1 mL) as the eluent.  Yield = 56.4 mg (52% based on diethynyl 

starting material). 
1
H NMR (500 MHz, CDCl3): 10.02 (d, 4H, J = 4.4 Hz, β-H), 9.94 (d, 

4H, J = 4.5 Hz, β-H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β-H), 8.96 (d, 4H, J 

= 4.3 Hz, β-H), 8.86 (d, 4H, J = 4.5 Hz, β-H), 8.81(d, 4H, J = 4.2 Hz, β-H), 8.26 (s, 4H, 

Ph-H), 7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 
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Hz, Ph-H), 3.89 (m, 24H, -O-CH2-C), 1.42 (m, 42H, -SiCH(CH3)2), 0.87 (m, 24H, -O-C-

CH2-C), 0.34 (s, 36H, -C-CH3), 0.30 (s, 72H, -C-CH3). MALDI-TOF MS m/z: 3136.72 

(M
+
) (calcd 3133.32). 

 

5, 15-Ethynyl- (5, 15-Bis[7’-([10’’’,20’’’-bis[2’’’’,6’’’’-bis(3’’’’’,3’’’’’-

dimethyl-1’’’’’-butyloxy)phenyl]porphinato)zinc(II)-5’’-

ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-4’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II) (6). Compound 5 (100 mg, 2.63×10
-5

 mol) 

were dissolved in THF and cooled down to 0 ºC under Ar.  TBAF (0.526 mL, 0.1 M 

TBAF in THF solution, 5.26×10
-5

 mol) was then added dropwise and the reaction 

mixture was allowed to stir for 15 min at 0 ºC.  The reaction mixture was then directly 

poured down a short silica gel column using CHCl3 as the eluent.  Yield = 75 mg (82.3% 

based on compound 5). 
1
H NMR (500 MHz, CDCl3): 10.05 (d, 4H, J = 4.4 Hz, β-H), 9.96 

(d, 4H, J = 4.5 Hz, β-H), 9.02 (d, 4H, J = 4.2 Hz, β-H), 8.96 (d, 4H, J = 4.3 Hz, β-H), 

8.87 (d, 4H, J = 4.5 Hz, β-H), 8.80 (d, 4H, J = 4.2 Hz, β-H), 8.26 (s, 4H, Ph-H), 7.72 (t, 

6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 

4.13 (s, 2H), 3.89 (m, 24H, -O-CH2-C), 0.87 (m, 24H, -O-C-CH2-C), 0.34 (s, 36H, -C-

CH3), 0.30 (s, 72H, -C-CH3). 

 

(5, 15-Bis[7’’-([10’’’’,20’’’’-bis[2’’’’’,6’’’’’-bis(3’’’’’’,3’’’’’’-dimethyl-1’’’’’’-

butyloxy)phenyl]porphinato)zinc(II)-5’’’-ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-

4’’-yl] -(5, 15-Bis[7’-([10’’’,20’’’-bis[2’’’’,6’’’’-bis(3’’’’’,3’’’’’-dimethyl-1’’’’’-

butyloxy)phenyl]porphinato)zinc(II)-5’’-ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-
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4’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) 

(PZnE-BTD-EPZnE-BTD-EPZn- BTD-EPZnE-BTD-EPZn) (7). Compound 2 

(0.100g, 8.59×10-5
 mol), compound 6 (114.1 mg, 3.58×10-5

 mol) were charged into a 

Schlenk Flask with Pd2dba3 (9.83 mg, 1.07×10-5
 mol) and P(o-tol)3 (26.1 mg, 8.59×10-5 

mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min 

prior to solvent transfer.  Once solvent was transferred, the reaction mixture was stirred at 

60 ºC overnight under Ar. The reaction mixture was then poured down a short silica gel 

column using CHCl3: MeOH (49:1 mL) as the eluent.  A large band was collected and the 

solvent stripped and then the residue was taken up in THF and put down a size exclusion 

column (BioRad Biobeads, SX-1) and chromatographed gravimetrically.  The first band 

was collected and solvent removed via vacuum and the residue was purified by silica gel 

chromatography using CHCl3: MeOH (49:1 mL) as the eluent.  Yield = 61.2 mg (32% 

based on compound 6). 
1
H NMR (500 MHz, CDCl3): 10.02 (d, 4H, J = 4.4 Hz, β-H), 9.94 

(d, 4H, J = 4.5 Hz, β-H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β-H), 8.96 (d, 4H, 

J = 4.3 Hz, β-H), 8.86 (d, 4H, J = 4.5 Hz, β-H), 8.81(d, 4H, J = 4.2 Hz, β-H), 8.26 (s, 4H, 

Ph-H), 7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 

Hz, Ph-H), 3.89 (m, 24H, -O-CH2-C), 0.87 (m, 24H, -O-C-CH2-C), 0.34 (s, 36H, -C-CH3), 

0.30 (s, 72H, -C-CH3). MALDI-TOF MS m/z: 5366.7 (M+) (calcd 5353.51). 

 

 (5, 15-Bis[benzo[c][1,2,5]thiadiazole-ethyn-4’-yl] -10,20-bis[2’,6’-bis(3,3-

dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (BTD-EPZnE-BTD) (8). (5, 15-

Diethynyl-10,20-bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (50.0 

mg, 5.13×10-5
 mol), 4-bromobenzo[c][1,2,5]thiadiazole (26.5 mg, 1.23×10-4

 mol) were 
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charged into a Schlenk Flask with Pd2dba3 (14.1 mg, 1.54×10-5 mol) and AsPh3 (37.7 mg, 

1.23×10-4
 mol). THF: iPr2NH (9:1 ml) solvent mixture was degassed with an Ar purge 

for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture, 

was stirred at 50 ºC overnight under Ar. After the solvent was evaporated, the residue 

was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 57.2 mg 

(90.2 % based on 50 mg of the porphyrin starting material). 
1
H NMR (500 MHz, CDCl3): 

9.82 (d, 4H, J = 4.5 Hz, β -H), 8.85 (d, 4H, J = 4.5 Hz,  β-H), 7.97 (d, 2H, J = 6.4 Hz, Ph-

H), 7.68 (t, 2H, J = 8.5 Hz, Ph-H), 7.47 (m, 2H, Ph-H), 7.71 (t, 2H, J = 8.6 Hz, Ph-H), 

6.98 (m, 6H, Ph-H), 3.86 (t, 8H, J = 7.3 Hz, -O-CH2-C), 0.77 (t, 8H, J = 7.3 Hz, -O-C-

CH2-C), 0.19 (s, 36H, -C-CH3). CI MS m/z: 1239.53 [(M+H)
+
] (calcd 1240.44) 

 

4-(Trimethylsilyl)ethynylbenzo[c][1,2,5]thiadiazole (9). 4-

Bromobenzo[c][1,2,5]thiadiazole (0.378 g, 1.76×10-3
 mol), Pd(PPh3)4 (0.125 g, 

1.68×10-4
 mol), CuI (0.014 g, 7.4×10-5

 mol), THF (20 ml), diisopropylamine (1.00 ml) 

and (trimethylsilyl)acetylene (1.00 ml, 7.1×10-3
 mol) were added to a 50-ml Schlenk tube.  

N2 was bubbled through the mixture for 5 min, following which the reaction was stirred 

at 45 ºC for 20 h under N2.  After cooling, the solvent was evaporated and the residue was 

chromatographed on silica gel with 1:1 hexanes:CHCl3 as the eluant. Yield = 0.398 g 

(97.3 % based on 0.378 g of 4-bromobenzothiadiazole).  
1
H NMR (500 MHz, CDCl3):  

7.88 (m, 1H, Ph-H), 7.67 (m, 1H, Ph-H), 7.45 (m, 1H, Ph-H), 0.33 (s, 9H, -Si-CH3). 

 

4-Ethynylbenzo[c][1,2,5]thiadiazole (10). 4-

(Trimethylsilyl)ethynylbenzo[c][1,2,5]thiadiazole (0.100 g, 4.30×10-4
 mol), K2CO3 (78.6 
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mg, 5.71×10-4
 mol), THF (3ml), MeOH (2 ml) were added to a 25-ml Schlenk tube.  N2 

was bubbled through the mixture for 5 min, following which the reaction was stirred at 

room temperature for 1.5 h under N2. The reaction mixture was then filtered and the 

filtrate was evaporated. The residue was chromatographed on silica gel with 5:1 

hexanes:THF as the eluant.  Yield = 63 g (91.4% based on 0.100 g of 4-

(trimethylsilyl)ethynylbenzothiadiazole).  
1
H NMR (500 MHz, CDCl3):  8.01 (m, 1H, Ph-

H), 7.78 (m, 1H, Ph-H), 7.56 (m, 1H, Ph-H), 3.56 (s, 1H, -CC-H).  

 

 (5-Bromo-15-[benzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -10,20-bis[2’,6’-

bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (11). (5, 15-Dibromo-

10,20-bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.200g, 

1.84×10-4
 mol), 4-ethynylbenzo[c][1,2,5]thiadiazole (14.8 mg, 8.22×10-5

 mol) were 

charged into a Schlenk Flask with Pd(PPh3)4 (26.6 mg, 2.30×10-5
 mol) and CuI (8.8 mg, 

4.62×10-4 
mol). THF: piperidine (9:1 ml) solvent mixture was degassed with an Ar purge 

for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture, 

was stirred at 50 ºC overnight under Ar. After the solvent was evaporated, the residue 

was chromatographed on silica gel using 5:1 hexanes:THF as the eluant. Yield = 0.076 g 

(64.9 % based on the 4-ethynylbenzothiadiazole starting material). 
1
H NMR (500 MHz, 

CDCl3): 9.75 (d, 2H, β-H), 9.57 (d, 2H, J = 4.6 Hz, β-H), 8.88 (d, 2H, J = 4.5 Hz, β-H), 

8.81 (d, 2H, J = 4.7 Hz, β-H), 8.00 (m, 1H, Ph-H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 

1H, Ph-H), 7.29 (m, 1H, Ph-H), 6.98 (d, 4H, J = 8.6 Hz, Ph-H), 3.88 (t, 8H, J = 7.4 Hz, -

O-CH2-C), 0.87 (t, 8H, J = 7.3 Hz, -O-C-CH2-C), 0.24 (s, 36H, -C-CH3). 
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 (5-Triisopropylsilylethynyl-15-[benzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -

10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (12). (5-

Bromo-15-triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3,3-dimethyl-1-

butyloxy)phenyl]porphinato)zinc(II) (0.200g, 1.69×10-4
 mol), 4-

ethynylbenzo[c][1,2,5]thiadiazole (32.5 mg, 2.03×10-4
 mol) were charged into a Schlenk 

Flask with Pd(PPh3)4 (29.3 mg, 2.53×10-5
 mol) and CuI (9.6 mg, 5.06×10-5

 mol). THF: 

piperidine (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min prior to 

solvent transfer.  Once solvent was transferred, the reaction mixture was stirred at 50 ºC 

overnight under Ar. After the solvent was evaporated, the residue was chromatographed 

on silica gel using 5:1 hexanes:THF as the eluant. Yield = 164.4 mg (76.8 % based on the 

porphyrin starting material). 
1
H NMR (500 MHz, CDCl3):  9.87 (d, 2H, β-H), 9.61 (d, 2H, 

J = 4.5 Hz, β-H), 8.86 (d, 2H, J = 4.5 Hz, β-H), 8.80 (d, 2H, J = 4.5 Hz, β-H), 8.07 (m, 

1H, Ph-H), 7.67 (t, 2H, J = 8.5 Hz, Ph-H), 7.60 (m, 1H, Ph-H), 7.49 (m, 1H, Ph-H), 6.98 

(d, 4H, J = 8.5 Hz, Ph-H), 3.88 (t, 8H, J = 7.4 Hz, -O-CH2-C), 1.41 (m, 21H, -Si-

(CH(CH3)2)3), 0.88 (t, 8H, J = 7.3 Hz, -O-C-CH
2
-C), 0.27 (s, 36H, -C-CH

3
). 

 

 (5-Ethynyl-15-[benzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -10,20-bis[2’,6’-

bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (13). Compound 12 (160 

mg, 1.26×10
-4

 mol) were dissolved in THF under Ar.  TBAF (2.5 mL, 0.1 M TBAF in 

THF solution, 2.5×10
-4

 mol) was then added dropwise and the reaction mixture was 

allowed to stir for 5 min at room temperature.  TLC analysis (5:1 Hexanes: THF) showed 

complete formation of the product and consumption of the starting material. The reaction 

mixture was then quenched with 10ml water, extracted with CHCl3 and evaporated. The 
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residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluant. Yield = 

125.5 mg (89.5% based on compoud 12). 
1
H NMR (500 MHz, CDCl3):  9.86 (d, 2H, β-H), 

9.57 (d, 2H, J = 4.1 Hz, β-H), 8.85 (d, 2H, J = 4.8 Hz, β-H), 8.81 (d, 2H, J = 4.5 Hz, β-H), 

8.03 (m, 1H, Ph-H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 1H, Ph-H), 7.49 (m, 1H, Ph-

H), 6.98 (m, 4H, Ph-H), 4.07 (S, 1H, -CC-H), 3.88 (t, 8H, J = 7.4 Hz, -O-CH2-C), 0.87 (t, 

8H, J = 6.8 Hz, -O-C-CH2-C), 0.29 (s, 36H, -C-CH3).  

 

1,2-Bis[(15-(benzo[c][1,2,5]thiadiazole- ethyn-4’-yl)-10,20-bis[3’,5’-bis(3’’,3’’-

dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (BTD-EPZnE-PZnE-

BTD) (14): Compound 11 (50.0 mg, 4.30×10-5
 mol), Compound 13 (57.0 mg, 5.16×10-5

 

mol) were charged into a Schlenk Flask with Pd2dba3 (5.9 mg, 6.45×10-6 mol) and AsPh3 

(15.8 mg, 5.16×10-5
 mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar 

purge for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction 

mixture was stirred at 60 ºC overnight under Ar. The reaction mixture was then poured 

down a short silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A large 

band was collected and the solvent stripped and then the residue was taken up in THF and 

put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed 

gravimetrically.  The first band was collected and solvent removed via vacuum and the 

residue was purified by silica gel chromatography using CHCl3:MeOH (49:1 mL) as the 

eluent.  Yield = 45 mg (47.8% based on 50 mg of compound 11). 
1
H NMR (500 MHz, 

CDCl3):  10.19 (d, 4H, J = 4.4 Hz, β-H), 9.85 (d, 4H, J = 4.3 Hz, β-H), 8.88 (d, 4H, J = 

4.4 Hz, β-H), 8.84 (d, 4H, J = 4.5 Hz, β-H), 8.10 (d, 2H, J = 6.1 Hz, Ph-H), 8.37 (m, 2H, 

Ph-H), 7.66 (t, 4H, J = 8.6 Hz, Ph-H), 7.00 (d, 8H, J = 8.6 Hz, Ph-H), 3.89 (t, 16H, J = 
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7.5 Hz, -O-CH2-C), 0.82 (t, 16H, J = 6.6 Hz, -O-C-CH2-C), 0.32 (s, 72H, -C-CH3). 

MALDI-TOF MS m/z: 2182.14 (M+) (calcd 2186.88). 

 

 (5, 15-Bis[15’-benzo[c][1,2,5]thiadiazole-ethyn-4’-yl-(10’’’,20’’’-

bis[2’’’’,6’’’’-bis(3’’’’’,3’’’’’-dimethyl-1’’’’’-

butyloxy)phenyl]porphinato)zinc(II)ethyn-5’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II) (BTD-EPZnE-PZn-EPZnE-BTD) (15). 

Coumpound 13 (60 mg, 5.42×10-5
 mol), (5, 15-dibromo-10, 20-bis[2‟,6‟-bis(3,3-

dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (24.5 mg, 2.26×10-5
 mol) were charged 

into a Schlenk Flask with Pd2dba3 (6.2 mg, 6.78×10-6
 mol) and P(o-tol)3 (16.5 mg, 

5.42×10-5
 mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar purge for 

30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture was 

stirred at 60 ºC overnight under Ar. The reaction mixture was then poured down a short 

silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A large band was 

collected and the solvent stripped and then the residue was taken up in THF and put down 

a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically.  

The first band was collected and solvent removed via vacuum and the residue was 

purified by silica gel chromatography using CHCl3:MeOH (49:1 mL) as the eluent.  Yield 

= 48.4 mg (68.2% based on dibromo starting material).
 1

H NMR (500 MHz, CDCl3):  

10.16 (d, 4H, J = 4.4 Hz, β-H), 10.14 (d, 4H, J = 4.3 Hz, β-H), 9.81 (d, 4H, J = 4.4 Hz, β-

H), 8.87 (d, 4H, J = 4.4 Hz, β-H), 8.85 (d, 4H, J = 4.4 Hz, β-H), 8.81 (d, 4H, J = 4.4 Hz, 

β-H), 8.02 (d, 2H, J = 6.0 Hz, Ph-H), 7.90 (d, 2H, J = 8.7 Hz, Ph-H), 7.63 (m, 8H, Ph-H), 

6.96 (m, 12H, J = 4.6 Hz, Ph-H), 3.89 (m, 24H, -O-CH2-C), 0.81 (m, 24H, -O-C-CH2-C), 
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0.28 (s, 36H, -C-CH3), 0.26 (s, 72H, -C-CH3). MALDI-TOF MS m/z: 3136.80 (M+) 

(calcd 3133.32). 

 

(5,15-Bis[(15’-triisopropylsilylethynyl-10’,20’-bis[2’’’,6’’’-bis(3’’’’,3’’’’-

dimethyl-1’’’’butyloxy)phenyl]porphinato)zinc(II)ethyn-5’-yl]-10,20-bis[2’,6’-

bis(3’’,3’’-dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (16): (5-bromo-15-

triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3‟‟,3‟‟-dimethyl-

1‟‟butyloxy)phenyl]porphinato)zinc(II) (120 mg, 1.01×10
-4

 mol) and (5,15-diethynyl-

10,20-bis[2‟,6‟-bis(3‟‟,3‟‟dimethyl-1‟‟-butyloxy)phenyl]porphinato)zinc(II) (41.1 mg, 

4.21×10
-5

 mols) were charged into a Schlenk flask with AsPh3 (30.9 mg, 1.01×10
-4

 mols) 

and Pd2dba3 (11.6 mg, 1.26×10
-5

 mol). THF: TEA (9:1 mL) solvent mixture was 

degassed with an Ar purge for 30 min and then transferred to the reaction flask.  The 

reaction mixture was stirred at 60 ºC under Ar overnight. The reaction mixture was then 

poured down a short silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A 

large band was collected and the solvent stripped and then the residue was taken up in 

THF and put down a size exclusion column (BioRad Biobeads, SX-1) and 

chromatographed gravimetrically.  The first band was collected and solvent removed via 

vacuum and the residue was purified by silica gel chromatography using CHCl3: MeOH 

(49:1 mL) as the eluent.  Yield = 114 mg (85% based on diethynyl starting material). 
1
H 

NMR (500 MHz, CDCl3): 10.35 (d, 8H, β-H), 9.64 (d, 4H, β-H), 9.01 (d, 8H, β-H), 8.86 

(d, 4H, β-H), 7.72 (d, 6H, β-H), 7.05 (d, 12H, J = 4.6 Hz, Ph-H), 3.98 (m, 24H, -O-CH2-

C), 1.40 (m, 42, -SiCH(CH3)2), 0.89 (m, 24H, -O-C-CH2-C), 0.40 (s, 36H, -C-CH3), 0.37 

(s, 72H, -C-CH3).  
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 (5,15-Bis[(15’-ethynyl-10’,20’-bis[2’’’,6’’’-bis(3’’’’,3’’’’-dimethyl-

1’’’’butyloxy)phenyl]porphinato)zinc(II)ethyn-5’-yl]-10,20-bis[2’,6’-bis(3’’,3’’-

dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (17): Compound 16 (114 mg, 

3.58×10
-5

 mol) were dissolved in THF and cooled down to 0 ºC under Ar.  TBAF (0.716 

mL, 0.1 M TBAF in THF solution, 7.16×10
-5

 mol) was then added dropwise and the 

reaction mixture was allowed to stir for 15 min at 0 ºC.  The reaction mixture was then 

directly poured down a short silica gel column using CHCl3 as the eluent.  Yield = 101.2 

mg (98.4% based on compound 16). 
1
H NMR (500 MHz, CDCl3): 10.35 (d, 8H, β-H), 

9.64 (d, 4H, β-H), 9.01 (d, 8H, β-H), 8.86 (d, 4H, β-H), 7.72 (d, 6H, β-H), 7.05 (d, 12H, J 

= 4.6 Hz, Ph-H), 4.11 (s, 2H), 3.98 (m, 24H, -O-CH2-C), 0.89 (m, 24H, -O-C-CH2-C), 

0.40 (s, 36H, -C-CH3), 0.37 (s, 72H, -C-CH3).  

 

 [5,15-Bis(15’’’-[(15’’’’’’- benzo[c][1,2,5]thiadiazole-ethyn-4’’’’’’’-yl -

10’’’’’’,20’’’’’’-bis[2’’’’’’’,6’’’’’’’-bis(3’’’’’’’’,3’’’’’’’’dimethyl-1’’’’’’’’-

butyloxy)phenyl]porphinato)zinc(II)-ethyn-5’’’’’’-yl]-10’’’,20’’’bis[2’’’’,6’’’’-

bis(3’’’’’,3’’’’’-dimethyl-1’’’’’-butyloxy)phenyl]porphinato)zinc(II)-ethyn-5’’’-yl)-

10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’-butyloxy)phenyl)phenyl]porphinato]zinc(II) 

(BTD-EPZnE-PZn-EPZnE-PZn-EPZnE-BTD) (18): Coumpound 11 (50 mg, 4.13×10-

5
 mol), compound 17 (47.4 mg, 1.65×10-5

 mol) were charged into a Schlenk Flask with 

Pd2dba3 (5.7 mg, 4.95×10-6
 mol) and P(o-tol)3 (12.1 mg, 3.96×10-5

 mol), CuI (0.31mg, 1. 

65×10
-6

 mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar purge for 30 

min prior to solvent transfer.  Once solvent was transferred, the reaction mixture was 
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stirred at 60 ºC overnight under Ar. The reaction mixture was then poured down a short 

silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A large band was 

collected and the solvent stripped and then the residue was taken up in THF and put down 

a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically.  

The first band was collected and solvent removed via vacuum and the residue was 

purified by silica gel chromatography using CHCl3:MeOH (49:1 mL) as the eluent.  Yield 

= 55 mg (68.2% based on compound 17). 
1
H NMR (500 MHz, CDCl3): 10.39 (m, 8H, β-

H), 10.35 (m, 8H, β-H), 9.84 (d, 4H, β-H), 9.04 (m, 16H, β-H), 8.88 (d, 4H, β-H), 7.77 (d, 

2H, Ph-H), 7.74 (m, 12H, Ph-H), 7.55 (d, 2H, Ph-H), 7.07 (m, 20H, Ph-H), 4.03 (m, 40H, 

-O-CH2-C), 0.89 (m, 40H, -O-C-CH2-C), 0.38 (m, 180H, -C-CH3). MALDI-TOF MS m/z: 

5016.80 (M+) (calcd 5026.19). 

 

 (5- Triisopropylsilylethynyl-15-[10’,20’-bis[2’’’,6’’’-bis(3’’’’,3’’’’-dimethyl-

1’’’’butyloxy)phenyl]porphinato)zinc(II)-ethyn-5’-yl] -10,20-bis[2’,6’-bis(3’’,3’’-

dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (19). (5-Bromo-15-

triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3,3-dimethyl-1-

butyloxy)phenyl]porphinato)zinc(II) (74.8 mg, 6.31×10-5
 mol), (5-ethynyl-10,20-

bis[2‟,6‟-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (50 mg, 5.26×10-5
 mol) 

were charged into a Schlenk Flask with Pd2dba3 (7.2 mg, 7.89×10-6
 mol) and AsPh3 (19.2 

mg, 6.31×10-5
 mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar purge 

for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture 

was stirred at 60 ºC overnight under Ar. Once solvent was transferred, the reaction 

mixture was stirred at 60 ºC overnight under Ar. The reaction mixture was then poured 
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down a short silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A large 

band was collected and the solvent stripped and then the residue was taken up in THF and 

put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed 

gravimetrically.  The first band was collected and solvent removed via vacuum and the 

residue was purified by silica gel chromatography using CHCl3:MeOH (49:1 mL) as the 

eluent.  Yield = 82 mg (75.8 % based on the 50 mg of 5-Bromo-15-

triisopropylsilylethynyl porphyrin starting material). 
1
H NMR (500 MHz, CDCl3): 10.43 

(d, 2H, J = 4.6 Hz, β-H), 10.42 (d, 2H, J = 4.4 Hz, β-H), 10.03 (s, 1H, meso-H), 9.65 (d, 

2H, J = 4.5 Hz, β-H), 9.23 (d, 2H, J = 4.4 Hz, β-H), 9.10 (d, 2H, J = 4.6 Hz, β-H), 8.99 (d, 

2H, J = 4.4 Hz, β-H), 8.95 (d, 2H, J = 4.4 Hz, β-H), 8.86 (d, 2H, J = 4.4 Hz, β-H), 7.73 

(m, 4H, Ph-H), 7.05 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH2-C), 1.43 (m, 21, -

SiCH(CH3)2), 0.89 (m, 16H, -O-C-CH2-C), 0.45 (s, 36H, -C-CH3), 0.42 (s, 36H, -C-CH3).  

 

 (5-Ethynyl-15-[10’,20’-bis[2’’’,6’’’-bis(3’’’’,3’’’’-dimethyl-

1’’’’butyloxy)phenyl]porphinato)zinc(II)-ethyn-5’-yl] -10,20-bis[2’,6’-bis(3’’,3’’-

dimethyl-1’’butyloxy)phenyl]porphinato)zinc(II) (20). Compound 19 (80 mg, 

3.89×10
-5

 mol) were dissolved in THF and cooled down to 0 ºC under Ar.  TBAF (0.778 

mL, 0.1 M TBAF in THF solution, 7.78×10
-5

 mol) was then added dropwise and the 

reaction mixture was allowed to stir for 15 min at 0 ºC.  The reaction mixture was then 

directly poured down a short silica gel column using CHCl3 as the eluent.  Yield = 65 mg 

(87.9% based on compound 16). 
1
H NMR (500 MHz, CDCl3): 10.43 (d, 2H, J = 4.6 Hz, 

β-H), 10.42 (d, 2H, J = 4.4 Hz, β-H), 10.03 (s, 1H, meso-H), 9.65 (d, 2H, J = 4.5 Hz, β-

H), 9.23 (d, 2H, J = 4.4 Hz, β-H), 9.10 (d, 2H, J = 4.6 Hz, β-H), 8.99 (d, 2H, J = 4.4 Hz, 
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β-H), 8.95 (d, 2H, J = 4.4 Hz, β-H), 8.86 (d, 2H, J = 4.4 Hz, β-H), 7.73 (m, 4H, Ph-H), 

7.05 (m, 8H, Ph-H), 4.10 (s, 2H), 3.98 (m, 16H, -O-CH2-C), 0.89 (m, 16H, -O-C-CH2-C), 

0.45 (s, 36H, -C-CH3), 0.42 (s, 36H, -C-CH3). 

 

4,7-Diiodobenzo[c][1,2,5]thiadiazole (21). Benzo[c][1,2,5]thiadiazole (3.20 g, 

2.35×10-2
 mol), I2 (13.2 g, 5.20×10-2 

mol), Ag2SO4 (7.34 g, 2.35×10-2
 mol) were added 

to a 100-ml three neck round bottom flask.  35ml concentrated H2SO4 was added to the 

mixture and the reaction mixture was stirred at 110 ºC for 14 hours under N2. After 

cooling, the reaction mixture was poured into ice water and the precipitate was collected 

by filtration. This precipitate was washed with CHCl3. The organic solution was then 

washed with saturated NaHSO3 aqueous solution and brine respectively for three times, 

and dried over Na2SO4. The product was then chromatographed on silica gel with 1:1 

hexanes:CHCl3 as the eluant.  Yield = 3.95 g (43.3 % based on 3.20 g of 

benzothiadiazole). 
1
H NMR (500 MHz, CDCl3): 7.75 (s, 12H, Ph-H).  

 

4,7-Bis[(15-(10’,20’-bis[2’’,6’’-bis(3’’’,3’’’-dimethyl-1’’’-

butyloxy)phenyl]porphinato)zinc(II) ethyn-5’-yl)-10,20-bis[2’,6’-bis(3’’,3’’-

dimethyl-1’’-butyloxy)phenyl]porphinato)zinc(II)-5-

ylethynyl]benzo[c][1,2,5]thiadiazole (PZn-EPZnE-BTD-EPZnE-PZn) (22). 

Compound 20 (50.0 mg, 2.63×10-5
 mol), Compound 21 (4.27 mg, 1.10×10-6

 mol) were 

charged into a Schlenk Flask with Pd2dba3 (3.03 mg, 3.31×10-7
 mol) and AsPh3 (8.05 g, 

2.63×10-5
 mol). THF: iPr2NH (9:1 ml) solvent mixture was degassed with an Ar purge 

for 30 min prior to solvent transfer.  Once solvent was transferred, the reaction mixture 



50 

 

was stirred at 60 ºC overnight under Ar. The reaction mixture was then poured down a 

short silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A large band was 

collected and the solvent stripped and then the residue was taken up in THF and put down 

a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically.  

The first band was collected and solvent removed via vacuum and the residue was 

purified by silica gel chromatography using CHCl3:MeOH (49:1 mL) as the eluent. Yield 

= 35 mg (80.6 % based on 4.27 mg of compound 21). 
1
H NMR (500 MHz, THF-d8): 

10.33 (d, 4H, J = 7.3 Hz, β-H), 10.28 (d, 4H, J = 7.0 Hz, β-H), 10.07 (d, 4H, J = 8.3 Hz, 

β-H), 9.90(s, 2H, meso-H), 9.13 (d, 4H, J = 7.0 Hz, β-H), 9.06 (d, 4H, J = 7.4 Hz, β-H), 

8.94 (m, 8H, β-H), 8.88 (d, 4H, J = 4.2 Hz, β-H), 8.40 (s, 2H, Ph-H), 7.79 (m, 8H, Ph-H), 

7.17 (m, 16H, Ph-H), 4.01 (m, 32H, -O-CH2-C), 0.87 (m, 32H, -O-C-CH2-C), 0.41 (d, 

72H, J = 5.2 Hz, -C-CH3), 0.36 (d, 72H, J = 5.1 Hz, -C-CH3). MALDI-TOF MS m/z: 

3942.10 (M+) (calcd 3937.79). 

 

1,2-Bis[(15-triisoprpylsilylethynyl-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (23): (5-Bromo-15-

triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3‟‟,3‟‟-dimethyl-

1‟‟butyloxy)phenyl]porphinato)zinc(II) (150 mg, 1.26 x 10
-4

 mol) and (5-ethynyl-15-

triisopropylsilylethynyl-10,20-bis[2‟,6‟-bis(3‟‟,3‟‟-dimethyl-

1‟‟butyloxy)phenyl]porphinato)zinc(II) (106 mg, 9.40×10
-5

 mol) were charged into a 

Schlenk flask with AsPh3 (46.3 mg, 1.51×10
-4

 mol) and Pd2dba3 (17 mg, 1.89×10
-5

 mol). 

THF: TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min and then 

transferred to the reaction flask.  The reaction mixture was stirred at 60 ºC under Ar 
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overnight. The reaction mixture was then poured down a short silica gel column using 

CHCl3: MeOH (49:1 mL) as the eluent.  A large band was collected and the solvent 

stripped and then the residue was taken up in THF and put down a size exclusion column 

(BioRad Biobeads, SX-1) and chromatographed gravimetrically.  The first band was 

collected and solvent removed via vacuum and the residue was purified by silica gel 

chromatography using CHCl3: MeOH (49:1 mL) as the eluent.  Yield = 164mg (78.1% 

based on 106 mg 5-ethynyl-15-triisopropylsilylethynyl porphyrin starting material). 
1
H 

NMR (500 MHz, CDCl3): 10.36 (d, 4H, β-H), 9.67 (d, 4H, β-H), 9.00 (d, 4H, β-H), 8.88 

(d, 4H, β-H), 7.75 (m, 4H, Ph-H), 7.06 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH2-C), 1.46 (m, 

21H, -SiCH(CH3)2), 0.91 (m, 16H, -O-C-CH2-C), 0.38 (d, 72H, -C-CH3).  

 

1,2-Bis[(15-ethynyl-10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (24): Compound 23 (150 mg, 

6.71×10
-5

 mol) was charged in a Schlenk Fask and dissolved in THF and cooled to 0 ºC 

while under Ar.  Tetrabutylammonium fluoride (TBAF) (1.34 mL, 0.1 M TBAF solution 

in THF, 1.34×10
-4

 mol) was added dropwise to the reaction mixture and allowed to stir 

for 15 min at 0 ºC under Ar.  At 15 min the reaction mixture was poured down a pre-

packed CHCl3 silica gel plug and the first band was collected and solvent removed via 

vacuum.  Yield = 115 mg (89.1% based on compound 23). 
1
H NMR (500 MHz, CDCl3): 

10.32 (d, 4H, β-H), 9.58 (d, 4H, β-H), 8.96 (d, 4H, β-H), 8.84 (d, 4H, β-H), 7.73 (m, 4H, 

Ph-H), 7.06 (m, 8H, Ph-H), 4.10 (s, 2H), 3.96 (m, 16H, -O-CH2-C), 0.91 (m, 16H, -O-C-

CH2-C), 0.40 (d, 72H, -C-CH3). 
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(5-(10’,20’-Bis[2’’,6’’-bis(3’’’,3’’’-dimethyl-

1’’’butyloxy)phenyl]porphinato)zinc(II)-ethyn-5’-yl)-15-[7’-

bromobenzo[c][1,2,5]thiadiazole- ethyn-4’-yl] -10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-

1’’butyloxy)phenyl]porphinato)zinc(II) (25). Compound 20 (0.200g, 1.05×10-4
 mol), 4, 

7-dibromobenzo[c][1,2,5]thiadiazole (123.8 mg, 4.21×10-4
 mol) were charged into a 

Schlenk Flask with Pd2dba3 (14.4 mg, 1.57×10-5
 mol) and AsPh3 (38.6 mg, 1.26×10-4

 

mol). THF: TEA (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min 

prior to solvent transfer.  Once solvent was transferred, the reaction mixture, was stirred 

at 50 ºC overnight under Ar. After the solvent was evaporated, the residue was then 

poured down a short silica gel column using CHCl3: MeOH (49:1 mL) as the eluent.  A 

large band was collected and the solvent stripped and then the residue was taken up in 

THF and put down a size exclusion column (BioRad Biobeads, SX-1) and 

chromatographed gravimetrically.  The second band was collected and solvent removed 

via vacuum and the residue was purified by silica gel chromatography using CHCl3: 

MeOH (49:1 mL) as the eluent. Yield = 108 mg (48.7 % based on 0.200 mg of the 

porphyrin starting material). 
1
H NMR (500 MHz, CDCl3): 10.43 (d, 2H, J = 4.6 Hz, β-H), 

10.42 (d, 2H, J = 4.4 Hz, β-H), 10.03 (s, 1H, meso-H), 9.65 (d, 2H, J = 4.5 Hz, β-H), 9.23 

(d, 2H, J = 4.4 Hz, β-H), 9.10 (d, 2H, J = 4.6 Hz, β-H), 8.99 (d, 2H, J = 4.4 Hz, β-H), 

8.95 (d, 2H, J = 4.4 Hz, β-H), 8.86 (d, 2H, J = 4.4 Hz, β-H), 8.10 (d, 1H, J = 6.1 Hz, Ph-

H), 7.73 (m, 5H, Ph-H), 7.05 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH2-C), 1.43 (m, 21, -

SiCH(CH3)2), 0.89 (m, 16H, -O-C-CH2-C), 0.45 (s, 36H, -C-CH3), 0.42 (s, 36H, -C-CH3).  
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1,2-Bis(4-[10,20-bis[2’,6’-bis(3’’,3’’-dimethyl-1’’-

butyloxy)phenyl]porphinato)zinc(II)-5-ylethynyl],7-[(15-(10’,20’-bis[2’’,6’’-

bis(3’’’,3’’’-dimethyl-1’’’-butyloxy)phenyl]porphinato)zinc(II)ethyn-5’-yl)-10,20-

bis[2’,6’-bis(3’’,3’’-dimethyl-1’’-butyloxy)phenyl]porphinato)zinc(II)-5-

ylethynyl]benzo[c][1,2,5]thiadiazole (PZn-EPZnE-BTD-EPZn-E-PZnE-BTD-

EPZnE-PZn) (26). Compound 25 (181.4 mg, 8.59×10-5
 mol), compound 24 (68.9 mg, 

3.58×10-5
 mol) were charged into a Schlenk Flask with Pd2dba3 (9.83 mg, 1.07×10-5

 mol) 

and P(o-tol)3 (26.1 mg, 8.59×10-5
 mol). THF: TEA (9:1 ml) solvent mixture was 

degassed with an Ar purge for 30 min prior to solvent transfer.  Once solvent was 

transferred, the reaction mixture was stirred at 60 ºC overnight under Ar. The reaction 

mixture was then poured down a short silica gel column using CHCl3: MeOH (49:1 mL) 

as the eluent.  A large band was collected and the solvent stripped and then the residue 

was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) 

and chromatographed gravimetrically.  The first band was collected and solvent removed 

via vacuum and the residue was purified by silica gel chromatography using CHCl3: 

MeOH (49:1 mL) as the eluent.  Yield = 68.9 mg (32% based on diethynyl starting 

material). 
1
H NMR (500 MHz, CDCl3): 10.02 (d, 4H, J = 4.4 Hz, β-H), 9.94 (d, 4H, J = 

4.5 Hz, β-H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β-H), 8.96 (d, 4H, J = 4.3 Hz, 

β-H), 8.86 (d, 4H, J = 4.5 Hz, β-H), 8.81(d, 4H, J = 4.2 Hz, β-H), 8.26 (s, 4H, Ph-H), 

7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, 

Ph-H), 3.89 (m, 24H, -O-CH2-C), 0.87 (m, 24H, -O-C-CH2-C), 0.34 (s, 36H, -C-CH3), 

0.30 (s, 72H, -C-CH3). MALDI-TOF MS m/z: 6017.79 (M+) (calcd 6006.49). 
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Figure 2.2 
1
H NMR (500 MHz) of PZnE-BTD-EPZn in CDCl3. The designations s and x 

denote solvent and impurity peaks, respectively. 
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Figure 2.3 
1
H NMR (500 MHz) of PZnE-BTD-EPZnE-BTD-EPZn in CDCl3 with 1 drop 

of pyridine-d5. The designations s and x denote solvent and impurity peaks, respectively. 
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Figure 2.4 
1
H NMR (500 MHz) of PZnE-BTD-EPZnE-BTD-EPZnE- BTD-EPZnE-

BTD-EPZn in CDCl3 with 1 drop of pyridine-d5. The designations s and x denote solvent 

and impurity peaks, respectively. 
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Figure 2.5 
1
H NMR (500 MHz) of BTD-EPZnE-BTD in CDCl3. The designations s and 

x denote solvent and impurity peaks, respectively. 



58 

 

 

Figure 2.6 
1
H NMR (500 MHz) of BTD-EPZnE-PZnE-BTD in CDCl3 with 1 drop of 

pyridine-d5. The designations s and x denote solvent and impurity peaks, respectively. 
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Figure 2.7 
1
H NMR (500 MHz) of BTD-EPZn-EPZnE-PZnE-BTD in CDCl3 with 1 

drop of pyridine-d5. The designations s and x denote solvent and impurity peaks, 

respectively. 
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Figure 2.8 
1
H NMR (500 MHz) of BTD-EPZnE-PZn-EPZnE-PZn-EPZnE-BTD in 

CDCl3 with 1 drop of pyridine-d5. The designations s and x denote solvent and impurity 

peaks, respectively. 
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Figure 2.9 
1
H NMR (500 MHz) of PZnE-EPZnE-BTD-EPZnE-PZn in CDCl3 with 1 

drop of pyridine-d5. The designations s and x denote solvent and impurity peaks, 

respectively. 
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Figure 2.10 
1
H NMR (500 MHz) of PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn 

in CDCl3 with 1 drop of pyridine-d5. The designations s and x denote solvent and 

impurity peaks, respectively. 
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2.3.4. Fluorescence Quantum Yield Determination 

The fluorescence quantum yields ϕf of these species were determined by the 

reference method,
40

 using the relation:  

  
  

    
 ∫  

     ∫  
  
  

where ∫   and ∫   are the respective, total integrated fluorescence intensities of the 

unknown and emission standard, AX and AS are the corresponding wavelength-specific 

absorbances of the unknown and standard, respectively, and   
  is the 

acceptedfluorescence quantum yield value for the standard chromophore. The quantity 

(nx/ns)
2represents the solvent refractive index correction. The concentrations of all 

samples were adjusted such that their absorbance was between 0.005 and 0.05 at the 

excitation wavelength to minimize complications due to reabsorption effects. 

Fluorescence spectra obtained for the (porphinato)metal complexes, as well as the 

chromophores used as emission standards, were corrected to account for the wavelength-

dependent efficiency of the detection system which was determined using the spectral 

output of a calibrated light source. All samples were degassed via purging with a stream 

of argon gas for ten minutes. Secondary corrections to the emission spectra used to 

determine ϕf (such as energy-dependent intensity corrections necessitated by the variable 

band pass/constant wavelength resolution data acquisition mode of the grating 

monochromator) were performed as outlined by Fery-Forgues. Quantum yields were 

determined using freebase tetraphenylporphyrin (ϕf = 0.13 in benzene5) as a standard 

benchmark. The standard error in quantum yields determined by this method is typically 

taken as ± 10% of the reported value. The ϕf entries correspond to the average of values 
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obtained from at least six independent measurements; corresponding standard deviations 

from the mean are also listed. 

2.4. Results and Discussion 

2.4.1. Synthesis 

Structures of the BTD conjugated porphyrin supermolecules are shown in Figure 

2.1.  These BTD conjugated porphyrin species were synthesized by palladium (Pd)-

mediated cross-coupling reactions involving appropriately substituted (porphinato)zinc(II) 

(PZn) compounds and BTD units.  The PZn-containing structures exploit 2‟,6‟-bis(3,3-

dimethyl-1-butyloxy)phenyl groups as 10- and 20-meso-porphyrin substituents, which 

facilitate excellent solubility and straightforward assignment of 1H-NMR spectra.
22, 39

  

4,7-Diethynylbenzo[c][1,2,5]thiadiazole (E-BTD-E) were used as proquinodal spacer 

units. 

The nature of the functionalized PZn and BTD moieties used in the synthesis of 

the corresponding BTD conjugated porphyrin complexes varied with porphyrin 

conjugation degree.  In our first attempt, PZn-(BTD-PZn)n structure featuring a E-BTD-

E spacer unit in-between porphyrin monomers was synthesized (Scheme 2.1). The 

synthesis of BTD spaced porphyrin dimer PZnE-BTD-EPZn was via a Pd-mediated 

coupling reaction between PZnE and Br-BTD-Br. The synthesis of BTD spaced 

porphyrin trimer PZnE-BTD-EPZnE-BTD-EPZn can be done using two different 

routes: coupling of PZnE-BTDE and Br-PZn-Br or coupling of PZnE-BTD-Br and 

EPZnE. The first method has a lower yield than the second method due to the low 

stability of the PZnE-BTDE compound. For the synthsis of the BTD spaced porphyrin 

pentamer PZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZn, there are many 
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possible routes such as coupling two equivalent of BTD-porphyrin dimer to one 

equivalent of BTD-porphyrin monomer, or coupling two equivalent of BTD-porphyrin 

monomer to one equivalent of BTD-porphyrin trimer. The experimental results indicated 

that the optimized route was to conjugate small porphyrin oliogomers to large porphyrin 

oligomers. Considering the stability of the starting materials, the coupling reaction was 

performed between Br-BTD-EPZn monomer and EPZnE-PZn-EPZnE trimer with a 32% 

yield of PZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZn, while the yield 

from other synthetic routes was significantly lower (8-10%). 
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Scheme 2.1 Synthesis of PZn-(BTD-PZn)n  compounds. 
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Next, we synthesized BTD-(PZn)n-BTD compounds featuring the BTD spacer 

unit at the two ends of conjugated porphyrin oligomers (Scheme 2.2). The synthesis of 

BTD-EPZnE-BTD monomer was by coupling Br-BTD to EPZnE, considering that E-

BTD has a very poor stability. The synthesis of BTD-EPZnE-PZnE-BTD dimer was by 

BTD-EPZnE conjugation with Br-PZnE-BTD. Moreover, the synthesis of BTD-EPZnE-

PZn-EPZnE-BTD trimer was by coupling BTD-EPZnE to Br-PZn-Br which has a better 

reaction yield compare to a similar coupling reaction of BTD-EPZn-Br and EPZnE. For 

synthesis of BTD-EPZnE-PZn-EPZnE-PZn-EPZnE-BTD pentamer, as suggested by 

our previous results that conjugating small porphyrin monomers to large porphyrin 

oligomers offers a better reaction yield, the optimized route was to conjugate BTD-EPZn-

Br with EPZnE-PZn-EPZnE. 
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Scheme 2.2 Synthesis of BTD-(PZn)n-BTD compounds. 
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Finally, (PZn)2-(BTD-(PZn)2)n with BTD spacer in-between diporphyrin 

oligomers were synthesized (Scheme 2.3). Different from our previous synthetic strategy 

of coupling small porphyrin monomers to large porphyrin oligomers, the synthesis of 

PZn-EPZnE-BTD-EPZnE-PZn internal tetramer was by adding two equivalents of 

large porphyrin dimer oligomers to a small BTD monomer. The reason for using this 

synthetic route rather than conjugating two equivalent of EPZn monomer to one 

equivalent of Br-PZnE-BTD-EPZn-Br dimer was due to the difficulty of synthesize Br-

PZnE-BTD-EPZn-Br dimer which involved very difficult separation steps and low 

reaction yields. Therefore, Br-BTD-Br monomer was used to react with the PZn-EPZnE 

to produce the desired PZn-EPZnE-BTD-EPZnE-PZn internal tetramer. Similarly, for 

synthesis of PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn internal hexamer, 

PZn-EPZnE-BTD-Br was coupled to EPZnE-PZnE. This reaction scheme was found to 

involve the least reaction steps and the highest reaction yield out of all possible synthetic 

routes. 

 



70 

 

 
 

 

Scheme 2.3 Synthesis of (PZn)2-(BTD-(PZn)2)n compounds. 

 

 

 

  

 

 

 

 

 

 



71 

 

2.4.2. Electronic Absorption and Emission Spectra 

Figure 2.11 displays the representative electronic absorption and emission spectra 

of the BTD conjugated porphyrin compounds PZn-(BTD-PZn)n, (PZn)2-(BTD-(PZn)2)n 

and BTD-(PZn)n-BTD. These BTD spaced (porphinato)zinc(II) oligomers have 

electronic spectra that are not components of their respective monomer building blocks, 

due to the large ground state electronic coupling through the cylindrically π-symmetric 

BTD moiety.  

There are several noteworthy characteristics and trends of the Soret region (B-

band 300-500 nm) of the electronic spectra: (i) The Soret region shifts to the red with 

extension of π-conjugation along the x-axis (x being the long molecular axis); (ii) The B-

band shows exciton splitting due to the x and y polarizations of the neighboring 

molecules. The Bx transition has a significant disparity in oscillator strength than the By 

band due to the polarization along the molecular axis. For PZn-(BTD-PZn)n oligomers, 

the By-state (high energy portion of the B-band) is dominant. For BTD-(PZn)n-BTD 

oligomers, the By band is diminished and there is an enhanced Bx (low energy portion of 

the B-band) state.  Finally, for (PZn)2-(BTD-(PZn)2)n oligmers, the Bx and By band is 

further separated and have much less structure than the other two series of oligomers. 

The Q-band region (500 - 900 nm) represents the π-π derived transition of the 

macrocycle and also has several notable characteristics: (i) the Q-band maximum shifts to 

the red with increasing conjugation length. However, there is not much increasing in the 

Q-band oscillator strength. This may be due to the broadening of both the B- and Q-band 

manifold, due to variations in inter porphyfin dihedral angles or due to aggregation; (ii) 

The lowest energy manifold represents the Qx-polarization along the molecular axis. The 
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Qy-polarization remains unchanged with increasing conjugation and resides underneath 

the blue edge of the Q-band manifold; (iii) the broad blue edge of the Q-band is due to 

the large number of rotational conformers that can be accessible at room temperature, 

which causes a broadening of the Q-band. 

The S1→ S0 emission spectra for the series of PZn-(BTD-PZn)n, (PZn)2-(BTD-

(PZn)2)n and  BTD-(PZn)n-BTD compounds are also shown in Figure 2.11. Reflecting 

the extended conjugation in PZnn, the emission spectra red-shift to the NIR region with 

increasing numbers of conjugated monomeric units. Upon increasing the number of 

porphyrins repeat units, a noticeable saturation of the red-shifting begins to develop. The 

detailed emission data are listed in Table 2.3. The decreasing of FWHM and stokes shift 

with increasing conjugation length for PZn-(BTD-PZn)n compounds implying a 

correlation between the electron-vibrational coupling and chain length. Increasing the 

conjugation length limits the vibrational activity, therefore decreases the nonradioactive 

decay process and cause a slow relaxation of the porphyrin oligomer to the lowest 

vibration S1 state. However, for BTD-(PZn)n-BTD compounds, the trend is opposite that 

the FWHM and stokes‟ shift increases with increasing conjugation length. One possible 

explanation for this trend is that these BTD-(PZn)n-BTD compounds are more coplanar 

and offered good effective conjugation in the π-linked porphyrin compounds, thus tend to 

aggregate more than the PZn-(BTD-PZn)n. This aggregation will causes the energy of 

the excited state decreasing and results a long-wavelength shift in fluorescence spectrum, 

as well as increasing stokes‟ shift with increased conjugation length. For (PZn)2-(BTD-

(PZn)2)n compounds, they have similar structures to PZn-(BTD-PZn)n compounds, but 

with more porphyrin π-conjugation. Therefore, the conjugation length effect and the 
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aggregation effect balances to give a slight increasing of FWHW while a slight 

decreasing of stokes‟ shift. More solvent and time resolved studies will be performed for 

better understanding of the excited state differences between these compounds. 
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Figure 2.11 Electronic absorption and emission spectra of: PZnE-BTD-EPZn (DA); 

PZnE-BTD-EPZnE-BTD-EPZn (TA); PZnE-BTD-EPZnE-BTD-EPZn-EPZnE-BTD-

EPZn (PA); BTD-EPZnE-BTD (MB); BTD-EPZnE-PZnE-BTD (DB); BTD-EPZnE-

PZn-EPZnE-BTD (TB); BTD-EPZnE-PZn-EPZnE- PZn-EPZnE-BTD (PB); PZn-

EPZnE-BTD-EPZnE-PZn (ITA); PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn 

(IHA). 
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Table 2.1 Comparative integrated oscillator strengths and absorptive domains of the blue 

and red spectral regions of the BTD conjugated porphyrin compounds.
a 

 

Compound FWHMb 

B-band region  

[cm–1, (nm)] 

Oscillator 

Strength 

B-band 

regiond 

FWHMe 

Q-band region 

[cm–1, (nm)] 

Oscillator 

Strength 

Q-band 

regionf 

Total 

Oscillator 

Strength 

        

PZnE-BTD-EPZn 2323 (426)c 2.11 1180 (689) 0.72 

 

3.52 

PZnE-BTD-EPZnE-

BTD-EPZn 

2777 (428)c 2.90 1059 (752) 0.75 3.65 

PZnE-BTD-EPZnE-

BTD-EPZnE-BTD-

EPZnE-BTD-EPZn 

4235 (429)c 3.21 1227 (780) 0.97 

 

4.18 

BTD-EPZnE-BTD 1850 (469)c 2.00 654 (674) 0.35 

 

2.34 

BTD-EPZnE-PZnE-

BTD 

2704 

1069 

(468) 

(495)c 

3.60 1222 (765) 0.89 

 

4.49 

BTD-EPZnE-PZn-

EPZnE-BTD 

4538 (492)c 2.99 1597 (811) 0.84 3.83 

BTD-EPZnE-PZn-

EPZnE-PZn-EPZNE-

BTD 

3700 (498)c 3.33 1689 (844) 1.05 4.38 

PZn-EPZnE-BTD-

EPZnE-PZn 

3920 

1083 

(415) 

(488)c 

7.64 1904 (778) 1.62 9.26 

PZn-EPZnE-BTD-

EPZnE-PZnE-BTD-

EPZnE-PZn 

3887 

1566 

(416) 

(489)c 

6.21 1654 (816) 1.65 7.87 

 

 

       

a
 From electronic absorption spectra recorded in THF solvent. 

b
 Taken as twice value of half the spectral width of the B-band region at half the height of the 

absorption noted. 
c
 Entries correspond to the spectral breadth of the transition envelope centered at the wavelength 

in parentheses. 
d
 Oscillator strengths calculated over the following wavelength domains: PZnE-BTD-EPZn (380 

~ 600 nm); PZnE-BTD-EPZnE-BTD-EPZn (380 ~ 600 nm); PZnE-BTD-EPZnE-BTD-EPZn-

EPZnE-BTD-EPZn (380 ~ 600 nm); BTD-EPZnE-BTD (360 ~560 nm); BTD-EPZnE-PZnE-

BTD (360 ~ 560 nm); BTD-EPZnE-PZn-EPZnE-BTD (360 ~ 560 nm); BTD-EPZnE-PZn-

EPZnE- PZn-EPZnE-BTD (360 ~ 560 nm); PZn-EPZnE-BTD-EPZnE-PZn (360 ~ 610 nm); 

PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn (360 ~ 610 nm). 
e
 Entries correspond to the spectral breadth of the transition envelope centered at the wavelength 

in parentheses. 
f
 Oscillator strengths calculated over the following wavelength domains: PZnE-BTD-EPZn (600 

~ 760 nm); PZnE-BTD-EPZnE-BTD-EPZn (600 ~820 nm); PZnE-BTD-EPZnE-BTD-EPZn-

EPZnE-BTD-EPZn (600 ~ 900 nm); BTD-EPZnE-BTD (560 ~720 nm); BTD-EPZnE-PZnE-

BTD (560 ~ 850 nm); BTD-EPZnE-PZn-EPZnE-BTD (560 ~ 910 nm); BTD-EPZnE-PZn-

EPZnE- PZn-EPZnE-BTD (560 ~ 1050 nm); PZn-EPZnE-BTD-EPZnE-PZn (610 ~ 860 nm); 

PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn (610 ~ 920 nm). 
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Table 2.2 Prominent absorption band wavelength, energies, and extinction coefficients of 

BTD conjugated porphyrin compounds in THF solvent. 

                                          

                            UV-region                       B-band region                   Q-band region 

          

 nm) (cm–1) log() nm) (cm–1) log() nm) (cm–

1) 

log() 

          

PZnE-BTD-EPZn 313 31,949 (4.39) 426 

465 

23,474 

21,505 

(5.16) 

(4.79) 

524 

566 

689 

19,083 

17,667 

14,514 

(4.55) 

(4.34) 

(4.81) 

PZnE-BTD-

EPZnE-BTD-EPZn 

311 32,154 (4.50) 428 

489 

23,364 

20,449 

(5.24) 

(4.82) 

525 

573 

634 

689 

752 

19,047 

17,452 

15,772 

14,513 

13,297 

(4.75) 

(4.30) 

(4.27) 

(4.56) 

(5.05) 

PZnE-BTD-

EPZnE-BTD-

EPZnE-BTD-

EPZnE-BTD-EPZn 

316 31,645 (4.59) 429 23,310 (5.20) 525 

643 

716 

780 

19,047 

15,552 

13,966 

12,820 

(4.83) 

(4.43) 

(4.70) 

(5.07) 

BTD-EPZnE-BTD 314 

322 

31,847 

31,056 

(4.45) 

(4.48) 

434 

469 

 

23,041 

21,321 

 

(4.90) 

(5.21) 

 

592 

619 

674 

16,892 

16,155 

14,837 

(3.85) 

(4.02) 

(4.91) 

BTD-EPZnE-

PZnE-BTD 

310 

323 

 

32,258 

30,959 

(4.60) 

(4.60) 

468 

495 

21,367 

20,202 

(5.20) 

(5.40) 

585 

638 

705 

765 

17,094 

15,674 

14,184 

13,072 

(4.26) 

(4.21) 

(4.73) 

(5.04) 

BTD-EPZnE-PZn-

EPZNE-BTD 

308 

323 

32,467 

30,960 

(4.49) 

(4.48) 

426 

492 

23,474 

20,325 

(4.93) 

(5.20) 

592 

621 

811 

16,891 

16,103 

12,330 

(4.10) 

(4.03) 

(4.94) 

BTD-EPZnE-PZn-

EPZnE-PZn-

EPZNE-BTD 

303 33,003 (4.72) 421 

498 

23,753 

20,080 

(4.95) 

(5.25) 

595 

681 

844 

16,807 

14,684 

11,848 

(4.32) 

(4.37) 

(4.94) 

PZn-EPZnE-BTD-

EPZnE-PZn 

307 32,573 (5.04) 415 

488 

24,096 

20,491 

(5.42) 

(5.67) 

562 

778 

17,793 

12,853 

(4.77) 

(5.23) 

PZn-EPZnE-BTD-

EPZnE-PZnE-

BTD-EPZnE-PZn 

302 33.112 (4.85) 416 

489 

24,038 

20,450 

(5.29) 

(5.55) 

816 12,254 (5.28) 
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Table 2.3 Spectroscopic Parameters of the porphyrin compounds in THF. 

        

 max(S0S1) 

[nm]a 

g @ 

max(S0S1) 

[M-1 cm -1] 

max(S1S0) 

[nm]a 

Stokes‟ 

shift 

(cm-1) 

f
b F

c  

[ns] 

       

PZnE-BTD-EPZn 689(1180) 121 000 741(1605) 1018 0.37 

(0.015) 

 

1.6 

 

PZnE-BTD-EPZnE-

BTD-EPZn 

752(1059) 112 000 784(977) 543 0.36 

(0.015) 

1.1 

PZnE-BTD-EPZnE-

BTD-EPZnE-BTD-

EPZnE-BTD-EPZn 

780(1227) 118 000 811(846) 490 0.29 

(0.015) 

0.8 

BTD-EPZnE-BTD 674(654) 81 000 687(727) 281 0.17 

(0.005) 

 

1.3 

 

BTD-EPZnE-PZnE-

BTD 

765(1222) 109 000 787(802) 365 0.33 

(0.006) 

1.4 

BTD-EPZnE-PZn-

EPZNE-BTD 

811(1597) 87 000 846(872) 510 0.25 

(0.015) 

0.8 

BTD-EPZnE-PZn-

EPZnE-PZn-EPZNE-

BTD 

844(1689) 87 100 888(1008) 587 0.20 

(0.025) 

0.6 

PZn-EPZnE-BTD-

EPZnE-PZn 

778(1904) 169 000 822(926) 688 0.26 

(0.011) 

0.6 

PZn-EPZnE-BTD-

EPZnE-PZnE-BTD-

EPZnE-PZn 

816(1654) 190 000 857(1154) 586 0.22 

(0.01) 

0.5 

 

a
 Numbers in parentheses are spectral breadths (FWHM) of the respective transitions in 

units of cm
-1

.  
b
 Quantum yields were determined relative to H2TPP in benzene (f = 0.13); parenthetical 

values represent standard deviations from the mean.  
c
 All compounds were excited at 405 nm, except TB, PB, ITA, and IHA, which were 

excited at 780 nm. The lifetime is determined with single exponential fitting using 

Hamamatsu HPD-TA software with single-photon counting mode. The fitting module is 

used for fitting analysis with deconvolution method.  For the deconvolution method, 

scattering sample (cream dissolved in water) is used to acquire the instrument response 

function.  
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2.4.3. Quantum Yields 

The quantum yields (f) of these BTD conjugated porphyrin compounds were 

measured both in THF and toluene solvent as shown in Table 2.4. The quantum yields 

for these compounds are exceptional high in the NIR region, which are 18-38% in THF 

and 18-59% in toluene. The excited-state lifetimes (τf) were also determined which vary 

from 0.5 ps to 1.6 ns. Trends in φf and τf are consistent with the expected dependences 

upon the magnitudes of radiative (kr) and nonradiative (knr) rate processes, where knr 

includes contributions due to internal conversion (kic) and intersystem crossing (kisc) rate 

constants. Except for BTD-EPZNE-BTD, the quantum yield and life time decreases with 

increasing conjugation length in each series of BTD conjugated porphyrin compounds, 

derives from a larger magnitude kr, congruent with the Strickler-Berg relation,
41

 which 

predicts that kr is proportional to the integrated oscillator strength of the lowest-energy 

ground-state absorption band. The decreasing of the S0→S1 energy gap with the 

argument of conjugation length will cause an increasing of the S0→S1 internal conversion 

rate (kic) and therefore the diminishing of the quantum yield and life time. The reason for 

the low quantum yield of BTD-EPZNE-BTD is possible due to the balance of increased 

number of T1 state at shorter conjugation length, which causes more S0→S1 intersystem 

crossing (kisc) decay and thus a low quantum yield. These results highlight the close 

correlation of fluorescence quantum yields with S0 → S1 integrated oscillator strength, 

and demonstrate the ability of broad NIR spectral domain fluorescence energy 

modulation, where φf magnitudes follow a simple Strickler−Berg relationship. 
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Table 2.4 Comparative quantum yields of conjugated porphyrins in THF and Toluene. 

 

 

f (THF) f (Toluene) 

PZnE-BTD-EPZn 0.39 0.49 

PZnE-BTD-EPZnE-BTD-EPZn 0.37 0.49 

PZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZnE-BTD-EPZn 0.29 0.44 

BTD-EPZnE-BTD 0.17 0.18 

BTD-EPZnE-PZnE-BTD 0.33 0.45 

BTD-EPZnE-PZn-EPZnE-BTD 0.25 0.46 

BTD-EPZnE-PZn-EPZnE-PZn-EPZNE-BTD 0.21 0.48 

PZn-EPZnE-BTD-EPZnE-PZn 0.27 0.59 

PZn-EPZnE-BTD-EPZnE-PZnE-BTD-EPZnE-PZn 0.22 0.58 
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2.4.4. Electrochemical Properties.   

Table 2.5 report the solution electrochemically determined oxidation (HOMO 

energy level) and reduction (LUMO energy level) levels.  As seen with the optical data, 

the π→π* derived transition shifts to lower energy with increasing conjugation length, 

the potentiometrically determined band gap, Epo, become destabilized and stabilized 

respectively with increasing number of porphyrins (ie the band gap becomes smaller with 

larger oligomers in agreement with optical and emission data).  

It is also important to note that the optical band gaps (Eop values) of these BTD 

conjugated porphyrin compounds track closely with their corresponding Eps. These data, 

coupled with the facts that the steady state absorption spectra indicate that the visible and 

NIR polarized excitations evince extensive mixing of PZn- and BTD-derived electronic 

states suggest that the quinoidal resonance contribution to the low lying singlet 

electronically excited states exceeds greatly that for the ground-state, thus giving rise to 

the expectation that the excited singlet wavefunctions of these BTD conjugated porphyrin  

compounds should feature unusual degrees of electronic delocalization. 
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Table 2.5 Optical HOMO–LUMO gaps (Eops) and potentiometrically determined 

HOMO–LUMO gaps (Eps) of the BTD conjugated porphyrins. 

 DA TA PA MB DB TB PB ITA IHA 

Eop(max)a 1.80 1.65 1.59 1.84 1.62 1.53 1.47 1.59 1.52 

Eop(edge)b 1.69 1.54 1.48 1.77 1.54 1.43 1.34 1.46 1.38 

Ep
c 1.88 1.58 1.51 1.87 1.75 1.70 1.62 1.76 1.69 

 

a
 Optical HOMO–LUMO gap determined from the lowest absorption maximum 

measured in THF. 
b
 Optical HOMO–LUMO gap determined from the absorption edge measured in THF.  

The absorption edge was determined as the intersection of the two tangent lines involved. 
c
 Potentiometrically determined HOMO–LUMO gap (E1/2

0/+ 
– E1/2

–/0
) measured in CH2Cl2. 
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2.5. Conclusions 

Quinoidal spacer conjugated (porphinato)zinc(II) (PZn-(BTD-PZn)n, (PZn)2-

(BTD-(PZn)2)n) and  (BTD-(PZn)n-BTD) complexes that possess intervening conjugated 

BTD spacer with varying degrees of porphyrin conjugation have been synthesized by 

palladium-catalyzed cross coupling reactions. The performance of electronic and optical 

devices based on these conjugated species is optimized by reducing and tuning energy 

gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO). Electronic absorption spectra show significant red-shifts of 

the x-polarized Q state (S0→S1) transition manifold maxima into NIR region.  Likewise, 

the potentiometrically determined HOMO-LUMO gaps (E1/2
0/+

 – E1/2
–/0

) display 

correspondingly exceptional low band gap. These BTD conjugated porphyrin species 

possess large magnitude NIR S1 → S0 fluorescence quantum yields superior to the 

highest reported value for NIR laser dyes in the 700-1000 nm regime. Notely, these 

emitters do not suffer from commonly cited drawbacks of poor photostability and 

substantial φf sensitivity to solvent polarity for NIR chromophores. These facts 

underscore the tremendous potential of these species as electrooptic materials in a range 

of photonic applications. 
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CHAPTER 3. Antibody Conjugated Near-Infrared Emissive 

Polymersomes for Active Targeting 

3.1. Summary 

Polymersomes have emerged as versatile carrier systems for delivering active 

molecules in the organism, and demonstrated enhanced efficiency compared to 

conventional drugs and liposomes. The design of immunopolymersomes (IPs) for 

targeted cancer therapies by endocytosis of the targeting molecule and delivery of 

therapeutic agents to the interior of the tumor cell remains an ongoing research goal. This 

is accomplished by highly specific chemical modifications to the bilayers of the 

polymersomes for the attachment of antibodies that recognize and bind specifically to 

target cells. Therefore, active, targeting antibodies conjugated near infrared (NIR) 

emissive polymer vesicles will be a perfect system for in vivo diagnostic and drug-

delivery applications. The efficiency, stability of the resulting antibody to polymersomes 

bond, and biocompatibility are essential criteria for such conjugation chemistry. To this 

end, various techniques have been developed, including covalent and noncovalent 

approaches, with emphasis on the major differences between the coupling reactions, on 

their advantages and drawbacks, on the surface functionalization degree effect, antibody 

concentration effect, polymersome recovery yields and the coupling efficiencies obtained.  

The optimized coupling method was by using 5% maleimide functionalized PEO(3600)-

b-PBD(6800) (PEO80-b-PBD125: OB18) mixture with PEO(1300)-b-PBD(2500) (PEO30-

b-PBD46: OB2) to preform polymersomes, followed by addition of thiol-activated 

antibody at mole ratio of 1:40 IgG antibody to functionalized polymer, resulted in ~ 64 
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IgG antibody per 100 nm polymersomes with conjugation efficiency as high as 80.6%. 

Furthermore, the antibody-conjugated polymersomes were characterized by confocal 

microscope, cryogenic transmission electron microscopy (Cryo-TEM), Enzyme-linked 

immunosorbent assay (ELISA), and Licor-Odyssey imaging experiments. All of these 

characterizations showed direct province of successful antibody conjugation to the 

polymersome surface.  

Based on the functionalization techniques we developed for direct conjugation of 

antibodies to the polymersome surface, anti-ErbB2 NIR emissive IPs were developed to 

enable efficient delivery to HER2 breast cancer cells.  Flow cytometry and confocal 

microscopy analysis indicated that anti-ErbB2 IPs delivery to HER2 cells was 

concentration dependent, and resulted in punctate intracellular localization. The extent of 

anti-ErbB2 IPs delivery was estimated to be 86,000 ± 2,500 vesicles per BT474 cell with 

uptake efficiency as high as 37%. In summary, we developed NIR emissive IPs based on 

universal chemical modification methods for targeted delivery and optically based 

detection of metastatic cancer cells in vivo. 

3.2. Introduction 

In recent years, an increasing number of studies have been devoted to the 

development of drug delivery methods that are aimed at targeting cancer 

chemotherapeutics to tumors. Systemic administration of chemotherapeutic agents results 

in indiscriminate drug distribution and severe toxicity, so specific targeting to tumor cells 

is a great advantage. The first attempt toward this goal was accomplished by utilization of 

antibody coupled anti-tumor drugs.
1
 However, one major difficulty was to preserve of 

both pharmacological and immunological activities of the antibody-drug conjugates. 
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Only a relatively low amount of drug can be coupled to the antibody to maintain the 

binding activity, which is often insufficient to obtain the desired therapeutic effect. 

Therefore, other strategies for targeted delivery have been developed by the entrapment 

of drugs into liposomes or nanoparticles. Liposomes offer a suitable means for drug 

delivery by protecting encapsulated drugs from enzymatic degradation and rapid 

clearance in vivo, thereby improving drug pharmacokinetics, and leading to increased 

accumulation of the drug at the tumor site. However, phospholipids have their 

physicochemical limitations, and hence limited options are available to tailor their 

properties.  

Polymersomes are a new class of self-assembled vesicles based on amphiphilic 

block copolymers with thicker and tougher membranes than lipids, with critical strains 

before rupture as much as seven times larger than those for lipid vesicles, and with 

toughnesses up to 50 times that of phopholipid vesicles.
2-4 

The sizes of polymersomes can 

be easily tuned to 100-200 nm scale following self-assembly by techniques such as 

sonication, freeze-thaw cycles and extrusion through appropriately sized membranes.
5

 At 

this length scale the polymersomes can most effectively leverage the Enhanced 

Permeability and Retention (EPR) effect and leave the bloodstream at the site of tumors.
6
 

In addition, polymersomes also offer the advantage of prolonged circulation in vivo, 

resulted in increased biological stability, slow uptake by phagocytic cells of the 

reticuloendothelial system (RES)
7-9

 and thus strong targeting specificity.
10-12

 Moreover, 

the physical and chemical properties of polymersomes including particle size, drug 

loading, surface modification, and even prolonged circulation in vivo behavior may be 

broadly tunable through rich diversity of block copolymer chemistries.
2, 3, 13-15

 Another 
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advantage of polymersomes is their unique ability to encapsulate hydrophobic 

components, owing to the hyperthickness of the polymersome membrane. The most 

compelling example of this is the encapsulation of hydrophobic light emitting 

porphyrinic dyes, ranging in size from 1.1 to 5.5 nm in length, to yield NIR emissive 

polymersomes that have exceptional potential to facilitate deep-tissue fluorescence-based 

imaging for in vivo diagnostic and drug-delivery applications.
16

  

These polymersomal vesicles are promising systems to be used as molecular 

imaging modalities
16, 17

, targeted drug-delivery devices
18-21

, biosensors, and 

nanoreactors.
22-29

 The attachment of targeting ligands to the polymersomes is of crucial 

importance in these applications. By tethering ligands that are specific to receptors 

overexpressed on the surface of diseased cells to the delivery vehicles, it is possible to 

achieve specific binding between delivery vehicles and target cells.
30

 Developing 

polymersomes that have targeting vectors attached to the bilayer surface has attracted 

increasing attention.
31

 These vectors have included ligands such as peptides, enzymes and 

proteins. However, very few studies have focused on antibody conjugates. Developing 

antibody-polymersome conjugation techniques is very important since procedures for 

producing highly specific monoclonal antibodies are well established, and the antibody-

polymersomes conjugates will become immunogenic which is ideal for various 

immunochemical and diagnostic purposes. 

IPs are polymersomes that have been specially designed for active targeting to a 

given type of tissue or organ that the polymersome is able to recognize by its molecular 

fingerprint. This is accomplished by conjugating an antibody or an antibody fragment 

which is responsible for cell recognition to the bilayer surface of the polymersomes. 
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Antibodies are immunoglobulins, which are glycoproteins produced by the body‟s 

immune system. Therefore, the attachment of specific antibodies to the surface of the 

polymersomes enables them to bind to cells bearing antigens, and subsequently be 

internalized into the cells for the immuno-specific delivery of drugs or other materials to 

the antigenic target cells. To note, the liposome-based antigen delivery is more 

immunogenic than the antigen alone. This effect is attributed to the particulate nature of 

liposomes which more closely mimic the uptake of viruses or bacteria.
32

 It is possible that 

polymersomes would possess this adjuvant quality as well.  

There are two basic approaches to the attachment of ligands to polymersomes. 

The first involves the direct attachment of a ligand to a preformed polymersome that will 

contain functionalized headgroups which are predisposed to react with the ligand. The 

major advantage of this approach is that it allows the use of any polymersomes 

preparation procedure, and avoids exposure of the ligand to the conditions of 

polymersome preparation. The second type of approach involves functionalization of 

block copolymers at their hydrophilic chain end with ligands such as carbohydrates, 

peptides and proteins and subsequently self-assembly into polymer vesicles with surface 

functionalization.33-43 This strategy allows the functionalized copolymer to be purified and 

fully characterized as a non-aggregated species. Thus, the ligands density on polymersomes 

surface can be better controlled by simply adjusting the ratio of functionalized to non-

functionalized block copolymer prior to vesicle formation. However, the assembly behavior 

of the block copolymers might be affected by the end-functionalization, so that their ability to 

form vesicles has to be confirmed by experimental data. Also, the protein may be denatured 

or deactivated during the polymersomes self-assembling process which normally involves 

harmful organic solvent or sonication, and thus carefully chosen of polymersomes formation 
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method is required. Finally, only about half of the ligand that is conjugated to the polymer 

will be positioned in the inner membrane of the polymer vesicles during self-assembly and 

will not be accessible for targeting; therefore, this method has a low ligand coupling 

efficiency on the outer surface of the polymersomes and is not suitable for costly proteins.  

For the conjugation of a targeting ligand to polymersomes particles, there are two 

main options: non-covalent linkage, such as the avidin-biotin interaction,
19, 23, 44-48

 or 

covalent binding. The noncovalent avidin-biotin linkage has been exploited for 

conjugating polymersomes with a biotinylated ligand, e.g. a peptide or antibody. Avidin 

is a tetrameric protein with a molecular weight of 68 kDa which can strongly bind to four 

biotins. By using noncovalent avidin-biotin conjugation, a polymer vesicle carrying 

biotin functionalities is first incubated with avidin. In a second step, the avidin-

polymersomes conjugate is incubated with biotinylated ligands. Although this method is 

simple and effective, the introduction of avidin into the conjugate has certain drawbacks. 

First, conjugation of avidin to polymersomes will considerably increase its size and 

thereby alter its pharmacokinetics. More importantly, avidin is known
49

 to be rapidly 

cleared by the liver. In fact, this property of avidin has been exploited to chase and clear 

antibodies
50

 and MRI contrasting agents from the circulation.
51

  

Covalently linking the ligand to the polymersome directly would lead to a smaller 

conjugate, which has more favorable pharmacokinetic properties. Covalent conjugation 

of ligands to polymersomes is achieved with several methods. Roughly, these methods 

can be divided in the formation of (i) a triazole bond, between alkyne groups and azide 

groups as so called “click chemistry”, 
27, 52-55

 (ii) a C-S bond, between N-

hydroxysuccinimidyl ester or vinyl sulfone and thiol groups, 
13, 56

 (iiii) an imine bond, 

between aldehyde groups and amino groups, 
57

 (iv) a hydrazone bond, between two 
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different amide groups. 
58

 To avoid possible interactions between targeting ligands and 

cargo (drugs, RNA, etc.) and to prevent interference with self-assembly, attachment of 

ligands is normally take place after vesicle formation. Several approaches to attach 

ligands have been reported as shown above, for example biotin-streptavidin binding or 

azide-alkyne click chemistry. Although these approaches have proven feasible, they 

exhibit problems in terms of application in therapy, including human intolerance to 

streptavidin and toxic effects due to possible copper residues used to catalyze the alkyne-

azide click reaction. Therefore, the challenge was to devise a biocompatible conjugation 

chemistry that would facilitate precise control of antibody density on polymersomes 

surface and stable chemical bonding while avoiding toxic reaction additives and catalysts.  

Also, in most of these coupling methods, the block copolymer vesicle surfaces are 

functionalize by chemical means with small ligands such as adhesion moieties
23, 44, 57, 59

, 

carbohydrates
33, 34

, fluorophores
41, 42, 55, 58, 60

 and peptides
35-40, 43, 56

. Very few works have 

been done on large motieties such as antibody conjugation to polymersomes. In addition, 

previous work on conjugating antibodies to polymersomes has either resulted in low 

antibody conjugation efficiency
58

 or lacks systematic information to study the factors that 

affect the antibody conjugation efficiency.
13, 58

  

Toward this goal, OB18 diblock copolymers with five different functionalities at 

the hydrophilic terminus (Scheme 3.1) are synthesized for antibody conjugation. The 

schemetic structure of functionalized polymersome system for targeted drug delivery and 

imaging is shown in Scheme 3.2. The polymersomes are comprised of a mixture of 

functionalized OB18 diblock copolymer and nonfunctionalized OB2 diblock copolymer 

with highly NIR emissive fluorescent hydrophobic porphyrin fluorophores incorporated 



93 

 

in the bilayer membrane. The longer functionalized OB18 will be in both the inner and 

outside surface of the polymersomes bilayer membrane, and the schemetic structure only 

displays them as on the outside of the polymersomes bilayer membrane. The thick 

polymersome hydrophobic bilayer membrane enables the incorporation of NIR emissive 

porphyrin dyes for optical based NIR molecular imaging; the functionalized 

polymersome surface enables the antibody conjugation for specific cell targeting; and the 

large aqueous inner core of the polymersomes facilitates hydrophilic drug encapsulation 

for drug delivery. All these features of this antibody conjugated NIR emissive 

polymersomes suggest a promising new soft matter nanoscale platform for in vivo 

diagnostic and drug-delivery applications. 
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Scheme 3.1 Schematic structures of OB18 diblock copolymers with different 

functionalities.  
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Scheme 3.2 Schematic structures of antibody conjugated NIR emissive polymersomes. 
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The functionalized end groups of OB18 can react with amino groups on 

antibodies or thio-activated antibodies. In summary, these five different functionalized 

end groups features the four chemistries of forming (i) a ester bond, between 4-Fluoro-3-

nitrobenzoic ester (FNB) functionalized polymers and amino antibodies; (ii) a biotin-

avidin bond, between biotin functionalized polymers and avidin, followed by addition of 

biotinlated antibodies; (iii) a urea bond or hydrazine bond, between isocyante groups and 

amino antibodies or amide groups and amide-activated antibodies, (iiii) a thioester bond, 

between maleimide and thiol. Six coupling procedures have been developed from the five 

functionalized polymers described above, and all these coupling method were evaluated, 

compared and optimized in terms of antibody conjugation efficiency and polymersome 

recovery yield. The number of exposed functionalities on the surface was controlled by 

varying the molar percentage of the functional OB18 polymer. The antibody 

concentration effect was also studied by varying the mole ratio of antibody concentration 

and polymersomes concentration. Among all these approaches for antibody conjugation, 

the maleimide method is found to give the highest protein conjugation yield and is 

broadly applicable. To apply this maleimide method, the ligand should contain a free 

thiol group, necessary for bond formation. Proteins, antibody and peptides exposing a 

free cysteine group can directly be used for coupling to maleimide. For proteins that 

don‟t have cysteine, thiol groups can be introduced by different thiolation methods such 

as: (1) reducing the disulfide crosslinks of cystines in proteins by using  dithiothreitol 

(DTT).
61

 However, the reduction will alter the protein conformation and may result in 

loss of protein activity or specificity; (2) thiolating the amines with succinimidyl 3-(2-

pyridyldithio)-propionate (SPDP), followed by reduction with DTT; 
62

 (3) thiolating the 
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amines with succinimidyl acetylthioacetate (SATA), followed by deprotection generating 

sulfhydryl groups in the biopolymer.
63

 This reagent is most useful when disulfides are 

essential for activity. And it also circumvents the separation step of the ligand-SH with 

other reagents and to allow a "one-pot" conjugation method. In this work, an alternate 

thiolation agent, 2-iminothiolane (Traut's reagent) is used to modify primary amines by 

adding a small spacer arm (8.1 Å) terminated by a free sulfhydryl group while 

maintaining charge properties similar to the original amino group for immediate use. 

Traut‟s reagents have several advantages over the other described thiolation reagents in 

light of its simplicity, specificity, flexibility and solubility.
64-67

 It is a one-step conversion 

of amines to sulfhydryls with selective and spontaneous modification of primary amines 

at pH 7-10. And it incorporates a space arm to reduce steric hindrance. Moreover, it 

preserves the original positive charge to preserve protein solubility. Finally, the thiol 

containing ligands is utilized to react with maleimide-containing particles and form a 

covalent thioether linkage. 

After the attachment of the antibody to NIR emissive polymersomes, the 

morphology and immunogenic effect were also characterized by using confocal 

microscopy, cryogenic transmission electron microscopy (Cryo-TEM), Enzyme-linked 

immunosorbent assay (ELISA) experiments, and Licor-Odyssey imaging experiments. 

The results indicate successful antibody conjugation on polymersomes surface, as well as 

highly specific and selective activity of these antibody conjugated IPs towards other 

antigens or antibodies. 

Using the estabilished functionalization methods, we further developed IPs to 

combine the tumor-targeting properties and delivery advantages of long circulating 

http://en.wikipedia.org/wiki/%C3%85
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polymersomes. The IPs system we studied was the anti-ErbB2 NIR emissive 

polymersomes. HER2 (also known as ErbB2) is a member of the epidermal growth factor 

receptor family that has been found to be overexpressed or amplified in approximately 

20-30% of breast cancers.
68

 Overexpression of this receptor in breast cancer is associated 

with increased disease recurrence and worse prognosis. Because of its prognostic role, 

breast tumors are routinely checked for overexpression of HER2. Overexpression also 

occurs in other cancer such as ovarian cancer, stomach cancer, and biologically 

aggressive forms of uterine cancer, such as uterine serous endometrial carcinoma.
69

 As a 

target antigen, HER2 is a readily accessible cell surface receptor for selective 

immunotargeting of tumor cells when overexpressed. By conjugating anti-ErbB2 

antibody to the surface of NIR-emissive polymersomes, we were able to use these IPs for 

HER2 cell targeting and imaging.  

Confocal microscope imaging experiments indicates that the anti-ErbB2 IPs bind 

specifically to HER2 overexpressed tumor cell lines BT474, SKBR3, HCC1569, and 

showed minimal binding towards low HER2 expressing tumor cell line MCF7 (the ErbB2 

receptors per MCF7 cell is two to three orders of magnitude less than the ErbB2 

overexpression cell lines). Nonconjugated polymersomes and irrelevant rat-IgG 

conjugated polymersomes were used as negative controls towards those tumor cells and 

all of them showed minimal binding to the cells. In addition, the anti-ErbB2 IPs 

demonstrated intense focus of fluorescence both at the ErbB2 overexpression tumor cell 

surface and intracellularly. 

In order to maximize the intracellular uptake of polymersomes necessary for 

optimal cellular labeling, the effects of varying both the polymersome concentration and 
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incubation time on polymersomes uptake were examined. Flow cytometry and Licor-

Odyssey imaging were used to measure the intensity of cellular-associated PZn3 based 

fluorescence following cell incubation and washing in vitro. These experiments evaluated 

the uptake of both anti-ErbB2 IPs and nonconjugated polymersomes controls in order to 

distinguish the impact of antibody conjugation on intracellular delivery. The results 

indicate that a single BT474 cell can be effectively labeled with 86000 ± 2500 IPs, and 

800 ± 50 control polymersomes. For MCF7 cells, they can only be labeled with 1700 ± 

130 IPs per cell, and 830 ± 200 control polymersomes per cell. The maximum IP uptake 

percentage for BT474 cells is 37.9 ± 1.8%, and 0.60 ± 0.18% for MCF7 cells; while the 

maximum control polymersomes uptake percentage for BT474 cells is 0.19 ± 0.03%, and 

0.19 ± 0.05% for MCF7 cells. The incubation times of one hour and overnight have also 

been studied. We found for overnight incubation, the IP uptake slightly increased while 

the control polymersomes uptake greatly increased. This indicates a higher level of 

nonspecific binding with increased incubation time. 

3.3. Experimental Methods 

3.3.1. Polymer Functionalization 

3.3.1.1. Synthesis of FNB Modified Polymer 

 

Scheme 3.3 Reaction scheme for terminal hydroxyl derivatization to 4-Fluoro-3-

nitrobenzoic ester. 
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The PEO terminal hydroxyl of the copolymer was derivatized with 4-Fluoro-3-

nitrobenzoic acid (FNB) as presented in Scheme 3.3 and as previously drecribed.
48

 

Briefly, in round bottom flask, 100 mg OB18 was added to 1.1 equivalents of 4-fluoro-3-

nitrobenzoic acid (Sigma-Aldrich, St. Louis, MO), with catalytic dimethylaminopyridine 

(Sigma-Aldrich), followed by the addition of 35 mL dry methylene chloride (Fisher). To 

a dried septum-seal vial we added 1.1 equivalents of dicyclohexylcarbodiimide (Sigma-

Aldrich) and 5 mL methylene chloride, which was then injected into round bottom flask 

with the polymer. The reaction was allowed to proceed for 48 hours, and the resulting 

solution was purified by filtration and high-performance liquid chromatography (HPLC). 

The final product was vacuum dried and stored under argon gas at -20°C until use. The 

extent of derivatization of the polymer was determined by 
1
H NMR to be 88%. 

3.3.1.2. Synthesis of Biocytin Modified Polymer 

 

Scheme 3.4 Reaction scheme for terminal hydroxyl derivatization to biocytin. 

The terminal end of the PEO block was modified to display biocytin through a two-step 

synthesis. 4-fluoro-3-nitrobenzoic acid was attached to the hydroxyl polymer terminus 

through an esterification in methylene chloride as described in 3.3.1. After filtration and 

HPLC purification, biocytin was attached to the modified polymer through a nucleophilic 

aromatic substitution in 50% THF / 50% DI water (by volume) at 5 mM in a glass screw 
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top vial. FNB functionalized polymer, biocytin and triethylamine were combined at 

1:1.5:10 (molar ratio, FNB-polymer : biocytin : triethylamine). Reaction proceeded at 37-

40 °C, while stirring for 24 hours. The mixture was dried by rotary evaporation to remove 

water and THF, resolvated in 100% THF at 0.1 mg mL
-1

, and then filtered and purified 

by HPLC. Characterization of the biotin functionalization percentage in the final polymer 

was quantified via the established extinction coefficients (5449 M
-1

 cm
-1

) of the 

biotinylated PEG at 428 nm
70

 and was calculated to be 68%. The reaction scheme is 

shown in Scheme 3.4. 

3.3.1.3. Synthesis of Amine Modified Polymer 

 

Scheme 3.5 Reaction scheme for terminal hydroxyl derivatization to amine. 

As shown in Scheme 3.5, methanesulfonyl chloride (5.4 mg, 50 μmol) in 1 mL 

methylene chloride were mixed at 0°C with 100 mg (10 μmol) OB2 and 2 mg (20 mmol) 

triethylamine dissolved in 1 mL methylene chloride. The reaction mixture was then 

stirred overnight under Ar at room temperature, and the product was purified by filtration 

and HPLC. Yield was 88 mg. 
1
H NMR showed 94% functionalization.  The mesylated 

OB18 (88 mg, 8 μmol) and hexamethylenediamine (10 mg, 80 μmol) were dissolved in 

benzene (5 mL) with a suspension of 15 mg anhydrous sodium carbonate. This mixture 

was stirred at reflux for 3 days, and then the product was purified by filtration and HPLC. 

Yield was 69 mg, 
1
H NMR showed an overall of 54% substitution. 
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3.3.1.4. Synthesis of HyNic Modified Polymer 

 

Scheme 3.6 Reaction scheme for terminal hydroxyl derivatization to HyNic. 

50 mg amine functionalized OB18 diblock copolymer was dissolved in 1ml 

methylene chloride, and 1.5 mL of 10 mg mL
-1

 (100 μmol) succinimidyl 6-

hydrazinonicotinate acetone hydrazone (S-HyNic) in anhydrous DMSO were added. 

After reaction overnight at room temperature, the hydrazine functionalized polymers 

were purified by HPLC. The functionalization degree calculated by 
1
H NMR was 63%. 

3.3.1.5. Synthesis of Maleimide Modified Polymer 

 

Scheme 3.7 Reaction scheme for terminal hydroxyl derivatization to maleimide. 

100 mg OB18 diblock copolymer was dried under vacuum and dissolved under 

nitrogen in 2 mL of methylene chloride at room temperature, after which 6 mg (5 mM) 

catalyst dibutylin dilaurate (DBTDL) was added. p-maleimidophenyl isocyanate (PMPI) 

(20 mg; Pierce Chemical Co., Rockford, IL) was dissolved in 2 mL of anhydrous DMSO 

and then added to the diblock copolymer solution.  The reaction was performed under Ar 

in the dark overnight. The solution was filtered and puried by HPLC to remove any 

residual traces of DMSO and catalyst, dried at room temperature under Ar, and stored at -

20 °C. The functionalization degree was calculated by 
1
H NMR to be 72%. 
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3.3.2. Preparation and Characterization of OB18 and OB2 Mixed Polymersomes 

All Near-infrared fluorophores incorporated polymersomes were prepared as 

described by Ghoroghchian et al.
16

 A schematic vesicle formation via thin film 

rehydration is shown in Scheme 3.8. In brief, a different ratio of OB18 and OB2 diblock 

copolymer (Polymer Source Inc., Montreal, Quebec) was mixed at a mole ratio of 0%, 

10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. The mixed diblock 

copolymer and porphyrin fluorophore trimer (PZn3) were dissolved in methylene chloride 

at a 40:1 molar ratio of polymer to NIRF. The solution was then plated onto a roughened 

Teflon film and dried under vacuum overnight. Polymersomes were formed upon the 

addition of DI water and sonicated (1 h) in a bath sonicator. A narrow size distribution of 

nano-sized polymersomes was achieved with serial extrusion using a Liposofast Basic 

hand-held extruder equipped with 400-, 200- and 100-nm polycarbonate membranes 

(Avestin Inc., Ottawa, Ontario). The morphology of polymersomes samples was observed 

by Cryo-TEM as described in 3.3.8. 
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Scheme 3.8 Schematic formation of polymersomes by thin film rehydration. 
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3.3.3. Functionalized Polymersomes Formulation 

The formation of functionalized polymersomes is similar to the procedures 

described in 3.3.2. Functionalized OB18 diblock copolymer was mixed with OB2 diblock 

copolymer and porphyrin fluorophore trimer (PZn3). The polymer and porphyrin were 

codissolved in methylene chloride at a 40:1 molar ratio of polymer to porphyrin, plated 

on a square roughened Teflon film and dried under vacuum overnight. FNB 

functionalized polymersomes were formed upon the addition of 290 mOsm 0.1M pH 8.5 

sodium borate buffer; biocytin, amine and HyNic functionalized polymersomes were 

formed upon the addition of 290 mOsm 0.1M pH 7.4 phosphate buffered saline (PBS) 

buffer solution; and the maleimide functionalized polymersomes were formed in 290 

mOsm pH 4.0 2-(N-morpholino)ethanesulfonic acid (MES) buffer solution. Heating at 60 

ºC for 24 hours yielded micron-sized polymersomes while sonication (1 h) in a bath 

sonicator yielded nanoscale polymersomes.  For nanosized polymersomes, a narrow size 

distribution of nano-sized polymersomes was achieved with serial extrusion using a 

Liposofast Basic hand-held extruder equipped with 400-, 200- and 100-nm polycarbonate 

membranes (Avestin Inc., Ottawa, Ontario). The morphology of polymersomes samples 

was observed by Cryo-TEM as described in 3.3.8. 

3.3.4. Protein Conjugation to Functionalized Polymersomes by Different Coupling 

Procedures 

3.3.4.1. Synthesis of ANHP Modified Polymers and Self-Assemble into Polymersomes 

The terminal end of the PEO block was modified with ANHP peptide (a 1.5KDa 

anti-HER2-neu peptide mimic designed by Murali et al.)71
 through a two-step syntheses. 
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4-fluoro-3-nitrobenzoic acid was attached to the hydroxyl polymer terminus through an 

esterification in methylene chloride as described in 3.3.2.1. After filtration and HPLC 

purification, ANHP was attached to the modified polymer through a nucleophilic 

aromatic substitution in 50% THF (HPLC grade, Sigma-Aldrich) / 50% DI water (by 

volume) at 5 mM in a glass screw top vial. FNB functionalized polymer, ANHP and 

triethylamine (Sigma-Aldrich) were combined at 1:2:10 (molar ratio, FNB-polymer : 

ANHP : triethylamine). Reaction proceeded at 37-40 °C, while stirring for 48 hours. The 

mixture was dried by rotary evaporation to remove water and THF, resolvated in 100% 

THF at 0.1 mg mL
-1

, and then filtered and purified by HPLC. Characterization of the 

final polymer using 
1
H NMR showed that 42.4% of the polymer was modified with 

ANHP. The ANHP functionalized 100 nm polymersomes were then prepared from a 

mixture of ANHP functionalized OB18 and OB2 at mole ratio of 1:99, 5:95 and 10:90 as 

described in 3.3.3. The polymersomes samples were then examined by Cryo-TEM (as 

described in 3.3.8) and DLS (as described in 3.3.9). 

3.3.4.2. ANHP Peptide Conjugation to Preformed FNB Functionalized Polymersomes  

100 nm FNB functionalized polymersomes were formed from a mixture of FNB 

functionalized OB18 and OB2 at mole ratio of 5:95, 10:90 and 30:70 as described above 

in 3.3.3. ANHP peptides were added to the preformed FNB functionalized polymersomes 

at a mole ratio of 1:10 in 0.1M Sodium borate buffer, PH 8.5. After reaction under Ar at 

37°C for 48 hours, the free ANHP peptide was separated by passing the mixture through 

a Sephacryl S-500 column (GE Healthcare Biosciences, Piscataway, NJ) with pH 7.4 

PBS as eluent. The polymersomes samples were then examined by Cryo-TEM (as 

described in 3.3.8) and DLS (as described in 3.3.9). 
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3.3.4.3. Protein Conjugation to FNB Functionalized Polymersomes 

100 nm FNB functionalized polymersome samples were prepared from a mixture 

of FNB functionalized OB18 and OB2 at mole ratio of 5:95 as described in 3.3.3. FNB 

functionalized 100 nm polymersomes were then mixed with streptavidin (Jackson 

ImmunoResearch Laboratories, PA) at a mole ratio of 10:1 functionalized polymer to 

streptavidin, or with rat-IgG antibody (Jackson ImmunoResearch Laboratories, PA) at a 

mole ratio of  40:1 functionalized polymer to rat IgG in 0.1M sodium borate buffer, pH 

8.5. After reaction under Ar at 37°C for 48 hours, the unbound antibody is separated by 

passing the mixture down a Sephacryl S-500 column with pH 7.4 PBS as eluent. The 

protein coupling efficiency to polymersomes was quantified by BCA protein assay as 

described in 3.3.7. 

3.3.4.4. Antibody Conjugation to Biotin Functionalized Polymersomes 

 

Scheme 3.9 Reaction scheme for biotinylated antibody conjugation to streptavidin 

polymersomes. 

100 nm biotin functionalized polymersome samples were prepared from a mixture 

of biotin functionalized OB18 and OB2 at mole ratio of 1:99 as described in 3.3.3. The 

polymersomes were diluted to 0.5 mg mL
-1

, mixed with streptavidin at a mole ratio of 1: 
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10 functionalized polymer to streptavidin in PBS buffer, pH 7.4 and stirred at room 

temperature for 1 hour. After reaction, the unreacted streptavidin is separated by passing 

the mixture down a Sephacryl S-500 column with pH 7.4 PBS as eluent. The streptavidin 

concentration was quantified by BCA protein assay as described in 3.3.7. For biotinylated 

antibody conjugation (Scheme 3.6), biotin-rat-IgG antibody (Jackson ImmunoResearch 

Laboratories, PA) is added to the streptavidin conjugated polymersomes at a mole ratio of 

10:1 biotin-rat-IgG antibody to streptavidin conjugated polymersomes. After reaction 

under Ar at room temperature for 1 hour, the unbound biotin-rat-IgG antibody is 

separated by passing through a Sephacryl S-500 column with pH 7.4 PBS as eluent. The 

protein coupling efficiency to polymersomes was quantified by BCA protein assay as 

described in 3.3.7. 

For micron-sized biotin functionalized polymersomes, they were also prepared 

from a mixture of biotin functionalized OB18 and OB2 at mole ratio of 1:99 as described 

in 3.3.3.  The meso-scale polymersome samples were mixed with FITC-streptavidin 

(Jackson ImmunoResearch Laboratories, PA) at a mole ratio of 1: 10 biotin 

functionalized polymer to FITC-streptavidin in pH 7.4 PBS buffer containing 3% bovine 

serum albumin (BSA). The vesicles were allowed to bind 1 hour at room temperature, the 

unreacted FITC-streptavidin was separated by using a 1000 KDa dialysis tube (Spectrum 

Laboratories, Inc.). The morphology of FITC-streptavidin conjugated μm-sized NIR 

emissive polymersomes was observed by confocal laser scanning microscope. 
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3.3.4.5. Protein Conjugation via TDIC Linkage to Amine Functionalized 

Polymersomes 

 

Scheme 3.10 Reaction scheme for antibody conjugation via TDIC linkage. 

To 2 ml of 20 nM 100 nm amine functionalized polymersomes prepared from a 

mixture of amine functionalized OB18 and OB2 at mole ratio of 5:95 as described in 

3.3.3, 200 μl of a 2% solution of TDIC in p-dioxane was added. The reaction mixture was 

incubated at room temperature for 2 hours with stirring. The resulting supernatant was 

then mixed with 50 μl of streptavidin (10 mg/ml in PBS) or 200 μl of rat-IgG solution (2 

mg/ml in PBS) and incubated at 37°C for 2hr to produce antibody-modified 

polymersomes. To separate noncovalently bound antibody, the polymersome solution 

was then passed down a sephacryl S-500 HPLC column with pH 7.4 PBS as eluent. The 

protein coupling efficiency to polymersomes was quantified by BCA protein assay as 

described in 3.3.7. 
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3.3.4.6. Antibody Conjugation via Sulfo-SMCC Linkage to Amine Functionalized 

Polymersomes 

 

Scheme 3.11 Reaction scheme for antibody conjugation via sulfo-SMCC linkage. 

To 2 ml of 20 nM 100 nm amine functionalized polymersomes prepared from a 

mixture of amine functionalized OB18 and OB2 at mole ratio of 5:95 as described in 

3.3.3, 1 ml of 5 mg/ml sulfo-SMCC in PBS buffer was added. Reaction was continued at 

RT for 1 hour. Excess sulfo-SMCC was removed by passing the reaction mixture through 

a sephacryl S-500 HPLC column with pH 7.4 PBS as eluent. Streptavidin or rat-IgG 

antibody was thiolated using 2-iminothiolane (Traut's reagent). 2-iminothiolane was 

dissolved at 2mg/ml in pH 8 0.1M sodium borate buffer containing 5mM EDTA. The 

molar ratio of 2-iminothiolane added to antibody was 40:1.
13, 72

 The reaction was 

performed at RT for 1 hour under Ar. The thiol modified antibody was then desalted into 

conjugation buffer (pH 7.4, PBS buffer). The thiolated streptavidin or rat-IgG was then 

incubated with concentrated sulfo-SMCC polymersomes overnight with stirring under Ar 

flow at room temperature. The molar ratio of thiolated streptavidin to maleimide was 
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1:10 and thiolated rat-IgG to maleimide was 1:40. The reaction mixture was then applied 

to a sephacryl S-500 HPLC column and eluted with 0.01 M PBS buffer (pH 7.4) to 

remove unbound antibody. The protein coupling efficiency to polymersomes was 

quantified by BCA protein assay as described in 3.3.7. 

3.3.4.7. Antibody Conjugation to HyNic Functionalized Polymersomes 

 

Scheme 3.12 Reaction scheme for antibody conjugation via hydrazone linkage. 

Streptavidin and rat-IgG antibody were passed through a 40k desalting column 

(Thermofisher) before modification. 1.0 mg succinimidyl 4-formylbenzoate (SFB) was 

dissolved in 100 μl anhydrous DMF. The required volume of SFB (20 mole 

equivalents/mole antibody, and the percentage of DMF (vol/vol) in the final SFB 

modification reaction was maintained below 5% of the total reaction volume) was added 

to the antibody solution in modification buffer (2-4 mg/ml concentration, 0.1 M PBS, 150 

mM NaCl, pH 7.4) and mixed thoroughly. The reaction was incubated at room 

temperature for 1.5 hour. The SFB modified antibody was purified by desalting into 

conjugation buffer (100 mM phosphate, 150 mM NaCl, pH 6.0) using a 40k desalting 

column. 
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Polymersome-antibody conjugate was synthesized by adding SFB modified 

streptavidin or rat-IgG to 100nm HyNic modified polymersomes prepared from a mixture 

of HyNic functionalized OB18 and OB2 at mole ratio of 5:95 as described in 3.3.3, at 

mole ratio of 10:1 functionalized polymer: streptavidin or 40:1 functionalized polymer: 

rat-IgG. The non-conjugated antibody was subsequently removed by a sephacryl S-500 

HPLC column with pH 7.4 PBS as eluent. The protein coupling efficiency to 

polymersomes was quantified by BCA protein assay as described in 3.3.7. 

3.3.4.8. Antibody Conjugation to Maleimide Functionalized Polymersomes 

Streptavidin, rat-IgG or Goat-Anti-Mouse IgG (5 nm Gold conjugated) antibody 

(Ted-pella Inc, Redding, CA) were thiolated using 2-iminothiolane. 2-iminothiolane as 

described in 3.3.4.6. The 100 nm maleimide functionalized polymersomes were prepared 

from a mixture of maleimide functionalized OB18 and OB2 at mole ratio of 5:95 as 

described in 3.3.3 at pH 4.0 in MES buffer. The pH of maleimide functionalized 

polymersomes was adjusted to pH 6.5 by adding NaOH dropwise. The thiolated 

streptavidin or rat-IgG was incubated with maleimide functionalized polymersomes 

overnight with stirring under Ar flow at room temperature. The molar ratio of thiolated 

streptavidin to maleimide was 1:10 and thiolated rat-IgG or Goat-Anti-Mouse IgG (5 nm 

Gold conjugated) antibody to maleimide was 1:40. The reaction mixture was then applied 

to a sephacryl S-500 HPLC column and eluted with pH 7.4 PBS buffer. The protein 

coupling efficiency to polymersomes was quantified by BCA protein assay as described 

in 3.3.7. The morphology of Goat-Anti-Mouse IgG (5nm Gold conjugated) antibody 

conjugated polymersomes was observed by TEM, negative staining TEM and Cryo-TEM 

as described in 3.3.8. 
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For micron-sized maleimide functionalized polymersomes, they were also 

prepared from a mixture of maleimide functionalized OB18 and OB2 at mole ratio of 

5:95 as described in 3.3.3. The pH of the maleimide functionalized polymersome samples 

were adjusted to 6.5 and then mixed with thiol activated FITC-rat IgG (Jackson 

ImmunoResearch Laboratories, PA) at a mole ratio of 1: 40 maleimide functionalized 

polymer to thiol-activated FITC-rat IgG. The vesicles were allowed to bind overnight at 

room temperature; the free unbound FITC-rat IgG was separated by using a 1000 KDa 

dialysis tube. The morphology of FITC-rat IgG conjugated μm-sized NIR emissive 

polymersomes was observed by confocal laser scanning microscope. 

3.3.5. Antibody Conjugation Efficiency with Different Functionalization Degree 

Streptavidin and rat-IgG antibody were conjugated to functionalized 

polymersomes by both FNB coupling method and Maleimide method at different 

functionalized polymer degrees. For FNB coupling method, 0.05%, 0.1%, 0.5%, 1%, 2%, 

3% and 4% FNB functionalized polymersomes were conjugated with streptavidin at mole 

ratio of 2:1; while 0.1%, 0.2%, 0.3%, 0.5%, 0.75% and 1%  FNB functionalized 

polymersomes were conjugated with rat-IgG antibody at mole ratio of 2:1. For 

Maleimide coupling method, 0.5%, 1%, 2%, 3%, 4% and 5% Maleimide functionalized 

polymersomes were conjugated with thiolated streptavidin at mole ratio of 2:1; while 

0.2%, 0.3%, 0.5%, 0.75%, 1%, 2% and 3%  FNB functionalized polymersomes were 

conjugated with thiolated rat-IgG antibody at mole ratio of 2:1. Conjugated antibody 

concentration per polymersome was quantified by BCA protein assay. 
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3.3.6. Antibody Conjugation Efficiency with Different Antibody Concentration 

5% Maleimide functionalized polymersomes were conjugated with thiolated rat-

IgG antibody at mole ratio of 80:1, 40:1, 20:1 and 10:1 maleimide functioanlzied 

polymer to antibody. Conjugated antibody concentration per polymersome was quantified 

by BCA protein assay. Antibody (AB) conjugation efficiency was calculated using the 

equation below: 

AB conjugation efficiency = AB conjugated / AB initially added 

3.3.7. Quantification of Protein concentration by BCA protein assay 

Bicinchoninic acid (BCA) protein assay (ThermoScientific, USA) was used to 

quantify the extent of protein coupling to the polymersomes. First, we constructed a 

protein calibration curve by preparing a serial dilution of antibodies in PBS and analyzing 

each solution for protein content with the BCA protein assay kit. Next, the protein 

concentrations of protein-conjugated polymersome sample and the blank polymersome 

sample were both measured by using the BCA assay. The blank polymersomes sample 

was prepared by mixing the same amount of nonfunctionalized polymersomes with 

protein, followed by passing down the sephacryl S-500 column. The amount of protein 

that was covalently coupled to the polymersomes was determined by subtracting the 

calculated amount of the blank polymersomes sample from the protein conjugated 

polymersomes sample. The experiment was repeated three times with three different 

polymersomes samples prepared on different days to get the average value of protein 

concentration. The number of antibodies per 100nm polymersomes was then calculated 

as below: computations assume a 1 nm
2
 projected area per PBD block composing the 

polymersome‟s bilayer membrane, therefore each 100nm polymersomes is composed of 
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~62,800 PEO-b-PBD polymer.
73

 There are approximate 4*10
14

 peptides per ug ANHP, 

1*10
13

 proteins per ug streptavidin, 4 *10
12

 antibodies per ug rat IgG antibody, and 

9.6*10 
12

 polymersomes per umol polymer. The polymer concentration was directly 

related to the porphyrin concentration by the initial molar ratio deposited as a thin film 

(40:1 polymer:porphyrin).
16, 74

 The concentration of the PZn3 porphyrin emitterS in the 

polymersomal membrane was quantified via the established extinction coefficients of the 

far red absorbance of these species PZn3 (λ = 795 nm). Upon measurement of 

fluorophore absorbance in solution, the concentration of PZn3 was obtained using Beer's 

Law and previously established extinction coefficients (PZn3 λ795nm ε = 25000 M
-1

cm
-1

).
17, 

75-78
 The concentration of  protein is quantified by BCA assay, therefore, we could 

calculate the number of protein per 100nm polymersome using the method described here. 

3.3.8. Transmission Electron Microscopy (TEM) 

TEM 

Nanometric polymersomes were formulated as described above. A droplet of 

solution (5 μl) was deposited on TEM grid, any excess solution was removed with filter 

paper. Sample grids were examined in a FEI Tecnai G² Twin transmission electron 

microscope operating at 200 kV, and images were recorded with a Gatan 724 multiscan 

digital camera. 

Negative staining TEM 

For the negative staining, a droplet of sample solution, DI water and 

phosphotungstic acid (Ted Palla, USA) were deposited on a parafilm. The TEM grid was 

insert into the sample drop (30 s), then in a distilled water drop for washing (10 s) and 

finally in a phosphotungstic acid (PTA) drop for staining (10 s). Any excess solution was 
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removed with filter paper. Sample grids were examined in a FEI Tecnai G² Twin 

transmission electron microscope operating at 200 kV, and images were recorded with a 

Gatan 724 multiscan digital camera. 

Cryogenic Transmission Electron Microscopy (Cryo-TEM) 

Vitreous samples were prepared within a controlled environment vitrification 

system (Vitrobot). A droplet of solution (10 μl) was deposited on a copper TEM grid 

coated with a porous polymer film. A thin film (< 300 nm) was obtained by blotting with 

filter paper. After allowing the sample sufficient time to relax from any residual stresses 

imparted during blotting (30 s), the grid was plunge cooled in liquid ethane at its freezing 

point (-180 °C), resulting in vitrification of the aqueous film. Sample grids were 

examined in a FEI Tecnai G² Twin transmission electron microscope operating at 200 kV, 

and images were recorded with a Gatan 724 multiscan digital camera. 

3.3.9. Dynamic Light Scattering (DLS) 

Dynamic light scattering was performed using a DynaPro Titan dynamic light-

scattering instrument (Wyatt Technology Inc.) that applied vertically polarized laser light 

of wavelength 829 nm. The DLS instrument was calibrated with BSA standard (2 mg ml
-

1
 in PBS buffer, 25 ºC). Light-scattering studies were carried out in the concentration 

range of 0.1-0.5 mg mL
-1

 polymersomes in DI H2O. Prior to DLS, The quartz cell was 

rinsed several times with filtered water and then filled with the filtered sample solution. 

The data obtained in each case were the average of 50 runs, each of 10 s duration. The 

temperature was maintained at 25 ºC. Data were collected and analyzed using the 

DYNAMICS software for the DynaPro Titan instrument (Wyatt Technology Inc.)  

http://goldbook.iupac.org/L03525.html
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3.3.10.  Confocal Laser Scanning Microscopy 

Fluorescence scanning confocal microscope images were obtained with a Leica 

SP5 Confocal Microscope (Oberkochen, Germany) equipped with a CApochromat 

40×/1.2 W objective. Both FITC and PZn3 excitation were achieved with a 488 nm 

Argon laser. Fluorescence emission was captured using either 505-530 nm band pass 

(FITC) or 650 nm long-pass (YZ112) filters. Polymersomes were imaged by directly 

plating 10 μL on a glass slide and covering with coverslip. Images were modified for 

contrast and brightness using Leica SP5 software.  

3.3.11. Enzyme-linked Immunosorbent Assay (ELISA) Experiments 

Equilibrium binding of conjugated rat IgG polymersomes by maleimide method 

to recombinant goat-anti-rat IgG antigen was determined by a modified ELISA assay.  

ELISA was performed at room temperature.  NUNC MaxiSorpTM High Protein-Binding 

Capacity ELISA plates (NUNC, Rochester, NY, USA) were coated with goat-anti-rat IgG 

antibody (100 µg mL
-1

) and incubated overnight at 4°C. After rinsing the plates three 

times with PBS buffer, blocking was performed with 3% bovine serum albumin (BSA) in 

the washing buffer for 1 h at RT. After being washed, different concentrations of test 

samples (Rat-IgG antibody conjugated polymersomes) and control samples (non-

conjugated polymersomes) were incubated for 1 hour at RT. The wells were washed, and 

1/5000 diluted Goat-anti-Rat HRP was then incubated for 1 h at RT. After a final wash, 

the enzyme substrate (100 µg mL
-1

 TMB12 in 100mM sodium acetate, PH 6.0, with 10 µl 

of 30% hydrogen peroxide added to 50ml of this solution directly before use) was added 

and incubated for 10 min at RT. The reaction was then stopped by the addition of 1 N 
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HCl. The absorbance was read at 520 nm using an ELISA plate reader (Dynatech, MR-

5000, Chantilly, Va., USA). 

3.3.12. Licor-Odyssey Experiments to Measure Polymersomes Binding Sensitivity  

Binding of streptavidin conjugated polymersomes by maleimide coupling method 

to biotinylated 96 well plates were determined by direct Licor-Odyssey imaging.  

Purified streptavidin conjugated polymersomes or unconjugated polymersomes alone 

(1.68-200 fmol polymersomes/well) were immobilized on a biotinlated plate (Pierce) 

with a 2 times serial dilution per well for l hr at room temperature in PBS.  Commercially 

available DyLight 680 conjugated streptavidin and DyLight 800 conjugated streptavidin 

were used at the same concentration as the streptavidin conjugated polymersomes for 

comparision.  Excess polymersomes or DyLight streptavidin samples were then washed 3 

times by using excessive PBS buffer. Images were acquired by excite using a solid-state 

diode laser at 685nm or 785 nm and collected with a dichroic mirror filter below 750nm 

(700 nm chanel) and above 810nm (800 nm chanel) with an Odyssey Infrared Imaging 

System (LI-COR, Lincoln, NE). Emission readings (700 nm and 800 nm chanel) of the 

samples were determined by integration of the image intensity. 

3.3.13. Preparation of anti-ErbB2 IPs 

Anti-ErbB2 antibody (Abcam, USA) was thiolated using 2-iminothiolane as 

described in 3.3.4.6. The maleimide functionalized polymersomes prepared from 

maleimide functionalized OB18 diblock copolymer mixture with OB2 diblock copolymer 

at a mole ratio of 5:95 as described in 3.3.3 was incubated with the thiolated antibody 

overnight under Ar flow at room temperature. The molar ratio of the thiolated anti-ErbB2 
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antibody to maleimide was 1:40. The reaction mixture was then applied to a sephacryl S-

500 HPLC column and eluted with 0.1 M PBS buffer (pH 7.4).  

3.3.14. Cell Culture and Harvest 

The human breast cancer cell lines BT474, HCC1569 cells, SKBR3, and MCF7 

were purchased from the American Type Tissue Culture Collection. BT474 cells and 

HCC1569 cells were cultured in Roswell Park Memorial Institute medium (RPMI) with 

penicillin:streptomycin (PenStrep), 10% fetal bovine serum (FBS), 1% glutamine and 10 

μg/mL of insulin. SKBR3 cells were cultured in Dulbecco's modified eagle's medium 

(DMEM) growth medium supplemented with 10% fetal bovine serum, 1% penicillin, 

10,000 μg/mL streptomycin, 2 mM L-glutamine and 1 mM pyruvate. MCF7 cells were 

cultured in DMEM with PenStrep and 10% FBS and 1% glutamine. Cells were grown in 

a humidified incubator (HERA Cell 150, Thermo Scientific, Germany) at 37 °C in a 5% 

CO2 atmosphere. The medium was replenished every two days and the cells were 

harvested as follows. Following removal of the growth medium, cells were first washed 

with 5 mL of phosphate buffered saline (PBS). PBS was removed and the cells were 

disassociated with 2 mL PBS containing 2 mM ethylenediamine tetraacetate (EDTA) and 

subcultured by trypsinization.  

3.3.15. Internalization of Anti-ErbB2 IPs in Cells 

Human breast cancer cells BT474, HCC1569 cells, SKBR3, and MCF7 were 

seeded at a density of 1 × 10
6
 cells per well in a 6-well plate and incubated for 24 h to 

allow attachment of cells to the plate prior to the uptake experiments. Both live cells and 

fixed cells (fixed by using 4% formaldehyde at room temperature for 15 mins and then 

washed 3 times with PBS buffer) were incubated with anti-ErbB2 810 nm emissive 

http://www.sigmaaldrich.com/catalog/search/TablePage/9628642
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polymersomes with and without conjugated anti-ErbB2 antibody, or with conjugated 

irrelevant rat-IgG antibody. For fixed cells, 4 nM polymersomes were incubated with the 

cells for 30 mins at room temperature.  For live cells, 1 nM polymersomes were 

incubated with the cells for 4 hours at room temperature. Following incubation, cells 

were washed 3 times with PBS buffer to remove non-internalized polymersomes. The 

cells were analyzed for the uptake of polymersomes with and without conjugated anti-

ErbB2 antibody with confocal laser scanning microscopy. 

3.3.16. Cell Imaging by Laser Confocal Scanning Microscopy  

Cells pre-treated with 810 nm emissive polymersomes with and without 

conjugated anti-ErbB2 antibody were incubated with nuclei staining Hoechest dye 33258 

followed by 3 PBS washes before imaging. The cell suspensions were visualized with a 

confocal laser scanning microscope (Leica SP5) equipped with 40× oil lens (Olympus). 

The measurements were performed in sequential mode, and the intensity of each 

fluorescent dye was adjusted individually: both FITC and PZn3 excitation were achieved 

with a 488 nm Argon laser. Fluorescence emission was captured using either 505-530 nm 

band pass (FITC) or 650 nm long-pass (YZ112) filters. Images were modified for 

contrast and brightness using Leica SP5 software.  

3.3.17. Quantification of IP Uptake 

BT474 cells and MCF7 cell lines were passaged when confluency reached 70%. 

These adherent cells were detached from culture plates with addition of 0.05% trypsin 

and 2 mM EDTA and incubation at 37C for 5 min. The single cell suspensions were 

counted to have a cell concentration of 1 × 10
6
 cells/mL. The cells were fixed by using 4% 

formaldehyde at room temperature for 15 mins, followed by washing 3 times with PBS 
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buffer. The cell suspensions were then incubated with either PBS buffer (control), NIR 

emissive polymersomes, or ErbB2-NIR emissive polymersomes at controlled 

concentrations (0.22 nM to 3.52 nM polymermersomes) for 1 hour at RT or overnight at 

4°C. Following incubation, cells were collected using three PBS washes with an 

additional volume of PBS added (10 times cell incubation volumes) before centrifugation 

(2 min, 5000 rpm). The polymersome containing supernatant was then removed and the 

wash cycle subsequently repeated twice.  

The dissociation constant of the polymersome-cell complex (Kdiss) and the 

maximum polymersome-cell binding ([P]max) was determined as best fit parameters of the 

dose response equation: 

[P] = [P]max[P]0/(Kdiss+[P]0) 

where [P] is the amount of cell-bound polymersomes per cell and [P]0 is the 

concentration of unbound polymersomes in the incubation medium.  

3.3.17.1. Flow Cytometry for Quantification of anti-ErbB2 IP Uptake in HER2 Cells 

A BD FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ) was 

employed to determine the extent of fluorescent labeling achieved by NIR emissive 

polymersome uptake. Cells were gated using the forward versus side scatter parameters. 

All experiments analyzed a minimum of 10 000 cell events. The NIR fluorophores were 

excited using an argon ion laser (15 mW, 488 nm) and probed with fluorescence 

detection in the FL3 channel (650 nm longpass filter). The uptake of polymersome-anti-

ErbB2 conjugates at different polymersome concentrations (0.22 nM to 3.52 nM) by 

BT474 cells and MCF7 cells were analyzed based on the measurement of cellular-

associated fluorescence of cells and the mean fluorescence intensity of gated viable cells.  
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3.3.17.2. Licor-Odyssey Imaging for Quantification of anti-ErbB2 IP Uptake 

The cell detection studies based on the uptake of polymersome-anti-ErbB2 

conjugates by BT474 cells and MCF7 cells were performed in a 96-well plate (BD 

Falcon, Franklin Lakes, NJ). Labeled cells from 4.3.4 were plated at dilutions of 25000, 

5000, 1000, or 200 cells per well. NIR emissive polymersomes were plated in parallel 

with 2-fold dilutions ranging from 1.6 to 0.012 fmol of polymersomes per well for 

calibration purposes. Images were acquired by excitation using a solid-state diode laser at 

785 nm and collected with a dichroic mirror filter above 810nm with an Odyssey Infrared 

Imaging System (LI-COR, Lincoln, NE). 

3.4. Results and Discussion 

3.4.1. Functionalized Block Copolymer Synthesis and Characterization 

We developed five different chemistry modification methods to synthesize 

functionalized PEO-b-PBD diblock copolymers to provide an amphiphilic polymer with 

functional properties suitable for the conjugation of antibody to polymersomes, as shown 

in Scheme 3.1. OB18, a member of the PEO-b-PBD family, was used for our 

functionalization. The terminal hydroxyl on the PEG end of OB18 was linked to different 

moieties. For FNB functionalization, FNB was used to functionalize the hydroxyl end 

group of OB18 via an esterification reaction. The functionalization degree for this step 

has been measured by NMR to be 88%, and the resulting product was stable at least 30 

days at neutral pH and 20 °C. For biotin functionalization, a two-step functionalization 

was utilized by adding biocytin to FNB functionalized OB18. In the second step, the 

terminal amine in the lysine tail of biocytin nucleophilically displaces an optical absorber 

that can be used to monitor the progression of the reaction at 428 nm.
70

 We measured that 
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the success of biotinylation is about 68% of all terminal hydroxyl groups by using the 

extinction coefficient of the biotin functionalized OB18 at 428 nm. For amine 

functionalization, a two-step reaction was also used by first mesylating the hydroxyl 

group of OB18. The functionalization degree for this step was measured by 
1
H NMR to 

be as high as 94%.  Hexamethylenediamine was then added to the mesylated OB18 to 

form the amine functionalized OB18, the functionalization degree for this step was 

measured by NMR to be 54% of the overall polymer. The maleimide functionalization 

was carried out by adding PMPI to give a maleimide functionality of OB18. The 

functionalization degree was calculated from NMR to be 72%. Finally, the hydrazone 

linkage functionalization was using HyNic to functionalize the hydroxyl group of OB18, 

and the functionalization degree was measured by NMR to be 63%.   
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Figure 3.1 
1
H NMR of FNB functionalized OB18. 
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Figure 3.2 
1
H NMR of mesylated OB18. 
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Figure 3.3 
1
H NMR of amine functionalized OB18. 
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Figure 3.4 
1
H NMR of HyNic functionalized OB18. 
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Figure 3.5 
1
H NMR of maleimide functionalized OB18. 
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3.4.2. Functionalized Polymersome Formation and Characterization 

3.4.2.1. Functionalized Polymersome Composition 

A polymer mixture of functionalized OB18 and OB2 was used to preform 

functionalized polymersomes. The reason we used this polymer mixture is because the 

OB18 diblock copolymer has a much longer PEO chain length compared to the OB2 

diblock copolymer and will be able to extend its hydrophilic functionalized end group to 

a further region on the polymersome outer surface, therefore there is less possibility for 

the functionalized end group to bend back towards the bilayer membrane and become 

less accessible to the antibody conjugation. Also, the steric hindrance effect on the 

polymersomes surface which prevents the antibody conjugation will be minimal because 

of the increased PEO chain length. Previous studies on conjugating antibodies to 

liposomes prepared from carboxyacyl derivatives of phosphatidylethanolamine with 

different chain length showed that with an increasing in PEG chain length from PEG2 to 

PEG20, the antibody conjugation efficiency greatly increased from 1% to 63%.
79

  

To make sure the mixture of the two different PEO-b-PBD diblock copolymers 

OB18 and OB2 would produce a uniform distribution of the two polymers in 

polymersomes, rather than a mixture of separate OB18 polymersomes and OB2 

polymersomes, we prepared 11 samples with different OB18 mole percentages ranging 

from 0% - 100% in the OB18/OB2 mixture as shown below in Figure 3.6. The 

morphology of all these samples was observed by Cryo-TEM, which showed a mixture of 

mostly polymersome vesicle structures together with a small amount of worm-like 

micelle structures in all the samples. The membrane thickness of the OB18/OB2 

polymersomes was also measured by Cryo-TEM. Previous literature results indicate that 
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OB2 polymersomes have a membrane thickness of 9.6nm and OB18 polymersomes has a 

membrane thickness of 14.8nm.
74

 The membrane thickness of our OB18/OB2 

polymersomes was right within this range of 9.6nm to 14.8nm. In addition, the membrane 

thickness increased linearly with the OB18 content in the OB18/OB2 mixture which was 

used to prepare OB18/OB2 polymersomes. All these results indicate that the mixtures of 

OB18 and OB2 diblock copolymers have a homogenous distribution of the two polymers 

in polymersomes, and this polymer mixture system could be used to prepare 

functionalized OB18/OB2 polymersomes. 

The functionalization end group is very small compare to the OB18 diblock 

copolymer, and thus should not change the morphology of the self-assembled OB18/OB2 

polymersomes. As expected, Cryo-TEM showed no structure change of 5% FNB 

functionalized OB18/OB2 polymersomes compared to the 5% OB18/OB2 polymersomes 

(Figure 3.7). 
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Figure 3.6 Polymersome membrane thickness vs. different OB18 content. 
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Figure 3.7 Cryo-TEM images of (A) 5% OB18/OB2 polymersomes and (B) 5% FNB 

functionalized OB18/OB2 polymersomes. 
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3.4.2.2. Peptide Conjugation by Using Functionalized Polymer vs. Preformed 

Functionalized Polymersomes 

As described in 3.2, there are two different methods to prepare ligand conjugated 

polymersomes. The first coupling procedure involves attachment of ligands to 

functionalized diblock copolymer to synthesize ligand-conjugated polymers, followed by 

using these ligand-conjugated polymers to self-assemble into polymersomes. The other 

method is to first form polymersomes from end-functionalized block copolymers, and 

then conjugate ligands to the preformed functionalized polymersomes surface. A small 

peptide ANHP was chosen to conjugate to FNB functionalized polymer or polymersomes 

to compare these two methods. For the first coupling method, we conjugated the ANHP 

peptide to the polymersomes via FNB functionalization, as shown in Scheme 3.13. The 

ANHP functionalized OB18 was mixed with OB2 at 1%, 3% and 5% to form 100nm-

sized polymersomes. Cryo-TEM images and DLS data of these three samples were taken 

and shown in Figure 3.8. In 1% and 3% ANHP peptide functionalized polymersomes, a 

lot of polymersome vesicle structures together with some worm-like micelle structures 

were observed by Cryo-TEM.  However, in 5% ANHP peptide functionalized 

polymersomes, very few polymersomes structures were observed. DLS data also 

confirmed this. In 1% and 3% ANHP peptide functionalized polymersomes, the average 

particles size was ~100nm, while in 5% ANHP peptide functionalized polymersomes, the 

particles size greatly increased to 1-10 μm, indicated large aggregate formation in 

solution. Therefore, by using this method, the maximum functionalization degree to form 

polymersomes is ~3% for ANHP peptide functionalized polymers. 
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Scheme 3.13 Preparation of ANHP conjugated polymersomes by using (A) preformed 

FNB functionalized polymersomes to conjugate ANHP peptide. (B) ANHP peptide 

functionalized polymer to self-assemble into polymersomes. 
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Figure 3.8 Cryo-TEM images and DLS data of 1%, 3% and 5% ANHP peptide 

conjugated  polymersomes made from ANHP functionalized polymers. 
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For the second method, the ANHP peptide conjugation was performed with the 

FNB functionalized polymersomes. 5%, 10% and 30% FNB functionalized 

polymersomes were then used for the ANHP conjugation reaction as shown in Scheme 

3.13. Cryo-TEM images and DLS data of these three samples were also taken and shown 

in Figure 3.9. A lot of polymersome vesicle structures together with some worm-like 

micelle structures were observed in ANHP peptide conjugated 5% and 10% FNB 

functionalized polymersomes, while in ANHP peptide conjugated 30% FNB 

functionalized polymersomes, the main structure were long worm-like micelles with a 

small amount of polymersomes. DLS data also showed the same morphology change for 

conjugation with increased FNB functionalization. In 5% and 10% FNB functionalized 

polymersomes, the average particles size was ~100 nm and didn‟t change much after 

ANHP peptide conjugation. However, in 30% FNB functionalized polymersomes, the 

particle size changed from average ~100 nm to a very wide size distribution from nm-

sized to um-sized particles, suggested formation of aggregated structures. Based on these 

results, the maximum functionalization degree was determined to be ~10% for ANHP 

peptide conjugation to FNB functionalized polymersomes. 
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Figure 3.9 Cryo-TEM images and DLS data of ANHP peptide conjugation to preformed 

5%, 10% and 30% FNB functionalized polymersomes. 
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In summary, both of these methods work well for conjugating small peptides such 

as ANHP on the polymersome surface, while the maximum functionalization degree we 

can reach by using peptide functionalized polymer is significantly lower (3%) compared 

to preformed FNB functionalized polymersomes (10%). For antibody conjugation, the 

second method by making antibody conjugated polymersomes from the preformed 

functionalized polymersomes is preferred. Preparing antibody polymersomes self-

assembled from antibody-conjugated polymers has a few significant drawbacks. First of 

all, as predicted from the ANHP peptide conjugation results, the maximum 

functionalization degree for antibody conjugation should also be much lower by using the 

antibody-conjugated polymer self-assembling method.  In addition, antibodies are 

normally very expensive and precious; we would hope to have a high antibody coupling 

efficiency to the polymersomes. When using the antibody-conjugated polymer to form 

polymersomes, about half of the antibody will be lost in the aqueous inner core of the 

polymersomes, resulted in low antibody conjugation efficiency on the polymersomes 

outer layer. Besides, considering most antibodies are much larger than small peptides and 

ligands, the polymersomes need to be pre-formed before the addition of antibody to 

prevent phase separation of antibody-modified and nonmodified block copolymers in the 

membrane.
80

 Therefore, antibody conjugated polymersomes are all prepared from the 

preformed functionalized polymersomes. 

3.4.3. Coupling Antibodies to Polymersomes: Evaluation and Comparison of the 

Different Methods 

We have developed a series of different chemical modification methods for 

attachment of proteins and antibodies to nanoscale NIR-emissive polymersomes. Using 



139 

 

these chemical modification procedures, we first functionalized the hydrophilic PEO 

terminus of OB18 diblock copolymers with selected activated functional groups. From 

these functionalized diblock copolymers, we then constructed polymersomes that vary 

with respect to the extent of reactive hydrophilic surface functionality. These surface-

modified vesicles will be subjected to coupling reactions with antibodies.  

There are two main approaches to attach antibodies on the surface of NIR-

emissive polymersomes: non-covalent linkage, such as the avidin-biotin interaction, or 

covalent binding. In the biotin-avidin method, avidin, with its four biotin binding sites, 

functions to crosslink the biotinylated antibody to biotinylated polymer at the 

polymersome surface. In this first approach (Figure 3.10B), the hydroxyl end groups of 

OB18 dilock copolymers were functionalized with FNB followed by conjugation to 

biocytin. Biotinylated OB18 diblock copolymers were mixed with nonfunctionalzed OB2 

and self-assemble into NIR-emissive polymersomes. These polymersomes were then 

conjugated to streptavidin and finally, biotinylated antibody was added and conjugated to 

these avidin-conjugated, biotinylated NIR-emissive polymersomes.  

The second approach involves the direct attachment of antibody to a preformed 

polymersome by covalent coupling. The polymersome will contain specifically 

functionalized end groups that are predisposed to react with the antibody. Five different 

functionalization chemistries have been used in this approach. The first functionalization 

method (Figure 3.10 A) involves using FNB functionalization by creating an active 

fluoride end group on the polymersome surface which can then be conjugated to amino 

bearing antibody. The FNB terminated OB18 diblock copolymers were mixed with 

nonfunctionalized OB2 and self-assemble into polymersomes. These FNB functionalized 
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polymersomes were then conjugated to antibodies. The second functionalization method 

(Figure 3.10C) uses TDIC as a linking group between antiboby and amine functionalized 

polymersomes. OB18 diblock copolymers were first functionalized with methanesulfonyl 

chloride. These mesylated OB18 diblock copolymers then reacted with 

hexamethylenediamine to form amine terminated OB18 diblock copolymers. Amine 

functionalized OB18 diblock copolymers were mixed with nonfunctionalized OB2 

diblock copolymers and self-assembled into polymersomes. TDIC was then added to this 

polymersome solution followed with antibody conjugation. The third functionalization 

method (Figure 3.10D) facilitates a hydrazone bond linkage motif by using the HyNic 

functionalized polymersomes to react with SFB modified antibody thus form a hydrazone 

bond. Finally, the maleimide (Figure 3.10E) and sulfo-SMCC methods (Figure 3.10F) 

involve the formation of a covalent thioether bond between the thiol groups on the 

antibody and maleimide groups on the polymersome surface. For the maleimide method, 

OB18 diblock copolymers were functionalized with N-(p-maleimidophenyl)isocyanate 

(PMPI), and the antibodies were functionalized by Traut‟s reagent. PMPI functionalized 

OB18 diblock copolymers were then mixed with unfunctionalized OB2 diblock 

copolymers and self-assembled into polymersomes, and conjugated to the thiol-actived 

antibody. For the sulfo-SMCC method, Sulfo-SMCC was added to the amine 

functionalized polymersome solution followed by thiol-activated antibody conjugation. 

 



141 

 

 

Figure 3.10 Reactions to attach an antibody to the polymersome surface.  

(A). Polymersomes are self-assembled from a blend of OB2 and FNB functionalized 

OB18. Amino-group-containing antibodies are then attached by the conjugation to the 

distant terminus of polymersome surface. 
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(B). Attachment of biotinylated antibody to polymersomes by noncovalent biotin-avidin 

coupling.  Avidin-conjugated, biotinylated OB18 diblock copolymers in self-assembled 

polymersomes are used to conjugate biotinlated antibody.  

(C). Diblock copolymer OB18 is initially functionalized to feature an amino-group on the 

PEO terminus. Attachment of amino-group-containing antibody to amino-group-

containing polymersomes is carried out by using a bifunctional reagent TDIC.   

(D)  In a particular case of amino-mediated coupling, SFB-containing antibody can be 

attached to HyNic functionalized polymersome with the formation of a hydrazone bond.  

(E) Attachment of thio-activated antibody to the maleimide-activated polymersomes. The 

sulphydryl group can be introduced into the amino-group-containing antibody by Traut‟s 

reagent. The maleimide group is introduced onto the polymersome surface by the 

activation of diblock copolymer with N-(p-maleimidophenyl)isocyanate (PMPI). SH-

containing antibody then interacts with maleimide-polymersome. 

(F). Attachment of thio-activated antibody to the amine-activated polymersomes via 

Sulfo-SMCC linkage. The maleimide group is introduced onto the polymersome surface 

by the activation of the amine group with Sulfosuccinimidyl 4-[N-maleimidomethyl] 

cyclohexane-1-carboxylate (Sulfo-SMCC), followed by conjugation to SH-containing 

antibody. 
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The reason we chose these chemistries is based on the following requirements for 

a successful antibody to polymersome conjugation: (1) the polymersomal integrity have 

to be preserved during the binding procedure; (2) the reaction conditions need to be mild, 

in an aqueous solution at a neutral PH range (pH 6-8), to preserve the antibody specificity 

and affinity; (3) a sufficient quantity of antibody molecules should be firmly bound to the 

polymersome surface; (4) the binding procedure should be simple with a high yield of 

antibody binding to the polymersome. The advantages and disadvantages of these six 

coupling methods are discussed below.  

The avidin-biotin noncovalent strategy has become a very commonly used 

method for active targeting. However, it involves multiple conjugation steps, and at a 

higher biotin functionalization degree, the polymersomes tend to aggregate,
81

 so we can 

only use a very low functionalization degree. All of these factors lead to a low antibody 

conjugation efficiency and polymersome yield.  

The FNB method is straightforward and only takes one-step. However, the 

reactivity of the FNB group towards antibody is relatively low and requires a very long 

reaction time (48 hours) at a relative high temperature (37-40 °C) which might denature 

the antibody and make them unreactive. Besides, the ester bond which forms between the 

FNB functionalized polymersomes and the antibody tends to hydrolyze over time and 

decreases the stability of this bond. 

The TDIC method is at a much milder condition and can be performed at room 

temperature for only 2 hours. However, as TDIC is sparingly soluble in water, organic 

solvent must be used; and TDIC polymerizes during the coupling reaction which 

decreases the polymersome recovery yield. 
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The hydrazone method requires multistep reaction and involves the use of HyNic 

and SFB reagent, both of which are pretty expensive. The main reason for us to choose 

this method is that the hydrazone bond formed between the functionalized polymersomes 

and antibody is fluorescent, and the conjugation degree could be directly quantified by 

measuring the absorbance of this hydrazone bond. However, in our NIR-emissive 

polymersomes, the absorbance of the hydrazone bond (λmax = 354 nm) is overlapped with 

our porphyrin soret band (250- 450 nm) and this fluorescent hydrazone bond could not be 

used for quantification. We expect this method to work well for other fluophore 

incorporated polymersomes in which the hydrazone bond absorbance is distinct from the 

incorporated fluorophore absorbance spectrum. 

 The sulfo-SMCC and maleimide method both use a single-step reaction for 

polymer functionalization, and the reactivity of the functionalized maleimide group 

towards the thiol-actived antibody is very high. Also, the antibody is conjugated to 

polymersomes by thioether bond, which is very stable and will not hydrolyze over time. 

Therefore, both methods results in rather high antibody conjugation efficiencies. 

However, for the sulfo-SMCC method, there are two HPLC separation steps for first 

removing the excess Sulfo-SMCC in solution and then removing the unbound antibody. 

Both HPLC purification loses some polymersomes and causes a lower polymersome 

recovery yield. This is consistent with the experimental results showing 45-50% 

polymersome recovery yield with the Sulfo-SMCC method. 

Table 3.1 compares the number of streptavidin and rat IgG antibody bound to the 

polymersomes for the non-covalent biotin-avidin method, and the five covalent coupling 

methods. Functionalized polymers were incorporated into polymersomes at 5 mol% 
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except for biotin functionalized polymer which was incorporated at 1 mol%. Using the 

biotin-avidin method, there are low levels of antibody attached to the polymersome 

surface with low efficiency. For the FNB, TDIC, Hydrazone, and Sulfo-SMCC methods, 

a moderate amount of antibody was bound to the polymersome surface. The maleimide 

method gave the highest amount of antibody bound to the polymersome surface. The 

polymersome recovery yields are also calculated by comparing the mass of the polymer 

recovered after antibody conjugation to the mass used to prepare the polymersomes. The 

recovery yields of the FNB and maleimide methods are ~30% higher than the non-

covalent biotin-avidin method and the hydrozone, TDIC, and sulfo-SMCC method. 

Considering both the antibody conjugation efficiency and the polymersome recovery 

yield, we conclude that the maleimide method is the best out of these six methods for 

antibody conjugation, which is well rationalized by the described advantages and 

disadvantages of these methods. 
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Table 3.1 Comparison of polymersomes preparation and conjugation procedures.  

Method 
Polymersomes 

composition 

# of 

streptavidin 

per 100nm 

polymersome 

# of rat IgG 

per 100nm 

polymersome 

Polymersome 

Recovery Yield 

Biotin 
1% OB18-Biotin/ 

99% OB2 
62 ± 9 11 ± 4 41% - 46% 

FNB 
5% OB18-FNB/ 

95% OB2 
92 ± 13 37 ± 6 72% - 81% 

TDIC 
5% OB18-NH2/ 

95% OB2 
78 ± 11 23 ± 5 45% - 52% 

Hydrazone 
5% OB18-SANH/ 

95% OB2 
114 ± 15 38 ± 7 70% - 76% 

Sulfo-SMCC 
5% OB18-NH2/ 

95% OB2 
142 ± 22 50 ± 12 42% - 50% 

Maleimide 
5% OB18-PMPI/ 

95% OB2 
162 ± 31 64 ± 11 75%  - 84% 

 

The antibody was coupled to 100 nm polymersomes at an antibody/functionalized 

polymer molar ratio of 1:10 for streptavidin or 1:40 for rat-IgG, and a polymersome 

concentration of 20 nM. The conversion from antibody concentration to the approximate 

number of antibodies per polymersome was based on the following assumptions: the area 

per polar head group for PEO-PBD diblock copolymer is 1 nm
2
 and that there are 

approximately 9.6 × 10
12 

polymersomes per μmol polymer
73

 and 4 × 10
12

 antibodies per 

μg protein. 
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3.4.4. Factors Affecting Antibody Coupling Efficiency 

Understanding and controlling the density of reactive antibodies on the 

polymersome surface is of great importance for applications such as targeted drug 

delivery. In order to investigate the effects of functional group concentration on 

polymersome surface modification, we produced different batches of polymersomes 

consisting of various molar percentages of the reactive functionalized OB18 diblock 

polymer and nonfunctionalized OB2 copolymers. We have investigated, for the FNB and 

maleimide coupling procedure, two main factors affecting coupling of antibody to 

functionalized diblock copolymer: (1) the concentration of FNB or Maleimide 

functionalized OB18 polymer incorporated into the polymersomes (Figure 3.11) , (2) the 

antibody concentration (Figure 3.12). For the FNB method, a 20-fold increase in the 

amount of incorporated FNB functionalized OB18 diblock copolymer, from 0.05 to 1.0 

mol% resulted in a 30-fold increase in the amount of bound streptavidin (Figure 3.11 A); 

a 3-fold increase in the amount of incorporated FNB functionalized ob18 diblock 

polymer, from 0.1 to 0.3 mol% resulted in a 2-fold increase in the amount of bound rat-

IgG (Figure 3.11 B). The conjugation of antibody reaches a plateau at 1% FNB 

functionalization degree for streptavidin conjugation and at 0.3% FNB functionalization 

degree for rat-IgG conjugation. The maximum number of streptavidin that can be 

conjugated to polymersomes by FNB coupling method is ~230 per 100 nm polymersome 

while the maximum number of rat-IgG that can be conjugated to polymersomes is ~47 

per 100 nm polymersome. For maleimide method, a 6-fold increase in the amount of 

incorporated maleimide functionalized OB18 diblock copolymer, from 0.5 to 3.0 mol% 

resulted in a 4-fold increase in the amount of bound streptavidin (Figure 3.11A); a 5-fold 
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increase in the amount of incorporated maleimide functionalized ob18 diblock polymer, 

from 0.2 to 1 mol% resulted in a 3-fold increase in the amount of bound rat-IgG (Figure 

3.11B). The conjugation of antibody reaches a plateau at 3% maleimide functionalization 

degree for streptavidin conjugation and at 1% maleimide functionalization degree for rat-

IgG conjugation. The maximum number of streptavidin that can be conjugated to 

polymersomes by maleimide coupling method is ~447 per 100 nm polymersome while 

the maximum number of rat-IgG that can be conjugated to polymersomes is ~158 per 100 

nm polymersome. Similarly, as the antibody concentration increased, the total amount of 

bound antibody also increased substantially, while the antibody conjugation efficiency 

decreased with the increasing antibody concentration (Figure 3.12). 
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Figure 3.11 Effect of funtionalized polymer content on coupling of protein streptavidin 

(A) and rat IgG (B) to polymersomes by FNB method (black line) and maleimide method 

(red line). 

Polymersomes were 100 nm in diameter, composed of streptavidin or rat-IgG. (A) 

Polymersomes containing 0 to 5 mol% functionalized-polymer were incubated with 

streptavidin at an antibody to functionalized polymer molar ratio of 1:2; (B) 

Polymersomes containing 0 to 1 mol% functionalized-polymer were incubated with SH-

rat-IgG at an antibody to functionalized polymer molar ratio of 1:2. 
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Figure 3.12 Effect of antibody concentration on coupling of antibody (rat-IgG) to 

polymersomes by maleimide method. 

5 mol% maleimide-OB18/OB2 polymersomes were incubated with various amounts of 

rat-IgG at a constant polymersome concentration of 20 nM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 

 

The maximum functionalization degree and number of antibody per 100 nm 

polymersomes is calculated, assuming the polymersomes surface is 100% cover with the 

antibodies are spherical particles. Considering the diameter of streptavidin is ~ 5nm
82

 and 

the diameter of IgG is ~10nm,
83

 the projected area of each streptavidin on polymersomes 

surface is 19.6 nm
2
 and for rat-IgG is 78.5 nm

2
. The surface area of 100 nm 

polymersomes is 31346 nm
2
, therefore the maximum number of streptavidin per 100 nm 

polymersome is 1600 and the corresponding maximum functionalization degree is 5.3%; 

while the maximum number of rat-IgG per 100 nm polymersome is 400 with 1.3% 

maximum functionalization degree. Taken into account the steric hindrance effect on the 

polymersomes surface, the experimental numbers of antibody per polymersome will be 

much smaller than these theoretical calculated numbers. Our measured values correspond 

well with the calculated numbers. The rat-IgG antibody, a much larger particle than 

streptavidin, has a low conjugation degree on the polymersome surface and the maximum 

functionalization degree is much smaller. Also, by comparing the numbers from FNB 

coupling method and maleimide coupling method, we could conclude that the maleimide 

method has a much stronger reactivity towards antibody conjugation than the FNB 

coupling method based on the increasing number of antibodies on the polymersome 

surface at the same functionalization degree. 

3.4.5. Confocal Microcope Imaging of Antibody Conjugated Polymersomes 

Meso-scale biotin functionalized polymersomes were prepared and conjugated to 

FITC-streptavidin. The morphology of the formed vesicles is shown in Figure 3.13. The 

polymer vesicle structures were very robust and didn‟t change after the antibody 

conjugation. The fluorescence from the FITC green chanel indicated uniform binding of 



152 

 

FITC-streptavidin on the polymersomes surface. However, streptavidin conjugated 

polymersomes formed by using this noncovalent method via streptavidin-biotin 

interaction were observed to be highly aggregated. This aggregation is due to the cross-

linking of streptavidin to biotinylated polymersomes.  

Similarly, meso-sized maleimide functionalized polymersomes were prepared and 

conjugated to SH-functionalized FITC-rat IgG antibody. The morphology of the formed 

antibody conjugated vesicles is shown in Figure 3.14. While the noncovalent biotin-

avidin conjugation method caused polymersome aggregation, the maleimide coupling 

procedures had a minimal aggregation effect and produced well dispersed, non-

aggregated antibody conjugated polymersome suspension. 
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Figure 3.13 Functionalized polymersomes labeled with FITC-streptavidin by biotin 

functionalization show uniform labeling. Green chanel: FITC emission, Red chanel: 

porphyrin emission, Orange chanel: overlapped. 
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Figure 3.14 Functionalized polymersomes labeled with FITC-rat IgG by maleimide 

functionalization show uniform labeling. Green chanel: FITC emission, Red chanel: 

porphyrin emission, Orange chanel: overlapped. 
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3.4.6. Cryo-TEM of nm-sized AB Conjugated Polymersomes 

After the conjugation of 10 nm gold-labeled goat-anti-mouse IgG antibody to 

nano-sized polymersomes, the structure of gold- labeled IgG antibody conjugated 

polymersomes was examined by multiple TEM techinques (Figure 3.15). The TEM 

images revealed that nano-scale antibody conjugated polymersomes were generally round 

and of vesicle-like shape, indicating that polymersomes were tough and the conjugation 

with the antibody did not rupture the polymersome structure. Conjugation of the antibody 

with the polymersome was also confirmed by gold labeled antibody visualized by TEM. 

Antibodies have very low scattering contrast and could not be visualized by TEM; by 

labeling them with electron-dense gold nanoparticles, the observation of the gold 

nanoparticles under TEM will indicate the presence of antibody. In TEM experiments 

(Figure 3.15A and B), polymersome samples were air dried, with aqueous solution 

trapped in the hydrophilic core, and appeared as black spheres without showing the subtle 

bilayer structure, with gold-labeled antibodies as the darker dots surround them. To 

confirm the black sphere structures we saw in classic TEM are truly polymersomes other 

than possible exist water droplets, negative staining TEM was employed by embedding 

the polymersomes in an electron dense material (PTA) providing high contrast, and 

polymersomes were seen as white spheres with a black edge which is the bilayer 

membrane of the vesicles. Furthermore, to allow the indicative evaluation of the 

polymersomal internal structure without discriminating on the fine details, Cryo-TEM 

was performed. In Cryo-TEM experiments, polymersome solution was frozen into a thin 

water film, thus the vesicle structures were well preserved and the bilayer structure was 

clearly revealed.  
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Figure 3.15 TEM images of Gold (10nm)-antibody conjugated polymersomes (PO-Gold): 

(A) and (B) PO-Gold in PBS buffer. (C) TEM images of PO-Gold negatively stained 

with PTA solution. (D) Cryo-TEM images of PO-Gold in PBS buffer. 
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3.4.7. ELISA of Antibody Conjugated Polymersomes 

Nanoscale polymersomes (100nm diameter) prepared using functionalized OB18 

blended with OB2 in 5:95 and polymer with porphyrin trimer (max = 798 nm) in 40:1 

were conjugated with rat-IgG and goat-anti-mouse IgG antibody. First, the binding of rat-

IgG antibody conjugated polymersomes towards goat-anti-rat IgG antibody was studied 

by ELISA experiments (Figure 3.16). The rat-IgG antibody conjugated polymersomes 

showed positive titers against goat-anti-rat IgG antibody, with enhanced absorbance 

intensities by increasing rat-IgG conjugated polymersomes concentration. The very 

obvious and quick color change even in dilute rat-IgG polymersome samples (0.37 fmol) 

proved the successful antibody conjugation on polymersomes. All of the control samples 

showed negative results which indicated that the non-conjugated polymersomes have 

minimal non-specific binding to the goat-anti-rat IgG antibody.  

Furthermore, the specificity and cross-reactivities of goat-anti-mouse IgG 

antibody and rat-IgG antibody conjugated polymersomes were also tested by ELISA 

experiments (Figure 3.17). Different IgG antibodies (mouse IgG antibody and rabbit IgG 

antibody) were used for ELISA plates coating. ELISA experiments (Figure 3.17) showed 

that the goat-anti-mouse IgG antibody conjugated polymersomes were only positive with 

plates coated with mouse IgG antibody, and were negative towards rabbit IgG. As 

expected, rat-IgG antibody conjugated polymersomes were also negative both to mouse-

IgG AND rabbit-IgG. This result indicates species-specific reactions. There are no non-

specific or cross-reactivities of antibody conjugated polymersomes. In summary, the 

ELISA results show that the conjugation of antibody to polymersomes was successful, 

with specific and selective binding towards 96 well plates. 
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Figure 3.16 ELISA plate images (left) and polymersomes standard curve (right). 

Sample: Rat IgG antibody conjugated 100 nm polymersomes. 

Blank1: functionalized, nonconjugated 100 nm polymersomes. 

Blank2: nonfunctionalized nonconjugated 100 nm polymersomes. 
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Figure 3.17 ELISA plate images for specificity tests. 

Polymersomes are dilute in 10 times series in each well (from left to right). 
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3.4.8. Licor-Odyssey Imaging of Antibody Conjugated Polymersomes 

The binding sensitivity of streptavidin conjugated polymersomes to biotinylated 

96 well plates was measured by Licor-Odyssey imaging system as shown in Figure 3.18. 

Different amounts (0.9-120 fmol)  of PZn3 incorporated streptavidin conjugated 

polymersomes (λem max=810 nm), and PZn2 incorporated streptavidin conjugated 

polymersomes (λem max=723 nm) were added to the biotinlayted 96 well plate, with 

DyLight 680 streptavidin and DyLight 800 streptavidin added at the same concentration 

as the polymersomes for comparison. Serial dilutions of the DyLight or polymersome 

based NIR emissive probe concentrations in lanes A-D demonstrate that polymersome 

enable analyte detection 2-3 orders of magnitude more sensitive than that provided by 

commercially available organic fluorophores. 

 Polymersome particles are much more sensitive than the DyLight streptavidin 

particles because each 100 nm polymersome made from 40:1 polymer:porphyrin contains 

~ 1,570 copies of porphyrin fluorophores in the bilayer membrane (there are 9.6 ×10
12

 

polymersomes per umol PEO-b-PBD polymer, 
73

 so each polymersomes are comprised of  

62,800 copies of polymer); while each DyLight streptavidin contains only a few copies of 

DyLight fluorophores per DyLight streptavidin particle. Therefore, each polymersome 

particle is thousands of times brighter than each DyLight streptavidin particle, and will 

greatly increases the detection sensitivity. 

From the Licor-Odyssey imaging experiments shown below in Figure 3.18, the 

minimal detection concentration (average from 3 measurements) is calculated using the 

equation: 

Minimal detection concentration = 3*SDblank/slope 
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The SDblank is the standard deviation of blank wells. Slope is from the linear 

regression fit of a series dilution curve. The minimal detection concentration calculated 

for PZn3 incorporated streptavidin conjugated polymersomes (λem max=810 nm) is 0.012 

fmol, DyLight 800 streptavidin is 2.37 fmol; for PZn2 incorporated streptavidin 

conjugated polymersomes (λem max=723 nm) is 0.69 fmol, DyLight 680 streptavidin is 

46.07 fmol. Comparing these numbers, the PZn3 incorporated streptavidin conjugated 

polymersomes (λem max= 810 nm) is 197.5 times more sensitive than DyLight 800 

streptavidin, and PZn2 incorporated streptavidin conjugated polymersomes (λem max= 723 

nm) is 66.7 times more sensitive than DyLight 680 streptavidin. 
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Figure 3.18 Licor Odyssey Imaging experimental results. 

Streptavidin, DyLight 800; B. Streptavidin, DyLight 680 conjugated; C. Streptavidin- 

810 nm emissive polymersomes conjugate; D. Streptavidin-723 nm emissive 

polymersomes conjugate. All samples are incubated in biotinylated 96 well plates for 1 

hour at RT with SEA blocking buffer and then rinsed with PBS three times before 

imaging using Licor Odyssey Imaging System. Red chanel: 700 nm emission, green 

chanel: 800 nm emission. 
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3.4.9. Anti-ErbB2 IPs for Targeting HER2 Cells 

We have generated anti-ErbB2 IPs consisting of functionalized polymersomes 

linked to anti-ErbB2 monoclonal antibody, to provide targeted delivery to HER2 

overexpression cells. Anti-ErbB2 IPs bound efficiently to and internalized in HER2 

overexpression cells in vitro as determined by confocal fluorescence microscopy and 

quantitative analysis of fluorescent probe delivery.  

3.4.9.1. In Vitro Optical Imaging of Labeled Human Breast Cancer Tumor Cells 

Anti-ErbB2 antibodys are readily internalized in HER2-overexpression tumor 

cells via receptor-mediated endocytosis.
84

 To assess whether anti-ErbB2 IPs also 

internalize within target cells in vitro, a series of studies using confocal fluorescence 

microscopy were performed. As seen in Figure 3.19, anti-ErbB2 IPs labeled with 810 nm 

emissive porphyrin, were incubated with HCC1569, BT474, SKBR3 fixed breast cancer 

cells, which overexpress HER2 (10
6
 molecules/cell), and with MCF-7 fixed breast cancer 

cells which have very low or basal levels of HER2 expression (10
4
 receptors/cell).

85
 The 

anti-ErbB2 IPs significantly bind to HCC1569, BT474, SKBR3 cells as evident from 

images Figure 3.19A-C, demonstrated intense fluorescence at the cell surface by 30 min, 

indicating rapid internalization. In addition, the anti-ErbB2 IPs were localized 

intracellular and distributed throughout the cytoplasm as clearly evident in Figure 3.20. 

MCF7 cells similarly incubated with anti-ErbB2 IPs showed minimal uptake of anti-

ErbB2 IPs (Figure 3.19D), indicating very weak non-specific binding of anti-ErbB2 IPs 

with cells with low HER2 expression.  

Furthermore, the specificity of anti-ErbB2 IP uptake was confirmed by incubation 

of SKBR3 cells with irrelevant rat-IgG conjugated polymersomes and nonconjugated 
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polymersomes in both live and fixed SKBR3 and MCF7 cells lines (Figure 3.21). The 

confocal microscope results demonstrated strong specific binding of anti-ErbB2 IPs to 

HER2 overexpressed SKBR3 cells, and no detectable interaction of irrelevant rat-IgG 

conjugated polymersomes and nonconjugated polymersomes in SKBR3 cells. As 

expected, live cells also exhibit similar anti-ErbB2 IP binding properties as fixed cells. 

Taken together, these studies demonstrated the ability of anti-ErbB2 IPs to 

selectively internalize in target cells, thus the potential for intracellular delivery. This 

targeting strategy can provide a critical advantage to the therapeutic action of many 

anticancer agents. 
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Figure 3.19 Confocal microscopy of fixed cells coincubated at RT 30mins with anti- 

ErbB2 emissive IPs (5 mol % Maleimide functionalization, ErbB2 antibody conjugated, 

723nm emissive) and Hoechst 33258.  

Left column, Hoechst 33258 (blue); central column, emissive polymersomes (red); right 

column, overlapped images. (A). HCC1569 cells.  (B). BT474 cells. (C). SKBR3 cells. 

(D). MCF7 cells. Scale bar: 25 μm. 
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Figure 3.20 Detailed confocal microscope images of fixed SKBR3 cells coincubated at 

RT 30mins with anti-ErbB2 emissive IPs (5 mol % Maleimide functionalization, ErbB2 

antibody conjugated, 723nm emissive) and Hoechst 33258.  

A: Hoechst 33258 (blue); (B) emissive polymersomes (red); (C) differential interference 

contrast (DIC) image of cells; (D) overlapped images. Scale bar: 10 μm. 
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Figure 3.21 Confocal microscopy of cells coincubated at RT 30mins (fixed cells) or 4 

hours (live cells) with different polymersomes (red) and Hoechst 33258 (blue). 

Left column: anti- ErbB2 IPs; central column: irrelevant IgG conjugated polymersomes; 

right column: nonconjugated polymersomes. (A). live SKBR3+ cells. (B). live MCF7- 

cells. (C). fixed SKBR3+ cells. (D). fixed MCF7- cells. Scale bar: 75 um.  
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3.4.9.2. Concentration Dependence Anti-ErbB2 IPs Uptake 

In order to maximize the intracellular uptake of polymersomes necessary for 

optimal cellular labeling, the maximum uptake concentration on HER2 cell uptake were 

examined. Flow cytometry was used to measure the intensity of cellular-associated PZn3-

based fluorescence following cell incubation and washing. The uptake of both anti-ErbB2 

IPs and nonconjugated polymersomes controls at various polymersome concentrations 

was evaluated in order to distinguish the impact of anti-ErbB2 conjugation on 

intracellular delivery. The histograms presented in Figure 3.22 demonstrate clear dose-

dependent uptake of anti-ErbB2 IPs in HER2 overexpressing BT474 cells, while the 

nonconjugated control polymersomes had minimal nonspecific binding in BT474 cells. 

The MCF7 cells that lack ErbB2 overexpression showed minimal uptake of both 

polymersomes with or without anti-ErbB2 antibody conjugation. 

The concentration dependence of anti-ErbB2 IPs uptake is also evident for both 

anti-ErbB2 antibody conjugated and nonconjugated (control) polymersomes. The uptake 

of anti-ErbB2 NIR emissive polymersomes becomes saturated after incubation with a 

concentration of 0.88 nM polymersomes. This saturation is clearly observed in Figure 4B 

where the geometric mean fluorescence intensities of the presented histograms are plotted 

against the treatment concentration. 
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Figure 3.22 Representative histograms for BT474 and MCF7 cells treated at room 

temperature 1 hour with either control or anti-ErbB2 NIR emissive polymersomes at the 

indicated polymer dose. 
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Figure 3.23 Geometric mean fluorescent intensity from flow cytometry analysis with 

different polymersome concentration for BT474 cells (black line) and MCF7 cells (red 

line) treated with anti-ErbB2-conjugated NIR emissive polymersomes (solid dots) or 

control NIR emissive polymersomes (hollow dots).  
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Furthermore, for quantitative studies of anti-ErbB2 IP uptake, internalization and 

intracellular delivery, Licor-Odyssey imaging system was used to assay the number of 

anti-ErbB2 IPs binding to HER2 cells. HER2 cells that were stained with NIR emissive 

polymersomes at different cell concentrations were plated in 96 well plates and the cell 

emission from each well were integrated. NIR imaging allows quantitative and repetitive 

detection of fluorophore-labeled cells without disturbing cellular function. The 

representative images of plated cells are presented in Figure 3.24 and Figure 3.26. 

Similar to the flow cytometry results, we observed a clear dose-dependent uptake of anti-

ErbB2 IPs in HER2 overexpression BT474 cells while the nonconjugated control 

polymersomes had minimal staining in BT474 cells, while MCF7 cells that lack ErbB2 

overexpression showed minimal uptake of both polymersomes with or without anti-

ErbB2 antibody conjugation. For each single Licor-Odyssey imaging measurement, a 

standard calibration curve created from the number of NIR fluorophores versus total 

photon counts per well (Figure 3.25A and Figure 3.27A) was used for the estimation of 

the amount of fluorophore associated with each cell population and ultimately the number 

of polymersomes per cell. The number of polymersomes per cell as a function of 

polymersome treatment concentration is presented in Figure 3.25B and Figure 3.27B. A 

single BT474 cell can be effectively labeled with 86,000 ± 2,500 anti-ErbB2 IPs, and 800 

± 50 control polymersomes. However, for MCF7 cells, they can only be labeled with 

1,700 ± 130 anti-ErbB2 IPs per cell, or 830 ± 200 control polymersomes per cell. These 

results were represented in Figure 3.28 for easy comparison. The binding curve of anti-

ErbB2 IPs to BT474 cells fit very well to the simple Langmuir-type dose response 

equation of the equilibrium binding assuming all binding sites equal and independent 
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(Figure 3.25C). The maximum number of anti-ErbB2 IPs per cell is calculated to be 

88,751 ± 5151, and the dissociation constant is 0.84 ± 0.37 min
-1

.  

The maximum polymersomes uptake percentage which equals the number of 

polymersome uptake up divided by the polymersomes initially added for staining is also 

calculated and the results are represented in Figure 3.29. The maximum IP uptake is 37.9 

± 1.8% for BT474 cells, and 0.60 ± 0.18% for MCF7 cells. The maximum cellular uptake 

for the control polymersomes is 0.19 ± 0.03% for BT474 cells, and 0.19 ± 0.05% for 

MCF7 cells.  
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Figure 3.24 Representative Licor-Odyssey image of 96-well plate with 5-fold serial 

dilutions of BT474 cells with different concentrations of anti-ErbB2-NIR-polymersomes 

and control NIR-polymersomes.  

 



174 

 

 

 

Figure 3.25 (A) Fluorescence calibration with total photon counts versus the number of 

NIR-polymersomes (PO) per well (n = 8);  linear fit R
2
 = 0.99. (B) The calculated 

number of polymersomes per cell as a function of cellular treatment condition. (C). Fitted 

curve for binding of anti-ErbB2 immunoliposomes to BT474 cells. 

Black bars represent BT474 cells treated with anti-ErbB2-NIR-polymersomes, and the 

red bars represent BT474 cells treated with control NIR-polymersomes. Error bars 

represent standard deviation. 

C 
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Figure 3.26 Representative Licor-Odyssey image of 96-well plate with 5-fold serial 

dilutions of MCF7 cells with different concentrations of anti-ErbB2-NIR-polymersomes 

and control NIR-polymersomes.  
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Figure 3.27 (A) Fluorescence calibration with total photon counts versus the number of 

NIR-polymersomes (PO) per well (n = 8); linear fit R
2
 = 0.99.  (B) The calculated 

number of polymersomes per cell as a function of cellular treatment condition.  

Black bars represent MCF7 cells treated with anti-ErbB2-NIR-polymersomes, and the red 

bars represent MCF7 cells treated with control NIR-polymersomes. Error bars represent 

standard deviation. 
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Figure 3.28 Number of polymersomes per cell with different polymersome 

concentrations for BT474 cells (black line) and MCF7 cells (red line) treated with anti-

ErbB2-conjugated NIR emissive polymersomes (solid dots) or control NIR emissive 

polymersomes (hollow dots) measured by Licor-Odyssey experiments.  
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Figure 3.29 Relative uptake, percentage of polymersomes added/10
6 

cells (A) BT474 

cells and  (B) MCF7 cells treated with different polymersome concentration of anti-

ErbB2-conjugated NIR emissive polymersomes (solid dots) or control NIR emissive 

polymersomes (hollow dots) measured by Licor-Odyssey experiments.  
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Finally, since both Licor-Odyssey imaging and flow cytometry measure the 

fluorescence per cell, we compared results from each of these assays by normalizing 

individual values with the maximum fluorescence signal intensity observed in each 

method. These results are presented in Figure 3.23 and summarized in Table 3.2 which 

shows that the independent assays are in close agreement. In both assays, the extent of 

labeling is greatest for BT474 cells labeled with anti-ErBb2 NIR emissive IPs. Cellular 

labeling levels in the absence of anti-ErbB2 antibody are two orders of magnitude lower 

for ErBb2 overexpression BT474 cells and one order of magnitude lower for non-ErbB2 

overexpression MCF7 cells. The corroboration of both the NIR imaging and flow 

cytometry-based assays shows the reliability of our imaging methods. 
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Table 3.2 Comparison of fluorescence per cell value generated from Licor-Odyssey 

imaging or flow cytometry analysis. 

 
Normalized fluorescence/cell 

 
BT474 cells MCF7 cells 

Concentration 

(nM) 
0.22 0.44 0.88 1.76 3.52 0.22 0.44 0.88 1.76 3.52 

 
Flow cytometrya 

Anti-ErbB2 

IPs 
4.67 32.98 55.18 81.39 100 0.70 0.83 1.33 2.03 2.61 

Control POs - - 0.01 0.21 0.68 0.05 0.09 0.12 0.38 0.89 

 
Licor-odyssey  imagingb 

Anti-ErbB2 

IPs 

4.12 

(0.18) 

31.37 

(1.60) 

57.84 

(2.74) 

79.55 

(4.31) 

100 

(5.91) 

0.09 

(0.09) 

0.62 

(0.13) 

0.67 

(0.11) 

1.30 

(0.07) 

2.77 

(0.20) 

Control POs - - - 
0.29 

(0.06) 

0.98 

(0.08) 
- - - 

0.32 

(0.10) 

1.51 

(0.70) 

 

a 
Normalized average photon counts per cell (mean ± SD) by Licor-Odyssey image.  

b
 Normalized geometric mean fluorescence of 10 000 events by flow cytometry analysis. 
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3.5. Conclusions 

The goal of this work was to design and implement a simple, efficient, and 

universal method to covalently attach big biological ligands, such as antibodies, to 

polymersomes in order to provide a platform for targeting experiments. Amphiphilic 

PEO-b-PBD diblock copolymers comprising FNB, biotin, amine, amide and maleimide 

functionalities at their hydrophilic ends were synthesized and characterized. Six different 

antibody coupling procedures were developed based on these five different functionalities 

on polymersomes surface. All these coupling procedures were evaluated and compared in 

terms of antibody conjugation efficiency and polymersome receovery yield. The 

maleimide coupling procedure was concluded to be the optimized method for antibody 

conjugation, which yields ~162 streptavidin molecules and ~64 rat-IgG antibodies per 

100 nm polymersomes at ~80% antibody conjugation efficiency with a high 

polymersome yield of 75-84%.  The covalent attachment of antibody to polymersomes 

can be controlled by varying the molar percentage of functionalized polymer in the 

polymersome. The effect of antibody concentration on conjugation efficiency was also 

studied. Characterization of the antibody conjugated polymersomes by confocal 

microscope and Cryo-TEM experiments showed successful conjugation of antibody to 

the surface of polymersomes. The reactivity and specifity of the antibody after 

conjugation to polymersomes was also studied by ELISA. The results demonstrated that 

antibody conjugated polymersomes showed speficic and selective binding in 

immunoassays. Furthermore, the sensitivity of antibody polymersomes conjugates for 

optical based NIR imaging was studied by Licor-Odyssey imaging. The antibody 
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conjugated polymersomes appear to be 1-2 orders more sensitive than the commercially 

available fluorescent-tagged antibodies.  

Finally, anti-ErbB2 NIR emissive IPs were developed based on these established 

functionalization chemistries to combine the tumor-targeting propertied of anti-ErbB2 

monoclonal antibodies with the pharmacokinetic and delivery properties of long 

circulating polymersomes. Anti-ErbB2 IPs bound efficiently to and internalized in HER2 

overexpressing cells, resuling in intracellular delivery in vitro, as determined by 

fluorescence confocal microscopy and quantitative analysis of fluorescent probe delivery. 

HER2 overexpression tumor cells uptake of the probes was saturated at high 

concentrations. Optimized cellular uptake of NIR emissive polymersomes was achieved 

in BT474 cells incubated with anti-ErbB2 IPs at 0.88 nM concentration in 1 h, with 

uptake efficiency as high as 37.3%. This high efficiency uptake of IPs in BT474 cells 

corresponds to 86,000 ± 2,500 polymersomes per cell. This number is much higher than 

the anti-HER2 immunoliposomes uptake which is only 8,000-23,000 IPs per cell.
86

 

Although this maximum number of polymersomes per cell is similar to other peptide 

conjugated polymersomes, for example, the uptake of Tat-polymersomes into dentric 

cells resulted in ~ 70,000 polymersomes per cell,
39

 the uptake of our antibody conjugated 

IPs is much more rapid (within 1 hour incubation) compared to the small peptide 

conjugated polymersomes (over 10 hours incubation), suggests a much stronger 

interaction of IPs with the cells than peptide conjugated polymersomes. In summary, we 

developed a new antibody-polymersome platform, based on a series of different 

conjugation chemistries that allows multifaceted and stable attachment of targeting 

antibodies. This targeting strategy can provide a critical advantage to the therapeutic 
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action of many anticancer agents and presents new opportunities to make highly sensitive 

and effective immunoassays for in vivo imaging and biomedical applications.  
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CHAPTER 4. Synthesis, Characterization, Polymersome 

Preparation, Morphology Assessment and 

Functionalization of Biodegradable Diblock Copolymers 

 

4.1. Summary 

Polymersomes have been shown to possess a number of attractive biomaterial 

properties including prolonged circulation times, increased mechanical stability, and the 

unique ability to non-covalently incorporate numerous high-molecular-weight 

hydrophobic molecules within their thick lamellar membranes.  A long-standing 

challenge in materials chemistry, however, has been the development of polymersomes 

comprised entirely of biodegradable, non-toxic synthetic amphiphiles that would make 

these vesicles truly competitive with liposomes for in vivo applications.  In this chapter, 

we described the formation of polymersomes through self-assembly of an amphiphilic 

bioresorbable polymer consisting of three previously FDA-approved building blocks: 

poly(ethyleneoxide) (PEO) , poly(ε-caprolactone) (PCL) and poly(1,3-trimethylene 

carbonate) (PTMC). Unlike other published reports of degradable peptide, polyester, or 

polyanhydride-based polymersomes, these biodegradable vesicles are formed 

spontaneously through self-assembly without the addition of co-solvent or blending with 

other non-degradable vesicle-forming polymers, enabling facile, large-scale synthesis and 

thus obviating the need for post-assembly processing. We found the PEO-b-PCL diblock 

copolymer compositions that form none or very little meso-scale polymersomes could 
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form ~100% nano-scale polymersomes, implicates various in vivo applications for this 

diblock copolymers as nano-sized drug delivery vesicles.  

Furthermore, by copolymerizing TMC, soft, bioresorbable vesicles with reduced 

membrane crystallinity were prepared. Notely, the vesicles prepared from these TMC 

containing materials have much smaller sizes compare to classic polymer vesicles, 

suggests prolonged in vivo circulation time and thus delayed clearance by the 

reticuloendothelial system (RES), a highly desired property for in vivo applications. In 

addition, these PEO-b-PTMC and PEO-b-P(CL-co-TMC) can also self-assemble into 

uniform distributed large spherical micelles at very high yields, enable the arising of new 

promising nanomaterials for various biomedical applications. 

 Finally, we synthesized vinyl sulfone functionalized PEO-b-PCl diblock 

copolymers which can be readily used for peptide conjugation and tumor targeting. As 

such, these bioresorbable polymersomes hold promise as nanomaterials for future 

imaging, targeting and drug delivery applications. 

4.2. Introduction 

Polymersomes (50 nm - 50 μm diameter polymer vesicles)  formed from 

amphiphilic block copolymers have attracted much attention due to their superior 

mechanical stabilities and unique chemical properties relative to those of conventional 

lipid-based vesicles (liposomes) and micelles.
1-5

  Polymer vesicles have not only proven 

capable of entrapping water-soluble hydrophilic compounds (drugs, vitamins, 

fluorophores, etc.) inside of their aqueous cavities, but have been shown to disperse 

hydrophobic molecules
5 

within their thick lamellar membranes.  Moreover, the size, 

membrane thickness, and stability of these synthetic vesicles can be rationally tuned via 
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various preparation methods
1, 4

 through modulation of block copolymer chemical 

structure, number-average molecular weight, and hydrophilic to hydrophobic volume 

fraction: polymersomes thus have adjustable characteristics that lend to their potential 

function in medical imaging, drug delivery, and cosmetic applications.
1, 5, 6 

To date, polymersomes have been formed predominantly from amphiphilic 

diblock copolymers that include poly(ethylene oxide)-b-polybutadiene (PEO-b-PBD),
1, 5, 

7
  poly(ethylene oxide)-b-polyethylethylene (PEO-b-PEE),

7
 polystyrene-b-poly(ethylene 

oxide) (PS-b-PEO),
8-10

 polystyrene-b-poly(acrylic acid) (PS-b-PAA),
1, 9, 11

 poly(ethylene 

oxide)-b-poly(propylenesulfide) (PEO-PPS),
12

 
13, 14

 poly(2-(methacryloyloxy) 

ethylphosphorylcholine)-b-poly(2-(diisopropylamino)ethylmethacrylate) (PMPC-

PDPA)
15, 16

 and polystyrene-b-polyisocyanoalanine(2-thiophene-3-yl-ethyl)amide (PS-

PIAT)
17-20

. None of these well-established polymersome formulations, however, yields 

self-assembled fully-biodegradable polymer-based vesicles useful for in vivo applications.  

A few biodegradable polymersomes prepared from amphiphilic biodegradable diblock 

copolymers of PEO and aliphatic polyesters/polycarbonates using an organic co-

solvent/water injection/extraction system have been reported;
21-23

 in contrast with other 

polymersome preparation procedures based on self-assembly (i.e. film hydration, bulk 

hydration, or electroformation), a drawback of the co-solvent method is that the organic 

co-solvent must be completely removed from the aqueous polymersome suspension post-

assembly; in addition to this required processing, the presence of any residual organic 

solvent in such vesicles constitutes an additional concern in the transition of these 

polymersomes for in vivo application. The other drawback of the co-solvent method is 

that the self-assembling process of diblock copolymer are affected by many different 
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factors, such as the diblock copolymer concentration, the water content, temperature, the 

mixing time and order of aqueous phase and organic phase.
22, 24-26

 Therefore the 

cosolvent method is relatively hard to control and repeat, whereas the thin-film hydration 

method is not affected by these factors and is much more facile. 

We have previously reported the generation of self-assembled polymersomes 

comprised entirely of an amphiphilic diblock copolymer PEO(2K)-b-PCL(12K) by thin 

film hydration featuring two previously FDA-approved polymers, poly(ethylene oxide) 

(PEO) and polycaprolactone (PCL).
27

 Unlike degradable polymersomes formed from 

blending "bio-inert" and hydrolysable components,
28, 29

 these PEO-b-PCL-based vesicles 

promise to be fully bioresorbable,
30

 leaving no potentially toxic byproducts upon their 

degradation.  Besides, unlike published reports of other degradable (polypeptide-, 

polyester-, or polyanhydride-based) polymersomes,
21, 22, 31-33

 these bioresorbable vesicles 

are formed through spontaneous self-assembly of their pure amphiphile component, 

offering manufacturing advantages in terms of cost, tune, and safety. Moreover, these 

self-assembled vesicular architectures allow for the economic generation of mesoscopic 

colloidal devices, enabling large-scale production while eliminating the need for costly 

removal of organic cosolvents post assembly. These polymersomes are also found to 

possess slow in vivo drug release kinetics which makes them appropriate for potential 

intravascular drug delivery applications. However, it is well known that the size of 

particles has a big influence on blood circulation times, RES recognition, biodistribution 

and the mechanism of cell uptake.
34-36

 The in vivo uptake of particles and the extent of 

drug absorption increase with decreasing particle size and increasing specific surface area; 

the optimum size for circulation in the blood stream is around 80-150 nm, and the uptake 
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of particles larger than 1 μm in diameter is minimal.
37-39

 Therefore, it is very important to 

make nano-sized vesicles for in vivo applications using the vesicle morphology for 

encapsulation and drug delivery, which implicates an urgent need to screen for PEO-b-

PCL diblock copolymer compositions that can self-assemble into nano-scale 

polymersomes by examining the effect of hydrophilic fraction and PEO chain length on 

the formation of nano-sized vesicles. Butler et al.
22

 have looked into the formation of 

nano-sized vesicles from a number of PEO-b-PCL block copolymers. However, they 

were using co-solvent method for the vesicle preparation, and only checked on a very 

narrow range of commercial available PEO-b-PCL polymers at small PEO chain length 

and low copolymer molecular weights. Besides, they only checked on the effect of 

hydrophilic fraction on the formation of vesicles. In this work, we report the synthesis, 

characterization, and morphologies formed via aqueous self-assembly, of a very wide 

range of amphiphilic PEO-b-PCL compositions varying both the hydrophilic fraction and 

the PEO chain length.  

These biodegradable PEO-b-PCL diblock copolymers were fabricated by: (i) ring-

opening polymerization of ε-caprolactone monomer (ε-CL) followed by coupling to 

commercially available monomethoxyl PEO (MePEO); and (ii) sequential anionic living 

polymerization of ethylene oxide and caprolactone monomers.  The number-average 

molecular weight and molecular weight distribution were characterized for each 

copolymer formulation by nuclear magnetic resonance (NMR) spectroscopy and gel 

permeation chromatography (GPC). These PEO-b-PCL diblock copolymers possessed 

number-average molecular weights spanning 3.6-57K, PEO block weight fractions 

ranging from 0.08-0.33 and polydiserpsity index (PDI) ranging between 1.14 and 1.37.   
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The thin film hydration method and organic co-solvent water injection/extraction method 

were employed to self-assemble diblock copolymers into various aqueous morphologies.  

The resultant structures were visualized by confocal, optical, and cryogenic transmission 

electron microscopic imaging.   

PEO was chosen as the hydrophilic block for increasing of vesicles surfaces 

biocompatibility and prolonged blood circulation times.
40-42

  PCL constitutes the 

hydrophobic membrane portion of the vesicles.  PCL is degraded by hydrolysis of its 

ester linkages in physiological conditions and has therefore received lots of attention for 

use as an implantable biomaterial in drug delivery devices, bioresorbable structures, 

adhesion barriers, and as scaffolds for injury repair via tissue engineering.
43-46

 PCL has 

several advantageous properties compared to other biodegradable aliphatic polyesters: (1) 

high permeability to small drug molecules; (2) maintenance of neutral pH upon 

degradation; (3) facility in forming blends with other polymers; and (4) suitability for 

long-term delivery afforded by slow erosion kinetics as compared to polyglycolide 

(PGA), polylactide (PLA), and polylactic-co-glycolic acid (PLGA).
44

  Therefore, the 

utilization of PCL as the hydrophobic block promises that the resultant polymersomes 

should have safe and complete in vivo degradation. However, different from the PEO-b-

PBD polymersomes that are “stealth” like, the biodegradable PEO-b-PCL polymersomes 

are found to be highly crystallized as determined by differential scanning calorimetry 

(DSC).
27

 It is known that membrane rheology can significantly influence how 

polymersomes interact with their surroundings.
47

 Soft membranes have several 

advantages over rigid membranes, the contact area between a soft vesicle and substrate is 

increased as the soft vesicle can deform and flatten on a surface, while no conformational 
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change can occur to improve the contact area for rigid vesicles.  Consequently, the 

binding between soft vesicles and a substrate (i.e. a tissue) would be enhanced compared 

to a rigid vesicle‟s binding.
48

 Another advantage of soft membrane vesicles is their ability 

to successfully passivate tumor tissue in vivo by deform-to elongate-to fit through the 

endothelial pore,
49

 since the leaky junction pathway of tumor vasculatures is only 40-80 

nm, which is smaller than the typical polymersome diameter.
50

 In addition, crystallized 

polymers easily form multi-molecular aggregates which could accumulate undesirably in 

cells and kidneys as crystalline aggregates. 

To decrease the crystallization of PCL blocks in PEO-b-PCL polymersomes and 

make soft polymersomes which can easily go through flesh and skin cells, poly(1,3-

trimethylene carbonate) (PTMC), a rubbery and amorphous polymer with low glass 

transition temperatures, was taken as a starting point in the design of alternative synthetic 

materials with suitable mechanical properties. Poly(trimethylene carbonate) (PTMC) is a 

valuable candidate for biomedical applications in light of its biodegradability, 

biocompatibility and low toxicity.
51

 Due to its excellent flexibility and poor mechanical 

strength, PTMC have been evaluated as flexible synthetic materials for the preparation of 

tissue engineering scaffolds or as depots for controlled release systems,
52-61

 as well as in 

the design of implants, such as anti-adhesion membranes or vascular prostheses.
62

 In vivo, 

PTMC degrades relatively rapid without the release of acidic degradation products.
51, 63,51, 

64
 Unlike the PCL, PMTC undergo surface degradation, the degradation and erosion are 

only limited to the polymer surface and the mass loss is linear. Therefore, the molecular 

weight of the polymer should be constant and the mechanical strength of the polymer 

should slowly decrease during the degradation process. 
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Seeing the promise in this material, biodegradable amphiphilic Poly(ethylene 

oxide)-b-Poly(trimethylene carbonate) (PEO-b-PTMC) diblock copolymers and 

Poly(ethylene oxide)-b-Poly(-caprolactone-co- trimethylene carbonate) (PEO-b-P(CL-

co-TMC) diblock tripolymers varying in a number average molecular weight (Mn: 5.7-

35.6k) and PEO weight fraction (fPEO: 0.10-0.25) and TMC molar fraction of the 

hydrophobic block (30%, 50%, 100 %) were synthesized. The number-average molecular 

weight and molecular weight distribution were characterized for each copolymer 

formulation by nuclear magnetic resonance (NMR) spectroscopy and gel permeation 

chromatography (GPC). The chemical and thermal properties of these polymers in bulk 

were characterized by differential scanning calorimetry (DSC). The polymers were also 

subsequently screened for their ability to self-assemble into meso-scale and nano-scale 

polymersomes in dilute aqueous solution. All copolymers robustly assembled into both 

micron-sized and nano-sized vesicles. These vesicles were characterized for their 

mechanical rigidity, and stability properties.  

Finally, as described in Chapter 3, actively targeted carriers have proven to be 

particularly promising for enhancing the specificity of drug delivery systems.
65

 However, 

very little study has done on the functionalization of biodegradable PEO-b-PCL 

polymersomes. Jiang etc. reported functionalized vesicles formed from maleimide 

functionalized PEO-b-PCL; 
66-68

 the maleimide functionalized PEO-b-PCL diblock 

copolymer synthesis is based upon custom-synthesized hydroxy-polyethyleneglycol-

maleimide, which is costly and have very few options of PEO molecular weight. Herein 

we report the synthesis of vinyl sulfone functionalized PEO-b-PCL diblock copolymer 

with a wide molecular weight distribution and capable of reacting with targeting ligands 
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under mild conditions via conjugate addition following vesicle formation. Following a 

related procedure by Bae et al., the functionalized diblock copolymers were synthesized 

by preferentially modifying one end of PEO diol with divinyl sulfone (VS).
69

  To allow 

thiol-reactivity of the copolymer, heterobifunctional PEG with a VS group at one 

terminus was prepared by a multi-step synthetic procedure and PCL was then introduced 

to the remaining terminal hydroxyl group of PEG using ring opening polymerization. 

Compared to maleimide-PEG, which has been widely used to make targeted and long-

circulating nanocarriers,
70-72

 VS-PEO are reported to have several advantages: (1)The 

reaction rate of VS-PEO towards peptides and proteins is relative faster than maleimide-

PEG; (2) The specificity is slightly better at pH below 8 and the thioether linkage formed 

with thiol compounds is much more stable than the linkage formed with maleimides;
73

 (3) 

The VS group is quite stable in aqueous solution
74, 75

 while maleimide group is easy to 

hydrolysis. This VS functionalized block copolymer self-assembles in water to form 

polymersomes containing the VS functionality at the hydrophilic PEO corona terminus, 

which can undergo an efficient, site-selective attachment to thiol-containing peptides 

under mild conditions and did not react with targeting peptides lacking a thiol. Properties 

of these obtained VS functionalized block copolymer were fully characterized, and the 

reactivity of the VS functionalized vesicles toward thiols was investigated using peptide-

based cancer targeting molecules. Overall, this work develops a versatile platform for the 

targeted delivery of therapeutics and offers the possibility to greatly improve treatment 

outcomes for diseases by enhancing specificity, thus minimizing detrimental side effects. 
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4.3. Experimental Methods 

4.3.1. Synthesis, Characterization, Polymersome Preparation and Morphology 

Assessment of Biodegrable PEO-b-PCl, PEO-b-PTMC and PEO-b-P(CL-co-

TMC) Polymers   

4.3.1.1. Materials 

-caprolactone (-CL, Aldrich) was dried over calcium hydride (CaH2) at room 

temperature for 48 h, and distilled under reduced pressure.  Monomethoxyl poly(ethylene 

oxide) (MePEO) homopolymers featuring a terminal -OH group and molecular weights 

of 5000, 2000, 1100 and 750, were purchased from Fluka.  Higher molecular weight 

MePEO homopolymers (Mn = 1100, 2000 and 5000) were purified by dissolution in 

tetrahydrofuran (THF), followed by precipitation into ether, and subsequent drying at 40 

ºC under reduced pressure (10 mm Hg) for 24 h.  Polymer grade 1, 3-trimethylene 

carbonate (TMC) (Boehringer Ingelheim, Germany) were used without further 

purification. Stannous octoate (SnOct2) (stannous 2-ethylhexanoate) (Sigma, USA) and 

1,6-hexanediol (Aldrich, Germany) were used as received. Stannous (II) octonate (SnOct2, 

Sigma) was used as received.  Ethylene oxide (EO, Aldrich) was purified by passage 

through potassium hydroxide, condensed onto CaH2, stirred for 2h, and distilled.  

Naphthalene was recrystallized from ether.  THF was distilled over Na mirror under 

nitrogen.  Other chemicals were commercially available and used as received.  
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4.3.1.2. General Polymerization Reaction Conditions 

 

Scheme 4.1 Synthesis of PEO-b-P(CL-co-TMC) diblock copolymers by ring-opening 

polymerization. 

Ring-opening polymerization: Monomethoxyl poly(ethylene oxide) (MePEO) was 

delivered to a flamed-dried flask under argon.  A known mass of -caprolactone (CL) 

monomer and 1, 3-trimethylene carbonate (TMC) monomer were then injected into the 

flask via syringe,  was then injected into the flask via syringe, following which two drops 

of SnOct2 were added to the reaction mixture.  The flask was connected to a vacuum line, 

evacuated, and immersed in an oil bath at 130 ºC.  A progressive increase in viscosity of 

the homogeneous mixture was evident as the polymerization reaction progressed.  After 

24 h, the volatiles were removed; the recovered solid residue was dissolved in methylene 

chloride, precipitated with cold methanol/hexane (4°C), and dried under vacuum. 
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Scheme 4.2 Synthesis of PEO-b-P(CL-co-TMC) diblock copolymers by anionic living 

polymerization. 

Anionic living polymerization: A flame-dried flask was purged with Ar and charged 

with 30 mL of anhydrous THF, acetonitrile (0.55 mL, 10 mmol), and potassium 

naphthalenide (5 ml of a 1 M THF solution).  After vigorous stirring at 20 ºC for 70 min, 

the mixture was cooled in an ice-water bath, following which distilled EO was added via 

syringe.  The polymerization reaction was carried out at ambient temperature; a sample of 

reaction product (~5 mL CN-PEO) was removed, treated with an acetone solution 

containing acetic acid, precipitated with excess diethyl ether, and dried under vacuum at 

room temperature to check the molecular weight of PEO block by NMR and GPC.  

Subsequently, -caprolactone and 1, 3-trimethylene carbonate dissolved in THF at a 

calculated mole ratio of -CL and TMC to EO, were added to the remaining reaction 

mixture of CN-PEO. After 10 min at 0 ºC, the polymerization was quenched by adding a 

small amount of acetic acid and then poured into acetone to precipitate.  The reaction 

product was further purified by precipitation in diethyl ether and dried under vacuum at 

40 ºC for two days. 

4.3.1.3. Copolymer Characterization 

PEO polymers and copolymers were characterized by 
1
H-NMR spectroscopy.  

Weight-average molecular weight (Mw) and polydispersity index (Mw/Mn) values for 

each copolymer formulation were determined using a GPC system that featured two 

columns (PLgel 5m mixed, 300 × 7.5mm) connected in series, and dynamic laser 

scattering and refractive index detectors (Enterprise System, Precision Technologies).  

THF was utilized as the eluting solvent.  PEO standards were used to calibrate 
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copolymers molecular weights determined from refractive index data. And differential 

scanning calorimetry (DSC; TA Instruments Q100, New Castle, DE) was utilized to 

elucidate the thermal transitions of the polymers in bulk and within aqueous vesicle 

solutions. The thermal properties of the purified polymers were evaluated by differential 

scanning calorimetry (DSC). Samples (5-10 mg) were analyzed at a heating rate of 

10 °C/min. Samples of amorphous polymers were heated from −100 °C to 100 °C, while 

semi-crystalline specimens were heated from −100 °C to 20 °C above their peak melting 

temperature. After the first heating scan, the samples were quenched rapidly (300 °C/min) 

to −100 °C, after 5 min at that temperature a second scan was recorded. Cyclohexane, 

indium, gallium and tin were used as standards for temperature calibration. 

4.3.1.4. Preparation of Polymersomes  

Two vesicle preparative methods, thin-film hydration and organic co-

solvent/aqueous extraction, were employed to assemble the PEO-b-PCL copolymers into 

their equilibrium aqueous morphologies. For PEO-b-PTMC and PEO-b-P(CL-co-TMC) 

polymersomes, only thin-film hydration method was used. Thin film hydration has been 

extensively utilized for preparing non-biodegradable polymersomes comprised of PEO-b-

PBD diblock copolymers; an analogous protocol was employed in experiments involving 

PEO-b-PCL copolymers.  The biodegradable polymer (200 μL of 7 mg/mL CHCl3 

solution) was uniformly coated on the surface of a roughened Teflon plate, following 

which the sample was placed under vacuum for > 12 h.  Addition of an aqueous solution 

(e.g. 250-300 milliosmolar sucrose or PBS) and heating at 60°C for 48 h led to 

spontaneous budding of giant (5-20 μm) biodegradable polymersomes into solution.  In 

the preparation of samples that contained 1 mol % Nile red, the dye was incorporated into 
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the polymersome hydrophobic bilayer during the self-assembly process noted above, 

which enabled facile visualization of resultant copolymer aqueous morphology via 

confocal fluorescence microscopy.  

Small (< 300 nm diameter) unilamellar polymersomes that possess appropriately 

narrow size distributions were prepared via procedures analogous to those used to 

formulate small lipid vesicles (sonication, freeze-thaw extraction, and extrusion).  The 

sonication procedure involved placing a sample vial containing the aqueous-based 

solution and a dried thin-film formulation (of polymer uniformly deposited on Teflon) 

into a bath sonicator (Fischer Scientific; Model FS20) with constant agitation for 30 min.  

Several cycles of freeze-thaw extraction were carried out by placing the sample vials 

(containing solutions of 300-500 nm diameter polymersomes) in liquid N2.  The vials 

were then transferred to a 60 °C water bath, and extruded to give a mono-dispersed 

suspension of small (100 nm diameter) vesicles; this was accomplished through the 

introduction of a polymersome solution into a thermally controlled stainless steel cylinder 

connected to pressurized nitrogen gas. The size distributions of the PEO-b-PCL 

suspensions were determined in each case by dynamic light scattering.  

For the co-solvent/water extraction method, the PEO-b-PCl diblock copolymers 

were dissolved in chloroform or THF (at 10 mg/mL) and introduced at 1:100 vol% into 

aqueous solution (sucrose, PBS or benzene/alcohol aqueous solution) via organic co-

solvent injection.  The various structures formed from these diblock copolymers were 

extracted from the solvent mixture by aqueous dialysis (for organic co-solvent removal) 

at room temperature for 24 h. 
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4.3.1.5. Characterization of Sample Morphology in Dilute Aqueous Solution 

Confocal laser scanning microscopy (BioRad Radiance 2000) and epifluorescent 

optical microscopy (Zeiss Axiovert 200) were employed to characterize the self-

assembled aqueous morphologies of the biodegradable polymer compositions that 

featured dispersed Nile Red (1:99 dye:polymer).  The instruments were equipped with 

appropriate excitation and emission filters for these experiments. 

Nanometric functionalized polymersomes were formulated as described above. 

Vitreous samples were prepared within a controlled environment vitrification system 

(Vitrobot). A droplet of solution (10 ul) was deposited on a copper TEM grid coated with 

a porous polymer film. A thin film (< 300 nm) was obtained by blotting with filter paper. 

After allowing the sample sufficient time to relax from any residual stresses imparted 

during blotting (30 s), the grid was plunge cooled in liquid ethane at its freezing point (-

180 °C), resulting in vitrification of the aqueous film. Sample grids were examined in a 

FEI Tecnai G² Twin transmission electron microscope operating at 200 kV, and images 

were recorded with a Gatan 724 multiscan digital camera. 

4.3.2. Vinyl Sulfone Functionalization of PEO-b-PCl Diblock Copolymers 

The PEO tosylation, displacement of tosylated PEO with thioacetate and 

deprotection to thiol, and the final divinyl sulfone attachment to PEO polymer is 

following the procedures previously described.
76

 

4.3.2.1. Tosylation of PEO 

 

Scheme 4.3 Synthesis of monotosylated PEO. 
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Dihydroxy terminated PEO with molecular weight 2 kg/mol (10 g, 5 mmol) was 

dissolved in 200 mL dry CH2Cl2 and chilled to 0 °C. Ag2O (1.75 g, 7.5 mmol) 

synthesized from aqueous NaOH and AgNO3 was added to the chilled PEO under 

vigorous stirring followed by addition of KI (0.6 g, 3.6mmol) and p-toluenesulfonyl 

chloride (1.5 g, 7.8 mmol). The reaction mixture was stirred rapidly for 2 h at 0 °C, 

filtered over Celite, and reduced under vacuum to a white solid. The solid was then 

dissolved in 75 mL H2O, filtered, extracted into 50 mL CH2Cl2 three times, dried over 

MgSO4, and precipitated into ice-cold diethyl ether. Residual solvent was removed from 

the resulting white solid under vacuum. The yield is 95% and the tosylation degree 

determined by 
1
H NMR is 90%. 

4.3.2.2. Displacement with Thioacetate and Deprotection to Thiol  

 

Scheme 4.4 Synthesis of monothiol-PEO. 

Potassium thioacetate (5.1 g, 50 mmol) was dissolved in 125 mL dry N,N-

dimethylformamide (DMF) and the mixture was added to tosylated PEO from the 

previous reaction (9.5 g, 4.75 mmol) and stirred until no solid was visible. The mixture 

was degassed by three freeze-pump-thaw cycles, backfilled with nitrogen, and allowed to 

react under stirring for three days at 35 °C. DMF was removed by vacuum distillation, 

the residue was dissolved in 200 mL H2O, filtered, extracted three times with 60 mL 

CH2Cl2 and dried over MgSO4. Volume was then reduced under vacuum and polymer 
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precipitated into ice-cold diethyl ether followed by solvent removal under reduced 

pressure. The PEO thioacetate (8.5 g, 4.25 mmol) was dissolved in 150 mL methanol 

containing 150mM potassium methoxide and stirred at room temperature for 1.5 h. The 

mixture was subsequently acidified with HCl, filtered, and solvent removed under 

vacuum. To reduce disulfide bonds the residue was dissolved in 300 mL of 0.1 M 

aqueous sodium bicarbonate to which was then slowly added sodium borohydride to 0.1 

M (1.13 g, 29 mmol) followed by stirring under a nitrogen atmosphere. The solution was 

then acidified to pH 3 by dropwise addition of HCl, extracted three times into 50 mL 

CH2Cl2, dried over MgSO4, volume reduced under vacuum, and precipitated into ice-

cold diethyl ether. The reduction–precipitation step was performed twice to yield a light-

yellow solid. The yield is 75%, and the thiol modification degree is ~100% determined 

by 
1
H NMR. 

 

4.3.2.3. Divinyl Sulfone Attachment 

 

Scheme 4.5 Synthesis of vinyl sulfone terminated PEO. 

Thiol-terminated PEO (2.0 g, 1 mmol) was dissolved in 50 mL tetrahydrofuran 

(THF) containing triethylamine (700 mL, 5 mmol) and degassed by three freeze-pump-

thaw cycles. A small amount of dithiothreitol (DTT) (38 mg, 0.25 mmol) was added 

under nitrogen atmosphere to reduce any residual disulfide bonds and the reaction was 

allowed to stir for 1 h. Divinyl sulfone (DVS) (5 mL, 50 mmol) was then added rapidly 

under vigorous stirring. The reaction vessel was capped and allowed to react for 18 h at 
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room temperature. The solution was then reduced in volume under vacuum, precipitated 

three times into ice-cold diethyl ether and solvent removed under vacuum. The yield is 

86%, and the thiol modification degree is 81% determined by 
1
H NMR. 

4.3.2.4. Polymerization of CL 

 

Scheme 4.6 Synthesis of vinyl sulfone terminated PEO-PCl diblock copolymer. 

To a solution of VS-PEO (1.5 g, 0.75 mmol) in 50 mL of dichloromethane under 

nitrogen, AlEt3 (1.9 M solution, 750 μL, 1.4 mmol) and pyridine (100 μL, 1.2 mmol) 

were added. The reaction mixture was stirred vigorously at room temperature for 3 h. 

Next, different amount of caprolactone was added into the reaction mixture, and the 

solution was allowed to react at room temperature for 42 h. The polymerization was 

quenched by adding 2 equivalent of HCl (1M solution) and the solution was poured in 

excess of methanol. Finally, the functionalized diblock copolymer (3.4 g) was isolated by 

precipitation three times over methanol. 
1
H NMR showed the final VS functional degree 

is 60-68%. 

4.4. Results and Discussion 

4.4.1. Synthesis and Characterization of Biodegradable PEO-b-PCL Diblock 

Copolymers 

A series of PEO-b-PCL diblock copolymers were synthesized via ring-opening 

polymerization (Scheme 4.1) of ε-caprolactone and commercially available MePEO (Mn 
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= 750, 1100, 2000 and 5000).  MePEO homopolymers bearing one hydroxyl end group 

were used as the macroinitiator to activate polymerization (130 C, 24 h) of ε-

caprolactone monomer (ε-CL) in the presence of catalyst (stannous (II) octoate, SnOct2).  

Such PEO-b-PCL diblock copolymers have been previously synthesized under a variety 

of catalyzed
21

 
77-79

 and non-catalyzed conditons.
80, 81

 Of the previously established 

catalysts, SnOct2 is the most widely used for the production of biodegradable polyesters, 

as it is commercially available, easy to handle, soluble in common organic solvents and 

neat liquids (e.g., cyclic ester monomers), and is a permitted food additive in numerous 

countries.
82

 For these reasons, coupled with the fact that non-catalyzed ring-opening 

polymerization of -CL must be carried out at high temperature (180C) over long time 

periods (days), SnOct2 was employed as the catalyst in the synthesis of these PEO-b-PCL 

copolymers (Table 4.1). 

Although the synthesis of PEO-b-PCL copolymers from MePEO via ring-opening 

polymerization of -caprolactone is facile, the availability of MePEO homopolymers is 

limited.  As such, we utilized anionic living polymerization of ethylene oxide monomers 

to produce PEOs of varying Mw; subsequent caprolactone polymerization yields PEO-b-

PCL copolymers having a diverse range of number-average molecular weights (Mn: 3.6 -

57K) and PEO weight fractions (fPEO: 0.08-0.33).  An additional advantage of this 

approach is the fact that the copolymers‟ terminal PEO end group can be easily varied 

(Scheme 4.2). Ethylene oxide polymerization reactions utilized cyanomethyl potassium 

as the protected initiator, which was prepared by metalation of acetonitrile with 

potassium naphthalenide in THF.
69, 83-85

 While anionic living polymerization had been 

utilized previously in the syntheses of low molecular weight, high PEO weight fraction 
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PEO-b-PCL copolymers [e.g., PEO(2.2K)-b-PCL(1.2K)],
85

 this strategy provides PEO-b-

PCL copolymers that possess a diverse range of PEO block molecular weights (1500, 

2600, 3000, 3800, and 5800), low PEO weight fractions (fPEO: 0.10-0.23), and a wide 

range of diblock Mn (7.8-47K). 

1
H NMR spectroscopy was utilized to characterize the number-average molecular 

weight of the PEO homopolymers and the corresponding PEO-b-PCL diblock 

copolymers.
21, 77-81, 84

 A typical 
1
H NMR spectrum for MePEO-b-PCL is shown in Figure 

4.1.  The appearance of a resonance at ~4.20 ppm (b‟), consistent with the terminal 

methylene end group of the PEO block in the 
1
H NMR spectrum, indicates that the final 

reaction products were limited to only diblock copolymers of PEO and PCL. The sharp 

weak resonance at 3.38 ppm and the intense peak at 3.65 ppm correspond to methyl (a, 

CH3O- terminated PEO) and methylene groups (b, repeat unit of MePEO), respectively.  

Resonances at 2.23 ppm, 1.63 ppm, 1.38 ppm and 4.06 ppm were assigned to protons in 

PCL repeat units (c, d, e, and f methylene).  The peak at 3.65 ppm (the methylene proton 

signal for the PEO block) and the triplet at 2.23 ppm, (the methylene proton signal of the 

caprolactone repeating units, b, COCH2CH2CH2CH2CH2O), were used to establish the 

degree of PCL block polymerization and Mn.  
1
H NMR spectroscopy was further utilized 

to characterize the number-average molecular weight of PEO from the calculated 

ethylene oxide repeat unit number, by comparison of the integrated intensities of the 

resonances that corresponded to of the end groups (i.e. CH3O- or CNCH2CH2-).  The key 

difference between the 
1
H NMR spectra of CN-PEO-b-PCL and MePEO-b-PCL diblock 

copolymers evident is highlighted by the two weak signals around 2.50 ppm which 

correspond respectively to α- and β-CH2 groups at the diblock copolymer CN terminus. 
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Number-average molecular weight values of CN-PEO-b-PCL diblock copolymers were 

also calculated from the NMR spectra.  

GPC was employed to characterize the molecular weight (Mw) and molecular 

weight distribution (Mw/Mn) (PDI) of each PEO-b-PCL diblock copolymer formulation. 

Two types of weight-average molecular masses were calculated from refractive index 

data using PEO standard samples and dynamic light scattering data (Table 4.2). Some 

copolymers, such as PEO(5.8K)-b-PCL(24K), PEO(5K)-b-PCL(22K), PEO(2K)-b-

PCL(12K), and PEO(2K)-b-PCL(15K), exhibited similar GPC and 
1
H NMR determined 

molecular weight values; in contrast, PEO(5.8K)-b-PCL(33.6K) and PEO(2K)-b-

PCL(9.5K), the largest and smallest Mw copolymers synthesized, respectively, showed 

significant differences between 
1
H NMR and GPC based Mw determinations. As PEO-b-

PCL diblock copolymer standard samples are not commercially available for the 

calibration of RI data (GPC), the dn/dc values of the copolymers were calculated from 

internal instrument parameters calibrated from a PS standard sample; these values were 

then used to calculate Mw values from the DLS data.  The use of polystyrene-based Mw 

standards likely accounts for the differences in determined GPC and 
1
H NMR Mw at the 

extremes of the copolymer Mw range.   

GPC data indicate that PEO-b-PCL diblock copolymers synthesized by anionic 

living polymerization having PEO molecular weights of 2600, 3000, 3800 and 5800, 

exhibited the narrowest molecular weight distributions (PDI: 1.2-1.27).  PEO-b-PCL 

diblock copolymers synthesized from PEO(2K) via ring-opening polymerization showed 

narrow molecular weight distributions (PDI: 1.1-1.2) while copolymers derived from 

PEO(5K) displayed slightly wider distributions (PDI: 1.32-1.37).  Anionic living 
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polymerization therefore provides the best route for synthesizing of PEO-b-PCL diblock 

copolymers with controlled PEO chain lengths, modulating PEO/PCL block ratios, and 

isolating block copolymers with narrow molecular weight distributions.  
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Figure 4.1 Representative 
1
H NMR spectrum of PEO-b-PCL diblock copolymer. 
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Table 4.1 Self-Assembled Morphologies Asessed via Microsopic Studies of PEO-b-PCL 

Diblock Copolymers (PEO: 0.75-5.8K) in Aqueous Media Prepared via Film Hydration. 

PEO-b-PCL Copolymers
a
 fPEO

b
 Morphologies

c
 

Vesicle 

Yield
d
 

PEO(5.8k)-b-PCL(22k) 0.21 Irregular particles 0 

PEO(5.8k)-b-PCL(23.8k) 0.20 Microspheres, irregular particles 0 

PEO(5.8k)-b-PCL(24k)  0.19 Microspheres, irregular particles 0 

PEO(5.8k)-b-PCL(30.2k) 0.16 Irregular particles 0 

PEO(5.8k)-b-PCL(33.6k) 0.15 Irregular particles 0 

PEO(5.8k)-b-PCL(37.7k) 0.13 Irregular particles 0 

PEO(5.8k)-b-PCL(41.2k) 0.12 Irregular particles 0 

PEO(5k)-b-PCL(10k) 0.33 Irregular particles 0 

PEO(5k)-b-PCL(16k) 0.24 Irregular particles 0 

PEO(5k)-b-PCL(22k) 0.18 Irregular particles 0 

PEO(5k)-b-PCL(26k) 0.16 Irregular particles 0 

PEO(5k)-b-PCL(32k) 0.14 Irregular particles 0 

PEO(5k)-b-PCL(52k) 0.09 Irregular particles 0 

PEO(3.8k)-b-PCL(17k) 0.18 Polymersomes, irregular particles 30-50% 

PEO(3.8k)-b-PCL(17.7k) 0.17 Polymersomes, irregular particles 10-20% 

PEO(3.8k)-b-PCL(20k) 0.16 Polymersomes, irregular particles 10-20% 

PEO(3.8k)-b-PCL(22.2k) 0.15 Polymersomes, irregular particles <5% 

PEO(3k)-b-PCL(16.5k) 0.15 Polymersomes, irregular particles 10-20% 

PEO(3k)-b-PCL(19k) 0.14 Polymersomes, irregular particles <5% 

PEO(3k)-b-PCL(20.5k) 0.13 Irregular particles 0 

PEO(3k)-b-PCL(24.7k) 0.11 Irregular particles 0 

PEO(3k)-b-PCL(25.8k) 0.10 Irregular particles 0 

PEO(2.6k)-b-PCL(11.2k) 0.19 Polymersomes, irregular particles 60-80% 

PEO(2.6k)-b-PCL(12.3k) 0.17 Polymersomes, irregular particles 30-50% 

PEO(2.6k)-b-PCL(13.9k) 0.16 Polymersomes, irregular particles 10-20% 

PEO(2.6k)-b-PCL(15.5k) 0.14 Polymersomes, irregular particles 10-20% 

PEO(2k)-b-PCL(7.4k) 0.27 Irregular particles 10-20% 

PEO(2k)-b-PCL(9.5k) 0.17 Polymersomes, irregular particles 60-80% 

PEO(2k)-b-PCL(12k) 0.14 Polymersomes ~100% 

PEO(2k)-b-PCL(15k) 0.12 Polymersomes, irregular particles 30-50% 

PEO(2k)-b-PCL(22k) 0.08 Irregular Particles 0 

PEO(1.5k)-b-PCL(6.3k) 0.19 Microspheres, irregular particles 0 

PEO(1.5k)-b-PCL(10.4k) 0.13 Irregular particles 0 

PEO(1.5k)-b-PCL(12.4k) 0.11 Irregular particles 0 

PEO(1.5k)-b-PCL(13.7k) 0.10 Irregular particles 0 

PEO(1.1k)-b-PCL(2.9k) 0.27 Irregular particles 0 

PEO(1.1k)-b-PCL(3.7k) 0.23 Microspheres, irregular particles 0 

PEO(1.1k)-b-PCL(6.3k) 0.15 Microspheres, irregular particles 0 
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PEO(1.1k)-b-PCL(7.0k) 0.14 Microspheres, irregular particles 0 

PEO(1.1k)-b-PCL(7.7k) 0.12 Irregular particles 0 

PEO(1.1k)-b-PCL(9.5k) 0.10 Irregular particles 0 

PEO(1.1k)-b-PCL(13.0k) 0.08 Irregular particles 0 

PEO(0.75)-b-PCL(2850) 0.21 Irregular particles 0 

PEO(0.75)-b-PCL(5790) 0.11 Irregular particles 0 

PEO(0.75)-b-PCL(9k) 0.07 Irregular particles 0 
 

a
 Number-average molecular weight of PEO-b-PCL diblock copolymers as determined 

by 
1
H NMR spectroscopy. 

b
 Weight fraction of the PEO block as determined by 

1
H NMR 

data. 
c
 Determined qualitatively from fluorescence confocal and laser optical microsopic 

studies of the self-assembled structures formed from thin film rehydration of 50:1 

copolymer: Red Nile films. Observed polymersome and irregularly shaped particle 

diameters ranged from less than 1 μm to greater than 30 μm; microsphere diameters 

ranged from ~5-30 μm. 
d
 Approximate yield of polymer vesicles visually estimated from 

fluorescence confocal and laser optical microsopic studies qualitatively by comparison of 

the morphological fraction corresponding to polymersomes in aqueous solution. 
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Table 4.2 GPC and 
1
H NMR Characterization Data for PEO-b-PCL Diblock Copolymers. 

PEO-b-PCL Copolymers
a
 fPEO

b
 Mn

b
 Mw

c
 PDI

c
 Mw

d
 

PEO(5.8k)-b-PCL(24k) 0.20 29800 27800 1.24 28100 

PEO(5.8k)-b-PCL(33.6k) 0.15 39400 28500 1.20 31100 

PEO(5k)-b-PCL(22k) 0.18 27000 25300 1.37 24000 

PEO(5k)-b-PCL(26k) 0.16 31000 31400 1.32 36200 

PEO(3.8k)-b-PCL(17k) 0.18 20800 15100 1.20 18900 

PEO(3.8k)-b-PCL(20k) 0.16 23800 17600 1.25 19100 

PEO(3.8k)-b-PCL(22.2k) 0.15 26000 19200 1.26 22100 

PEO(3k)-b-PCL(16.5k) 0.15 19000 16700 1.23 17300 

PEO(3k)-b-PCL(19k) 0.14 22000 19400 1.24 19400 

PEO(2.6k)-b-PCL(11.2k) 0.19 13800 16200 1.27 19000 

PEO(2.6k)-b-PCL(12.3k) 0.17 14900 17300 1.25 20600 

PEO(2.6k)-b-PCL(15.5k) 0.14 18100 19600 1.25 24100 

PEO(2k)-b-PCL(9.5k) 0.17 11500 12500 1.14 16300 

PEO(2k)-b-PCL(12k) 0.14 14000 13700 1.21 15400 

PEO(2k)-b-PCL(15k) 0.12 17000 16100 1.21 18300 
 

a
 Number-average molecular weight of PEO-b-PCL diblock copolymers as determined 

by 
1
H NMR spectroscopy. 

b
 Weight fraction of the PEO block as determined by 

1
H NMR 

data. 
c
 Polydispersity index and weight-average molecular weight of PEO-b-PCL diblock 

copolymers as determined from dynamic light scattering (DLS) data of samples analyzed 

by gel permeation chromatography (GPC). 
d
 Weight-average molecular weight of PEO-b-

PCL diblock copolymers calculated from refractive index (RI) data of samples analyzed 

by gel permeation chromatography using PEO standard samples as calibrants. 
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4.4.2. Aqueous Assembly of Meso-scale PEO-b-PCL Diblock Copolymers 

Two preparation methods, film hydration and organic co-solvent 

injection/extraction, were chosen to assemble meso-scale amphiphilic PEO-b-PCL 

diblock copolymers into their equilibrium aqueous morphologies.  While both methods 

produced similar results, as film hydration promotes aqueous self-assembly of the 

copolymers, is amenable to large-scale preparation while obviating the need for post-

assembly processing, this technique was used to generate the data summarized in Table 

4.1, which describe the observed aqueous morphologies for the comprehensive set of 

PEO-b-PCL diblock copolymers that were fabricated. The equilibrium aqueous 

morphologies for each PEO-b-PCL diblock copolymer were determined using 

fluorescence confocal and optical microscopies under conditions where 1 mol% Nile red 

was incorporated into the resultant structures.    

Meso-scale polymersomes were obtained uniquely, in near quantitative yield from 

aqueous hydration and self-assembly of the PEO(2K)-b-PCL(12K) diblock copolymer 

(fPEO = 0.14), as shown in Figure 4.2. These polymersomes possessed both multilamellar 

(Figure 4.2c) and unilamellar (Figure 4.2d) bilayer structures. In constrast, 

polymersomes were found to coexist with irregular particles in aqueous preparations of 

PEO(2-3.8K)-b-PCL diblock copolymers with fPEO ranging between 0.12 and 0.19. In 

aqueous suspensions of PEO-b-PCL diblock copolymers derived from higher (5-5.8K) or 

lower (0.75-1.5K) molecular weight PEO blocks, no polymersomes were observed 

regardless of the PEO/PCL ratio. Note that Disher et al. have also studied the meso-scale 

morphologies of a series of PEO-b-PCL diblock copolymers by using solvent evaporation 

method.
86

 And our results by using thin-film hydration preparation method correspond 
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well with their observations on the trend of the ability of diblock copolymer compositions 

to self-assemble into vesicle structures. 

In order to elucidate the effects of diblock copolymer molecular weight 

distribution on vesicle formation, PEO-b-PCL diblock copolymers with varying PEO 

block size (2600, 3000 or 3800) and narrow molecular distributions (PDI = 1.1) were 

separated by GPC and used to generate polymersomes.  No further improvement in the 

yield of vesicles from these samples was observed relative to the samples with the same 

molecular weight but broader molecular distributions (PDI: 1.2-1.4). Furthermore, the 

ability of PEO-b-PCL diblock copolymers mixtures which have much wider molecular 

weight distributions to self-assemble into polymersomes is also assessed by scanning 

laser confocal microscopy. As shown in Figure 4.3, polymersomes can be obtained at a 

very high yield from these copolymer mixtures, indicates the molecular weight 

distribution had little influence on biodegradable polymersomes formation from 

involving PEO(2K)-b-PCL(12K) diblock copolymers.  

As PEO-b-PCL diblock copolymers with low PEO weight fractions (<0.12) were 

found to be strongly adherent to the Teflon film (following aqueous hydration), an 

organic co-solvent water injection/extraction method was employed in an attempt to 

prepare polymersomes from a small subset of these copolymers.  While no polymersomes 

were obtained by this extraction method, porous spherical particles were seen upon 

organic co-solvent removal via dialysis; the typical morphology of these particles is 

depicted in the fluorescent micrograph (Figure 4.4). These Nile Red encapsulated 

spherical particles possess porous surfaces as directly visualized by scanning laser 

confocal microscopy (Figure 4.4b), with the bright regions corresponding to the 
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emission of encapsulated Nile Red fluorophores in the polymersomes bilayer membrane 

alternate with dark regions of the porous surface without Nile Red encapsulation. Note 

that, while PEO(5.8K)-b-PCL(24K) has been previously shown to form meso-scale 

vesicles via a solvent injection technique,
21

 no polymersomes were observed in aqueous 

suspensions of this diblock (PDI = 1.2) formed via thin-film hydration.   
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Table 4.3 Comparative Self-Assembled Meso-Scale Morphologies of PEO-b-PCL 

Diblock Copolymers in Aqueous Suspensions Obtained via Film Hydration and Organic 

Co-Solvent Injection/Extraction Methods. 

PEO-b-PCL Copolymers 
a
 fPEO 

b
 

Morphologies 

Observed from 

Film Hydrationc 

Morphologies 

Observed from 

Organic Co-Solvent 

Injectiona/Extractionc 

PEO(5k)-b-PCL(10k) 0.33 Irregular particles Small particles 

PEO(5k)-b-PCL(16k) 0.24 Irregular particles Small particles 

PEO(5k)-b-PCL(22k) 0.18 Irregular particles Microspheres
e
 

PEO(5k)-b-PCL(52k) 0.09 Irregular particles Microspheres
e
 

PEO(2k)-b-PCL(15k) 0.12 
Polymersomes,

d
 

irregular particles 
Microspheres

e
 

PEO(2k)-b-PCL(22k) 0.08 Irregular particles Microspheres
e
 

 

a
 Number-average molecular weight of PEO-b-PCL diblock copolymers as determined 

by 
1
H NMR spectroscopy. 

b
 Weight fraction of the PEO block as determined by 

1
H NMR 

data. 
c
 Determined qualitatively from fluorescence confocal and laser optical microsopic 

studies of the self-assembled structures formed from thin film rehydration of 50:1 

copolymer: Red Nile films. Observed polymersome and irregularly shaped particle 

diameters ranged from less than 1 m to greater than 30 m; microsphere diameters 

ranged from ~5-30 m. 
d
 Less than 5% of the observed morphologies corresponded to 

polymersomes.  
e
  Formed quantitatively. 
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Figure 4.2 Scanning fluorescence confocal micrographs (λex = 488 nm) of PEO(2K)-b-

PCL(12K)-based vesicles, containing membrane-encapsulated Nile Red (peak emission = 

603 nm) in DI water at 25 °C, that display continuous spherical morphology but jagged 

edges supportive of solid vesicle membranes. Scale bar = 5 μm. 
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Figure 4.3 Scanning fluorescence confocal micrograph (λex = 488 nm) of polymersomes 

comprised of a 1:1:1 mixture of PEO(2k)-b-(9.5k), PEO(2k)-b-(12k), and PEO(2k)-b-

PCL(15k), containing membrane-encapsulated Nile Red (peak emission = 603 nm) in DI 

water at 25 °C. 
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Figure 4.4 Microspheres imaged using (a) optical microscopy and (b) confocal 

fluorescence micrograph (λex = 488 nm) derived from organic co-solvent extraction of 

PEO(5k)-b-PCL(52k) containing membrane-encapsulated Nile Red (peak emission = 603 

nm) in DI water at 25 ºC. 
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4.4.3. Aqueous Assembly of Nano-scale PEO-b-PCL Diblock Copolymers 

Small, nano-scale polymersomes can be made by aqueous sonication of a dry 

thin-film formulation of PEO-b-PCL on Teflon followed by several cycles of freeze/thaw 

extraction.  A number of diblock copolymers (Figure 4.5 and Figure 4.6) were selected 

to prepare nano-sized self-assembles to check the effect of both hydrophilic fraction and 

PEO chain on the formation of vesicles. OL 1-6 are PEO-b-PCL diblock copolymers with 

the same PEO chain length (2K) but different hydrophilic PEO weight fraction, while OL 

A-E are PEO-b-PCL diblock copolymer with the same PEO weight fraction but different 

PEO chain length. Solution morphologies were characterized with Cryo-TEM which 

allows for direct visualization of the aggregate nano-sized structures formed in aqueous 

solution.  

Very different from the meso-scale diblock copolymer particle morphologies, 

polymersomes constitute the dominant self-assembled nano-scale morphology. As seen in 

Figure 4.5, an increase in the molecular weight of the PCL core block, and subsequent 

decrease in the diblock PEO weight fraction to 0.08, results in the shape transition from 

bilayer vesicle structures to micellar aggregates. Through the increasing length of PCL 

block, the hydrophobic content of the amphiphile is increased and the interfacial 

curvature is decreased, which leads to the development of micelles morphologies. Figure 

4.5 shows a set of fairly uniform spherical vesicle structures formed from PEO(2K)-b-

PCL diblock copolymers with fPEO ranging from 0.14 to 0.21. The coexistence of micelles 

appears when the fPEO is below 0.14. And for PEO-b-PCL diblock copolymers with a 

fixed fPEO (~15%), a change in PEO chain length reveals diblock self-assembly into 

micellar and large particle aggregates. In Figure 4.6, micelles formed with the PEO 



225 

 

molecular weight lower than PEO(1.1K) or higher than PEO(3K) are clearly visible. The 

reduced PEO weight fractions of these polymersome-forming PEO-b-PCL compositions 

(fPEO: 0.14-0.21) contrast sharply to the PEO-polybutadiene diblock formulations (fPEO: 

0.28-0.39),
87

 and suggest the low PEO weight fraction to be a common theme for 

polymersomes generated from diblock copolymers that exploit PCL as a biodegradable 

hydrophobic block. This is because the strength of segregation of polybutadiene with 

considerably exceeds that of polycaprolactone.
86

 

It is well known that the morphology of diblock copolymer assemblies is 

determined by the interfacial curvature,
86, 88-90

 and previous work reveals that the surface 

elasticity of vesicle bilayer membranes is scale independent and only depends on the 

interface.
4, 87

 Therefore, people would expect by examining the meso-scale morphology 

of diblock copolymers self-assemblies, it will lead to predictive insights of the nano-scale 

morphology. However, our nano-scale experiment results show a very distinctive trend 

from expectation that the diblock polymers that could not form meso-scale vesicles may 

be able to self-assemble into high yield of nano-scale vesicles. This evolution of 

structures change formed from the self-assembly of meso-scale or nano-scale PEO-b-

PCL diblock copolymers in aqueous solution is very interesting. And this paper is the 

first example looking at this morphology transition. The reason for this morphology 

transition might be due to the decreased nano-scale polymersomes particle size which 

results in increased total surface area and decreased surface tension, core-chain stretching 

and the corona chain repulsion as compared to the meso-scale polymer vesicles and thus 

cause the change of interface curvature required for vesicle structure formation 

accordingly. 
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The effect of PEO molecular weight and PEO weight fraction on membrane 

thickness has also been measured for these PEO-b-PCl diblock copolymers in Figure 4.5 

and Figure 4.6. As we expected, for OL A-E which are PEO-PCL diblock copolymer 

with the same PEO weight fraction but different PEO molecular weight, a linear 

increasing of the membrane thickness is observed with the increasing of the polymer 

molecular weight. However, surprisingly, for OL 1-6 which are PEO-PCL diblock 

copolymers with the same PEO molecular weight (2K) but different PEO weight fraction, 

varying in the hydrophobic PCL block molecular weight doesn‟t result in the change of 

membrane thickness. Therefore, for a fixed hydrophilic PEO block length, the membrane 

thickness is not dependent on the hydrophobic PCL block density. We have not observed 

such phenomenon in any other amphiphilic diblock copolymer systems. More 

experiments are now undergoing to try to explain this membrane thickness independence 

on PCL block weight fraction. 

 

 

 

 

 

 

 

 

 



227 

 

 

 

 PEO-b-PCL 

Copolymers 
fPEO  

Vesicle yield 

(μm-sized) 

Vesicle yield 

(nm-sized) 

OL-1 PEO(2k)-b-PCL(7.4k) 0.21 0 ~100% 

OL-2 PEO(2k)-b-PCL(9.5k) 0.17 60-80% ~100% 

OL-3 PEO(2k)-b-PCL(12k) 0.14 ~100% ~100% 

OL-4 PEO(2k)-b-PCL(15k) 0.12 <5% 30-50% 

OL-5 PEO(2k)-b-PCL(18k) 0.10 0 <5% 

OL-6 PEO(2k)-b-PCL(22k) 0.08 0 0 

 

Figure 4.5 (A) Cryo-TEM images of nano-scale PEO-b-PCL diblock copolymers OL 1-6 

particles in aqueous suspensions obtained via film hydration and subsequent self-

assembly; (B) Morphology of self-assembled meso- and nano-scale structures derived 

from PEO-b-PCL diblock copolymers OL 1-6. 

 

A 

B 
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PEO-b-PCL Copolymers fPEO 

Vesicle yield 

(μm-sized) 

Vesicle yield 

(nm-sized) 

OL-A PEO(1.1k)-b-PCL(6.3k) 0.15 0 60-80% 

OL-B PEO(2k)-b-PCL(12k) 0.14 ~100% ~100% 

OL-C PEO(2.6k)-b-PCL(15.5k) 0.14 10-20% ~100% 

OL-D PEO(3k)-b-PCL(16.5k) 0.15 10-20% 40-50% 

OL-E PEO(3.8k)-b-PCL(22.2k) 0.15 <5% 10-20% 

OL-F PEO(5k)-b-PCL(27k) 0.15 0 0 

 

Figure 4.6 (A) Cryo-TEM images of nano-scale PEO-b-PCL diblock copolymers OL A-

F particles in aqueous suspensions obtained via film hydration and subsequent self-

assembly; (B) Morphology of self-assembled meso- and nano-scale structures derived 

from PEO-b-PCL diblock copolymers OL A-F. 

A 

B 
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Figure 4.7 Membrane thickness of vesicles prepared from OL 1-5. 

 

 

 

 

Figure 4.8 Membrane thickness of vesicles prepared from OL A-E. 
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4.4.4. Synthesis, Characterization and Aqueous Assembly of PEO-b-PTMC and 

PEO-b-P(CL-co-TMC) Polymers 

The ideal candidates for in vivo imaging and drug releasing require soft 

biodegradable membranes. However, differential scanning calorimetry (DSC) strongly 

suggested that PEO(2K)-b-PCL(12K)-based vesicles are highly crystalline structures with 

glass transition temperature over 60 °C. 
27

 To form functional soft resorbable, flexible 

and elastic materials, TMC (a highly flexible rubbery polymer) were used to 

copolymerize with PEO. An extensive family of FDA proved biodegradable amphilic 

PEO-b-PTMC and PEO-b-P(CL-co-TMC) polymers varying in a number average 

molecular weight (Mn: 5.7-35.6k) and PEO weight fraction (fPEO: 0.10- 0.25) and TMC 

molar fraction of the hydrophobic block (30%, 50%, 100 %) were synthesized, 

characterized and examined.  

These TMC containing polymers were synthesized either by ring-opening 

copolymerization of -caprolactone monomer and trimethylene carbonate monomer using 

commercially available monomethoxyl PEO (MePEO2K, MePEO5K) as macro-initiator 

in the presence of stannous(II) octoate (SnOct), or by anionic living polymerization of 

ethylene oxide monomers to produce PEOs of varying Mn (1.1K, 3.8K). The number-

average molecular weight was characterized for each copolymer formulation by 
1
H NMR 

spectroscopy (Figure 4.9 and Figure 4.10). The polymers were subsequently screened 

for their ability to self-assemble into meso-scale polymersomes in dilute aqueous solution, 

the results were summarized in Table 4.4, Table 4.5 and Table 4.6. While many PEO-b-

PTMC and PEO-b-P(CL-co-TMC) polymers were observed to form meso-scale 

polymersomes, none of them produced meso-scale polymersomes quantitatively under 
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the thin-film rehydration conditions employed. Therefore, we sought to use blends of the 

PEO (2K)-b-PCL(12K) diblock copolymer and PEO(2K)-b-P(CL-co-TMC)(~12K) 

diblock tripolymer with different molar fractions of TMC (29% and 49%) to test their 

ability to self-assemble into polymersomes.  PEO (2K)-b-PCL(12K) diblock copolymer 

and PEO(2K)-b-P(Cl-co-TMC) diblock tripolymer were mixed at different ratios: 95:5, 

90:10, 80:20, 70:30, 50:50, 30:70 and followed with aqueous hydration of a dry thin-film 

of the blend polymers on Teflon film. Scanning confocal microscope images showed that 

all these blends form polymersomes, as shown in Figure 4.11 and 4.12, and the blend of 

PEO(2K)-b-P(CL-co-49mol%TMC)(11.9K) with PEO(2K)-b-PCL(12K)  in 50:50 was 

producing polymersomes quantitatively under the thin-film rehydration conditions 

employed.   
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Figure 4.9 Representative 
1
H-NMR spectrum of PEO-b-PTMC diblock copolymer. 

 

 

 

Figure 4.10 Representative 
1
H-NMR spectrum of PEO-b-P(CL-co-TMC) diblock 

tripolymer.  
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Table 4.4 Self-assembly of PEO-b-PTMC copolymers. 

PEO-b-PTMC
a
 Mn

b
 fPEO

c
 

% Yield of μm-sized 

polymersomes
d
 

PEO(1.1K)-b-PTMC(4.6K)  5.7K 19.3% 0 

PEO(1.1K)-b-PTMC(5.1K)  6.2K 17.7% 0 

PEO(1.1K)-b-PTMC(6.2K)  7.3K 15.1% 0 

PEO(2K)-b-PTMC(6.8K)  8.8K 22.7% 0 

PEO(2K)-b-PTMC(9.4K) 11.4K 17.5% 5-10% 

PEO(2K)-b-PTMC(11.2K) 13.2K 15.2% 5-10% 

PEO(2K)-b-PTMC(13.0K) 15.0K 13.3% 5-10% 

PEO(2K)-b-PTMC(13.8K) 15.8K 12.7% 5-10% 

PEO(2K)-b-PTMC(15.3K) 17.3K 11.6% 0 

PEO(2K)-b-PTMC(18.2K) 20.2K  9.9% 0 

PEO(3.8K)-b-PTMC(17.7K) 21.5K 17.7% 0 

PEO(3.8K)-b-PTMC(19.8K) 23.6K 16.1% 0 

PEO(3.8K)-b-PTMC(25.8K) 29.6K 12.8% 5-10% 

PEO(5K)-b-PTMC(18.0K) 23.0K 21.7% < 5% 

PEO(5K)-b-PTMC(23.0K) 28.0K 17.9% < 5% 

PEO(5K)-b-PTMC(25.9K) 30.9K 16.2% < 5% 

PEO(5K)-b-PTMC(27.5K) 32.5K 15.4% < 5% 

PEO(5K)-b-PTMC(30.6K) 35.6K 14.0% < 5% 

 

a,b
 Number-average molecular weight of PEO-b-PCL diblock copolymers as 

determined by 
1
H NMR spectroscopy. 

c
 Weight fraction of the PEO block as determined 

by 
1
H NMR data. 

d 
Approximate yield of polymer vesicles visually estimated from 

fluorescence confocal and laser optical microsopic studies qualitatively by comparison of 

the morphological fraction corresponding to polymersomes in aqueous solution. 
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Table 4.5 Self-assembly of PEO-b-P(CL-co-TMC) tripolymers with ~30% TMC molar 

fraction in the P(CL-co-TMC) block. 

PEO-b-P(CL-co-TMC) tripolymers
a
 Mn

b
 fTMC

c
 

 

fPEO
d
 μm-sized 

Vesicle Yield
e
 

PEO(2K)-b-P(CL-co-TMC)(11.0K) 13.0K 29% 15.4% 0 

PEO(2K)-b-P(CL-co-TMC)(11.2K) 13.2K 27% 15.2% <5% 

PEO(2K)-b-P(CL-co-TMC)(12.4K) 14.4K 29% 13.9% 5-10% 

PEO(2K)-b-P(CL-co-TMC)(13.1K) 15.1K 29% 13.2% 5-10% 

PEO(2K)-b-P(CL-co-TMC)(14.9K) 16.9K 29% 11.8% 0 

PEO(3.8K)-b-P(CL-co-TMC)(16.4K) 20.2K 30% 18.8% 5-10% 

PEO(3.8K)-b-P(CL-co-TMC)(19.2K) 23.0K 32% 16.5% 5-10% 

PEO(3.8K)-b-P(CL-co-TMC)(20.0K) 23.8K 33% 16.0% <5% 

PEO(5K)-b-P(CL-co-TMC)(18.5K) 23.5K 29% 21.3% 0 

PEO(5K)-b-P(CL-co-TMC)(25.6K) 30.6K 29% 16.3% 10-20% 

PEO(5K)-b-P(CL-co-TMC)(27.5K) 32.5K 28% 15.4% 5-10% 
 

a,b
 Number-average molecular weight of PEO-b-PCL diblock copolymers as 

determined by 
1
H NMR spectroscopy. 

c
 Molar fraction of the TMC in the P(CL-co-TMC) 

block as determined by 
1
H NMR data.

 d
 Weight fraction of the PEO block as determined 

by 
1
H NMR data. 

e 
Approximate yield of polymer vesicles visually estimated from 

fluorescence confocal and laser optical microsopic studies qualitatively by comparison of 

the morphological fraction corresponding to polymersomes in aqueous solution. 
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Table 4.6 Self-assembly of PEO-b-P(CL-co-TMC) tripolymers with ~50% TMC weight 

fraction in the P(CL-co-TMC) block. 

PEO-b-P(CL-co-TMC) tripolymers
a
 Mn

b
 fTMC

c
 

 

fPEO
d
 μm-sized 

Vesicle Yield
e
 

PEO(2K)-b-P(CL-co-TMC)(5.9K) 7.9K 49% 25.3% 0 

PEO(2K)-b-P(CL-co-TMC)(7.0K) 9.0K 49% 22.2% 0 

PEO(2K)-b-P(CL-co-TMC)(8.2K) 10.2K 49% 19.6% 0 

PEO(2K)-b-P(CL-co-TMC)(9.3K) 11.4K 49% 17.7% 0 

PEO(2K)-b-P(CL-co-TMC)(9.5K) 11.5K 50% 17.4% 0 

PEO(2K)-b-P(CL-co-TMC)(11.9K) 13.9K 49% 14.4% 5-10% 

PEO(2K)-b-P(CL-co-TMC)(14.3K) 16.3K 48% 12.3% 5-10% 

PEO(2K)-b-P(CL-co-TMC)(18.4K) 20.4K 50% 9.8% <5% 

PEO(3.8K)-b-P(CL-co-TMC)(15.5K) 19.3K 51% 19.7% <5% 

PEO(3.8K)-b-P(CL-co-TMC)(19.2K) 23.0K 50% 16.5% 5-10% 

PEO(3.8K)-b-P(CL-co-TMC)(22.0K) 25.8K 50% 14.7% <5% 

PEO(5K)-b-P(CL-co-TMC)(18.9K) 23.9K 49% 20.9% 0 

PEO(5K)-b-P(CL-co-TMC)(25.3K) 30.3K 48% 16.5% 10-20% 

PEO(5K)-b-P(CL-co-TMC)(28.4K) 33.4K 51% 15.0% 5-10% 
 

a,b
 Number-average molecular weight of PEO-b-PCL diblock copolymers as 

determined by 
1
H NMR spectroscopy. 

c
 Molar fraction of the TMC in the P(CL-co-TMC) 

block as determined by 
1
H NMR data.

 d
 Weight fraction of the PEO block as determined 

by 
1
H NMR data. 

e 
Approximate yield of polymer vesicles visually estimated from 

fluorescence confocal and laser optical microsopic studies qualitatively by comparison of 

the morphological fraction corresponding to polymersomes in aqueous solution. 
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Table 4.7 Self-assembly of tripolymer with 29% TMC content in the P(CL-co-TMC) 

block and PEO-b-PCL copolymer blends. 

 PEO(2.0K)-b-P(CL-co-29mol%TMC)(12.4K) 

/PEO(2K)-b-PCL(12K)  

Yield of μm-sized 

polymersomes 

a 70/30 <5% 

b 50/50 40-60% 

c 30/70 10-20% 

d 20/80 10-20% 

 

 

Figure 4.11 Confocal laser fluorescence micrographs of PEO(2K)-b-(PCL-co-49%TMC) 

(12.4K) / PEO(2K)-b-PCL(12K) blends. Scale bar = 50 μm. 
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Table 4.8 Self-assembly of tripolymer with 49% TMC content in the P(CL-co-TMC) 

block and PEO-b-PCL copolymer blends. 

 PEO(2.0k)-b-P(CL-co-49mol% TMC)(12.4k) 

/PEO(2k)-b-PCL(12k)  

Yield of μm-sized 

polymersomes 

a 70/30 <5% 

b 50/50 ~100% 

c 30/70 40-60% 

d 20/80 10-20% 

e 10/90 10-20% 

f 5/95 10-20% 

 

 

Figure 4.12 Confocal laser fluorescence micrographs of PEO(2K)-b-(PCL-co-49%TMC) 

(12.4K) / PEO(2K)-b-PCL(12K) blends. 
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Furthermore, the ability of these TMC containing PEO-b-PTMC and PEO-b-

P(CL-co-TMC) polymers to self-assemble into nano-scale morphologies were examined 

by Cryo-TEM. The results are summerized in Table 4.9. As shown in Figure 4.13, 

PEO(1.1K)-b-PTMC(4.6-6.2K) that could not form meso-scale polymersomes self-

assembled into ~100% nano-scale polymersomes, follows a similar trend with the 

previously reported PEO-b-PCL diblock copolymers that the ability to self-assemble into 

meso-scale and nano-scale polymersomes is different. Note that, the sizes of these 

PEO(1.1K)-b-PTMC polymersomes are much smaller compare to classic polymer 

vesicles. As observed from Cryo-TEM images, most polymersomes are 20-50 nm in 

diameter without extrusion, their small sizes will enable them to have prolonged in vivo 

circulation time and thus make them great candidate for biomedical applications. 

Very interestingly, the PEO(2K, 3.8K, 5K)-b-PTMC with PEO molecular weight 

~17% all form novel micelles with very large hydrophobic cores in a quantitative yield 

(Figure 4.14). The sizes of these micelles are very narrowly distributed as determined by 

both Cryo-TEM and dynamic light scattering (DLS) measurements. In addition, the sizes 

can be readily tuned from ~40nm (PEO(2K)-b-PTMC(9.4K)) to ~120nm (PEO(5k)-b-

PTMC(25.9k)) by simply varying the diblock copolymer molecular weight. Therefore, 

these polymeric micelles can be served as highly effective delivery vehicles for poorly 

water-soluble drugs with well-defined hydrophobic volume. Moreover, the unusual large 

sizes of these micelles suggest enhanced mechanical stability over conventional micelles 

in vitro and in vivo.  

Similar with PEO-b-PTMC, PEO-b-P(CL-co-TMC) diblock tripolymers also 

displayed similar properties of forming quantitative amount of small sized (20-50 nm) 
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vesicles or large sized (50-100 nm) micelles (Figure 4.15). So far, only a small portion of 

PEO-b-PTMC and PEO-b-P(CL-co-TMC) polymer self-assemblies have been observed 

by Cryo-TEM. More PEO-b-PTMC and PEO-b-P(CL-co-TMC) polymers will be 

examined soon. In addition, the self-assembling morphology of the PEO-b-PCL and 

PEO-b-PTMC or PEO-b-P(CL-co-TMC) polymer blends will also be studied for fully 

characterization and understanding of these TMC containing polymers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



240 

 

Table 4.9 Morphology of self-assembled meso- and nano-scale structures derived from 

PEO-b-PTMC and PEO-b-P(CL-co-TMC) diblock copolymers. 

Diblock copolymer
a
 fTMC

b
 fPEO

c
 

Vesicle

yield
d
 

Nano-scale 

morphologies
e
 

PEO(1.1K)-b-PTMC(4.6K) 100% 19.3% 0 ~100% vesicles 

PEO(1.1K)-b-PTMC(5.1K) 100% 17.7% 0 ~100% vesicles 

PEO(1.1K)-b-PTMC(6.2K) 100% 15.1% 0 ~100% vesicles 

PEO(5K)-b-PTMC(25.9K) 100% 16.2% < 5% ~100% micelles 

PEO(5K)-b-PTMC(25.9K) 100% 16.2% < 5% ~100% micelles 

PEO(2K)-b-P(CL-co-TMC)(11.9K) 49% 14.4% 5-10% ~100% micelles 

PEO(3.8K)-b-P(CL-co-TMC)(19.2K) 50% 17.3% 5-10% ~100% micelles 

PEO(5K)-b-P(CL-co-TMC)(25.3K) 48% 16.5% 10-20% ~100% micelles 

PEO(2K)-b-P(CL-co-TMC)(12.4K) 29% 13.9% 5-10% ~100% vesicles 

PEO(3.8K)-b-P(CL-co-TMC)(19.2K) 32% 16.5% 5-10% ~100% micelles  

PEO(5K)-b-P(CL-co-TMC)(25.6K) 29% 16.3% 10-20% ~100% micelles 

 

a
 Number-average molecular weight of PEO-b-PCL diblock copolymers as determined 

by 
1
H NMR spectroscopy. 

b
 Molar fraction of the TMC in the P(CL-co-TMC) block as 

determined by 
1
H NMR data. 

c
 Weight fraction of the TMC and PEO block as determined 

by 
1
H NMR data. 

e 
Approximate yield of polymer vesicles visually estimated from 

fluorescence confocal and laser optical microsopic studies qualitatively by comparison of 

the morphological fraction corresponding to polymersomes in aqueous solution. 
f
 

Determined qualitatively from cryo-TEM studies of the self-assembled structures formed 

from thin film rehydration followed by sonication.
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Figure 4.13 Cryo-TEM images of nano-scale PEO(1.1k)-b-PTMC(5.1k) diblock 

copolymers particles forming ~100% polymersomes in aqueous suspensions obtained via 

film hydration and subsequent self-assembly. Scale bar = 500 nm. 
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Figure 4.14 Cryo-TEM images of nano-scale PEO-b-PTMC diblock copolymers 

particles forming ~100% micelles in aqueous suspensions obtained via film hydration 

and subsequent self-assembly.  
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Figure 4.15 Cryo-TEM images of nano-scale PEO-b-P(CL-co-TMC) diblock tripolymers 

particles in aqueous suspensions obtained via film hydration and subsequent self-

assembly. 
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Differential scanning calorimetry was also utilized to elucidate the thermal 

transitions properties of these TMC containing polymers synthesized. Figure 4.16 

compares the glass transition temperature of the five single polymers: PEO (2K), 

PCL(12K)-b-PEO(2K), P(CL-co-TMC(29 mol%)) (12.4K)-b-PEO(2K), P(CL-co-

TMC(49 mol%)) (11.9K)-b-PEO(2K) and PTMC(11.2K)-b-PEO(2K). There is a clear 

big drop of glass transition temperature from 62.7 °C (PEO-b-PCL) to 40-50°C for TMC 

containing polymers P(CL-co-TMC(29mol%)) (12.4K)-b-PEO(2K), P(CL-co-

TMC(49mol%)) (11.9K)-b-PEO(2K) and PTMC(11.2K)-b-PEO(2K). The thermal 

transition properties of the polymer blends made from different ratios of P(CL-co-

TMC(49 mol%)) (12.4K)-b-PEO(2K), P(CL-co-TMC(29 mol%)) (11.9K)-b-PEO(2K) 

and PCL(12K)-b-PEO(2K) are also measured as shown in Figure 4.17, Figure 4.18, and 

Figure 4.19. Again, by including TMC in the hydrophobic block, a decrease of glass 

transition temperature was observed. In addition, the glass transition temperature 

decreased with increasing the TMC content in the polymer blend.  
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Figure 4.16 DSC data of: (a) PEO (2K); (b) PEO(2K)-b-PCL(12K); (c) PEO(2K)-b-

P(CL-co-TMC(29mol%)) (12.4K); (d) PEO(2K)-b-P(CL-co-TMC(49mol%)) (11.9K); 

and (e) PEO(2K)-b-PTMC(11.2K). 
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Figure 4.17 DSC data of PEO(2K)-b- PCL(12K) / PEO(2K)-b-P(CL-co-

TMC(49mol%))(11.9K) 50/50 blend casting film (first heating, first cooling, second 

heating and second cooling) and its polymersomes.  
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Figure 4.18 DSC data of PEO(2K)-b- PCL(12K) / PEO(2K)-b-P(CL-co-

TMC(49mol%))(11.9K) blend casting films at a series blend ratios. 

 

 

 

Figure 4.19 DSC data of PEO(2K)-b- PCL(12K) / PEO(2K)-b-P(CL-co-

TMC(29mol%))(12.4K) blend casting films at a series blend ratios. 
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Finally, we used micropipette aspiration to probe the rheological properties of 

giant polymersomes. The meso-scale polymersomes prepared from PCL(12K)-b-

PEO(2K) , P(CL-co-TMC(49 mol%)) (12.4K)-b-PEO(2K) / PCL(12K)-b-PEO(2K) 50:50 

blend, and two different molecular weight PEO-b-PBD diblock copolymers OB2 and 

OB18 were progressively aspirated into a micropipette at stress rates of 0.1 pN nm
-1

 sec
-1

 

up to the point of rupture. Values of the lysis tension for the TMC polymer blend as well 

as the three nonblend polymersomes studied are shown in Figure 4.20. The results 

generally showed that for soft PEO-b-PBD polymersomes, increasing molecular weight 

led to an increase in stability, consistent with general ideas of mesophase stability for 

strongly segregated copolymers. For highly crystallized PEO-b-PCl polymersomes that 

have solid membranes, they were unable to be aspirated and did not lyse at any pressure, 

as has been previously reported.
27, 86

 However, for the PEO-b-PCL/PEO-b-P(CL-co-TMC) 

polymer blend, they could easily lyse at a much lower tension compare to the soft PEO-b-

PBD polymersomes. This implicates the possible applications of using this PEO-b-

PCL/PEO-b-P(CL-co-TMC) blend to prepare quantitative polymersomes vesicles that are 

soft and amorphous and will facilitate their location and transportation to cells in vivo. 
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Diblock copolymers  
Lysis Tension 

(mN/m) 

PEO(2K)-b-P(CL-co-49mol%TMC)(11.9K)  

/PEO(2K)-b-PCL(12K)  50: 50 
2.92 + 1.10 

PEO(2K)-b-PCL(12K)  does not lyse at any pressure  

PEO(1.3K)-b-PBD(2.5K) 14 

PEO(3.6K)-b-PBD(6.8K) 18 

 

 

Figure 4.20 Micropipette aspiration study results of different polymers. The optical 

microscopy images represents the lysing process of polymersomes prepared from 

PEO(2K)-b- PCL(12K) / PEO(2K)-b-P(CL-co-TMC(49mol%))(11.9K) 50/50 blend. 
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4.4.5. Vinyl Sulfone Functionalization of PEO-b-PCl Diblock Copolymer 

Various ways exist to generate functionalities on the surface of the hydrophilic 

leaflets of amphipilic block copolymer membranes to attach peptides and proteins for tumor 

targeting and drug delivery.
91

 However, very few work has been done towards the 

biodegradable polymersomes. Herein, we reported the successfully development of a 

functionalization method for modification of the biodegradable PEO-b-PCL diblock 

copolymer by attaching the vinyl sulfone group. The vinyl sulfone functional group has 

been previously employed to attach peptides to chain ends of non-degradable PEO-b-

PBD
92

 and degradable poly(ethylene oxide)-block-poly(γ-methyl-ε-caprolactone) PEO-b-

PMCL
76, 92

 polymersome-forming systems. Using similar strategy to functionalize PEO-

b-PCl diblock copolymers and subsequently conjuagate with peptides or proteins, we will 

be able to make ligand-conjugated PEO-b-PCL biodegradable polymersomes. 

The reaction route to prepare peptide-conjugated biodegradable polymersomes is 

shown in Scheme 4.7.  After silver(I) oxide-mediated tosylation of PEO, the resulting 

product was analyzed by 
1
H NMR spectroscopy, and we determined that an average of 

about 90% of PEO chains had a tosyl group installed (Figure 4.21A). The tosylated PEO 

polymer was then reacted with an excess of potassium thioacetate in DMF to displace the 

tosyl groups with thioacetates. The tosyl groups were displaced to form the thioacetate 

and then hydrolyzed to thiol-PEO as confirmed by 
1
H NMR analysis (Figure 4.21B). 

Vinyl sulfone functionalized PEO polymer are synthesized via conjugate addition 

reaction between thiols and divinyl sulfone, and the unreacted divinyl sulfone is 

separated by repeated precipitation into ice-cold diethyl ether. As determined by 
1
H NMR 

spectroscopy (Figure 4.21C), the vinyl sulfone addition reaction has a nearly quantitative 

reaction yield toward thiol groups.  After installation of vinyl sulfone, the hydroxyl end 
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groups of VS-PEO were used as initiation sites for polymerization of CL. The most 

commonly used method for PEO-b-PCL polymerization is in presence of FDA-approved 

SnOct2 catalyst at high reaction temperature (130 ºC). However, we found the vinyl 

sulfone functionality in PEO is not very stable at such high reaction temperature, and the 

functionalization degree in the final VS-PEO-b-PCL polymers is significantly decreased 

by using this method. Therefore, a different ring-opening polymerization method was 

developed with a highly effective AlEt3 catalyst at room temperature. Minimal loss of 

vinyl sulfone (from 81% to 61-68%) was detected by 
1
H NMR spectroscopy under this 

polymerization condition (Figure 4.21D). Vinyl sulfone functionalized diblock 

copolymers with various different molecular weights were synthesized in Table 4.10, 

with the polymerization proceeded at a well-controlled fashion: PCL block molecular 

weight is linearly dependent on the amount of CL monomer added to the polymerization 

reaction (Figure 4.22). By controlling the mole ratio of CL monomer with VS-PEO, the 

PCL block molecular weight can be precisely tuned.  

To verify that the aggregate morphology was unaffected after inducing vinyl 

sulfone groups, functionalized PEO(2K)-b-PCL(11.7K) were self-assembled into meso-

scale polymersomes. The polymersomes formation were in a comparative yield to the 

PEO(2K)-b-PCl(12K) diblock copolymer. Although the meso-scale polymersomes self-

assembling yield from the other functionalized diblock copolymers in Table 4.10 is 

relatively lower, we would expect all of them to have a high nano-sized polymersomes 

formation yield based on our previous nano-sized PEO-b-PCL polymersomes analysis. 

Therefore, we have synthesized and characterized the vesicle-forming block polymer VS-

PEO-b-PCL which can be used to develop a degradable, targeted drug delivery system. 
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Scheme 4.7 A. Synthetic routes to VS-terminated PEO-b-PCL diblock copolymer. B. 

Michael type addition of cysteine-contained antibody to VS-functionalized PEO-b-PCL 

polymersomes. 
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Figure 4.21 
1
H NMR spectra (CDCl3) of (a) PEO tosylate, (b) PEO thiolate, (c) PEO 

vinyl sulfonate and (d) VS-PEO-PCL. 
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Figure 4.22 Correlation of VS-PEO(2K)-b-PCL molecular weight to the mass of CL 

monomer. 

 

 

 

Table 4.10 Molecular weight and functionalization degree of vinyl sulfone functionalized 

PEO-PCl diblock copolymers.  

Functionalized Polymers fPEO Vinyl Sulfone Functionalization % 

VS-PEO(2K)-b-PCL(6.3K) 24.1% 67.1 

VS-PEO(2K)-b-PCL(7.8K) 20.4% 63.4 

VS-PEO(2K)-b-PCL(8.5K) 19.0% 70.2 

VS-PEO(2K)-b-PCL(9.4K) 17.5% 62.0 

VS-PEO(2K)-b-PCL(10.0K) 16.7% 67.7 

VS-PEO(2K)-b-PCL(11.7K) 14.6% 61.5 

VS-PEO(2K)-b-PCL(14.1K) 12.4% 62.9 

VS-PEO(2K)-b-PCL(17.7K) 10.1% 60.2 
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4.5. Conclusions 

A series of PEO-b-PCL diblock copolymers varying in PEO block size (Mn: 750, 

1100, 2000 and 5000), fPEO (0.08-0.33), and Mn (3.6-57K) were synthesized by ring-

opening polymerization of ε-caprolactone monomer using commercially available 

MePEO as the macro-initiator.  Anionic living polymerization was also employed to 

synthesize PEO-b-PCL copolymers with a wider range of controlled PEO block sizes (Mn: 

1500, 2600, 3000, 3800, and 5800), CN as the PEO block terminal group, fPEO = 0.10-

0.23, and Mn ranging from 7.8 to 47K.  All copolymers were isolated by GPC and 

possessed narrow molecular weight distributions (PDI: 1.14-1.37).  The PEO-b-PCL 

diblock copolymers were subsequently screened for the ability to assemble into various 

aqueous morphologies via two separate preparation methods: film hydration and organic 

co-solvent/water injection/extraction. Meso-scale polymersomes were obtained from a 

PEO(2K)-b-PCL(12K) diblock copolymer (PDI = 1.21) in nearly quantitative yield by 

both methods, while a much broader range of diblock copolymer varying in both the 

hydrophilic fraction (fPEO: 0.14-0.21) and PEO chain length 1.1-3K can self-assemble into 

a very high yield of nano-sized polymersomes upon hydration of a dry thin film deposited 

on Teflon. Without the addition of co-solvent, the thin film hydration method enables 

controllable, large-scale synthesis, and avoids the presence of residual organic solvent 

which may be toxic for in vivo applications. Therefore, this is a pioneer work provides 

the entire gate of a roadmap of biodegradable PEO-b-PCL diblock copolymer 

compositions that can self-assemble into meso- and nano-scale polymersomes as 

biomaterials for future cosmetic, imaging, and drug delivery applications. This work also 

demonstrates that if nanoscale bilayer vesicles are desired, convincingly screening the 
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ability to form meso-scale polymersomes is inappropriate. Furthermore, we can expect by 

simply varying the PCL chain length or hydrophobic fraction, the biodegradable 

hydrophobic membranes of the nano-scale polymer vesicles can be tuned to enable the 

precise control of encapsulated drug release based on the effect of PCL/PEO molar ratios 

on the biodegradation kinetics. 
93-96

  

However, the thermal properties of these PEO-b-PCL-based biodegradable 

polymersomes as measured by DSC indicate that they are highly crystallized at room 

temperature. Recognizing the need to develop highly elastic, soft polymersomes from 

non-toxic, biodegradable polymers, we further designed and characterized vesicles 

assembled from a series of PEO-b-PTMC and PEO-b-P(CL-co-TMC) polymers by 

copolymerize CL with a second TMC monomer, an elastomeric aliphatic polyester with 

excellent flexibility and poor mechanical strength. The thermal properties of these 

polymers were studied by using DSC and micropipette aspiration; both indicate that we 

formed a soft based material. The introduction of TMC provides a route to significantly 

alter membrane rheological properties. Furthermore, the morphology of nano-scale self-

assemblies from these TMC containing polymers varying in PEO molecular weight (2K, 

3.8K and 5K), PEO weight fraction (0.15-0.20) and TMC mole fraction (30%, 50%, 

100%) was examined by Cryo-TEM. Interestingly, these polymers formed either 100% 

polymer vesicles in much smaller sizes compare to traditional polymersomes or 100% 

uniformly distributed micelles structures with very large hydrophobic cores in aqueous 

solution; these novel and unique structures has a great deal of potential for in vivo and 

drug delivery applications.  
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Finally, we synthesized functionalized vesicle-forming VS-PEO-b-PCL 

biodegradable diblock copolymers varying in number-average molecular weight (Mn: 9.8 

- 16.1k) and PEO weight fraction (fPEO: 12.4 – 20.4%). These functionalized block 

copolymers self-assemble in water to form polymersomes with high reactivity and 

specificity toward cysteine containing proteins under a mild conjugate reaction condition. 

A precise control of VS-PEO-b-PCL molecular weight is achieved by ring-opening 

copolymerization of VS-PEO and CL with a highly effective AlEt3 catalyst. The VS 

functionalization groups on the exterior of the vesicles are capable of reacting with thiol-

containing targeting proteins under very mild conditions in advantageous for reaction 

rates, yields, and stability. By including VS-PEO-b-PCL as the minority component prior 

to self-assembly, we anticipate it to serve as a versatile platform for specific delivery of a 

variety of therapeutic payloads with enhanced targeting due to ligand bound to vinyl 

sulfone groups. 
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CHAPTER 5. Quantitative Membrane Loading of Quantum 

Dots into Polymersomes 

5.1. Summary 

Multi-functional materials that combine both hydrophilic and hydrophobic agents 

with novel, exceptional properties gained increasing attention in recent years for their 

potential applications in nanobiotechnology. By incorporating inorganic, strongly 

fluorescent hydrophobic quantum dots (QDs) of exceptional photostability into the 

bilayer membrane of polymer vesicles, we developed a new imaging system with wide-

ranging potential for biomedical applications. The hydrophobic shell of diblock 

copolymer vesicles was successfully loaded with highly fluorescent CdSe/ZnS QDs as 

hydrophobic model substrates. The nano- and micro-scopic effects on the resultant 

vesicles‟ structural and material properties were studied.  The combination of 

fluorescence microscopy studies to examine the meso-scale morphology of CdSe/ZnS 

QD incorporated polymersomes and cryogenic transmission electron microscopy (Cryo-

TEM) experiments to observe nano-scale morphology of gold nanoparticle incorporated 

polymersomes showed that the nanoparticles were located within the hydrophobic 

interior of the shell bilayer, introducing curvature of the copolymer layers around the 

guest nanoparticles. In addition, to investigate whether incorporation of nanoparticles into 

polymersome bilayers impact physical properties of the polymer vesicles, fluorescent 

CdSe/ZnS QDs of two different sizes (average diameter = 2.1 and 5.2 nm, as determined 

by TEM) were selected as hydrophobic model substrates and quantitatively enclosed into 

the vesicles with polymersome membranes fabricated from three different diblock 



267 

 

copolymers poly(ethylene oxide)-block-poly(butadiene) PEO30-b-PBD46 (OB2, 

membrane thickness 9.6 nm), PEO80-b-PBD125 (OB18, membrane thickness 14.8 nm) and 

poly(ethylene oxide)-block-poly(ε-caprolactone) PEO45-b-PCL107 (OL, membrane 

thickness 27.2 nm) at various QD concentrations. The self-assembled polymersome 

bilayer structures remained essentially unchanged, in appearance of some multilayered 

and aggregated structures when hydrophobic CdSe/ZnS QDs were incorporated within 

the vesicle shell.  To note, the morphology of OL polymersomes incorporating CdSe/ZnS 

QDs changed from a highly crystalline, rigid vesicle structure to a noncrystallized, 

amorphous vesicle structure. Both the QD size and concentration impact this 

phenomenon. For small 2.1 nm CdSe/ZnS QDs, the vesicle structure remains crystalline 

at low QD concentrations, and the morphology change only happened in appearance of a 

high QD concentration. However, for larger 5.2 nm CdSe/ZnS QDs, vesicle morphology 

changes were evident at both low and high concentrations. Ongoing studies are now 

carried out to examine vesicle mechanical properties as a function of QD size and 

concentration via micropipette aspiration experiments.  

Furthermore, we demonstrate the reproducible and quantitative loading of various 

sized hydrophobic CdSe/ZnS QD molecules within synthetic polymersome membranes. 

The limits for QDs incorporation inside the polymersome hydrophobic shell was 

systematically evaluated; revealed how far the bilayer can curve before different 

structural assemblies are favored. The polymersomes have a large capacity to solvate 

these large hydrophobic QDs within their thick membranes. These aqueous-insoluble 

QDs can be readily dispersed at high solution concentrations via membrane incorporation 

within aqueous vesicle suspensions. Due to membrane incorporation, hydrophobic 



268 

 

CdSe/ZnS QDs encapsulants were effectively prevented from self-aggregation, and 

successfully shielded from deleterious environmental interactions. Together, these studies 

present a generalized paradigm for the generation of promising multifunctional inorganic-

organic hybrid materials suitable for in vivo biomedical applications. 

5.2. Introduction 

The incorporation of nanoparticles into artificial membranes is very important in 

medical science and nanotechnology, featuring a wide range of applications in drug 

delivery and sensor technologies.
1
 Of utmost interest in this context are polymersomes 

because of their unique ability to form a variety of polymer-based, biocompatible 

nano/microstructures. Amphiphilic block copolymers tend to self-assemble into 

polymersomes
2-4

 with hydrophobic bilayer membranes and hydrophilic inner corona 

similar to liposomes.
5
 Such block copolymer vesicles in aqueous media have attracted 

increasing interest due to their enhanced stability compared to classical liposomes and 

due to the potential to control vesicle properties such as bilayer thickness, permeability, 

and surface functionalities by appropriate chemical copolymer adjustment.
2
 These 

properties of polymersomes offer a powerful route to the formation of multifunctional 

nanosized materials for imaging and drug delivery applications.
6-8

  

Currently, there are two different approaches for incorporation of nanoparticles 

into the vesicles: (1) nanoparticles are formed in situ within the polymersomes (2) 

nanoparticles are induced into the vesicle during self-assembling. In the first approach, 

metal salts are usually solubilized within the vesicle, followed by chemically reduction 

and production of the final metal nanoparticles at the same sites where they initially 

present.
9-15

 The main disadvantage of this process is that the vesicles may be decomposed 
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and less stable during the chemical modification steps to produce metal nanoparticles, 

thus limits the applicable chemistry and the nanoparticles growth within the vesicles may 

not be well controlled. In the second approach, by providing hydrophobic properties 

within their high capacity hydrophobic bilayer membranes, the polymersomes enable the 

incorporation of large nanoparticles into the vesicle shell during self-assembly processes. 

Preformed nanoparticles of a specific size with defined structure and solubilizing surface 

groups are directly incorporated into vesicular structures via interfacial interaction. In this 

case, the nanoparticles have a better defined shape, size and morphology since they are 

preformed and characterized. In addition, interfacial interaction between the 

nanoparticles and the membrane can be tuned much more efficiently, enabling the 

controlled loading of nanoparticles into polymer vesicles.  

To date, not much work has been done on nanoparticle incorporated 

polymersomes via self-assembling that are suitable for in vivo applications. Lots of 

nanoparticles and diblock copolymers hybrids form micelles
16-18

, oligolamella “onion-

like” structures
19

 or or irregular polymer/nanoparticle aggregates
17, 20

 rather than vesicle 

structures. In addition, the present nanoparticle and diblock copolymer systems that form 

polymersome vesicles are based on cosolvent method
21-23

 which involves use of organic 

solvents during the preparation which can lead to in vivo toxicity. The only study that 

incorporated quantum dots and gold nanoparticles in diblock copolymers by the film 

rehydration method didn‟t show direct province of nanoparticles locating in the bilayer 

membrane. The authors claimed the self-assembly structures are polymersomes, however, 

the vesicle structure was difficult to discern and appear to have micellar properties as 

measured by TEM.
24, 25
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To the best of our knowledge, this report is the first to describe well-defined 

meso-scale and nano-scale polymersomes packed with nanoparticles in the bilayer 

membrane formed by thin-film hydration method. Specifically, QDs were chosen as the 

hydrophobic model substrate to be induced into the polymersomes. Semiconductor 

crystallites (known as QDs)
26-28

 are excellent probes for bioimaging applications due to 

their broad excitation spectra, narrow emission spectra, tunable emission peaks, long 

fluorescence lifetimes and negligible photobleaching. 
29-31

 However, they must maintain 

three properties under aqueous biological conditions: efficient fluorescence, colloidal 

stability, and low nonspecific adsorption. Besides, the use of QDs in biological cells 

always poses concerns about potential cytotoxicity. QDs tend to aggregate, resulted in 

poor colloidal stability
32

 and toxicity in live cells
33

. Consequently, the use of QDs in 

biological applications is still limited and primarily confined to in vitro studies. By 

incorporation of hydrophobic QDs into the polymersome membranes, we developed a 

generic method for making QDs water-soluble and biocompatible, well dispersed and 

separated in the vesicles for greatly increased colloidal stability and decreased toxicity. 

Our first work involves preparation of meso-scale CdSe/ZnS QD incorporated 

polymersomes with three different diblock copolymers OB2, OB18, and OL at various 

QD concentrations. As observed by confocal microscopy, classic bilayer vesicle 

structures coexist with some multilayered and aggregated vesicle structures for all 

polymersome samples composed with different diblock copolymers, and the vesicles 

sizes decreased with increasing QD concentration in the vesicle shell. Very interestingly, 

we noticed a morphology transition of QD encapsulated OL diblock from highly 

crystalline vesicles to non-crystalline vesicles after nanoparticle incorporation, 
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underscoring the importance of the self-assembly structure and nanoparticle arrangement. 

Moreover, Cryo-TEM experiments were performed for the visualization of the nano-

sized nanoparticle incorporated polymersomes. Due to the low dynamic contrast of these 

CdSe/ZnS QDs, gold nanoparticles were loaded into the hydrophobic membranes. The 

cryo-TEM results correspond well with confocal microscopy studies, indicate the 

consistency of the vesicle properties in both meso- and nano-dimensions. 

To explore the capacity of polymer vesicles to stably incorporate nanoparticles 

non-covalently within their thick lamellar membranes, polymersomes self-assembled 

from three diblock copolymers with CdSe/ZnS QDs incorporated in prescribed molar 

ratios within their membranes were generated and characterized. The extent of vesicle 

membrane loading of QDs was quantitative measured by optical verification via steady 

state absorption. We demonstrate that polymersomes can be loaded with sizes ranging 2-

5 nm QDs below a critical saturation point without significantly compromising the robust 

thermodynamic and mechanical stabilities of these synthetic vesicle assemblies. Abover 

the saturation point, there are strong aggregation interactions in-between the QDs as well 

as between the QDs and dibock copolymers, resulted in a low QD uptake efficiency. 

Finally, steady-state fluorescence spectroscopic studies were employed for delineation of 

intermembranous interactions of QDs and diblock copolymers. As expected, at identical 

membrane concentrations, the emission intensity per QD is higher for thicker membranes 

and smaller QDs, both accounts for the strong aggregation effect in a thin membrane and 

for larger QDs. 
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5.3. Experimental Methods 

5.3.1. Preparation of Nanoparticle Incorporated Polymersomes 

PEO(1300)-b-PBD(2500) (OB2) and PEO(3600)-b-PBD(6800) (OB18) 

copolymers under study were custom synthesized by Polymer Source, Inc (Dorval, 

Quebec Canada).  PEO(2K)-b-PCL(12K) copolymers was synthesized following 

established ring opening polymerization methodology as described in 4.3.1.  CdSe/ZnS 

QDs with hexadecyl amine ligand at sizes of 2.1 nm and 5.2 nm were purchased from 

Evidentdot Inc. 2-4 nm gold nanoparticles with oleic amine ligand were purchased from 

Sigma-Aldrich. Formation of giant (> 1 um) and small (< 300 nm) diameter emissive 

polymersomes followed thin-film hydration procedures. Briefly, diblock copolymer and 

nanoparticles species in toluene were combined at different molar ratios and uniformly 

coated on the surface of a Teflon plate, followed by evaporation of the solvent under 

vacuum for > 12 h.  The Teflon plate consisted of a l/16" thick sheet of Teflon cut in 

small squares and roughened by sand paper to create macroscopically uniform digitations.  

Addition of aqueous solution (DI water) and heating at 60 °C for 48 h led to spontaneous 

budding of giant (5-50 μm) emissive polymersomes (membrane loaded at prescribed 

polymer:nanoparticle molar ratios) off of the Teflon and into the aqueous surroundings. 

Small (< 300 nm diameter) unilamellar polymersomes that possess appropriately narrow 

size distributions were prepared via procedures analogous to those used to formulate 

small lipid vesicles (sonication, freeze-thaw extraction, and extrusion). Free nanoparticles 

were removed by dialysis using a 1000 kDa membrane (SpectrumLab, Inc). 
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5.3.2. Morphology characterization of Nanoparticle Incorporated Polymersomes 

Confocal Laser Scanning Microscopy:  All confocal images were collected on a 

Leica SP5 laser scanning confocal microscope (Wetzlar, Germany). A 405 nm diode laser 

source was coupled to an inverted Leica DM16000CS microscope with a 40× oil-

immersion objective (Leica Plan NeoFluor, NA=1.25). An acousto-optic beamsplitter 

(AOBS) with a collection bandwidth of 20 nm served as a dichroic mirror to allow the 

405-nm excitation light to reach the sample and to allow selection of emission 

wavelengths. The emission bandpass for integrated fluorescence intensity measurements 

was set to 500-750 nm. Cooled photomultiplier tubes (PMTs) were used to measure 

fluorescence through a 121 μm pinhole in a confocal arrangement with a theoretical axial 

resolution of 2 μm. Images were line averaged (16× per line) for improved image quality. 

Leica LAS AF 1.8.2 software was used for data acquisition.  

Cryo-TEM: Specimens were prepared in a Controlled Environment Vitrification 

System (Vitrobot). Approximately 10 μL of solution were deposited on a holey carbon 

film supported on a TEM grid (200 mesh, Ted Pella).  Blotting the excess solution 

produced 100-300 nm thick films suspended in the void spaces of the holey film.  Rapid 

immersion in liquid ethane (-180 °C) vitrified the solutions, which were then transferred 

to a liquid nitrogen cooled Cryo-TEM holder (Gatan 626).  High magnification images 

were obtained using a FEI Tecnai G² Twin TEM at 200 kV. 

5.3.3. Quantification of QD Incorporated Polymersomes 

Aqueous suspensions (in DI water) of small nano-sized CdSe/ZnS QDs emissive 

polymersomes were transferred to a glass vial, frozen in liquid N2, and lyophilized 

(FreeZone 4.5 L Benchtop Freeze Dry System, Labconco Corporation, Kansas City, MO; 
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Model 77500) for 24 hours to destroy the vesicles and dry the polymer and fluorophore 

species. The mass of the dry samples were measured. The dry samples were then taken 

up in toluene and their absorption spectra recorded on a Shimadzu UV-1700 

Spectrofluorimeter (Varian Inc, USA) .  The concentrations of CdSe/ZnS QDs in the 

original polymersome solutions were calculated via Beer's Law using the toluene 

absorption spectra and the previously determined average molar extinction coefficients 

for each CdSe/ZnS QDs in this solvent.  The mass of the recovered polymer was 

calculated by subtracting the mass of QDs from the mass of dry sample mixture.  

5.3.4. Emission Profiles of QD Incorporated Polymersomes 

Fluorescence spectra of emissive CdSe/ZnS QD incorporated polymersomes were 

obtained with Edinburge FL920 spectrophotometer (Edinburgh Instruments Ltd, UK).  

Emission spectra were corrected using the spectral output of a calibrated light source 

supplied by the National Bureau of Standards. QD incorporated polymersome solutions 

were produced from thin-film formulations of polymer and QDs deposited at various 

molar ratios.  Steady state electronic absorption spectra of the solutions were obtained 

prior to dilution to yield fluorophore absorptions less than 0.05 ABS units in each sample.  

Steady state fluorescence spectra were recorded and normalized by fluorophore 

absorption to yield the relative fluorescence per molecule in each of the various vesicle 

formulations.  This value was then multiplied by the number of QDs per polymersome 

and reported as the relative fluorescence intensity per vesicle. 
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5.4. Results and Discussion 

5.4.1. Generation of Nanoparticle Incorporated Polymersomes in Micro- and 

Nano- Dimensions 

Figure 5.1A depicts the steps involved in the fabrication of nanoparticle 

incorporated polymersomes. A solution of nanoparticles and polymers in toluene is dried 

on a thin teflon film to form a multilamellar polymer film, from which vesicles are 

spontaneously formed by hydration under water and sonication. We investigated three 

diblock copolymers (different hydrophobic blocks, various block lengths, etc.), as well as 

nanoparticle with different sizes and surface ligands and their impact upon bilayered 

vesicle formation. We found that the nanoparticle incorporation into polymersomes is not 

limited to any particular class of polymer, polymer size regime, or set of NP surface 

ligands. For observation by confocal microscopy, we constructed giant vesicles (1-50 m) 

by classical swelling. Figure 5.1B shows representative confocal images of meso-scale 

vesicles, which appear as spherical emissive circles with a more intensive fluorescent 

perimeters. This result demonstrates that the hydrophobic CdSe/ZnS QDs are integrated 

in the hydrophobic bilayer of the vesicle, and a high yield of giant unilamellar vesicles 

was obtained. Figure 5.1C shows Cryo-TEM images of 2-4 nm gold nanoparticle 

incorporated into the membranes of nanoscale vesicles. The scattering contrast of gold 

nanoparticles is much higher compared to the diblock copolymer, enabling the gold 

nanoparticles to be clearly seen as dark spots inside the vesicle structure. The 

polymersomes are frozen in a thin water film during Cryo-TEM experiments, resulted in 

the projection of the three-dimensional vesicle into the two-dimensional imaging.
21

 Those 
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gold nanoparticles appearing in the aqueous inner core are therefore also enclosed in the 

vesicle shell due to the projection. 
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Figure 5.1 A. Steps involved in the formation of nanoparticle incorporated 

polymersomes.   

B. Confocal fluorescence images of 2.1 nm CdSe/ZnS QD incorporated OB18 

polymersomes by hydration swelling. Left column: optical microscopy images; central 

column: fluorescent microscopy images; right column: overlapped images.  

C. Cryo-TEM images of 2-4 nm Gold nanoparticles with oleic amine ligand incorporated 

nanosized OB18 polymersomes by hydration, sonication and extrusion. 
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5.4.1.1. Confocal Microscopy Characterization of QD Incorporated Meso-scale 

Polymersomes 

Confocal microscopy studies demonstrate dispersion of numerous highly emissive 

CdSe/ZnS QDs within the polymersome hydrophobic membranes, and show that the 

vesicles maintain an aqueous interior free of nanoparticles with potential for hetero-

functional utility such as hydrophilic drug delivery. The accumulation of CdSe/ZnS QDs 

within polymersome membranes is strongly driven by their hydrophobicity. In addition, 

there is neither detectable leakage of nanoparticles to the external aqueous solution or 

internal core as observed by confocal microscopy over weeks at room temperature.  

Furthermore, the morphology of QD incorporated polymer self-assemblies was 

studied with various QD concentrations in the copolymer bilayer membrane. For OB2 

polymersomes, we observed smaller vesicles and more multilayered and aggregated 

structures with increasing QD concentrations (Figure 5.2 and Figure 5.3).   Besides, the 

vesicle sizes varied considerably between the two OB molecular weights. Following 

hydration we observed mostly 5-10 μm with some 20 μm vesicles for lower molecular 

weight QD incorporated OB2 polymersomes, and 1-2 μm with some 10 μm vesicles for 

QD incorporated OB18 polymersomes.  

OL diblock copolymer was also used to self-assemble into μm-sized 

polymersomes with CdSe/ZnS QDs. Confocal microscopy studies of this system show 

very interesting results. A significant phase transformation of the vesicle structure with 

increasing nanoparticle concentration was observed. As shown in Figure 5.4, for OL 

polymersomes with a small amount (0.08 mol%) of 2.1 nm CdSe/ZnS QDs, the vesicles 

remained as crystalline, irregular structures. However, when the incorporated 2.1 nm 
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CdSe/ZnS QDs concentration was increased to 0.5 mol%, the vesicle structures was more 

amorphous and appears as sphere vesicles. For larger 5.2 nm CdSe/ZnS QDs, at both low 

(0.08 mol%) and high (0.5 mol%) QD incorporation concentrations, the morphology 

changed to noncrystalline, spherical vesicles. The polymersome morphology of 2.1 nm 

CdSe/ZnS QD incorporated OL polymersomes at a low nanoparticle concentration of 

0.08 mol% is very similar to the unincorporated OL polymersomes (Figure 5.5). 

Therefore, by simply incorporating QDs into the OL polymersomes, we achieved the 

transition of OL polymersome membrane from rigid crystallized membranes to soft 

elastic membranes as ideal candidates to successfully passivate tumor tissue in vivo (as 

described in 4.2). The surface membrane of a giant 5.2 nm CdSe/ZnS QD incorporated 

polymersome was also measured by Z-section confocal microscopy. The distribution of 

CdSe/ZnS QDs in the bilayer membrane was mostly uniform with some aggregation as 

observed in Figure 5.6. 

This morphology transformation phenomenon in QD incorporated OL 

polymersomes can be explained by the interaction of the QDs with the polymersome 

hydrophobic membrane. The QDs are in dynamic state in the vesicle bilayer membrane, 

and the motion of QDs would disturb the crystalline structure of bilayer, resulting the 

decrease of phase transition temperature (Tc) and the increase of the fluidity of bilayer, 

thereby cause the phase transition of OL polymersomes.  
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Figure 5.2 Capacity of OB18 polymersome membranes to stably incorporate and solvate 

CdSe/ZnS QDs.   

(A) Polymersomes containing equal aqueous concentrations of polymer but with different 

amounts of 2.1 nm CdSe/ZnS QDs, as indicated by the molar ratios of polymer:QD; (B) 

Polymersomes containing equal aqueous concentrations of polymer but with different 

amounts of 5.2 nm CdSe/ZnS QDs, as indicated by the molar ratios of polymer:QD. 

Aggregated and multilayered structures are shown for both 2.1 nm and 5.2 nm CdSe/ZnS 

QD incorporated OB2 and OB18 polymersome compositions. 
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Figure 5.3 Capacity of OB2 polymersome membranes to stably incorporate and solvate 

CdSe/ZnS QDs.   

(A) Polymersomes containing equal aqueous concentrations of polymer but with different 

amounts of 2.1 nm CdSe/ZnS QDs, as indicated by the molar ratios of polymer:QD; (B) 

Polymersomes containing equal aqueous concentrations of polymer but with different 

amounts of 5.2 nm CdSe/ZnS QDs, as indicated by the molar ratios of polymer:QD. 
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Figure 5.4 Overlapped confocal fluorescence images of different sized CdSe/ZnS QD 

incorporated OL polymersomes by hydration swelling.   

A. OL to 2.1 nm CdSe/ZnS QD molar ratio: 1200:1;  B. OL to 2.1 nm CdSe/ZnS QD 

molar ratio: 200:1;  C. OL to 5.2nm CdSe/ZnS QD molar ratio: 1200:1;  D. OL to 5.2nm 

CdSe/ZnS QD molar ratio: 200:1. 
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Figure 5.5 (A) Overlapped fluorescence confocal microscope image of 2.1 nm CdSe/ZnS 

QD incorporated OL polymersomes at OL to 2.1 nm CdSe/ZnS QD molar ratio: 1200:1 

by hydration swelling. (B) Nonincorporated optical microscope image of OL 

polymersomes. 
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Figure 5.6 Z-section confocal fluorescence confocal images of 5.2nm CdSe/ZnS QD 

incorporated OL polymersomes by hydration swelling.   

OL to 5.2nm CdSe/ZnS QD molar ratio: 1200:1. Total Z-sectioning was 12 µm in depth. 
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5.4.1.2. Cryo-TEM Characterization of Gold Nanoparticle Incorporated Nano-scale 

Polymersomes 

The morphology of CdSe/ZnS QD incorporated polymer self-assemblies in meso-

dimensions was studied by confocal microscopy and showed successful incorporation of 

nanoparticles into polymersome bilayer membranes. Furthermore, we want to study the 

morphology of nanoparticle incorporated polymer vesicles in nano-dimensions. Since 

these CdSe/ZnS QDs have a very low electron density, and are not able to be observed 

after incorporating into the polymer membranes by Cryo-TEM. The electron-dense gold 

nanoparticles were used to incorporate into the polymer bilayer membranes and the 

morphologies were subsequently examined by Cryo-TEM. 

Similarly to μm-sized CdSe/ZnS QD incorporated polymersomes, gold 

nanoparticles with a different surface ligand (oleic acid) also self-assemble into the 

bilayer membrane of nano-sized polymersomes, as observed by Cryo-TEM, suggests that 

the surface ligands on the nanoparticles have minimal effect on the self-assembling 

process. In nm-sized gold nanoparticle incorporated polymersome samples, a mixture of 

bilayered, multilayered and aggregated structures was also observed (Figure 5.7). 

However, the amount of multilayered and aggregated structures was less than that seen in 

μm-sized vesicles. As visually estimated from Cryo-TEM experiments, approximate 70-

90% of the gold nanoparticle incorporated OB18 polymersomes are single bilayered 

normal vesicle structures, with small amount multilayered and aggregated structures; 

while in μm-sized polymersomes, over 50% vesicles are multilayered and aggregated. 

This phenomenon may be caused by the sonication step that decreased the aggregation of 

nanoparticle incorporated vesicles during the self-assembling process for nano-scale 
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polymersomes formation. Also, as expected based on μm-sized CdSe/ZnS QD 

incorporated polymersomes results, with an increase in loading concentration of gold 

nanoparticles, much smaller and more aggregated polymersomes were formed (Figure 

5.8). The membrane thicknesses of three different polymersomes with and without gold 

nanoparticle incorporation were also measured from Cryo-TEM (Figure 5.9), and were 

found to be consistent before and after gold nanoparticle incorporation. 

This gold nanoparticle incorporated polymersome system is a well-defined 

example of hydrophobic vesicle shell loading, with only hydrophobic interactions 

between copolymer and nanoparticle. The copolymer bending around the guest 

nanoparticles as a function of membrane thickness, incorporated nanoparticle diameters 

and concentrations was examined. A mechanism hypothesis (Figure 5.10) is proposed 

based the observed phenomena that aggregation of nanoparticles affects its incorporation 

into block copolymers self-assembled polymersomes. Usually, the assembly of the 

vesicles is driven by hydrophobic/hydrophilic (or interfacial) effects,
34-37

 but there are 

also important secondary effects
38-40

 such as curving of membranes, budding of vesicles 

or fission and fusion of vesicles upon the interaction of nanoparticles with the interface or 

surface of the membrane. The interaction energy between the nanoparticles and the 

polymer vesicle membrane determines the polymer self-assemblies structures and the 

physical properties of the polymersome membrane. The size and number of the 

nanoparticles also play an important role for curving effects to or from the membrane, 

fusion or fission of the vesicles or even embedding of the nanoparticle within a 

membrane occurs.
24

 Therefore, the change of interfacial interactions of the QDs and 

diblock copolymers at various QD concentrations or different QD sizes, causes the 
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aggregation effect and induces the change of the membrane mechanical properties. At a 

low nanoparticle concentration, the nanoparticle aggregation effect is small and most 

nanoparticles are uniformly distributed with the diblock copolymers. Thus, upon self-

assembly, we observed a large amount of single dispersed bilayer vesicle structures 

together with a small portion of the multilayered and aggregated structures. With an 

increasing of the nanoparticle concentration, there will be more aggregation from the 

nanoparticles and more multilayered and aggregated vesicle structures were observed. 

Finally, at a very high nanoparticle concentration, most nanoparticles tend to aggregate 

together and instead of incorporation into the polymersome bilayer membranes, they 

formed large aggregates and directly precipitated out of the aqueous solution during self-

assembling, leaving behind polymersomes with very low nanoparticle concentrations in 

the bilayer membranes. The observed vesicle size decreased with increasing nanoparticle 

concentrations can also be explained using this hypothesis. With increasing nanoparticle 

concentration in the polymersome bilayer membrane, the interaction energy of 

nanoparticles with the hydrophobic membrane increases, resulted in increased interfacial 

curvature, or decreased membrane bending rigidity of the membrane and thus the smaller 

and more aggregated structures.  In addition, the membrane thickness does not change 

much after nanoparticle incorporation, indicating that the nanoparticles are densely 

compacted within the hydrophobic membrane of the polymersomes.  
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Figure 5.7 Cryo-TEM images of 2-4 nm gold nanoparticle incorporated OB18 

polymersomes show multilayered and aggregated vesicle structures. 
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Figure 5.8 Cryo-TEM images of 2-4 nm gold nanoparticle incorporated polymersomes 

with increasing nanoparticle concentration, as indicated by the molar ratios of 

polymer:gold nanoparticle (left to right). 
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Polymersomes 

composition 

Membrane  thickness Polymersomes 

composition 

Membrane  thickness 

OB2-Gold 9.31 ± 1.32 nm  OB2 9.6 ± 1.61 nm 

OB18-Gold 14.5 ± 2.17 nm OB18 14.8 ± 1.96 nm 

OL-Gold 26.77 ± 4.62 nm  OL 27.2 ± 6.23 nm 

 

Figure 5.9 Cryo-TEM images of 2-4 nm gold nanoparticle incorporated polymersomes 

with different polymer environments, and membrane thickness of the polymersomes with 

or without 2-4 nm gold nanoparticle incorporation. 
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Figure 5.10 Hypothesis for CdSe/ZnS QD incorporated polymersomes formation process 
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5.4.2. Quantitative Loading of CdSe/ZnS QDs in Polymersomes  

To correlate changes in the packing of hydrophobic QDs encapsulates with the 

extent of membrane loading and their relative sizes to the thickness of the polymersome 

membrane, further characterization is carried by steady-state absorption and fluorescence 

spectroscopic studies. Aqueous suspensions of small (<300 nm diameter) emissive 

polymersomes were formed from thin-film formulations deposited at various mole ratios 

of three different diblock copolymers (OB2, OB18, OL) and two different sizes emissive 

CdSe/ZnS QDs (2.1 nm and 5.2 nm). Since the polymer (λabs.max.= 255 nm) and 2.1 nm 

CdSe/ZnS QDs (λabs.max. = 428 nm) or 5.2 nm CdSe/ZnS QDs (λabs.max. = 515 nm) have 

non-overlapping absorption in aqueous vesicle suspensions, the electronic absorption 

spectra of the redissolved solution of lyophilized QD incorporated polymersomes in 

toluene were monitored and the concentrations of CdSe/ZnS QDs were calculated using 

Beer's Law.  

Very different from porphyrin fluorophores incorporated polymer vesicles which 

can incorporate large payloads of porphyrin chromophores up to 20 mol% for a varies 

sizes of porphyrins,
41

 there is a saturation point for QD incorporation. When the molar 

ratio of polymer:QD deposited on Teflon were below that saturation point, which is 75:1 

for OB2, 50:1 for OB18, 35:1 for OL with 2.1 nm CdSe/ZnS QDs; or 600:1 for OB2, 

400:1 for OB18, and over 200:1 for OL with 5.2nm CdSe/ZnS QDs, there was a near 

perfect correlation with the resultant polymer:QD molar ratio composing the vesicles‟ 

membrane structures (Figure 5.11), as well as a greater than 80% uptake of the mass of 

Teflon-deposited fluorophore into the membranes of the water-soluble polymersomes 

(Figure 5.12A). However, when the QD concentration is above the saturation point, the 
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final QD concentration in vesicle membranes and the uptake efficiency significantly 

decreases. 

The theoretical maximum QD concentration within polymersome membranes can 

be calculated by assuming the vesicular hydrophobic volume is completely filled up with 

QDs. Therefore, the maximum 2.1 nm CdSe/ZnS QD concentration (mole ratio of 

polymer:QD) that can be incorporation in polymersomes is: 24.8:1 for OB2, 15.3:1 for 

OB18, 9.1:1 for OL; while for 5.2 nm CdSe/ZnS QDs, it is 198.7:1 for OB2, 122.4:1 for 

OB18, and 74.9:1 for OL. Interestingly, these numbers are all about 3 times multiplex of 

the experimental data. It is known that there is a critical interaction between nanoparticles 

and diblock copolymers, below the critical value, there is significant aggregation and 

above it there is almost no aggregation.
42

 Therefore, our study demonstrated that the 

critical value for CdSe/ZnS QDs incorporation into polymersomes is 1/3 of the 

theoretically calculated maximum loading concentration. This determined critical value 

can be used to guide the quantitative loading of any nanoparticles with specific sizes into 

the polymersome membrane.  

The membrane-uptake of QDs into solution corresponds well with the maximum 

QD loading concentration within vesicle membranes; the uptake of QDs is as high as ~ 

70-90% below the saturation concentration and greatly decreased to 10-20% above the 

saturation concentration. The vesicle yields for 2.1 nm CdSe/ZnS QDs incorporation 

follow the same trend with the membrane-uptake ability of QDs in vesicles; there is 

minimal aggregation of QDs and polymers below the saturation point with a high vesicle 

yield and more aggregation above the saturation point, resulted in the decreased vesicle 

yield. However, the vesicle yields of 5.2 nm CdSe/ZnS QD incorporated polymersomes 



294 

 

changes differently, without much decreasing above the saturation point as seen in 

Figure 5.12B. A possible explanation for this phenomenon is described in our hypothesis 

(Figure 5.10) that the formation of CdSe/ZnS QD incorporated polymersome is mainly 

affected by the aggregation effect. The interactions between QDs and the interactions 

between QDs and segments of the block copolymer both have strong aggregation effect. 

Above the saturation concentration, the CdSe/ZnS QDs and diblock copolymers form 

large aggregations which precipitate out of solution (as observed during the sample 

preparation of 2.1 nm CdSe/ZnS QD incorporated polymersomes ), resulted in decreased 

vesicle yield. Therefore, for larger CdSe/ZnS QDs that are saturated at quite low QD 

concentration, very few polymers were co-precipitated with the CdSe/ZnS QDs and 

resulting in small change of the vesicle yield. 
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Figure 5.11 Capacity of polymersome membranes to stably incorporate and solvate 2.1 

nm and 5.2 nm CdSe/ZnS QDs. 

(A) The polymer:QD ratio composing the vesicles' membranes as a function of the 

polymer:QD molar ratio originally deposited on Teflon, as determined by electronic 

absorption spectroscopy. Experimental conditions: T = 23 °C, DI water. 

(B) Solution vials containing equal aqueous concentrations of polymer but with 

decreasing amounts of CdSe/ZnS QDs, as indicated by the molar ratios of polymer:QD 

(left to right), under both room light and UV light.   
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Figure 5.12 Polymersomes accommodating hydrophobic CdSe/ZnS QDs of various sizes. 

(A) The membrane-uptake of CdSe/ZnS QDs into aqueous vesicle suspensions and (B) 

the yield of emissive polymersomes in aqueous solution as a function of the polymer:QD 

molar ratio originally deposited on Teflon, as determined by electronic absorption 

spectroscopy. Experimental conditions: T = 23 °C, DI water. 
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Upon further quantitative examination, the solutions of CdSe/ZnS QD 

incorporated polymersomes were diluted, in order to obtain concentrations of QDs within 

the linear range of fluorescence detection (i.e. less than or equal to 0.05 absorbance units), 

and their fluorescence spectra were recorded (Figure 5.13). Spectrophotometer analysis 

of aqueous solutions of QD incorporated polymersomes verified strong fluorescence 

emission from large numbers of membrane-soluble nanoparticles, indicating excellent 

QD dispersion and light-harvesting characteristics. Nanoparticles manifest photophysical 

properties within the polymersomal matrix that are similar to those previously established 

in organic solvents. In addition, increasing QD concentrations augments the absorption 

oscillator strength and shifts the emission maximum progressively to longer wavelengths. 

By spectral comparison, emissive polymersomes formed from increasing QD 

concentrations showed marked decreases in their respective fluorescence signal 

intensities, when normalized by the total number of QDs per vesicle. The reduced 

photoluminescence intensity per QD and bathochromic shift of photoluminescence band 

with increasing QD concentration both indicate aggregation of QDs. Nanoparticle 

aggregation results in attenuated fluorescence due to self-absorption and augmentation of 

non-radiative decay channels, therefore both segregation of the nanoparticle and control 

of their microenvironment are imperative. 

In order to explore the relative distribution of 2.1 nm and 5.2 nm CdSe/ZnS QDs 

within the polymersome membrane, we compared concentration-dependent fluorescence 

emission of each QD when loaded within vesicles of different membrane core-

thicknesses. By increasing membrane thickness, the relative fluorescence emission of 

both 2.1 nm CdSe/ZnS nanoparticles and 5.2 nm CdSe/ZnS nanoparticles displayed a 
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linear increase in relative fluorescence signal intensity at identical fluorophore membrane 

concentrations (Figure 5.13), indicating a change in the relative distribution of the QD 

fluorophore when incorporated in the thicker polymersome membrane. In addition, this 

increase in the relative emission per molecule was more pronounced in the case of 5.2 nm 

CdSe/ZnS QDs relative to 2.1 nm CdSe/ZnS QDs (Figure 5.14) and indicates that the 

larger QDs experience, as expected, a greater number of aggregation effect, resulting in 

loss of fluorescence emission.  These results suggest that the diminished QD emissive 

output with increasing vesicle membrane-loading derives mainly from the QDs emission 

quenching dominated by loading-dependent aggregation. 
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Figure 5.13 Fluorescence spectra of CdSe/ZnS QD incorporated polymersomes 

dependent on the molar ratios of polymer:QDs constituting the vesicles' membranes. 

Spectra were normalized by QD concentration and plotted on a relative scale of emission 

intensity. 
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Figure 5.14 Comparison of relative fluorescence signal intensity per CdSe/ZnS QD in 

aqueous polymersome suspensions as a function of membrane mol% loading 

(experimental conditions: T = 23 ºC, DI water).  
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5.5. Conclusions 

In this chapter, we report an interesting observation of wide-ranging potential for 

cellular imaging and manipulation by readily disperse aqueous-insoluble nanoparticles at 

high solution concentrations via membrane incorporation within aqueous vesicle 

suspensions. The hydrophobic shell of diblock copolymer vesicles was successfully 

loaded with highly fluorescent QDs and gold nanoparticles as hydrophobic model 

substrates, which suggests that polymersome incorporation is an effective way to make 

nanoparticles water-soluable and biocompatible. The combination of independent 

methods of characterization by fluorescence microscopy imaging and Cryogenic TEM 

both confirmed that the hydrophobic substrates were enclosed inside the hydrophobic 

vesicle shell. Further experiments with differently sized nanoparticles and different 

diblock copolymers determined the limits for particle enclosing inside the vesicle shell, 

revealing how far the double-layer can curve before different structural assemblies are 

favored. Moreover, we described the fabrication and controlled quantitative loading of 

CdSe/ZnS QDs to the polymersomes membranes, and outlined a basic protocol for 

determining loading-dependent effect of different sized nanoparticles when confined into 

the synthetic vesicle membranes. Compared to other systems, they simultaneously 

provide efficient fluorescence, a great reduction in photobleaching and the augument of 

QDs colloidal stability with tunable size and switchable physical properties. These results 

indicate that vesicle-encapsulated QDs fulfill the promise of generating novel 

intracellular fluorescent probes to revolutionize bioimaging of living cells and tissues 

both in vitro and in vivo. 



302 

 

5.6. Acknowledgements 

This work was supported by NIH R01CA115229. Confocal microscopy imaging 

was performed at the Light Microscope Core facility at Duke University. Cryo-TEM 

imaging was performed at the Shared Materials Instrumentation Facility at Duke 

University.  

5.7. References 

1. Sukhorukov, G. B.; Rogach, A. L.; Zebli, B.; Liedl, T.; Skirtach, A. G.; Köhler, K.; 

Antipov, A. A.; Gaponik, N.; Susha, A. S.; Winterhalter, M.; Parak, W. J. Small 2005, 1, 

194-200. 

2. Discher, D. E.; Eisenberg, A. Science 2002, 297, 967-973. 

3. Antonietti, M.; Förster, S. Advanced Materials 2003, 15, 1323-1333. 

4. Mecke, A.; Dittrich, C.; Meier, W. Soft Matter 2006, 2, 751-759. 

5. Barenholz, Y. Current Opinion in Colloid & Interface Science 2001, 6, 66-77. 

6. Arruebo, M.; Fernandez-Pacheco, R.; Ibarra, M. R.; Santamaria, J. Nano Today 2007, 

2, 22-32. 

7. Kim, J.; Piao, Y.; Hyeon, T. Chemical Society Reviews 2009, 38, 372-390. 

8. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. Nat Biotech 2004, 22, 

969-976. 

9. Faure, C.; Derrie, A.; Neri, W. The Journal of Physical Chemistry B 2003, 107, 

4738-4746. 

10. Korgel, B. A.; Monbouquette, H. G. The Journal of Physical Chemistry 1996, 100, 

346-351. 



303 

 

11. Koetz, J.; Jagielski, N.; Kosmella, S.; Friedrich, A.; Kleinpeter, E. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects 2006, 288, 36-43. 

12. El Rassy, H.; Belamie, E.; Livage, J.; Coradin, T. Langmuir 2005, 21, 8584-8587. 

13. Jang, H.; Pell, L. E.; Korgel, B. A.; English, D. S. Journal of Photochemistry and 

Photobiology A: Chemistry 2003, 158, 111-117. 

14. Yaacob, I. I.; Nunes, A. C.; Bose, A. Journal of Colloid and Interface Science 1995, 

171, 73-84. 

15. Kim, D.-W.; Oh, S.-G.; Yi, S.-C.; Bae, S.-Y.; Moon, S.-K. Chemistry of Materials 

2000, 12, 996-1002. 

16. Ai, H.; Flask, C.; Weinberg, B.; Shuai, X. T.; Pagel, M. D.; Farrell, D.; Duerk, J.; 

Gao, J. Advanced Materials 2005, 17, 1949-1952. 

17. Berret, J.-F.; Schonbeck, N.; Gazeau, F.; El Kharrat, D.; Sandre, O.; Vacher, A.; 

Airiau, M. Journal of the American Chemical Society 2006, 128, 1755-1761. 

18. Kim, B.-S.; Qiu, J.-M.; Wang, J.-P.; Taton, T. A. Nano Letters 2005, 5, 1987-1991. 

19. Krack, M.; Hohenberg, H.; Kornowski, A.; Lindner, P.; Weller, H.; Forster, S. 

Journal of the American Chemical Society 2008, 130, 7315-7320. 

20. Zhu, J.; Hayward, R. C. Journal of the American Chemical Society 2008, 130, 7496-

7502. 

21. Mueller, W.; Koynov, K.; Fischer, K.; Hartmann, S.; Pierrat, S.; Basche, T.; Maskos, 

M. Macromolecules 2008, 42, 357-361. 

22. Mai, Y.; Eisenberg, A. Journal of the American Chemical Society 2010, 132, 10078-

10084. 



304 

 

23. Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M.; Park, S.-J. Journal of the American 

Chemical Society 2011, 133, 1517-1525. 

24. Binder, W. H.; Sachsenhofer, R.; Farnik, D.; Blaas, D. Physical Chemistry Chemical 

Physics 2007, 9, 6435-6441. 

25. Sachsenhofer, R.; Binder, W. H.; Farnik, D.; Zirbs, R. In Polymersome Embedded 

Nanoparticles, 2007; Wiley Online Library: 2007; pp 375-377. 

26. Alivisatos, A. P. Science 1996, 271, 933-937. 

27. Hines, M. A.; Guyot-Sionnest, P. The Journal of Physical Chemistry 1996, 100, 468-

471. 

28. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Journal of the American Chemical 

Society 1993, 115, 8706-8715. 

29. Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Current 

Opinion in Biotechnology 2002, 13, 40-46. 

30. Chang, C. W.; Sud, D.; Mycek, M. A. Methods in cell biology 2007, 81, 495-524. 

31. Chang, Y. P.; Pinaud, F.; Antelman, J.; Weiss, S. Journal of biophotonics 2008, 1, 

287-298. 

32. Aldana, J.; Wang, Y. A.; Peng, X. Journal of the American Chemical Society 2001, 

123, 8844-8850. 

33. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Nano Letters 2003, 4, 11-18. 

34. Zhang, L.; Hong, L.; Yu, Y.; Bae, S. C.; Granick, S. Journal of the American 

Chemical Society 2006, 128, 9026-9027. 

35. Zhang, L.; Granick, S. Nano Letters 2006, 6, 694-698. 



305 

 

36. Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P.-Y.; 

Geissbühler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Angewandte Chemie International 

Edition 2006, 45, 5478-5483. 

37. Haryono, A.; Binder, W. H. Small 2006, 2, 600-611. 

38. Sackmann, E. FEBS Letters 1994, 346, 3-16. 

39. Lipowsky, R.; Dobereiner, H. G. EPL (Europhysics Letters) 1998, 43, 219. 

40. Noguchi, H.; Takasu, M. Biophysical journal 2002, 83, 299-308. 

41. Ghoroghchian, P. P.; Lin, J. J.; Brannan, A. K.; Frail, P. R.; Bates, F. S.; Therien, M. 

J.; Hammer, D. A. Soft Matter 2006, 2, 973-980. 

42. Chen, H.; Ruckenstein, E. The Journal of Chemical Physics 2009, 131, 244904. 

43. Hong, K.; Friend, D. S.; Glabe, C. G.; Papahadjopoulos, D. Biochimica et Biophysica 

Acta (BBA)-Biomembranes 1983, 732, 320-323. 

44. Paasonen, L.; Laaksonen, T.; Johans, C.; Yliperttula, M.; Kontturi, K.; Urtti, A. 

Journal of Controlled Release 2007, 122, 86-93. 

45. Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A. 

Journal of the American Chemical Society 2008, 130, 8175-8177. 

 

 

 

 

 

 

 



306 

 

CHAPTER 6. Major Results and Future Directions for the 

Development of NIR-Emissive Polymersomal Markers 

 

6.1. Chapter 2: Synthesis, Characterization and Properties of 

Conjugated (Porphinato)zinc(II) Compounds Featuring 

Benzothiadiazole Spacer Units 

6.1.1. Major Results 

We synthesizied a class of quinoidal spacer conjugated (porphinato)zinc(II) 

(PZn-(BTD-PZn)n, (PZn)2-(BTD-(PZn)2)n) and  (BTD-(PZn)n-BTD) complexes that 

featuring conjugated BTD spacer with varying degrees of porphyrin conjugation.  The 

performance of electronic and optical devices based on these conjugated species is 

optimized by reducing and tuning energy gaps between the highest occupied molecular 

orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). These 

compounds possess very high emission dipole strength with great enhancement of 

emission intensity and tremendous luminescence quantum yields (18% to 38% in THF, 

and 18%-49% in toluene) in the NIR region (700–1100 nm), make them extremely bright 

NIR emitters as electrooptic materials in a range of photonic applications, especially for 

optical imaging purpose after incorporation into polymersomes. The synthesis, optical 

spectroscopy, potentiometric studies, and electronic structural calculations are reported 

and show that the magnitudes of the potentiometric HOMO−LUMO gap (Ep) and 

quantum yields in conjugated organic materials can both be modulated. 
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6.1.2. Future Directions 

 Study the solvent relaxtion pathways that augment excited-state polarization and 

cause an increasing of quantum yield in nonpolar solvent toluene than polar solvent THF. 

 Incorporate these BTD conjugated porphyrins into polymersomal vesicles and 

engineering the optical properties of these emissive polymersomes.  

6.1.3. Papers Related To This Chapter 

Synthesis, Characterization and Properties of Conjugated (Porphinato)zinc(II) 

Compounds Featuring Benzothiadiazole Spacer Units 

Wei Qi, Jaehong Park, Ian Stanton, Michael J. Therien. In prepration. 

 

6.2. Chapter 3: Antibody Conjugated Near-Infrared Emissive 

Polymersomes for Active Targeting 

6.2.1. Major Results 

We have established targeted NIR-emissive polymersomal structures that emit 

over the 700-950 nm spectral domain.  These nanoscale, NIR-emissive bilayered vesicles 

feature hundreds-to-thousands copies of a single member of a larger family of conjugated 

multi(porphyrin) structures engineered to possess high emission dipole strength.  And the 

hydrophilic PEO terminus is functionalized with selected activated functional groups to 

enable conjugation to proteins and proteins.  This is the first work that systematically 

studies the functionalization chemistries for direct antibody conjugation to polymersomes. 

Six different coupling procedures were developed and we evaluated all these method in 

terms of antibody conjugation degree and polymersomes recovery yield to find the 
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optimized universal method for antibody attachment. The surface functionality degree 

and antibody concentration effect is also studied for controlled antibody conjugation on 

surface of polymersomes. 

Based on the functionalization techniques we developed for direct conjugation of 

antibody to polymersomes surface, we have created a universal method to make 

immunopolymersomes for tumor cell targeting and cell tracking. Two different tumor 

cells are studied. Anti-ErbB2 NIR emissive polymersomes is developed to enable 

efficient intracellular delivery for HER2 breast cancer cells targeting with these optical 

probes.  And a few different NIR emissive immunopolymersomes are also prepared for 

detecting of prostate cancer cells. NIR imaging allows quantitative, repetitive, in vivo 

detection of fluorophore-laden cells, at centimeter tissue depths without disturbing 

cellular function. Flow cytometry and confocal microscopy results indicate that anti-

ErbB2 immunopolymersome polymersome delivery to HER2 cells is concentration and 

time dependent, resulting in punctate intracellular localization. We observe significant 

uptake of NIR emissive polymersomes when conjugated to the peptide, with a lower 

detection limit of 5000 labeled cells. The extent of polymersome delivery is estimated to 

be 86,000 ± 2,500 vesicles/ cell with the uptake efficiency as high as 37%. Further, 

loading prostate cancer cells with different immunopolymersomes showed specific 

delivery of the immunopolymersomes to the tumor cells. Our studies will enable future in 

vivo tracking of labeled tumor cells by NIR fluorescence based imaging. 

6.2.2. Future Directions 

More studies on comparison of the coupling procedures and find the optimized 

antibody density on polymersomes surface for targeted cell binding: 
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 Polymer concentration (mM) effect on antibody coupling efficiency. 

 Effect of chemical manipulation of antibody on its antigen binding activity. 

 Efficiency of antibody-conjugated polymersomes (ACP) on target binding for 

different coupling procedures. 

 Effect of Ab surface density on ACP on target binding. 

For Anti-ErbB2 polymersomes (AEP), there are a lot of further characterizations 

we need to carry out. And also we can load drugs such as DOX to these AEP for targeted 

delivery: 

 Pharmacokinetics of AEP. 

 Stability of AEP-dox in Vivo.  

 Antitumor Efficacy of AEP-dox against HER2 Human Breast Cancer Xenografts. 

 Toxicity of AEP-dox. 

 Antitumor Efficacy of AEP-dox versus Combination Therapy. 

6.2.3. Papers Related To This Chapter 

Antibody Conjugated Near-Infrared Emissive Polymersomes for Active Targeting 

Wei Qi, Diane Fels, Mark W. Dewhirst, Michael J. Therien. In prepration. 
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6.3. Chapter 4: Synthesis, Characterization, Polymersome Preparation, 

Morphology Assessment and Functionalization of Biodegradable 

Diblock Copolymers 

6.3.1. Major Results 

A series of FDA-approved, biodegradable PEO-b-PCL diblock copolymers 

varying in PEO block size (Mn: 750-5000), fPEO (7.7%-33.3%), and Mn (3.6k-57k) were 

synthesized by ring-opening polymerization and anionic living polymerization. The PEO-

b-PCL diblock copolymers were subsequently screened for the ability to assemble into 

nano-scale and meso-scale polymersomes morphologies by different preparation methods. 

We found that only PEO-b-PCL diblock copolymers possessing a PEO block size of 2k-

3.8k, and fPEO ranging from 11.8-18.8%, were found to assemble into meso-scale 

biodegradable polymersomes. And meso-scaled polymersomes were obtained uniquely in 

nearly quantitative yield from a PEO(2k)-b-PCL(12k) diblock copolymer (PDI:1.21). 

However, very interestingly, these diblock copolymer form nano-scale vesicle 

morphologies in nearly quantitative yield on a much broader range. The compositions 

that form none or very little meso-scale polymersomes could form ~100% nano-scale 

polymersomes, which implicts a various applications for this diblock copolymers as 

nano-sized dilvery vesicles. 

To improve the mechanical properties of these highly crystalized polymersomes 

made from degradable PEO-b-PCL diblock polymers, we copolymerized with a flexible 

and elastic TMC to make PEO-b-PTMC diblock copolymers and PEO-b-P(CL-co-TMC) 

diblock tripolymers. The thermal properties of these polymers are studied by using both 

DSC and micropipette aspiration. Both experiments indicates that we formed a soft based 
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material by using this polymer blend. Althought these polymers have a low yield on 

forming meso-scaled vesicles, we expect they will show a similar trend on formation of 

nano-scaled polymersomes to PEO-b-PCL diblock copolymers, study on the ability of 

these polymers to self-assembly into nano-scaled vesicles is now undergoing. 

We functionalized this biodegradable PEO-b-PCL diblock copolymer with 

reactive vinyl sulfone groups at the terminus of the corona-forming PEO block. These 

groups are capable of tethering high concentrations of a thiol-containing targeting peptide 

after self-assembly of vesicles in mild conditions.  This is the first example of 

functionalized biodegrdable diblock copolymers, and this system should serve as a 

versatile platform for specific delivery of a variety of therapeutic payloads in a carrier 

capable of utilizing a wide range of targeting moieties. 

6.3.2. Future Directions 

1. Study the ability of TMC-based diblock copolymer to self-assemble into nano-sized 

polymersomes. 

2. Use these vinyl sulfone functionalized biodegradable PEO-b-PCL polymers to 

prepare nano-scale polymersomes, and conjugate peptides to the surface of these 

biodegradable polymersomes while incorporating drugs in the aqueous inner core to 

achieve targeted drug delivery. 

6.3.3. Papers Related To This Chapter 

1. Nano- and Meso-Scale Polymersomes, Based on Biodegradable Poly(ethylene 

oxide)-block-Polycaprolactone (PEO-b-PCL) Copolymers 

Wei Qi, Guizhi Li, Peter Ghoroghchian, Daniel A. Hammer, Michael J. Therien. In 

preparation. 
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2. Synthesis of Highly Elastic Biodegradable Polymersomes Featuring a Soft Segment 

of Trimethylene Carbonate (TMC) 

Wei Qi, Guizhi Li, Michael J. Therien. In preparation. 

3. Functionalized biodegradable polymersomes: a new approach to targeted drug 

delivery 

Wei Qi, Ying Ma, Michael J. Therien. In preparation. 

 

6.4. Chapter 5: Quantitative Membrane Loading of Quantum Dots into 

Polymersomes 

6.4.1. Major Results 

1. Successful incorporation of hydrophobic highly fluorescent quantum dots and gold 

nanoparticles into the bilayer membrane of both meso-scale and nano-scale polymer 

vesicles based on PEO-b-PBD and PEO-b-PCl diblock copolymers. 

2. Interestingly, the mechanical properties of PEO-b-PCl polymersomes change with 

incorporated nanoparticle concentration and incorporated nanoparticle sizes. 

3. Quantitative loading of quantum dots into nano-sized polymersomes is studied. The 

loading process shows very different trend compare to the porphyrin incorporation in 

polymersomes, which could be explained by our loading mechanism hypothesis. 

Together, these studies present a generalized paradigm for the generation of complex 

multi-functional materials that combine both highly emissive quantum dots and polymers 

through cooperative self-assembly. 
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6.4.2. Future Directions 

 Study the interesting photoluminescent properties of the quantum dots after 

incorporation into polymersomes.  

 Use these quantum dots incorporated polymersomes for cell imaging and compare 

them to porphyrin based emissive polymersomes. 

 Incorporate up-converting nanoparticles in the bilayer membrane of polymersomes to 

make UV-degradable polymersomes for controlled drug releasing.  

6.4.3. Papers Related To This Chapter 

1. Nanoparticles Incorporation into nano- and meso-Scale Polymersomes 

Wei Qi, Michael J. Therien. In preparation. 

2. Quantitate loading of Quantum dots into Polymersomes 

Wei Qi, Michael J. Therien. In preparation. 
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