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Abstract
In the first part of the dissertation, we focus on the retailer's problem of forecasting demand for products in a
category (including those that they have never carried before), optimizing the selected assortment, and
customizing the assortment by store to maximize chain-wide revenues or profits. We develop algorithms for
demand forecasting and assortment optimization, and demonstrate their use in practical applications. In the
second part, we study the sensitivity of the optimal assortment to the underlying assumptions made about
demand, substitution and inventory. In particular, we explore the impact of choice model mis-specification
and ignoring stock-outs on the optimal profits. We develop bounds on the optimality gap in terms of demand
variability, in-stock rate and consumer heterogeneity. Understanding this sensitivity is key to developing more
robust approaches to assortment optimization. In the third and final part of the dissertation, we study how the
seat value perceived by consumers attending an event in a stadium, depends on the location of their seat
relative to the field. We develop a measure of seat value, called the Seat Value Index (SVI), and relate it to seat
location and consumer characteristics. We apply our methodology to a proprietary dataset collected by a
professional baseball franchise in Japan. Based on the observed heterogeneity in SVI, we provide segment-
specific pricing recommendations to achieve a service level objective.
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In the first part of the dissertation, we focus on the retailer’s problem of forecasting

demand for products in a category (including those that they have never carried

before), optimizing the selected assortment, and customizing the assortment by

store to maximize chain-wide revenues or profits. We develop algorithms for

demand forecasting and assortment optimization, and demonstrate their use in

practical applications.

In the second part, we study the sensitivity of the optimal assortment to the under-

lying assumptions made about demand, substitution and inventory. In particular,

we explore the impact of choice model mis-specification and ignoring stock-outs on

the optimal profits. We develop bounds on the optimality gap in terms of demand

variability, in-stock rate and consumer heterogeneity. Understanding this sensitivity

is key to developing more robust approaches to assortment optimization.

In the third and final part of the dissertation, we study how the seat value perceived

by consumers attending an event in a stadium, depends on the location of their seat

relative to the field. We develop a measure of seat value, called the Seat Value Index

(SVI), and relate it to seat location and consumer characteristics. We apply our
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methodology to a proprietary dataset collected by a professional baseball franchise

in Japan. Based on the observed heterogeneity in SVI, we provide segment-specific

pricing recommendations to achieve a service level objective.
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Chapter 1

Introduction

This dissertation is focused on retail demand management. The dissertation has

three parts. In the first part, comprising of Chapter 3, we consider the retailers

problem of choosing, from a set of N potential SKUs in a retail category, K SKUs to

be carried at each store so as to maximize revenue or profit. Assortments can vary

by store, subject to a maximum number of different assortments. We introduce a

model of substitution behavior, in case a customer’s first choice is unavailable and

consider the impact of substitution in choosing assortments for the retail chain. We

view a SKU as a set of attribute levels, apply maximum likelihood estimation to

sales history of the SKUs currently carried by the retailer to estimate the demand

for attribute levels and substitution probabilities, and from this, the demand for

any potential SKU, including those not currently carried by the retailer. We spec-

ify several alternative heuristics for choosing SKUs. We apply this approach to

optimize assortments for three real examples: snack cakes, tires and automotive

appearance chemicals. A portion of our recommendations for tires and appearance

chemicals were implemented and produced sales increases of 5.8% and 3.6% re-
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spectively, which are significant improvements relative to typical retailer annual

comparable store revenue increases. We also forecast sales shares of 1, 11 and 25 new

SKUs, for the snack cakes, tires and automotive appearance chemicals applications,

respectively with MAPEs of 16.2%, 19.1% and 28.7%.

In the second part, comprised of Chapter 4, explores the sensitivity of the assortment

to the key assumptions made in practice. Most assortment planning papers assume

that the retailer knows (a) the customer arrival process, (b) the customer choice

process, and (c) the demand parameters. In addition, the impact of stock-out

substitution is ignored to keep the models analytically tractable. Clearly, the optimal

assortment and the optimal profits are sensitive to these underlying assumptions

about demand, substitution and stock-outs. We particularly explore the impact of

choice model mis-specification and ignoring stock-out substitution, on the optimal

assortment and profits. We develop bounds on the optimality gap of profits in terms

of demand variability, in-stock rate and assortment size.

In the third and final part, comprised of Chapter 5, we study how the seat value

perceived by consumers attending an event in a theater/stadium, depends on the

location of their seat relative to the stage/field. We develop a measure of seat value,

called the Seat Value Index, and relate it to seat location and consumer characteris-

tics. We implement our analysis on a proprietary dataset that a professional baseball

franchise in Japan collected from its customers, and provide recommendations. We

find that customers seated in symmetric seats on left and right fields might derive

very different valuations from the seats. We also find that the more frequent visitors

to the stadium report extreme seat value less often when compared to first-time

visitors. Our findings and insights remain robust to the effects of price and game

related factors. Our research quantifies the significant influence of seat location on

2



the ex-post seat value perceived by customers. Utilizing the heterogeneity in seat

values at different seat locations, we provide segment-specific pricing recommenda-

tions based on a service-level objective that would limit the fraction of customers

experiencing low seat value to a desired threshold.

3



Chapter 2

Literature Review

Assortment planning draws on a diverse literature in economics, operations man-

agement and marketing. We review here the prior research on consumer choice

models, demand estimation and assortment optimization that is most related to this

thesis. See Kök et al. (2008) for a more extensive review.

2.1 Consumer Choice Modeling

Consumer choice models constitute the fundamental platform for assortment plan-

ning, and may be classified as (1) utility based models, and (2) exogenous demand

models.

Utility Based Models

Utility based choice models assume that every customer associates a utility Ui with

each product i ∈ N. In addition, there is a no-purchase option denoted i = 0, with

4



associated utility U0. When offered an assortment S, every customer chooses the

option giving him the highest utility in S ∪ {0}. The market share for each SKU

i ∈ S can then be evaluated once we know the distribution of utilities across the

consumer population.

The Multinomial Logit (MNL) model is the most extensively studied utility-based

model in the marketing and economics literature (Ben-Akiva and Lerman 1985,

Anderson et al. 1992 , Guadagni and Little 1983). The MNL model assumes that the

utilities Ui can be decomposed into a deterministic component ui that represents the

average utility derived by the population of customers, and a random component ξi

that represents idiosyncrasies across customers. The ξi are assumed to be identical

and independent Gumbel random variables with mean zero and scale parameter µ.

Under these assumptions, the market share for each SKU i ∈ S can be written as

qi(S) =
exp

(
ui
µ

)
∑i∈S exp

(
ui
µ

) .

The other commonly used utility based model is the Locational Choice model

(LC) originally developed by Hotelling (1929) to study pricing and store location

decisions of competing firms. Lancaster (1966, 1975) extended this work to a

locational model of consumer product choice, where every SKU i ∈ N is represented

as a bundles of attribute levels zi = (z1
i , z2

i , ..., zT
i ) ∈ RT. Each consumer has an

ideal point y ∈ RT that defines his most preferred attribute levels. The utility this

consumer associates to SKU i is Uy
i = c− τ ‖y− zi‖, where c is the utility derived

from his most preferred product y, and τ is the disutility associated with each unit

of deviation from y. A consumer not finding his ideal product y in the assortment A

substitutes the variant j ∈ A that is located closest to his ideal point in the attribute

space if Uy
j > 0, or declines to purchase if Uy

j ≤ 0 .

5



Exogenous Demand Model

In the exogenous demand model, every consumer is assumed to have a favorite

product i, and fi is the share of consumers whose favorite product is i. A consumer

whose favorite product is i buys it if i ∈ S; if i /∈ S they substitute to SKU j ∈ S with

probability αij. Under these assumptions, the market share of each SKU i ∈ S is

given by qi(S) = fi + ∑j/∈S f jαji. The exogenous demand model has more degrees

of freedom than the MNL and LC models and can accommodate extremely flexible

substitution structures.

Comparison of Demand Models

All three demand models assume that customers have a favorite product and they

buy that product if it is in the assortment. They also all assume that if a customer’s

favorite product is not in the assortment, they may substitute a different product.

Where the models differ is in their assumptions about substitution behavior. The

exogenous demand model is the most flexible model, allowing for any substitution

structure, but it has many parameters and is hence difficult to estimate in practice.

The MNL model assumes that the demand for a missing product which is not

lost transfers to other products in the assortment in proportion to their popularity.

By contrast, the Locational Choice model assumes that a given product may be

more like some products than others and that substitution demand transfers to the

product in the assortment that is most similar to a customer’s preferred product.

6



2.2 Demand Estimation

Talluri and van Ryzin (2004) use sales transaction data (records of purchase time

and product choice for each customer) to estimate demand in the context of airline

revenue management. If customer arrivals, purchases and no-purchase outcomes

are completely observed, then one can estimate the demand parameters using

maximum likelihood methods. However, in practice only purchases are observed,

and hence it is not possible to distinguish between a period with no arrivals, and a

period with arrivals but no purchases. To overcome this problem Talluri and van

Ryzin use the Expectation-Maximization (EM) algorithm of Dempster et al. (1977) to

correct for the missing data. This method starts with arbitrary initial estimates of

the demand parameters and uses Bayes rule to estimate the missing data. These esti-

mates are now used to compute the conditional expected value of the likelihood (the

expectation step), and the resulting expected log-likelihood function is maximized

to generate new estimates for the demand parameters (the maximization step).

This procedure is repeated until it converges. Anupindi et al. (1998) use a similar

approach to estimate demand and substitution probabilities for two products using

sales transaction data from vending machines. Vulcano et al. (2009) use the EM

algorithm to develop a procedure to estimate demand from sales transaction data,

when the underlying substitution is governed by a MNL model.

Fader and Hardie (1996) use an attribute based approach to estimate demand from

sales transaction data. Consumer utility for a product is expressed in terms of its

attributes. The attribute-level utilities are used to determine choice probabilities

(based on an MNL model) and the likelihood of observing the given transaction

data. They use maximum likelihood to estimate the parameters of the model.
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Estimation is parsimonious as they only need to estimate attribute-level utilities,

and their model has the added advantage of being able to estimate demand of

new products. Batsell and Lodish (1981); Chiang (1991); Bucklin and Gupta (1992);

Chintagunta (1993) use a similar to investigate buying decisions of households. Bell

et al. (2005) describe a method for obtaining (SKU)-level preferences from estimated

attribute level parameters, circumventing the need for direct estimation of the more

complex SKU-level model. Kök and Fisher (2007) and Chong et al. (2001) also

estimate demand as part of an assortment optimization process, and these papers

are discussed in Section 2.3.2.

2.3 Assortment Optimization

Assortment optimization research has been based on both stylized models intended

to provide insight into structural properties of optimal assortments and decision

support models intended to guide a manager planning retail assortments.

2.3.1 Stylized Models

The stylized model research began with a pioneering paper by van Ryzin and Ma-

hajan (1999). They study an assortment planning problem under a MNL consumer

choice model and show that the optimal assortment consists of a certain number of

the highest utility products. Mahajan and van Ryzin (2001) study the same problem

allowing for stock-out substitution and develop heuristics based on a sample path

approach. Cachon et al. (2005), Caro and Gallien (2007), and Maddah and Bish

(2007) extend the van Ryzin Mahajan model in various ways.

8



Gaur and Honhon (2006) show that for a locational choice model, the products

in the optimal assortment are located far from each other in the attribute space,

indicating maximum differentiation, with no substitution between products in the

assortment. This implies that the most popular product may not be carried in the

optimal assortment, contrasting the results of van Ryzin and Mahajan (1999).

Although different papers focusing on assortment planning make different sets

of assumptions, there is a common underlying structure across all of them. All

stylized models assume that customers arrive according to a stochastic process,

looking to purchase an item from the set N ∪ {0}, where N = {1, 2, . . . , n} is the set

of all potential products that can be offered in the category and {0} represents the

no-purchase option. On arriving at the store they observe the assortment S ⊆ N

carried by the retailer and choose to purchase item i ∈ S with probability qi. 1 The

retailer’s objective is then to select the optimal assortment S ⊆ N and set inventory

levels that maximize his expected profits.

This set up suggests that we can decompose an assortment planning model into

four separate modules: (1) customer arrival process, (2) customer choice process,

(3) item level demand distribution, and (4) joint optimization of assortment and

inventory levels.

Customer Arrival Process

Customer arrival processes in a stochastic setting can be modeled using different

probability distributions. A common assumption made to ensure model tractability

is that the arrival process is independent of the assortment carried by the retailer.

1The choice probabilities are governed by the customer choice model and assumptions made
about how customers react to stock-outs.
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Let D denote the total number of customer arrivals in a cycle, and ψ(d) = P{D = d}

be its probability mass function (or probability density function if we assume a

continuous distribution). For example,Smith and Agrawal (2000) model arrivals as

a negative binomial distribution, while van Ryzin and Mahajan (1999) and Gaur

and Honhon (2006) assume that arrivals follow a normal distribution with mean λ

and standard deviation σ
√

λ.

Customer Choice Process

As pointed out earlier, consumer choice models constitute the fundamental platform

on which assortment planning models are built. A detailed discussion of the

different models used in practice is presented in Section 2.1. The central idea

running across all choice models is that customers purchase their favorite product

if carried in the assortment and substitute to a different product, when it is not

available. The difference arises from the assumption made about substitution

behavior.

The end-goal of modeling customer choice is to derive an expression for the choice

probabilities qi. Note that the assortment on offer changes dynamically as the

products carried in the assortment may stock out with time. This leads to a complex

set of time-varying choice probabilities which makes the models highly intractable.

A simplifying assumption commonly used is that consumers substitute only when

their favorite product is not carried in the assortment, and not when their favorite

product is in the assortment carried, but stocked-out at the time of her visit. The

reader is directed to Kök et al. (2008) for more details. This assumption makes the

choice probabilities qi independent of the inventory decision.
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Item Level Demand Distribution

The item level demand distribution can now be derived by observing that an arriv-

ing customer chooses to purchase item i with probability qi(S) and not purchase it

with probability 1− qi(S). Hence, the conditional distribution of demand for item

i ∈ S can be written as P (Di = di | D = d) = ( d
di
)

The probability distribution for demand for item i ∈ S can then be obtained by

computing ψi(di | qi) = ∑∞
d=di

( d
di
)qdi

i (1− qi)
d−di . The mean and standard deviation

of the item level demand can be expressed in terms of the mean (λ) and standard

deviation (σ) of the total demand, and written as µi = λqi and σi =
√

λqi ×√
1 + hi

(
σ2

λ
− 1
)

For certain choices of the customer arrival distribution ψ(d), ψi(di | qi) takes a

simple form. For example, if ψ(d) is Poisson with rate λ, then ψi(di | qi) is Poisson

with rate λqi. Similarly, when ψ(d) is a Negative Binomial Distribution (NBD), the

item level demands follow a thinned NBD.

In order to obtain closed form expressions for the expected profits, it is common to

approximate the item level demand using a normal distribution. The approximation

is exact when customer arrivals are Poisson.

Joint Optimization of Assortment and Stock Levels

Assortment optimization includes both the selection of items to stock (assortment se-

lection) and deciding the inventory levels for each item in the assortment (inventory

optimization). As shown by van Ryzin and Mahajan (1999), if the item level de-

mands can be approximated by a normal distribution, the assortment optimization

problem is separable across assortment selection and inventory optimization.

11



If S denotes the assortment offered, then the optimal inventories for all items

i ∈ S are given by the newsvendor model, and can be written as x∗i = λqi(S) +

zi
√

λqi, where zi = Φ−1
(

1− c
p

)
, and Φ is the cumulative distribution function

of the standard normal distribution. The expected profits from assortment S can

be expressed as E
[
ΠA (x∗(S))

]
= (p− c)λ ∑i∈S qi(S)− pφ(z)∑i∈S

√
λqi(S). The

assortment optimization problem now reduces to selecting the assortment S that

maximizes the total expected profits.

The structure of the optimal assortment S is known only for two cases. For the

MNL model, van Ryzin and Mahajan (1999) show that the optimal assortment is of

the form S = {1, 2, . . . , k∗} for some value of k∗ ≤ n, where the items are arranged

in decreasing order of their popularities. For the LC model, Gaur and Honhon

(2006) show that the optimal assortment S consists of a number of non-overlapping

variants (across which consumers don’t substitute), which can be determined by a

simple line search for a single parameter.

2.3.2 Decision Support Models

Decision support research began with Green and Krieger (1985), who formulate a

product line design problem in which there are m consumer segments indexed by i,

and n products, indexed by j. Every consumer segment i has a utility associated with

product j denoted by uij. A consumer chooses from all available products the one

that maximizes his utility. Green and Krieger then formulate the problem of which k

products out of the n should a firm select so as to maximize (1) consumer welfare or

(2) firm profits, and propose solution heuristics. Green and Krieger (1987a,b, 1992),

McBride and Zufryden 1988, Dobson and Kalish (1988) and Kohli and Sukumar
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(1990) extend this line of research. Green and Krieger (1992) apply their approach

to the product line positioning of a new dietary food supplement using data from

conjoint-analysis, a statistical technique to elicit consumer valuations for product

attributes by asking them to compare pairs of products. Belloni et al. (2008) compare

the performance of different heuristics for product line design and find that the

greedy and the greedy-interchange heuristics perform extremely well.

Smith and Agrawal (2000) use an exogenous demand model and an integer pro-

gramming formulation of assortment planning. Their paper is noteworthy in that

they model substitution demand and consider the optimal amount of inventory

to stock, in a decision support setting. They solve a number of small problems

by complete enumeration to demonstrate how assortment and stocking decisions

depend on the nature of assumed substitution behavior, and also propose a heuristic

to solve larger problems.

Chong et al. (2001) develop an assortment modeling framework based on the

Guadagni and Little (1983) brand-share model. They account for product similar-

ity within a category by incorporating new measures. They use consumer-level

transaction data over multiple grocery shopping trips to estimate the parameters

of the model and use a local improvement heuristic to suggest an alternative as-

sortment with higher revenue. Although their model can implicitly predict SKU

level demand, their explicit focus is on brand-shares, and hence they don’t create or

measure the accuracy of SKU level demand forecasts. They report an average 50%

mean squared error of predicting brand choice at the customer level across different

product categories.

Kök and Fisher (2007) use an exogenous demand model to study a joint assortment

selection and inventory planning problem in the presence of shelf-space constraints.
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They note that the constrained shelf space implies that average inventory per SKU

is inversely related to the breadth of the assortment and assess the tradeoff between

assortment breadth vs in-stock level for the SKUs carried. They consider substitution

and assume that substitution demand accrues to available products in proportion

to their original market share, as in the MNL model. They provide a process for

estimating demand and substitution rates and apply their method to data from a

large Dutch grocery retailer.

Caro and Gallien (2007) is one of the first papers to incorporate demand learning

in a dynamic assortment planning problem setting. The objective of their paper

is to help a retailer optimally modify their product assortment over time to max-

imize overall profits across the selling horizon. They formulate the assortment

optimization problem as a multi-armed bandit, and use Bayesian learning meth-

ods to update demand. They propose a closed-form dynamic index policy using

dynamic programming techniques and show that their policy is near optimal for a

range of numerical experiments.
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Chapter 3

Demand Estimation and Assortment

Optimization1

3.1 Introduction

A retailer’s assortment is the set of products they carry in each store at each point

in time. Retailers periodically review and revise the assortment for each category

of products they carry to take account of changes in customer demand over time

as well as new products introduced by suppliers. This periodic assortment reset

seeks to choose a set of SKUs to carry in the new assortment to maximize revenue

or profit over a future planning horizon, subject to a shelf space constraint, which

can often be expressed as an upper bound on the number of SKUs carried.

If a customer’s most preferred product is not in a retailers assortment, they may

elect to buy nothing or to purchase another product sufficiently similar to their most

1This chapter is based on Fisher and Vaidyanathan 2011. An Algorithm and Demand Estimation
Procedure for Retail Assortment Optimization, Working Paper
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preferred product that they are willing to buy it. This possibility of substitution

must be taken into account in both assortment optimization and in estimation. In

estimation, substitution probabilities need to be estimated and the sales of a SKU

to customers who most preferred that SKU must be distinguished from sales to

customers who preferred a different SKU but substituted when they didn’t find

their preferred SKU in the assortment.

Most retailers use the same assortment for all stores, except that in smaller stores

they might eliminate some SKUs. Recently however, localizing assortments by

store or store cluster has become a high priority for many retailers. For example,

Zimmerman (September 7, 2006), O’Connell (April 21, 2008), McGregor (May 15,

2008) and Zimmerman (October 7, 2008) describe recent efforts by Wal-Mart, Macy’s,

Best Buy and Home Depot to vary the assortment they carry at each store to account

for local tastes. In the extreme, a retailer might carry a unique assortment in each

store, but most retailers claim that this is administratively too complicated. For

example, retailers develop a diagram called a planogram showing how all products

should be displayed in a store, a process that is labor intensive. A planogram would

need to be developed for each assortment, which means the administrative cost of

each assortment is high. Despite the flurry of interest in localization reported in

the business press and which we have encountered in our interaction with retailers,

there have been no studies to document the level of benefits from localization or to

provide tools to help a retailer determine the right degree of localization.

The assortment planning process varies greatly across different retailers and prod-

uct categories. Retail product categories are commonly segmented into into apparel,

grocery, and everything else, usually called hard goods.2 An analytic approach

2This discussion is based on Fisher and Raman (2010) and conversations with several retail
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to apparel assortments is challenging because rapidly changing tastes make sales

history of limited value. Assortment planning is most developed in the grocery seg-

ment (where it is usually called category management), due in part to Nielsen/IRI

who enlists households to record over time their grocery purchases in all stores.

Much academic research on grocery consumer behavior has relied heavily on na-

tional panel data. Among other things, the data allows one to model substitution

behavior by observing what a customer buys, if anything, when a product they

purchase every week is unavailable due to a stockout. Many grocery retailers are

now engaged in SKU rationalization efforts aimed at reducing SKU count with

minimal impact on revenue.

The approach described in this chapter best fits hard goods, where many retailers

conduct an annual review of their various categories aimed at identifying SKUs

to delete and add to the assortment in each category. Deletion decisions are easier,

since sales data is available to indicate the popularity of existing SKUs, but current

industry practice (for example, the household purchase data available in grocery is

not available in hard goods) provides little if any hard data with which to forecast

the sales of SKUs that might be added to the assortment, and hence a category

manager is forced to rely on intuition and the representations of suppliers as to

the merits of new products they are introducing. This also makes it impossible to

forecast the revenue impact of strategic changes such as assortment localization.

It is apparent that the ability to forecast store-SKU demand for all potential SKUs,

including those with which a retailer has no prior sales experience, and to intelli-

executives including Paul Beswick, Partner and Head, Oliver Wyman North American Retail Practice,
Robert DiRomualdo, former CEO, Borders Group, Kevin Freeland, COO, Advance Auto, Matthew
Hamory, Principal, Oliver Wyman North American Retail Practice, Herbert Kleinberger, Principal,
ARC Consulting, Chris Morrison, Senior VP of Sales, Americas, Tradestone, Robert Price, Chief
Marketing Officer, CVS, and Cheryl Sullivan, Vice President of Product Management, Revionics, Inc.
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gently localize assortments by store, would be valuable enhancements to current

assortment planning practice, and the goal of this chapter is to provide those en-

hancements.

Our approach follows the marketing literature in viewing a SKU as defined by

a set of attribute levels and assuming that a given customer has a preferred set

of attribute levels. We use prior sales to estimate the market share in each store

of each attribute level and forecast the demand share for a SKU as the product

of the demand shares for the attribute levels of that SKU. We assume that if a

customer does not find their ideal product in the assortment, they buy the product

in the assortment closest to their ideal with some probability and we also estimate

these substitution probabilities. We apply various heuristics to these demand and

substitution estimates to determine optimized assortments. Our process can control

the degree of localization by limiting the number of different assortments to be any

level between a single assortment for the chain to a unique assortment for each

store.

We applied this approach to the snack cakes category at a regional convenience store

chain, the tire assortment at a national tire retailer and the appearance chemicals

category of a major auto aftermarket parts retailer. The tire and auto parts retail-

ers implemented portions of our recommended assortment changes and obtained

revenue increases of 5.8% and 3.6% respectively, significant improvements given

traditional comparable store annual increases in these segments.

We do not consider inventory decisions, so our approach fits when inventory de-

cisions are unrelated to assortment decisions as is the case for many slow movers,

where the retailer carries a small amount of inventory, often just a single unit, e.g

jewelry, auto parts, books and CDs. The convenience store retailer in our study
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carried a single facing of each product and the tire retailer four of each tire.

Despite the enormous economic importance of assortment planning, we are aware

of only two papers, Chong et al. (2001) and Kök and Fisher (2007), that formulate

a decision support model for assortment planning, describe a methodology for

estimating parameters and optimizing assortments and test the process on real

data. While these papers are an excellent start, there is obviously a need for much

more research on the vast topic of assortment planning. This chapter extends these

papers, and hence the exisiting literature, in four ways.

1. We provide a thorough treatment of the important emerging topic of assort-

ment localization. We allow a constraint on the number of different assort-

ments so as to bound the administrative cost of localization and measure how

the amount of localization impacts revenue. We compare and explain differing

levels of localization benefits across our three applications. Chong et al. (2001)

don’t deal with localization. Kök and Fisher (2007) allow a unique assortment

for each store but don’t provide a constraint on the number of assortments or

assess how localization impacts revenue.

2. We forecast the demand for new SKUs that have not been carried before in

any store, based on past sales of products currently carried. Chong et al.

(2001) don’t explicitly forecast new SKUs, although it would appear from

their process that they could derive forecasts for new SKUs. However, they

need consumer-level transaction data over multiple shopping trips and this

detailed data is not available in most non-grocery applications; the standard

data available is store-SKU sales data. Kök and Fisher (2007) forecast how a

SKU carried in some stores will sell in other stores in which it is not carried,
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but do not provide a way to forecast demand for a completely new SKU

carried in no stores.

3. We introduce a new demand model not previously considered in assortment

decision support research. Both Chong et al. (2001) and Kök and Fisher

(2007) use the multinomial logit demand model, which implicitly assumes that

substitution demand is divided over available products in proportion to those

products’ market share. This assumption fits a situation in which products are

similar to each other, but vary in a taste parameter, such as different flavors

of yogurt or colors of apparel. By contrast, our demand model is a variant of

the locational choice model which fits a situation in which some products are

better substitutes for a given product than others. This was a very real feature

of our applications; for example, the natural substitutes for a 14 inch tire are

other 14 inch tires, not 15 inch tires. As another example, in our snack cakes

application we found the probability of substituting from Brand 1 to Brand 2

was 89%, but only 22% of substituting from Brand 2 to Brand 1. Hence Brand

2 customers were much more loyal.

The multinomial logit approach better fits some real assortment problems

and the locational choice approach fits others better, so both approaches are

needed. Our providing an approach based on a locational choice demand

model is analogous to the way in which, for insight models, Gaur and Honhon

(2006) provided a locational choice complement to the multinomial logit based

analysis of van Ryzin and Mahajan (1999).

4. Two of the retailers in our study implemented a portion of our recommended

assortment changes and we estimate that the revenue increase in revenue from
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these changes is larger than the annual same store revenue increases typically

seen in this industry. We believe this is the first implementation validation of

an analytic approach to assortment planning.

Section 3.2 provides our demand model and a formulation of the assortment op-

timization problem. Section 3.3 describes estimation of the demand model and

heuristics for assortment selection. Section 3.4 presents results for the three appli-

cations. Section 3.5 analyzes the application results to understand differences in

localization benefit and to assess the performance of the heuristics. Section 3.6 offers

some concluding remarks.

3.2 Problem Formulation and Demand Model

We seek optimal assortments for a retail category over a specified future planning

horizon. For concreteness, we assume that the goal is to maximize revenue, since

this was the primary concern in our three applications, although it is straightforward

to adapt our approach to maximizing other functions, such as unit sales or dollar

gross margin. We define the problem parameters in Table 3.1.

The parameters K and L would be specified by the retailer. For expositional simplic-

ity, K does not vary by store, but it would be easy to modify our process to enable

K varying by store, and in fact we do this in our computational work. L would be

chosen to lie between 1 and m to tradeoff the greater revenue that comes with larger

L against the administrative simplicity that comes with smaller L. As will be seen,

our solution approach makes it easy to solve this problem for all possible values

of K and L, thus providing the retailer with rich sensitivity analysis to guide their

choice of these parameters.
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Table 3.1 Definition of Problem Parameters

Notation Description

N = {1, 2, ..., n} Index set of all possible SKUs a retailer could carry in this
category

M = {1, 2, ..., m} Index set of all stores

K Maximum number of SKUs per assortment

L Maximum number of different assortments

Ds
i Number of customers at store s for whom SKU i is their most

preferred product

pi Price of SKU i ∈ N

We define an assortment to be a set S ⊆ N with |S| ≤ K and let a(s) denote the index

of the assortment assigned to store s. A solution to the assortment optimization

problem is completely defined by the portfolio of assortments Sl, l = 1, 2, ..., L and

a(s) ∈ {1, 2, . . . , L}, for all s ∈ M.

Table 3.2 Description of Mathematical Notation

Notation Description

A Number of attributes

a Attribute type index

Na Number of levels of attribute a,a = 1, 2, . . . , A

f s
au Fraction of customers at store s who prefer level u of the attribute a,

u = 1, 2, . . . , Na, a = 1, 2, . . . ,A

πs
auv Probability that a customer at store s who’s first choice on attribute a is u is

willing to substitute to v, defined for all a, u, and v.

Our demand model assumes that a consumer shopping this category in store s has

a most preferred SKU i ∈ N, but might be willing to substitute to other SKUs if
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i /∈ Sa(s). We view a SKU as a collection of attribute levels, use historical sales data to

estimate the demand share of each attribute level, and finally estimate the demand

share of any SKU as the product of the demand shares of its attribute levels.

We introduce some notation to formalize this approach in Table 3.2. By definition,

πs
avv = 1. Moreover, πs

auv can be 0 if attribute level v is not a feasible substitute for u.

For example, size is an attribute of a tire and a 14 inch tire is not a feasible substitute

for a customer with a 15 inch wheel.

The fraction of customers who most prefer SKU i with attribute levels i1, i2, . . . , iA

is defined to be f s
i = Πa=A

a=1 f s
aia

. If a customer’s most preferred SKU i with attributes

i1, i2, . . . iA is not in the assortment, they are willing to substitute to SKU j with

attributes j1, j2, . . . jA with probability πs
ij = Πa=A

a=1 πs
aia ja . If a customer with most

preferred SKU i finds i ∈ Sa(s) when they shop the store, then we assume they

buy it. Otherwise, they buy the best substitute for i in S, defined to be j(i, S) =

arg maxi∈S ΠA
a=1πs

aia ja .

In using store sales data to estimate the parameters of our model,we first estimate

Ds, the total unit demand in store s, as total unit sales divided by the share of

demand captured, as defined by demand shares and substitution probabilities, and

then set Ds
i = f s

i Ds.

The revenue earned by store s using assortment Sa(s) can then be written as

Rs(Sa(s)) =

 ∑
i∈Sa(s)

piDs
i + ∑

i/∈Sa(s)

Ds
i πs

ij(i,Sa(s))
pj(i,Sa(s))


The first term in this expression is the revenue from customers whose most preferred

SKU is contained in the assortment and the second term is the expected substitution

revenue from customers whose most preferred SKU was not in the assortment.
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The assortment optimization problem is to choose Sl, | Sl |≤ K, l = 1, 2, . . . , L and

a(s) for all s ∈ M to maximize ∑s∈M Rs(Sa(s)).

Our demand model most closely resembles the locational choice model, but with

three important differences: (1) in the locational choice model, the probability of

purchasing the closest substitute from the assortment is either 0 or 1 (depending

on the no-purchase utility), while we allow general substitution probabilities, (2)

consumers are assumed to be distributed in a continuous space in the locational

choice model, while we allow customer locations to be restricted to discrete locations

in the attribute space, and (3) all attribute levels in the locational choice model have

a numeric value which allows the calculation of distance between products and

identification of the nearest product to a given ideal point, whereas the nearest

product to an ideal point in our model is identified via the substitution probabilities,

which can be thought of as inducing a distance metric for attributes that can’t be

located in a space. These three enhancements were needed to make the locational

choice model operational in the applications we consider.

We allow substitution probabilities to vary by store because we found in our appli-

cations that they did in fact vary by store. For example, we will see in Section 3.4

that the willingness of a consumer to substitute to a higher priced product varies

by store and is correlated with median income in the zip code in which the store is

located.

Our demand model implies that a consumer’s preferences for the various attributes

are independent, which may not be true. For example a college student shopping

for twin size bed-sheets might have a different color preference than a suburban

homemaker shopping for queen size sheets, so the color and size attributes for

sheets would interact.
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Our defense of this assumption is three-fold: (1) all prior publications we are aware

of that use attributes in demand estimation make a similar assumption. Fader and

Hardie (1996) is typical of the approach followed in the literature. They assume

that the utility for a SKU is a linear function of its attributes and then use this utility

in a Multinomial Logit model to determine SKU demand shares. They state that

“In both the marketing and economics literature, it is common to assume an additive utility

function” and note that this implies no interaction between attributes. (2) in our

applications, we check the accuracy of this approximation by comparing demand

estimates with actual sales for the SKUs currently carried and find that forecasts

based on this model are accurate compared to previously published research. (3) if

there is significant interaction between attributes, we demonstrate ways to modify

our demand model to take this into account. In the snack cakes application (Section

3.4.1), the attributes are flavor, package size (single serve or family size) and brand.

Package size and brand interact since one brand is stronger in single serve and

another in family size. We deal with this by combining brand and size into a new

attribute brand-size. In the tire application (Section 3.4.2), the attributes are size,

brand (4 brands) and mileage warranty (low, medium, high). Brand and mileage

warranty interact because a given brand does not offer all warranty levels, and so

we combine brand and warranty level to create the attribute brand-warranty.

In the tires example, there is also an interaction between size and brand-warranty.

A tire with a given size attribute level fits a defined set of car models of a certain

age and value. The six brand-warranty levels correspond to different price points

and quality. There is a clear interaction between brand-warranty shares across price

points and the age and value of the cars a size tire fits. We show how to deal with

this by partitioning the sizes into a finite number of homogenous segments (which
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are latent) and allowing the brand-warranty shares to be conditional on segment

membership.

3.3 Analysis

We describe our methods for estimating model parameters and choosing assort-

ments.

3.3.1 Estimating Demand and Substitution Probabilities

We use Maximum Likelihood Estimation to estimate demand and substitution prob-

abilities. Our primary input for estimation is store-SKU sales of products currently

carried by the retailer during a prior history period. Parameters are estimated at the

store level, but for expositional simplicity we will drop the store superscript in the

discussion that follows. We describe here a generic, broadly applicable approach;

in Section 3.4, we will exploit special structure of the applications to refine this

approach. Let S denote the assortment carried in a particular store and xi the sales

of SKU i ∈ S, during a history period.

We can write the probability Fj(S) that a customer purchases j ∈ S, as Fj(S) =

f j + ∑i/∈S,j=j(i,S) fiπij. Let F(S) = ∑j∈S Fj(S) denote the probability that a customer

shopping in this category makes any purchase from assortment S. Then, assuming

that each consumer purchase is an independent random draw, the likelihood of

observing sales data x = {xi}i∈S is given by

LH( f , π) = C ∏
j∈S

[
Fj(S)
F(S)

]xj

,
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where the proportionality constant is C =

(
∑ xj∈S

)
!

∏j∈S xj!
. The maximum likelihood

estimates (MLE) for the parameters ( f , π) can be obtained by maximizing the

log-likelihood function

LLH( f , π) = ∑
j∈S

xj log Fj(S)−
(

∑
j∈S

xj

)
log F(S) (3.1)

subject to the constraints

Na

∑
u=1

fau = 1, a = 1, 2, . . . , A (3.2)

fi = Πa=A
a=1 faia i = 1, 2, . . . , n (3.3)

πij = Πa=A
a=1 πaia ja i = 1, 2, . . . , n and j = 1, 2, . . . , n (3.4)

fau, πauv ∈ [0, 1] ∀a, u, and v (3.5)

Given the complex nature of the log-likelihood function, it is not possible to de-

rive analytical results. Hence we resort to numerical optimization methods based

on gradients after transforming the problem into an unconstrained optimization

problem by reparametrizing fau and πauv as

fau =
exp( f̂au)

∑Na
u=1 exp( f̂au)

, u = 1, 2, . . . , Na − 1 and f̂aNa = 1 (3.6)

πauv =
exp(π̂auv)

1 + exp(π̂auv)
, ∀a, u, and v (3.7)

We found examples showing that the log-likelihood function may not be concave,

which implies that numerical optimization methods may not converge to a global

maximum. We handle this issue by running the optimization algorithm from several
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randomly generated starting points. This does not guarantee global convergence,

but lowers the chances of the algorithm getting stuck at a local maximum. Mahajan

and van Ryzin (2001) use a similar approach to compute the optimal inventory

levels using the sample path gradient algorithm.

Once we obtain MLE estimates for demand shares and substitution probabilities, as

noted in the previous section, we estimate total demand for the product category as

D =
∑i∈S xi

F(S)
, and Di as fiD.

3.3.2 Estimating Prices for New SKUs

We endeavored to set prices on SKUs not currently carried by the retailer in a way

that would be consistent with their current pricing policy. We assume that prices on

existing SKUs were set in relationship to the value of the SKU to a consumer and

that consumer value is related to attribute levels. Hence, we regressed the log of

price on attribute levels to obtain the pricing equation:

log(pi) = α0 +
A

∑
a=1

Na−1

∑
u=1

βauziau, i = 1, 2, . . . , n (3.8)

where ziau is a dummy variable taking the value one if SKU i has level u of attribute

a, and zero otherwise.

This is a hedonic pricing equation, and has been extensively used in economics

(Rosen 1974; Goodman 1998; Pakes 2003).
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3.3.3 Heuristics for Choosing Assortments

If there were no substitution, then the assortment problem could be optimally

solved by a greedy algorithm that chose SKU’s in decreasing order of their revenue

contribution. But substitution makes the objective function nonlinear, because the

contribution of a SKU depends in part on it’s substitution demand, which depends

on which other SKUs are in the assortment. As a result, the assortment problem is

complex to solve optimally. Hence, we define greedy and interchange heuristics for

choosing the assortments Sl, l = 1, 2, . . . , L and the specification a(s), s ∈ M of the

assortment assigned to store s.

For assortment planning, Kök and Fisher (2007) use a greedy heuristic and Chong

et al. (2001) an interchange heuristic. For the product line design problem, Green

and Krieger (1985) use greedy and interchange. Belloni et al. (2008) find that for

the product line design problem, greedy and interchange together find 98.5% of

optimal profits on average for randomly generated problems, and 99.9% for real

problems.

We first define a greedy heuristic for finding a single assortment SG(T) for a speci-

fied subset of stores T. In the statement of Greedy(T) below, we define Rs(∅) = 0.

We also use an interchange heuristic which starts with a given assortment and

tests whether interchanging a SKU which is not in the assortment with a SKU

in the assortment would increase revenue. Any revenue increasing interchanges

are made as they are discovered. The process continues until a full pass over all

possible interchanges discovers no revenue increasing interchanges. We apply the

interchange heuristic both starting with the greedy assortment and starting with
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Algorithm 3.1 Greedy(T)
1. INITIALIZE S0 = ∅, k = 1
2. WHILE (k ≤ K) DO

(a) jk = arg maxj/∈Sk−1 ∑s∈T Rs
(
Sk−1 ∪ {j}

)
(b) Sk = Sk−1 ∪ {jk}
(c) k = k + 1
END WHILE

3. RETURN SG(T) = SK

random assortments.

Algorithm 3.2 Forward Greedy for Finding L Assortments
1. INITIALIZE

(a) l = 1 , S1 = SG(M)
(b) Cl = {Si | i = 1, 2, ..., l}
(c) E =

{
SG({s}) | s ∈ M

}
(d) a(s) = 1, ∀s ∈ M

2. WHILE (l < L) DO

(a) S∗ = arg maxS∈E ∑s∈M Rs

(
Sa∗(s)

)
− Rs

(
Sa(s)

)
where a∗(s) = arg maxi:Si∈Cl∪S Rs(Si)

(b) l = l + 1
(c) Sl = SG({s∗})
(d) a(s) = arg maxi≤l Rs(Si)
(e) Ti = {s ∈ M | a(s) = i}, i = 1, 2, ..., l
(f) Si = AG(Ti), i = 1, 2, ..., l
END WHILE

3. RETURN Al, l = 1, 2, ..., L , a(s), s ∈ M

To find a portfolio of L assortments and assignments of stores to assortments, we

have two alternative heuristics, a forward and reverse greedy. In the forward greedy

heuristic, we first apply Greedy(T) m + 1 times with T = M and T = {s} , s ∈ M,

initialize S1 = SG(M), and assign all stores to this assortment. If L > 1, we
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identify the assortment S∗ ∈ E =
{

SG(s) | s ∈ M
}

to add that would maximize

the incremental revenue gain. To identify S∗, we calculate the incremental revenue

gain from adding each assortment S ∈ E by reassigning stores to their revenue

maximizing assortment in S1 ∪ S and calculating the increase in revenue due to the

reassignment. We then choose as S∗ the assortment that gives the greatest revenue

increase in this process. At any point in the algorithm, we have a portfolio of l

assortments and l store clusters defined by the assignment of stores to assortments.

As long as l < L, we add to this portfolio the assortment that leads to the highest

increase in revenue and reassign stores to the enhanced set of assortments.

In the reverse greedy heuristic, we first apply Greedy(T) m times with T = {s} for

all s ∈ M, initialize Si = SG(M) for i = 1, 2, ..., m and set a(s) = s for all s ∈ M. If

L < m, we identify the single assortment S∗ ∈ E = {Si | i = 1, 2, ..., m} to delete that

would minimize the revenue loss. We calculate the incremental revenue loss from

deleting any assortment S ∈ E by reassigning stores to their revenue maximizing

assortment in E− S and calculating the loss in revenue due to the reassignment. At

any point in the algorithm, we have a portfolio of l assortments and l store clusters

defined by the assignment of stores to assortments. As long as l > L, we delete one

assortment from this portfolio that leads to the least loss in revenue and reassign

stores to the reduced set of assortments.

The solution Ai, i = 1, 2, ..., L and a(s), s ∈ M provided by the Forward Greedy

and Reverse Greedy heuristics can be further improved by an iterative procedure

of reassigning stores to assortments and re-assorting each cluster of stores by us-

ing greedy to select the assortment. This iteration between store assignment and

assortment selection continues as long as the incremental revenue ∆R exceeds a

predefined threshold ε. This iterative procedure can also be carried out within the
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Algorithm 3.3 Reverse Greedy for Finding L Assortments
1. INITIALIZE

(a) l = m
(b) E =

{
SG({s}) | s ∈ M

}
(c) a(s) = s, ∀s ∈ M

2. WHILE (l > L) DO

(a) S∗ = arg minS∈E ∑s∈M Rs

(
Sa∗(s)

)
− Rs

(
Sa(s)

)
where a∗(s) = arg maxi:Si∈E−S Rs(Si)

(b) E = E−S∗

(c) l = l − 1
(d) a(s) = arg maxi:Si∈E Rs(Si)
(e) Ti = {s ∈ M | a(s) = i}, i = 1, 2, ..., l
(f) Si = AG(Ti), i = 1, 2, ..., l
(g) E = {Si | i = 1, 2, ..., l}
END WHILE

3. RETURN Si, i = 1, 2, ..., L , a(s), s ∈ M

Algorithm 3.4 Iterative Procedure to Improve Heuristic Solution
WHILE (∆R > ε) DO

R = ∑s∈M Rs(a(s))
Ti = {s ∈ M | a(s) = i}, i = 1, 2, . . . , L
Si = SG(Ti), i = 1, 2, . . . , L
a(s) = arg maxi≤L Rs(Si), ∀s ∈ M
∆R = ∑s∈M Rs(a(s))− R

END WHILE

WHILE-DO loop in Step 2, but does not provide any significant improvement in

our applications.

32



3.4 Results

3.4.1 Regional Convenience Chain

This retailer offered snack cakes in 60 flavors, two brands {B1, B2}, and several

different package sizes in 140 stores. We restricted our analysis to the top 23 flavors

that accounted for 95% of revenue. Although there were several different package

sizes, what mattered from a consumer’s perspective was whether the size was

single-serve or family size, and hence we grouped sizes into Single Serve (S) and

Family Size (F). Further, because the retailer advised us that brand shares and

willingness to substitute varied by size, we combined brand and size to obtain a

single attribute called Brand-Size, indexed 1 to 4 for SB1, SB2, FB1 and FB2 in order.

Thus there were 23 Flavor attribute levels, 4 Brand-Size attribute levels and 92

possible SKUs, of which 52 were being offered by the retailer in at least one store.

The number of SKUs offered across stores varied between 24 and 52, and averaged

40.3. An internal market research study on the industry commissioned by the retailer

showed that Flavor was the most important attribute for a consumer purchasing

from this category. Hence, we assumed that the probability of substituting across

flavors is negligible and could be set to 0. The retailer also believed that there is

negligible substitution between sizes S and F, so this substitution was assumed

to be 0. The substitute for a particular brand-size is the other brand in the same

size. We define i(j) to be the brand-size that would substitute to j if i(j) is not in the

assortment and set i(1) = 2, i(2) = 1, i(3) = 4 and i(4) = 3. We need to estimate

the 23 flavor shares f1v, 4 brand-size shares f2b, and 4 substitution probability

parameters π12, π21, π34 and π43.
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We used Store-SKU sales data for the six month period from July 2005 to December

2005 to estimate model parameters at each of the 140 stores. We describe here a

refinement of the estimation procedure described in Section 3.3.1 that exploits some

special structure of this application, namely that there are two attributes with no

substitution across one of them. Estimation was done at the store level, but for

simplicity in the discussion below, we drop the store subscript. As before, let xj

denote the total sales of SKU j at a particular store during July 2005 to December

2005 and let vj and bj denote the flavor and brand-size, respectively, of SKU j. Given

an assortment S, the sales share of SKU j ∈ S at any store can then be expressed as

Fj(S) = f1vj f2bj , if i(bj) ∈ S and Fj(S) = f1vj

(
f2bj + f2i(bj)

πi(bj)bj

)
, if i(bj) /∈ S.

We can then write Equations (3.1) - (3.7) from Section 3.3.1 as maximizing

LL( f , π) = ∑
j∈S

xj log Fj(S)−
(

∑
j∈S

xj

)
log F(S) (3.9)

subject to the constraints

23

∑
v=1

f1v = 1,

4

∑
b=1

f2b = 1 (3.10)

where all variables are ∈ [0, 1].

The Lagrangian can be written as

H = ∑
j∈S

xj log Fj(S)−∑
j∈S

xj log F(S)− λ1

(
23

∑
v=1

f1v − 1

)
− λ2

(
4

∑
b=1

f2b − 1

)

−
4

∑
b=1

µbπi(b)b −
4

∑
b=1

γb(1− πi(b)b) (3.11)
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Applying first-order conditions with respect to the flavor shares f1v, we get

∂H
∂ f1v

=
1
f1v

 ∑
j∈S,vj=v

xj −
∑j∈S xj

F(S)
Fj(S)

− λ1 = 0 (3.12)

Multiplying Equation 3.12 by f1v, and adding the equations across all values of v,

gives us

λ1 = ∑ xj −
∑j∈S xj

F(S) ∑
j∈S

Fj(S) = 0 (3.13)

Hence, we get

∑j∈S,vj=v Fj(S)

F(S)
=

∑j∈S,vj=v xj

∑j∈S xj
(3.14)

which on simplification yields

f1v =
∑j∈S,vj=v xj

∑j∈S xj

F(S)

∑j∈S,vj=v
Fj(S)
f1vj

(3.15)

Note that
Fj(S)
f1vj

= f2bj + f2i(bj)
πi(bj)bj

, and can be expressed in terms of the brand-size

shares and substitution probabilities, and F(S) can be calculated by using the fact

that ∑23
v=1 f1v = 1. This reduces the number of parameters to be estimated from 31 to

8, as the log-likelihood function can now be written as a function of the brand-size

shares ( f2b) and substitution probabilities (πi(b)b) alone.

As was described in Section 3.3, we transform the variables using Equations (3.6)

and (3.7) to impose the constraints that they lie between 0 and 1, and use numerical

methods based on gradients from randomly generated starting points to maxi-

mize this log-likelihood function. Tables 3.3 and 3.4 show the average parameter
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estimates across all stores.

Table 3.3 Snack Cakes: Demand
Share Estimates (store average)

Brand Size Sales (%) Demand (%)

B1S 67 61
B2S 24 27
B1F 4 6
B2F 5 6

Table 3.4 Snack Cakes: Substitution
Probability Estimates (store average)

B1S B2S B1F B2F

B1S 1 18% 0 0
B2S 26% 1 0 0
B1F 0 0 1 89%
B2F 0 0 22% 1

We measured the overall estimation error across all stores, by computing the Sales-

Weighted Mean-Absolute-Deviation (MAD) of estimated Store-SKU sales shares

from actual Store-SKU sales shares, as given by
∑s∈M ∑j∈Ss

∣∣∣∣∣ xs
j

∑j xs
j
−Fs

j (S
s)

∣∣∣∣∣xs
j

∑s∈M ∑j∈Ss
xs

j
∑j xs

j

. We measure

MAD in terms of sales shares because unit sales are significantly influenced by

overall growth or shrinkage in the category, whereas sales shares are not. Moreover,

our assortment choices are determined solely by sales shares, so these are the

parameters important to our analysis. The MAD for this retailer was calculated to

be 16.4% at the Store-SKU level and 6.2% at the Chain-SKU level.

We used a hedonic regression as described in Section (3.3.2) to assign price to SKUs

not currently offered. The regression R2 is 85.5% and confirms our assumption that

prices on existing SKUs were set to be correlated with attribute levels that determine

consumer value. We multiplied the estimated prices by a scale factor of 0.97 so as to

equalize the estimated revenue at the chain level to the actual revenue, which will

facilitate comparison of new optimized assortments with current revenue.

To validate our results, we used Store-SKU sales data for the six month period

from July 2007 to December 2007. For this period, we had data for only 54 of the
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140 stores in the chain. We used the previously estimated parameters to compute

the share of sales for each SKU for the validation period (July 2007 to December

2007), at the store and chain levels and compared it with the actual sales shares.

The sales-weighted MAD of predicted sales shares from the actual sales shares was

calculated to be 40.1%3 at the store-SKU level and 25.8% at the chain-SKU level.

One new SKU was added to the assortment in the July-December 2007 period,

Butterscotch in Brand 2 Single Serve. The MAD and MAPE34 of the predicted sales

shares from the actual sales shares at the chain level for the newly introduced SKU

was 16.2%. The 16.2% MAPE compares favorably to the 30.7% MAPE for chain sales

of two new SKUs reported by Fader and Hardie (1996), the only prior reporting of

which we are aware of the errors of forecasts for new SKUs based on sales data.

Sources of error affecting both the calibration and validation samples include ran-

dom fluctuation in sales and the approximation of representing SKU shares as the

product of attribute shares. Additional sources of error for the validation sample

include changes in relative prices across brand-sizes, which affect share and substi-

tution probability estimates, and a steady increase in the demand shares of some

newer flavors.

Figure 3.1 shows the results of applying the forward greedy heuristic described

in Section 3.3.3 to compute optimized assortments at the chain level, varying the

number of SKUs in the assortment from 1 to 92. Figure 3.1 also shows results for the

3The 54 stores in this analysis had a higher MAD of 24.6% at the Store-SKU level and 10.3% at the
Chain-SKU level in the calibration sample, as compared to 16.4% at the Store-SKU level and 6.2% at
the Chain-SKU level for the whole chain. This suggests that if we use data for the whole chain, then
the Store-SKU level MAD in the validation sample, may proportionally come down from 40.1% to
26.7%.

4We define MAPE as
1

∑s∈M ∑j∈Ss xs
j

∑s∈M ∑j∈Ss

∣∣∣∣∣∣∣
xs

j
∑j xs

j
− Fs

j (S
s)

xs
j

∑j xs
j

∣∣∣∣∣∣∣ xs
j
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tires and appearance chemicals examples which are discussed in Sections 3.4.2 and

3.4.3. Figure 3.1 shows the percentage captured of the maximum possible revenue

if all SKUs were offered, as a function of K expressed as a percentage of n. Note

that maximizing revenue for a given value of K is equivalent to maximizing this

percentage of maximum revenue captured.

Figure 3.1 Revenue vs. Percent of Maximum Possible SKUs in the Assortment
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To quantify the potential improvement in revenue, we compare the assortments

we generated for L = 1 and L = m to the current assortment, which had a revenue

of $6.19 million. Because SKU count varied somewhat by store, in computing the

revenue of the L = 1 assortment, we first generated the greedy solution for a SKU
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count equal to the maximum SKU count across all stores, and then for store s with

SKU count Ks, we used the first Ks SKUs chosen by greedy. The revenue of this

solution was $8.01 million, a 29.2% increase over the current revenue. The revenue

for store-specific assortments with SKU counts of Ks for each store was $8.75 million,

a 41.4% increase over the current revenue. We thus see that maximum localization

adds 12.2% beyond the 29.2% achieved by chain level optimization.

These are estimates of revenue improvement based on the calibration sample. If

these assortment changes were implemented, we would expect the actual improve-

ment to be less because of differences in the calibration sample sales and sales

during the period of implementation. To determine how much these estimated

revenue improvements would be eroded during implementation due to forecast

errors, we used parameter estimates based on the validation sample Store-SKU

sales data (July 2007 to December 2007) to estimate the revenue that would have

been achieved had our recommended assortment changes been implemented in the

validation period. Because we were only able to obtain data on 54 stores during

our validation period (vs. 140 stores in the calibration period), we compared the

revenue lift of these 54 stores based on the calibration sample with the lift based on

the validation sample. The calibration period revenue of the current 54 store assort-

ment was $2.43 million and the store-optimal assortment estimated revenue based

on the calibration period was $3.44 million, which is a 41.5% increase. Recomputing

revenue estimates for these two assortments during the validation period gives $2.5

million and $3.0 million, a 20% increase. We see that the revenue improvement has

eroded by half because the calibration period parameter estimates are an imperfect

representation of the validation period reality, although a 20% revenue increase

is still economically very significant. The calibration period revenue of the single
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chain-wide assortment was $2.74 million indicating that localization would lead

to an incremental 12.8% gain in revenues. The corresponding number calculated

based on the validation period was $2.69 million indicating a localization lift of

7.6%.

Table 3.5 Snack Cakes: Number of Brand-Sizes by Flavor for the Optimal Assortment
at a Representative Store

Flavor Demand Rank # Brand Sizes in Optimal Assortment

Cinnamon 1 3

Chocolate 2 3

Peanut Butter 3 3

Butterscotch 4 3

Butter 5 3

Vanilla 6 3

Raspberry 7 3

Fudge 8 3

Honey 9 3

Buttercream 10 3

Choc. Chip 11 2

Cherry/Cheese 12 2

Cheese 13 2

Coconut 14 1

Oatmeal/Raisin 15 1

Jelly 16 1

Vanilla/Chocolate 17 1

Pineapple/Cheese 18 0

Blueberry 19 0

Marshmallow 20 0

Apple 21 0

Cream 22 0

Glazed 23 0
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Table 3.5 provides data for an optimized assortment at a representative store and

shows that the assortment has an intuitive property; the higher the sales rank of

a flavor, the more brand-sizes are carried. Moreover, the same brand-sizes were

carried for all flavors that had the same number of brand-sizes. If one brand-size

were offered, it is B1S, if two are offered they are B1S and B2F and if three offered,

they are B1S, B2F and B2S.

The result that was initially most surprising to the retailer is that the optimal as-

sortment completely drops Brand 1 in the Family Size. This is easily explained by

looking at Table 3.4 which shows that 89% of consumers are willing to switch from

B1 to B2 in the family-size segment5. Hence, by not offering B1F, which accounts

for 6% of primary demand, the retailer only loses 6% ∗ 11% ∼ 0.7% of demand,

which is more than made up by carrying more brand-sizes in other flavors. This

result made sense to the retailer, who told us that Brand 1 was strongest in single

serve, but Brand 2 was by far the strongest in family size, and that’s why so many

customers were willing to substitute from Brand 1 to Brand 2. They found this the

most interesting finding of the study, as they believed substitution rates varied, but

had previously had no way to measure the exact rates.

While using a unique assortment from each store adds 12.2% to revenue, this retailer

believed that it would be unmanageably complex to have more than 6 assortments

for the chain, because for each assortment they needed to develop a diagram (called

a Planogram) showing how the product would be displayed in the store.

To quantify the benefit of a realistic level of localization, we applied our assortment

5Beswick and Isotta (2010), page 2, reports a very similar finding for an orange juice study. For
the leading brand, only 21% are willing to substitute to another brands, but for the second brand,
85% are willing to substitute
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heuristics for L = {1, 2, ..., 6} ∪ {m}, keeping K = 40 for all stores.6 Table 3.6 shows

revenue as a function of L. We note that complete localization increases revenue to

$8.11 million compared to the revenue of $7.38 million for L = 1. However, 76.7%

of this increase can be achieved with just 6 different assortments, suggesting that a

small amount of localization can have a big impact.

3.4.2 National Tire Retailer

Tire attributes include brand, size, mileage warranty, price, speed rating and load

limit. However, these attributes are not independent of each other. For example,

size is positively correlated with load limit, while mileage warranty is correlated

with speed rating. Based on discussions with management and analysis of attribute

data, we concluded that brand, size and mileage warranty were the fundamental

defining attributes of a tire relevant to assortment planning.

The retailer offered several nationally advertised brands that they believed were

equivalent to the consumer, and which we denote National (N) and treat as one

brand. They also offered three house brands of decreasing quality, which we denote

as House 1 (H1), House 2 (H2) and House 3 (H3), where H1 is the highest quality

and most expensive house brand. There were a large number of distinct mileage

warranties offered, but some of these varied only slightly and hence were believed

by the retailer to be equivalent to consumers. Therefore, we aggregated the mileage

warranties into three levels of Low (15, 000 − 40, 000 miles), Medium (40, 001 −

60, 000 miles) and High (> 60, 000 miles), denoted L, M and H, respectively. We

combined brand and warranty into a single attribute to account for interaction

6We only report results obtained using the forward greedy heuristic as the results based on the
reverse greedy heuristic were not significantly different.
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between these attributes (for example, national brands were always offered only

with high or medium warranty, while H3 tires were offered only with low warranty)

to identify the following six brand-warranty combinations: NH, NM, H1H, H2H,

H2M, H3L. Sixty four distinct tire sizes were offered, resulting in 64 ∗ 6 = 384

distinct possible tire SKUs that could be offered. This retailer carried 122 of these

384 possible SKUs in at least one of their stores. The number of SKUs offered across

stores varied between 93 and 117, and averaged 105.2. The assortment offered also

varied slightly across the stores, indicating some localization.

We were advised by the retailer that customers do not substitute across sizes; for

example, a 14” diameter tire cannot be used on a 15” wheel. Table 3.7 is based on

estimates provided by the Vice President of the tire category for the retailer and

depicts the qualitative likelihood of substitution across brand-warranty levels. We

let {πS, πL, πM} denote the substitution probabilities somewhat likely, likely and most

likely.

Table 3.6 Snack Cakes: Impact of
Localization on Revenue

L Revenues
($ million)

1 7.38
2 7.62
3 7.75
4 7.86
5 7.92
6 7.94

m = 140 8.11

Table 3.7 Tires: Management’s Estimate of the
Most Likely Substitution Probabilities

To

From NH NM H1H H2H H2M H3L

NH 1 S S S 0 0

NM L 1 S S 0 0

H1H 0 0 1 L S 0

H2H 0 0 S 1 S 0

H2M 0 0 S L 1 0

H3L 0 0 0 0 M 1

S =Somewhat Likely, L =Likely, M = Most Likely
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We used sales data at the Store-SKU level for the six month period from July 2004 to

December 2004 to fit the model and estimate its parameters. We need to estimate 64

size shares, 6 brand-warranty shares, and 3 substitution probabilities. The estima-

tion procedure followed was equivalent to the procedure described for snack cakes

if we view Size as being equivalent to Flavor (in that there is no substitution across

Size or Flavor) and Brand-Warranty being equivalent to Brand-Size. In particular, we

can express log-likelihood as a function of the brand-warranty shares and substitu-

tion probabilities and hence need to estimate only 6 brand-warranty shares and 3

substitution probabilities for each store.

This process worked for 319 of the retailer’s 574 stores, but at 255 stores there

was insufficient data to determine all 6 brand-warranty shares. In particular, in

these stores there was no size in which brand-warranties H2M and H3L were both

offered, so it was not possible to identify the split of demand between H2M and

H3L. From the parameter estimates in the 319 stores with sufficient data to estimate

all parameters, we observed that the share of H3L at a store is correlated with

median household income (R2 = 0.15, p < 0.10). We regressed the H3L share

against median income for the stores at which we could estimate all the parameters

and used the regression estimate for the share of H3L at other stores. We then used

MLE to estimate the remaining parameters. Of the 255 stores with insufficient data,

there were 52 stores where we could neither identify the share of H3L nor H2M. For

these stores, in addition to estimating H3L shares, we also estimated H2M shares

by regressing it against income. As before, we used MLE to estimate the remaining

parameters.

Figure 3.2 shows that the estimated share of H3L at each store is negatively corre-

lated and the share of H2H and H2M are positively correlated with median income
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level in the zip code in which the store is located, which is to be expected. In

addition to supporting the parameter estimation process as described above, these

results provide confirming demographic evidence to support the reasonableness of

our parameter estimates.

Figure 3.2 Share of H3L (H2H, H2M) is Negatively (Positively) Correlated with In-
come
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Tables 3.8 and 3.9 show the average across all stores of the estimated brand warranty

demand shares and substitution probabilities. The sales-weighted MAD of sales

shares predicted based on the parameter estimates from the actual sales shares is
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13.6% at the store-SKU level and 4.5% at the chain-SKU level.7

Table 3.8 Tires: Demand Share Esti-
mates (store average)

Brand Warranty Sales (%) Demand (%)

NH 1 4

NM 1 3

H1H 3 4

H2H 26 24

H2M 45 5

H3L 24 61

Table 3.9 Tires: Substitution Proba-
bility Estimates (store average)

Substitution Probability

Somewhat Likely 2%

Likely 6%

Most Likely 45%

Table 3.8 also gives sales share estimates which can be compared with the demand

share estimates. The most interesting comparisons are the demand share estimate

for H3L, which is much higher than the sales share, and for H2M, which is much

lower than the sales share. The reason for this appears to be that the retailer offered

H3L in many fewer sizes than H2M; H3L is offered in only 15 of the 64 sizes, versus

52 sizes in which H2M is offered. But for those sizes where H3L and H2M are

both offered, H3L outsells H2M by 40 : 1 on average, indicating that it is strongly

preferred over H2M. The retailer offered H3L in fewer sizes because they preferred

7As discussed in Section 3.2, there is some interaction between size and brand-warranty of a
tire. One way to account for this interaction is to use a latent class model (Fader and Hardie, 1996,
Kamakura and Russell 1989). In a latent class model, we assume that there are several homogenous
segments of sizes, and the brand-warranty shares vary across size segments, but are the same
within each segment. For example, a size segment could include tires that fit old cars, and the
brand-warranty shares reflect this in that the shares of less expensive tires are relatively higher.
The estimation problem then reduces to maximizing the likelihood function by jointly estimating
the probabilities of segment membership for each size and the associated brand-warranty shares,
which can be achieved by using the Expectation Maximization algorithm. Each size is assigned to
the size segment for which it has the highest segment membership probability. The choice of the
optimal number of segments is made by the Bayesian Information Criterion (BIC), which penalizes
the likelihood function for the addition of segments. We estimated a latent class model for a subset
of 20 stores. We decided on using two size segments based on BIC. The average share of H3L was
34.2% and 71.3% for the two segments. We also find that the sales-weighted MAD of sales share
estimates improved from 13.6% to 11.3%.
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to sell the higher priced H2M and believed that their sales staff could convince

customers to trade up to this tire. The substitution estimate of 45% shows that

many customers did in fact trade up, and this explains the high sales share for H2M

relative to its demand share. However, the 55% of the 61% of customers preferring

H3L who did not substitute represents more than 34% of demand that was being

lost due to the meager offering of H3L in the current assortment, suggesting that

there was substantial opportunity to increase sales by re-assorting.

We can see that offering H3L in only a few sizes hurts revenue. The average price of

H3L and H2M in the sizes where both were offered was $28 and $36 respectively.

Suppose that there were 100 consumers shopping the store and consider the two

alternatives of offering H3L alone or H2M alone. Offering H2M would capture

(5% ∗ 100 + 45% ∗ 61% ∗ 100) ∗ $36 = $1168 in revenues while offering H3L would

capture (61% ∗ 100) ∗ $28 = $1708 implying 46% additional revenue.

We used the hedonic regression described in Section (3.3.2) to assign price to SKUs

not currently offered. The regression R2 is 96.32% which supports our assumption

that prices on existing SKUs are based on attribute levels. As before, we multiplied

the estimated prices by a scale factor of 1.05 so as to equate the estimated revenue

of the current assortment to the actual revenue of this assortment.

To validate our results, we used Store-SKU sales data for the next six month period

from January 2005 to June 2005. We used the previously estimated parameters to

compute Store-SKU sales shares and compared them with actual sales shares for

the validation period (January 2005 to June 2005). The sales-weighted MAD of

predicted sales shares from the actual sales shares was 38.2% at the Store-SKU level

and 21.1% at the chain-SKU level.

Figure 3.1 shows the results of applying the greedy heuristic described in Section
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(3.3.3) to compute optimized assortments at the chain level, varying the maximum

number of SKUs in the assortment, and Table 3.10 summarizes the store-optimal

assortment for a representative store in terms of additions and deletions to the

current assortment.

To quantify the potential improvement in revenue, we compare the assortments

we generated for L = 1 and L = m to the current assortment, which had a revenue

of $80.2 million. Because SKU count varied somewhat by store, in computing the

revenue of the L = 1 assortment, as in the snack cakes example, we first generated

the greedy solution for a SKU count equal to the maximum SKU count across all

stores, and then for store s with SKU count Ks, we used the first Ks SKUs chosen by

greedy. The revenue of this solution was $104.1 million, a 30.1% increase over the

current revenue. The revenue for store specific assortments with SKU counts of Ks

for each store was $108.7 million, a 35.9%8 increase over the current revenue. We

thus see that maximum localization adds 5.8% beyond the 30.1% achieved by chain

level optimization.

In contrast to the snack cakes example, where a unique assortment per store was not

feasible due to planogramming complexities, it is completely feasible here for the

retailer to offer store-specific assortments, since the tires are not actually displayed

at the store. Hence, we did not compute revenue lifts for values of L between 1 and

m as we did with snack cakes.

We also performed a sensitivity analysis to determine how robust our results were

to the assumptions made about substitution probabilities. We varied the estimated

substitution probabilities by increasing/decreasing them by a factor of 2 and com-

8We also optimized the assortment to maximize gross margins using approximate gross margin
data by brand. The increase in gross margins was 32%, still a significant number.
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Table 3.10 Tires: Assortment Changes
for a Representative Store

Brand SKUs

Warranty Added Deleted

NH 11 1

NM 5

H1H 1 8

H2H 19

H2M 2 32

H3L 14 1

Total 47 47

Table 3.11 Tires: Revenue Lift vs.
Substitution Probability πM

πM Revenues Increase

($ million) (percent)

0.00 337.7 322.1

0.23 133.1 66.4

0.45 104.1 30.1

0.73 95.2 19.0

1.00 87.2 9.0

puted the revenues obtained from the chain-wide optimal assortment. Our analysis

revealed that the optimal assortment and sales lift were sensitive to only one substi-

tution parameter, the substitution probability from H3L to H2M. This makes sense

because the demand shares of other brand-warranties are low, and the fraction of

customers who substitute if these low share options are not offered has little impact

on revenue. Table 3.11 shows how the lift in revenues varied as a function of this

average substitution probability. Note that for the base case, where the average

substitution probability from H3L to H2M is 0.45, we obtain a 30.1% increase in

revenues, whereas when this probability is 1, then the increase reduces to 9%. We

can interpret this 9% as the revenue gains excluding the effect of adding H3L SKUs.

The retailer decided to test a portion of our recommendations by adding eleven of

the 47 SKUs we had recommended be added to the assortment, ten H3L SKUs and

one H1H. Given the lead time involved in procuring these new tires, the changes

to the assortment were implemented only in July 2005. The retailer used the same

assortment in all stores.
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The validation analysis that we conducted earlier used data for the period January

2005 to July 2005 during which none of the eleven new SKUs were included in the

assortment. Hence, our first objective was to test the performance of our demand

estimation procedure for forecasting sales of the eleven new tires introduced into

the assortment in the period July 2005 to December 2005. To achieve this, we

first re-calibrated the model by using sales data from January 2005 to June 2005 to

estimate demand and substitution parameters available immediately prior to the

July to December 2005 implementation period. We then used the revised demand

estimates to forecast sales shares, at each store, for the newly introduced SKUs,

for the period July 2005 to December 2005. Table 3.12 shows a comparison of the

predicted vs. actual chain sales shares for the new SKUs. The sales-weighted MAD

across all SKUs is 17%, and the MAPE is 19.1%, which compares favorably to the

30.7% MAPE for chain sales of two new SKUs reported by Fader and Hardie (1996).

Our second objective was to estimate the revenue lift that the retailer achieved

by implementing a portion of our recommendations. Estimating the change in

revenue from the current to the implemented assortment was complicated because,

in addition to adding eleven new SKUs to the assortment, the retailer deleted more

than eleven SKUs in each store. The number of SKUs deleted varied somewhat

by store but averaged 24 SKUs deleted. To achieve a fair comparison, in a store

where Ns SKUs had been deleted and 11 added, we used the greedy heuristic to

choose Ns− 11 SKUs that were in the current assortment but not in the implemented

assortment and added them to create a modified implementation assortment that

had the same SKU count as the pre implementation assortment at each store and

that was used in evaluation. We then used parameters estimated for the calibration,
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Table 3.12 Tires: Actual vs. Predicted Chain Level Sales of New SKUs

Sales Share (per cent)

Size Brand Warranty Actual Predicted Error

P225/60R16 H3L 3.0 3.4 10.9
P215/70R15 H3L 3.1 3.5 12.6
P205/65R15 H3L 3.2 4.4 37.1
P205/70R15 H3L 2.8 2.7 5.1
P195/65R15 H3L 2.2 2.4 7.6
P215/65R15 H3L 1.0 1.2 25.3
P205/55R16 H3L 1.2 1.1 6.2
P215/60R16 H3L 1.1 1.3 19.4
P215/70R14 H3L 0.9 1.2 37.2
195/70R14 H2H 0.8 1.0 29.5

The sales-weighted MAD across all new SKUs is 17%

validation and implementation periods to estimate revenue for the current assort-

ment, the modified implementation assortment and the two optimized assortments.

Table 3.13 gives revenue estimates and percentage improvement over the current

baseline assortment for these periods.

Table 3.13 Tires: Revenue Estimates for Current, Implemented and Optimized Assort-
ments (percentage improvement over current revenues given in parenthesis)

Revenues ($$ million)

Assortment Jul - Dec 04 Jan - Jun 05 Jul - Dec 05

Current Jul 04 - Dec 04 80.2 74.9 72.3

Implemented Jul 05 - Dec 05 90.7 (13.1) 84.7 (13.1) 76.5 (5.8)

Recommended Chain Optimal 104.1 (29.8) 94.3 (25.9) 81.4 (12.6)

Recommended Store Optimal 108.2 (34.9) 99.2 (32.4) 83.6 (15.6)
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Note that in the validation period, we would have estimated a 13.1% revenue

increase (from $74.9 million to $84.7 million) from the implemented assortment,

whereas the actual increase was 5.8% (from $72.3 million to $76.5 million) due to

change in parameters over time. We note that a 5.8% improvement is large relative

to what retailers typically achieve through enhancements to existing stores. For

example Canadian Tire reports achieving a 3 − 4% annual revenue increase in

existing stores during 2005− 2009 and is targeting the same increase through 2012

(Canadian Tire Corporation Limited, 2007).

Similar to the analysis conducted for Snack Cakes, we find that the higher MAD

for the validation and implementation periods can be explained partly by sales

trends that cause the parameter values to change. For example, the aging over time

of the car models that use a particular tire impacts the demand for that tire. The

demand for a tire type initially increases as cars that use that tire age and need

replacement tires, but eventually declines as those cars becomes old enough that

they begin to exit the population. Moreover, the retailer changed relative prices

of the six brand-warranties from the calibration to the demand periods, which

impacted the six demand shares. Table 3.14 shows how changes in relative prices

across brand-warranties relates to systematic changes in their demand shares over

time, which is clearly not captured in our current model. In particular, it is quite

striking in this Table that as the price difference between H2M and H3L narrowed

from 43.7% to 41.9% to 22.9% over the three periods, the demand split between

these two brand-warranties shifted from 7%/70% to 29%/27%.
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Table 3.14 Tires: Price Changes and Impact on Demand Shares (representative store)

Share of Demand (Price in $$)

Brand Warranty Jul - Dec 04 Jan - Jun 05 Jul - Dec 05

NH 2 (73.9) 5 (69.7) 8 (77.6)

NM 2 (58.9) 3 (51.4) 6 (50.9)

H1H 3 (59.8) 10 (61.1) 8 (58.6)

H2H 16 (49.6) 21 (53.5) 22 (56.5)

H2M 7 (43.3) 10 (45.7) 29 (46.5)

H3L 70 (30.1) 51 (32.2) 27 (37.9)

H2M-H3L % Price Difference 43.7 41.9 22.9

3.4.3 Major Auto Aftermarket Parts Retailer

This retailer examines performance of each of their product categories once a year

on a rotating schedule and considers changes in the assortment. We were asked

in early May, 2009 to apply our methodology for the annual assortment reset for

the appearance chemicals category, a category comprised of liquids and pastes for

washing, waxing, polishing, protecting, etc. all surfaces of an auto, including the

body, tires, wheels, windshield and other glass, and various interior surfaces.

We worked with the appearance chemicals category manager and other members

of her team, as well as a staff team that supported category management. On June

1 we received store-SKU sales history on the 160 SKUs currently carried in this

category at 3236 stores for the period May 1, 2008 to April 30, 2009. We applied

the methodology described in this chapter and reported final results to the senior

management of the retailer on July 25. These recommendations were accepted for

implementation with the few modifications described below. The new assortment
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was implemented during 1/17/2010 – 1/23/2010 and subsequent sales results have

been tracked. We describe below the details of this application.

The retailer used a market research firm, NPD, that had assigned to each SKU in

the appearance category the attributes (1) segment (defined by the surface of the

car treated and what is done to that surface), (2) 9 brands and (3) 3 quality levels,

denoted as one of the three levels good, better or best, where ’good’ is the lowest

quality and ’best’ is the highest. We appended package size, denoted small (S) or

large (L), to the segment attribute to create 45 segment/size attribute levels. We

combined brand and quality to create a second attribute, brand/quality. Because

some brands didn’t offer all quality levels, there were 17, not 27 brand/quality

combinations. In some cases there were two package sizes that differed slightly and

were classified as S or L, so that two SKUs occupied the same cell of the attribute

matrix. Consequently, the 160 SKUs currently offered corresponded to 130 cells of

the 45 x 17 matrix of possible attribute levels. Of the 45 x 17 – 130 = 635 attribute

combinations not carried by the retailer, only 24 were available in the market.

We applied the methodology described in this chapter to estimate demand for

available SKUs not carried. No substitution parameters were used in the model

for the following reason. If a brand-quality level were not offered for a product, it

seemed likely that some of the demand for that brand-quality would transfer to

several other brands. To estimate this effect we would have needed instances of

different stores with varying numbers of brand-quality levels offered for the same

product, and this data was not available. The Mean Absolute Deviation of forecasts

of existing SKUs across all 3,236 stores was 20.2%.

After parameter estimation, we applied the greedy heuristic to the problem of

choosing 130 out of a potential 154 attribute combinations so as to maximize pre-
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dicted revenue. We worked first on a 2,183 store ‘warm up’ case and then the full

3,236 store case, generating up to five different assortments, five being the greatest

number of assortments the retailer specified they would consider, given the admin-

istrative load of multiple assortments. The estimation process took approximately 5

seconds per store on an Intel Core 2 Duo 2 GHz processor. The computation time

for the greedy algorithm to generate five different assortments for all stores on the

same computer was approximately 75 minutes.

Table 3.15 Estimated Revenue Increases (%) vs. Number of Store Clusters

No. of 2183 Stores 3236 Stores
Clusters (warm up) (implementation)

1 14.1 11.8
2 14.4 11.9
3 14.6 12.0
5 14.9

Table 3.15 shows the estimated revenue increase for various cases. Based on results

of the 2,183 store case, the retailer concluded that at most three store clusters would

be used, so these were the cases run for the 3,236 store case. A single assortment

resulted in a 11.8% increase in revenues, while store specific assortments lead to

a 14.2% increase in revenues, implying a localization lift of 2.4%. The two cluster

solution was selected for implementation. In the revised assortments, 20 SKUs in

cluster 1 with the lowest estimated revenue were replaced by 20 new SKUs. In

cluster 2, 19 existing SKUs were replaced.

Table 3.16 shows the distribution of revenue for the top 24 segment/sizes by seg-

ment/size, brand and quality level for the two clusters and some demographic data,
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including the percentage of people in the categories ’suburban’ or ’urban-bilingual’

in the zip codes in which the stores of each cluster are located. Noteworthy differ-

ences for cluster 2 are a higher demand for tire related products, higher demand for

brand 2, lower demand for brand 5 and a higher percentage of urban/bilingual. Ta-

ble 3.17 shows these same data for the two stores with highest and lowest percentage

suburban. The differences noted above persist, and to a much great degree.

The retailer largely adopted our recommendations. They used exactly the assign-

ment of stores to clusters in our recommendations. They also adopted our recom-

mendations on which attribute combinations to add to the assortment, although

in some instances more than one SKU in the market corresponded to the same

attribute combination, with the result that the number of SKUs added exceeded

the number of attribute combinations added. Twenty two SKUs were added to

cluster one and twenty five to cluster two. The sales-weighted MAD across the new

SKUs added is 26.8%, and the MAPE is 28.7%, which again compares favorably to

the 30.7% MAPE for chain sales of two new SKUs reported by Fader and Hardie

(1996). The choice of which SKUs to delete differed from our recommendations in

the number of SKUs deleted and in which SKUs were deleted. Seventeen SKUs

were deleted from cluster one and twenty three from cluster two. The choice of

which SKUs to delete was guided by factors other than year to date revenue; for

example, one car wash SKU was deleted due to a history of quality issues.

With respect to localization, the retailer regarded cluster 1 as a base case that was

representative of the chain as a whole and cluster two as a subset of stores differen-

tiated by the higher level of tire related purchases, a preference for brand two, and

a higher percentage of ’urban/bilingual’. This store segmentation was compelling

for the retailer and agreed with more qualitative market research inputs they had
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Table 3.16 Cluster Statistics for Top 25 SKUs for Appearance Chemicals

Table 3.17 Statistics for Stores with Maximum and Minimum Percent Suburban
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received. In addition to assortment changes, their localization efforts included

giving more prominent display and signage for tire products and brand 2 in the

cluster 2 stores.

To evaluate the impact of these changes, we had available sales by cluster of the

new assortment for the 27 week period January 1, 2010 – July 8, 2010, and of the

previous assortment for a comparable period in 2009. In the discussion below, we

refer to these as 2010 and 2009 sales, while recognizing they were for only a portion

of these years.

SKUs can be segmented into three groups: kept SKUs that were in both the 2009 and

2010 assortments, deleted SKUs that were in the 2009 assortment but not the 2010

and added SKUs that were in the 2010 assortment but not the 2009 assortment. To

evaluate the impact of the assortment changes we compared 2010 kept plus added

revenue to 2010 kept revenue plus an estimate of what 2010 revenue would have

been for SKUs deleted. We are thus comparing the new assortment revenue to an

estimate of what the old assortment would have sold in 2010.

We needed to deal with the fact that more SKUs were added than deleted. Twenty

two SKUs were added to cluster 1 vs. seventeen deleted and twenty five SKUs were

added to cluster 2 vs. twenty three deleted. The retailer had a fixed amount of shelf

space allocated to this category and accommodated the increase in SKU count by

reducing the shelf space assigned to some of the existing SKUs. They therefore did

not view the increase in SKU count as a cause for concern. Still, reducing the space

for some existing SKUs might have caused greater stock outs, reducing revenue in a

way we could not capture. Thus, to make a more rigorous evaluation of benefits, we

used the twenty two and twenty five SKUs for clusters one and two, respectively,

with lowest revenue in the 2009 evaluation period in estimating deletion revenue,
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thereby equalizing the add and delete counts. Revenue is affected by a variety of

factors other then assortment, including weather, the economy and competitive

activity. We measured the impact of these other factors by the ratio of 2010 to 2009

revenue for kept SKUs and estimated the 2010 revenue of the deleted SKUs as their

2009 revenue times this factor.

The newly added SKUs were introduced some time after January 1, 2010 and hence

were not on sale for the entire January 1 – July 8, 2010 period and moreover took

some time to build to a steady state level of sales. Examining the weekly sales

data of the added SKUs, we observed that it took them 7 weeks to achieve a steady

steady sales rate. Hence, we used added SKU revenue for weeks 8 – 27 scaled by

27/20 as our estimate of added SKU revenue for the period January 1 – July 8, 2010.

The result of these calculations showed a 3.6% revenue increase due to the revised

assortment. In addition, there may have been some improvement due to the

localized product display and signage in cluster two stores that we were not able to

measure. The retailer’s appearance chemicals team agreed with our assessment of

benefits and believed that the re-assortment exercise had been a success.

3.5 Analysis of Results

3.5.1 Understanding Localization Revenue Lift

The Localization Lift, defined as the revenue increase from using store specific

assortments vs. a single assortment for the chain was 12.2%, 5.8% and 2.4% for the

snack cakes, tires and appearance chemicals examples described in the previous

sections. As we sought to understand what features of the problem data cause these
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differences in Localization Lift, our first thought was that Localization Lift must

be driven by demand variation across stores. We thus calculated a coefficient of

demand variation (COV) defined as
√

∑i∈N σ2
i / ∑i∈N µi, where µi and σi denote

the mean and standard deviation of revenue shares of SKU i across all stores. COV

for snack cakes tires and appearance chemicals was 17%, 11% and 10% respectively.

These values shed some light on variation in Localization Lift in that the highest

COV matches the highest lift, for snack cakes, but leave open the drivers of variation

in Localization Lift between tires and appearance chemicals, where the Localization

Lift varies by a factor of three while the COV’s are nearly equal.

To better understand this issue, we examined the data more closely and made two

observations. First, SKUs can be segmented into three groups: (1) those with such

high demand that they were carried in every store optimal assortment, (2) those

with such low demand that they were in no store optimal assortment and (3) the

remainder. While there may be substantial variation in demand across stores for

the first groups, none of this variation impacts Localization Lift.

For example, in the case of appearance chemicals, we see in Table 3.16 that the

best selling segment-size for the chain is Tire Dressings/Shines TRIGGER L. Table

3.17 shows substantial difference in the sales rate between two stores for Tire

Dressings/Shines TRIGGER L. The best selling single SKU in this segment-size, as

defined by brand and quality level, accounted for 5.5% of revenue in Store A and

16.6% in Store B, a 3.3 to 1 difference. Yet even though the SKU sold much worse in

Store A, with a revenue share of 5.5%, it clearly made sense to have this SKU in a

revenue maximizing assortment for Store A, and hence this difference in sales rate

had no impact on the Localization Lift.

Secondly, we noticed substantial variation in the breadth of assortment carried,

60



from 40 out of 92 possible SKUs for snack cakes to 130 out of 154 possible SKUs

for appearance chemicals. A broader assortment means that a single chain optimal

assortment captures a greater fraction of potential demand, leaving less room for

improvement from assortment localization.

The example in Table 3.18 is designed to illustrate how these patterns can occur. The

example compares COV and Localization Lift for two demand cases, and within

each case, for K equal to 3 or 4. The price of all SKUs is $1, so unit demand and

revenue are the same. Moreover, total demand is equal for the two stores, so there

is no distinction between demand units and demand share. We also assume there

is no substitution. The variance column gives the variance in demand across the

two stores for each SKU. COV, as we have defined above is the square root of total

variance divided by total demand.

In all cases the chain optimal assortment is SKUs 1 through K. For K = 3, the

optimal assortment for store 1 is SKUs 1, 2 and 3 and for store 2, SKUs 1, 2 and 4.

For K = 4, SKUs 1 to 4 are an optimal assortment for both stores.

Considering the case K = 3, note that Case 1 has the highest COV but the lowest

Localization Lift. This happens because almost all of the inter store demand vari-

ation occurs for SKUs that are in either both store optimal assortments or neither

and hence none of this variation impacts Localization Lift. By contrast, in Case 2,

all of the inter store demand variation occurs for SKUs 3 and 4, the very SKUs that

differ in the store optimal assortments.

Note also that when K=4, the lift in both cases drops to 0, demonstrating the impact

that breadth of assortment can have on lift.

Motivated by what we saw in the data for the three applications and by the features
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demonstrated by the example in Table 3.18, we defined two additional metrics

which we hypothesize would be correlated with Localization Lift. COV Select (K)

is the coefficient of variation for SKUs which are in some but not all store optimal

assortments. This metric is a function of K because store optimal assortments

depend on K. We re-label our original coefficient of variation metric as COV – All

to emphasize its difference with COV – Select (K).

Table 3.18 Example to Illustrate Drivers of Localization

Demand Demand

SKU Store 1 Store 2 Variance Store 1 Store 2 Variance

1 50 100 1250 75 75 0

2 100 50 1250 75 75 0

3 40 50 50 50 0 1250

4 50 40 50 0 50 1250

5 40 0 800 25 25 0

6 0 40 800 25 25 0

7 40 0 800 25 25 0

8 0 40 800 25 25 0

9 40 0 800 25 25 0

10 0 40 800 25 25 0

11 40 0 800 25 25 0

12 0 40 800 25 25 0

Totals 400 400 9000 400 400 2500

COV 11.9% 6.4%

K Optimal Localization Optimal Localization

Chain Localized Lift Chain Localized Lift

3 390 400 2.6% 350 400 14.3%

4 480 480 0 400 400
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We also define Chain Optimal Share (K) to be the share of the total potential revenue

∑s∈M ∑i∈N piDs
i achieved by a single, chain optimal assortment with K SKUs. So

far we haven’t discussed the impact of substitution. We simply note that an increase

in willingness to substitute increases Chain Optimal Share (K) and thus decreases

Localization Lift.

Table 3.19 gives Localization Lift and the three metrics for the three applications. We

observe that the highest Localization Lift for cakes can be explained by the low value

of Chain Optimal (K) and high values of COV – All and COV Select (K). We also

note that the difference in Localization Lift between tires and appearance chemicals

can be explained by the high value of Chain Optimal Share (K) for appearance

chemicals.

We also used the solutions to the three applications for K varying from 1 to n to

create Figure 3.3 showing Localization Lift versus Percent of Maximum Total SKUs

in the Assortment and Chain Optimal Share (K). We note that Localization Lift

varies with Chain Optimal Share (K) as we have hypothesized.

Table 3.19 Explaining Localization Lift

Category Lift COV - All COV - Select Chain Optimal Share

Cakes 0.122 0.17 0.23 0.71
Tires 0.058 0.11 0.12 0.80
Appearance
Chemicals

0.024 0.10 0.10 0.93

To further investigate the effect of demand variation and share captured by the

chain optimal assortment on localization lift, we used the existing data to create

100 additional problem instances for each of the three applications by randomizing
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(a) the number of stores in the chain, (b) the actual stores sampled and (c) K, the

maximum number of SKUs allowed in the assortment.

Figure 3.3 Localization Lift versus Maximum SKUs in the Assortment and Chain Op-
timal Share
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Table 3.20 gives the range used for each application in randomly generating store

count and K. We then calculated Localization Lift, COV - All, COV - Select and

Chain Optimal Share (K) and regressed Localization Lift against the three dependent

variables; the results are summarized in Table 3.20. The regression results confirm

our hypothesis that Localization Lift depends mainly on Chain Optimal Share

and COV - Select, which are highly significant, and not on COV - All, which is

insignificant.
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Table 3.20 Regression of Localization Lift

Coefficient Snack Cakes Tires Appearance Chemicals

(Intercept) 0.147*** 0.113*** 0.186***
Chain Optimal
Share

-0.095*** -0.166*** -0.157***

COV Select 0.045* 0.475*** 0.339***
COV All -0.024 0.232 -0.000

Simulation Details
Minimum K 10 10 5
Maximum K 40 100 40
Minimum Stores 10 20 80
Maximum Stores 30 60 240
# of Instances
Simulated

100 100 100

3.5.2 Performance of Heuristics

We consider the quality of the solutions produced by the greedy and interchange

heuristics. Both of these heuristics have been used previously for assortment opti-

mization, greedy in Kök and Fisher (2007) and interchange in Chong et al. (2001).

Belloni et al. (2008) computationally evaluate greedy and interchange for product

line design, a problem similar in structure to assortment optimization, and find that

on real problems greedy achieves 98.4% of maximum profit on average and greedy

followed by interchange, 99.9%.

Note that if there is no substitution, greedy finds an optimal solution since the

assortment problem is then maximization of a linear function subject to an upper

bound on the sum of the variables. Thus greedy found optimal solutions for

appearance chemicals where there was no substitution, so we will restrict our
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attention here to the snack cakes and tires applications.

Note that Table 3.5 shows an interesting property for the assortment for a typical

snack cakes store. The flavors are sorted by demand rank and as we move down the

list of flavors, the number of brand-sizes offered steadily decreases. The following

Theorem will establish conditions under which this property always holds for an

optimal assortment. We’ll use the theorem to generate a sample of large problems

with known optimal solution against which we can test the effectiveness of the

greedy and interchange heuristics.

Theorem 1. Consider an assortment planning problem for a store s with the following

characteristics.

1. A = 2

2. π1uv = 0 for all u and v, i.e., no substitution across levels of attribute 1

3. If p(u, v) denotes the price of a SKU with levels u and v for attributes 1 and

2 respectively, then there exists constants p1u and p2v, u = 1, 2, . . . N1 and

v = 1, 2, . . . , N2 such that p(u, v) = p1u p2v.

4. The levels of attribute 1 are indexed so that p1u f1u ≥ p1,u+1 f1,u+1, u =

1, 2, . . . , N1 − 1.

Given an assortment S, let S(u) denote the set of levels of attribute 2 that are present

in the SKUs in S that have level u of attribute 1, where S(u) is the empty set if there

is no SKU in S with level u of attribute 1.

Then there exists an optimal assortment satisfying |S(u)| ≥ |S(u + 1)|, u = 1, 2, . . . , N1−

1.
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Proof. Let D denote total unit demand at the store, k(u) =| S(u) |, and for v /∈ S(u),

w(v, S(u)) = arg maxw∈S(u) π2vw. w(v, S(u)) is the level of attribute two that is the

best substitute in the assortment S for a customer desiring level v of attribute 2. By

the assumption of the theorem, we can write the assortment optimization problem

for store s as

max D
N1

∑
u=1

p1u f1u max
S(u),|S(u)|=k(u)

 ∑
v∈S(u)

p2v f2v + ∑
v/∈S(u)

p2w(v,S(u)) f2vπ2vw(v,S(u))



Note that the expression in square brackets maximized in the choice of S(u) does

not depend on u. So letting

Z(k) = max
S(u),|S(u)|=k(u)

 ∑
v∈S(u)

p2v f2v + ∑
v/∈S(u)

p2w(v,S(u)) f2vπ2vw(v,S(u))

 ,

we can express assortment revenue as D ∑N1
u=1 p1u f1uZ(k(u)).

If the theorem is violated, then there is a u such that k(u) < k(u + 1). But then

Z(k(u)) ≤ Z(k(u + 1)), because Z(k(u + 1)) is the optimal value of a maximization

problem that is less constrained than that which determines Z(k(u)). This, together

with assumption (4) of the theorem implies

p1u f1uZ(k(u+ 1))+ p1,u+1 f1,u+1Z(k(u)) ≥ p1u f1uZ(k(u))+ p1,u+1 f1,u+1Z(k(u+ 1)).

So we can revise the solution by assigning the set S(k(u + 1)) for attribute level u

and the set S(k(u)) for attribute level u + 1 without reducing revenue. The revision

removes this violation of the theorem. Repeated application of this step will produce

an optimal solution satisfying the condition of the theorem.
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The snack cakes and tires applications satisfy conditions 1 and 2 of the theorem.

With prices as determined by the hedonic regression, they also satisfy 3, and 4 is

easily satisfied by indexing attribute 1 as required. In the applications, we used

real, not estimated, prices for current SKUs, so the problems as we solved them

did not exactly satisfy the conditions of the theorem. However, we subsequently

used the theorem to find optimal solutions to store level assortment problems for

all stores for the cakes and tires applications with estimated prices and then tested

the heuristics against these known optima.

To find the optimal solutions using the theorem, we first note that because the

expressions in square brackets in the proof doesn’t depend on the level u of the first

attribute, the same set is optimal for all u with a common value of k(u). Moreover,

the number of levels for the second attribute (4 for cakes, 6 for tires) is small enough

that we can enumerate all subsets of these attribute levels, and for each possible

cardinality k, identify the optimal subset and associated values Z(k). Then the

assortment optimization problem reduces to finding optimal values of k(u), u =

1, 2, . . . , N1, satisfying k(u) ≥ k(u + 1) and ∑N1
u=1 k(u) = K. The number of feasible

values of k(u) is small enough to allow for complete enumeration.

Using this approach we found optimal assortments with estimated prices for each

of the 140 stores in the snack cakes application and the 574 stores in the tires

applications. This gave us a sample of 714 problems of realistic size and known

optimal assortments on which to test the performance of our heuristics. The results

of applying greedy to all of these problems are reported in Table 3.21 and show that

greedy finds near optimal solutions and performs similarly on our applications to

what Belloni et al. (2008) found for the product line design problem.

We also tested the interchange heuristic, starting both with the greedy assortment
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Table 3.21 Performance of Greedy Heuristic

Product N1 N2 Average
Performance

(%)

Finds Optimal
Solution (%)

Average Time per
Trial (seconds)

Cakes 23 4 97.2 74.6 0.14
Tires 64 6 98.5 80.3 0.34

and random assortments, but in no case found solutions that improved on the

greedy assortment.

3.6 Conclusions

We have formulated a process for finding optimal assortments, comprised of a

demand model, and estimation approach and heuristics for choosing assortments.

We have applied this process to real data from three applications and shown that

the approach produces accurate forecasts for new SKUs. Our recommendations

were implemented in two of the cases. We measured the impact based on actual

sales and found the assortment revisions had produced revenue increases of 5.8%

and 3.6%, which are significant relative to typical comparable store increases in

these product segments.

We note the following observations from this research.

1. Forecast accuracy for new SKUs was adequate to achieve significant benefits

in implementation. The only prior reported results for forecasts of new retail

SKUs is Fader and Hardie (1996), who reported an average MAPE of 30.7%
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for two new grocery SKUs. We found a MAPE of 16.2% for one new snack

cakes SKU, 19.1% for 11 new tires SKUs, and 28.7% for 25 new appearance

chemical SKUs, somewhat improving on the results of Fader and Hardie

(1996). Nonetheless, the errors were great enough to reduce the revenue

increase by about half from the fit to validation samples, so improving forecast

accuracy would be a useful focus of future research.

2. Sales is not true demand, but demand distorted by the assortment offered. We

don’t see demand for SKUs not offered, and the sales of SKUs offered may be

increased above true demand due to substitution. The impact of these effects

can be significant. In the tire application, the lowest price brand-warranty

level had a demand share of 60% but a sales share of only 5%, because the

retailer offered the lowest price brand-warranty in few sizes. Adding more of

this brand warranty to the assortment was a big source of the revenue increase

attained.

3. Substitution can be measured, can vary significantly and have a major impact

on the optimal assortment. In the snack cakes example, in the family size, the

probability of substituting from Brand 1 to Brand 2 was 89%, versus only a

22% probability of substituting from Brand 2 to Brand 1. This resulted in a

complete replacement of Brand 1 by Brand 2 in family size of the optimized

assortment.

4. We were able to use demographic data to confirm our parameter estimates

in the tire and appearance chemicals examples. In particular, the share of the

lowest price tire and unwillingness to substitute up to a higher price tire were

correlated with median income in the store area. In some instances, we also
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used demographic data to assist in estimating parameters.

5. The benefit from localizing assortments by store varied considerably, from

2% to 12%. We showed that this difference is not driven by demand variation

across stores, but by the percent of maximum revenue captured by a chain

optimal assortment and by variation in demand for those SKUs that vary

across store optimal assortments.

6. A limited amount of localization can capture most of the benefits of maxi-

mum localization. In the snack cakes example, going from 1 assortment to 6

provided 77% of the benefit as going from 1 assortment to 140 assortments.

7. There may be interaction between attribute levels not captured by our simplest

demand model. In the case of tires, the demand for the least expensive brand-

warranty level will be higher for a size tire that goes on an older, inexpensive

car than for a tire that goes on a new, luxury car. We showed that this could

be incorporated into our approach through latent class analysis.
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Chapter 4

A Sensitivity Analysis of Assortment

Planning Models

4.1 Introduction

From Section 2.3.1, we know that the solution to the assortment optimization

problem depends on assumptions made about (a) consumer response to stock-

outs, and (b) the underlying choice process. Mahajan and van Ryzin (2001) use

a few examples to illustrate the effects of ignoring stock-out substitution on the

optimal assortment and profits. Similarly, Gaur and Honhon (2006) show that the

structure of the optimal assortment can be vastly different based on the choice

model assumed. The objective of this chapter is to investigate the sensitivity of the

optimal assortment and expected profits to these two key modeling assumptions,

in a more systematic fashion.

Customer response to stock-outs is a key assumption central to the assortment

optimization problem. Most models assume that customers do not substitute in the
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event of stock-outs, in order to obtain closed form expressions for the expected prof-

its and keep the optimization problem tractable. A stream of recent research papers

have focused on developing heuristic approaches to the assortment optimization

problem in the presence of stock-outs. However, a key question that remains to be

asked is how well does the solution that ignores stock-out substitution, perform

in its presence. While, current assortment literature sheds some light on this issue,

there is need to investigate the effect of stock-out substitution on the optimal assort-

ment and expected profits, in a more systematic fashion, especially focusing on the

effect of key problem parameters. We use the same model setup described in ? to

investigate the performance of a heuristic ignoring stock-out substitution, on the op-

timal assortment and expected profits. In addition, we also study the performance

of another heuristic proposed byMahajan and van Ryzin (2001), which makes the

extreme assumption that the probability of substitution under a stock-out equals

one. Our key contribution is a systematic investigation of these simple heuristics

under a wide range of problem parameters, to provide deeper insights into their

performance in the presence of stock-out substitution.

The process by which customers make their choices is an important ingredient while

modeling assortments. Two commonly used choice models are the multinomial

logit model (MNL) and the locational choice model (LC). The focus of assortment re-

search has generally been on optimizing the assortment given complete knowledge

of the choice process. However, in many practical situations, the choice process is

not known clearly. In such cases, an incorrectly specified choice model can have an

adverse impact on the optimal solution. For example, Farias et al. (2011) show how

such model mis-specifications can lead to sub-optimal solutions. Our objective is to

investigate the effect of choice model mis-specification on the optimal assortment
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and expected profits. More specifically, we study the locational choice model pro-

posed by Gaur and Honhon 2006 and analyze the deviation from optimality when

an MNL model is used.

The rest of this Chapter is organized as follows. In Section 4.2, we investigate the

impact of ignoring stock-out substitution on the optimal expected profits. We study

the effects of using an MNL model to optimize the assortment, when the underlying

choice behavior follows the LC model in Section 4.3. Finally, in Section 4.4 we

summarize the key insights obtained and provide conclusions.

4.2 Impact of Stock-Out Substitution

4.2.1 Substitution Behavior

A key consideration in assortment planning models is substitution behavior of cus-

tomers. There are two types of substitution considered in the assortment planning

literature.

1. Assortment Based Substitution (A) assumes that customers make their pur-

chase decisions based on the assortment offered at the start of the period.

Hence, they DO NOT substitute across products in the assortment in the event

of a stockout. This is also referred to as static substitution.

2. Stockout Based Substitution (S) assumes that customers make their purchase

decisions based on the assortment available to them at the time of their visit.

Hence they DO substitute across products in the assortment in the event of a

stockout. This is also referred to as dynamic substitution.
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While dynamic substitution is a more realistic model of reality, it makes the analysis

intractable since item level demands are a function of the inventory vector and

computing the expected profits analytically, even for simple choice models is not

possible. Mahajan and van Ryzin (2001) show that the expected profit function un-

der dynamic substitution is not even quasi-concave, and hence global optimization

may be difficult. Assuming assortment based substitution simplifies the analysis

considerably, as it allows the decomposition of the joint assortment selection and

inventory management problems across products. However, using the solution

to a static model when in fact dynamic substitution is present, comes at a cost

as it misses the impact of substitution due to stock-outs, and thereby provides a

sub-optimal solution.

4.2.2 Heuristic Methods

Given the complex nature of the dynamic substitution problem, several heuristics

have been proposed to solve it. Mahajan and van Ryzin (2001) propose a sample path

gradient algorithm to compute the optimal assortment under dynamic substitution.

They observe that allocating inventories based on the assumption of assortment-

based substitution tends to ignore two effects (1) the excess demand from stock-out

substitution which provides an incentive to increase inventory, and (2) the reduction

in underage cost which creates an incentive to reduce inventory. Hopp and Xu (2008)

approximate the expected profits under dynamic substitution using a fluid network

model and a service-inventory mapping and solve for the optimal assortment using

this static approximation. Honhon et al. (2010) study the dynamic substitution

problem under a general choice model specified in terms of customer types, where

each type is defined by a rank ordered set of products that they are willing to
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purchase.1 They approximate the expected profits under dynamic substitution

using a fixed proportion heuristic, where the proportion of customer arrivals of each

type is assumed to be constant at all points in time. They solve the modified problem

to optimality using a dynamic programming approach which has a complexity of

O(8n). Honhon and Seshadri (2011) further show that the fixed proportion heuristic

proposed by Honhon et al. (2010) provides an upper bound on the optimal expected

profit under dynamic substitution.

In addition to the sample path gradient heuristic,Mahajan and van Ryzin (2001)

propose two simple newsvendor heuristics to the joint assortment planning and

inventory management problem. They use it as a baseline to benchmark the perfor-

mance of the sample path gradient algorithm.

Independent Newsvendor Heuristic (I)

The independent newsvendor heuristic makes the simplifying assumption that

demand for each item in the assortment is independent of the current on-hand in-

ventory levels. This assumption is true when the substitution behavior is assortment-

based or static, and customers do not substitute on account of stock-outs.

Under this assumption, if x = (x1, x2, . . . xn) is the starting inventory vector, then

the expected profit made by the retailer on item j is given by

E
[
p×min

{
xj, Dj

}
− cxj

]
,

1Their model assumes that every customer is defined by a type, which is a sequence of products
that he is willing to purchase, arranged in decreasing order of preference. If there are n products,

then there are a total of |T| = ∑n
j=0

n!
(n− j)!

customer types. The model specification is completed

by specifying the proportion of customers of each type in the population. This choice model nests
the popularly used MNL and Locational Choice models, since they can be obtained by imposing
certain constraints on the possible customer types and their proportions in the population.
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where xj represents the inventory of item j and Dj is its demand. Hence, the

assortment optimization problem can be written as

max
x,S={i|xi>0}

∑
j∈S

E
[
p×min

{
xj, Dj

}
− cxj

]

Conditional on the assortment S, the optimization problem decomposes into |S|

independent newsvendor problems. If we assume that the item level demands can

be approximated by a normal distribution with mean and variance λqj(S), where

qj(S) is the share captured by item j, then the optimal stocking levels for items in

the assortment, can be determined as

x∗I
j (S) = λqj(S) + z

√
λqj(S),

for all j ∈ S, where z = Φ−1
(

1− c
p

)
and Φ denotes the cumulative distribution

function of a standard normal distribution. The optimal profits associated with

assortment S can be written as

E
[
ΠA(x∗I (S))

]
= (p− c) ∑

j∈S
λqj(S)− pφ(z) ∑

j∈S

√
λqj(S).

Note that the superscript A in the equation for expected profits implies that they

are calculated under the assumption of assortment-based substitution.

In the general case, choosing the optimal assortment S is a hard problem and enu-

merating all 2n possible candidates might be the only possible solution. However,

simpler solutions exist for a handful of cases satisfying some conditions. For exam-

ple, when consumer choice is governed by the MNL model, all items have the same

price and cost parameters, and there are no capacity constraints on number of items
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or inventory, ? show that the optimal assortment S∗ is of the form S∗ = {1, 2, . . . , k},

where the items are indexed in decreasing order of their popularities. This reduces

the search for the optimal S∗ from 2n to n candidates. Under the same set of condi-

tions, Gaur and Honhon (2006) show that solving the static substitution problem

for the locational choice model can be reduced to a simple line search for a single

parameter in a bounded interval.

Pooled Newsvendor Heuristic (P)

The pooled newsvendor heuristic assumes that customers treat the entire assortment

as a single product and freely substitute across them in the event of a stockout. It is

an extreme case of dynamic substitution, where consumers substitute on account of

stock-outs with probability equal to one. Mahajan and van Ryzin (2001) refer to this

substitution behavior as complete substitution, which we denote as C.

Under the assumption of complete substitution, the customer is faced with a single

product whose demand is approximately normal with mean and variance λq(S),

where S is the assortment offered and q(S) = ∑j∈S qj(S). The optimal aggregate

inventory and total expected profit for assortment S are given by

x∗Ptot(S) = λq(S) + z
√

λq(S)

E
[
ΠC

(
x∗Ptot(S)

)]
= (p− c)λq(S)− pφ(z)

√
λq(S)

Since E
[
ΠC (x∗Ptot(S)

)]
is increasing in q(S), it is maximized for S = N. Hence,

it would be optimal to offer S = N, and set aggregate inventory to x∗Ptot(N) =

λq(N) + z
√

λq(N) . A reasonable heuristic to determine item level inventory levels

would be to allocate the total inventory in proportion to their market shares. In
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other words

x∗Pj = x∗Ptot(N)
qj(N)

q(N)

Despite the fact that these two simplistic newsvendor heuristics clearly miss out

on providing an optimal solution under dynamic substitution, several papers have

observed that they perform well in practice over a wide range of problem parame-

ters. Gaur and Honhon (2006) find based on a series of numerical simulations, that

the independent newsvendor heuristic leads to expected profits which are at most

1.44% away from the optimal solution on an average. Honhon et al. (2010) find that

the independent newsvendor heuristic performs surprisingly well compared to the

more sophisticated dynamic programming and sample path gradient heuristics,

with an average optimality gap of 0.5% from the best solution. They also observe

that the naive independent newsvendor heuristic occasionally outperforms the more

complicated sample path gradient heuristic.

Similarly, Mahajan and van Ryzin (2001) observe that “.... the simple Pooled Newsboy

heuristic performs remarkably well in the equal-margin case. Perhaps treating an entire

category as if it were a single variant and then performing a simple allocation of the aggregate

inventory is a reasonable way to manage such assortments in practice”.

Given the simplicity of the independent and pooled newsvendor heuristics, and

the fact that they perform surprisingly well in practice, it is important to delve

deeper into understanding their performance. In particular, our research objective

is to (a) systematically explore the performance of these two newsvendor heuristics

under dynamic substitution over a wide range of parameters, (b) develop analytical

bounds on their optimality gap in terms of key parameters and (c) provide recom-

mendations as to when can one use either of the two heuristics, without losing
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significant profits.

4.2.3 Bounds on Expected Profits

We denote the three types of substitution behavior we defined earlier by A (Assort-

ment Based Substitution), D (Dynamic Substitution) and C (Complete Substitution).

We denote the three types of substitution behavior we defined earlier by A (Assort-

ment Based Substitution), D (Dynamic Substitution) and C (Complete Substitution).

Let us denote by E
[
ΠSU (x)

]
, the expected profits obtained under substitution

behavior SU, and starting inventory vector x, where SU = A, D or C. Let x∗H

denote the inventory vector obtained using heuristic H, where H = I represents the

independent newsvendor heuristic and H = P represents the pooled newsvendor

heuristic. The assortment under heuristic H is defined by S∗H =
{

i ∈ N | x∗H
i > 0

}
,

and consists of all items with a positive inventory. We now develop bounds on the

expected optimal profits E
[
ΠD (x∗D)] under dynamic substitution, where x∗D is

the optimal inventory vector, and S∗D =
{

i ∈ N | x∗Di > 0
}

is the optimal assort-

ment.

E
[
ΠA (x∗I)] ≤ E

[
ΠD (x∗D)] ≤ E

[
ΠC (x∗P)]

Assortment Based Substitution assumes that consumers do not substitute in the event

of a stock-out. Hence, the expected sales and profits for a given inventory vector

x, considering the impact of Dynamic Substitution, are higher than that computed

based on Assortment Based Substitution. Hence, we have

E
[
ΠD

(
x∗D

)]
≥ E

[
ΠD

(
x∗I
)]

≥ E
[
ΠA

(
x∗I
)]

.
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Under the assumption of Complete Substitution, consumers substitute in the event

of a stock-out, with probability equal to one. Hence, for any inventory vector, the

expected sales and expected profits under complete substitution are higher than

that obtained under dynamic substitution. Hence, we get

E
[
ΠD

(
x∗D

)]
≤ E

[
ΠC

(
x∗D

)]
≤

[
EΠC

(
x∗P
)]

.

Note that Proposition 4.2.3 provides us with a bound on the optimality gap of the

independent newsvendor heuristic. If we let εUB
I denote the optimality gap of the

independent newsvendor heuristic, where the superscript UB refers to the fact that

it is a bound, we can write

εUB
I =

E
[
ΠD (x∗D)]−E

[
ΠD (x∗I)]

E [ΠD (x∗D)]

≤
E
[
ΠC (x∗P)]−E

[
ΠA (x∗I)]

E [ΠC (x∗P)]

This bound can be computed easily based on the solution provided by the indepen-

dent and pooled newsvendor heuristics. In fact, we can show that if S∗I represents

the assortment under the independent newsvendor heuristic, then

εUB
I ≤

(
1−

√
q(S∗I)

q(N)

)
− φ(z)

Φ(z)
1√

λq(N)

1−∑j∈S∗I

√
qj(S∗I)

q(N)


1− φ(z)

Φ(z)
1√

λq(N)

,

where q(S) =
∑j∈S vj

v0 + ∑j∈S vj
. Note that the bound depends on (1) z = Φ−1(r), where r
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is the critical in-stock rate, (2) the arrival rate λ, (3) the overall market penetration of

the category q(N) and (4) the relative market penetration of the optimal assortment

under static substitution,
q(S)
q(N)

.

For certain choice models like the MNL model, we can compute this bound analyti-

cally, since it is easy to solve for S∗I , and we have closed form expressions for the

choice probabilities qj(S).

4.2.4 Factors Impacting Heuristics

We start with an example from Honhon et al. (2010) with n = 5. Consumer choice

follows an MNL model with utilities u = {vi | i ≤ n}, and the exponential utilities,

v = exp(u) are given by v = (11, 1, 1, 1, 1) and v0 = 1. The mean demand is

λ = 100, price of items is p = 10, while cost is c = 5.

The optimal assortment under the independent newsvendor heuristic consists of

1 product with market share given by q1
(
S∗I) =

11
12

. The critical newsvendor

fractile is given by r = 1 − c
p

= 0.5, which gives us z = Φ−1 (r) = 0. Since,

q(N) =
15
16

, we can compute the bounds on expected profits as E
[
ΠA (x∗I)] = 420,

and E
[
ΠC (x∗C)] = 431. Using Proposition 1, we can compute a bound on the

optimality gap of the independent newsvendor heuristic as 2.6%.

The inventory vectors (rounded) based on the independent and pooled newsvendor

heuristics are calculated to be x∗I = (91, 0, 0, 0, 0) , and x∗C = (69, 6, 6, 6, 6). In order

to obtain a sharper bound on the optimality gap, we used simulations to compute

the actual profits obtained under dynamic substitution. We generated a sample

path by simulating the aggregate demand D ∼ Pois(λ), and the random utilities

under an MNL model, given v. We determined for each sample path and starting
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inventory vector, the products purchased by each of the D customers, and computed

the total profit. We estimated expected profits by computing the mean profit over

1000 sample paths, using a common set of sample paths across all heuristics to

ensure a fair comparison. Table 4.1 shows the computed bounds and the expected

profits simulated under dynamic substitution. In addition to the independent and

pooled newsvendor heuristics, we also include for comparison, the expected profits

obtained using the sample path gradient heuristic (Mahajan and van Ryzin 2001)

and fixed proportion heuristics (Honhon et al. 2010).

We can make several interesting observations based on Table 4.1. First, the lower

and upper bounds we computed are close to each other. In fact, the upper bound

we obtain is the same as that obtained by Honhon and Seshadri (2011), albeit using

a more sophisticated dynamic programming approach. Second, the independent

newsvendor heuristic does reasonably well with an optimality gap of 2.5% from

the upper bound. Third, the pooled newsvendor heuristic does better than all the

other heuristics bringing the expected profits within 1% of the upper bound.

Why does the Pooled Newsvendor Heuristic perform so well for this example?

The answer lies in the implicit connection between category penetration and de-

gree of substitution for the MNL model. Since the MNL model assumes that

substitution probabilities are proportional to the market shares of items, the prob-

ability that a customer looking for product i ∈ S would substitute to product

j ∈ S − {i}, when product i is not in stock is given by αij =
vj

∑k∈S−{i} vk + v0
.

Hence, the average probability that a customer would be willing to substitute

to another available product in the assortment in the event of a stockout can be

written as ᾱS =
1
| S | ∑j∈S ∑i∈S−{j}

vj

∑k∈S−{i} vk + v0
. This can be approximated as
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Table 4.1 Expected Profits under Dynamic Substitution across Heuristics

Heuristic Expected Profits Value ($)

Lower Bound E
[
ΠA (x∗I)] 420

Independent Newsvendor E
[
ΠD (x∗I)] 421

Pooled Newsvendor E
[
ΠD (x∗P)] 427

Fixed Proportion E
[
ΠD (x∗F)] 426

Sample Path Gradient E
[
ΠD (x∗S)] 383

Upper Bound (C) E
[
ΠC (x∗P)] 431

ᾱS ≈
1
| S |

∑j∈S ∑i∈S−{j} vj

∑k∈S vk + v0
=
| S | −1
| S | θS, where θS is the total market penetration

of assortment S. For this example θN =
15
16

, implying that the probability of substi-

tution in the event of a stockout is ᾱS ≈
4
5
× 15

16
= 0.75. This explains the superior

performance of the Pooled Newsvendor Heuristic which assumes that αS = 1. Be-

fore delving into a more systematic evaluation of the heuristics, we simulate two

other scenarios studied by Honhon et al. (2010).

In the first scenario, Honhon et al. (2010) investigate the impact of relative popularity

of the products by varying the utilities (v1, v2, . . . v5), such that ∑5
i=1 vi = 15 and

v0 = 1. This assumption implies a total category penetration of θ =
∑5

i=1 vi

∑5
i=1 vi + v0

=

15
16

. In addition, they set p = 10, c = 5 and λ = 100. We express the heterogeneity of

each assortment in terms of its Gini Coefficient (Atkinson (1970)), G. G = 0, when

consumers are extremely heterogeneous implying that all products are equally

popular, and G = 1, when consumers are completely homogenous with all of them
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Figure 4.1 Impact of Consumer Homogeneity on Heuristic Performance

preferring the same product.

From Figure 4.1, we observe that the upper bounds we obtain are close to those

obtained by Honhon and Seshadri (2011). The simple pooled newsvendor heuristic

continues to perform remarkably well and in fact betters the more sophisticated

heuristics at times. We also note that the independent newsvendor heuristic has

an average optimality gap of 3.8% from the upper bound, and as pointed out by

Honhon et al. (2010), its performance deteriorates at intermediate levels of consumer

heterogeneity.

In the second scenario, Honhon et al. (2010) investigate the impact of the optimal

in-stock rate by varying the overage costs. They set v = (7, 2, 2, 2, 2) , v0 = 1, cu = 5
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and λ = 100, while varying co from 1 to 9 in steps of 1. This assortment has a gini

coefficient of G = 0.27. Figure 4.2 shows that (a) our upper bound is very close

to the one computed by Honhon and Seshadri (2011), (b) the pooled newsvendor

performs extremely well, and (c) the average optimality gap of the independent

newsvendor heuristic is 5.2% which steadily reduces as the in-stock rate increases.
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Figure 4.2 Impact of In Stock Rates on Heuristic Performance

4.2.5 Performance of Heuristics

Based on the preliminary results analyzing heuristic performance, we note that

there are three key parameters that seem to be driving the optimality gap: (1)

Degree of Substitutatbility θ, (2) Degree of Homogeneity G, and (3) In-Stock Rate r.
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In addition, we also consider a fourth parameter, the arrival Rate λ.

To systematically investigate the effect of these parameters on heuristic performance,

we consider the same setup as used by ?. Accordingly, we assume that (a) consumer

choice follows the MNL model, where {ui | i ∈ N} represent the deterministic

utilities associated with the products, with u0 = 0 being the utility of no-purchase,

(b) all items have the same price and cost parameters and (c) there are no capacity

constraints on inventory or the number of products that can be offered. Under

these assumptions, we know that the market share captured by product i when all

products in N are offered, is given by fi =
vi

1 + ∑i∈N vi
, where vi = exp(ui), ∀i ∈ N.

Let the products be labelled in decreasing order of their utilities. Hence f1 ≥ f2 ≥

. . . ≥ fN. Let Fi = ∑i
j=1 f j represent the cumulative market share captured by

products {1, 2, . . . , i}.

The shape of Fi is concave increasing and the curvature depends on the homogeneity

of consumer preferences. For example Fi would be a straight line if consumers

were extremely heterogeneous making all products equally popular. In order to

systematically simulate a wide range of values for the degree of homogeneity G,

we let

Fi = θ

{
1−

(
1− k

n

) 1+G
1−G
}

,

where θ represents total market penetration and G is the Gini Coefficient measuring

the heterogeneity of preferences.

Figure 4.3 shows how
Fi

θ
varies as a function of the fraction of products

k
n

for

different values of G. The Gini Coefficient, G, by definition is twice the area above

the 45 degree line. It measures homogeneity of preferences across products in the

category. Note that G = 0, implies complete heterogeneity in consumer preferences
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leading to equal shares for all products, while higher values of G imply higher

homogeneity in preferences. For instance, G = 0.75 leads to the familiar 80-20 rule

where 20% of the products capture 80% of the total.

k
n

F k θ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Gini Coefficient

0

0.2

0.4

0.6

0.8

1

Figure 4.3 Specification of Market Shares

We define the optimality gap of heuristic H with respect to the upper bound as

εUB
H =

E
[
ΠC (x∗P)]−E

[
ΠD (x∗H)]

E [ΠC (x∗P)]

In addition to the computed bounds and solutions based on the two newsvendor

heuristics, we also generated solutions to the assortment optimization problem

based on the sample path gradient algorithm of Mahajan and van Ryzin (2001)

and the static approximation proposed by Hopp and Xu (2008). We denote the
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highest expected profits across all heuristics by E
[
ΠD

max
]
. We use this as a proxy

for optimal profits under dynamic substitution, since there is no known algorithm

that can guarantee global optimality for this problem. We define the optimality gap

of heuristic H with respect to the highest expected profits as

εOPT∗
H =

E
[
ΠD

max
]
−E

[
ΠD (x∗H)]

E [ΠD
max]

We simulate the performance of the various heuristics using the same approach

described in Section 4.2.4, and compute the optimality gap over a range of these

four parameters as shown in Table 4.2.

Table 4.2 Parameter Values

Parameter Values

λ {100, 200, 300, 400}
θ {0.5, 0.6, 0.7, 0.8, 0.9}
r {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
G {0, 0.2, 0.4, 0.6, 0.8}

Table 4.3 summarizes the average optimality gap of the two newsvendor heuristics.

We observe that both the independent and pooled newsvendor heuristics perform

reasonably well with average optimality gaps of 5.7% and 5.3% respectively, with

respect to the upper bound. The bound on the optimality gap computed based

on Proposition 1 is 11.0%, roughly twice that the actual gap. When measured

with respect to the highest expected profits, the average optimality gaps are 1.8%

and 1.3% respectively. This suggests that the simple newsvendor based heuristic

perform extremely well on an average.
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Table 4.3 Summary of Heuristic Performance

Heuristic εUB
H εOPT∗

H
% %

Independent Newsvendor 5.7 1.8
Pooled Newsvendor 5.3 1.3

In order to analyze the optimality gap of the heuristics, we compute the average

optimality gap by parameter for each heuristic. Figure 4.4 shows the average opti-

mality gap over different values of θ, r and G for λ = 100 for the two newsvendor

heuristics. We can make several interesting observations on the optimality gap,

which are summarized in Table 4.4.

1. Degree of Substitutability (θ): The optimality gap with respect to the highest

expected profits increases(decreases) with θ for the independent newsvendor

(pooled newsvendor) heuristic. This makes intuitive sense, since the indepen-

dent newsvendor heuristic assumes that θ = 0 , while the pooled newsvendor

heuristic assumes that θ = 1. The optimality gap with respect to the upper

bound decreases with θ for both heuristics. However, we know that for low

values of θ, the independent newsvendor heuristic is close to optimal. Hence,

we conclude that this behavior is on account of the upper bound being a gross

overestimate of expected profits for low values of θ which manifests in the

computed optimality gap. This observation is consistent with that reported

by Honhon and Seshadri (2011).

2. In Stock Rate (r): The optimality gap for the independent newsvendor heuris-

tic decreases with increasing in-stock rate. This occurs since for low values of
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Figure 4.4 Optimality Gap of Newsvendor Heuristics

r, the extent of stock-outs is reduced and as a result the effect of stock-out sub-

stitution on the expected profits is smaller. The pooled newsvendor heuristic

seems to perform best for intermediate values of r. This behavior is a little

puzzling and needs deeper investigation to understand what is driving it.

3. Degree of Homogeneity (G): The optimality gap for both heuristics decrease

with increase in the degree of homogeneity. For G = 0, consumer preferences

are extremely heterogeneous. In this case, the independent newsvendor
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heuristic selects a much smaller assortment than is optimal as it ignores the

effects of dynamic substitution. The pooled newsvendor heuristic misses the

mark as well as it assumes consumers regard the whole category as a single

product, which is not the case when G = 0. On the other hand, when G = 1,

the optimal assortment consists of just one product, and both heuristics choose

this assortment, thereby reducing the optimality gap to zero.

The optimality gap is also decreasing in the arrival rate, λ. This is a direct conse-

quence of the assumption of Poisson arrivals, which implies that the coefficient of

demand variation, defined as
µ

σ
, equals λ−0.5. With increasing λ, the coefficient

of demand variation reduces, thereby lowering the effects of any demand-supply

mismatch on expected profits. In the extreme case when λ−0.5 → 0, aggregate

demand is deterministic, as a result of which the extent of stock-outs and its effects

on expected profits is minimal. As a consequence, any assumption made regard-

ing stock-out substitution is rendered inconsequential as a result of which both

heuristics perform extremely well.

Table 4.4 Effect of Key Parameters on Optimality Gap

Parameter Description Newsvendor Heuristic

Independent Pooled

θ Degree of Substitutability ↑ ↓

r In Stock Rate ↓ ↓↑

G Degree of Homogeneity ↓ ↓

λ Arrival Rate ↓ ↓

One can further understand the relative performance of the newsvendor heuristics

by plotting the expected profits across combinations of parameters. Figure 4.5 shows
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the expected profits normalized by the upper bound for a selected combination of

values of θ, r and G holding λ = 100. There are several interesting observations we

can make. First, the pooled newsvendor heuristic outperforms the independent

newsvendor heuristic for low r and high θ, whereas it is the other way round for

high r and low θ. In fact, the performance of the independent newsvendor heuristic

is close to optimal for high r and low θ. Second, the upper and lower bounds gets

tighter as the value of r, θ and G increase.
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Figure 4.5 Expected Profits Relative to the Upper Bound
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4.3 Mis-specification of Choice Model

The optimal assortment and expected profits depend on the choice probabilities

qi(S), which in turn are driven by the choice model considered. In this section,

we investigate the impact of misspecified choice model on the optimal assortment

and expected profits. Since the MNL model is the most popularly used model

in literature, we restrict ourselves to cases where the underlying choice model is

different from MNL, and we incorrectly use an MNL model to choose the assortment.

Moreover, since we are interested in isolating the effect of the choice model on

optimal profits, we ignore the presence of stock-out substitution.

We first consider the Locational Choice (LC) Model discussed in Gaur and Hon-

hon (2006). In some ways, the LC model is a polar opposite of the MNL, since

substitution is restricted to products that are similar to each other.

Following Gaur and Honhon (2006), we assume that (a) demand is poisson with

rate λ, (b) consumers are distributed on the [0, 1] line with continuous probability

distribution F, and (c) the coverage interval of each product is given by L (this is the

interval containing most preferred goods of all customers who obtain a non-negative

utility from the product). Gaur and Honhon (2006) show that if b = (b1, b2, . . . , bk)

is the assortment of products offered, then the expected profits are given by

E
[
ΠLC(b)

]
= (p− c)∑ λqj (b)− pφ(z)

√
λqj (b),
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where, for j = {1, 2, . . . , k},

qj(b) = F(b+j )− F(b−j ),

b+j = min
{

bj + L,
bj + bj+1

2

}
,

b−j = max
{

bj − L,
bj + bj−1

2

}
.

Let b = (b1, b2, . . . , bn) denote the set of all possible products that can be offered.

Hence, the demand share of product j is given by qj(b). Let us assume that the

values of qj(b) are known. Consequently, if we use the MNL model to recover

utilities from the observed values of qj(b), we get uj = ln

(
qj(b)

1− qj(b)

)
.

Let us now investigate the effects of using an MNL model to optimize the assortment.

The optimal MNL assortment can be determined by arranging the products in

decreasing order of their utilities uj, and selecting the top k products for a certain

value of k. We can solve for the optimal value of k through enumeration. Let us

denote the optimal MNL assortment by bMNL.

The optimal assortment under the LC model consists of all products if their coverage

intervals [bj ± L], j = {1, 2, . . . , n} are non-overlapping. If there is an overlap, then

for small values of n, we can solve for the optimal assortment through enumeration.

Let us denote the optimal LC assortment by bLC.

The impact of the mis-specification can now be easily computed as

ε =
E
[
ΠA(bLC)

]
−E

[
ΠA(bMNL)

]
E [ΠA(bLC)]

Following Gaur and Honhon (2006), we assume that F follows a beta distribution
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with symmetric parameters γ1 = γ2 = γ. Table 4.5 shows the parameter values

considered for this exercise. We find that the average optimality gap is 27%. This

Table 4.5 Parameter Values for the LC Model

Parameter Values

λ {100, 200, 300, 400, 500}
r {0.5, 0.55, 0.6,. . ., 0.99}
γ {2, 3, 4, . . .,10}

bN {0.05, 0.25, 0.45, 0.65, 0.85}
L {0.10, 0.11, . . ., 0.20}

suggests that the use of an incorrect choice model affects the optimal assortment

profits significantly. Digging deeper into the performance of the optimal solution,

we find that the optimality gap is decreasing in γ, λ, L as shown in Figure 4.6. This

can be explained as follows:

1. Degree of Substitutability (L): Once again, we observe that the average error

ε is decreasing in L. When substitution probabilities are high, there are two

effects in play. For a high value of L, the MNL model stocks fewer variants as

compared to the LC model, thereby increasing ε. However, for higher values

of L, the MNL assortment is able to capture a market share comparable to that

captured by the LC model, which tends to decrease ε. In our study, the second

effect dominates, thereby leading to a downward sloping curve for ε.

2. Degree of Homogeneity (γ): We note that the average error ε is decreasing

in γ. When consumers have heterogenous preferences (low values of γ), the

MNL model tends to stock fewer variants as compared to the LC model. This
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occurs since the substitution behavior embedded within the MNL assumes

that a small subset of the most popular variants will capture demand from

the other variants not carried through substitution. However, since true

substitution under the LC model is more localized, the MNL assortment

does not achieve the market share it expects. As a consequence, for high

levels of heterogeneity, the MNL assortment profits are highly sub-optimal

as compared to the LC assortment. As consumer preferences become more

and more homogenous, this difference reduces, as the most popular variants

do end up capturing the lion’s share of demand, thereby countering the

substitution effect.

3. Arrival Rate (λ): Higher value of λ lead to better performance of the MNL.

This occurs since higher λ leads the MNL model to increase the number of

variants stocked bringing it in line with the number stocked by the LC model,

thereby reducing the loss in profits.

4.4 Conclusions

In this chapter, we explored two important issues in assortment modeling. We

investigated the impact of (1) ignoring stock-out substitution and (2) using an

incorrectly specified choice model, on the optimal assortment and profits. We

quantified their effects in terms of the maximum percentage gap from the optimal

solution and studied its variation across a wide range of values for key parameters

specifying the problem. Our research revealed several interesting insights.

First, we find that an incorrectly specified choice model has a much higher impact

on the optimal assortment profits as compared to ignoring stock-out substitution.
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Figure 4.6 Impact of Choice Model Mis-specification

This is significant, since traditionally, much of the focus in OM literature has been

on the latter. A more recent stream of literature by Farias et al. (2011) and Besbes and

Saure (2010), focus on developing robust approaches to assortment optimization

when the choice model is unknown. Our results support this direction of research.

Second, we find that ignoring stock-out substitution does not reduce the optimal
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assortment profits significantly. In fact, the independent newsvendor heuristic

performs extremely well in spite of the fact that it does not incorporate the impact

of stock-out substitution. The independent newsvendor heuristic performs best

when the contribution of stock-out substitution to the expected optimal profits is

minimal. This happens when the in-stock rate is high, causing stock-outs to be

minimal in the first place, or when the degree of substitutability is low, in which

case little substitution takes place even when stock-outs actually occur.

Third, we find that the pooled newsvendor heuristic performs beyond our expec-

tations in spite of the fact that it makes unrealistic assumptions on the extent of

substitution in the event of a stock-out. Specifically, the solution proposed by the

pooled newsvendor heuristic, of offering all available products in the assortment,

seems highly impractical for several real situations. One explanation to this seem-

ingly anomalous solution is that although the pooled newsvendor heuristic allocates

the total inventory across all products, it does so in proportion to their market shares.

Hence, for several products with very low market shares, the inventory on offer

could be less than one, which is almost equivalent to it not being offered. A more

careful investigation of the pooled newsvendor heuristic needs to be carried out to

understand the dynamics of its performance before using it in practice.

Finally, we provide analytical bounds on the optimality gap of the independent

newsvendor heuristic. This is handy in practice, since a retailer can simply plug in

the parameters of their assortment problem and get a rough estimate of the maxi-

mum value of incorporating dynamic substitution into the optimization algorithm.

There are several directions in which this work can be extended. First, the analytical

bounds we compute are not tight. The upper bound makes the assumption that

substitution probabilities equal one when there are stock-outs. Future work can be
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done to sharpen this bound by making assumptions on the maximum probability

of a customer substituting in the event of stock-outs. Second, we only explored

the impact of one type of choice model mis-specification. It would be interesting

to investigate this impact for other commonly used choice models like the nested

logit model, exogenous demand model etc. This would help in the development of

robust approaches to assortment optimization. Finally, it is important to study the

impact of using a Poisson process to model customer arrivals. While the Poisson

distribution is a reasonably good way to model customer arrivals for a number

of retail product categories, it suffers from the fact that the coefficient of demand

variation decreases by the negative square root of the mean arrival rate. Hence, it is

important to explore the effect of this assumption on the optimal assortment and

expected profits, when demand is actually over-dispersed.
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Chapter 5

Measuring Seat Value in Stadiums

and Theaters1

5.1 Introduction

Theaters and sports stadiums have several characteristics that are well suited to

Revenue Management (RM) methods. There are many different customer segments

(e.g. season ticket holders, families, students) each with varying usage patterns

and willingness to pay. The value experienced by a consumer attending an event

depends on several factors, such as the location of his seat, the popularity of the

event, and other consumer-related attributes (see Talluri and van Ryzin (2004)

for more details). However, there has been limited research on how the value

experienced by consumers in such settings is influenced by the aforementioned

factors.
1This chapter is based on Veeraraghavan and Vaidyanathan 2011. Measuring Seat Value in

Stadiums and Theaters. Forthcoming in Production and Operations management
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According to Talluri and van Ryzin (2004) “fear of negative customer reactions and

consequent loss of customer goodwill are the main reasons firms seem to be avoiding bolder

demand management strategies.” This fear is not unfounded; Anderson et al. (2004)

find a positive association between customer satisfaction and long-run financial

performance of firms in retail settings. Hence, it is imperative to develop a system-

atic understanding of seat value experienced by consumers in order to be able to

improve ticket selling strategies. This is our main research objective.

The value of a seat in a stadium/theater is a function of the experience they offer

consumers, and could be driven significantly by the location of the seat relative

to the stage or playing field. For instance, front row seats in a theater are valued

higher as they offer a better view of the performance. This is in stark contrast

to airline seats, where seat value in the same travel class is less sensitive to seat

location,2 as airline seats primarily serve as a conduit for transporting a person from

an origin to a destination. Consequently, for the most part, the price of a ticket in

economy class indicates how much a person values the trip, more than how much

he values the seat itself. However, theater/stadium seats might be thought of as

experience goods. It is unclear how consumer valuations are distributed across

different attributes. Moreover, the dependence of seat value on the location of the

seat can be fairly complex. For example, in theaters, seats in the middle of a row

might be preferred over seats toward the end of a row further forward, and seats

at the front of second-level sections are sometimes preferred to seats at the back

of first-level sections (Leslie 2004). This ordering of seat value by location is only

understood subjectively by theaters and stadiums. However, there has been little

2 Although there are differences between aisle seats and middle seats, most seats in the same
travel class (business or economy) are perceived to provide comparable valuations for consumers. Of
late, these seat value differences based on seat location are gaining attention. See www.seatguru.com.
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research on developing a measure of seat value in these settings. Measuring seat

value and developing a better understanding of how it is driven by seat location

would assist theaters and stadiums in formulating their ticket selling strategies.

The relationship between seat value and seat location is not well understood. This

has been a focus of subjective discussions recently. We briefly discuss one such case.

In 2006, the Oakland Athletics decided to reduce the capacity of McAfee Coliseum

(where their home games are played) by covering several of their upper deck seats

with tarpaulin sheets, thus reducing the stadium capacity from 44,000 seats to about

34,077 seats (Urban 2005). The Oakland A’s announced that the decision was made

in order to provide an “intimate” experience to those in attendance, in a smaller

field. In fact, when the team moves to a newer field for the 2012 season, they

plan to play in a stadium that has lesser capacity (32,000) than the currently used

tarpaulin-covered stadium. Bnet.com quoted “...the fans who are feeling slighted most

are the lower-income brackets who feel the third deck was their last affordable large-scale

refuge for a seat behind home plate, even one so high.” The team management contended

that people liked the upper deck mostly because of availability, and perhaps not so

much because of the view (Steward 2006). One article in Slate Magazine criticized

the move, stating “Some of us want to sit far away” (Craggs 2006). Thus, the seat value

perceived by consumers seated at the upper deck was not only unclear, but also

varied among different fans. So is it true that the consumers seated in the upper

deck valued those seats highly? Were the upper deck seats being underpriced? How

did the seat value perceived by consumers attending the game differ across seat

locations? These are some of the questions that will be addressed by our research.

In addition to seat location, there are a number of other factors that might affect the

seat value perceived by a customer. For instance, in the case of a sports stadium,
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the nature of the opposing team, the age of the customer, or whether the customer

is a regular or an infrequent visitor, might affect her valuation of the seat. For most

theaters and stadiums, understanding heterogeneity in customer valuations is the

key to increasing revenues. A clear understanding of the seat valuations would lead

to the creation of better “fences” that would provide theaters and stadiums with

an opportunity to manage their revenues and customer base better. Our research

sheds more light on the key factors influencing seat value in these settings.

Our research on non-traditional industries (theater and sports) complements current

RM literature by (1) developing a measure of seat value (Seat Value Index), (2) estab-

lishing the critical relationship between the Seat Value Index and seat locations, and

(3) providing segment-specific recommendations that would help the firm achieve a

service-level objective such as a “desired level of seat value”.3 We apply this research

methodology to a proprietary dataset collected by a professional baseball franchise

in Japan, from a survey of its customers. Based on the findings from the dataset,

we provide various measures by which stadiums/theaters can improve customer

satisfaction through better handling of ticket pricing, seat rationing, and seating

layout decisions. Since RM practices are not employed on a large scale in these

areas of interest, our research fills a gap, both in theory and practice.

To our knowledge, ours is the first attempt to study the distribution of consumer

seat value and its dependence on seat location in theater/stadium environments.

Revenue management practice hinges on the ability to price-discriminate, which

is possible only if there is heterogeneity in seat value. Based on service-level

objectives, we provide pricing recommendations that a firm may use to improve
3This notion is analogous to “fill-rate” measures employed in retail settings. While focusing on

a desired fill-rate might be sub-optimal for short-run profit maximization, it improves availability,
leading to long-run benefits. Quantity adjustments are more difficult in stadiums/theaters, but price
adjustments to “satisfice” value can be made.
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positive experience from the repeated consumption of the good. We apply our

model to a dataset collected by a Japanese baseball franchise and find evidence

for heterogeneity in seat value at the stadium. Using our model, we quantify this

heterogeneity in terms of customer attributes and their seat locations. Pursuant to

the results from applying our method, we provide some segment-specific pricing

recommendations.

In the following Section §5.2, we position our research with respect to the existing

literature. In Section §5.3, we discuss our research design, methodology and its

application to a proprietary dataset. In Section §4, we test the robustness of our

results to game effects, prices and seat location. In Section §5, we provide segment-

specific pricing recommendations and discuss insights from our analysis. We

conclude this chapter by summarizing the key ideas of our methodology and

charting future research directions.

5.2 Literature Review

We analyze seat value perceived by consumers, and the key implications it has

for pricing in sports stadiums and theaters. Most of the literature in the sports

and entertainment industry has been about secondary markets and ticket pricing

in scalping markets (See Courty (2000) for a comprehensive survey). The only

paper similar to our research is Leslie (2004) which studies the profit implications

of price-discrimination based on exogenously defined seat quality and consumers’

income levels for a Broadway theater. In contrast to Leslie (2004), we measure seat

value based on consumer perceptions.

Our research also contributes to an evolving literature on consumer behavior and
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empirical modeling in Revenue Management. Shugan and Xie (2000) show that

advanced selling mechanisms can be used effectively to improve firm profits as

long as (a) consumers have to purchase a product ahead of their consumption,

and (b) their post-consumption valuation is uncertain. Xie and Shugan (2001)

provide guidelines for when and how sellers should advance sell in markets with

capacity constraints. Dana (1998) shows that advance-purchase discounts can be

employed effectively in competitive markets, if consumers’ uncertain demand

for a good is not resolved before the purchase of the good. Su (2007) finds that

heterogeneity in consumer valuations, along with waiting time behavior, influences

pricing policies of a monopolist. Gaur and Park (2007) consider consumer learning

in competitive environments. While most of this literature is analytical, we take an

empirical approach to analyze seat values as perceived by customers, and study its

implications for revenue management decisions in the sports/theater business.

There has been recent interest in modeling Revenue Management decisions in

non-traditional settings. Roels and Fridgeirsdottir (2009) consider a web publisher

who can manage online display advertising revenues by selecting and delivering

requests dynamically. Popescu and Rudi (2008) study revenue management in

stadiums where experience is often dictated by the collective experience of others

around a patron.

Methodologically, our approach is related to the literature employing ordinal mod-

els to study the antecedents and drivers of customer satisfaction. Kekre et al. (1995)

study the drivers of customer satisfaction for software products by employing an

ordinal probit model to analyze a survey of customer responses. Bradlow and

Zaslavsky (1999) use a Bayesian ordinal model to analyze a customer satisfac-

tion survey with ‘no answer’ responses. Rossi et al. (2001) propose a hierarchical
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approach to model customer satisfaction survey data that overcomes reporting

heterogeneity across consumers. We use an ordinal logit model similar to the afore-

mentioned papers, taking into account heterogeneity in reporting (across customers)

and heterogeneity in the distribution of seat values (across seat locations).

Anderson and Sullivan (1993) note that relatively few studies investigate the an-

tecedents of satisfaction, though the issue of post-satisfaction behavior is treated

extensively. They note that disconfirmation of expected valuation causes lower

satisfaction and affects future consumption. While previous considerations about a

product might affect how consumers value the experience, we mainly focus on how

product attributes such as seat location, and personal attributes such as gender, age

and frequency of visits affect customer valuations.

Homburg et al. (2005) show that customer satisfaction has a strong impact on will-

ingness to pay. Ittner and Larcker (1998) provide empirical evidence that financial

performance of a firm is positively associated with customer satisfaction and cus-

tomer value perception. We use seat value measures reported by consumers in a

survey to recommend changes that would help the firm (a baseball franchise in our

context) achieve a chosen service objective on seat value. Hence we believe that this

objective would improve customer goodwill, which in turn would lead to better

long-run performance.

107



5.3 Objectives and Methodology

5.3.1 Research Issues

The focus of our research is to understand how the seat value perceived by a

customer in a stadium/theater varies based on the location of her seat relative to

the stage/field. Since we are interested in post-consumption seat value perceived

by customers in attendance, we do not consider the underlying trade-offs made

while arriving at the purchase and seat choice decisions. Therefore, we only model

the ex-post net valuations realized by consumers, in order to understand how they

differ based on seat location.

To derive sharper insights, we assume that consumers are forward-looking and

have rational expectations, i.e. that they do not make systematic forecasting errors

about what valuations they might receive from attending a game or seeing a show.

The rational expectations assumption is widely employed in empirical research

in economics (Muth 1961, Lucas and Sargent 1981, Hansen and Sargent 1991) and

marketing literature (for example, Sun et al. 2003). Accordingly, we assume that

every consumer has some belief on the distribution of possible valuations that she

could realize, conditional on her covariates. Furthermore, the ex-ante distribution

of valuations for a rational consumer is identical to the ex-post distribution of

valuations realized by the consumer population with identical covariates. Note that

rational expectations does not imply that consumers are perfectly informed about

their true valuations.

108



5.3.2 Methodology

Seat Value

We define the value perceived by a consumer as the valuation realized from her

event experience net of the price paid (consistent with Zeithaml 1988). We note that

the exact valuation realized from the experience cannot be easily quantified, and

therefore the value perceived is latent. However, the consumer would be able to

translate her latent value perceived on some graded scale. In other words, although

she cannot describe the exact worth of the show she attended, she can usually

confirm if the value she perceived was low, medium or high. We define Seat Value

Index (SVI) as an ordinal measure that captures the post-consumption latent value

perceived by a consumer. Let Vi denote the SVI reported by a respondent i. It takes

values in {1, 2, . . . , J}, J ∈N, where Vi = 1 corresponds to the lowest SVI (low net

value), and Vi = J represents the highest SVI (high net value).

Service Objective

In many operational contexts, firms that seek to improve customer service adopt a

service level measure such as fill rate or in-stock probability (Cachon and Terwiesch

2008). Such decisions are based on the belief that improving availability of products

reduces the incidence of costs that might be associated with stock-outs, and the

resultant loss of goodwill. For instance, firms would hope to set prices such that it

keeps the fraction of customers experiencing low seat value to an acceptable level

at each seat location. Such service level measures that focus on limiting the fraction

of customers facing inferior service experience, is commonly applied in several

industries. Call centers choose staffing level according to an 80/20 rule (or, some
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variation thereof) that focuses on limiting the fraction of customers that face waiting

times exceeding a certain threshold.

While a newsvendor can adjust quantities of goods produced based on the chosen

service level objective, in many RM scenarios, the quantities are unchangeable

(for example, the number of seats in a theater cannot be adjusted easily). In such

cases, prices are the main lever by which RM firms can attain their service objective.

However, in many revenue management scenarios, especially in stadiums/theaters,

the value of the product is intrinsically linked to the experience. For example, it is

possible that customers who experience low value might switch to other services,

or balk from visiting again. Firms would hope to set prices such that the fraction

of customers experiencing low seat value could be limited to acceptable levels.

Such an objective would be consistent with the models of customer behavior linked

to service/stockout experiences considered in previous Operations Management

settings (For example, see Hall and Porteus 2000, Gans 2003, Gaur and Park 2007).

Several RM firms desire to limit the fraction of customers experiencing low seat

value in order to mitigate the loss of goodwill or to reduce switching. Hence,

we consider a service-level objective that aims to set prices to maximize revenues

while keeping the probability of a customer reporting low SVI to a maximum

threshold level, αl, at some seat location l. For expositional ease, we shall assume

that αl = α across all seat locations. This clearly need not be the typical case. A

theater might be willing to impose more stringent constraints on certain sections of

the arena compared to other sections. Therefore, under our service level objective

for a particular seat category l, the firm would like to set some price p∗l under the

constraint

Pr[SVI ≤ j|p∗l ] ≤ αl (5.1)
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The choice of αl and j are flexible, and could be based on the long term objective of

the firm.

We only consider static price adjustments in our setting, since such schemes are

consistent with industry practice where we apply our model. It is very common that

theaters and sports stadiums announce prices for the entire season; the number of

price changes are extremely limited within the selling horizon. Utilizing the service

level objective we elaborated, the firm can increase or decrease prices suitably to

achieve a desired level of seat value.

Modeling SVI

We could treat SVI as continuous and estimate a multiple regression model using

ordinary least squares (OLS). However, this approach is flawed as (1) the OLS

estimates are inefficient and the predictions cannot be restricted to the interval [1, J]

(Kmenta 1986), and (2) the regression estimates will roughly correspond to the

correct ordered model only if differences in value between two consecutive indices

are identical. For additional discussion on the limitations of OLS regressions, see

Judge et al. (1980).

Alternately, we could treat SVI as categorical and employ a multinomial logit

or probit model. This overcomes the limitations of OLS regression, but is still

inefficient as it throws away valuable information by ignoring the ordinal nature of

SVI. Hence, the appropriate model for our purpose is an ordinal regression model

that takes into account the categorical nature of the data as well as the ordered

information contained.

A respondent i derives her SVI, Vi ∈ {1, 2, . . . , J}, by categorizing her post-consumption
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latent net value realized, V∗i , into buckets defined by the thresholds {τ0
i , τ1

i , ..., τ J
i },

where it is understood that τ0
i = −∞ and τ J

i = +∞. Hence, respondent i reports

her SVI as Vi = j, if and only if τ
j−1
i < V∗i ≤ τ

j
i , for j = 1, 2, . . . , J. This mapping

between a respondent’s experienced net value and reported SVI is illustrated in

Figure 5.1 for the case J = 3.

The net value experienced by the customer is V∗i = xT
i β + εi, where xi is a vector

of consumer and seat characteristics (excluding a constant). β is the associated

vector of parameters, and εi is a stochastic term that captures the idiosyncratic value

derived from the experience. The model is completed by specifying the distribution

of εi and constraints on the thresholds, τ
j
i (required for identifiability). The reader

is directed to Liu and Agresti (2005) for a detailed overview and survey of ordinal

data analysis. We provide a more detailed description of the ordinal regression

models used, in Section 5.3.5

5.3.3 Description of Baseball Dataset

We now illustrate our research issue based on the data from a professional league

baseball franchise (equivalent of Major League Baseball) in Japan. The franchise

is located in a mid-small city, and hence could not rely on conventional streams of

revenue such as broadcasting, merchandizing and advertising. The franchise man-

agement decided to focus on ticket sales as it saw an upside potential in considering

improvements in pricing and seating layouts.

As the team was a recently established franchise, the management conducted a

survey to better understand the traction for the team among its fans. The survey

was designed by the team based on inputs from various departments and team
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Figure 5.1 Mapping between Net Value, V∗i (latent), and Seat Value Index, Vi

executives in the franchise. The survey was administered to a random sample of

consumers at the franchise’s stadium on a weeknight game. Only one response was

obtained from each consumer.

In the survey, respondents were asked to report the net worth of the seats they

sat in as Low, Medium or High. This corresponds to the Seat Value Index (SVI)

measure which was defined before as a quantification of a respondent’s realized net

value. In addition, customers were asked to report their age4, gender, hometown,

4We treat age as a continuous variable in our model in order to preserve the order information
contained. We tested an alternate specification treating age as categorical, but rejected it in favor
of the continuous specification based on the AIC values of the two models. In addition, we also
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seat, frequency of visits to the stadium and preference for visiting teams. Table 5.1

provides more details on these variables and how we treat them in our models.

Table 5.1 Description of Variables in the Dataset

Variable Values Treatment

SVI Low, Medium, High Ordinal (1-3)

Age 0− 9, 10− 19, 20− 29, 30− 39, 40− 49, 50− 59, 60+ Continuous (1-7)

Gender Male, Female Categorical

Hometown City, Prefecture, Outside Categorical

Seat 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (see Figure 5.2) Categorical

Frequency First Time, Once, Thrice, Five Times, All Games Continuous (1-5)

Visiting Team Team 1, Team 2, Team 3, Team 4, Team 5 Categorical

The experience and the resulting value perceived are highly dependent on the

location of the seat from which a respondent watched the game. However, this

information is not clearly captured by the explanatory variable Seat. For example,

customers seated in locations 2 and 7 have almost identical views, but this linkage

is not apparent in the current coding of the Seat variable. Hence, we represented

each seat in terms of three location attributes given by Side = {1st Base, 3rd Base,

Backnet, Field, Grass}, InOut = {Infield, Outfield} and Deck = {Upper, Lower}.

5.3.4 Preliminary Analysis

From a total of 1397 respondents, 259 responses were dropped due to missing

information, resulting in N = 1138 responses.5 A preliminary analysis revealed

considered an alternate continuous specification for age, where each age-group is represented by its
mid-point. We find that our results remain largely unchanged.

5According to Bradlow and Zaslavsky 1999, there are two possible causes for respondents not
reporting a satisfaction score like SVI: (1) the respondent does not consider the satisfaction score as
salient, or (2) the respondent considers it salient, but has a mild opinion and hence does not voice it.
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Figure 5.2 Stadium Seating Layout.

that the frequency distribution of SVIs was skewed towards the right, as shown in

Figure 5.3. This implies that a higher proportion of consumers reported a low SVI,

which underlines the further need for studying seat value.

Figure 5.3 also reveals some cursory insights. The seat value index reported by

older respondents seems to be more homogeneous. Customers seated in Grass

seats report higher SVI, while respondents seated at Backnet seem to have a lower

SVI. Infield and Lower Deck seats seem to have a higher proportion of respondents

reporting low SVI as compared to Outfield and Upper Deck seats. Finally, the season

regulars attending all games seem to have more homogeneous SVIs as compared

to the first-timers. We now discuss the regression methodology adopted and the

We analyzed the responses missing information using a series of auxillary regressions, but did not
find any systematic patterns of non-response.
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estimation of model parameters.
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Figure 5.3 Distribution of Seat Value Indices.

5.3.5 Estimation of Parameters

Let Vi denote the SVI reported by respondent i, i = 1, 2, . . . , N. Note that Vi can

take the rank-ordered values j = 1, 2, 3 corresponding to Low, Medium and High,

respectively.

Given that our response variable is ordinal, we follow McCullagh (1980) and use or-

dinal regression to model our data. The standard ordinal regression model assumes

that all consumers use the same response thresholds while reporting their SVI (i.e.

τ
j
i = τ j, ∀i) and experience independent identically distributed idiosyncratic value

(i.e. εi are iid). The usual choices for the distribution of εi are the normal or logistic
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distributions, which would lead us to the standard ordinal probit model (McK-

elvey and Zavoina 1975), or the standard ordinal logit model (McCullagh 1980),

respectively. McCullagh (1980) shows that the ordinal probit and logit models are

qualitatively similar and that the fits are indistinguishable for any given data set;

hence the selection of an appropriate distribution should be primarily based on ease

of interpretation. We use the logistic error distribution as it allows us to interpret

the regression coefficients in terms of log-odds.

Given these assumptions, the cumulative probability distribution of Vi can be

written as

Pr(Vi ≤ j | xi) = Pr(V∗i ≤ τ j | xi) = Pr(xT
i β + εi ≤ τ j | xi)

= Pr(εi ≤ τ j − xT
i β) =

e(τ
j−xT

i β)

1 + e(τ
j−xT

i β)

= Λ(τ j − xT
i β) ∀j = 1, 2, . . . , J − 1, (5.2)

where xi is a vector of covariates consisting of Age, Gender, Hometown, Side, InOut,

Deck, Frequency and Team 1, β is the associated vector of parameters, and Λ is the

cumulative distribution function of the logistic distribution. Note that xT
i β expands

to

xT
i β = β1Agei + β2Malei + β3Cityi + β4Prefecturei + β53rdBasei + β6Backneti +

β7Fieldi + β8Grassi + β9Outfieldi + β10UpperDecki + β11Frequencyi + β12Team1i.6

For the probabilities to be well-defined, the threshold parameters need to satisfy

6Note that the actual price paid may have an effect on consumer valuations and the ex-post
survey scores reported. While our approach can incorporate price into the regression, our dataset
lacks granular price data at the consumer level. Therefore, we do not explicitly consider price in
our model. Instead, we study the effects of seat price on SVI and test the robustness of our model
to price effects in Section 5.4.4. We find that our conclusions remain unchanged even when price
dependencies are considered. We thank an anonymous reviewer for pointing out this aspect.
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the condition

τ1 < τ2 < . . . < τ J−1. (5.3)

We can now express the log-likelihood function for the standard ordinal logit model

as

LL(β, τ | V, X) =
i=N

∑
i=1

J

∑
j=1

I(Vi = j) log
{

Λ(τ j − xT
i β)−Λ(τ j−1 − xT

i β)
}

, (5.4)

where I is the indicator function, V = {Vi}N
1 and X = {xi}N

1 . The parameters of the

model are estimated by maximizing the log-likelihood in Equation (5.4) subject to

the constraints in condition (5.3).

Prior to running the regression model, we first tested for the usual symptoms

of multi-collinearity (Greene 2003): (1) high standard errors, (2) incorrect sign or

implausible magnitude of parameter estimates, and (3) sensitivity of estimates to

marginal changes in data. We found no evidence of these symptoms in our dataset.

We computed the Variance Inflation Factors (VIF) for every covariate and found all

of them to be less than two (i.e. max(VIF) < 2), which again suggests that multi-

collinearity is not an issue. In addition, we added random perturbations to the

independent variables and re-estimated the model (Belsley 1991). We determined

the changes to the coefficients of those variables to be insignificant on repeated trials,

thus further supporting that multicollinearity might not be a significant concern.

We use the OLOGIT routine in STATA 10.0 to estimate the parameters of the model

using the maximum likelihood approach. The results are summarized in Table 5.2.

The standard ordinal logit model is equivalent to estimating J− 1 logistic regressions

of the form Pr(Vi ≤ j | xi) = Λ(τ j − xT
i βj), with the assumption that the slope
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coefficients are identical across all equations, i.e. βj = β, j = 1, 2, . . . J − 1. If we

rewrite Equation (5.2) in terms of the odds of {Vi ≤ j}, we get Odds(Vi ≤ j | xi) =

exp(τ j − xT
i β). Hence, for two different response levels j1 and j2, we find that the

ratio of odds, given by

Odds(Vi ≤ j1 | xi)

Odds(Vi ≤ j2 | xi)
= exp(τ j1 − τ j2), (5.5)

is independent of the covariate xi.

Equation (5.5) is often referred to as the Proportional Odds property and implies

that all respondents have the same ratio of odds of reporting a low SVI to odds of

not reporting a high SVI. While it might be reasonable to assume that customers

sitting in different seats might inherently have the same propensity to find higher

(or lower) value, one would expect that customers ‘learn’ their valuation through

repeated visits to the stadium/theater, and hence would have different odds ratios

based on the number of prior visits. Hence, we need to investigate the validity

of the implicit proportional odds assumption made by the standard ordinal logit

model, before using it to make any inferences.

The standard approach to test if the proportional odds property holds, is to use a

Likelihood Ratio Test (LRT) to compare the standard ordinal logit model (SOLM)

with an expanded ordinal logit model (EOLM), that allows the slope coefficients

(β) to depend on the threshold levels. The null hypothesis being tested is H0 :

βj = β, j = 1, 2, . . . , J − 1. The test statistic −2 {ln(SOLM)− ln(EOLM)} has a

χ2
(k) distribution, where k is the number of additional parameters in the expanded

model.

The Likelihood Ratio Test is an omnibus test that the slope coefficients (β) are equal
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across threshold levels for all the explanatory variables in the regression. This test

only indicates whether or not the slope coefficients are different across threshold

levels for some explanatory variables, but does not allow us to identify them specif-

ically. In order to pinpoint the explanatory factors that drive this deviation from

proportional-odds, we need a more detailed procedure, and we achieve this by

employing a Wald test developed by Brant (Brant 1990).

The Brant test validates the proportional odds property for each covariate individu-

ally. The main idea of this test is to fit separate logistic regressions, Pr(Vi ≤ j | xi) =

Λ(τ j − xT
i βj), for each of the J − 1 threshold levels. These unconstrained estimates

generally will not correspond to the overall maximum likelihood estimates for the

integrated model as they could violate the monotonicity property for thresholds in

i (as expressed in Equation 5.3). If the threshold monotonicity property is violated,

they lead to negative values for fitted probabilities. Hence the standard likelihood

based procedures, such as the likelihood ratio test, cannot be conducted based on

the ‘separate’ unconstrained regressions. Nevertheless, we could use the ‘separate’

logistic regression estimates and the asymptotic covariance matrix to construct a

test statistic that checks for the equality of the βjs and thus identify those variables

for which the proportional-odds property do not hold.

We applied the likelihood ratio test and found that the standard ordinal logit model

is strongly rejected in favor of an expanded model that allows for the slope coef-

ficients to differ across threshold levels (χ2
(12) = 46.74, p < 0.0001). Consequently,

we conducted the Brant test, to find that the proportional-odds property is violated

for the coefficients β1 (Age), β5 (Side) and β10 (Deck).7 To rule out the possibility

7A likelihood ratio test confirms that a partially constrained model that allows only for β1, β5
and β10 to depend on j cannot be rejected in favor of an unconstrained model that allows all the β’s
to depend on j (χ2

(9) = 6.33, p = 0.71).
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of a misspecified link, we applied the Brant test to ordinal models with different

link functions (probit, log-log and complementary log-log), but still found the same

violations of the proportional-odds property.

The proportional-odds property in Equation (5.5) is a direct consequence of specify-

ing that all consumers use the same response thresholds τ and have independent

and identically distributed idiosyncratic value (ε). Violation of the proportional-

odds property for a subset of covariates, detected by the Brant test, suggests that

there is some inherent heterogeneity across consumers and seat locations. While

ignoring such heterogeneity in exchange for a simple parsimonious model might

be acceptable for some applications, in several revenue management settings, the

inherent heterogeneity in the consumer population could be the key driver for

pricing strategies.

Hence, we consider two different modifications to the standard ordinal logit model

that account for this heterogeneity.

1. First, we consider a generalized threshold model that addresses the possibility

of customers using different thresholds in reporting their responses, by relax-

ing the assumption that the thresholds, τ
j
i , are identical for all respondents.

2. Second, we consider a heteroskedastic model that addresses the inherent

differences in the distribution of net value across seat locations, by allowing

the variance of the idiosyncratic value term, εi, to systematically vary across

respondent groups.

We now discuss these two sources of heterogeneity and the modeling strategies that

can account for them.
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Table 5.2 Parameter Estimates for All Models

Variables Ordinal Logit Models

Standard Generalized Heteroskedastic

j = 1, 2 j = 1 j = 2 j = 1, 2

Threshold: Low-Medium τ1 -1.215*** -0.761** -0.748***

Threshold: Medium-High τ2 3.387*** 2.071*** 2.067***

Age β
j
1 0.048 0.127** -0.172** 0.034

Male β
j
2 -0.019 -0.026 -0.034

City (vs. Outside) β
j
3 0.083 0.029 0.011

Prefecture (vs. Outside) β
j
4 0.192 0.166 0.102

3rd Base (vs. 1st Base) β
j
5 0.428** 0.873*** -0.727** 0.145

Backnet (vs. 1st Base) β
j
6 -0.730*** -0.678*** -0.678*** -0.440***

Field (vs. 1st Base) β
j
7 -0.893*** -0.824*** -0.509***

Grass (vs. 1st Base) β
j
8 1.816*** 1.206*** 0.919***

Outfield β
j
9 0.215 0.211 0.171

Upper Deck β
j
10 0.246 0.066 0.947*** 0.263**

Frequency β
j
11 -0.126** -0.093 -0.234** -0.081**

Team 1 β
j
12 0.249* 0.250* 0.185**

Age γ1 -0.075***

3rd Base (vs. 1st Base) γ5 -0.324***

Upper Deck γ10 0.208***

Frequency γ11 -0.057*

Log Likelihood LL -748.12 -727.18 -726.27

Likelihood Ratio χ2 LR 149.02 190. 90 192.72

No. of Parameters 14 18 18

McFadden Pseudo R2 9.06% 11.60% 11.71%

*** p < 0.01, ** p < 0.05, * p < 0.1

Heterogeneity in Response Thresholds: Generalized Threshold Model

It is not uncommon for people to use different thresholds in reporting their ordinal

responses. The generalized threshold ordinal logit model retains the idea that
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consumers realize their net value from a common distribution, V∗i ∼ Λ(xT
i β, π2

3 ),

but assumes that they use systematically different thresholds, τ
j
i , while reporting

their net value. A common approach to model generalized thresholds is to make

the threshold parameters linear (Maddala 1983, Peterson and Harrell 1990) or

polynomial functions of the covariates.8 We choose the linear specification and

accordingly let τ
j
i = τ̃ j + xT

i δj, where xi is the set of covariates and δj, j = 1, 2,

are vectors of the associated parameters that capture the effect of the covariates in

shifting the thresholds. Substituting the expression for τ
j
i in place of τ j in Equation

(5.2), we can write the equations for the generalized ordinal logit model

Pr(Vi ≤ j | xi) = Λ(τ̃ j − xT
i βj), βj = β− δj ∀j = 1, 2. (5.6)

According to the generalized threshold ordinal logit model, the net effect of any

covariate k, β
j
k on SVI, is a combination of two effects (a) the real effect (βk) and (b)

the threshold-shifting effect (δj
k). It is the threshold-shifting effect (δj

k) that leads to

the manifestation of unequal slopes detected by the Brant test. Thus, two groups of

customers might have identical distributions of net value, but the distributions of

their reported SVIs might differ because of different reporting thresholds. Figure

5.4 illustrates this case for two customers, A and B, seated at identical locations.

From the results of the Brant test, we infer that the covariates Age, 3rd Base and

8For example, despite having the same level of ‘true’ health, older people may report their health
differently from younger people. This phenomenon of subgroups of population using systematically
different thresholds when assessing some latent quantity is referred to as Response Category Threshold
Shift or Reporting Heterogeneity. It is also possible that some respondents are biased and answer
questions on latent factors (such as the value of a seat) by comparing themselves with a reference
group or a situation, that may be unobservable to the researcher (Scale of Reference Bias Groot 2000).
In addition, respondents could display systematic biases in using different portions of the scale,
e.g. the lower and upper ends. For instance, some discerning consumers attending a play might be
quite strict on reporting ‘high’ responses (hard to please critics). This is referred to as Scale-Usage
Heterogeneity (Rossi et al. 2001).
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Figure 1: Generalized Threshold Model vs. Heteroskedastic Ordinal Model

1

Figure 5.4 Generalized Threshold Model vs. Heteroskedastic Ordinal Model

Upper Deck could be driving the shift in thresholds. In addition, we believe that

repeated visits help respondents learn the true value of the game experience and

would induce them to use different thresholds. Accordingly, we let the thresholds

depend on the subset of covariates zi = {Age, 3rd Base, Upper Deck, Frequency},

and set δ
j
k = 0, j = 1, 2 for k /∈ zi.

We estimate the parameters of this generalized threshold model using the GOLOGIT2

routine (Williams 2006a) in STATA 10.0. The results are summarized in Table 5.2.

We observe that in addition to Side and Frequency, Age also becomes a significant

predictor now. A standard measure of fit for ordinal regression models is the McFad-

den pseudo-R2 which is defined as 1− LLModel
LLNull

, where LLModel refers to the model

log-likelihood. It indicates the improvement in likelihood due to the explanatory

variables over the intercepts-only (null) model. We find the pseudo-R2 for the

generalized threshold model to be 11.60%.9

9This value needs to be interpreted with caution as it is not directly comparable to the R2 obtained
in OLS, which is a measure of the proportion of variance in the responses explained by the predictors.
In fact, it is possible to obtain low values for the pseudo-R2, even when the explanatory power of
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Heterogeneity in Net Value Distribution: Hetetoskedastic Ordinal Logit

(McCullagh and Nelder 1989)

In the previous subsection, we considered customers using different thresholds

to report different levels for the same realized experience. However, it is also

possible that the distribution of values, εi, realized by different consumer groups

might, themselves, be different. Consumers seated in different locations could have

different variabilities in their experience depending on their seat location. Such

occurrences are very likely in several Revenue Management settings. It is likely

that consumers seated in some sections such as dress circles may have smaller

differences in the value experienced than those consumers seated at farther sections

of the same theater. Therefore, we believe that it is important for firms to account

for such systematic differences in the variance of the distribution of idiosyncratic

value, to obtain meaningful parameter estimates.10

We capture the dependence of the error variance on the covariates using a skedastic

function h(.) that scales the iid εis in the standard ordinal logit model. Mathemati-

cally, we write V∗i = xT
i β + h(zi)εi, where zi is the vector of covariates upon which

the residual variance depends. Following Harvey (1976), we parametrize h(.) as

an exponential skedastic function given by h(zi) = exp(zT
i γ). We can now rewrite

Equation (5.2) to obtain the defining set of equations for the heteroskedastic ordinal

the model is good (Hauser 1978). Hence we analyzed more detailed fit statistics in Section 5.4.1 to
support the predictive power of the model. When we compared the actual number of respondents
at a given seat location reporting a particular SVI, with those predicted by the model, we observed a
high degree of correlation. This suggested that the model provides a pretty good fit.

10Ignoring systematic differences in variances across seat locations might lead to incorrect conclu-
sions in some cases. For instance, consider two identical groups of consumers in a theater, who are
seated at locations A and B, who have the same mean idiosyncratic value, but group A has twice
the variance realized by group B, i.e., βA = βB, but σA = 2σB. This case is illustrated in Figure 5.4.
Now, if we assumed that variances are equal at both locations, it would lead us to the erroneous
conclusion that β̂A = 0.5β̂B, where β̂i is an estimate of the true parameter βi. Hence, accounting for
heteroskedasticity is critical.
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logit model as

Pr(Vi ≤ j | xi) = Λ

(
τ j − xT

i β

exp(zT
i γ)

)
∀j = 1, 2. (5.7)

The heteroskedastic ordinal logit model belongs to a larger class of models known

as location-scale models, and the reader is directed to McCullagh and Nelder (1989)

for more details.11

Since the explanatory variables Age, 3rd Base and Upper Deck violated the Brant test,

we include these covariates in the expression for variance of idiosyncratic value. In

addition, we also include the covariate Frequency in the variance expression, as we

believe that repeated visits should help respondents learn the “true value” of the

game experience, and consequently reduce the residual variation in their net value

perceived. We estimate the parameters of the heteroskedastic ordinal logit model

using the OGLM routine (Williams 2006b) in STATA 10.0.

From the results summarized in Table 5.2, we observe that the covariates Frequency,

Side (except 3rd Base) and Upper Deck have significant β coefficients. All the γ

coefficients included in the variance equation are significant. We can draw several

interesting inferences from these results.

Controlling for heteroskedasticity, we find that respondents at the third base have

the same average net value as respondents at the first base, as β̂5 is not significant.

However, the respondents seated on the third base side have significantly less vari-

ance in the net value realized (standard deviation is 1-exp(γ̂5) = 28% lower) as

compared to those seated on the first base side. This could be due to the location of

the home team dugout and/or the relative incidence of foul balls/home runs on the
11Note that the heteroskedastic ordinal logit model does not display proportional odds for the

covariates in zi. This can be seen by writing out the expression for log-odds of Vi ≤ j conditional
on xi, and observing that the effect of the covariates zi on the log-odds is now dependent on the

threshold level j: log(Odds(Vi ≤ j | xi)) =
τ j−xT

i β

exp(zT
i γ)

.
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left field. Figure 5.4 details a comparison of reported SVIs for a customer located on

the first base side and the third base side.

We find that the net value experienced by respondents seated at the upper deck

has a higher mean (β̂10 = 0.263, p = 0.04), as well as a higher variance (γ̂10 =

0.208, p = 0.0408), when compared to the net value experienced by respondents

seated at the lower deck. The net value experienced by customers visiting more

frequently has a lower mean (β̂11 = −0.081, p = 0.028) and a lower variance

(γ̂11 = −0.058, p = 0.074). Age of a respondent does not affect the mean of net

value experienced, but older respondents tend to have lower variance in the net

value experienced.

The current dataset has only one response for each consumer. Hence, it is not

possible to econometrically distinguish between the Generalized Threshold Model

and the Heteroskedastic Model. The observed deviation from proportional-odds

could be a manifestation of consumers using different thresholds, or of the value

distribution being heteroskedastic across seat locations. Hence, the applicability

of either model must depend on the appropriate interpretation. For example, it

is more likely that heterogeneity across consumers is explained by thresholds,

while heterogeneity across seat locations is better explained by differences in the

idiosyncratic value distribution. We interpret our results accordingly.

5.3.6 Achieving the Service Objective

Let us now consider the aforementioned service-level objective that we discussed

before, where the firm aims to set prices such that the probability of a customer

reporting low SVI is limited to a maximum threshold level, α, at all seat locations l.
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In Lemma 1, we derive an expression for the price change at each seat location that

would help the firm achieve this objective, using the heteroskedastic ordinal logit

model specification.

Lemma 1 Let xl denote the vector of covariates for a customer seated at location l. Let

α, β, γ and zl be defined as in the heteroskedastic ordinal logit model, and θ denote the price

elasticity of V∗l . To limit the probability of this customer reporting SVI=1 at seat location l

to a threshold α, the required price change ∆pl is given by

∆pl =
1
θ

{
−τ1 + xT

l β + Λ−1 (α) exp(zT
l γ)

}
(5.8)

Proof : At current prices, the probability of a typical customer reporting SVI as low

is given by

Pr(V∗l ≤ τ1) = Λ

(
τ1 − xT

l β

exp(zT
l γ)

)
(5.9)

Increasing the ticket price for seat location l by ∆pl would change this probability to

Pr(V∗l − θ∆pl ≤ τ1) = Λ

(
τ1 + θ∆pl − xT

l β

exp(zT
l γ)

)
.

Equating this to α, we can calculate the desired price change ∆pl shown in Equation

(5.8).

We apply the results of this lemma in Section §5.3.8 to derive price changes for a

baseball franchise. Note that we could allow the service-level thresholds to differ

across seat locations by specifying different αs.
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5.3.7 Calculating Marginal Probabilities

The main purpose of our model is to predict the probability that a consumer seated

at a particular seat location reports a certain SVI. In order to manage SVI, it is

crucial to understand how these probabilities of a consumer reporting a certain SVI

change with seat location and other covariates. Regression coefficients only explain

the mean effects. In contrast, marginal probabilities measure how a change in a

covariate impacts the distribution of the response variable.12 Hence we calculated

the marginal probabilities of the impact of different covariates on SVI. While

measuring the marginal probability effects of any covariate, we define a typical

customer for every covariate by fixing the rest of the covariates at their mean (or

their mode for categorical covariates).

We use the MFX2 routine in STATA 10.0 to estimate the marginal probability effects

and the results are summarized in Table 5.3, and interpreted in Section §5.5. Note

that both the generalized threshold and heteroskedastic models provide comparable

marginal probability estimates. Therefore, irrespective of the non-proportional-odds

model considered, we obtain the same qualitative insights. As indicated before, we

employ the threshold interpretation for consumer attributes (such as age, gender,

frequency of visit, etc.), and the heterogeneity interpretation for all seat attributes.

In addition to the calculation of marginal probabilities for a typical customer, we

also calculate the marginal probabilities for different customer segments (Age,

Geography, Frequency of Visits). We discuss these results and their implications for

segment-specific pricing in Section §5.5.1.

12If we let xil denote the value of the lth covariate for respondent i, then the marginal probability
effect is given by ∂ Pr(Vi=j|xi)

∂xil
for a continuous covariate and ∆ Pr(Vi = j | xi) for a categorical

covariate.
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Table 5.3 Marginal Probability Effects a

SVI Variable Standard Generalized Heteroskedastic

Age -0.006 -0.017** -0.024***
3rd Base -0.056** -0.114*** -0.102***
Backnet 0.114*** 0.107** 0.116***

Low Field 0.151*** 0.139** 0.143***
Grass -0.149*** -0.118*** -0.136***

Upper Deck -0.033 -0.009 -0.013
Frequency 0.017** 0.013 0.006

Team 1 -0.034* -0.035* -0.043**

Age 0.004 0.024*** 0.030
3rd Base 0.035** 0.143*** 0.131***
Backnet -0.086** -0.084** -0.090**

Medium Field -0.120** -0.114** -0.120**
Grass -0.023 0.039** 0.011*

Upper Deck 0.021 -0.032 -0.036
Frequency -0.011** -0.003 0.008

Team 1 0.022* 0.025 0.030**

Age 0.002 -0.007** -0.009**
3rd Base 0.021** -0.029** -0.031**
Backnet -0.029*** -0.023*** -0.026***

High Field -0.031*** -0.025*** -0.027***
Grass 0.172*** 0.079*** 0.120***

Upper Deck 0.012 0.041*** 0.048***
Frequency -0.006** -0.010** -0.013**

Team 1 0.012* 0.010* 0.013**

aGender, Hometown and InOut did not have significant effects.
* p<0.1, ** p<0.05, *** p<0.01
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5.3.8 Calculating Price Adjustments to Achieve the Service Objec-

tive.

Suppose that the franchise wants to keep the probability of a specific customer

reporting SVI = Low to a threshold α at all seats. The current probability of a specific

customer seated at location l reporting SVI = Low, can be calculated using Equation

(5.9). We can then use Equation (5.8) to calculate the price change required at each

seat location, that would equate the probability of this customer reporting SVI =

Low, to the threshold value α. The parameters (β, γ) are known from the regression

estimates, while the price elasticity of SVI (θ) can be estimated using the price

variation observed across seat locations.

We now illustrate this calculation for a typical customer of the franchise (Age=4.22,

Gender=Male, Hometown=City, Frequency=2.68) and a threshold of α = 15%.

Table 5.4 summarizes the current service levels and the price changes (∆pl) that

achieve the threshold service level of α = 15% for a typical customer. Note that

the franchise might be interested in achieving this service objective for different

consumer segments. We discuss this in Section 5.5.1.

5.4 Model Validation and Analysis of Effects

In this section, we validate our empirical results using various robustness checks.

Specifically, we study game related effects with an additional dataset and the effects

of price on seat value. In addition, we compare the effect of seat specific attributes

(such as seat location) vs. customer specific attributes (such as age) on SVI.
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Table 5.4 Price Increase to Keep Pr(SVI = Low) to α = 15% for a Typical Consumer

Seat Location Section Row Pr(V∗l ≤ τ1) θ∆pl ∆pl (Yen)

1 Backnet Infield Lower 34.7% -0.689 -718

2 3rd Infield Lower
10.3% 0.197 205

3 3rd Outfield Lower

4 3rd Infield Upper
9.7% 0.278 290

5 3rd Outfield Upper

6 1st Infield Lower
20.8% -0.249 -259

7 1st Outfield Lower

8 1st Infield Upper
19.3% -0.236 -246

9 1st Outfield Upper

10 Field Infield Lower 37.2% -0.758 -790

11 Grass Outfield Upper 6.8% 0.683 711

Frequency of Visits

Additional Visit 20.8% -0.269 -280

5.4.1 Model Validation

The standard approach to validate regression models is to estimate the model

parameters on a calibration sample and validate those results on a hold-out sam-

ple. Accordingly, we constructed a calibration sample and a validation sample

by randomly splitting our data-set into two equal parts. We measured the pre-

dictive accuracy of our model using an R2 measure (see Equation 5.10), and find

that R2
H = 57.1%, which implies that the model significantly improves prediction

accuracy over a naive model. Figure 5.5 shows a comparison of the actual number of

respondents at each seat location reporting a particular SVI, with the expected num-

bers predicted by the model for the hold-out sample. These predictions generally

match the distribution of the SVI for various seat locations.

While the R2 is an indirect measure of predictive accuracy computed at a highly
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Figure 5.5 Number of Respondents by Seat Location and SVI: Actual vs. Predicted

disaggregated level, a more direct measure is the accuracy of the predicted service

level, Pr(SVI = 1). Computing the predicted service level for the hold-out sample,

we find that while the actual service level is 19.6%, our model predicts a service

level of 19.2%, thereby providing further confidence on the predictive power of our

model.

We now briefly describe how we calculate our R2 measure of predictive accuracy.

Calculating R2: To calculate a measure of predictive accuracy, we ran the het-

eroskedastic ordinal logit model (M) on the calibration sample (C) to obtain es-

timates of the parameters β, γ and τ j, j = 1, 2. We then computed the expected

number of respondents reporting SVI= j ∈ 1, 2, 3 at each seat location l, for the

hold-out sample (H), using the following expressions.

EM
lH[SVI = j] = ∑

i∈H,Location=l
Pr(SVIi = j|xi).

A naive model (N) would estimate the expected number of respondents reporting

SVI= j at seat location l as

EN
lH[SVI = j] =

nlH
|C| ∑

i∈C
I(SVIi = j),

where nlH is the number of respondents in the hold-out sample, seated at location l.

If we let nj
lH be the number of respondents in the hold-out sample seated at location

l reporting SVI= j, then we can calculate the squared error of predicting nj
lH using
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the ordinal logit model (M) as

εM
H = ∑

l∈AllLocations
∑

j∈1,2,3

(
nj

lH − EM
lH[SVI = j]

)2
.

We can compute an R2 measure of predictive accuracy by comparing the ratio of

εM
H to the squared errors of the naive model

εN
H = ∑

l∈AllLocations
∑

j∈1,2,3

(
nj

lH − EN
lH[SVI = j]

)2
,

which gives us

R2
H = 1− εM

H /εN
H . (5.10)

5.4.2 Game Effects

Clearly, SVI is influenced by the actual game/event and hence it is important to

consider the robustness of our results to variations across games. For instance,

the outcome of the game, the composition of the playing teams, or the weather

could have affected the seat value distribution customers reported. However, this

limitation could be easily overcome by surveying consumers from multiple games

and employing the same methodology to analyze the collected data and explore

specific recommendations.

While the ideal way to test this would be to conduct the same survey across multiple

games, record key game related attributes (result, attendance, visiting team, etc.)

and use them as control variables in the regression equation, for reasons beyond

our control, the franchise chose to vary some aspects of the survey across multiple

games. For instance, a survey conducted during a different game included many of
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the same questions as before (Age, Gender and Seat Location), but did not capture a

few variables like Hometown and Frequency. We decided to combine the data from

these two surveys to check the robustness of our results, especially the relationship

between SVI and Seat Location, to inter-game variations.

We modify our regression equation for the HOLM by including only the common

covariates across the two surveys and adding a fixed effects parameter to control

for difference in valuations across games. The modified regression equation can be

written as

V∗i = β1Agei + β2Malei + β53rdBasei + β6Backneti + β7Fieldi + β8Grassi +

β9Outfieldi + β10UpperDecki + β13Gamei + σiεi,

where εi is a standard logistic random variable, and σi is a heteroskedastic variance

scaling factor given by

σi = exp(γ1Agei + γ53rdBasei + γ10UpperDecki + γ13Gamei).

Note that the parameter γ13 captures differences in the variance of the distribution

of seat values across the games. Table 5.5 shows a comparison of the parameter

estimates obtained using the combined dataset with those obtained from the single

game.

Note that all our verifiable conclusions hold even after we control for variations

across games. Customers seated on the 3rd Base continue to experience lower

variance in the seat value perceived (γ5 = −0.319, p < 0.001), while the means

show no statistically significant differences. Similarly, customers seated on the

Upper Deck continue to have higher mean valuations (β10 = 0.303, p < 0.001) as
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well as higher variance (γ10 = 0.140, p < 0.05). This suggests that our findings

might be robust across games.

Table 5.5 Comparison of Parameter Estimates across Datasets

Variable Single Game Combined

Age β1 0.034 -0.007

Male β2 -0.034 -0.146

City (vs. Outside) β3 0.011

Prefecture (vs. Outside) β4 0.102

3rd Base (vs. 1st Base) β5 0.145 0.080

Backnet (vs. 1st Base) β6 -0.440*** -0.126

Field (vs. 1st Base) β7 -0.509*** -0.449**

Grass (vs. 1st Base) β8 0.919*** 1.055***

Outfield β9 0.171 -0.153

Upper Deck β10 0.263** 0.303***

Frequency β11 -0.081**

Team 1 β12 0.185**

Game β13 0.055

Age γ1 -0.075*** -0.062**

3rd Base (vs. 1st Base) γ5 -0.324*** -0.319***

Upper Deck γ10 0.208*** 0.140**

Frequency γ11 -0.057*

Game γ13 0.854***

Log Likelihood LL -726.27 -2043.87

Likelihood Ratio χ2 LR 192.72 364.82

No. of Parameters 16 18

McFadden Pseudo R2 11.71% 8.19%

*** p < 0.01, ** p < 0.05, * p < 0.1

It is interesting to note that while the mean valuations across games are not signif-

icantly different (β13 = 0.055, p = 0.64), the variances are significantly different
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(γ13 = 0.854, p < 0.001). In other words, the shape of the distribution of seat values

is significantly influenced by the game. For instance, the first survey was conducted

during a game that the home team lost, while the second survey was conducted

during a game that the home team won. The result of the game could explain

a portion of the difference in variances. Nevertheless, even after controlling for

differences across the games, our seat value results remain largely unchanged.

Repeating the validation analysis discussed in Section 5.4.1, we find that even for

the combined dataset, the model significantly improves the predictive power over

the naive model.

5.4.3 Seat Location Effects

The experience in such entertainment settings is clearly a function of the product

(the game in our context), the consumer and her seat location. Hence it is important

to investigate how much of SVI is accounted for by each of these factors (game

attributes, consumer attributes and seat location attributes). We study the relative

impact of each of these three factors in influencing SVI, by following a three-step

approach:

1. First, we ran several heteroskedastic ordinal regressions using a combination

of these three factors as explanatory variables, both on the original dataset as

well as the combined dataset.

2. Second, we measured the ability of each of these models to predict the number

of consumers reporting a particular SVI at each seat location, using the R2

defined in Equation (5.10).
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3. Third, we compared the computed R2 across the different models to under-

stand the contribution of each of the three factors in predicting SVI.

Applying this analysis to the original dataset, we find that while the model consist-

ing of both consumer and seat-location factors had an R2
H of 57.1%, a major portion

of SVI is accounted for by seat location attributes (with an R2 of 56.1%), while consumer

attributes have almost insignificant predictive power (R2 = 6%).

To investigate how seat location factors influence SVI once we control for game

related attributes, we applied the same analysis to the combined dataset. We find

that while all three factors combined together have an R2
H of 56.1%, seat location

attributes still account for a major portion of the SVI, with an R2
H of 38.5%, even after

controlling for game related factors (See Table 5.6).

Table 5.6 Predictive Accuracy of Different Models.

Explanatory Variable Attributes Dataset R2
H

Consumer Seat Game First Combined

X 6.0% 9.1%
X 56.1% 38.5%

X 17.3%
X X 57.1% 51.1%
X X 17.7%

X X 55.6%
X X X 56.1%

The analysis summarized in Table 5.6 emphasizes that seat location factors explain

a significant portion of SVI. Game and Consumer attributes do matter, but explain

a smaller portion. This finding underscores the importance of seat location factors

in influencing seat value. It also strengthens the case for the need for studies like
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ours that shed more light on the drivers of seat value. Finally, firms have reasonable

control over seat location factors, and hence can take advantage of these findings to

manage SVI.

5.4.4 Seat Price Effects

In order to properly estimate the relationship between seat value and seat location,

we need to further isolate the effect of the location-dependent price variable. We

address this issue by studying the relationship between SVI and Seat Location,

controlling for the price variable. To achieve this, we consider three versions of the

Heteroskedastic Ordinal Logit Model.

1. The original model described in Section 5.3.5 that does not include ticket price.

2. A model that included the ticket price for each seat section in addition to all

the other covariates.

3. A model that includes ticket price for each seat section, but excludes all the

seat location attributes.

The motivating question behind this analysis is to determine the extent to which

the introduction of ticket prices impact our results. From Table 5.7, we observe that

seat location attributes continue to explain a significant portion of SVI even after

controlling for ticket price, as can be seen by comparing the McFadden Pseudo-R2

of Models (b) and (c). In fact, adding seat location attributes to Model (c), which

uses only ticket price, increases the pseudo-R2 from 5.5% to 12.4%. Finally, we find

that most of our results and inferences made in Section 5.3.5 continue to hold.
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1. The effect of Age on SVI remains almost unchanged, as seen by the β and γ

coefficients in Models (a) and (b).

2. Frequency of Visits have almost the same effect on SVI as before. The estimates

for both the mean effect and the variance effect remain almost unchanged.

Table 5.7 Parameter Estimates for Heteroskedastic Ordinal Model with and without
Price

Heteroskedastic Ordinal Logit Models

Variable Only Seatsa Seats + Priceb Only Pricec

Threshold: Low-Medium τ1 -0.748*** -2.710*** -1.340***
Threshold: Medium-High τ2 2.067*** 0.090 1.240***
Age β

j
1 0.034 0.030 -0.020

Male β
j
2 -0.034 -0.030 -0.020

City (vs. Outside) β
j
3 0.011 0.009 0.010

Prefecture (vs. Outside) β
j
4 0.102 -0.101 -0.100

3rd Base (vs. 1st Base) β
j
5 0.145 0.110

Backnet (vs. 1st Base) β
j
6 -0.440*** 4.642***

Field (vs. 1st Base) β
j
7 -0.509*** -0.311

Grass (vs. 1st Base) β
j
8 0.919*** 0.722***

Outfield β
j
9 0.171 -0.221

Upper Deck β
j
10 0.263** -0.042

Frequency β
j
11 -0.081** -0.071*** -0.053

Team 1 β
j
12 0.185** 0.184*** 0.224**

Price β
j
13 -0.01*** -0.001***

Age γ1 -0.075*** -0.080*** -0.071***
3rd Base (vs. 1st Base) γ5 -0.324*** -0.367***
Upper Deck γ10 0.208*** 0.223***
Frequency γ11 -0.057* -0.062*** -0.072***
McFadden Pseudo R2 11.71% 12.4% 5.5%

*** p < 0.01, ** p < 0.05, * p < 0.1
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3. The asymmetry that we identified previously still holds, as can be seen from

the γ coefficient for the 3rd Base. The mean effect still stays insignificant.

4. Consumers still find Grass seats very valuable, as seen from the β coefficient.

5. The mean effect of Backnet has changed significantly (β is now positive). This

might be because price affects SVI non-linearly, or that Backnet customers

are significantly different. The variance effect that we identified, on the other

hand, remains almost unchanged.

6. The β parameter corresponding to the Upper Deck is no longer significant.

However, the heterogeneity effects still persist. In fact, the parameter estimates

show no significant change. (γa
10 = 0.208, γb

10 = 0.223)

The surveys did not ask consumers for the actual price that they paid, as the fran-

chise felt that consumers might be more biased in their responses if price related

information was asked. Hence, we only had seat prices at each section. The absence

of variation in price across consumers seated at the same location renders any regres-

sion involving location and seat prices susceptible to the effects of multicollinearity.

This also makes it difficult to isolate the effects of price from seat location. Hence,

we study the impact of different prices paid by consumers, by adding a random

noise term to perturb the ticket price specified for each seat section. Accordingly, the

price paid by consumer i for a seat in section l was modeled as pil = pl ∗ (1− ψi),

where pl is the ticket price specified for section l and ψi is the noise term distributed

uniformly over [0, m]. Based on conversations with the franchise management on

the range of discounts provided to consumers, we varied m from 5% to 20%. We

repeated the analysis discussed above with these prices, and find that our results

remain unchanged.

141



5.5 Pricing Recommendations and Insights

Based on robustness checks in Section §5.4, we are able to underline the importance

of seat location in influencing consumer experience. Hence it is appropriate to

consider seat-location specific prices for each consumer segment.

5.5.1 Segment Specific Pricing

In Sections 5.3.7 and 5.3.8, we discussed the calculation of marginal probability

effects for a typical consumer and the price changes across seat locations required

to achieve a service-level objective of α = 15%. However, the firm could engage

in more targeted pricing schemes based on how the marginal probabilities varied

across consumer segments. We now calculate the marginal probability effects for

different seat locations for each consumer segment based on age groups (Table 5.8)

and visiting frequencies (Table 5.9).

From the marginal probability tables, we infer that customers in the age group 40 -

49 years and 50 - 59 years tend to have the highest probabilities of reporting low

SVI for the Backnet and Field seats, as compared to a similar seat on the 1st Base

side. Hence, the franchise could offer reduced prices for these customers for the

Backnet and Field seats.

We also infer that the regulars to the games have a much higher propensity to

report a low SVI for the pricier Backnet and Field seats. Given that it is important

for the franchise to manage the satisfaction levels of its most loyal customers, the

franchise could offer discounts for multi-game tickets for selected stadium seats on

the Backnet and Field, and set prices such that the dissatisfaction levels are below

an appropriate threshold.

142



It is also interesting to note that for the Grass and 3rd Base seats, the first-timers are

more likely to report a low SVI. Hence the franchise can encourage people to start

watching games in the stadium by offering special discounts to newcomers, on the

Grass and 3rd Base seats, or reserving a portion of these seats at lower prices for the

first-timers.

Table 5.8 Marginal Probability of SVI
= Low by Age

Age 3rd Base Backnet Field Grass

0-9 -10.6% 12.4% 14.6% -17.4%

10-19 -10.8% 13.0% 15.2% -17.0%

20-29 -10.8% 13.5% 15.8% -16.3%

30-39 -10.6% 13.8% 16.3% -15.3%

40-49 -10.2% 14.0% 16.6% -14.2%

50-59 -9.6% 14.0% 16.7% -12.8%

60+ -8.7% 13.8% 16.6% -11.2%

Table 5.9 Marginal Probability of SVI =
Low by Frequency of Visits

Frequency 3rd Base Backnet Field Grass

First Time -10.0% 12.0% 14.2% -13.6%

Once -10.3% 13.1% 15.5% -14.4%

Thrice -10.7% 14.3% 16.9% -15.4%

Five Times -11.1% 15.6% 18.5% -16.6%

All Games -11.5% 17.2% 20.2% -18.0%

The recommended segment-specific price changes for each seat section are sum-

marized in Table 5.10 (for consumer segments based on age) and Table 5.11 (for

consumer segments based on frequency of visits).

5.5.2 Actionable Recommendations

We now develop more concrete and actionable pricing recommendations that would

help a franchise achieve a specified threshold service level on any given set of seat

products that they might make available. For this analysis, we ignore substitution

effects associated with the price changes. In Lemma 1, we derived an expression for

the price change at each seat location that would help the firm achieve its service
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Table 5.10 Price Change Percentage to
set Pr(SVI=Low) to α = 15%

Age 3rd Base Backnet Field Grass

0-9 -6.0% -14.8% -52.7% 25.1%

10-19 -1.0% -13.0% -46.6% 37.7%

20-29 3.8% -11.3% -40.9% 49.7%

30-39 8.3% -9.7% -35.5% 61.1%

40-49 12.7% -8.1% -30.3% 71.8%

50-59 16.8% -6.7% -25.4% 82.1%

60+ 20.8% -5.3% -20.8% 91.8%

Table 5.11 Price Change Percentage to set
Pr(SVI=Low) to α = 15%

Frequency 3rd Base Backnet Field Grass

First Time 12.0% -8.9% -33.1% 66.1%

Once 10.5% -9.1% -33.8% 64.6%

Thrice 8.8% -9.4% -34.6% 62.9%

Five Times 6.9% -9.7% -35.6% 60.8%

All Games 5.0% -10.0% -36.7% 58.4%

level objective of keeping Pr(SVIl ≤ 1 | p∗l ) to a threshold α. If we let pl denote

the current seat price, then we can use Lemma 1 to calculate the new price p∗l to be

charged at each seat location as:

p∗l = pl +
1
θ

{
xT

l β− τ1 + ln
(

α

1− α

)
exp(zT

l γ)

}

This equation prices each seat location for a specific consumer whose characteristics

are known. However, we can use this equation to price any set of seat products

that a baseball firm could make available. For example, a firm is interested in

setting a single price for each seat location such that the service level constraint is

met. We can derive the new price p∗l to charge consumers by taking a weighted

average of the new prices derived using Lemma 1 over the distribution of consumer

characteristics. Alternately, if the firm wants to provide targeted prices for specific

consumer segments (e.g. Age, Frequency, Age-Frequency combination), then the

new price to charge each segment can be derived by taking a weighted average of

the new price over the distribution of the remaining consumer characteristics.
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We now illustrate the application of this method in calculating seat prices. First, we

calculate the location specific seat prices that the firm should set in order to achieve

the service level objective for each seat location. The results are summarized in

Table 5.12. From the seat location specific prices calculated in Table 5.12, we observe

that the seat prices across 3rd base and 1st base are asymmetric. In fact, the seats

located on the 3rd base command a 33% premium on average as compared to those

on the 1st base. Moreover, as one would expect, seats on the lower deck continue to

be priced higher than those on the upper deck.

Now, the firm can do better by setting targeted prices for specific consumer segments.

For instance, the firm can target specific age groups such as students, regulars and

retirees. The price to charge each group for a particular seat location are calculated

as in Table 5.12. Note that, as expected, student tickets are heavily discounted across

seat locations, while retirees are made to pay a premium13.

In addition, the firm might also consider targeting consumers based on their fre-

quency of visits by setting different prices for five game packs and season passes.

From the seat prices based on frequency, as summarized in Table 5.12, we observe

that season passes are discounted, compared to single game tickets. An interesting

thing to note is that the maximum discount for season passes occurs for 3rd base

tickets, which suggests that the firm stands to gain by exploiting the asymmetry in

more than one way.

While we have illustrated price calculations for some specific instances of variable

pricing, our method is general enough to accommodate more complex forms. For

13Based on the raw data, we observe that retirees on an average reported higher SVIs. Hence, our
result of charging higher prices to retirees is consistent with our service level objective. In practice,
there might be several other considerations that drive ticket pricing, which might make firms offer
discounted tickets to retirees.
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example, the firm might want to offer price bundles based on combination of age

and frequency of visits. In this case, we can integrate the consumer specific seat

prices across the distribution of remaining consumer characteristics (Gender, City,

Team1 etc.) to derive the best price for each bundle that achieves a given service

level.

Table 5.12 Seat Prices by Consumer Segment to Achieve Service Level Objective of
α = 15%

Price (Yen)

Seat Location Section Row Base Student Regular Retirees 5 Game Seasons

1 Backnet Infield Lower 6980 6670 6930 7270 6940 6920

2 3rd Infield Lower 2420 2160 2360 2630 2380 2340

3 3rd Outfield Lower 1650 1470 1670 1940 1620 1580/

4 3rd Infield Upper 1740 1480 1710 2030 1700 1670

5 3rd Outfield Upper 1850 1660 1890 2200 1820 1790

6 1st Infield Lower 1980 1660 1920 2260 1950 1920

7 1st Outfield Lower 1260 970 1230 1570 1230 1200

8 1st Infield Upper 1230 870 1170 1570 1220 1200

9 1st Outfield Upper 1270 1030 1330 1720 1270 1260

10 Field Infield Lower 1490 1190 1450 1790 1450 1430

11 Grass Outfield Upper 2000 1670 1970 2350 2000 1980

The ideal way to test the impact of our recommendations would have been to

offer the new prices to consumers and observe the resulting distribution of SVIs.

However, that approach was not feasible, in our case, as it required the franchise

to implement price changes across the board, and conduct the survey post imple-

mentation. Hence, we used the demographic profile of consumers in our validation

sample to calculate the achieved service levels, assuming that consumers had paid

these set prices. From Table 5.13, we clearly observe that the new prices achieve a
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service level very close to the threshold of α = 15% that we set out to achieve.

Table 5.13 Service Levels Achieved in the Validation Sample based on New Prices

Pr(SVI = 1|Validation Sample)

Seat Location Section Row Base Student Regular Retirees 5 Game Seasons

1 Backnet Infield Lower 0.143 0.146 0.150 0.163 0.152 0.127

2 3rd Infield Lower 0.162 0.162 0.155 0.155 0.161 0.141

3 3rd Outfield Lower 0.150 0.150 0.144 0.146 0.131 0.127

4 3rd Infield Upper 0.140 0.137 0.155 0.166 0.152 0.115

5 3rd Outfield Upper 0.151 0.144 0.143 0.121 0.129 0.124

7 1st Infield Lower 0.151 0.151 0.155 0.144 0.161 0.132

8 1st Outfield Lower 0.180 0.169 0.167 0.167 0.112

9 1st Infield Upper 0.170 0.163 0.157 0.156 0.165 0.162

10 1st Outfield Upper 0.160 0.147 0.154 0.145 0.119

11 Field Infield Lower 0.141 0.149 0.151 0.155 0.151 0.126

12 Grass Outfield Upper 0.148 0.144 0.172 0.148

5.5.3 Insights

Based on the results obtained, we gather several interesting insights on the net value

perceived by consumers who attended the game. Our results help quantify seat

value in terms of seat location characteristics and consumer attributes. Furthermore,

we also characterize the distribution of SVIs that helps us determine the probability

of customers reporting low SVI. We make several recommendations based on

our empirical results and the service objective considered, and these are being

implemented by the franchise.

1. Seats are Asymmetric: We find that consumers seated on opposite sides of the ball

park report asymmetric SVIs. Thus, the distribution of SVIs reported by customers
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seated on the third base side is significantly different from that of customers seated

on the first base side. In fact, any customer located on the third base side has a lower

probability of reporting low Seat Value Index as compared to an identical customer

seated in a symmetric location on the first base side. This asymmetry is intriguing.

Although every professional baseball team prices its tickets identically for left field

and right fields, there are several underlying asymmetries in the game/ballpark

that could possibly explain this difference in perceived value. First, the incidence of

foul balls is generally higher in right field, which could influence how customers

respond to their experience of the game. Second, for the stadium of the franchise

we study, the location of the home-team dugout was on the third base side, which

possibly provided higher value for some of the fans. Third, weather related factors

like sunlight, wind, etc. can affect the viewing experience across seat locations.

Finally, in many professional ball parks, although the prices are always symmetric,

the views from the seats are not. In fact, to many players and baseball fans, the

fundamental asymmetries in the design of a ballpark add to the idiosyncratic charm

of the game (Maske 1992).

Asymmetric seat values provide the franchise with an opportunity to price tickets

differently while maintaining identical probabilities of experiencing low seat value

on both sides of the stadium. Our recommendations would initiate differential

pricing across symmetric locations and achieve two goals. First, they eliminate

the inherent asymmetry in net value perceived (and SVIs). Secondly, they also help

the franchise achieve a certain desired level of customer service. The franchise is

currently implementing our recommendation of pricing the single-game tickets

asymmetrically for the upcoming season.

2. Value of Seat Locations for Consumer Segments (based on Age): Conventional
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wisdom provides some guidelines on valuable seat locations in a baseball stadium.

For example, Backnet seats are considered quite valuable to customers. In the

introduction, we raised the question: “Do the customers seated at the upper deck

value those seats highly?”. Equipped with our analysis, we can now summarize

the value perceived by customers at those seats, and compare our findings with

common notions of seat value. Moreover, we can do this analysis across each

consumer segment.

Upper Deck Seats: First, we consider upper deck seats that are generally inexpensive,

and located further away from the playing field. Our results suggest higher mean

SVI for customers seated at the upper deck. While higher mean seat values are

interesting in their own right, our analysis of marginal probabilities reveals a subtler

insight. For example, considering a customer in the age group 30-39, we find that

he has the same probability of reporting his SVI as Low (or Medium) whether he is

seated at the lower deck or the upper deck. However, the probability of reporting

SVI as High increases as he moves from a lower deck seat to a similar upper deck

seat. In other words, the higher value perceived at the upper deck is almost entirely

driven by a significantly higher proportion of customers reporting their seat value

as high. Thus, our results argue for the continued availability of upper deck seats

for customers.

Backnet Seats: Backnet seats are often considered to be the best seats in the sta-

dium. However, it is unclear how the franchise should price them across consumer

segments.

Our analysis implies that the franchise can offer age based discounts as summarized

in Table 5.10. For consumers in the age group 10-19, the recommended segment-

specific prices are 13% lower than the current single ticket Backnet prices, whereas
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for the age group 30-39, the recommended prices are 9.7% lower than current prices

(see Table 5.10). In effect, according to our segment-specific pricing scheme, high-

school/college students (in age group 10-19) should receive roughly a 5% discount

for single-ticket Backnet prices, compared to the age group 30-39. The franchise can

achieve the service-level objective of α = 15% by suitably discounting the backnet

seat prices, as indicated in Table 5.10.

Grass Seats: Grass seats located further in the outfield are similar to upper deck

seats. Customers perceive significantly higher value at grass seats. In contrast to

upper deck seats, this higher value is driven by a mean shift in its distribution.

Conducting a segment-specific pricing analysis similar to that carried out for the

Backnet seats, we find that we can increase the grass seat ticket prices and still keep

the probability of low SVI within 15%.

3. Segment Specific Prices based on Frequency of Visits: We find that repeated

visits to the ballpark reduce the probability that a customer would report extreme

SVI. For example, we find that a customer visiting the ball-park for the eighth time

has an 8% lower probability of reporting SVI = High as compared to a first-time

visitor (Table 5.3 shows that the probability of reporting SVI = High reduces by

1% for every additional visit). Looking at the results of the Generalized Threshold

Model in greater detail, we infer that a likely explanation for the reduced tendency

of the more frequent customers to report extreme SVIs is that they use stricter

thresholds (δ̂2
11− δ̂1

11 = β̂1
11− β̂2

11 = 0.141).14 In other words, for the same experience

and realization of net value, the more frequent customers are less likely to be

‘surprised’ and are therefore less likely to respond with extreme reactions.

14By “stricter thresholds”, we mean that consumers use a higher threshold to report Low SVI, and
a lower threshold to report High SVI (i.e., consumers are more likely to respond “Low”, and less
forthcoming to respond “High”).
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While the difference in reporting thresholds seems to be the most likely explanation

for the observed distribution of SVIs, one cannot rule out the possibility that the

distribution of net values might be heteroskedastic with respect to frequency of visits.

In fact, the results of the heteroskedastic model would suggest that the distribution

of realized values for the more frequent customers does have a lower variance

(γ̂11 = −0.057) as well as a lower mean (β̂11 = −0.081). This would support the

notion that baseball games are experience goods with residual uncertainty that

decreases with repeated visits to the ballpark.

Based on the segment-specific pricing analysis, we can recommend price discounts

for each seat location based on frequency of visits. These prices are summarized

in Table 5.11. First, we find that the recommended price discounts increase with

increasing frequency of visits. Second, we observe that the recommended ticket

prices can be higher or lower compared to the current prices. For example, at the

3rd Base, the recommended prices are 5− 12% higher, whereas at the Backnet, they

are 9− 10% lower than the current prices. This leads to a subtler third insight, that

the price discounts offered to a season regular (relative to a first-timer) can be as

high as 6% (for the 3rd Base) and as low as 2% (for the Backnet).

5.6 Conclusions and Future Direction

In this chapter, we first developed Seat Value Index, a measure of net value perceived

by a consumer after attending an event. Then, we established the relationship

between the SVIs reported by consumers and their seat locations. Finally, we

provide directions that would help the firm achieve a “desired level of seat value” by

suitably increasing or decreasing ticket prices in each segment. The key steps of our
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approach and methodology can be summarized as:

1. Capture on some ordinal scale, the net value perceived by consumers, using a

survey instrument.

2. Design a Seat Value Index (SVI) measure.

3. Investigate how the Seat Value Index is influenced by consumer characteris-

tics, seat location attributes and event-related factors, using a series of Ordinal

Logit Models. Deviation from proportional-odds (verified using Brant test)

suggests the presence of heterogeneity in the model, which can be incorpo-

rated in two ways: (i) The Generalized Threshold Model, which assumes

that consumers use different thresholds, and (ii) The Heteroskedastic Model,

which assumes that the variance of the idiosyncratic value term differs across

covariates.

4. Estimate current service-levels as the probability of a given customer seated at

a particular location reporting SVI=Low. Then, optimize the prices to achieve

the aforementioned probability threshold acceptable to the firm (as derived in

Lemma 1).

We illustrated the application of our methodology by applying it to two survey

datasets collected by a professional league baseball franchise in Japan. Our findings

provide a characterization of seat value perceived by consumers in a stadium based

on their age, location of the seat, and the number of visits. We showed that a careful

study of the interactions between SVI and the explanatory variables, specifically

accounting for systematic heterogeneity in response thresholds and distributions of

seat value across customer segments, reveals some relatively unexpected depen-

dencies (asymmetries, etc.). Detailed analysis reveals that the seat location plays a

152



crucial role in how seat values are distributed, which enables us to consider pricing

based on individual segments.

The insights on seat value that we derive here provide the crucial initial steps in plan-

ning how seats should be sold, and how to price tickets based on segment-specific

and consumer-specific information for different sections of the stadium/theater.

Limitations: Finally, our research is not without limitations, which is typical while

exploring empirical RM aspects. The first limitation is that our pricing recommenda-

tions ignore the effects of substitution. Pricing changes might modify the valuations

and choices that consumers make. Hence, it is important for the franchise to keep

this limitation in mind and further estimate the changes in demand or customers’

future valuations. This could be achieved by perturbing prices and observing the

resulting demand and re-evaluating customers’ responses.

The second limitation is that consumer responses to price changes might change the

optimal assortment of different ticket categories both in prices and capacity offered

at that price. The assortment decision can be studied with additional data on how

customers arrived at their revealed preferences. Analyzing Capacitated Multinomial

Logit assortment problems is a challenging stream of research. For example, see

Rusimevichientong et al. (2010), and references therein. Due to paucity of data

on how consumers chose their seats, we did not model the optimal assortment

decision.

A third limitation is around the design of the survey. Most customers in the survey

reported SVI = 2. Although this may be a natural response of consumers in our

context, we cannot rule out the possibility that respondents avoided using extreme

response categories (referred to as central tendency bias). Future work can focus on

improved survey design and better measurement of consumer responses in order
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to counter these biases.

A fourth limitation is that SVI is clearly influenced by the actual price paid by

consumers. However, we were unable to incorporate seat prices directly into our

model and study its effects in detail, as our dataset lacked granular prices at the

consumer level. This presents an opportunity for future work, where more granular

price data could be gathered to simultaneously study the impact of price and seat

location on consumer valuations.

Furthermore, Neelamegham and Jain (1999) argue that modeling customers’ ex-

pectations (through emotional stimulation and latent product interest) before the

choice is made, and modeling post choice evaluations (determined by consumers’

post consumption experience) are both important in modeling the consumption of

experience goods. Thus our findings on post-consumption perceived value, com-

bined with the decision-models of customers’ revealed preferences, would allow

firms to explore the impact of subsequent decisions in greater detail.

Finally, we were unable to incorporate individual level heterogeneity in our model

on account of data limitations. However, in the presence of a richer data-set, we

could estimate a Hierarchical Bayes model (Bradlow and Zaslavsky 1999) that

would allow us to incorporate individual level heterogeneity and obtain more

robust estimates of the effects of covariates.

Nevertheless, we hope that our analysis of differing seat values provides sports

franchises and theater establishments with the first steps in analyzing customer

perceptions of different seats, and factoring those perceptions while making their

pricing decisions. In a variety of sporting events/performances, the attending

customers value their experience differently based on their seat locations. Although

some seats might appear similar, they might provide different valuations for long-
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time patrons who have a well-developed sense about which seats have better value.

Exploring such non-obvious differences in the value perceived by customers located

in different seats provides sports and theater establishments with an opportunity

to improve their customer base through more efficient pricing, or better selling

mechanisms.
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Chapter 6

Concluding Remarks

In this dissertation, we focused on three issues affecting retail demand management.

First, we addressed the issue of demand estimation, assortment optimization and

assortment localization in product retailing. Second, we investigated the sensitivity

of the optimal assortment and expected profits on the key assumptions made about

the choice model and substitution under stock-outs. Finally, we explored the issue

of pricing of seats in entertainment settings to achieve a service level objective on

customer satisfaction.

In Chapter 3, we formulated a process for finding optimal assortments, comprised

of a demand model, estimation approach and heuristics for choosing assortments.

We applied this process to real data from three applications and showed that the

approach produces accurate forecasts for new SKUs. Our recommendations were

implemented in two of the cases. We measured the impact based on actual sales

and found the assortment revisions had produced revenue increases of 5.8% and

3.6%, which are significant relative to typical comparable store increases in these

product segments. Our research provides a framework to stimulate much needed
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additional research, and there are four concrete directions in which we can take this

forward.

First, an obvious enhancement of our approach would be to extend the demand

estimation methodology to multiple time periods. This would incorporate sales data

over multiple time periods allowing us to model sales trends across attribute values.

For example, if the category was cameras and an attribute was analog or digital,

then one might estimate trend in this attribute from sales history. However, even

this enhancement may be insufficient to capture the attribute demand dynamics

of highly volatile categories like fashion apparel. Nevertheless, it is an important

enhancement to bridge the gap between theory and practice, since it is critical to

capture trends.

Second, as we observed in several of the applications in this chapter, there may

be interaction between attribute values. In the case of tires, the demand for H3L

will be higher for a size tire that goes on an older, inexpensive car than for a tire

that goes on a new, luxury car. This could be incorporated into our approach by,

for example, making the demand for H3L in a particular size depend in part on

the average book value of the cars that size tire fits. However, very complicated

and significant interaction between attributes would limit the applicability of our

approach.

Third, we did not have access to detailed sales and inventory data over time. Given

that our approach to demand estimation utilized ’holes’ in the assortment to mea-

sure substitution, stock-outs constitute a natural experiment to quantify the effects

of how demand shifts when a product is not available in the assortment. Detailed

inventory data over time would thereby be valuable to fashion a more aggressive

estimation process that took advantage of the varying assortments presented to a
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customer at a store each day because of stock outs.

Finally, differences in price and quality is an important attribute, sometimes called

‘good, better, best’ by retailers. However, as the price changes over time in the tire

example showed, ‘good, better, best’ is not a precisely defined attribute as the price

differentials between these three levels may change over time or may be different

for different size tires. Hence, it would be fruitful to incorporate relative price

differences into the attribute definition. Estimating a demand model with price

effects would also allow joint optimization of the assortment offered and price.

In Chapter 4, we investigated the impact of commonly made assumptions of choice

model and effect of stock-outs, on the optimal assortment and profits. We derived

analytical bounds on the optimal profits in the presence of stock-out substitution

and simulated the actual expected profits from using simple newsvendor based

heuristics, and concluded that for a wide range of problem parameters in practice,

the effect of ignoring stock-out substitution is not significant. On the other hand, we

found that incorrectly specified choice models impacts profits significantly. Using

an MNL choice model when the true underlying substitution structure is governed

by a LC model leads to sub-optimal profits, often leading to a loss of more than

25%.

There are several interesting ways in which this work can be extended. First,

we only studied the impact of choice model misspecification for the case where

the underlying choice model was governed by locational choice and incorrectly

assumed to be MNL. It would be useful to explore the effects of misspecification

over a wider class of underlying choice models and incorrect specifications. This

would enable us to develop a deeper understanding of the sensitivity of the optimal

assortment and expected profits to choice models, and help develop more robust
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approaches to assortment optimization.

Second, it would be interesting to study sensitivity of the assortment profits to

assumptions made about the arrival distribution. More specifically, it would be

worthwhile investigating the impact on optimal profits when the underlying de-

mand process is over-dispersed, which is the case for several retail categories.

Third, we studied the effects of choice model misspecification and ignoring stock-

outs separately. In practice, these would occur simultaneously. Hence, interesting

future work could target enhancing the approach developed here to incorporate

these effects simultaneously and quantifying their impact on the optimal assortment

profits. Understanding the drivers of assortment profits would allow retailers to

focus their efforts on these high-impact areas.

In Chapter 5, we developed a measure of seat value, called Seat Value Index (SVI)

and related it to consumer and seat location attributes. We derived interesting in-

sights on how SVI is affected by these factors for a baseball stadium located in Japan.

Using our models of SVI, we provided insightful and actionable recommendations

aimed at helping such firms achieve a service level objective of keeping seat value

perceived by consumers above a threshold value.

There are several ways in which we can extend this work in the future. First, it

would be interesting to investigate game effects on seat value by gathering multi-

game data, since game effects do significantly affect seat value. This would be

extremely useful in uncovering other sources of seat value. For instance, analyzing

seat value across multiple games, one might find that seats on the side of the home

team’s dugout carry higher value for customers, and a franchise could exploit this

knowledge to extract value. This would require gathering survey data over multiple

games and multiple stadiums and can be supplemented using secondary market
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information on ticket prices from sources like StubHub.

Second, it would be useful to incorporate the effects of substitution across seats.

Customers making their purchase do choose across seat locations and any recom-

mendations on price change should take into account how it impacts choice. We

can model this as a capacitated assortment optimization problem, and solve for

optimal seat prices that would maximize revenue while keeping the probability of

a low seat value below a threshold.
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