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Spectroscopy and Energy Transfer of Molecular Transients: Hydrogen
Isocyanide and the Ketenyl Radical

Abstract
Energy transfer from molecular species has been a long standing topic of profound interest to the chemical
physics community. It is worth noting however, that to date, most studies have preferentially focused on
chemically stable molecular species. While the literature does contain numerous examples of energy transfer
of small radical or chemically unstable species, there have been extremely few studies which have actually
probed highly vibrationally excited species. This apparent lack of attention should not be confused with a lack
of interest. On the contrary, given the prevalence of vibrationally excited radicals in complex chemical systems
such as planetary atmospheres and combustion, it is highly desirable to gain a complete understanding of the
energetic deactivation processes of these delicate species. More often than not, the limiting factor which
prevents examination of such species is a lack of spectroscopic information which is necessary for the
identification as well as modeling of the corresponding species.

In this thesis, we explore the use of time-resolved Fourier transform infrared emission spectroscopy, coupled
with ab initio quantum chemical calculations, as a means of characterizing the vibrationally excited energy
transfer dynamics from hydrogen isocyanide (HNC) as well as the ketenyl (HCCO) radical. It has been
determined that each of these radical species can be generated in appreciable relative concentrations and with
excess internal energy, following the 193 nm photolysis of specific stable molecular precursors. Through
variation of the associated inert atomic collider species, and repeated spectral fitting analysis, it becomes
feasible to obtain a measure the time-resolved average internal energy (as a function of the collider species),
and hence a measure of the vibrational energy transfer efficiency of each radical species. It is observed that
both HNC and HCCO exhibit enhanced vibrational energy transfer, for all average internal energies, relative
to comparably sized stable molecular species. The roles and associated benefits of enhanced energy transfer of
these radical species, to combustion chemistry (HCCO) as well as the interstellar medium (HNC), will be
discussed.
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ABSTRACT 

 

SPECTROSCOPY AND ENERGY TRANSFER OF MOLECULAR TRANSIENTS: 

HYDROGEN ISOCYANIDE AND THE KETENYL RADICAL 

 

Michael James Wilhelm 

 

Hai-Lung Dai 

 

 Energy transfer from molecular species has been a long standing topic of profound 

interest to the chemical physics community. It is worth noting however, that to date, most 

studies have preferentially focused on chemically stable molecular species. While the 

literature does contain numerous examples of energy transfer of small radical or chemically 

unstable species, there have been extremely few studies which have actually probed highly 

vibrationally excited species. This apparent lack of attention should not be confused with a 

lack of interest. On the contrary, given the prevalence of vibrationally excited radicals in 

complex chemical systems such as planetary atmospheres and combustion, it is highly 

desirable to gain a complete understanding of the energetic deactivation processes of these 

delicate species. More often than not, the limiting factor which prevents examination of such 

species is a lack of spectroscopic information which is necessary for the identification as well 

as modeling of the corresponding species.  

In this thesis, we explore the use of time-resolved Fourier transform infrared 

emission spectroscopy, coupled with ab initio quantum chemical calculations, as a means of 

characterizing the vibrationally excited energy transfer dynamics from hydrogen isocyanide 

(HNC) as well as the ketenyl (HCCO) radical. It has been determined that each of these 

radical species can be generated in appreciable relative concentrations and with excess 

internal energy, following the 193 nm photolysis of specific stable molecular precursors. 

Through variation of the associated inert atomic collider species, and repeated spectral fitting 

analysis, it becomes feasible to obtain a measure the time-resolved average internal energy 

(as a function of the collider species), and hence a measure of the vibrational energy transfer 

efficiency of each radical species. It is observed that both  HNC and HCCO exhibit enhanced 

vibrational energy transfer, for all average internal energies, relative to comparably sized 

stable molecular species. The roles and associated benefits of enhanced energy transfer of 
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these radical species, to combustion chemistry (HCCO) as well as the interstellar medium 

(HNC), will be discussed. 
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Chapter 1

Time-Resolved Fourier Transform Infrared Emission

Spectroscopy: Photodissociation Dynamics, Molecu-

lar Transients, and Energy Transfer
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1.1 Introduction

The literature out of the chemical physics community over the last century

is filled with numerous experimental and theoretical investigations, including count-

less review articles, focusing on the various mechanisms and efficiencies of molecular

energy transfer [1]. In particular, there has been much interest in aromatic ring sys-

tems [1] at high internal energies as well as smaller di- and triatomic systems near

the vibrational ground state [2]. One common theme throughout, is that most of the

species examined have been chemically stable molecules. Radical species (or molecu-

lar transients), on the other hand, have received considerably less attention and are

typically only ever probed in the lowest vibrational levels [3].

We note in passing that the definition of radical used throughout this the-

sis is modeled after that which was put forth by Gerhard Herzberg in his seminal

text on radical spectroscopy [4]. Specifically, we define the term radical to mean any

molecular species which has a fleeting existence under normal laboratory conditions.

In other words, radicals are short lived molecules which may be either chemically

(i.e. reactive) or physically (Ein > De) unstable [4]. It is often the case, particularly

within organic chemistry circles, that radicals are defined as any chemical species pos-

sessing an unpaired electron (i.e. S > 0). However, as was pointed out by Herzberg

[4], such a definition begins to run into trouble even for simple diatomic species such

as O2 (stable) and C2 (unstable). Under this scheme, depending upon the occupied

electronic state, either species (O2 and C2) could justifiably be characterized as both

a radical (S > 0) and a non-radical (S = 0). More interestingly, species which ex-

hibit electronic mixing could arguably be said to be composed of fractional radical

character. In an effort to avoid such inconsistencies, we choose to adopt a working

definition of radical that is more in line with that of a molecular transient; describing
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a short-lived molecular species regardless of the associated spin of the species.

It is important to note that the limited number of energy transfer studies

involving radical species is not indicative of a lack of interest. On the contrary, given

the ubiquitous presence of radicals in natural chemical systems such as combustion,

the atmosphere, and the interstellar medium, it is highly desirable to obtain informa-

tion regarding both the spectroscopic and dynamic signatures of the relevant species.

The most prevalent issue associated with the study of radicals lies in the notion that

they are typically very reactive (i.e. chemically unstable), and are often generated in

low relative concentrations [4]. In this regard, it has historically been very difficult to

experimentally characterize this class of species. Nevertheless, given the often exotic

electronic properties of radical systems, it is possible that they could exhibit unique

energy transfer behaviors. For example, it is reasonable to expect that the presence of

an unpaired electron (or lone-pair set of electrons) could result in an enhanced attrac-

tive interaction between a donor and collider species, potentially yielding a weakly

bound complex. The formation of such a collision complex suggests a longer lived

collisional interaction and thus could manifest as an apparent enhancement of energy

transfer efficiency.

1.2 On energy transfer and the
spectroscopy of radicals

This laboratory has a well documented history of studying energy transfer as

well as characterizing the vibrational spectral signatures of radicals [5-20]. In both

cases, the associated species of interest are generated with ro-vibrational excitation

in either of two ways: direct ultra-violet (UV) optical pumping in the case of energy

3



transfer [5-13], and photodissociation of a specifically chosen molecular precursor for

the generation and excitation of a desired radical species [14-20]. Regardless of the

given experimental goal, the excited species are generated in the presence of a large

backing pressure of an inert quenching species, typically 2-4 Torr of Ar relative to

1-10 mTorr of the species of interest, so as to induce collisional deactivation. Over

time, the deactivation process causes the excited state population to cascade down

the associated ro-vibrational manifold, and concurrently results in the emission of

infrared (IR) photons whose energies reflect the potential energy surface (PES) of the

associated species.

Given that the key observable, for both experiments, is an energetically evolv-

ing source of IR photons, time-resolved Fourier transform infrared emission spec-

troscopy (TR-FTS) serves as an ideal method for collecting the resulting IR radia-

tion. In particular, TR-FTS (run in step-scan mode so as to allow for ns-µs temporal

resolution) is used to record a series of time-resolved IR emission spectra which are

characteristic of the energetic evolution of the excited molecule(s) of interest. Fur-

thermore, TR-FTS is especially effective for the collection of IR emission following

a photodissociation event in which there are typically numerous IR emitting species

generated. As an example, in chapter 5 of this thesis we will find that the 193 nm

photolysis of vinyl cyanide results in four main dissociation pathways, yielding eight

distinct IR emitting species. The profound utility of TR-FTS for such a system resides

in the notion that all transition frequencies (depending upon the frequency range of

the detector employed) are collected at once, allowing for a complete characterization

of a given photolysis system.

In a typical TR-FTS experiment, the resulting series of time-resolved IR

spectra are characterized as exhibiting a number of features originating predomi-

nantly from the fundamental vibrational modes of the excited molecular species. At
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early times, when the prepared populations contain the highest internal energies, the

observable features are often very intense and typically very broad. Additionally,

depending upon the amount of internal energy and the degree of anharmonicity of

the associated vibrational modes, the centers of the allowed transition frequencies are

often observed to be shifted away from the fundamental frequencies to lower energies.

As time progress however, and the relative number of collision events increases, both

the intensity and spectral width of the resulting features begin to decrease. As well,

contingent upon both the internal energy and anharmonicity of the various modes, the

features begin to shift higher in energy towards the associated fundamental transition

frequencies. At later times, typically following 15-25 µs (with an associated backing

pressure of 4 Torr of Ar), the spectral features arrive at the fundamental transition

frequencies and (as the vibrationally excited population decreases) the intensities of

the features begin to decrease. For instance, it is observed that the ν1 CH stretch

mode of HCCO, when generated following the 193 nm photolysis of ethyl ethynyl

ether, has a nascent transition band center frequency around 3100 cm−1, and shifts

to the fundamental at 3232 cm−1 upon collisional quenching.

For the characterization of the vibrational spectral signature of radicals, it is

of interest to note that typically only the later time (i.e. low internal energy) spectra,

near the vicinity of the associated νi : 0 ←1 transitions, which are employed in the

final spectral analysis [14-20]. Granted, the rise time and associated decay profiles,

obtained from all of the collected spectra, are actually used to positively identify

primary dissociation fragments as well as confirm common origins for the observed

spectral features. Nevertheless, in terms of the characterization of the actual IR

signature of the radical, only the latest time spectra (after the various features have

stopped shifting) are actually considered in the final analysis of the fundamental tran-

sition frequencies. The earlier time spectra, which contain a wealth of information
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regarding the excited vibrational state transitions of the radical, are usually discarded

altogether [14,16-18].

Alternatively, in the case of energy transfer studies, each of the collected time-

resolved spectra are examined with equal importance [5-13]. More to the point, each

individual spectrum contains information regarding the population distribution and

hence the average internal energy content of the species of interest. In this regard, one

could easily argue that the earliest time spectra (associated with the highest internal

energies) are of the greatest importance. However, in order to successfully obtain the

encoded information concerning the average internal energies, it is necessary to fit

the observed (excited) emission spectra, and hence requires quantitative information

concerning the anharmonicities of the observed vibrational modes. Stable molecular

species, typically containing less than four or five atoms, have historically been em-

ployed as fruitful laboratories to model much of the complexity of chemistry [21-26].

The limited number of interactions permits the generation of a tractable effective

Hamiltonian from which spectroscopic studies can be used as an efficient probe of a

desired effect. This utility of smaller molecules has resulted in a wealth of informa-

tion recorded in the literature, including the characterization of spectral constants

which has made much of our prior spectral modeling analysis feasible [5-13]. Con-

versely, comparatively little is known experimentally about the anharmonic spectral

constants of radicals. As a result, while emission spectra from vibrationally excited

radicals have been readily available [14-20], a near complete lack of information con-

cerning the associated anharmonicity constants largely precludes the possibility of

spectral fittings and hence likewise the possibility of energy transfer studies.

Incidentally, the 2003 release of the quantum chemistry suite of programs

Gaussian [27-29] now allows one to routinely calculate the anharmonicity constants

of reasonably sized polyatomic molecules. As a direct result, it is now conceivable

6



to model the emission spectra from vibrationally excited radical species of interest.

Application of the Gaussian assisted model emission spectra to the experimental

TR-FTS emission spectra thus provides an opportunity to measure the time-resolved

average internal energy, and hence to probe the energy transfer efficiency of radicals.

With the addition of this new theoretical tool, it is now possible to couple molecular

energy transfer and radical spectral characterization studies. In the chapters which

follow, we shall explore the vibrational energy transfer processes in the molecular

transients hydrogen isocyanide (HNC) as well as the ketenyl (HCCO) radical.

1.3 A brief tour of Fourier transform
spectroscopy

The various mathematical and engineering details specific to time-resolved

Fourier transform spectroscopy have been recorded in painstaking detail many times

over [30-34], so much so that it is often half heartedly joked that most accounts are

at least partially plagiarized. Given the prominent role that TR-FTS plays in the

various studies to be discussed throughout this work however, it would be negligent to

not touch upon at least some of the more salient notions. Nevertheless, the interested

reader is advised to consult the earlier texts on the subject, particularly the extensive

body of work by Griffiths [30,33,34].

At the very core of TR-FTS spectroscopy resides the Michelson interferom-

eter, from which it should become apparent that TR-FTS is an interference based

method. In particular, TR-FTS exploits a conjugate Fourier relationship between the

interference intensity signal I(δ) and the desired frequency (i.e. energy) dependent
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Figure 1.1
Typical representation of a Michelson interferometer composed of a source (S), detec-
tor (D), fixed mirror (M1), movable mirror (M2), and a 50% beamsplitter (BS).

signal I(ν) as [32]:

I(ν) =

∫ ∞

−∞
I(δ)cos(2πνδ)dδ. (1.1)

As depicted in figure 1.1, the general setup of a Michelson interferometer is com-

posed of a source (S), a detector (D), two mirrors [one stationary (M1) and the other

movable (M2)], as well as a 50% beamsplitter (BS). The relative displacement of

the moveable mirror (M2) is encoded by the optical retardation length δ, which is

initially set as zero (producing identical path lengths from the beamsplitter to the
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two mirrors) and increases over the course of a scan. Radiation to be detected from

the source impinges upon the 50% beamsplitter where, as should be expected, half

is directed to the stationary mirror (M1) and the remainder passes through to the

movable mirror (M2). The radiation is then reflected back off of both mirrors, onto

the 50% beamsplitter where a portion of the combined signal is directed back to the

source and the remainder goes on to the detector. The generation and intensity of an

interference pattern I(δ) at the detector (and beamsplitter) is governed by the rel-

ative displacement of the movable mirror (M2). For the initial equilibrium position

of the movable mirror (i.e. with a zero path length difference, δ=0), the reflected

signal intensity after the beamsplitter recombines in a fully constructive manner and

yields a maximum signal intensity, I(δ)max. However, as the movable mirror shifts

away from the zero displacement position (δ → ∞), the occurrence of destructive

interference becomes more prominent and the signal intensity begins to decrease.

As mentioned briefly above, the experiments to be discussed in this thesis

were performed in which the optical retardation length (δ) was systematically varied

using the step-scan (or stop-scan) operational mode [32]. The key distinction between

step-scan and conventional modes for time-resolved scans resides in the specific op-

eration of the movable mirror. As should be inferred from the name, step-scan mode

involves a discrete sampling of the interference signal at each available M2 position.

Alternatively, conventional scan (or rapid scan) involves sampling the time-resolved

signal while the movable mirror (M2) moves with a constant velocity appropriate

for the time-scale of the event occurring at the source. As a result, the use of con-

ventional scan to sample events with increasingly shorter lifetimes would necessarily

require increasingly faster velocities for the movable mirror (M2). Step-scan mode, on

the other hand, effectively eliminates mirror velocity as an experimental variable, and

hence greatly increases the time-scales that can be probed with TR-FTS. Specifically,
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when employing step-scan mode, the attainable temporal resolution is limited solely

by the response time of the electronics of the detection system.

In this laboratory, a pulsed UV laser is used to initiate either a photolysis

reaction (typical for radical generation and characterization) or an optical pumping

mechanism (for energy transfer studies) within a continuously flowing gas reaction

cell. The UV pulse is used both to excite the gas-phase sample as well as an event

trigger for the step-scan cycle. Following the arrival of the UV photolysis / excita-

tion pulse, some portion of the molecules within the gas cell become ro-vibrationally

excited,

Figure 1.2
Cartoon representation of the interference matrix given as a function of time (t)
and mirror displacement (δ). As noted, signal acquisition occurs along fixed mirror
displacements as a function of time. Afterwards, analysis of the data (construction
of the interferogram) occurs along fixed times as a function of mirror displacement.
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and in the presence of the inert collisional species, begin to emit IR radiation as they

cascade down their respective ro-vibrational manifolds. For a given mirror position

(optical path difference), a discrete set of time-resolved interference intensities are

recorded. After the movable mirror has sampled the total temporal range of interest,

the next sequential UV pulse causes the mirror to be stepped to the next available

position. The process repeats, discretely sampling time-resolved interference intensi-

ties at each mirror position, until all possible mirror positions have been completely

sampled. Figure 1.2 portrays a cartoon representation of the initial set of raw exper-

imental data, organized in an asymmetric (δ × t) matrix of interference intensities.

A sample slice taken along the mirror displacement (δ) axis, as a function of time,

yields an intensity decay function. Alternatively, when analyzed along the temporal

Figure 1.3
General two-dimensional representations of the interference signal, both as a function
of time (t) as well as mirror displacement (δ). Following Fourier transformation into
frequency space (energy space), a single interferogram yields a single spectrum.
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axis (as a function of δ), a series of time-resolved interferograms are obtained.

Figure 1.3 pictorially showcases the full set of data analysis processes; begin-

ning with the collection of a time-resolved decay and culminating in an IR emission

spectrum. Once again, when the measured signal intensity is monitored along the

temporal axis, a single signal decay Iδ(t), for a given mirror displacement δ, is ob-

served as a function of time. Alternatively, when that same signal is examined along

the optical path difference (δ) instead, a time-resolved interferogram It(δ) is obtained.

Each associated time-resolved interferogram It(δ) can then be Fourier transformed,

using equation 1.1, into frequency-space, yielding the corresponding time-resolved

IR emission spectrum, It(ν). Ultimately, the discrete series of temporally resolved

interference intensity decays yield a series of time-resolved interferograms. The com-

plete series of time-resolved interferograms can subsequently be Fourier transformed

to yield the corresponding series of time-resolved IR emission spectra.

1.4 A brief look ahead

This thesis is devoted to the experimental characterization of vibrational

spectral signatures, as well as the examination of the vibrational energy transfer

processes, of radical species at high internal energies. Following a methods chapter

examining a novel use of two-dimensional correlation analysis as a means of signal-to-

noise enhancement, the remaining four chapters will consist of two individual studies,

each of which span two separate chapters. The initial focus shall be on the ground

state ketenyl (HCCO) radical, generated from the 193 nm photolysis of ethyl ethynyl

ether:

H3CH2C −O − CCH −→ H3CH2C
∗ +HCCO, (1.2)

and the second on hydrogen isocyanide (HNC) following the 193 nm photolysis of
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vinyl cyanide:

H2C = C(H)− CN −→ HCCH +HNC. (1.3)

As each radical is generated following the photodissociation of a specific molecular

precursor, each study will be broken down into a chapter detailing the photodissocia-

tion dynamics of the precursor (characterizing the vibrational signature of the radical

of interest) as well as a chapter devoted to the spectral fittings of the observed emis-

sion spectra and the energy transfer properties of the given radical. The thesis will

close with a brief chapter detailing the core conclusions observed throughout.

References:

1. I. Oref and D. C. Tardy, Chem. Rev. 90, 1407 (1990);

R. E. Weston Jr and G. W. Flynn, Annu. Rev. Phys. Chem. 43, 559 (1992).

2. B. J. Orr and I. W. Smith, J. Phys. Chem. 91, 6106 (1987).

3. B. Nizamov and P. J. Dagdigian, J. Phys. Chem. A 105, 29 (2001);

M. A. Blitz, M. Pesa, M. J. Pilling, and P. W. Seakins, Chem. Phys. Lett. 322,

280 (2000).

4. G. Herzberg, The Spectra and Structures of Simple Free Radicals, An Introduc-

tion to Molecular Spectroscopy (Dover Publications, Inc., New York, 1971).

5. G. V. Hartland, D. Qin, and H-. L. Dai, J. Chem. Phys. 98, 6906 (1993).

6. G. V. Hartland, D. Qin, and H-. L. Dai, J. Chem. Phys. 100, 7832 (1994).

7. G. V. Hartland, D. Qin, and H-. L. Dai, J. Chem. Phys. 101, 8554 (1994).

8. G. V. Hartland, D. Qin, and H-. L. Dai, J. Chem. Phys. 102, 6641 (1995).

9. G. V. Hartland, D. Qin, and H-. L. Dai, J. Chem. Phys. 102, 8677 (1995).

13



10. G. V. Hartland, D. Qin, H-. L. Dai, and C. Chen, J. Chem. Phys. 107, 2890

(1997).

11. C. D. Pibel, E. Sirota, J. Brenner, and H-. L. Dai, J. Chem. Phys. 108, 1297

(1998).

12. D. Qin, G. V. Hartland, and H-. L. Dai, J. Phys. Chem. A 104, 10460 (2000).

13. D. Qin, G. V. Hartland, C. Chen, and H-. L. Dai, Z. Phys. Chem. A 214, 1501

(2000).

14. L. Letendre, D-. K. Liu, C. D. Pibel, J. B. Halpern, and H-. L. Dai., J. Chem.

Phys. 112, 9209 (2000).

15. D-. K. Liu, L. T. Letendre and H-. L. Dai., J. Chem. Phys. 115, 1734 (2001).

16. L. Letendre and H-. L. Dai., J. Phys. Chem. A 106, 12035 (2002).

17. W. McNavage, W. Dailey, and H-. L. Dai., Can. J. Chem. 82, 925 (2004).

18. M. J. Wilhelm, W. McNavage, R. Groller, and H-. L. Dai., J. Chem. Phys.

128, 064313 (2008).

19. M. J. Wilhelm, M. Nikow, L. Letendre, and H-. L. Dai., J. Chem. Phys. 130,

044307 (2009).

20. M. Nikow, M. J. Wilhelm, and H-. L. Dai., J. Phys. Chem. A 113, 8857 (2009).

21. G. Herzberg, Spectra of Diatomic Molecules, Molecular Spectra and Molecular

Structure (D. Van Nostrand Company, Princeton, NJ, 1939).

22. J. L. Steinfeld, R. N. Zare, L. Jones, M. Lesk, and W. Klemperer, J. Chem.

Phys. 42, 25 (1965).

23. H. Lefebvre-Brion and R. W. Field, Perturbations in the Spectra of Diatomic

Molecules (Academic Press Inc.,Orlando, FL, 1986).

14



24. J. M. Smith, J. C. Bloch, R. W. Field, and J. I. Steinfeld, J. Opt. Soc. Am. B

12, 964 (1995).

25. A. Shayesteh, S. Yu, and P. F. Bernath, Chem. Eur. J. 11, 4709 (2005).

26. W. Xie, C. Harkin, and H-. L. Dai, J. Chem. Phys. 93, 4615 (1990).

27. V. Barone, J. Chem. Phys. 120, 3059 (2004).

28. V. Barone, J. Chem. Phys. 122, 014108 (2005).

29. M. J. Frisch et al., Gaussian 03, Revision C.01, Gaussian, Inc., Wallingford,

CT, 2004.

30. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry,

(Wiley-Interscience, Hoboken, New Jersey, 2007).

31. R. Bracewell, The Fourier Transform and its Application, (McGraw-Hill, New

York, 1965).

32. T. J. Johnson and G. Zachmann, Introduction to Step-Scan FTIR, (Bruker

Optik GmbH, Ettlingen, Germany, 2000).

33. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, (John Wiley

and Sons, New York, 1975).

34. P. R. Griffiths (Ed.), Transform Techniques in Chemicstry, (Heyden, London,

1978).

15



Chapter 2

Signal–to–Noise Enhancement in Time–Resolved IR

Emission Spectra Through Two–Dimensional

Correlation Analysis†

† The majority of this chapter has been published in the Journal of Molecular Structure 883–4,
242 (2008).
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2.1 Introduction

Prior usage of two–dimensional correlation analysis of IR emission from vibra-

tionally excited transient species has lead to the characterization of several vibrational

modes of the cyanooxymethyl (OCCN) radical [1] as well as the ketenyl (HCCO) rad-

ical [2]. Correlation analysis was used to analyze the similarity between features of

different spectra based upon the principle that spectral features associated with the

same species, though in different spectra, should share the same time history in their

intensity. For example, in the case of the cyanooxymethyl radical, cross–correlation

analysis was applied to a series of time–resolved Fourier transform infrared emission

spectroscopy (TR–FTIRES) data sets, collected following the 193 nm photodissoci-

ation of three different molecular precursors. The spectral features associated with

the same species in the three different systems should exhibit a positive correlation

as they all have a similar, if not identical, time history represented by similar sets

of phase information generated by the Fourier analysis. Subsequently, the spectral

features associated with the same transient species can be identified.

In this example, as the core components of the signal present in each series of

spectra exhibit a common temporal phase, the diagonal elements of the synchronous

correlation map therefore become representative of the IR emission intensity common

in all three spectral series. One key notion from this analysis is that the portions of

IR emission intensity detected which exhibit non–common temporal phase evolu-

tions, such as random noise with random intensity fluctuations in time or spectral

peaks which are not common to all data sets, should be minimally represented in the

resulting synchronous diagonal spectrum. This suggests that extraction of the diag-

onal elements of the synchronous correlation map should yield a spectrum that not

only best represents spectral features common to all data sets examined, but should
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present with an overall enhanced signal to noise (S/N) ratio. In this study, we seek

to compare and quantify the resulting S/N in the spectra as obtained through both

self– and cross–correlation. Here, self–correlation represents a correlation in which

a single series of time–resolved spectra is correlated against itself. Alternatively, by

cross–correlation we refer to the correlation between two series of time–resolved spec-

tra, each set from a different experiment.

It is well known that the S/N of a given spectral feature can be enhanced by a

statistical factor of
√
n simply by averaging n different spectra recorded for the same

system. The resultant spectra from linear averaging will thus be used as a reference

Figure 2.1
Synthetic spectral data sets containing a noise level defined by constant δNoise = 0.25.
The four sets (a) no decay, no shift; (b) no decay, shift; (c) decay, no shift; (d) decay,
shift each contains 25 spectra.
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for examining whether or not the synchronous correlation diagonal spectrum indeed

produces superior S/N. In what follows, we will quantify the potential overall S/N

enhancement obtained both through averaging and synchronous correlation analy-

sis. The comparison will be made through analysis of artificially generated synthetic

data sets containing controlled levels of random noise. Experimentally, TRFTIRES

spectral features from ro–vibrationally excited molecular species are typically char-

acterized by a maximal initial intensity, followed by decay and blue shift (due to

anharmonicity) in frequency towards the fundamental frequency [3–6]. As a check

against our experimental data, series of synthetic data sets will be generated so as to

mimic the specific behaviors of experimental data including both an intensity decay

as well as a shifting frequency band center.

2.2 Theoretical spectra and correlation
analysis

2.2.1 Synthetic spectra

Unique series of synthetic spectral data sets, each containing (n) spectra, were

generated through repeated application of the following equation;

fn(ν) =
∑
ν

exp(−τ
√
n− 1)

×

{
δNoise +

I

σ
√

2π
exp

[
−1

2

(
νk + ∆[n1/4 − exp(−

√
n− 1)]− ν

σ

)2
]}

(2.1)
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where δNoise is the noise scale level which is used to add random noise (0 < xRnd < 1)

to a gaussian function with band center (νk) and FWHM (σ). An intensity decay as

well as a band–center frequency shift, which diminishes with time, can be imposed

through non–zero values of the decay constant (τ) and shift constant (∆), respec-

tively.

As featured in Fig. 1, four unique synthetic spectral data sets containing

signal exhibiting: (a) no decay and no shift; (b) no decay but with shift; (c) decay

but no shift; and (d) both decay and shift, were generated. For each series considered,

25 spectra were created in which the noise scale level was set at (δNoise = 0.25). For

series exhibiting an intensity decay and/or a band center frequency shift, the decay

constant was set at (τ = 1.0) and the shift constant was set at (∆ = 20).

Analysis is performed for each scenario using both self– and cross–correlation

as well as averaging. By definition, cross–correlation (as well as cross–averaging)

necessarily involves the analysis of two different sets of data. In this regard, it is

therefore required that, for each signal behavior examined, a minimum of two spec-

tral data sets must be generated. The core signal in both sets will be identical, but

the random noise added will be unique, hence permitting the use of cross–correlation

(and cross–averaging).

2.2.2 Synchronous correlation diagonal spectrum

The formal mathematical description of two–dimensional cross–spectral corre-

lation has been detailed elsewhere [7]. The cross–spectral correlation analysis formal-

ism was developed based on the general self–correlation analysis [8-15]. Briefly, the

numerical representation of the synchronous correlation map is an (n ⊗ n) symmetric

20



matrix, in which n describes the frequency range sampled in the original spectral

series. The term synchronous correlation diagonal spectrum refers to the synchronous

correlation matrix elements for which (n1 = n2). As the resulting synchronous correla-

tion diagonal spectrum is effectively composed of the product of intensity components

from the correlated data sets, a physically meaningful representation is obtained only

after taking the square root of the resulting synchronous correlation elements. Fig.

2 highlights the resulting synchronous correlation spectra obtained following cross–

correlation analysis of the four unique synthetic data series.

Figure 2.2
Resulting synchronous cross–correlation spectra following analysis of the four spectral
series: (a) no decay, no shift; (b) no decay, shift; (c) decay, no shift; (d) decay, shift.
Intensity in each spectrum has been normalized so as to permit qualitative comparison
of the resulting noise levels.
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Qualitatively, all resulting spectra appear to exhibit an enhanced S/N relative

to the original data sets (see Fig. 1). Series which exhibit an intensity decay (c and d),

however, seem to yield a decreased overall enhancement. In what follows, we examine

the resulting S/N of the spectra obtained through both cross– and self–correlation as

compared to simply taking the average of the same corresponding data sets.

2.2.3 Signal–to–noise

The S/N ratio of a spectrum is determined in the following manner. For each

scenario considered, a series of noiseless spectra (δNoise = 0) were generated as a basis

for comparison. Each set of noiseless spectra was then used to generate a pair of

noiseless resultant spectra; one through synchronous self–correlation and the other

through linear averaging. The appropriate noiseless spectrum was then subtracted

from the corresponding spectrum under examination, either the diagonal of the syn-

chronous map or the linear average, the difference of which was used to define the

noise. The absolute value of the noise intensity was then summed up and ratioed

against the maximum intensity of the spectral feature yielding the measured S/N.

As an initial step, for each complete series of spectra, the S/N for each individ-

ual raw (pre–processed) spectrum was measured. The resulting collection of measured

S/Ns was then averaged to yield a singular representative S/N for each complete se-

ries of 25 spectra. This averaged S/N is entered in Table 1 as the pre–processed

S/N. Next, each unique data set with 25 spectra was processed either through linear

averaging or correlation analysis. The S/N for each method of spectral processing

was then determined. To avoid statistical fluctuation in the analysis we repeated this

S/N determination six times for each different spectral processing method.
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Table 2.1
S/N values following spectral processing for each of four synthetic data sets { [ND,
NS] no decay, no shift; [ND, S] no decay, shift; [D, NS] decay, no shift; and [D, S]
decay, shift }.

Data Set Analysis S/N ΦSN

ND, NS Pre–processed 75 1.0

Average (SELF) 377 5.0

Correlation (SELF) 409 5.5

Average (CROSS) 544 7.3

Correlation (CROSS) 510 6.8

ND, S Pre–processed 75 1.0

Average (SELF) 333 4.5

Correlation (SELF) 257 3.4

Average (CROSS) 473 6.3

Correlation (CROSS) 307 4.1

D, NS Pre–processed 13 1.0

Average (SELF) 66 5.0

Correlation (SELF) 105 8.0

Average (CROSS) 93 7.1

Correlation (CROSS) 127 9.6

D, S Pre–processed 13 1.0

Average (SELF) 53 4.0

Correlation (SELF) 91 6.9

Average (CROSS) 76 5.8

Correlation (CROSS) 105 8.0
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The relative enhancement (ΦSN) values listed refer to the improvement of S/N in
comparison with the pre–processed spectrum. Average–SELF indicates linear aver-
aging of 25 spectra; average–CROSS linear averaging of 50 spectra; correlation–SELF
self–correlation analysis among the same set of 25 spectra; and correlation–CROSS
cross–correlation among two different sets of 25 spectra each.

For each series analyzed, the six S/N measurements were all within a few percent of

each other. Once again, the collected series of S/N measurements were then averaged

to yield a representative measure, and recorded in Table 1. Since the cross–correlation

process uses two sets of 25 spectra each, linear averaging was conducted with 25 and

50 spectra for comparison against self– and cross–correlation, respectively. The cor-

responding S/N values are labeled as average (self) and average (cross), respectively,

in Table 1.

2.3 Theoretical spectral analysis

2.3.1 S/N enhancement via correlation vs. averaging

In general for all data sets considered, both correlation analyses as well as

simple linear averaging yield superior S/N to that of the corresponding raw spectra

in the preprocessed data sets. Fig. 3 shows a comparison of the spectrum obtained

from cross–correlation treatment (the diagonal of the synchronous map) vs. the raw

spectrum of the (no decay, no shift) series. The S/N after linear averaging of the

static signal scenario (no decay, no shift), as expected, shows an enhancement by a

factor of 5.0 after averaging 25 spectra and a factor of 7.3 after averaging 50 spectra.

Correlation analyses of this series of spectra simply reproduce the S/N enhancement

as observed in the linear averaging process. Correlation analysis of data without
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time–dependence (i.e. containing no phase information) therefore results in the same

overall effect as averaging.

Averaging spectral data sets containing a shifting, nondecaying signal results

in a diminishment of the S/N enhancement relative to the expected statistical result.

The shifting frequency results in a broadened feature with a decreased signal intensity,

which yields an overall enhancement of the noise.

Figure 2.3
Overlay comparison of the synchronous cross–correlation diagonal spectrum (black)
for the no decay, no shift series with the original preprocessed data (blue). An ex-
panded view of the noise intensity range (0.0-0.06) has been included as an inset to
further highlight the enhancement.

Concurrently, correlation analysis, both self– and cross–, result in an even worse,

though still positive, overall S/N enhancement.
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Correlation analysis works best for scenarios exhibiting time–dependent inten-

sity decay. The time–dependence of the spectral intensity provides phase differences

in the Fourier analysis which allows the correlation analysis to better differentiate

the signal from the random noise. For both (decay, no shift) and (decay, shift) data

sets, the correlation analyses result in better S/N than linear averaging, though the

improvement is not substantial. Specifically, series which include intensity decay are

shown to yield quantitatively superior enhancements on the order of
√

3 for self–

correlation and
√

2 for cross–correlation as compared to the corresponding linear

Figure 2.4
Overlay comparison of synchronous cross–correlation diagonal spectrum (black) for
the decay, no shift series with the resulting average spectrum (red). An expanded view
of the noise intensity range (0.0-0.068) has been included as an inset to further high-
light the enhancement.
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average results. Fig. 4 highlights this enhancement through a comparison of the re-

sulting spectra obtained for cross–correlation/averaging of the series (decay, no shift).

Also as expected, cross–correlation analysis always yields a superior enhancement over

self– correlation analysis as the former involves twice the number of raw spectra. It

is interesting to note that the observed enhancement for cross–correlation, relative to

self–correlation, only scales as 4
√

2 . This observed enhancement can be rationalized

by recalling that the physically meaningful representation of the synchronous corre-

lation spectrum requires a square root correction. Therefore, it can be understood

that the raw synchronous crosscorrelation spectrum will necessarily yield an observed

enhancement, over the self–correlation spectrum, which is consistent with the statis-

tically expected result.

Correlation analysis, as described herein, is best suited for dealing with data

sets that exhibit an intensity decay without a frequency shift. With a time–dependent

variation in intensity, there is a direct overlap of the Fourier components correspond-

ing to the decay of the spectral intensity. Specifically, the intensity decay profile for

each frequency component of the spectral feature is aligned in time. If, however, a

band center frequency shift is included, there will necessarily be a partial–to–complete

misalignment of the decay components which would result in a corresponding partial–

to–complete (based upon the magnitude of the shift) mismatch of intensity decay

constants in the correlation analysis. A simple way to imagine this would be con-

sideration of the extreme case in which the magnitude of the shift was so great that

there is zero overlap between each successive frequency band. For such a case, a very

marginal enhancement of the S/N is expected. As the magnitude of the shift consid-

ered in our simulation was decreasing with time, there was always at least a partial

alignment of the decay components and therefore always at least a partial positive

correlation.
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2.3.2 Effect of correlation/average on the spectral band shape

The overall qualitative appearance of the spectral feature resulting from cor-

relation or averaging for series not exhibiting a frequency shift appears effectively

identical. Conversely, this is not the case for series which exhibit a time–dependent

frequency shift. As discussed above, any inclusion of a frequency shift was done so

that the magnitude of the shift decreased with time. When such a data set is aver-

aged, the resulting spectrum shows a well defined bias in intensity for the late time

band frequency as there is effectively a clustering of signal due to the diminishment

of the shift. As observed in Fig. 5, when that very same data set is correlated, either

self– or cross–, a larger representation of the early time band appears in the resulting

Figure 2.5
Spectra obtained following correlation analysis (dashed) and averaging (solid) of noise-
less data sets: (a) decay and shift and (b) no decay and shift.

spectrum than in the averaged spectrum. As is particularly evident in the resulting
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spectrum for the (decay, shift) series, it is clear that simply averaging the data results

in the loss of almost all of the informational content contained in the earliest spectra.

As well, for the (no decay, shift) series, the spectrum from correlation analysis conveys

more earlier–time information content than the linear average spectrum.

2.4 Experimental spectra and analysis

As a final comparison, two series of TR–FTIRES spectral data sets, collected

following the 193 nm photodissociation of ethyl ethynyl ether, were analyzed with

both crosscorrelation and averaging. The time–dependent spectra were collected in

two separate runs in which the evolving spectral features observed in each experi-

ment are effectively identical, but the non–systematic noise is uniquely different. A

more detailed description of the experimental setup has been given elsewhere [16,17].

Briefly, the output from an ArF excimer laser (λ = 193 nm, 20 Hz, 650 mJ/pulse)

(Lambda Physik, LPX 200) was collimated through a photolysis cell. The sample

typically contained 10-30 mTorr of precursor molecules and 4 Torr of Ar bath gas un-

der constant flow conditions. Emission after the photolysis laser pulse was collected

perpendicular to the laser propagation axis by a gold–mirror Welsh cell arrangement

in the photolysis cell and then collimated and focused into the FTIR spectrometer

by two KBr lenses that match the f/4 focusing characteristics of the spectrometer.

The spectrometer (Bruker IFS 66/s) was equipped with an interferometer capable

of time–resolved step–scan measurements and a mercury cadmium telluride detector

(HgCdTe J15D14, EG&G Judson Technologies, 500 ns rise time, 75010,000 cm−1

spectral range). The spectral response of the HgCdTe detector was calibrated with a

Globar R© source which was modeled as a perfect blackbody.

Interferograms for this work were recorded at 50 ns time intervals averaging
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100 laser shots per interferogram point for a total observation window of 20 µs. The

time–resolved interferometric signal from the detector was amplified (10 x’s) before

reaching the transient digitizer (Spectrum PAD82a, 100/200 MHz), which was trig-

gered by a fast photodiode that monitored the excimer output. Subsequent Fourier

transform of each interferogram yields a time–resolved spectrum at every 50 ns. The

spectral resolution was typically set between 6 and 12 cm−1. Ethyl ethynyl ether

is available commercially (Acros Organics, 50% weight stabilized in hexanes). The

commercial sample was processed with several freeze pump thaw cycles before use

and purity checked with FTIR absorbance spectroscopy.

Figure 2.6
Comparison of the resultant spectra following cross–correlation (black) and averaging
(red) of two sets of experimental time–resolved IR emission spectra collected following
the 193 nm photodissociation of ethyl ethynyl ether.
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The most prominent feature in the spectra, an asymmetric band around 2000

cm−1, has been identified as a combination of emission features from the ketenyl

(HCCO) radical as well as ro–vibrationally hot CO, generated from the unimolecu-

lar dissociation of hot HCCO [2,18,19]. As both HCCO and CO undergo collisional

quenching, the intensity of the observed band decreases and the center frequency shifts

closer towards the two respective vibrational fundamentals; 2023 cm−1 for HCCO [20]

and 2143 cm−1 for CO. Additionally, a cluster of bands around 1100 cm−1, assignable

to the precursor cocktail (ethyl ethynyl ether and hexanes) [2], is observed to grow in

over time. The precursor is minimally excited in its ro–vibrational degrees of freedom

and hence its emission bands do not undergo an anharmonic blue shift.

Fig. 6 shows a comparison of the resultant spectra from both cross–correlation

as well as averaging over the same series of spectra. The S/N of the correlation spec-

trum is clearly, though minimally, superior to that of the average resultant spectrum.

This result is consistent with our expectations based upon the analyses of the syn-

thetic data sets. Furthermore, as the HCCO + CO bands do exhibit frequency shift, it

is understandable that the resultant features in the correlation spectrum appear more

spread out than the corresponding features in the average spectrum. Concurrently,

as the 1100 cm−1 band does not shift in frequency, this feature appears effectively

identical in both spectra. The overall S/N enhancement, compounded with a more

representative core spectral signal, suggests that correlation analysis yields a better

representation of the original series of spectra.

2.5 Conclusion

Extraction of the diagonal elements of the synchronous correlation map, for
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both self– and cross–correlation, has been shown to yield a representative spectrum

with superior S/N as compared to the original raw data set. Moreover it has been

shown that the correlation spectrum yields superior S/N, as compared with the spec-

trum obtained from simple linear averaging, for spectral series exhibiting a time–

dependent variation in signal intensity. This is likely due to the fact that the time–

dependence provides additional phase information in the Fourier analysis which can

be used to differentiate the core signal from the random noise which has no discernible

phase information. The enhancement in S/N through correlation, as well as through

linear averaging, diminishes when the spectral feature exhibits a time–dependent fre-

quency shift. In addition to general effects on S/N, it was observed that the resulting

correlation spectra yield a better overall representative spectral signal, as compared

with linear averaging, for spectral data sets exhibiting a time–dependent frequency

shift. Whereas simply averaging the raw data sets results in a loss of information

contained in the earliest spectra, correlation analysis tends to preserve more of the

core signature of the entire original series.
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Chapter 3

Photodissociation of Ethyl Ethynyl Ether at 193 nm:

The ν1 CH Stretching Mode of the Ketenyl (HCCO)

Radical†

† The majority of this chapter has been published in the Journal of Chemical Physics 128, 064313
(2008).
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3.1 Introduction

The ketenyl radical (HCCO) has received much attention recently for its im-

portance in hydrocarbon combustion chemistry. Combustion of several commonly

used hydrocarbons involves the HCCO radical. For example, HCCO is a critical in-

termediate in the oxidation of all C2 hydrocarbons [1]. One such reaction in which

HCCO is a key product is between acetylene and O(3P ) [1-6], a dominating reaction

in the combustion of all fuels [1]. In the presence of molecular oxygen, the ketenyl

radical is able to further react through one of two pathways [4]. The channel that

results in the production of CO2, predicted to account for 90% of the reactions of

HCCO with O2, has been proposed [4] as a new pathway for prompt CO2 formation.

Of the many studies carried out on HCCO, only a handful have been on the

spectroscopy of this radical. The first submillimeter wave study of the HCCO radical

by Endo and Hirota nearly two decades ago found the radical to be a near prolate

symmetric top with a large A–rotational constant and an asymmetry parameter near

unity κasym=-0.9998 [7]. This study also revealed a spin–rotation splitting that ex-

hibits a large Ka dependence, indicating interaction of the ground state with another

low–lying electronic state. Of the five distinct types of Renner–Teller interactions [8],

the case C interaction in which one potential curve is attractive, while the other is

repulsive with respect to a bending coordinate, is best suited for describing HCCO.

Its lowest energy Renner–Teller pair consists of the ground state with bent equilib-

rium geometry and a low–lying excited state with a linear geometry.

The vibrational mode that presumably has the strongest intensity, the ν2

asymmetric–CCO stretch, has been experimentally determined through infrared flash

kinetic spectroscopy [6] with its term value set at 2022.644 cm−1. Furthermore, the

ν5 cis–CCH bend, the most Franck–Condon active mode, has been identified at 494
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cm−1 in the photofragment yield spectrum of HCCO [9]. The other remaining vibra-

tional modes are yet to be experimentally observed.

In terms of theoretical calculations, several studies [4,10-14], including the

ones performed in our own laboratory using Gaussian03 that are reported here,

have been carried out on the HCCO electronic ground state. HCCO in the electronic

ground state is shown to be a bent molecule with Cs symmetry. The Ã(2Π) state is

predicted to be 3.4 kcal/mol above the minimum of the electronic ground state [12],

while the ã(4A”) state is predicted to lie at 54.2 kcal/mol above the ground state [14].

Vibrational spectroscopy of radicals has been generally challenging due to the

transient nature of radical species and because they are typically produced in small

quantities. Time–resolved Fourier transform infrared emission spectroscopy (TR–

FTIRES) has proven to be a versatile technique that can detect IR vibrational modes

of a transient species with modest spectral resolution [15-20]. In this approach, the

target radical is first produced with internal excitation from photodissociation of a

selected precursor molecule. TR–FTIRES is then used to detect IR emission with

temporal resolution from all the dissociation products that are vibrationally excited.

Information on the time evolution of the intensity and frequency of the emission fea-

tures, with the aid of comparison to theoretical calculations, can then be used to

assign vibrational modes of the emitting species.

To successfully implement this experimental approach, an efficient way to pro-

duce ketenyl with sufficient internal excitation is needed. Previously, UV dissociation

(λ = 193nm) of ketene has been used to produce HCCO [1,2,5,9,21-23]. However,

among the various dissociation channels of ketene, the one resulting in the produc-

tion of ketenyl has a quantum yield of only 0.107 [22]. Another method to produce

HCCO has been through the reaction of O(3P ) with acetylene [7]. As this process

is relatively slow at room temperature, a key challenge has been getting enough re-
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action to occur within a short duration to produce an appreciable amount of ketenyl

for detection. Furthermore, there is a competing channel producing methylene whose

reactions and radiation make spectroscopic interpretation more complex. Hydrogen

abstraction reactions from ketene by F, Cl, and OH have also been investigated, but

these reaction channels were found to be unfavorable with negligible yields [7,24].

Recently, Krisch et al.[2], following the suggestion of Bersohn [25], demon-

strated a new and efficient means to produce the HCCO radical through 193 nm

dissociation of ethyl ethynyl ether (EEE). Their photofragment translational energy

spectroscopy study found that the EEE precursor is a clean source of HCCO with

a near–unit photodissociation quantum yield. Based on the bimodal translational

energy distributions for the HCCO fragment, it was suggested that the ketenyl rad-

ical is produced in two different electronic states: 63% in the ã(4A”) state and 37%

in the lower X̃(2A”)/Ã(2Π) states. The two lower electronic states lie very close to

each other in energy and, thus, are listed together here. Up to 97 kcal/mol of energy

may be available for internal excitation of the products after 193 nm photolysis of

EEE. Additionally, Fockenberg performed a time–of–flight mass spectrometry study

that sets the ketenyl quantum yield at 91 ± 14% [26]. Furthermore, in addition to

the ketenyl and ethyl radical channel, two minor channels leading to the production

of ethylene and ketene as well as acetylene and formaldehyde were observed. The

dissociation channels of EEE based on the two studies can be summarized as

HCCO − CH2CH3 + hν(193nm)→ HCCO(ã4A′′) + CH2CH3; Φ ∼ 57% (3.1a)

→ HCCO(X̃2A′′) + CH2CH3; Φ ∼ 33% (3.1b)

→ HCC(Ã2Π) +OCH2CH3; Φ ∼ 0% (3.1c)
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→ HCCH + CH3CHO; Φ ∼ 8% (3.1d)

→ CH2CH2 + CH2CO; Φ ∼ 2% (3.1e)

In the following, we show results from the use of EEE as the precursor to pho-

tolytically produce HCCO and the detection of IR emission by time–resolved Fourier

transform IR spectroscopy. Based on these observations/analyses, we present here

the first experimental evidence of the detection of the ν1 stretch mode of the HCCO

radical.

3.2 Experimental

A more detailed description of the experimental setup has been given else-

where [17,27]. Briefly, the output from an ArF excimer laser (λ = 193nm, 20 Hz,

≤50 mJ/ pulse) (Lambda Physik, LPX 200) was collimated through a photolysis

cell mounted with two CaF2 windows. The sample typically contained 10-30 mTorr

of precursor molecules and 4 Torr of Ar bath gas under constant flow conditions.

Pressure was monitored with a capacitance manometer (MKS Baratron, 0-10 Torr).

Emission after the photolysis laser pulse was collected perpendicular to the laser prop-

agation axis by a gold–mirror Welsh cell arrangement in the photolysis cell and then

collimated and focused into the FTIR spectrometer by two KBr lenses that match

the f/4 focusing characteristics of the spectrometer. The spectrometer (Bruker IFS

66/s) was equipped with an interferometer capable of time–resolved step–scan mea-

surements, a mercury cadmium telluride (MCT) detector (J15D14, EG&G Judson

Technologies, 500 ns rise time, 750-10,000 cm−1 spectral range), as well as an indium
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antimony (InSb) detector (J10D, EG&G Judson Technologies, 50 ns rise time, 1850-

10,000 cm−1 spectral range). The internal cavity of the FTIR was continually flushed

with a FTIR purge gas generator (75–45, Parker Balston). The spectral responses

of the MCT and InSb detectors were calibrated with a Globar R© source which was

modeled as a perfect blackbody.

Interferograms for this work were recorded at 50-100 ns time intervals averag-

ing 50-100 laser shots per interferogram point for a total observation window of 20 µs.

The time–resolved interferometric signal from the detector was amplified (ten times)

by a fast amplifier (Stanford Research Systems SR445, DC–300 MHz) before reaching

the transient digitizer (Spectrum PAD82a, 100/200 MHz), which was triggered by a

fast photodiode that monitored the excimer output. The InSb experiments included

a transimpedance preamplifier (PA–9, EG&G Judson Technologies, 616 kHz) prior to

the fast amplifier. The interferometer signal was monitored by a stand–alone oscillo-

scope (Tektronix TDS3052B) that was interfaced with the spectrometer. Subsequent

Fourier transform of each interferogram yields a time–resolved spectrum at every 50-

100 ns. Overall, the MCT system possessed a faster response time in which the 500

ns rise time of the detector was the limiting factor. To enhance the observed signal to

noise resolution, the emission spectra (collected at 50-100 ns intervals) were averaged

in bins over a total window of 500 ns. Alternatively, spectra from the InSb system,

which were temporally limited by the transimpedance preamplifier with a response

time of around 1600 ns, were averaged in bins over a total window of 1.7 µs. The

spectral resolution was typically set between 6 and 12 cm−1.

Ethyl ethynyl ether is available commercially (Acros Organics, 50% weight

stabilized in hexanes). The commercial sample was processed with several freeze

pump thaw cycles before use and the purity was checked with FTIR absorbance spec-

troscopy. EEE has an absorption cross section σ193nm = 7 × 10−18 cm2 / molecule,
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while the hexane stabilizer has a negligible absorption cross section σ193nm = 3 ×

10−22 cm2 / molecule [4]. Argon gas from the supplier (Spectra Gas, research grade,

99.9%) was used directly. Unphotolyzed sample was recollected after each experiment

and frozen at liquid nitrogen temperature. This sample was then reclaimed and pu-

rified for further use.

3.3 Results

3.3.1 Time–resolved IR emission spectra

Figure 1 highlights representative IR emission spectra following the 193 nm

photodissociation of EEE, as collected with the MCT detection setup. The time–

resolved spectra contain emission features not only from IR active modes of vibra-

tionally excited HCCO but also from other vibrationally excited species that may

result from EEE fragmentation and subsequent reactions. Due to the effects of an-

harmonicity,many emission features in the earliest time slices, when the emitting

species contain more internal energy, shift from the red side toward the fundamen-

tal transition frequency. This blueshift is more apparent in earlier time slices. As

collisions occur, the IR emission collected at later times eventually arises from the

fundamental transitions as the vibrationally excited molecules deactivate down the

vibrational manifold to the ν=0 levels.

The most prominent feature in the IR emission spectra is a fast rising broad

peak which spans from 1600-2300 cm−1. Prior studies of the vibrational structure of

HCCO suggest that a portion of this band likely contains contributions from the rovi-

brationally excited asymmetric CCO stretch of HCCO at 2023 cm−1 [6]. Additionally,

the thermodynamics of the UV dissociation of EEE, as detailed by the
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Figure 3.1
Representative time–resolved emission spectra following 193 nm dissociation of ethyl ethynyl
ether as observed with a MCT detector. The intensity has been corrected with the detector
spectral efficiency.

photofragment translational spectroscopy (PTS) study [2], suggests that HCCO is

generated with sufficient internal energy to dissociate into CO and CH, with up to

ν=3 vibrational population in the CO fragment. In light of this possibility, it is

expected that the broad feature is likely a combination of rovibrationally excited

HCCO and CO.

The next most notable feature is the slow rising band centered near 1110

cm−1. Comparison with the static absorption spectra of a mixture containing both

the precursor EEE and hexanes (as stabilizer) suggests a likely assignment of this
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feature, as well as other weaker features throughout the spectra, as vibrationally

excited EEE. As evidenced through the late onset of this feature, the vibrational

excitation of these molecules is resulted from either reaction of ketenyl with ethyl

ethynyl ether or collision between these molecules with an excited photolysis product.

Additionally, there is a broad progression of features spanning the CH stretching

region. The presence of the low energy features from the precursor EEE (as well as

its hexane stabilizer) suggests that there should be corresponding weak CH stretching

activity, specifically in the 2880-2974 cm−1 region. However, due to low signal to noise

Figure 3.2
Representative time–resolved FTIR emission spectra following 193 nm photodissociation of
ethyl ethynyl ether as observed with an InSb detector. The intensity has been corrected with
the detector spectral efficiency.
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(S/N) in this region, definitive assignments of these features, as well as any CH

stretching feature from HCCO, are not made with these spectra.

Figure 2 highlights representative time–resolved spectra following the dis-

sociation of EEE as collected with the InSb detection setup. As with the MCT

experiments, the HCCO +CO bands spanning from 1600-2300 cm−1 are still the

Table 3.1
Summary of observed spectral features and assignment of origin in the TR–FTIRES
spectra detected following 193 nm photolysis of EEE.

Frequency(cm−1) Species Dissociation channel

1024–1180 EEE + Hexanes Precursor

1387 EEE + Hexanes Precursor

2167 EEE + Hexanes Precursor

2880–2978 EEE + Hexanes Precursor

2143 CO (1a) and (1b)

1379 CH2CH3 (1a) and (1b)

3000 CH2CH3 (1a) and (1b)

3037 CH2CH3 (1a) and (1b)

3131 CH2CH3 (1a) and (1b)

3289 HCCH (1d)

3299 HCC (1c)

3600–3800 HCC (1c)

2023 HCCO (1b)

3232 HCCO (1b)
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most prominent, though observation of the low energy tail has been lost due to the

1850 cm−1 cutoff of the InSb detector. New to the InSb spectra are two band sys-

tems which were unresolvable in the MCT spectra. There is an early rising broad (and

weak) feature peaking at around 3600 cm−1 and continuing up to just below 3800

cm−1, and another band spanning 3100-3300 cm−1. The 3600 cm−1 band is assignable

to the X̃(0000) ←− Ã(000)1 transition of the ethynyl (HCC) radical [28]. The re-

gion right below 3800 cm−1 is likely composed of unresolved vibronic transitions from

higher vibrational levels of the Ã2Π state of HCC [28]. Of more interest is the band

spanning 3100-3300 cm−1. Immediately apparent is the CH2 asymmetric stretch of

the ethyl radical at 3130 cm−1 [29]. Additionally, there is a partially resolved peak at

around 3230 cm−1 as well as a cluster of peaks which extend just above 3300 cm−1.

The mass spectrometry studies have shown that both HCCH [26] as well as HCC [2]

are minor photoproducts in this dissociation, both of which possess transitions near

3300 cm−1. As vibrationally excited ketenyl is the expected major product of this

dissociation, coupled with the fact that the features of the ethyl radical appear well

below 3200 cm−1, the 3230 cm−1 peak is tentatively assigned as the ν1 CH stretch

of the ketenyl radical. Table I summarizes the observed features and assignments of

origin in both MCT and InSb spectra.

3.3.2 Temporal dependence of the observed emission intensity

The emission features in the spectra may arise from the primary photolysis

products as well as their secondary reactions that may generate vibrationally excited

byproducts. Under the pressure conditions of the gas cell, secondary reactions do

occur on the time scale of experimental observation. Emission from the primary
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photofragments or the secondary reaction products should have a different time de-

pendence. The primary photofragment emission should have an immediate rise in

intensity within the detector response time. The secondary reaction product emis-

sion will have a slower rise regulated by the collisional frequency and the reaction

rate.

Figure 3.3
Integrated time profile of the 2023 cm−1 (HCCO ν2,©) and the 3232 cm−1 (ν1, ×) features.
Both features show a fast rise (on the time scale of the detection system) time followed by
a moderately fast decay process. The 2023 cm−1 feature also shows a slower secondary rise
followed by a very slow decay from vibrationally excited CO.

In order to differentiate the origin of the emission feature with respect to pri-

mary versus secondary reactions, we first define the time behavior of a given spectral
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feature. Since the spectral features often display shifts in frequency, we will use the

intensity confined within a narrow spectral bandwidth that we assign with a partic-

ular feature for determining the temporal evolution. Intensity within this spectral

bandwidth is integrated for each time slice and plotted as a function of time.

Figure 3 is a comparison of the time dependences of the two features likely

originating from HCCO. The trace of circles (©) is representative of the temporal

dependence of the intensity of the 16002300 cm−1 feature with a focus on a 30 cm−1

window at around 2023 cm−1. As expected from the results of the PTS study, the

16002300 cm−1 feature is clearly composed of two temporally distinct intensity evo-

lutions. There exists a fast rise/decay feature, attributable to the ν2 mode of HCCO,

as well as a slower rise/decay feature originating from vibrationally excited CO. The

trace of crosses (×) is the integrated intensity time profile of the 3230 cm−1 feature

which exhibits a singular temporal evolution. Of particular interest is the compari-

son of the time dependence of the 3230 cm−1 peak with that of the fast rise/ decay

component of the 2023 cm−1 peak.

Both of these integrated time profiles have rise times on the order of a pri-

mary photolysis reaction limited by the detection system with a 1600 ns rise time. As

mentioned above, a previous study [6] has identified the ν2 mode of HCCO at 2023

cm−1. Therefore, if the 3232 cm−1 feature is from HCCO, it is expected that it would

share a common intensity temporal evolution with that of the ν2 mode at 2023 cm−1.

3.4 Two–Dimensional Correlation Analysis

It has been shown that two–dimensional (2D) correlation analysis can be

used to reveal features that share similar time dependence in intensity in congested
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time–resolved FTIR emission spectra [30]. In the first application to TR–FTIRES

spectra, 2D analysis was applied to decipher the correlation between spectra obtained

using different precursors. The phase information of individual spectral features is

embedded in the time dependence of the intensity and frequency of the spectral fea-

ture. The cross–spectral correlation analysis on the spectra acquired following the UV

dissociation of three different precursor systems has lead to the identification of com-

mon featuresthe previously uncharacterized vibrational modes of the cyanooxymethyl

(OCCN) radical [30].

In 2D correlation analysis, the synchronous correlation map is used to identify

those spectral features which are common to both data sets. Specifically, the diagonal

elements of the synchronous map, averaged over all sampled correlation sets, yield

representative spectra of features common to all systems. As the noise in each of

the spectra carries random phase information, only signals common to all systems

appear in the spectrum extracted as the synchronous correlation diagonal elements.

The second component of correlation analysis, the asynchronous map, aids in the

determination of whether or not the given features originate from common sources.

Of particular importance is the relative magnitude of off–diagonal features, both in

the synchronous and the asynchronous correlation maps. Specifically, features from

common sources should exhibit positive off–diagonal correlation in the synchronous

map and zero off–diagonal correlation in the asynchronous map [30]. Deviation from

this pattern is highly suggestive of accidental overlap, or simply features originating

from unrelated emission sources.

In this study, 2D correlation was applied to the InSb data sets with the intent

of enhancing the S/N ratio in the CH stretching region, specifically that of the 3200-

3300 cm−1 band. Although all spectral data were acquired using a single precursor,

cross correlation of the spectral sets obtained through different experiments allows
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suppression of noise and enhancement of the observed signal.

Cross–spectral 2D analysis was conducted through two different approaches:

correlation analysis of spectra over selected temporal windows as well as that of spec-

tra spanning the complete temporal profile. The first approach has the advantage of

improving the S/N in intensity while retaining the information on frequency shift as

Figure 3.4
(a) Spectra at different times following photodissociation extracted as diagonals from the
synchronous correlation maps. (b) Late time (16.2 µs) spectra of the CH stretching region
magnified (30×’s) to show detail.

a function of time for the spectral features. In this approach, each of four experi-

mental data sets, spanning the 20 µs following the photolysis pulse, was partitioned
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into ten 1.7 µs wide bins (in accordance with the temporal response time of the InSb

detection setup). Each temporal bin was synchronously correlated with the associ-

ated temporal bin of the remaining three data sets. The diagonal elements of the

synchronous correlation map, representing spectral features common to both data

sets being correlated, were extracted and averaged over all four experiments to gen-

erate a new representative spectrum for each temporal bin. Figure 4(a) shows the

averaged diagonal spectra extracted from the temporal bins at (0.9, 6.0, 11.1, and

16.2) µs following the dissociation. The spectra clearly reveal the appearances of the

ethyl radical at 3000 cm−1 (CH3 asymmetric stretch), 3030 cm−1 (CH2 symmetric

stretch), and 3130 cm−1 (CH2 asymmetric stretch). Additionally, an asymmetric

band centered at 3289 cm−1 and extending above 3300 cm−1 suggests the presence of

minor populations of acetylene and ethynyl (C2H) whose CH stretching fundamentals

appear at 3289 and 3298 cm−1, respectively [28,31]. Figure 4(b) highlights the CH

stretching region of the extracted diagonal spectra from the 16.2 µs bin. Of particular

interest is the enhanced clarity of the ν1 CH stretch of HCCO, centered at 3232 cm−1,

which exhibits a blueshift of about 50100 cm−1 over the noted time span.

2D correlation analysis was also performed on data sets containing spectra

from the InSb experiments which span the full 20 µs window of observation. Analysis

of the asynchronous correlation map (Fig. 5) shows a broad off–diagonal asynchronous

correlation corresponding to the HCCO + CO peak (1850-2200 cm−1) with that of

the CH stretching region spanning from 2800 to 3800 cm−1. Upon closer examination,

it is apparent that the asynchronous correlation associated with the 3200-3300 cm−1

band diminishes just below 2030 cm−1, implying that this band is not asynchronously

correlated with the ν2 CCO stretch of ketenyl. The absence of an asynchronous cor-

relation between these two bands indicates that these two features share a common

temporal evolution and, hence, are likely originating from a common source. We note
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Figure 3.5
2D asynchronous correlation map of the InSb spectra highlighting the off–diagonal correla-
tion between the HCCO+CO peak and the CH stretching region.

that the other features above 2800 cm−1 are all asynchronously correlated to the en-

tire HCCO+CO peak.

3.5 Discussion

3.5.1 Ab Initio Calculations

Theoretical calculations of the frequency, intensity, and even the anharmonic-

ity of the unknown vibrational modes provide useful comparison with and guidance
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for spectral assignment. Two sets of theoretical calculations on HCCO(X̃2A′′) are

presented here: one conducted in our laboratory using Gaussian03 performed at the

Table 3.2
Theoretical frequencies (cm−1), with anharmonic corrections, transition dipole mo-
ments (D), and relative emission intensities (arbitrary units) of the vibrational modes
of the HCCO (X̃2A′′) radical.

Mode Description ν1←0 (cm−1) |µ1←0|(D) Int (a.u.) Method

1 CH Str. 3208 0.076 52.54 dft

3233 0.068 43.65 cc

2 asy–CCO Str. 2053 0.256 100.00 dft

2058 0.254 100.00 cc

3 sym–CCO Str. 1261 0.047 0.48 dft

1248 0.040 0.34 cc

4 CCO bend 576 0.070 0.05 dft

577 0.121 0.14 cc

5 CCH bend 385 0.492 0.46 dft

473 0.433 0.81 cc

6 Torsion 539 0.047 0.02 dft

530 0.039 0.01 cc

Density functional (dft) calculations were calculated at the UB3LYP / EPR–III level
of theory in the Gaussian03 suite (Ref. 32). Coupled cluster (cc) calculations were
performed by Peter Szalay (Ref. 11) at the CCSD(T) / cc–pVTZ level of theory.

UB3LYP/EPR–III level of theory [10] and the other done by Szalay at the CCSD(T)/cc–

pVTZ level [11]. New additions to the 2003 release of the quantum chemistry program
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Gaussian03 include the option to treat anharmonic portions of the potential energy

with second–order perturbation theory (PT2) [32-34]. With PT2, it is possible to

calculate the vibrational anharmonic constants χij through theoretically evaluated

higher order energy derivatives [34,35]. The vibrational term values can then be

computed from the calculated harmonic frequencies and second–order anharmonic

constants.

The fundamental transition frequencies, calculated from the anharmonically

corrected term values, as well as the transition dipole moments and scaled emission

intensities of the normal modes of ground state ketenyl are shown in Table II. In both

calculations, it is evident that the ν2 asymmetric CCO stretch is the strongest mode

as observed through emission. Of the modes that are in the range of our detection

systems, the ν1 CH–stretch mode is predicted to be the next strongest at about one

order of magnitude weaker than that of the ν2 mode. We note the relatively good

agreement with regards to both frequency and calculated intensities between the two

calculations. The experimentally determined ν2 frequency of 2023 cm−1 is in close

agreement with frequencies calculated with anharmonic corrections, requiring a cor-

rection factor of only (0.98).

A comparison between the ab initio calculated emission spectrum and the ex-

perimentally measured emission spectrum is made in Fig. 6. The emission spectrum

observed at 17.9 µs after the photolysis pulse (at which time, following Ca. 1000

collisions with Ar, the HCCO emission features are expected to be primarily fun-

damental transitions) is overlaid with the calculated emission transitions (expanded

as Gaussian widths) from the coupled–cluster calculation. As noted in Table II, the

calculated absorption intensities have been transformed into the associated expected

emission intensities via the frequency cubed correction factor where the appropriate

transition dipole moments, in units of debye, have been obtained from the calculated
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absorption intensities. It is important to keep in mind in comparing the calculated

Figure 3.6
Comparison of the late time (17.9 µs) spectrum extracted as the square root of the syn-
chronous correlation diagonal and a calculated IR emission spectrum based on the anhar-
monically corrected coupled–cluster calculation of Szalay (Ref. 11).

intensities with the observed spectra that the emission from vibrationally excited CO

contributes to the observed emission intensity in the region of the ketenyl ν2 stretch.

Additionally, compared to the ν1 mode of ketenyl, the ν2 mode is a less energetic

motion and as a result (within the assumption of a Boltzmann distribution for the

excited molecules) should possess greater population and, hence, more intensity as

compared with that of the ν1 stretch. In light of these considerations, the appar-

ent extra intensity of the ν2 stretch in the observed spectra, as compared with the
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calculation, can be understood and both the frequency and intensity simulated from

the calculations are, therefore, consistent with assigning the 3232 cm−1 peak in the

experimental spectra to the ν1 mode of HCCO. We note that the coupled–cluster

calculation with associated anharmonic correction has coincidentally generated a nu-

merical value identical to the value experimentally determined from the line shape

fitting of the time–integrated spectra.

3.5.2 Emission Spectral Simulation

The enhanced resolution obtained through the synchronous correlation diag-

onal elements permits extraction of HCCO ν1 CH stretch spectra with details suf-

ficient for rotational contour analysis. Microwave spectroscopy has determined the

rotational constants of the ground electronic state of HCCO [7]. Using the spectral

constants from the Gaussian03 calculation (harmonic frequencies, transition dipole

moment, anharmonic constants, etc.) as well as the energy level expression and selec-

tion rules for a rigid–rotor/ harmonic oscillator, a simulated rotational contour can

be generated. In this simulation, rovibrational transition intensities were modeled

with a rotational temperature of 300 K as well as with the Hönl–London factors of

a symmetric top molecule [36]. Furthermore, Gaussian03 was used to determine

the projection of the transition dipole moments of the normal vibrational modes of

HCCO onto the molecular frame. It was determined that both the ν1 and ν2 modes

should exhibit predominantly a–type transitions (Ka=0) with calculated b/a ratios

of 0.401 and 0.129, respectively. Figure 7 shows a comparison of the late time (17.9

µs) experimental emission spectrum versus the simulated spectrum of the ν1 CH

stretching mode of HCCO. The vibrational term value in the simulation was left as
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an adjustable parameter in the simulation.

Figure 3.7
Comparison of the late time (17.9 µs) emission spectrum (solid line) and the rotational
contour simulation (inverted dashed line) of the ν1 CH stretching mode of ketenyl.

It was found that the simulated rotational contour matched well with that of the

observed emission spectrum. Through comparison of the positions of the minimum

intensity of the P and R branches of the simulated spectrum with those of the ex-

perimental spectrum, the term value was determined to be at 3232.3 cm−1 for the ν1

CH Stretching mode of ketenyl.
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3.5.3 Alternative IR Emitters For Features > 3200 cm−1

In addition to the primary photofragments HCCO and CH2CH3, mass spec-

trometry studies have shown that mass channels corresponding to C2H [2] as well as

C2H2, C2H4O, C2H4, and C2H2O [26 are also generated in minor quantities during

the 193 nm photodissociation of EEE. The question now remains as to whether or

not any of these species could be responsible for the observed peak at 3232 cm−1. As

the mass spectroscopy studies provide information regarding the mass and not the

specific structure, it is important to consider transitions from all possible geometric

combinations of the available mass fragments.

Both vibronic and rovibrational transitions of the ethynyl (C2H) radical have

been observed in the early time InSb spectra. Vibronic transitions appear as a broad

series of features spanning above at 3600 cm−1 to just below 3800 cm−1. The ν1 CH

stretch of ethynyl is well characterized and has been assigned with a band center at

3298 cm−1, [28] which may account for the high energy portion of the broad feature

spanning just above 3300 cm−1. The time scale of the observation precludes the pos-

sibility of vinylidene [37] (H2CC) from appearing in the InSb spectra. The ν3 CH

stretch of acetylene, however, would account for the remaining portion of the same

high energy feature spanning just above 3300 cm−1. The remaining species, with the

exception of those containing OH, all possess fundamental vibrational transitions well

below 3200 cm−1. The ν1 OH stretching modes of CH2CHOH [38] and HCCOH [39]

have been previously observed at 3633.5 and 3501.3 cm−1, respectively, though there

is no clear evidence of their presence in the collected spectra. The ν2 CH stretch of

HCCOH [39] appears at 3340 cm−1 and, hence, is also not an origin of the 3232 cm−1

peak.
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3.6 Conclusion

The ν1 CH stretch of the ketenyl radical has been identified in the time–

resolved IR emission spectra, collected following the 193 nm photodissociation of

EEE. Temporal evolution of the intensity of the observed feature has been found

to be consistent with the time dependence of that of the previously characterized

ν2 asymmetric CCO stretch. This relation is also confirmed from a 2D correlation

analysis of the time–resolved spectra. The observed frequency and intensity are also

consistent with values obtained from ab initio calculations for the ν1 CH stretch mode.

Time–resolved spectra with overall enhanced S/N were obtained through ex-

traction of the diagonal elements of the synchronous correlation maps. In comparison

with simulated rotational contour analysis, the vibrational term value of the funda-

mental transition was determined to be 3232 cm−1.
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Chapter 4

Collisional Deactivation of Vibrationally Highly

Excited Ketenyl Radicals Through Long–Range

Attractive Interactions
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4.1 Introduction

In the most general sense, combustion is the chemical process by which organic

molecules (RH) are converted into carbon dioxide (CO2) and water (H2O) through

reaction with molecular oxygen (O2):

RH +O2 +M −→ CO2 +H2O +M, (4.1)

where M represents an excess backing pressure of an (inert) collider species (typically

molecular nitrogen N2). Clearly this is not a concerted process, but is rather the

combined resultant of a number of chemical reactions. Of the numerous intermediate

species formed, it has been well established that acetylene (HCCH) is an important

gateway species in the combustion of both aliphatic and aromatic hydrocarbons [1,2].

What’s more, as the main loss channel of acetylene (through reaction with O(3P)

atoms) yields the ketenyl (HCCO) radical and atomic hydrogen (H) [2], the overall

importance of HCCH is directly transferable to HCCO:

HCCH +O(3P ) −→ H +HCCO. (4.2)

Furthermore, once HCCO is generated, it can then react with (O2) to yield one of

the final combustion products (CO2):

HCCO +O2 −→ H + CO + CO2, (4.3)

where CO and H then go on to react further to yield (H2O) as well as more (CO2).

Based upon reaction (3) alone, it is easily argued that ketenyl is a pivotal

combustion intermediate. Nevertheless, it has been theorized by the Schaefer group
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[3] that HCCO may play an even greater role in combustion, specifically through

the electronic quenching of quartet methylidyne (CH) radical. As depicted in figure

4.1, it has been calculated [3] that the methylidyne radical (a common combustion

intermediate) preferentially reacts with ground state CO (a byproduct of reaction

(3)) to yield quartet state HCCO.

CH(a4Σ−) + CO(X1Σ+) −→ HCCO(a4A′′), (4.4)

The zero-point energy of the quartet state of HCCO has been calculated to fall about

1 eV below that of the ground state bond dissociation energy (3.14 eV) [2,3]. In

this regard, depending upon the nascent internal energy content of the quartet state

HCCO formed in reaction (4), collision-induced intersystem crossing (CI-ISC) could

yield vibrationally highly excited ground-state HCCO. What happens next is contin-

gent upon the efficiency with which ground state HCCO transfers energy out of its

internal degrees of freedom. If vibrational energy transfer is inefficient (as is typi-

cally the case for non-resonant transitions), the resulting HCCO will predominantly

undergo unimolecular dissociation to yield ground state CH + CO. Alternatively, if

energy transfer is efficient, vibrational quenching will be competitive with dissociation

and the excited HCCO will cascade down the ro-vibrational manifold and survive to

eventually react with (O2) as in reaction (3).

In both cases, unimolecular dissociation and collisional quenching, HCCO is

observed to play an extended role in the chemistry of combustion. In the former,

additional transient HCCO is generated which quickly dissociates to yield ground

state CH + CO. In the latter, a secondary (meta-stable) HCCO source is generated

and eventually reacts to yield H, CO, and CO2. In this regard, a complete under-

standing of the kinetics of combustion thus requires determining whether or not these
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two processes are competitive with one another. It is therefore highly desirable to

characterize the efficiency of vibrational energy transfer in ground state HCCO.

Figure 4.1 Electronic quenching of the methylidyne (CH) radical via the quartet state
of ketenyl (HCCO). Following collision induced intersystem crossing, vibrationally highly
excited ground state ketenyl can then either dissociate (yielding ground state methylidyne
radical and carbon monoxide); or (if vibrational energy transfer is efficient enough) it can
be collisionally quenched.

In chapter three of this thesis, we examined the 193 nm photolysis of ethyl

ethynyl ether (EEE) as a clean photolytic source of ketenyl radicals. The dissociation

reaction was monitored with microsecond time-resolved Fourier transform infrared

emission spectroscopy (TR-FTIRES). As evidenced through a large anharmonic shift

in the observed ν1 CH stretch mode, it was concluded that the above reaction gen-
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erated highly vibrationally excited ground state ketenyl radicals. Given that the

photolysis produces HCCO with near unit quantum efficiency, the shifting CH signal

is largely overlap free and hence serves as a convenient probe of the internal energy

content of the radical. Furthermore, by selectively varying the identity of the asso-

ciated collisional quencher, it is possible to examine the vibrational energy transfer

processes of HCCO.

In what follows, we present a detailed study of the vibrational energy trans-

fer processes of the ketenyl radical. While HCCO is a physically stable molecule

(i.e. it possesses a non-zero bond dissociation energy), like most radical species it is

chemically unstable (i.e. it is reactive). Thus, in an effort to limit the occurrence of

secondary reactions, we exclusively employ inert rare-gas atomic species as collisional

partners and hence only examine energy transfer through vibrational-to-translational

(V-T) pathways. Ro-vibrational spectral modeling, using ab initio quantum chemical

assisted anharmonic analysis, permits a quantitative measure of the temporal evolu-

tion of the internal energy content of the HCCO radicals. Additionally, variation of

the rare-gas collider species provides measurable trends which can be analyzed within

the context of an impulsive collisional deactivation model, quantified using a modified

variant of Schwartz, Slawsky, and Herzfeld’s (SSH) theory of vibrational relaxation

[4]. We also explore the associated effect of long range attractive interactions on the

vibrational energy transfer efficiency of the ketenyl radical.

4.2 Experimental

The experimental method employed in the current study has been described

previously [5-7], as such only a brief summary will be given here. The output from an
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ArF excimer laser (λ = 193 nm, 20 Hz, ≤ 50 mJ/pulse) (Lambda Physik, LPX 200)

was collimated through a photolysis cell mounted with two CaF2 windows. The sam-

ple typically contained 10-30 mTorr of sample (ethyl ethynyl ether) and 2-4 Torr of

an inert atomic collider gas (helium, neon, or argon) under constant flow conditions.

Pressure in the cell was monitored with a capacitance manometer (MKS Baratron,

0-10 Torr). Emission after the photolysis laser pulse was collected perpendicular to

the laser propagation axis by a gold-mirror Welsh cell arrangement in the photolysis

cell and the collimated and focused into the FTIR spectrometer with two KBr lenses

that match the f/4 focusing characteristics of the spectrometer. The spectrometer

(Bruker IFS 66/s) was equipped with an interferometer capable of time-resolved step-

scan measurements and an indium antimony (InSb) detector (J10D, EG&G Judson

Technologies, 50 ns rise time, 1850-10,000 cm−1 spectral range). The internal cavity

of the FTIR was continually flushed with a FTIR purge gas generator (75-45, Parker

Balston).

The spectral response of the InSb detector was calibrated with a Globar R©

source which was modeled as a perfect blackbody. Interferograms for this work were

recorded at 500 ns time intervals averaging 50-100 laser shots per interferogram point

for a total observation window of 50 µ s. The time-resolved interferometric signal

from the detector was initially passed through a transimpedance preamplifier (PA-9,

EG&G Judson Technologies, 616 kHz) and then amplified (ten times) by a fast ampli-

fier (Stanford Research Systems SR445, DC-300 MHz) before reaching the transient

digitizer (Spectrum PAD82a, 100/200 MHz), which was triggered by a fast photodi-

ode that monitored the excimer output. The interferometric signal was monitored on

a stand-alone oscilloscope (Tektronix TDS3052B) that was interfaced with the spec-

trometer. Subsequent Fourier transform of each interferogram yields a time-resolved

spectrum at every 500 ns. To further enhance the observed spectral resolution, spec-
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tra were synchronously cross correlated [8] to yield representative spectra spanning

1.0 µ s intervals. The spectral resolution was typically set as 12 cm−1.

Ethyl ethynyl ether (EEE) is available commercially (Acros Organics, 50%

weight stabilized in hexanes). The commercial sample was processed with several

freeze pump thaw cycles before use and the purity was checked with FTIR absorbance

spectroscopy. At 193 nm, EEE has a strong absorption cross section σ193nm ∼ 7∗10−18

cm2/molecule, while the hexane stabilizer has a negligible absorption cross section

of < 3 ∗ 10−22 cm2/molecule [9]. Helium, Neon, and Argon gases from the supplier

(Spectra Gas, research grade, 99.9%), were used directly. Unphotolyzed sample was

recollected after each experiment and frozen at liquid nitrogen temperature. This

sample was then reclaimed and purified for further use.

4.3 Results and Analysis

4.3.1 Time-resolved IR emission spectra:

Chapter three of this thesis detailed the time-resolved emission spectra ob-

tained following the 193 nm photolysis of ethyl ethynyl ether [10]. The collected

spectra exhibit two main groups of features; one low energy feature near 2000 cm−1

and the other spanning various portions of the CH stretching region. In agreement

with the prior photofragment translational energy spectroscopy (PTS) study of Krish

et al. [11], the majority of the observed signal is assignable to the ketenyl radical.

Of key importance for the current study, it was observed that the ν1 CH stretch of

HCCO undergoes a substantial anharmonic shift with an onset around 2700 cm−1

and continues up to the measured fundamental at 3232 cm−1; indicating that the

nascent radicals were generated with a massive amount of internal energy. In addi-
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tion to HCCO, other key features observed in the spectra include vibrationally excited

carbon monoxide (CO, generated from the secondary dissociation of rovibronically ex-

cited HCCO) as well as electronically excited ethynyl (HCC) radical. The majority of

the signal arising from the ethynyl radical originally appears in the X̃ ← Ã electronic

transitions spanning 3600-3800 cm−1, after which there is a near constant presence

of the ground state ν1 CH stretch fundamental near 3298 cm−1.

As mentioned in the previous chapter, there is some minor overlap between

the fundamental CH stretch transitions of both HCCO and ethynyl. However, given

Figure 4.2
Time–resolved emission spectra following the 193 nm photolysis of ethyl ethynyl ether. The
earliest and latest spectra have been highlighted in blue and red, respectively, to showcase the
temporal dependence of the observed features.

69



the low energy origin of the ethynyl signal, the observed overlap is limited to the fun-

damental transition and has no significant effect on the anharmonic portions of the

ν1 CH stretching transitions of the HCCO spectrum. Alternatively, the low energy

cutoff of the InSb detector limits the collection of high energy transitions originating

from the ν2 asymmetric CCO stretch of HCCO; whose fundamental lies at 2023 cm−1.

This experimental limitation, coupled with the observed anharmonically shifting CO

feature, suggests that any signal arising from the ν2 mode of HCCO will likely be

completely convoluted with diatomic CO. Nevertheless, the relatively clean (overlap

free) signal originating from the extremely anharmonic ν1 CH stretch transitions of

HCCO serve as a novel probe of the internal energy of the radical. Furthermore,

the time-resolved nature of the experiment permits the opportunity to examine the

evolution of the nascent internal energy and hence characterize the energy transfer

properties of this open-shelled species. In the interest of restricting secondary reac-

tion, we limit our examination to vibrational-to-translational (V-T) energy transfer

via the inert rare-gas colliders helium (He), neon (Ne), and argon (Ar). To that end,

the photolysis reaction was repeated and a set of time-resolved spectra were collected

under near identical conditions save that the identity of the collisional quencher was

varied. Figure 4.2 portrays a representative set of emission spectra obtained using Ar

as a collisional quencher in which the earliest and latest spectra have been highlighted

in blue and red, respectively. As should be expected, variation of the collisional col-

lider does not change the features that are observed, but rather alters the relative

temporal evolutions of those features.
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4.3.2 Photodissociation product population distributions:

It has been well established that an anharmonically shifting feature observed

in time-resolved emission spectra can be used to measure the internal energy content

of the associated species [12-16]. The core of the analysis relies on the ability to calcu-

late the associated vibrational manifold up to the experimentally appropriate internal

energy using both the harmonic (ωi) and anharmonic (χij, yijk, zijkl...) spectral con-

stants obtained from high resolution spectroscopic studies. For each available energy

level, a transition frequency is obtained as the energy difference between a given level

and the corresponding lower energy level as defined by appropriate selection rules.

Additionally, it is assumed that the intensity of the individual transitions follow the

harmonic scaling rule (e.g. Iemν−1←ν = νIem0←1) [17]. Once the allowed transition fre-

quencies and intensities have been determined, a calculated emission spectrum can

be obtained by imposing a population distribution P (Ej) over the calculated energy

levels:

S(ν) =
∑
j

P (Ej)I
em
j g(ν), (4.5)

where Iemj refers to the emission intensity of a given transition from energy level Ej

and g(ν) is a convolution function (typically a Gaussian or Lorentzian) which provides

a spectral width to each transition. Prior examples from this lab include the modeling

of nitrogen dioxide (NO2) [12], sulfur dioxide (SO2) [14], and carbon disulfide (CS2)

[13] in energy transfer studies as well as deuterated acetylene (DCCD) and hydrogen

isocyanide (HNC) following the photodissociation of perdeuterated vinyl cyanide and

vinyl cyanide, respectively [18].

In our original emission modeling studies [12-16], the collected spectra pos-

sessed features containing only vibrational resolution. As a result, the calculated
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emission spectra were modeled as pure vibrational transitions. The bandwidth and

shape of the various features were treated as Gaussian functions whose width matched

that of the associated infrared absorption transitions. In more recent studies however,

while complete rotational resolution is not practical, at least partial resolution of the

rotational contours is observed. For these spectra, the calculated emission bands are

generated as the sum of the available rovibrational transitions. Intensities for each

rovibrational transition permitted by the (∆ν = −1, ∆J = 0,±1, ∆K = 0,±1)

selection rules were calculated as [18]:

Iemν,J,K = Lυν
4
n,m|µ0←1|2SPQRJ,K exp

(
−hcEυ,J,K
kBTrot

)
, (4.6)

in which νn,m corresponds to the frequency of the (m←n) rovibrational transition,

|µ0←1| the fundamental transition dipole moment, SPQRJ,K are the symmetric top Hönl-

London factors [19], and Lυ is the vibrational line strength factor defined by the

harmonic scaling rule [17]. As in prior studies [18], a constant rotational tempera-

ture (Trot) of 300 K is used throughout to model the rotational distribution. This

assumption is not invoked to suggest that the nascent species are generated in rota-

tional equilibrium. On the contrary, it is quite possible that the associated species are

initially created with rotational temperatures many times larger than a room temper-

ature distribution. The validation of such an assumption comes in to play through

the wide distribution of initially available vibrational states. The earliest times, well

before the species of interest is rotationally quenched through inert gas collisions,

correspond to the point of the largest vibrational temperature and hence the point

at which the rotational temperature is least discernable. The rotational contour is

only partially resolved after a large number of inert collisions, at which time the rota-

tional distribution is effectively quenched. As further justification of this point, figure
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4.3 shows a comparison of the calculated emission spectra for the ν1 CH stretch of

HCCO at various vibrational temperatures (internal energy distributions) with fixed

rotational temperatures of 300 K versus 1,000 K. As expected, for low vibrational

temperatures (consistent with late times) a variation of the rotational temperature

is very apparent. Alternatively, for high vibrational temperatures (consistent with

early times) an apparent invariance of rotational temperature is observed. Thus, for

Figure 4.3
Calculated emission spectra of the ν1 CH stretch of HCCO modeled with increasing inter-
nal energies (vibrational temperature distributions) for static rotational temperatures of 300
K(red, solid line) and 1,000 K (black, dashed line).

TR-FTIRES data at least, the rotational temperature is only measurable at later
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times after the vibrational temperature has been quenched. However, as the rota-

tional temperature quenches so much faster than the vibrational temperature, we feel

justified in using a global rotational temperature of 300 K.

When modeling systems to high internal energies, or simply any system for

which rotational degrees of freedom have been included, the number of available

transitions quickly becomes prohibitively cumbersome to work within the context of

a spectral fitting routine. One simplifying solution that we have found useful is to

partition all of the available transitions into equally spaced 500 cm−1 wide energy

bins. Invoking an assumption of equal population of all levels within a given bin, a

representative energy bin spectrum can be constructed by summing over all allowed

transitions and dividing through by the total number of transitions. Such a proce-

dure allows one to convert a series of many thousands of transitions into a series of

(depending upon the maximal internal energy considered) many tens of transitions,

which is much more tractable to work with. The resulting series of bin spectra can

then be used to model the measured time-resolved spectra through any of the simple

nonlinear least-squares fitting procedures.

4.3.2.1 Modeling IR emission from HCCO ν1:

Closed-shell molecular species, typically containing less than four or five

atoms, have historically been employed as fruitful laboratories to model much of

the complexity of chemistry [20-25]. The limited number of interactions permits the

generation of an tractable effective Hamiltonian from which spectroscopic studies can

be used as an efficient probe of a desired effect. This utility of smaller molecules has

resulted in a wealth of information recorded in the literature, including the charac-
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terization of spectral constants which has made much of our prior analysis feasible.

For the current study however, as is so often the case for polyatomic radicals, com-

paratively little is known experimentally about the spectral constants of HCCO. In

particular, at present only three of the six fundamental vibrational modes of HCCO

have been experimentally measured [10,26,27]. Additionally, while there have been

numerous theoretical studies examining the spectroscopy of HCCO (and radicals in

general), rovibrational anharmonic constants are rarely (if ever) reported in the lit-

erature. As such, it becomes necessary to turn to commercially available theoretical

programs as a means to supplement the missing experimental values necessary to gen-

erate a representative spectral manifold. Following the work of Barone [28,29], there

are now methods available within the quantum chemistry program Gaussian [30]

that permit examination of the anharmonic portions of the potential energy surface

through second-order perturbation theory (PT2). In particular, PT2 allows the cal-

culation of the second-order vibrational anharmonic constants (χij) via theoretically

evaluated higher order energy derivatives.

For the current study, the anharmonic vibrational constants (χij) of ground

state HCCO were calculated at the UB3LYP / aug-cc-pVQZ level of theory. The

resulting constants yielded vibrational term values that were in excellent agreement

with both the available experimental as well as high-level theoretical data, providing

further confidence for their use. Using equations 4.1 and 4.2, a theoretical rovibra-

tional manifold of HCCO was generated for energies up to 20,000 cm−1 above the

zero point energy. As discussed previously, while the collected emission spectra show

the presence of both the ν1 CH and ν2 asymmetric CCO stretch of ketenyl, only

the ν1 mode is unobstructed by transitions from other species. Our simulation will

therefore focus solely on the emission spectra of the ν1 CH stretch mode. Using

the calculated spectral manifold of the available HCCO rovibrational levels, tran-
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sitions allowed by the rigid-rotor / harmonic oscillator selection rules: (∆ν = −1,

∆J = 0,±1, ∆K = 0,±1) will be used to calculate the ketenyl emission spectra.

Additionally, it is important to note that one of the key results of the PTS study

[11] was that HCCO was generated in two distinct energetic distributions, one high

recoil distribution (low internal energy) and one low recoil distribution (high internal

energy). To account for the possibility that the observed emission spectra are the

result of two distinct energetic distributions of HCCO, a bimodal distribution was

initially applied in the fitting routine. Specifically, the population distribution was

modeled as the sum of a low-energy distribution defined by a temperature and a high

energy Gaussian function:

P (Ej) =
α1√
2π
exp

(
−Ej
kBTvib

)
+

α2√
2πσ

exp

(
−(Ej − 〈E〉)2

2σ2

)
, (4.7)

in which α1 and α2 are relative scaling factors, Tvib is the vibrational temperature de-

scribing the low energy distribution, and 〈E〉 and σ define the Gaussian function of the

high energy distribution. Nevertheless, when the above dual population distribution

is employed, it is observed that only a single population (described by a vibrational

temperature) is required to fit the measured emission spectra. This suggests that

either the dual populations observed in the PTS study are simply unresolvable by

TR-FTIRES, or that one of the two distributions was simply lost to secondary reac-

tion or dissociation.

Using the first term of equation 4.3, the time-resolved spectra were fit to a

series of vibrational temperatures. As in prior studies [18], each vibrational distribu-

tion can be directly related to an average energy; yielding the average internal energy

as a function of time. Figure 4.4 is a contour plot of the internal energy distribution

of ketenyl, measured as a function of time, when quenched by Ar. We note however
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that, given the nature of the experiment, time is actually a poor metric of comparison

when considering the different collisional frequencies of the three colliders. Rather, it

is more instructive to discuss the energetic evolution in terms of the number of colli-

sions. When the associated average energies are plotted as a function of the number

of collisions, it is found that the evolution of the internal energy can be well described

by a double exponential function. This observation is reasonable given that there

Figure 4.4
Evolution of the measured internal energy of HCCO as a function of the time.

are two seperate sources of ground state HCCO, namely nascent X̃2 HCCO as well as

X̃2 HCCO resulting from intersystem crossing from nascent ã4 HCCO. Extrapolation

77



of the functional form back to the zero-collision region, for all three inert colliders,

yields a common nascent HCCO internal energy of about 20,100±500 cm−1 (2.49±0.1

eV). Figure 4.5 highlights the comparison of the measured evolution of the HCCO

internal energies for the series of rare-gas colliders. It is observed that Ne is the most

efficient collider, as evidenced by the fastest decrease in internal energy, followed next

by He and finally Ar.

Figure 4.5
Measured results of the average internal energy of HCCO, as a function of the number of
rare-gas collisions, for each of the three colliders He, Ne, and Ar.
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4.3.2.2 Calculation of 〈∆E〉 versus 〈E〉:

The time-dependant average internal energy of the ketenyl radical can be

directly related to the number and efficiency of the various collisions the radical

encounters [15], i.e.:

d〈E〉 =
∑
m

ZLJ(m)Pm〈∆E〉mdt, (4.8)

in which ZLJ(m) is the Lennard-Jones collisional frequency, Pm is the partial pressure,

and 〈∆E〉m is the average energy lost per collision of species (m). For the current

study, the radical of interest is generated through the photolysis of the precursor

species ethyl ethynyl ether. More specifically, the photolysis cell contains about 4,000

mTorr of the rare-gas collider (either He, Ne, or Ar) and 10 mTorr of the precursor

cocktail (50% ethyl ethynyl ether, 50% hexanes). For the current setup, only about

ca. 10% of the ethyl ethynyl ether undergoes photolysis, yielding at most about 0.5

mTorr of photofragments (of which about 90% will correspond to ketenyl and ethyl

radicals [31]). Furthermore, the PTS [11] results suggest that HCCO is generated

in two distinct energetic distributions; 37% in a stable high recoil distribution, and

63% in a low recoil distribution which is expected to undergo secondary dissociation

(following intersystem crossing from the ã4 state). In this regard, the calculated

partial pressure of the rare-gas (Rg) collider is about (9,000 - 24,000) times greater

than HCCO, implying the time-dependence of the internal energy of the radical will

clearly be dominated by the rare-gas collisions, and hence:

d〈E〉 ≈ ZLJ(Rg)PRg〈∆E〉Rgdt. (4.9)

Once again, the number of collisions (Zm = ZLJ(m)Pmt) is a much more useful tool

for describing the energetic evolution as a function of the various colliders, hence the
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average energy lost per collision can be derived as:

〈∆E〉Rg =
d〈E〉
dZRg

. (4.10)

The utility of the above equation is that we have already shown that the average

internal energy, for each inert collider, can be expressed in closed form as an analytical

(differentiable) function in ZRg. Differentiation with respect to ZRg therefore yields

an experimental measure of the average energy lost per collision:

〈∆E〉Rg = −{τ1A1exp (−τ1ZRg) + τ2A2exp (−τ2ZRg)} , (4.11)

for each of the three colliders examined.

Similar to the results of figure 4.5 above, figure 4.6 highlights the average

energy lost per collision as a function of internal energy for the three colliders. Once

again, it is observed that the rare-gas colliders show a seemingly nonsensical reduced

mass trend in that Ne is measured to be the most efficient collider followed by He

then Ar. Additionally, as contrasted against prior studies of similar sized closed-shell

molecules [12-16], V-T energy transfer is observed to be extremely efficient with val-

ues of 〈∆E〉 > 10 cm−1 for all measured internal energies. We note that efficient

V-T energy transfer has been observed in prior studies of excited radical species. In

particular, the UV absorption study by Damm et al. examined the collisional deac-

tivation of vibrationally highly excited benzyl (C6H5CH2) radicals with Ar. When

their reported data is reinterpreted in terms of the average energy lost per collision,

it is observed that the benzyl radical (when quenched with Ar) compares favorably

with our measured results for the ketenyl radical. Figure 4.7 compares the energy

transfer efficiency of benzyl and ketenyl; while the two radicals exhibit
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Figure 4.6
Measured results of the average HCCO internal energy lost per collision with the various
rare-gas colliders (He, Ne, Ar), as a function of the average HCCO internal energy.

similar 〈∆E〉 magnitudes, benzyl is found to be more efficient due (very likely) to

the greater availability of low energy bending motions. Furthermore, compared with

earlier studies of closed-shell species [12-16], there is no apparent onset of enhanced

〈∆E〉 efficiency. Previously, it has been observed that enhanced 〈∆E〉 efficiency is

directly related to electronic coupling [15] which shows up in the 〈∆E〉 vs. 〈E〉 plot as

a distinct elbow in which the efficiency increases at the energetic onset of the electronic

state. For the current case of the ketenyl radical however, there is a distinct relative

enhancement of 〈∆E〉 for all values of 〈E〉 but with an constant linear trend.
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Figure 4.7
Comparison of the average internal energy lost per collision with Ar for the ketenyl and
benzyl radicals. The benzyl radical data was derived from figure 7 of Damm et al. [32] as
follows: The average energy (as a function of the number of Lennard-Jones collisions ZLJ)
was measured as the center peak of each of the energy dependent population distributions.
The average energies (as a function of ZLJ) were fit to a double exponential functional form
from which the average energy lost per collision was then determined as in equation 4.7.

4.4 Discussion

4.4.1 Comparison with the PTS study:

The PTS study of Krish et al. [11] provided the initial experimental conforma-

tion that the photolysis of ethyl ethynyl ether at 193 nm yields the ketenyl radical with

near unit quantum efficiency. Their detailed results concerning the energetics and dis-
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tributions of the ketenyl radical serve as a convenient basis for comparison against

our current experimental observations. In particular, they observed that ketenyl is

generated in two distinct kinetic distributions; 37% in the ground X̃2 state and the

remainder in the excited ã4 state. Using conservation of available energy as a guide,

the average internal energies of the two energetic distributions can be determined as

2.4 eV and 3.6 eV, respectively. We note coincidently that our measured value of the

nascent internal energy of the radical (2.5±0.1 eV) is in excellent agreement with the

high recoil (low internal energy) X̃2 state distribution. As mentioned previously, the

majority of the ã4 state of ketenyl is calculated to lie above the dissociation barrier of

the ground X̃2 state [3]. While the collisionless environment of the PTS study would

permit the observation of a long-lived quartet state, the (relatively) high pressure

environment of our TR-FTIRES study would certainly enhance the probability of a

collision-induced intersystem crossing (CIISC) pathway.

In terms of the current system, CIISC would predominantly result in a sec-

ondary dissociation process in which the majority of the low recoil HCCO population

would be converted into methylidyne (CH) and CO. The observation of vibrationally

excited CO in our emission spectra, in proportions similar to the observed HCCO

signal, provides strong evidence for the occurrence of the CIISC mechanism. Fur-

thermore, our measurements of the nascent internal energy were only able to support

the presence of a single HCCO distribution. The fact that the single distribution had

a measured internal energy consistent with the PTS results provides further support

not only for the CIISC mechanism but also (and more fundamentally) for the validity

of the calculated anharmonicity constants. In this regard, we find that the combined

experimental results of both the PTS study and our current work suggests that the

following dominant reaction pathways are occurring:
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EEE −→ CH2CH3 +HCCO‡(X̃2A
′′
) (4.12)

EEE −→ CH2CH3 +HCCO‡(ã4A
′′
) −→ CH2CH3 + CH + CO(ν > 8), (4.13)

in which ground state HCCO‡(X̃2A
′′
) is generated with 2.5±0.1 eV of nascent inter-

nal energy.

4.4.2 SSH(T) calculations:

The theory of vibrational relaxation through collisional interactions was worked

out in great detail by Schwartz, Slawsky, and Herzfeld (SSH) [4] in the early 1950’s,

and latter modified by Tanczos (T) [33]. The core of the analysis revolves around the

determination of the probability of a given transition from either of the two colliding

species. At the heart of SSH theory, most of the attention is focused heavily upon the

repulsive asymptote of the collisional interaction potential, which is chiefly modeled

through comparison against the associated Lennard-Jones (LJ) potential. One of the

key predictions from the original SSH theory (when focusing solely on V-T energy

transfer) [4] is a well-behaved reduced mass dependence in which the lightest collid-

ers are found to be the most efficient quenchers. For the present case of the ketenyl

radical however, we have already established that a clear reduced mass dependence,

consistent with SSH theory, is not observed as Ne is found to be more efficient than

He. In the subsequent modification of SSH theory by Tanczos [33] (SSHT), a term

associated with the long-range attractive interaction was included via an exponential

coefficient which contained the associated LJ well depth (De). It is of interest to note

that one of the potential side effects of Tanczos’s exponential factor should be a vari-
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ation of the resulting slopes for the transition probabilities as a function of energy. In

this regard, application of the modified SSHT theory could potentially provide insight

into the deviations of the reduced mass trend observed in the collisional deactivation

of the ketenyl radical.

4.4.2.1 Calculating values of 〈∆E〉:

To calculate the probability of a given collision induced transition of the

ketenyl radical from initial state |φi〉 to final state |φj〉 by rare-gas atom Rg, we apply

the modified equations of SSHT theory [33,34], i.e.:

P j←i
HCCO,Rg

= 〈φj|V |φi〉2Γ(∆E,De, µ)

∫ ∞
0

Θ(∆E, µ, v)dv, (4.14)

wherein the initial matrix element is treated as the associated harmonically scaled

transition dipole moments, and the functions Γ(..) and Θ(..) (which detail the depen-

dence upon the reduced mass µ, magnitude of the energy transferred ∆E, and the

attractive portion of the interaction De) can be expressed as:

Γ(∆E,De, µ) =

(
8π3µ∆E

α∗2h2

)2(
4µ

kBT

)
exp

(
−De

kBT

)
(4.15)

Θ(∆E, µ, v) = v exp

(
−µ∆E2

2kBT

)[
χ(v)

{1− χ(v)}2

]
, (4.16)

in which α∗ relates to the curvature of the associated LJ potentials and the velocity

dependent function χ(v) is defined as:

χ(v) = exp

(
4π2µ

α∗2h

)[
v −

√
v2 +

2∆E

µ

]
. (4.17)
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For a given initial state |φi〉, there exists a variety of potential downward transitions

to state |φj〉, each with a specific transition probability P j←i. To account for all the

allowable transitions, a total transition probability P (Ei) as a function of energy can

be defined as the sum over all the individual transition probabilities originating from

an energy Ej:

P (Ei) = ρ(Ei)
−1
∑
k

P k←i, (4.18)

to a set of allowed lower energies {Ek}; divided by the total number of allowable

transitions ρ(Ei). Once the vibrational manifold as well as the energy dependent

transition probabilities have been calculated, the average energy lost per collision can

be obtained as a sum over the probability weighted energy gaps:

〈∆E〉 =
∑
i

P (Ei)〈∆Ei〉, (4.19)

which allows for a semi-direct comparison against our experimental observations. We

note additionally that our treatment of Tanczos’s method [33] evaluates the velocity

dependent integral of equation 4.8 numerically as opposed to relying on the imple-

mentation of approximate analytical techniques.

As in the original formulation of SSH theory [4], evaluation of equations (4.8–

4.13) with zero attractive interactions (i.e. De = 0) yields the classically expected

reduced mass trend in which He is the most efficient quencher, followed by Ne and

finally Ar. As expected, however, when the attractive interactions are allowed to

grow in, we find that the reduced mass trend begins to shift. Specifically, for a given

rare-gas collider, it is observed that the smallest probability of a transition occurs

for the zero attractive interaction (De = 0). As the attractive interaction is turned

on (De > 0), the relative probability of a transition increases. In this regard, the
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measure of the long-range attractive interaction (De) can be used as a tool to model,

and hence explain the observed reduced mass dependencies.

4.4.2.2 Fitting 〈∆E〉 vs. 〈E〉 - the effect of attractive interactions:

For all energies examined, the calculated 〈∆E〉’s were found to obey a linear

functional form in which the only common overlapping point, for each of the three

Figure 4.8
The various possible ratios of the Ne and Ar interaction energies with the ketenyl radical,
relative to He, for energies less than 200 cm−1. The inset show the linear trends of the three
interaction energies in which the differences between the interaction energies are observed
to be relatively invariant at ∆De(Ne,He) = 375 cm−1 and ∆De(Ar,He) = 505 cm−1.
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colliders, was the zero origin. As can be observed in figure 4.6, however, the three-

colliders don’t actually overlap until about 5,000 cm−1, after which the three trends

obey a linear functional form. Thus, fittings of the experimental plots can only rea-

sonably be obtained if the common overlap point is transferred to the origin. In this

approach, the reduced mass trend can be analyzed through the slopes of the 〈∆E〉

vs. 〈E〉 plots, however the calculated magnitudes of the 〈∆E〉 values begin to lose

their meaning. We note therefore, that for the current analysis, SSHT theory was

employed with the sole intent of obtaining the relative 〈∆E〉 values for each inert

Figure 4.9
Relative fittings of the HCCO + Rg 〈∆E〉 vs. 〈E〉 plots in which the HCCO / He interaction
energy was arbitrarily fixed at -50 cm−1 and the remaining Ne and Ar interaction energies
were left as fitting parameters.
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collider, for use in relative fittings of the experimental data. One obvious drawback

of a relative fit is that, as one is free to choose the initial point of comparison (in this

case the magnitude of the ketenyl / He interaction energy), there necessarily exists

an infinite set of possible solutions. As an example of this point, figure 4.8 highlights

the various possible Ne and Ar interaction energies as a function of a fixed He inter-

action energy. It is of interest to note that the collider interaction energies follow a

near constant linear trend in which Ne and Ar are found to be larger than He by 375

cm−1 and 505 cm−1, respectively. Once again, we note that each of the solution sets

observed in figure 4.8 yield accurate fittings of the experimental data shown in 4.6.

Furthermore, regardless of the solution set applied, it is found that the unexpected

(non-SSH) reduced mass dependencies observed in the 〈∆E〉 vs. 〈E〉 plots (when an-

alyzed with SSHT theory) yield physically plausible trends in the associated collider

interaction energies. An example of one such fit is highlighted in figure 4.9 in which a

fixed He interaction energy of De = -50 cm−1 has been imposed. The remaining two

interaction energies were left as variable parameters, in which fittings to the Ne and

Ar data sets were obtained at interaction energies of De = -426 cm−1 and De = -555

cm−1, respectively. In the next section, we will discuss the plausibility of enhanced

interactions in radicals.

4.4.2.3 Enhanced attractive interactions in radicals:

It is important to exert caution when attributing meaning to the magnitudes

of any of the interaction energies measured here, as the initial He interaction energy

is always arbitrarily fixed. One useful check of the observed trend lies within the

associated relative ratio of the three interaction energies. Specifically, it is reasonable
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to expect that a major component of the attractive interaction will be governed by

the dipole-induced dipole moment generated in the electron cloud of the collider. In

this regard, the ratio of the interaction energies should scale comparably (though not

exactly) with the ratio of the associated atomic polarizability. For the series (He, Ne,

Ar) employed here, the polarizability ratios of the three species when calculated as

He:(He, Ne, Ar) are determined to be (1:2:8). Alternatively, the fit values portrayed

in figure 4.9 yield ratios of (1:8:11), which contrast poorly with the predicted polar-

izability ratios. As observed in the main body of figure 4.8, variation of the fixed He

interaction energy can produce a variety of such ratios. As a comparison, fixed He

interaction energies of (-20, -100, and -200) cm−1 yield associated ratios of (1:20:26),

(1:5:6), and (1:3:4). However, given the functional forms displayed in figure 4.9, a

solution set yielding the exact ratio (1:2:8) is found to be impossible. Nevertheless,

given the presence of the reactive unpaired electron on the ketenyl radical, it should

be expected that the attractive interaction potential will be governed by more than

the polarizability of the colliders. Consider the recent high-level theoretical study

by Buchachenko et al. [35,36] in which interaction energies were calculated at the

CCSD(T) level of theory for the rare-gas atoms in complexes with neutral and anionic

atomic bromine. For the neutral species, the interaction energies for the series (He,

Ne, Ar) were found in ratios of (1:2:8), in excellent agreement with the associated

atomic polarizabilities. On the other hand, interaction energies for the same series

with the anionic bromine were observed in ratios of (1:3:12), where the magnitudes

of the interaction energies had increased due to an enhanced electrostatic interaction.

In the same way, the unpaired electron in the ketenyl radical should enhance each of

the interaction energies and hence should yield ratios which deviate from the polar-

izability predictions.

The experimental measurements presented here suggest that even with a fixed
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He interaction energy of 0 cm−1, Ne is expected to be bound with nearly 400 cm−1;

a value many times larger than a typical Ne / molecule Lennard-Jones well depth.

Nevertheless, the enhanced absolute magnitudes of the average energy lost (for all

energies examined) suggests that all three colliders, not just Ne and Ar, are interact-

ing strongly with ketenyl. In this regard, He interaction energies of 50-100 cm−1 can

be viewed as reasonable. However, further theoretical and experimental studies will

be required before definitive values for the interaction energies can be assigned.

As an initial attempt however, we were able to perform modest potential

energy scans of the HCCO / Rg system at the UMP2 / 6-311++G(2d,2p) level of

Figure 4.10
Two-dimensional potential energy surface scan, calculated at the UMP2 / 6-311++G(2d,2p)
+ (3321) level of theory, of atomic He approaching ground state HCCO radical in the
molecular plane.
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theory. In order to make the calculation more tractable, we limited the scope of the

scans to the area containined within the molecular plane. Furthermore, the geometry

of the radical was kept frozen at the calculated equlilibrium bond distances. Once

global minima were found, additional calculations were performed at the more so-

phisticated UMP4(full) / aug-cc-pVTZ + (3321) level of theory (where the (3321)

refer to a set of bond functions which were maintained midway between the center

of mass of the radical and the approaching atom). We note additionally that all cal-

culated energies were examined relative to a near infinite HCCO–Rg separation (i.e.

RRg−HCCO = 2,000 Å) and that basis set superposition error (BSSE) was treated by

employing the counterpoise procedure of Boys and Bernardi [37]

Contrary to the expectation that the global minimum would appear near the

unpaired electron (located on the carbon atom containing the hydrogen), figure 4.10

depicts that the two most prominent local minima actually occur near the C=O func-

tional group. At the UMP4(full) level of theory, the global minima for He, Ne, and

Ar were calculated to be -44.2, -76.5, and -193.7 cm−1, respectively. These calculated

values compare poorly with the SSH assisted measured values of -50, -426, and -555

cm−1. Nevertheless, given that our PES sampled only a single plane of approach, it

is quite reasonable to suggest that our calculation may have missed the true global

minimum altogether. We note additionally that the calculated interaction energies

were quite sensitive to both the method and the size of the basis sets employed. Fur-

thermore, the magnitudes of the interaction energies were observed to increase when

more sophisticated methods and basis sets were employed. Just the same, the overall

trends observed in the experimental and calculated data sets are clear; Argon shows

the strongest interaction with ketenyl, followed by Ne and finally He.
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4.4.3 Validity of Gaussian 03 PT2 calculations:

The core observation of the current study relies fundamentally on the measure-

ment of the time-resolved internal energy of the ketenyl radical. As described above,

this analysis is heavily predicated upon our ability to accurately model the spectro-

scopic manifold of the radical using theoretically derived anharmonicity constants. It

is reasonable then that we should provide some insight as to why we believe that the

calculated spectral constants are accurate and valid for use in such an analysis. In

addition to the cited benchmarks of Barone [28,29], we have tested the applicability

of PTS theory against the experimentally measured anharmonicity constants of var-

ious geometric isotopomers of hydrogen cyanide (HCN, HNC, DNC, and DNC) as

determined by Maki et al [38-41]. Similar to our analysis of ground state ketenyl, the

anharmonic spectral constants of the various isotopomers of hydrogen cyanide were

evaluated at the B3LYP / aug-cc-pVQZ level of theory. For each isotopomer consid-

ered, when considered relative to the high-resolution absorption / emission spectra of

Maki et al [38-41], PT2 analysis yielded remarkably accurate anharmonic constants

with average standard deviations of less than 1 cm−1. Subsequently, new sets of cal-

culated emission spectra for the ν1 CH stretch of HCCO were obtained with a ± 1

cm−1 variation applied to the originally calculated anharmonicity constants. When

the Ar data set was re-analyzed with the modified calculated emission spectra, vari-

ations to the calculated average internal energies of no more than ± 500 cm−1 were

obtained, well within the posted error bars.

As a further test of the accuracy of the calculated anharmonicity constants,

we refer back to the comparable results of the PTS study [11] of Krish et al. The

two kinetic distributions of the ketenyl radical were determined to possess internal

energy distributions of 2.4 eV and 3.6 eV. As the high energy distribution is expected
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to undergo secondary dissociation under our experimental conditions, only a single

ketenyl distribution (with 2.4 eV of internal energy) should be observable in our ex-

periments. Once again, our measured nascent internal energy of the ketenyl at 2.5 ±

1 eV provides compelling support for the accuracy of the calculated anharmonicity

constants.

4.4.4 Information theoretic examination of |〈∆E〉|:

In a recent study [18], we applied the methods of information theory (as de-

scribed by Muckerman)[42] as a means of quantifying the statistical partitioning of

available internal energy following the photolysis of vinyl cyanide. In particular, it

was found that the resulting internal energies of the main fragments (HCN, HNC,

HCCN, and H2CC:) were all well reproduced from a statistical analysis comparing

the geometries of the precursor and the resulting photofragments. It is suggested

that such an analysis is extremely well suited for describing product state distri-

butions following unimolecular dissociations in which there is no reverse barrier to

re-association (which would require an additional impulsive description). The SSHT

assisted analysis of the ketenyl / rare-gas atom system discussed above, highlights

the importance of the long-range attractive interaction between the radical and col-

lider, implying the potential generation of a metastable complex. From this stand

point, it is reasonable then to recast the notion of the radical / atom collision as a

half-collision, in which the departing components of the collision complex are treated

as fragments in a unimolecular dissociation. Information theory applied to such a

system (a complex dissociating into an atom and a molecule) is of interest as it could

provide a statistical measure of the translational energy partitioned to the retreating
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atom (i.e. the average energy transferred from the radical to the atom; 〈∆E〉). In this

regard, information theory could provide additional evidence to support the strong

(relative to closed shell species) interaction of ketenyl with the inert atomic colliders.

4.4.4.1 Statistical determination of 〈∆E〉:

For a given molecular complex composed of Np-atoms which undergoes uni-

molecular dissociation into an atom and a molecule composed of (Np-1) atoms, it is

found that the average internal energy of the molecular fragment can be calculated

as:

〈Ein〉 =
k − 3

k
Eavail, (4.20)

in which k relates directly to Np as: k = (6Np − 11) for linear and k = (6Np − 12)

for non-linear complexes. From here, the application of the conservation of both

momentum and energy yield a direct measurement of the average translational energy

of the departing atom, and subsequently the average energy lost per collision (e.g.

〈∆E〉) as:

〈ERg
trans〉 =

3

k

Mmolecule

Mmolecule +Matom

Eavail = 〈∆E〉, (4.21)

wherein Mx refers to the associated mass of the individual fragments. The observed

mass dependence, depicted by equation 4.15, shows a distinct similarity to the origi-

nal formation of SSH theory. It is also important to note that one of the fundamental

assumptions inherent in the above analysis is the complete randomization of the avail-

able total energy prior to the dissociation. Given the metastable nature of the radical

/ collider interaction, if complete energy randomization is not achieved; it is conceiv-

able that equation 4.15 could significantly overestimate the energy partitioned into
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the departing atomic collider.

4.4.4.2 Comparison with experiment:

When equation 4.15 is applied to the ketenyl / rare-gas system (for average

energies up to 20,000 cm−1) a clear SSH reduced mass trend is observed. The agree-

ment with the original SSH theory suggests that the assumed attractive interaction is

invariant among each of the various colliders, i.e. the initial stance of the analysis is

the existence of a bound complex. In agreement with the modified SSHT theory ap-

plied above, a common interaction energy (just like a zero interaction energy) favors

transitions induced by lighter colliders. Additionally, as was suggested previously, it

is observed that the calculated 〈∆E〉’s are off by about an order of magnitude, sug-

gesting the need for an appropriate scaling factor. In particular, such a scaling factor

should be required to account for the weak nature of the complex bond, and could

provide insight into the relative strengths of the individual interactions. We note

that, in a concurrent study from this lab [43], it has been observed that the above

equation likewise overestimates (to a similar extent) the values of 〈∆E〉 measured

in the collisional deactivation of HNC. Similar to ketenyl, HNC (considered to be

a zwitterion) possess an exotic electronic configuration, in which partial charges are

present on both the nitrogen and carbon centers. As such, it is reasonable to expect

that enhanced attractive interactions will lead to more tightly bound complexes, and

hence enhanced energy transfer probabilities. We note coincidently that, despite an

incorrect reduced mass trend already discussed, when an additional (1/k) coefficient

is added to equation 4.15 above, the calculated 〈∆E〉 magnitudes are in near quan-

titative agreement with the measured values for both the HNC and HCCO systems.
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While such a scaling factor fails to provide insight into the measured interaction en-

ergies, and hence clearly requires a further scaling factor; the combined method of

equation 4.15 with the (1/k) scaling factor provide a novel first order approximation

of the expected average energy lost for a given radical system.

4.5 Conclusion

We have presented an experimental examination of the V-T energy trans-

fer of vibrationally highly excited ketenyl radical, collisionally quenched through the

rare-gas atomic colliders (He, Ne, and Ar). A series of time-resolved internal energy

distributions were obtained through a Gaussian assisted modeling of the anharmonic

ν1 CH stretch, observed in time-resolved emission spectra following the 193 nm pho-

tolysis of ethyl ethynyl ether. The average nascent internal energy of the radical was

measured to be 2.5±0.1 eV, in excellent agreement with the stable high recoil kinetic

distribution observed in the prior PTS study of Krish et al [11]. The dynamic evolu-

tion of the radical internal energies, as a function of the number of rare-gas collisions,

were fit to analytical forms from which the average energy lost per collision (for each

inert collider) was determined. It is found that the ketenyl radical exhibits a non-SSH

reduced mass trend in which Ne is the most efficient quencher, followed by He and fi-

nally Ar. Additionally, similar to results for the benzyl radical [32], it is observed that

the ketenyl radical exhibits overall enhanced energy transfer values in which 〈∆E〉 >

10 cm−1 (up to about 200 cm−1 at 〈E〉 = 20,000 cm−1) is observed for all internal

energies examined. Application of SSHT theory, in which the long-range attractive

intermolecular interaction energy is incorporated into the original SSH theory, showed

that the observed reduced mass trend actually correlates with a monotone increasing
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interaction energy trend in which De(Ar-HCCO) > De(Ne-HCCO) > De(He-HCCO).

Furthermore, the deviation of the interaction energy ratios away from the associated

atomic polarizabilities suggests that the unpaired electron of the radical is resulting

in an enhanced interaction energy and thus a more efficient energy transfer process.
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Chapter 5

Photodissociation of vinyl cyanide at 193 nm: Nascent

product distributions of the molecular elimination

channels†

† The majority of this chapter has been published in the Journal of Chemical Physics 130, 044307
(2009).
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5.1 Introduction

The photodissociation dynamics of small, unsaturated organic molecules such

as ethylene as well as its various substituted analogs have been a subject of interest

toward the fundamental understanding of reaction dynamics as well as their relevance

to combustion, environmental, and atmospheric chemistry [1-11]. Beyond the case

of ethylene, much attention has been focused on the halogen substituted variants,

particularly vinyl chloride [6-9] and vinyl bromide [10-12]. Recent years have seen in-

creasing attention to the more complex cyano-substituted species vinyl cyanide, also

known as acrylonitrile [13-18].

Similar to other substituted vinyl species, it has been observed that vinyl

cyanide exhibits strong absorption near 193 nm, with contributions predominantly

from a π∗ ← π transition (centered at 203 nm) as well as a σ∗ ← σ (172.5 nm)

and a π∗ ← n (217.0 nm) transition [19]. As with other substituted vinyl species,

dissociation at 193 nm potentially results in four general reaction pathways; two rad-

ical and two molecular in nature [1-11]. However, the added complexity gained by

changing the substituted functionality from a hydrogen (or halogen) to a heteroge-

neous diatomic species results in additional reaction pathways due to the potential

presence of geometric isomers. Specifically, the various reaction channels available to

vinyl cyanide at 193 nm, including unique electronic and/or bonding states, as well

as their associated endothermicity can be summarized as follows [13,20]:

H2CC(H)CN → HCCH +HNC ∆H0 = 56 kcal mole−1, (5.1)

→: C = CH2(
1A1) +HCN ∆H0 = 86 kcal mole−1, (5.2)

→: C = CH2(
3B2) +HCN ∆H0 = 134 kcal mole−1, (5.3)
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→ HCCCN +H2 ∆H0 = 50 kcal mole−1, (5.4)

→: C = C(H)CN(1A′) +H2 ∆H0 = 90 kcal mole−1, (5.5)

→: C = C(H)CN(3A′) +H2 ∆H0 = 140 kcal mole−1, (5.6)

→ H2C = CCN +H ∆H0 = 108 kcal mole−1, (5.7)

→ H2C = CH + CN ∆H0 = 131 kcal mole−1. (5.8)

Most studies to date have examined the radical dissociation channel leading to cyano

(CN) + vinyl (H2CCH) largely by probing the state distribution of the CN photofrag-

ment [14,15]. With the exception of an early photofragment translational spec-

troscopy (PTS) study which suggested that the cyano loss channel accounted for

nearly 75% of the total dissociation yield [21] most studies agree that the cyano +

vinyl radical channel accounts for (at best) less than 1% of the total quantum yield

[13-17].

In an attempt to detect the products resulting from reactions [(1)-(6)], Fahr

and Laufer16 studied the photolysis of acrylonitrile–1d excited with 190 nm light

using timeresolved UV absorption spectroscopy. The observation of known transi-

tions assignable to deuterium cyanide (DCN) and triplet vinylidene (:C=CH2[
3B2]),

coupled with the absence of transitions from hydrogen cyanide (HCN), suggested the

dominance of reaction (3). Furthermore, their observations suggested that elimina-

tion involving CN in either the (X) [reaction (8)] or (A) electronic state account for

less than 5% of the total quantum yield.

More recently, Blank et al. [13] updated the PTS results by incorporation of

a tunable vacuum ultraviolet (synchrotron radiation) beam as an ionization source

to gain insight into the internal energy content of the resulting photofragments. This
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most recent PTS study proposed that photodissociation at 193 nm proceeds with four

main elimination channels describable by reactions: (1) and/or (2), (4) and/or (5),

(7), and (8). Furthermore, it was suggested that all dissociation channels occurred

on the ground electronic state following the internal conversion from the initially pre-

pared S1 state. However, with the exception of support for the minimal presence of

reaction (8), the branching ratios of the remaining channels were left undetermined.

Additionally, while it was suggested that the H2 loss channels [reactions (4) and (5)]

occurred competitively, there remained lingering doubts as to the relative importance

of the three H(CN) loss reactions [(1)–(3)]. Contrary to the results of Fahr and Laufer

[16], the presence of triplet vinylidene [as in reaction (3)] was readily excluded based

on conservation of energy arguments. Nevertheless, it was still unclear whether the

dominant H(CN) loss channel corresponded to a four-center elimination yielding HNC

+ acetylene [reaction (1)] or a three-center elimination yielding HCN + vinylidene

(1A1) [reaction (2)]. The calculated reverse recombination barrier of the three-center

elimination matched well against the measured average translational energy of the

m/e (26 + 27) fragments and hence offered support for the dominance of the three-

center elimination channel. However, the photoionization spectra suggested that the

H(CN) fragment (then considered solely to be HCN) was generated with too much

internal energy (2.6 eV) and hence could not have occurred via the three–center elim-

ination channel.

A subsequent theoretical study by Derecskei–Kovacs and North, using transi-

tion states generated by ab initio methods for unimolecular Rice-Ramsperger-Kassel-

Marcus (RRKM) dissociation rate calculations [17] concluded that the dominant

molecular elimination channels are reactions (2) and (5); both of which occur through

three–center transition states with calculated branching ratios of 0.593 and 0.152,

respectively. Additionally, it was determined that the four–center H(CN) reaction

105



occurred with the generation of HNC + acetylene, contrary to the prior expectation

in which HCN was the common counterfragment for both three– and four–center

eliminations [13]. Moreover, the calculated energy of the four–center transition state

was predicted to be higher than that of the three-center transition state by nearly 10

kcal mole−1, resulting in a substantial decrease in the calculated RRKM dissociation

rate and thus a negligible branching ratio of 0.0012 for the reaction leading to HNC

+ acetylene.

In a prior study, we used time-resolved Fourier transform infrared emission

spectroscopy (TR–FTIRES) to examine the dissociation fragments following the 193

nm photodissociation of vinyl cyanide [18]. IR emission from acetylene and hydro-

gen isocyanide, among other species, was detected, suggesting that reaction (1) was

more significant than previously considered. The relative quantities of both hydrogen

cyanide and cyanoacetylene were obscured, however, by the near resonant overlap of

IR transitions associated with the fundamentals and combination bands of acetylene.

As a result, it was initially unclear if the three-center elimination channel, reaction

(2), yielding HCN + vinylidene (1A1) was important.

In what follows, we report observations made following the photodissociation

of deuterated vinyl cyanide in an attempt to decouple the overlapping transitions and

hence finally discern the relative presence of HNC [reaction (1)] versus HCN [reac-

tion (2)]. Using perdeuterovinyl cyanide, the difference between the CH fundamental

stretching transitions of acetylene and hydrogen cyanide, a mere 22 cm−1 in the pro-

tonated form, become much more substantial (191 cm−1) and can hence be resolved in

the IR emission spectra. A detailed analysis of the TR–FTIRES data recorded follow-

ing the 193 nm photodissociation of both vinyl cyanide and perdeuterovinyl cyanide

yields the first experimental relative branching ratio of the three– versus four–center

elimination of C2H2 + H(CN). Furthermore, the superior frequency resolution of
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the deuterated spectra provides an opportunity to assess the relative presence of

cyanoacetylene and challenge the prior RRKM prediction [17] that the three–center

H2 elimination [reaction (5)] is the dominant loss channel.

5.2 Experimental

A more detailed description of the experimental setup has been given else-

where [11,18,22-25]. Briefly, the output from an ArF excimer laser (λ = 193nm, 20Hz,≤

50mJ/pulse) (Lambda Physik, LPX 200) was collimated through a photolysis cell

mounted with two CaF2 windows. The sample typically contained 10-30 mTorr of

precursor molecules and 4 Torr of He bath gas under constant flow conditions. Pres-

sure in the cell was monitored with a capacitance manometer (MKS Baratron, 0-10

Torr). Emission after the photolysis laser pulse was collected perpendicular to the

laser propagation axis by a gold–mirror Welsh cell arrangement in the photolysis cell

and then collimated and focused into the FTIR spectrometer by two KBr lenses that

match the f/4 focusing characteristics of the spectrometer. The spectrometer (Bruker

IFS 66/s) was equipped with an interferometer capable of time-resolved step–scan

measurements and a mercury cadmium telluride detector (HgCdTe J15D14, EG&G

Judson Technologies, 500 ns rise time, 750-10 000 cm−1 spectral range). The internal

cavity of the FTIR was continually flushed with a FTIR purge gas generator (75-45,

Parker Balston). The spectral response of the HgCdTe detector was calibrated with

a Globar R© source, which was modeled as a perfect blackbody.

Interferograms for this work were recorded at 100 ns time intervals averaging

200 laser shots per interferogram point for a total observation window of 20 µs. The

time–resolved interferometric signal from the detector was amplified (ten times) by a
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fast amplifier (Stanford Research Systems SR445, DC-300 MHz) before reaching the

transient digitizer (Spectrum PAD82a, 100/200 MHz), which was triggered by a fast

photodiode that monitored the excimer output. Subsequent Fourier transformation

of each interferogram yields a time–resolved spectrum at every 100 ns. To further

enhance the observed spectral resolution, spectra were synchronously cross correlated

in bins of 10 to yield representative spectra spanning 1.0 µs intervals [26]. The spec-

tral resolution was typically set at 12 cm−1.

Acrylonitrile (≥99%) and acylonitrile–d3 (98% atom D) (both Sigma–Aldrich)

were processed with several freeze pump thaw cycles before use and purity checked

with IR absorption spectroscopy. Helium gas from the supplier (Spectra Gas, re-

search grade, 99.9%) was used directly. Unphotolyzed sample was recollected after

each experiment at liquid nitrogen temperature and purified for further use.

5.3 Results and Analysis

5.3.1 Time–resolved IR emission spectra following 193 nm

photodissociation

Time–resolved IR emission spectra of the protonated sample at intervals of 2,

6, 11, and 16 µs following the arrival of the 193 nm photolysis pulse are presented in

Fig. 1. Five main spectral features persist throughout all observed time slices. Table

5.1 summarizes the assignments of these IR emission features. With the exception of

the feature just above the low-energy cutoff of the MCT detector around 720 cm−1,

all observed features exhibit an anharmonic bandcenter shift toward the fundamental

transition frequencies with time. The features exhibiting marginally resolved P and

R-branches with fundamentals at 2023 and 3652 cm−1 are assignable to the ν3 CN
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Figure 5.1
Time-resolved IR emission spectra collected following the 193 nm photodissociation of vinyl
cyanide.

stretch and ν1 NH stretch of HNC [27] respectively. While there is no indication

of the ν3 CN stretch of HCN at 2097 cm−1, this does not imply the absence of

HCN as a product. The CN stretch of HCN is a notoriously weak feature with
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a known transition dipole moment of only 0.001362 D [28], much smaller than the

0.108 D transition dipole moment of the CN stretch of HNC [29,30]. Any signal arising

from the CN stretch of HCN would likely be buried in the noise of the spectra. In

comparison, the CH stretch of HCN [28] has a detectable transition dipole moment

of 0.0831 D.

Table 5.1
The spectral assignment (fundamental transition frequencies and molecular nature)
for the observed features in the time–resolved IR emission spectra following the 193
nm photodissociation of vinyl cyanide. Also listed are the photodissociation channels
leading to the production of the observed species.

Frequency(cm−1) Species Dissociation channel

712 HCN(ν2) [2]

720 HCCCN(ν6 + ν7) [4] and [5]

730 HCCH(ν5) [1] and [2]

1314 HCCCN(2ν5) [4] and [5]

1326 HCCH(ν4 + ν5) [1] and [2]

1410 HCN(2ν2) [2]

2023 HNC(ν3) [1]

2563 H2CCCN(ν3) [7]

2596 HCN(ν1 − ν2) [2]

3289 HCCH(ν3) [1] and [2]

3311 HCN(ν1) [2]

3652 HNC(ν1) [1]

The intense feature in the emission spectra around 3300 cm−1, exhibiting a sizable an-

harmonic shift and largely lacking any rotational resolution, is potentially assignable
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as the CH stretching modes of acetylene [31] at 3289 cm−1, HCN [32] at 3311 cm−1,

and possibly cyanoacetylene [33] around 3326 cm−1. As all three modes exhibit

fundamental transitions within 40 cm−1 of one another, it is unlikely that the rela-

tive presence of either species can be discerned. Similarly, the second most intense

feature around 1300 cm−1 is likely composed of overlapping contributions from the

(ν4 + ν5) combination band of acetylene [31] at 1326 cm−1, the 2ν5 overtone band of

cyanoacetylene [33] at 1314 cm−1, as well as possible minor contributions from the

2ν2 overtone band of HCN [32] around 1410 cm−1. Without clear resolution of each

band, these features are unlikely to yield information regarding the relative amount

of either fragment. It is important to note additionally that there is no clear evidence

to support the presence of the ν3 CN stretch of cyanoacetylene, which has a funda-

mental transition near 2274 cm−1 and transition dipole moment of 0.0418 D [33]. In

that regard, as the ν3 CN stretch is a less energetic motion of cyanoacetylene (within

the assumption of a Boltzmann distribution for the excited molecules) compared to

the ν1 CH stretch, there should not be a substantial cyanoacetylene contribution in

the 3300 cm−1 band. In the same way, the 2ν5 overtone band of cyanoacetylene at

1314 cm−1 is a less energetic motion compared with both the ν3 CN and the ν1 CH

stretches; hence we cannot rule out a low-energy cyanoacetylene contribution in the

1300 cm−1 band. Regardless, the sizable overlap of all the potential transitions from

either acetylene, HCN, or cyanoacetylene in the 1300 cm−1 band precludes a defini-

tive assignment using these spectra. Lastly, the feature with the latter time position

near 2600 cm−1 has previously been assigned solely as the ν3 CN stretch of the alpha

cyanovinyl radical (H2C=C–CN) [18]. However, if vibrationally excited HCN is pro-

duced in significant amounts, this feature would also contain contributions from the

(ν1 − ν2) difference band of HCN with a known fundamental near 2596 cm−1 and a

modest transition dipole moment of 0.0226 D [28].
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Figure 2 highlights the IR emission spectra at numerous time intervals follow-

ing the 193 nm photodissociation of perdeuterovinyl cyanide. As in the protonated

case, there is a series of five features that persist for most of the observed time slices.

Figure 5.2
Time–resolved IR emission spectra collected following the 193 nm photodissociation of fully
deuterated vinyl cyanide.
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The feature attributable to the (ν4 + ν5) combination band of acetylene [31,34] and

the 2ν5 overtone band of cyanoacetylene [35] is identified at 1050 cm−1 upon deutera-

tion. Additionally, there is a band centered near 1950 cm−1, assignable to the ν3 CN

stretching modes of DNC (1938 cm−1) (Ref. 36) and DCN (1925 cm−1) [37]. Unlike

HCN, DCN has a modest transition dipole moment of 0.02274 D (Ref. 28) for the CN

stretching mode. The transition dipole moment of DNC has not yet been measured,

but ab initio calculations at the B3LYP/aug–cc–pVQZ (Ref. 38) level generates a

transition dipole moment of 0.066 D for the ν3 CN stretch mode. Subsequently, both

isomers (DCN and DNC) could be contributing to the signal observed at 1950 cm−1.

The ν3 CN stretch of deuterated cyanoacetylene is an IR active mode with a known

fundamental frequency of 1966 cm−1 and a transition dipole moment of 0.0439 D [35].

This mode is notably absent in the undeuterated spectra; therefore there is no reason

to expect that it is contributing significantly in the deuterated spectra.

The most interesting features of the perdeuterodissociation spectra (Fig. 2)

are the group of partially resolved features spanning from 2200 to 2800 cm−1. Unlike

the protonated fragments, the CD stretching fundamentals of deuterated acetylene

and DCN, as well as the ND stretch of DNC, are all well resolved by at least 150 cm−1.

As is particularly evident in the spectra at and after 4 µs, there are three partially re-

solved features with fundamentals at 2349, 2630, and 2787 cm−1 which are assignable

to deuterated acetylene [31,34], DCN [37], and DNC [39], respectively. It is important

to note that the feature at 2250 cm−1 in the early time spectra quickly undergoes an

anharmonic shift into the ν3 CD stretch of deuterated acetylene at 2439 cm−1. This

feature in the early time spectra should not be assigned as the ν2 C≡C stretch of

deuterated cyanoacetylene whose fundamental transition is at 2247 cm−1 [|µ|=0.0469

D (Ref. 35)]. We note that a similar feature existed in the time-resolved IR emis-

sion spectra previously taken after the 193 nm photodissociation of perdeuterovinyl
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bromide [12]. Figure 3 highlights a comparison between the quickly shifting features

observed in both vinyl cyanide–d3 and vinyl bromide–d3 dissociation–emission spec-

tra. In our prior examination of the dissociation of vinyl bromide, it was determined

that the dominant channel leading to molecular fragments was that of a three–center

elimination of hydrogen bromide and vinylidene (1A1) [11].

Figure 5.3
Comparison of early time emission spectra following the 193 nm photodissociation of deuter-
ated vinyl cyanide (black, dotted) and deuterated vinyl bromide (red, solid).

It should be noted that calculations have found that vinylidene (1A1) has a shallow

isomerization barrier ( 1.5 kcal mole−1) and on the time scale of our observation

would rapidly isomerize to acetylene with a minimum of 44.3 kcal mole−1 of internal
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energy [40-43]. When considering deuterated vinylidene (1A1), which has an estimated

(based on zero-point energy correction) isomerization barrier of 24 kcal mole−1, we

anticipate that deuterated acetylene would be initially produced with at least 45.4

kcal mole−1 of internal excitation [41,43]. Subsequently, we assign the quickly shifting

feature originally appearing at 2250 cm−1 to emission from the ν3 CD stretch of highly

rovibrationally excited deuterated acetylene.

Table 5.2
The spectral assignment (fundamental transition frequencies and molecular nature) for
the observed features in the time-resolved IR emission spectra following the 193 nm
photodissociation of vinyl cyanide–d3. Also listed are the photodissociation channels
leading to the production of the observed species.

Frequency(cm−1) Species Dissociation channel

1314 DCCCN(2ν5) [4] and [5]

1326 DCCD(ν4 + ν5) [1] and [2]

1410 DCN(ν3) [2]

2023 DNC(ν3) [1]

3289 DCCD(ν3) [1] and [2]

3311 DCN(ν1) [2]

3652 DNC(ν1) [1]

The complete assignments of bands found in the IR emission spectra following 193

nm dissociation of perdeuterovinyl cyanide have been summarized in Table 5.2.
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5.3.2 Photodissociation product population distributions

The anharmonic shift of a particular emission feature can be used to determine

the internal energy content of the emitting molecules. Consequently, the temporal

evolution of the frequency and intensity of emission features permits deduction in the

change of the internal energy content of the emitting photofragments as a function of

time [4448]. The procedure for deducing the internal energy content of the emitting

molecules from the IR emission spectra is as follows: Using experimentally deter-

mined spectroscopic constants, we can calculate the energy of all vibrational levels of

a particular molecule to high excitation energy. It is assumed that emission intensity

from each of the high vibrational levels follows harmonic selection rules through all

the IR active modes but the emission position is determined by the energy difference

between the emitting level and the corresponding lower level. With a population dis-

tribution imposed on the vibrational levels, an emission spectrum can be calculated.

Conversely, the population distribution can be determined from a fit of the experi-

mentally observed spectra using the series of calculated spectra. This approach has

been applied previously for the study of collisional energy transfer of highly vibra-

tionally excited nitrogen dioxide [4448] sulfur dioxide [44], as well as pyrazine [44].

In previous studies where rotational resolution was not attainable, the emis-

sion spectra were calculated as purely vibrational transitions. The bandwidth and

shape of the vibrational emission band were treated as a Gaussian function whose

width matched that of the associated observed fundamental absorption feature [48].

In the current study, particularly for spectra recorded at later times, partial resolution

of the rotational contour is observed. For these spectra, the emission band is calcu-

lated as the sum of individual rotational transitions where each transition is imposed

with a Gaussian functional line shape, proportional to the experimental spectral res-

116



olution. The intensity of each rovibrational transition [49-51] in the emission spectra

is given by

Iemν,J = Lνν
4
n,m|µ0←1|2SPQRJ,K exp

(
−Ein[νk(lk), J ]

kBTrot

)
, (5.9)

in which νn,m corresponds to the frequency of the [m ← n] rovibrational transition,

|µ0 ← 1| the fundamental transition dipole moment, and Lν is the vibrational line

strength factor according to the harmonic scaling rule [44,52]. SPQRJ,K refers to the set

of (∆K = 0,∆J = 0,±1) Hönl-London factors [49,53]. As will be discussed later, the

vibrational population will be fitted through variation in a vibrational temperature

to describe the distribution. However, the resolution of our experiments precludes the

possibility of fitting the rotational distribution. A constant rotational temperature

(Trot) of 300 K has been used to model the rotational distribution. For latter time

spectra, for example, after 10 µs, where rotational resolution is more relevant, each

emitting molecule has experienced more than 100 collisions during the 10 µs period

to allow rotational thermalization. For the earlier time spectra, even though the

nascent reaction products may be generated with high rotational excitation, because

these molecules usually also have a broad vibrational energy distribution, the effect

of the rotational temperature in emission spectra is less discernable.

The detailed procedure for fitting the experimental spectra with the calculated

emission basis set has been outlined previously in great detail [44,48]. Briefly, as the

number of allowed transitions rapidly increases with internal energy, it is impractical

to attempt a fit in which each individual transition is allowed to vary. To simplify the

process, the rovibrational manifold is partitioned into evenly spaced 500 cm−1 wide

bins. Invoking an assumption of equal population of all levels within a given bin,

representative emission spectra can be generated by summing up all allowed transi-
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tion within each energy bin. With the greatly reduced number of basis bin spectra,

the experimental spectra can be fitted either through enforcing a functional form on

the bin population distribution [48] or through a free-form fit [47]. For the free–form

fit, the populations of the individual bins are allowed to vary freely until the differ-

ence between the calculated and experimental spectra is minimized using a nonlinear

least-squares fitting procedure.

5.3.2.1 Modeling IR emission from DCCD ν3

High resolution spectroscopic investigations of deuterated acetylene have

yielded rovibrational constants for describing the ground state vibrational levels up to

17 000 cm−1 above the zero-point energy [31,34]. If the initial photofragment is in the

form of deuterated vinylidene (1A1) [reaction (2)], isomerization to deuterated acety-

lene will add an additional 46 kcal mole−1 (16 000 cm−1) of internal excitation [41,43]

on top of any energy originally partitioned to the nascent vinylidene (1A1) fragment.

Alternatively, direct generation of acetylene [as in reaction (1)] leaves nearly 92 kcal

mole−1 to be partitioned among all the various translational and internal degrees of

freedom of both photofragments. Therefore, it is reasonable to expect that if acety-

lene is generated both as vinylidene (1A1) in a three–centered reaction [reaction (2)]

and directly from a four–center reaction [reaction (1)], it should show up in the col-

lected emission spectra in two very distinct energetic distributions separated by as

much as 46 kcal mole−1.

For the deuterated acetylene spectra, our simulation analysis will focus solely

on the ν3 CD stretch. Only transitions allowed by the rigid-rotor/harmonic oscillator

selection rules: ∆ν3 = −1,∆J = 0,±1 will be included in the calculation. To account
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Figure 5.4
Experimental (black, dotted) spectrum collected 2 µs after the dissociation of deuterated
vinyl cyanide overlaid with the calculated best fit spectrum (red, solid) of deuterated acety-
lene obtained using Eqs. (5.9) and (5.10).

for the possibility that acetylene may be generated with vastly different energy content

from two different reactions, a dual population distribution [Eq. (10)] is used to fit

the observed spectral feature: a low–energy distribution defined by a temperature (in

the first term) as well as a high–energy Gaussian distribution,

P j =
α1√
2π
exp

(
−hcEj
kBTvib

)
+

α2√
2πσ

exp

(
−[Ej− < E >]2

2σ2

)
. (5.10)
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In the spectral fitting, there are four variables: the relative intensity scaling

factors (α1/α2), the low–energy vibrational temperature (Tvib), as well as the average

Figure 5.5
DCCD population distributions as a function of time following the 193 nm dissociation of
deuterated vinyl cyanide.

internal energy <E> and width (σ) of the high-energy Gaussian distribution. Figure
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4 highlights an experimental emission spectrum collected 2 µs after the arrival of the

photolysis pulse with an overlay of the best fit calculated for deuterated acetylene

emission. At this earlier time, as expected, the bimodal distribution is clear. The

complete evolution of the deuterated acetylene populations as a function of time,

deduced from the fitting of spectra taken at various times, is shown in Fig. 5. At

Figure 5.6
Measured variation of the average energy of the highly rovibrationally excited DCCD (colli-
sionally quenched with 4 Torr He) as a function of time along with an overlaid exponential
fit function. The zero–time point has been estimated through back extrapolation of the expo-
nential fit.

early times when there are two distinct energy distributions, the change in time of

the average internal energy of the high-energy distribution can be well described by
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a decaying exponential function. As displayed in Fig. 6, extrapolation of this func-

tional form back to zero time yields an average initial internal energy for deuterated

acetylene of 22 400±700 cm−1 (64.2±2.0 kcal mole−1).

Since the zero-point energy difference between deuterated acetylene and vinylidene

(1A1) is predicted to be 15 880 cm−1, or 45.5 kcal mole−1 [41,43], it is suggested that

vinylidene (1A1) is initially generated from reaction (2) with 7600±700 cm−1 (22±2.0

kcal mole−1 of internal energy.

For the low-energy acetylene distribution, a vibrational temperature is de-

termined from the fitting of each time–resolved spectrum. The series of vibrational

temperatures was found to be well described by a decaying exponential functional

form. Extrapolation of this functional form back to zero time suggests an initial vi-

brational temperature of 18 425 K, or an average energy of 29.0±1.4 kcal mole−1.

This temperature corresponds to the nascent acetylene–d2 internal energy distribu-

tion following the four–center elimination [reaction (1)].

5.3.2.2 Modeling IR emission from HNC ν1 and ν3

The appearance of the ν1 NH stretch and ν3 CN stretch transitions, unob-

structed by other bands, from HNC in the emission spectra provides an opportunity

to examine the internal energy content of the products from the four–center HNC +

acetylene elimination channel of vinyl cyanide. Prior spectroscopic studies by Maki

and Mellau [27] have determined the vibrational constants from vibrational levels

of HNC up to 6100 cm−1 above the zero–point level. These constants are used in

this study to calculate the vibrational level positions up to 12 000 cm−1 above the

zero-point level. IR emission transitions from these levels are then calculated using
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the rigid–rotor/harmonic oscillator selection rules (∆ν1 and ∆ν3 =-1, ∆J = 0,±1)

to fit the observed ν1 NH stretch and ν1 CN stretch bands for the determination of

the vibrational energy distribution.

Unlike the deuterated acetylene case, there appears to be only a single popula-

tion distribution of HNC determined from the spectral fitting. The fitted population

appears to be readily describable by a distribution function as in the first term of Eq.

(5.10) with a vibrational temperature.

Figure 5.7
Experimental (black, dotted) spectrum collected 9 µs after the dissociation of vinyl cyanide
overlaid with the calculated best fit spectrum (red, solid) of hydrogen isocyanide obtained
using Eqs. (5.9) and (5.10).

Figure 7 highlights the representative fit of the HNC features in late time emis-

sion spectra. The evolution of the measured vibrational temperature, as presented in

Fig. 8, is observed to obey an exponential functional form, which permits extrapo-
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lation back to a zero-time vibrational temperature of 15 192 K. The nascent average

internal energy of HNC is estimated from this zero-time vibrational temperature to

be 24.5±1.4 kcal mole−1 for HNC originating from reaction (1).

Figure 5.8
Measured variation of the vibrational temperature of rovibrationally excited HNC (collision-
ally quenched with 4 Torr He) as a function of time along with an overlaid double exponential
fit function. The zero–time point has been estimated through back extrapolation. The inset
shows the corresponding average internal energy content of the HNC ensemble as a function
of time.
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5.4 Discussion

5.4.1 The electronic state of vinylidene from the photodissociation

reaction

Following the photodissociation of vinyl cyanide–1d near 190 nm, Fahr and

Laufer [16] observed UV absorption transitions associated with both DCN and vinyli-

dene (3B2). As there were no observable transitions assignable to HCN (the expected

four–center elimination photoproduct), it was suggested that the dissociation oc-

curred predominantly through a three–center elimination channel yielding DCN +

vinylidene (3B2). Nevertheless, in the follow up PTS study by Blank et al. [13],

while it was suggested that the three–center channel dominated the H(CN) + C2H2

elimination, conservation of energy arguments based on the measured translational

energy results effectively ruled out the occurrence of vinylidene (3B2). New results

from the emission spectra can be used to help resolve this contradiction.

Dissociation via reaction (3) leaves only 14 kcal mole−1 to be partitioned

among the various degrees of freedom of both the HCN and vinylidene (3B2) frag-

ments [13]. With the possible exception of the low–energy bending motions, vibra-

tional populations of the nascent HCN and vinylidene (3B2) would likely be limited

to the zero-point level and hence unobservable in the IR emission spectra. Vinylidene

in the (3B2) state is relatively stable due to a massive isomerization barrier of 50 kcal

mole−1 relative to the associated acetylene (3B2) species [40]. This is quite different

from the relatively unstable vinylidene (1A1), which would quickly isomerize to acety-

lene (1Σ+
g ) through a shallow barrier of only a few kcal mole−1. Triplet vinylidene

produced from direct photodissociation is not expected to give IR emission but is in-

stead expected, through collision induced intersystem crossing with the inert gas, to
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become first singlet vinylidene and then singlet acetylene. The singlet (1A1)–triplet

(3B2) splitting of vinylidene is predicted to be on the order of 2 eV, or 45 kcal mole−1

[40]. Hence, any singlet acetylene generated from crossing of triplet vinylidene should

have at least 92 kcal mole−1 of nascent internal energy. In the present study, it has

been determined that acetylene is generated in two distinct energetic distributions.

The highest excited acetylene distribution has an estimated average nascent vibra-

tional energy of only 64 kcal mole−1, well below the 92 kcal mole−1 possible if it were

from triplet vinylidene in reaction (3). Therefore, it is suggested that the highly ex-

cited acetylene distribution containing 64±2.0 kcal mole−1 of nascent internal energy

originated not from triplet vinylidene (3B2) but rather as singlet vinylidene (1A1)

with 22±2.0 kcal mole−1 of nascent internal energy. Furthermore, conservation of

energy suggests that HCN is generated with approximately 25 kcal mole−1 of nascent

internal energy, nearly double the 14 kcal mole−1 of total energy available following

dissociation to HCN + vinylidene (3B2). Therefore, in agreement with the results

of Blank et al., the observed HCN and acetylene IR emission features suggest that

reaction (2) [as well as reaction (1)] is occurring to a much more significant extent

than reaction (3).

5.4.2 HNC versus HCN as photodissociation product

The PTS study of Blank et al., using a tunable ionization source, has pro-

vided valuable data on the nascent internal energy of the m/e 27 (HCN and/or HNC)

photofragment [13]. The observed ionization onset of 11.0±0.3 eV when assigned to

HCN (with an ionization potential of 13.6 eV) would suggest a high internal energy

of 2.6±0.3 eV, or 60 kcal mole−1, in nascent HCN. On the other hand, since our
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study has clearly provided evidence supporting the existence of HNC as a reaction

product, the PTS results should be re–examined. If the m/e 27 signal in the PTS

study were to be assigned to HNC [which has a measured ionization potential of 12.04

eV (Ref. 54)], a more reasonable internal energy content of 1.0±0.3 eV (24±7 kcal

mole−1) should then be observed. This number is in excellent agreement with our

measured value of 24.5±1.4 kcal mole−1. Both isomers (HCN and HNC) may appear

as photodissociation products and contribute to the m/e 27 signal in the PTS study.

The presence of excited HNC with a lower ionization threshold, however, prevented

an unobstructed measurement of the HCN internal energy content.

The relative population and internal energy content of HCN/HNC can be

deduced by examining the population and energy content of the corresponding co-

product acetylene in the photodissociation reaction. Specifically, as noted in the ab

initio study of Derecskei-Kovacs and North [17], the generation of HCN should be ac-

companied by vinylidene (1A1) [reaction (2)], or rather, highly rovibrationally excited

acetylene, whereas the generation of HNC should be accompanied by minimally ex-

cited acetylene [reaction (1)]. Figure 9 exhibits the ratios of the high-energy acetylene

population [from reaction (2)] to the total acetylene population [from both reactions

(1) and (2)] determined from the emission spectra detected at different times follow-

ing the photodissociation of deuterated vinyl cyanide. The earliest ratios, obtained

from fits to two nearly completely resolved acetylene features in the emission spectra,

show minor fluctuations around a value of 0.77. As time progresses, the fit attributes

more population to the low–energy vibrational temperature, likely due to collisional

relaxation, and hence results in a rapid decrease in the ratio. The earliest observed

ratios are found to be relatively constant around a value of 0.77, which is thus adopted

as the representative nascent population ratio for acetylene originating from reaction

(2) relative to the total acetylene population [originating from reactions (1) and (2)].
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Consequently, the ratio of the D(CN) + C2D2 photodissociation products in two iso-

meric forms is deduced as [DCN] : [DNC] = (3.34 : 1.00).

With the ratio of the DCN/DNC populations determined, we can now recon-

sider the significance of the center of mass (c.m.) translational energy distribution

Figure 5.9
Measured branching ratio of highly rovibrationally excited DCCD (three–center elimination)
relative to the total DCCD population. The initial four points represent results obtained
from fitting two partially resolved DCCD features, highly excited DCCD as well minimally
excited DCCD. Points 6-15 correspond to an unresolved mixture of the two features, and the
final five points were obtained by assuming a single representative vibrational temperature.
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[P(ET )], measured for the m/e (26+27) signals in the PTS study [13]. Specifically,

the PTS study found that the distribution possessed an average energy of 15 kcal

mole−1 with a maximum near 8 kcal mole−1. Moreover, it was observed that the

distribution extended out beyond 47 kcal mole−1. Assuming the isotope effect on the

relative rates of the reactions is negligible, the HCN:HNC population ratio should

be 3.34. The observed P(ET ) should therefore be dominated largely by the three–

center HCN + vinylidene (1A1) loss channel and have a lesser contribution from the

four–center HNC + acetylene channel. The three–center channel [reaction (2)] leaves

about 62 kcal mole−1 as available energy for HCN + vinylidene (1A1). As discussed

above, we have measured the nascent average internal energy of the vinylidene (1A1)

fragment to be 21.8 kcal mole−1. As reaction (2) is found to contribute 77% of the

detected fragments, it is reasonable to attribute the observed average (c.m.) transla-

tional energy of 15 kcal mole−1 to the HCN + vinylidene (1A1) channel. Therefore, by

conservation of available energy the nascent internal energy of HCN can be calculated

to be 25.2 kcal mole−1. In the same way, the four–center channel [reaction (1)] leaves

about 92 kcal mole−1 of available energy for HNC + acetylene. As we have measured

the nascent internal energy of both of these fragments to be 29.0±1.4 kcal mole−1

(HCCH) and 24.5±1.4 kcal mole−1 (HNC), conservation of available energy suggests

that the average (c.m.) translational energy for the four–center elimination [reaction

(1)] must therefore be about 38.5±2.8 kcal mole−1. It is of interest to note that the

well separated average (c.m.) translational energies of the three– and four–center

elimination products, coupled with the dominance of the three–center elimination

channel, provide close semi–quantitative agreement to the overall observed (c.m.)

translational energy distribution of the PTS study.

The negligible effect of the isotope substitution on the determination of the

branching ratio can be assessed as follows. The harmonic frequencies of the fully pro-
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tonated/ deuterated forms of the precursor and transition state structures associated

with the H(CN) elimination channels were calculated at the UB3LYP/aug–cc–pVTZ

level of theory. The frequencies, along with the modified transition state energies,

adjusted to account for the isotope effect on vibrational frequencies, were used in a

RRKM analysis. As expected, complete deuteration leads to an increase in the indi-

vidual reaction rates due to the enhanced density of states. Nevertheless, the relative

ratio of the two channels, both in the protonated and deuterated forms, remained

nearly invariant with a calculated H(D)CN : H(D)NC branching ratio of 3.3±0.1.

5.4.3 The HC2(CN) + H2 channel

In Derecskei–Kovacs and Norths calculation, the three–centerH2 + cyanovinyli-

dene (1A′) elimination channel [reaction (5)] was calculated to be the fastest (with a

dissociation rate of 1.63×1010 Hz) and the largest branching ratio of 0.593. Similar

to vinylidene (1A1), cyanovinylidene (1A′) is calculated to be a metastable minimum

on the ground potential energy surface of cyanoacetylene [55,56]. Hu and Schaefer

[55] examined cyanovinylidene (1A′) at the TZ2P CCSD(T) level of theory and found

a zero-point energy corrected isomerization barrier of only 2.2 kcal mole−1 and an

exothermicity (relative to the cyanoacetylene ZPE) of 47.2 kcal mole−1. Furthermore,

their calculations predict a singlet (1A′)–triplet (3A′) splitting on the order of 42 kcal

mole−1, implying a similarly large exothermicity following intersystem crossing to

singlet cyanovinylidene (1A′).

The rovibrationally hot cyanoacetylene resulting from the photodissociation

product cyanovinylidene (1A′) should be detectable by TR–FTIRES. This is expected

as cyanoacetylene is an experimentally well characterized molecular species whose
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transition dipole moments are comparable to acetylene and hydrogen isocyanide [28-

30,57]. Should the dominant channel be, in fact, the three-center elimination of

cyanovinylidene (1A′) [reaction (5) or (6)], the resulting TR–FTIRES spectra are ex-

pected to display the various infrared active cyanoacetylene features. In both the

protonated and deuterated studies, however, the experimental spectra show little

evidence supporting even the slightest presence of cyanoacetylene. This observation

suggests that any cyanoacetylene generated must be either relatively cold or produced

in minor quantities relative to those observed for the acetylene, hydrogen cyanide, and

hydrogen isocyanide products. Prior studies, most notably the PTS study of Blank

et al. [13], have clearly shown the presence of cyanoacetylene as a photofragment.

In particular, the photoionization spectrum of the resulting cyanoacetylene fragment

suggested a maximal nascent internal energy content of 0.8±0.3 eV (18.4±7 kcal

mole−1) [13]. As this value is much less than the expected 47.2 kcal mole−1 resulting

from the three–center elimination of cyanovinylidene (1A′), it is likely that reaction (4)

generating cyanoacetylene directly, not (5) or (6) generating cyanovinylidene (1A′),

is the dominant H2 loss channel. It is therefore concluded that, dissimilar from the

observation that the three–center transition state dominates the acetylene elimination

channel, the four–center transition state likely dominates the cyanoacetylene elimi-

nation channel.

5.4.4 The H(CN) + C2H2 channels

Derecskei–Kovacs and North [17] previously carried out ab initio calculations

to determine the potential energy surface and the associated transition states for the

193 nm photodissociation channels of vinyl cyanide. Subsequently, they examined the
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microcanonical RRKM dissociation rate constants for the various elimination chan-

nels. The calculated dissociation rates allowed the estimation of the branching ratios

of the various elimination channels. In their calculation, it was determined that the

four–center elimination channel [reaction (1)] leading to HNC + acetylene possessed

a transition state energy nearly 10 kcal mole−1 above the corresponding three–center

transition state of reaction (2) leading to HCN + vinylidene (1A1). The corresponding

RRKM dissociation rates resulted in a branching ratio of the three– versus four–center

[reaction (2) : reaction (1)] channels on the order of 126, which is in stark contrast to

our measured value of 3.34. The new experimental value requires a re–examination

of the relative magnitudes of the ab initio calculated transition state energies.

The calculated rate constants were derived, as in the RRKM theory, from

a ratio of the number of states (at the excitation energy) of the particular transi-

tion state [NTS(E ′, J ′)] to the density of states (again, at the excitation energy) of

the precursor species [ρ(E ′, J ′)]. As the precursor species is identical for all reaction

channels, the relative branching ratio is directly proportional to the ratio of the num-

ber of states of the associated transition states. The RRKM branching ratio can be

changed, therefore, by simply adjusting the relative energy difference between the two

transition states without the knowledge of the absolute energy of either state.

We have used the harmonic vibrational frequencies of the precursor as well

as the two calculated transition states from ab initio calculations to perform RRKM

analysis of the photodissociation rates. In order to achieve an HCN to HNC prod-

uct ratio of 3.34, we have found that the energy of the four–center transition state

should be 10.5 kcal mole−1 below that of the calculated three–center transition state.

It is important to note that this estimate is within the framework of RRKM the-

ory for calculating the dissociation rates with the assumption that the transition

states for each of the channels are the same ones from the ab initio calculations [17].
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Given that many factors may influence the determination of the reaction barriers from

the reaction branching ratio, the contradiction between the experimentally measured

branching ratio and the existing theoretical calculation calls for re–examination of

theoretical calculations of the transition states.

Figure 5.10

Determination of the transition state energies for the three- vs. four-center elimination of

the H(CN) + C2H2 channels. Values for the reverse recombination energies were estimated

from the average translation energy values of Ref(13). RRKM analysis was repeated by

iterating through decreasing values of the four-centered transition state energy until the cal-

culated branching ratio matched the experimentally measured value.
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In an attempt to characterize the absolute energies of the two transition state

structures for the H(CN) dissociation reactions, we turn our attention to the mag-

nitude of the associated reverse recombination barriers. For a dissociation process

over a barrier, it has been proposed that the resulting product translational energy

will be directly proportional to the magnitude of the associated reverse recombina-

tion barrier [13,58,59]. The measured average translational energy for the HCN +

vinylidene (1A1) channel of 15 kcal mole−1 from the PTS study [13] agrees well with

the ab initio calculated reverse recombination barrier for the three–center elimination

channel (Erev
TS =15 kcal mole−1), and hence lends further support for the calculated

energy of the three–center transition state of (E3C
TS=101 kcal mole−1). As depicted in

figure 10, adopting a modified four–center transition state energy of 90.5 kcal mole−1

(10.5 kcal mole−1 below the three–center transition state) suggests a calculated trans-

lational energy of 35 kcal mole−1 for the HNC + acetylene channel, which is in close

agreement with our experimental value of 38.5±2.8 kcal mole−1. Subsequently we

deduce that the transition state energies most consistent with the measured branch-

ing ratio and the product translational energy would be (E3C
TS=101 kcal mole−1) for

the three–center transition state, and (E4C
TS=90.5 kcal mole−1) for the four–center

transition state.

In addition to the standard molecular and radical elimination channels already

discussed above, some recent literature suggested that a third channel, deemed the

roaming atom effect [60-63], may account for the observed data. The roaming atom

effect can be described roughly as a two–part process consisting initially of a partial

radical dissociation followed by an intramolecular radical–radical reaction yielding a

set of molecular products. The best characterized example of this phenomenon stems

from the dissociation of formaldehyde (H2CO) [64], in which the process commences

with the elongation of one of the C–H bonds just short of a complete radical disso-
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ciation [63]. The weakly bound hydrogen samples the locally flat potential energy

surface (roams) then subsequently returns to the pseudo–HCO radical and abstracts

the remaining hydrogen yielding vibrationally hot molecular hydrogen (H2) and ro-

tationally cold carbon monoxide (CO) [60,61,63,64]. Alternatively, there also exits a

molecular elimination channel (involving a well–defined transition state) which yields

vibrationally cold H2 and rotationally hot CO [60,61,63,64]. This highlights one of

the telltale signatures of a roaming atom event coupled with a molecular elimination

channel, a bimodal energetic distribution.

For the current study, there exist four energetically accessible radical (and

hence potential roaming) channels, a single CN loss channel [reaction (8)] and three

(two beta and a single alpha) H loss channels [reaction (7)] [17]. Depending on the

identities of the roaming and abstracted atom(s)/ group(s) involved in the dissocia-

tion, there would be a variety of different molecular products not to mention unique

internal energy distributions available. While the roaming atom effect remains a qual-

itatively viable possibility to account for the observation that acetylene is generated

with a bimodal distribution of internal energies, its relevance to this reaction system

remains unclear. As the above discussion show, the bimodal energy distribution can

be quantitatively understood from the known, different reaction channels that each

eventually give acetylene as product but with different energy. The necessity to invoke

the roaming atom effect depends on further theoretical analysis and/or measurements

of the product rotational energy distribution as a signature of this effect.

5.4.5 Nascent product energy distributions

Using the population distributions obtained from fittings of the emission spec-
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tral features from deuterated acetylene and hydrogen isocyanide, as well as conserva-

tion of energy arguments for the remaining photofragments, we have obtained average

Figure 5.11

General schematic detailing the resulting partitioning of the remaining available energy for a

photodissociation process (over a potential barrier) as described by a combined information-

theoretic (statistical) + sudden impulsive method.

values for the nascent internal energy content of the photofragments resulting from

reactions (1) and (2). In an attempt to further quantify the observed elimination

channels, we now employ a combination of an information–theoretical statistical prior
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method [65] and the sudden–impulsive method [66,67] for analyzing the product en-

ergy content. Following the example of Mordaunt et al. [68], we have examined the

use of a combined statistical and impulsive model in which the total available energy

is partitioned into two separate energy reservoirs, one purely statistical and the other

impulsive, i.e., Etotal
avail = Estat

avail + Eimp
avail. The two energetic partitions are determined

(as in figure 11) in relation to the calculated zero–point energy of the associated tran-

sition states, ETS
calc , and the thermodynamically determined total available energy,

Etotal
avail , where

Estat
avail = (hν − ETS

calc), (5.11)

Eimp
avail = (Etotal

avail − Estat
avail). (5.12)

Subsequently the corresponding methods are independently applied to determine the

energy partition of each of the associated available energies among the products.

Muckerman [65] previously outlined a procedure, using the continuous rigid–

rotor harmonic oscillator approximation, for obtaining analytical expressions for the

information–theoretical prior probability density functions for photofragments follow-

ing UV dissociation. Briefly, for a given polyatomic species undergoing unimolecu-

lar dissociation, the associated prior probability density functions for the resulting

fragments can be derived through consideration of the total number of fundamental

vibrational modes in each fragment as well as the structure of the resulting fragments

(linear or nonlinear). For the three–center elimination channel yielding HCN + vinyli-

dene (1A1) [reaction (1)], the expected nascent energies of the associated fragments

can be predicted by modeling a general dissociation yielding a linear triatomic (s=4)

and a general nonlinear (s=6) species. Employing the method of Muckerman [65],
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the prior probability density functions describing the vibrational degrees of freedom

for both fragments can be derived as

ρ(EHCN
V ) =

13!Γ(2)

Γ(10)Γ(4)

[
1− EHCN

V

]9 (
EHCN
V

)3
, (5.13)

ρ(EH2CC:
V ) =

13!Γ(2)

Γ(8)Γ(6)

[
1− EH2CC:

V

]7 (
EH2CC:
V

)5
. (5.14)

Similarly, the four–center elimination channel yielding HNC and acetylene [reaction

(2)] can be modeled as a general dissociation yielding a linear triatomic (s=4) and a

linear polyatomic (s=7) species. Once again, the prior probability density functions

describing the vibrational degrees of freedom for both fragments are as follows:

ρ(EHNC
V ) =

Γ(29/2)Γ(2)

Γ(21/2)Γ(4)

[
1− EHNC

V

]19/2 (
EHNC
V

)3
, (5.15)

ρ(EHCCH
V ) =

Γ(29/2)Γ(2)

Γ(15/2)Γ(7)

[
1− EHCCH

V

]13/2 (
EHCCH
V

)6
. (5.16)

Integration over the various forms of the resulting prior probability density functions

yields the associated nascent average energy values.

Using the generalized method described by Trentelman et al. [66,67], we

explore the associated energy distributions as obtained following a dissociation de-

scribed by an impulsive transfer of momentum. Briefly, the geometry of the associated

transition states, particularly the identity and mass of the atoms involved in the dis-

sociation, is used to relate the available energy to the translational degrees of freedom

of the resulting photofragments through conservation of linear momentum. The re-

sulting translational energy values can hence be used, through conservation of energy,

to obtain the associated internal energy content of the various photofragments.
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Table 5.3
Experimental and calculated (statistical and impulsive analysis) energy distributions
for the nascent products from the HCN + vinylidene (1A1) and HNC + acetylene
reactions following 193 nm photodissociation of vinyl cyanide.

<E> Fragment(reaction) Experiment Calculation Rev. Barrier

Eint HCN [2] 25.2a 26.8

:C=CH2 [2] 21.8a 20.8

HNC [1] 24.5a 25.3

HCCH [1] 29.0a 36.8

Etrans HCN [2] 15.0b 14.5 (15)

:C=CH2 [2] 15.0b 14.5 (15)

HNC [1] 38.5a 29.4 (35)

HCCH [1] 38.5a 29.4 (35)

(a) TR-FTIRES from this work.
(b) PTS from (Ref. 13).

Additionally, the associated reverse reaction recombination barriers for both the three–
and four–center eliminations have been included for comparison against the average
translational energies. All energies are in units of kcal mole−1.

Consistent with the prior results of Derecskei–Kovacs and North [17], we employ the

relative transition state geometries obtained at the UB3LYP/aug–cc–pVTZ level of

theory in which reaction (2) is found to occur following the breaking of a C=C bond

and reaction (1) occurs via the breaking of a C-H bond.

As recorded in Table 5.3, the combined application of both the statistical–

prior and sudden–impulsive models results in product energies that are in reasonable
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agreement with all of the experimentally measured values. This general agreement

of calculated product energy distribution with the experimentally measured values

lends strong support for the reasonableness of the proposed mechanisms.

5.5 Conclusion

The time–resolved emission spectra collected following the 193 nm photodis-

sociation of both vinyl cyanide and deuterated vinyl cyanide have revealed the nature

and energy content of vibrationally excited photodissociation products. The relative

quantity and the energy distribution of the nascent products as well as the branching

ratios of the molecular elimination channels can be deduced. The following conclu-

sions on 193 nm photodissociation of vinyl cyanide can be drawn.

1. Contrary to the results of an early study [2], the measured nascent internal

energy contents of the resulting C2H2 fragments suggests that vinylidene (3B2)

[reaction (3)] plays an insignificant role in the 193 nm dissociation relative to

the other H(CN) + C2H2 channels [reactions (1) and (2)].

2. Both the three– and four–center eliminations of H(CN) are observed to be major

dissociation channels with a relative (HCN : HNC) branching ratio of (3.34).

3. The HCN/HNC branching ratio is inconsistent with the previous ab initio gener-

ated potential energy surface for the dissociation reaction [17]. RRKM analysis

based on the experimentally observed branching ratio, coupled with the mea-

sured average translational energies, provides support for the 101 kcal mole−1

energy of the three–center transition state [reaction (2)] but suggests that the

energy of the four–center transition state [reaction (1)] should be lowered to

90.5 kcal mole−1.
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4. Application of a combined statistical–prior / sudden–impulsive predictive en-

ergy distribution method was found to successfully reproduce the observed

nascent average internal energies of the photofragments resulting from the H(CN)

loss channels described by reactions (1) and (2) and hence offer further support

of the proposed reaction mechanism for the molecular products.

5. The H2 loss channels [reactions (4)(6)] occur in insignificant quantities relative

to the observed H(CN) loss channels. Among the three possible H2 loss chan-

nels, it is deduced that the four–center elimination [reaction (4)] is the dominant

channel.

6. The dominant molecular elimination channels following the 193 nm dissociation

of vinyl cyanide are therefore determined to be the three–center elimination of

HCN + vinylidene (1A1) [reaction (2)] followed closely by the four-center elim-

ination of HNC + acetylene [reaction (1)].
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Chapter 6

Collisional deactivation of vibrationally highly

excited hydrogen isocyanide (HNC)
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6.1 Introduction

The linear triatomic cyanides, hydrogen isocyanide (HNC) and hydrogen

cyanide (HCN), have both received a considerable amount of attention from the

experimental [2] and theoretical [3] communities. As depicted in figure 6.1, HNC

is the energetically less stable isomer of HCN, with an associated zero point energy

difference of around 5,000 cm−1 [4]. Additionally, the two species are separated by a

calculated isomerization barrier of ≈ 11,000 cm−1 relative the HNC zero point energy

[4].

Figure 6.1
A calculated two-dimensional representation of the HCN / HNC potential energy surface
when viewed as a function of the H–CN bending angle.
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Together, the combined pair form an experimentally (and theoretically) novel system

for studying a simple hydrogen migration as well as for modeling simple isomeriza-

tion dynamics. In terms of a general isomerization process, it is well understood that

as the internal energy of a given species increases, the probability and rate of the

isomerization reaction likewise increases. In the same way, however, it has been gen-

erally observed that (for systems of sufficient molecular density) as internal energy

increases the rate of collisional deactivation also increases. As a result, it becomes

apparent that conditions which favor isomerization also seem to favor collisional de-

activation. In a fundamental sense then, isomerization and collisional deactivation

should be viewed as competing processes. One lingering question of course, is how

the associated rates of each process compare with one another and whether or not

both are significant or if one of the two is expected to dominate.

Furthermore, it is of interest to note that both HCN and HNC have been

observed to be present in numerous environments of astrophysical interest including:

comets, dark clouds, stars, and even alien atmospheres [5]. The source and abun-

dance ratios of HNC, when compared with HCN, is currently an open question in

the astrophysical community. In particular, HNC is often found in concentrations

that are equal to or greater than HCN, which is in stark contrast to the calculated

(100K) abundance ratio of ca. 1×10−30 [6]. Given that stars are well known sources of

ultra-violet radiation, coupled with the known presence of astrophysical cyano- con-

taining molecules, suggests a reasonable source for photochemically generated HNC

and HCN. If such chemistry were to occur in a molecularly dense environment (such

as comets, dark clouds or alien atmospheres), and if collisional deactivation is compet-

itive with isomerization; then different astrophysical environments (depending upon

the specific cyano- precursors present) would therefore be expected to yield HNC and

HCN in unique abundance ratios.
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The primary focus of this paper is the experimental determination of the

vibrational to translational (V-T) energy transfer efficiency of vibrationally excited

hydrogen isocyanide (HNC). In one regard, this is a continuation of our examination

of the 193 nm photolysis of vinyl cyanide [1] in which we observed that the two main

dissociation pathways yield hydrogen cyanide (HCN) and vinylidene (H2CC) (with

an upper bound quantum yield of Φ = 0.77) as well as HNC and acetylene (HCCH)

(Φ = 0.23). Despite the fact that HNC is found to be only the third most abundant

photofragment (following HCN and HCCH respectively), the observed IR spectral

signature is remarkably clean (i.e. free from overlapping features) and hence serves

as a convenient means of probing energy transfer. In an effort to ensure that we

examine effects specific to (V-T) energy transfer, we limit the identity of the collider

species employed to the (relatively) inert rare-gas atomic series: helium (He), argon

(Ar), krypton (Kr) and xenon (Xe).

In what follows, we will examine the collisional deactivation of vibrationally

excited HNC through modeling of the observed ν1 NH and ν3 NC IR emission stretch

modes of HNC. Hydrogen isocyanide, with average internal energies of up to 25 kcal

mole−1, is generated through the 193 nm photolysis of vinyl cyanide and collision-

ally quenched with the rare-gas atomic colliders He, Ar, Kr, and Xe. Time-resolved

fittings of the observed emission spectra provide measurements of the HNC average

internal energy as a function of the number of rare-gas collisions, which can subse-

quently be used to derive the average energy lost per collision (e.g. the efficiency

of energy transfer). The observed energy transfer efficiencies will then be modeled

using the V-T relaxation probabilities of Schwartz, Slawsky, and Herzfeld (SSH)[7],

in which the intermolecular interaction energy of the associated complexes can be

obtained through fittings of the experimentally measured values. Additionally, ab

initio calculations, capable of a modeling the various intermolecular interaction ener-
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gies, will be employed to aid in a quantitative description of the observed collisional

deactivation efficiencies.

6.2 Experimental

A more detailed description of the experimental setup has been given else-

where [14-17]. Briefly, the output from an ArF excimer laser (λ = 193nm, 20Hz,≤

50mJ/pulse) (Lambda Physik, LPX 200) was collimated through a photolysis cell

mounted with two CaF2 windows. The sample typically contained 10 mTorr of pre-

cursor molecules and 4 Torr of helium (He), argon (Ar), krypton (Kr), or xenon (Xe)

bath gas under constant flow conditions. Pressure in the cell was monitored with a

capacitance manometer (MKS Baratron, 0-10 Torr). Emission after the photolysis

laser pulse was collected perpendicular to the laser propagation axis by a gold–mirror

Welsh cell arrangement in the photolysis cell and then collimated and focused into the

FTIR spectrometer by two KBr lenses that match the f/4 focusing characteristics of

the spectrometer. The spectrometer (Bruker IFS 66/s) was equipped with an inter-

ferometer capable of time-resolved step–scan measurements and a mercury cadmium

telluride detector (HgCdTe J15D14, EG&G Judson Technologies, 500 ns rise time,

750-10 000 cm−1 spectral range). The internal cavity of the FTIR was continually

flushed with a FTIR purge gas generator (75-45, Parker Balston). The spectral re-

sponse of the HgCdTe detector was calibrated with a Globar R© source, which was

modeled as a perfect blackbody.

Interferograms for this work were recorded at 100 ns time intervals averaging

200 laser shots per interferogram point for a total observation window of 20 µs. The

time–resolved interferometric signal from the detector was amplified by a fast ampli-
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fier (Stanford Research Systems SR445, DC-300 MHz) before reaching the transient

digitizer (Spectrum PAD82a, 100/200 MHz), which was triggered by a fast photodi-

ode that monitored the excimer output. Subsequent Fourier transformation of each

interferogram yields a time–resolved spectrum at every 100 ns. To further enhance

the observed spectral resolution, spectra were synchronously cross correlated in bins

of 10 to yield representative spectra spanning 1.0 µs intervals [18-20]. The spectral

resolution was typically set at 12 cm−1.

Acrylonitrile (≥99%) (Sigma–Aldrich) was processed with several freeze–

pump–thaw cycles before use and purity checked with IR absorption spectroscopy.

Helium, argon, krypton, and xenon gas from the supplier (Spectra Gas, research

grade, 99.9%) was used directly. Unphotolyzed sample was recollected after each ex-

periment at liquid nitrogen temperature and purified for further use.

6.3 Results and Analysis

6.3.1 Time-resolved IR emission spectra

Chapter five of this thesis characterized the time-resolved FTIR emission

spectra following the 193 nm photolysis of both vinyl cyanide (H2CC(H)CN) and

deuterated vinyl cyanide (D2CC(D)CN). Those results are directly related to the

current topic of discussion and thus we review those points of highest relevance here.

Figure 6.2 highlights the measured time-resolved emission spectra from the undeuter-

ated sample. As was discussed in the previous chapter, there are five distinct emission

features which have been characterized as originating from acetylene (HCCH), hydro-

gen cyanide (HCN), hydrogen isocyanide (HNC), cyanoacetylene (HCC-CN), and the

α-cyanovinyl radical (H2CC-CN) [21] through the following reaction pathways:

152



H2CC(H)CN → HCCH +HNC, (6.1)

→ (H2C = C[1A1] +HCN)→ HCCH +HCN, (6.2)

→ HCCCN +H2, (6.3)

→ H2C = CCN +H. (6.4)

Of key importance for the current study, the features originating from HNC with fun-

damental transitions at 2023 cm−1 (ν3 NC stretch) and 3652 cm−1 (ν1 NH stretch),

exhibit partial rotational resolution and are both free of significant overlapping tran-

sitions from other photofragments. We note that the ν3 CN stretch of HCN has a

fundamental transition at 2097 cm−1 which is in partial overlap with the ν3 NC stretch

of HNC. Furthermore, we have previously shown that photolysis of vinyl cyanide (at

193 nm) produces HCN in an approximate (3:1) ratio with HNC, suggesting that

HCN should be contributing to the 2000 cm−1 feature. Nevertheless, the CN stretch

of HCN has an insignificant transition dipole moment of only 0.001362 Debye [22],

hence transitions from the ν3 CN stretch of HCN will be buried in the noise of our

spectra. Thus, despite a negligible HCN contribution, the time-resolved emission

spectra following the 193 nm photolysis of vinyl cyanide effectively exhibits a clean

HNC signal.

The two clusters of HNC transitions (shown in figure 6.2) exhibit sizable an-

harmonic shifts (most notably the NH stretch at 3652 cm−1), indicating that HNC is

generated vibrationally hot. In prior studies [23], we have shown how spectral mod-

eling of such features (i.e. free from overlap and shifting) can be used as a means of

measuring the internal energy content as a function of time. By varying the identity

of the collisional collider (and repeating the photolysis reaction), we can gain insight

into the energy transfer efficiency of the species of interest. For the current study, we

have examined the collisional deactivation of vibrationally excited HNC with the set
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Figure 6.2
Time-resolved infrared emission spectroscopy following the 193 nm photolysis of vinyl cyanide.
The spectra exhibit features from acetylene, hydrogen cyanide, hydrogen isocyanide, the al-
pha cyanovinyl radical and cyanoacetylene.

of rare-gas atoms: helium (He), argon (Ar), krypton (Kr) and xenon (Xe). As ex-

pected, the observed emission features following the dissociation are qualitatively

invariant with respect to the specific collider species employed. It is only when one
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considers the time-dependence of the associated features (e.g. intensity and spectral

width) that the effect of a given collider is observed.

6.3.2 Measuring the average internal energy 〈E〉 of HNC

Infrared emission spectroscopy has proven itself time and again as a novel

means for monitoring the internal energy content of a given species of interest fol-

lowing either photodissociation or optical pumping [23]. The means of analysis have

been described in great detail previously and will only be briefly reviewed. Modeling

of the IR emission bands (from a given molecule) begins with the calculation of all of

the available ro-vibrational levels up to a physically meaningful upper bound energy.

Transition frequencies, permitted by the appropriate selection rules (e.g. ∆νk = -1,

∆J = 0, ± 1), are then determined by direct energy difference and assigned intensi-

ties largely through a combination of the harmonic scaling rule (In−1←n = nI0←1) [24]

and Hönl-London factors [25]. To limit the number of necessary fitting parameters,

the vibrational manifold of the species of interest is partitioned into evenly spaced

energy bins. An assumption of equal probable population of all energy levels per bin

then permits the generation of representative bin spectra; composed of the normal-

ized sum of allowed transitions within a given bin. The complete set of bin spectra

form a reduced basis set which makes fitting the experimental emission spectra a

much more manageable task. In the past, we have found success in fitting spectra

through either of two ways: free-form fits in which the bin populations are left as

fitting parameters [26], as well as constrained fits in which the bin populations were

expressed with analytical functional forms [23]. It has often been observed that high

energy populations are typically well represented by Gaussian functional forms while

155



low energy populations are best described with exponential functions.

Maki and Mellau have previously measured the high-resolution emission spec-

trum of HNC [27] by heating a static HCN cell to a temperature of 1370 K. Subsequent

fittings of the resulting spectra lead to the experimental determination of the vibra-

tional spectral constants (ωi, χij, yijk,...) of HNC for levels up to 6,000 cm−1 above

the zero point energy. Using the experimental fit constants, we modeled the HNC

vibrational manifold for energies up to 10,000 cm−1 above the ZPE, and calculated a

basis set of emission spectra for the ν1 NH and ν3 NC stretch modes of HNC. We note

that while each of the individual ro-vibrational levels of HNC were determined with

both harmonic and anharmonic spectral constants, the allowed IR emission transitions

for the calculated spectra were constrained using the rigid–rotor/harmonic oscillator

selection rules (∆ν1,3 = −1; ∆l = 0,±1; ∆J = 0,±1).

The time-resolved HNC emission spectra were fit to a population distribution

(P j(t)) using only three variable parameters:

P j(t) =
αt√
2π
exp

(
−hcEj
kBT tvib

)
+ Φt; (6.5)

in which for a given time (t), αt is an intensity scaling factor, Φt is a baseline correc-

tion, and T tvib is the vibrational temperature. Figure 6.3 highlights a typical spectral

fitting result for the ν1 NH and ν3 NC stretch modes of HNC. The key result from

each spectral fitting is the associated vibrational temperature (T tvib). Each tempera-

ture describes an ensemble population distribution of HNC and hence relates directly

to the average internal energy 〈E(t)〉. A contour plot highlighting the evolution of the

total internal energy (as a function of time) is shown in the inset of figure 6.3. Subse-

quent two-dimensional plots of the corresponding average internal energies reveal that

〈E(t)〉 is well described by an exponential functional form; from which it is possible
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to back extrapolate to the nascent (t=0) HNC internal energy 〈E(0)〉. For all atomic

colliders examined (Rg = {He, Ar, Kr, Xe}), it is observed that HNC is generated

with a common nascent internal energy of 〈E(0)〉 = 24.5± 1.4 kcal mole−1. We note

that this nascent internal energy is in excellent agreement with the 〈E(0)〉 = 24.0±7.0

kcal mole−1 value measured in the HNC (m/e 27) photoionization spectrum of Blank

et al [28]. Additionally, it is worth mentioning that the measured nascent internal

energy (24.5± 1.4 kcal mole−1) falls about 5 kcal mole−1 below the calculated barrier

of isomerization (29.8 kcal mole−1) to HCN [29]. It is therefore reasonable to suggest

Figure 6.3
Example fitting of the ν1 NH and ν3 NC stretch features of hydrogen isocyanide, 13 µs fol-
lowing the arrival of the photolysis pulse. The inset contour plot highlights the HNC internal
energy distribution as a function of time.
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that, under the current experimental conditions, none of the HNC population will be

lost to HCN via isomerization. Subsequently, the common nascent internal energy

observed for all atomic colliders, coupled with the close quantitative agreement with

the PTS study [28], highlight the accuracy of our modeling of the HNC emission

spectra and ultimately provide further confidence in the obtained results.

6.3.3 Determination of 〈∆E〉 as a function of 〈E〉

Having fit all of the available emission spectra, we thus obtain a time-resolved

measure of the average internal energy 〈E(t)〉 content of HNC. For the current study

however, we seek to delineate the various energy transfer efficiencies of HNC with

the series of inert atomic collider species. In this regard, as each atomic collider pos-

sesses a unique collisional frequency, time alone becomes a poor basis for comparison.

Therefore, in an effort to put all of the data on a common footing, we examine the

average internal energy as a function of the total number of collisions Z (where Z

is related to partial pressure, collisional frequency, and time via Z =
∑
Zk
LJPkt).

With that said, we note that our reaction cell contains a complex mixture of gases

(especially after the arrival of the photolysis pulse), which warrants some discussion

before we explicitly define Z.

As outlined previously, the initial gas mixture in the photolysis cell is com-

posed of 4,000 mTorr of the rare-gas collider (He, Ar, Kr, or Xe) and 10 mTorr of

the precursor sample, vinyl cyanide. Based upon laser power measurements before

and after the gas cell, only about ca. 10% of the vinyl cyanide undergoes photol-

ysis, yielding at most 1 mTorr of any given photofragment. Furthermore, we have

previously shown that the two dominant dissociation pathways yield HCN + HCCH
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(Φ=77%) and HNC + HCCH (Φ=23%) [1], where the quoted quantum yields repre-

sent reasonable upper bound limits. In this context then, there is at most 0.23 mTorr

of HNC present in the photolysis cell at any given moment. The partial pressure

of the rare-gas atomic collider is therefore calculated to be more than 17,000 times

greater than HNC, suggesting that the collisional quenching of HNC should thus be

dominated by the rare-gas atomic colliders. This prediction is further justified by the

fact that the identity of the atomic collider is the only variation from one experiment

to the next. As a result, if the quenching of HNC was not controlled by the atomic

collider, each resulting series of time-resolved spectra (with the exception of noise)

would be identical.

For a gaseous mixture of (m) different components, the average internal energy

of a given species can be expressed in closed form as a sum:

〈E(Z)〉 =
∑
m

ZLJ(m)tλPm〈∆E(Z)〉m, (6.6)

in which ZLJ(m) is the Lennard-Jones collisional frequency, tλ is a representative

measure of time following the arrival of the photolysis pulse, Pm is the partial pressure,

and 〈∆E(Z)〉 is the average energy lost per collision. Following the discussion above,

it has been shown that the rare-gas colliders dominate the quenching process and

hence (after some rearrangement) equation 6.6 can be greatly simplified down to a

single expression:

〈∆E(Z)〉Rg =
d〈E(Z)〉
dZRg

, (6.7)

which shows that under the current experimental conditions, 〈∆E(Z)〉 is simply the

instantaneous slope of the 〈E(Z)〉 vs. Z plot. Figure 6.4 highlights the measured

internal energy of HNC as a function of the total number of rare-gas collisions for
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the combined series {He, Ar, Kr and Xe}. As discussed in the prior section, the

experimental 〈E(Z)〉 vs. Z plots can be described by exponential functions of Z, or

more generally as:

〈E(Z)〉 = Ω0 +
∑
j>0

Ωj × exp (−kjZ) , (6.8)

where the Ωi terms relate to the magnitude of the average internal energy (in units of

cm−1) and the ki terms describe the associated relaxation rates (in units of reciprocal

collision numbers, Z−1). Each of the 〈E(Z)〉 vs. Z plots of figure 6.4 are well described

by single exponential functional forms, thus yielding single deactivation rate constants

Figure 6.4
Measured average internal energy content of HNC as a function of the number inert atomic
collisions, when quenched by He, Ar, Kr and Xe.
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for each Rg collider. Fitting constants for the various HNC + Rg systems, including

the corresponding Rg relaxation rates as well as the nascent internal energies, have

been tabulated in table 6.1. Moreover, the utility of the above functional form (equa-

tion 6.8) is that it is readily differentiated, as necessitated by equation 6.7, to yield

an expression of the average energy lost per collision:

〈∆E(Z)〉 = −
∑
j>0

kjΩj × exp (−kjZ) . (6.9)

As portrayed in figure 6.5, application of equation 6.9 allows for an experimental

examination of the energy transfer efficiency (i.e. 〈∆E(Z)〉) of HNC when collisionally

quenched with the rare-gas atoms {He, Ar, Kr, and Xe}. We note that the observed

efficiency follows a well-behaved reduced mass trend in which He is found to be the

most efficient quencher, followed by Ar, Kr, and finally Xe.

Rg k1 × 102 / Z−1 Ω0 / cm−1 Ω1 / cm−1 〈E〉0 / cm−1

He 1.058 3056.6 5623.6 8680.2

Ar 0.738 3059.3 5513.3 8572.6

Kr 0.447 3300.3 5368.3 8668.6

Xe 0.356 3045.8 5663.4 8709.2

Table 6.1
Fitting results for the 〈E〉 vs. Z plots for the various HNC + Rg systems highlighting
the measured nascent (Z=0) average internal energies as well as the associated HNC
+ Rg relaxation rate constants (k1).

Prior studies, from this laboratory [23,30-32] as well as others [33-37], have shown

that collisional energy transfer from non-aromatic molecules (with rare-gas atomic
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colliders) is typically very inefficient. Specifically, in the absence of electronic coupling

(even at high average internal energies) 〈∆E〉 values typical fall well below 10 cm−1

[23,30-37]. Therefore, with observed 〈∆E〉 values greater than 10 cm−1 for most

energies examined, it is reasonable to infer that vibrational to translational (V-T)

energy transfer from HNC is an uncommonly efficient process.

Figure 6.5
Measured results of the average HNC internal energy lost per collision with the various rare-
gas colliders (He, Ar, Kr, Xe), as a function of the average HNC internal energy.

6.4 Discussion

6.4.1 Ab initio calculations:

162



In addition to experimental measurements, ab initio calculations were em-

ployed to aid in a quantitative description of the results. In general, it is of interest

to examine the intermolecular electrostatic interaction of the HNC / Rg complexes

as a means for describing the observed energy transfer trends. Specifically, HNC

is known to possess a strong permanent dipole moment of 3.05 Debye [38], which

would readily polarize the electron cloud of an approaching rare-gas atom and thus

result in a dipole-induced dipole attractive interaction. As the polarizabilities of the

rare-gas atoms increase with size, it is to be expected that the larger atomic colliders

will therefore exhibit stronger interactions. Additionally, further analysis (to be dis-

cussed in a later section) based upon the theory of vibrational relaxation of Schwartz,

Slawsky, Herzfeld, and Tanczos (SSHT) [7,39] requires knowledge of the associated

HNC / Rg interaction energies. As direct experimental energies are not yet available,

it is thus necessary to supplement the required values with theoretical energies.

All calculations were carried out on the Gaussian 03 package of programs

[40]. In particular, the supermolecule method [41] was used to examine the inter-

action energy (as a function of bond distance R) for the complete series of HNC /

Rg complexes. In an attempt to make the analysis more tractable, only the linear

approach orientation of the rare-gas atom / fixed linear HNC fragment (i.e. Rg—H-

NC) was examined. We justify this assumption through direct comparison of the prior

theoretical examinations of Toczlyowski et al. [42] (HCN, CCSD[T]/aug-cc-pVTZ +

(33221)), McDowell [43] (HCN and HNC, MP2/6-311++G(2d,2p)), and Christoffel

et al. [44] (HCN/HNC, CISD / aug-cc-pVTZ and aug-cc-pVDZ); in which the linear

hydrogen approach was found to contain the global energy minimum for all complexes

examined.

For each iteration of the approaching (Rg) atom, two distinct (though cou-

pled) calculations were performed. As an initial step, the bond lengths of the linear
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(HNC) fragment were optimized using second-order Møller-Plesset perturbation the-

ory with full core electron correlation [MP2(full)]. Next, using the MP2 optimized

HNC geometry, the energy of the total (HNC / Rg) system was then determined with

forth-order Møller-Plesset perturbation theory [MP4(full)]. We note additionally that

our analysis is focused solely on the relative depth of the attractive interaction. In this

regard, all quoted energies are given relative to the energy of the associated HNC /

Rg complex at an approximate infinite separation (i.e. RRg−HNC = 2,000 Å). For each

calculation, the augmented correlation consistent polarized triple zeta basis set (aug-

cc-pVTZ) was used to describe all atoms. Additionally, a supplemental (3s3p2d1f) set

of bond functions [41] were centered on a ghost atom maintained midway between the

approaching rare-gas atom and the hydrogen. Basis set superposition error (BSSE)

was treated by employing the counterpoise procedure of Boys and Bernardi [45].

6.4.1.1 HCN interaction energies: CCSD(T) vs. MP4(full)

Using the high-level CCSD(T) calculated potential energy surfaces, Toczly-

owski et al. [42] were able to generate accurate predictions for the rotational energy

levels of the various HCN complexes. The calculated energy levels (as well as the

associated bound rotational transitions) of the He, Ar, and Kr complexes were found

to be in excellent agreement with prior experimental microwave spectral observa-

tions [46-48]. Unfortunately, a comparable set of calculations at the CCSD(T) level

of theory, for the HNC series of complexes, are not yet available in the literature.

At present, the best (published) potential energy scan for the HNC complexes has

been performed by McDowell [43] at the comparably modest MP2/6-311++G(2d,2p)

level of theory. In his study, McDowell sought to compare the associated ν1 (HC /
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HN) mode frequency shifts associated with the H(CN) / rare-gas complexes [43], and

began by examining the interaction energies for both series of complexes. When com-

pared with the CCSD(T) results of Toczlyowski et al. [42] (for the HCN complexes),

the MP2 calculation yields BSSE-corrected interaction energies which are all severely

underestimated by a minimum of 40%. It is in this regard that we are compelled to

carry out additional ab initio calculations of the interaction energies for the set of

HNC complexes.

Despite the general availability of the CCSD(T) method in the various quan-

tum chemistry packages [39,49,50], this level of theory (as applied to a potential energy

scan at least) is still largely impractical for use by the non-specialist. Nevertheless,

as our focus is limited to a single angle of approach (e.g. linear Rg—H-NC), the

more computationally thrifty MP4(full) method stands as a reasonable compromise

between cost and accuracy. Thus as an initial check of the quality of the calculated

MP4 energies, we have re-examined the HCN complexes of Toczlyowski [42] at the

MP2(full)//MP4(full) level of theory as outlined above. For all complexes examined,

the resulting MP4(full) calculations produced relative HCN interaction energies that

were all within -6.5% of the corresponding CCSD(T) values. One notable excep-

tion was the HCN / Ne complex for which the MP4(full) calculation produced an

interaction energy that was +3.5% deeper than the CCSD(T) value. As noted by

Toczlyowski et al. [42], the Ne complex is uniquely sensitive to the size of the basis

set employed, and therefore the deviation observed in the MP4 calculation is likely

due to an under sampling of the basis set. Nevertheless, the close agreement observed

between the remaining complexes, coupled with the fact that the complementary

HNC / Ne complex was not examined in our study, suggests that the MP4(full)/aug-

cc-pVTZ + (3s3p2d1f) method is suitable for our present purposes.
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6.4.1.2 HNC interaction energies: MP4(full)

Following the success of the MP4 calculations with the HCN systems, we were

therefore confident in applying the method to examine the associated HNC complexes.

Table 6.2 highlights the BSSE-corrected interaction energies for all of the H(CN) / Rg

complexes calculated at the MP2, MP4, and CCSD(T) levels of theory. As expected,

Rg–H(CN) -De / MP2(a) -De / MP4(b) -De / CCSD(T)

He–HCN 18 28 30c

Ne–HCN 14 59 57c

Ar–HCN 79 138 147c

Kr–HCN 104 169 179c

He–HNC 29 43 46d

Ne–HNC 31 – –

Ar–HNC 132 215 230d

Kr–HNC 170 266 284d

Xe–HNC – 527 564d

(a) McDowell (Ref. 43) : MP2/6-311++G(2d,2p)
(b) This work : MP4(full)/aug-cc-pVTZ + (3s3p2d1f)
(c) Toczlyowski et al. (Ref. 42) : CCSD(T)/aug-cc-pV(T,Q)Z + (3s3p2d2f1g)
(d) This work : MP4(full) values scaled by +6.5%

Table 6.2
Comparison of the ab initio calculated interaction energies (De) for the series of
H(CN) / Rg complexes determined at the MP2 (Ref. 43), MP4, and CCSD(T) (Ref.
42) levels of theory. All energies have been corrected for BSSE and are given in units
of cm−1.
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the MP4 calculations for the HNC complexes show a distinct enhancement (relative

to the MP2 values [43]) with associated well depths (i.e. interaction energies) that

are all minimally 30% deeper. Additionally, we note that for all the rare-gas atoms

considered, a decidedly stronger interaction is found in the HNC (rather than the

HCN) complexes. Specifically, the magnitudes of the HCN interaction energies are

all found to scale roughly as 67% of the associated HNC values. In the context of a

dipole-induced dipole interaction, such a result is qualitatively reasonable given that

HCN has a slightly weaker permanent dipole moment of 2.98 Debye compared with

the 3.05 Debye value for HNC [38]. Furthermore, it is observed that the relative

magnitudes of the various interaction energies, for both series of complexes, scale in

a nearly identical fashion. In particular, for the set of Rg atoms {He, Ne, Ar, Kr, and

Xe} (when considered relative to the He values); the MP4 energies for the HCN and

HNC rare-gas complexes are observed to scale as (1:2:5:6:*) and (1:*:5:6:12), respec-

tively (in which neither HCN / Xe nor HNC / Ne were examined). Thus, assuming

that the dominant underlying interaction is common for both series of complexes,

such a result provides confidence in the magnitudes of the calculated HNC interac-

tion energies and further justifies their use for a continued analysis in later discussion

sections.

6.4.2 Vibrational Relaxation: SSHT theory

As discussed in prior sections, the collisional deactivation of HNC with rare-

gas atoms (He, Ar, Kr, and Xe) is observed to obey a well-behaved reduced mass

trend in which the lightest collider (He) is found to be the most efficient quencher,

followed by Ar, Kr, and finally the heaviest collider (Xe). Such a trend is highly
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reminiscent of the celebrated SSHT theory [7,39] of vibrational relaxation, and is

therefore suggestive of the fact that SSHT theory may prove to be a fruitful means

of explaining the observed interactions. The heart of SSHT theory is rooted in the

determination of the probability of coupled (though opposing) energetic transitions

occurring between two species involved in a bimolecular collision, and described by

an impulsive interaction. In short, SSHT describes the probability of an interaction

by which one collider species loses some quantity of energy |∆E| while the other con-

currently gains exactly |∆E| of energy. For the current study, SSHT theory can be

used to describe the probability that some portion of the vibrational energy of HNC

will be converted into translational energy of the Rg collider. When examined over

the experimentally sampled range of internal energies, the associated SSHT derived

transition probabilities can be used to obtain a prediction of the average energy lost

per collision, as a function of average internal energy.

6.4.2.1 Transitioning from P j←i to 〈∆E〉:

The mechanics of SSHT theory have been outlined in great detail many times

before, as such the interested reader is referred to the original reports [1,2] as well

as the numerous review articles which have appeared throughout the years [51-56].

For the discussion at hand, it suffices to say that the probability (P j←i) of a given

collision induced transition in HNC from an initial state |νi1νi2(l)νi3〉 to a final state

|νj1ν
j
2(l)νj3〉 (by a rare-gas atom Rg) can be described as the product of two separate

physical interactions, i.e.

P j←i = P j←i
Rep (∆E, µ)× exp

(
−De
kBT

)
, (6.10)
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wherein P j←i
Rep (∆E, µ) refers to a purely repulsive interaction while the exponential

term describes a constant long-range attraction with a corresponding interaction en-

ergy (De). It is of interest to note that the purely repulsive component (P j←i
Rep (∆E, µ))

is directly dependent upon the initial and final vibrational states through the asso-

ciated transition frequency (∆E). In other words, the probability of a transition

(as described by the purely repulsive interaction) depends upon the average internal

energy content of the donor molecular species (in this case HNC). Conversely, the at-

tractive component of the probability is completely independent of the internal energy

and therefore behaves as a constant scaling factor that can either enhance or diminish

the likelihood of a transition. In this regard, the attractive interaction energy (De)

can therefore be left as a variable parameter and used to fit the experimentally mea-

sured 〈∆E〉 vs. 〈E〉 plots.

For a given initial state |φi〉 (with corresponding energy Ei), there exists a

variety of potential downward transitions (based upon the set of selection rules em-

ployed) to a set of states {φj}, each with a specific transition probability P j←i. In

this regard, each state |φi〉 possesses a total transition probability P (Ei) defined as

the sum of probabilities over all allowed transitions:

P (Ei) = ρ(Ei)
−1
∑
k

P k←i, (6.11)

in which ρ(Ei) relates to the total number of allowed transitions originating from the

state |φi〉. In a similar fashion, the average energy lost per collision for a given state

(or series of states), can be directly related to the associated transition frequency

(i.e. ∆E) weighted by the probability of that transition. Specifically, for a set of

states {φi} spanning an energy range 〈Ek〉 = (Ek ± δE), the average energy lost per

collision 〈∆Ek〉 can be defined as the sum over all the allowed transitions weighted
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by the individual probabilities P j←i; i.e.

〈∆Ek〉 = N(Ek)
−1
∑
i ε k

P j←i ×∆Ei, (6.12)

where N(Ek) corresponds to the total number of allowed transitions contained within

the average energy range 〈Ek〉. As described by equation 6.10, the attractive com-

ponent of the SSHT transition probability is completely independent of the vibra-

tional states considered, and hence is readily extracted from the sum in equation

6.12. Therefore, expanding the probability term in equation 6.12 (and following some

simple rearrangement), we find that the average energy lost per collision is likewise

separable into repulsive and attractive components; i.e

〈∆Ek〉 = 〈∆Ek〉Rep × exp
(
−De

kBT

)
, (6.13)

where 〈∆Ek〉Rep refers to the average energy lost based upon the purely repulsive

interaction. The utility of equation 6.13 lies in the notion that the attractive term

now represents a means of modifying the slope of the calculated 〈∆E〉 vs. 〈E〉 plots.

Thus, in addition to representing a tool capable of fitting the experimental data,

equation 6.13 can actually be used to extract experimental values of the HNC / Rg

interaction energies.

6.4.2.2 SSHT fittings: (De = 0 cm−1)

Before a fitting of the experimental 〈∆E〉 values can be attempted, a necessary

initial step is the determination of the SSHT derived values via equations 6.10-13.

Specifically, for a given energy range 〈Ek〉, a corresponding value of 〈∆Ek〉 can be
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determined. For the current study, the vibrational manifold of HNC was partitioned

into evenly spaced (250 cm−1) energy bins (up to a total internal energy of 10,000

cm−1), yielding a series of forty discrete average energy bins. Each of the Rg colliders

is initially analyzed in the limit of a purely repulsive interaction (De=0 cm−1), for

which application of equations 6.10-13 yield 〈∆Ek〉Rep values for each of the forty

discrete energy ranges. When the series of 〈∆Ek〉Rep values (for each Rg collider)

are plotted as functions of the corresponding average internal energy 〈Ek〉, a series

of well-behaved linear functions are observed. As an initial comparison, both the

experimental and SSHT derived 〈∆Ek〉 values were fit to linear functional forms, the

resulting slopes of which have been recorded in table 6.3. While the purely repulsive

SSHT values were able to qualitatively reproduce the observed reduced mass trend,

both the individual magnitudes and corresponding ratios (relative to the He results)

of the calculated slopes differed greatly from the experimental values. As exhibited

by the associated slope ratios (ΛRg:He), SSHT theory (in the limit of a purely

Rg ∂〈∆E〉
∂〈E〉

∣∣∣×104

SSH
ΛRg:He
SSH

∂〈∆E〉
∂〈E〉

∣∣∣×104

Exp
ΛRg:He
Exp

He 275.6 1.00 105.8 1.00

Ar 19.7 0.07 73.8 0.70

Kr 9.2 0.03 44.7 0.42

Xe 1.5 0.01 35.6 0.34

Table 6.3
Linear fitting parameters (i.e. slopes) for the purely repulsive (i.e. De=0 cm−1) SSHT
as well as experimentally measured 〈∆E〉 vs. 〈E〉 plots of HNC + Rg. Also shown
are the associated ratios (ΛRg:He) of the individual rare-gas slopes relative to the cor-
responding He values.
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repulsive interaction) is observed to severely overestimate the relative efficiency of en-

ergy transfer in the He-complex. Nevertheless, as discussed previously, introduction

and variation of a non-zero attractive interaction can be used to modify the calculated

slopes and hence fit the experimentally measured values.

6.4.2.3 SSHT fittings: (|De| ≥ 0 cm−1)

Despite the fact that 〈∆E〉 is observed to be a linear function of 〈E〉, a number

of issues arise when one attempts a fitting using the SSHT-derived parameters. First

and foremost, the experimental and SSHT-derived values disagree upon the energy

at which 〈∆E〉 goes to zero (i.e. EExp ≈ 3,000 cm−1 and ESSHT = 0 cm−1). One way

to circumvent this issue is simply to offset the energy axis of the SSHT-derived values

by a constant ≈3,000 cm−1, then perform a relative fitting. Under such a method,

the absolute magnitude of the calculated 〈∆E〉 values begin to lose their meaning,

however the relative slopes of the individual plots remain faithful descriptors of the

systems. We note that it is important to exert caution when attempting a fitting

routine in which an arbitrary scaling factor is allowed. In particular, if we are no

longer constrained by the magnitude of 〈∆E〉, there necessarily exists an infinite

set of solutions whose relative slopes will match the experimentally measured values.

Nevertheless, one useful aspect of this routine is that we are free to force any initial

fit value for one (and only one) of the Rg systems. For the present case, we choose

to fix the HNC / He interaction energy at the ab initio calculated value of -46 cm−1,

then fit the remaining systems relative to that initial value. We could have easily

chosen to fix any one of the other interaction energies (i.e. Ar, Kr, or Xe) and varied

the He result to fit.
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Figure 6.6
SSH(T) assisted fittings of the HNC + Rg 〈∆E〉 vs. 〈E〉 plots in which the HNC / He in-
teraction energy was fixed at the ab initio determined value of -46 cm−1 and the remaining
(Ar, Kr and Xe) interaction energies were left as fitting parameters. The magnitude of the
SSH(T) calculated 〈∆E〉 values (right axis) are found to be about an order of magnitude
greater than the experimentally measured values (left axis). The ratios of the HNC + Rg
interaction energies, relative to He, have been determined as (1:11:12:24).

However, given that the He complex necessarily requires the least sophisticated basis

set to model, it is reasonable to assume that the He interaction energies will be the

most accurate of the series. Consequently, the SSHT relative fitting results for all of

the HNC complexes, obtained through variation of the associated interaction energies

(with a fixed He interaction energy), are presented in figure 6.6.
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6.4.2.4 Interaction energies: SSHT vs. Theory

The SSHT measured interaction energies, as recorded in table 6.4, are ob-

served to follow a well-behaved trend in which the larger (more polarizable) atoms

exhibit stronger interactions. Furthermore, table 6.5 shows the comparison of the

absolute magnitudes of the experimental and SSHT derived 〈∆E〉 values. It is of

interest to note that the SSHT derived values are all around an order of magnitude

greater than the experimental values. We note additionally that our application of

SSHT theory employs harmonically scaled transition dipole moments as solutions

for the various vibrational matrix elements appearing in the transition probabilities

[57-59]. To that end, as the ν2 bend of HNC has a notoriously strong fundamental

transition dipole moment of 1.04 Debye [60], it is reasonable to expect that SSHT

Rg -De / Exp (SSHT) -De / Exp (SSHT)a -De / ab intitiob

He–HNC 46 46 46

Ar–HNC 516 281 230

Kr–HNC 560 304 284

Xe–HNC 1,147 595 564

(a) Modified SSHT theory: exp
(
−De
kBT

)
→ exp

(
−2De
kBT

)
(b) MP4(full)/aug-cc-pVTZ + (3s3p2d1f) values scaled by +6.5%

Table 6.4
Comparison of the SSHT derived and ab initio calculated intermolecular interaction
energies (De) for the series of complexes HNC / Rg. In addition to traditional SSHT
theory, interaction energies calculated using a modified version of the attractive com-
ponent has been includes. All energies are given in units of cm−1.
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theory may overestimate the magnitudes of the 〈∆E〉 values. Nevertheless, as the

associated matrix elements effectively act as scaling factors of the various transition

probabilities, the relative 〈∆E〉 magnitudes (obtained through variation of the iden-

tity of the atomic collider) still yield faithful descriptions of the series of systems.

Above all else however, the most interesting aspect of the fitting results is

that the SSHT measured interaction energies (with the exception of the He results)

are all observed to be around twice as large as the ab initio calculated values. Figure

6.7 highlights a comparison of the SSHT derived interaction energies as a function

of the ab initio calculated values. While a linear trend line is observed, the slope of

the measured SSHT values is found to diverge from the perfect correlation fit line

by a constant 0.5 factor. The observation of such an anomaly suggests the need for

a re-examination of the origins of the SSHT attractive interaction term. In partic-

ular, Rapp and Kassal’s [53] review portrays the origin of the long-range attractive

interaction term as an ad hoc addition to the theory, as opposed to resulting from

a rigorous ab initio derivation. In this regard, it is quite reasonable then to allow a

slight modification to the exponential (attractive) term, i.e.

exp

(
−De
kBT

)
→ exp

(
−2De

kBT

)
, (6.14)

as a means of obtaining agreement between the ab initio and SSHT-derived interaction

energies (De). As expected, when the experimental results are re-fit using relation

6.14, the relative fits (again, employing a fixed He interaction energy) yield interac-

tion energies whose magnitudes are all decreased by nearly half. A more detailed

justification for relation 6.14, as applied to the collisional deactivation of a series of

polyatomic species, is currently in preparation [61]. Nevertheless, as highlighted
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Figure 6.7
Direct comparison of the SSH(T) measured HNC + Rg interaction energies with the ab
initio calculated values. The solid black line corresponds to an absolute correlation between
theory and experiment. The plot of circles highlights the SSH(T) determined values which
employ the classical Tanczos equation where the interaction energy is included via the term
{EXP(-De/kT)}. The plot of squares was measured using a modified Tanczos term of the
form: {EXP(-2De/kT)}.

in table 6.4 (and figure 6.7), modification of the SSHT attractive interaction term

yields experimentally measured interaction energies which are all in near quantitative

agreement with the ab initio calculated values.
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Rg 〈∆E〉 / EXP 〈∆E〉 / SSH(T) Ratio (SSHT / EXP)

He 59.9 651.0 10.9

Ar 40.7 462.9 11.4

Kr 24.0 258.9 10.8

Xe 20.2 220.8 10.9

(*) All 〈∆E〉 values determined at 〈E〉 = 8,600 cm−1.

Table 6.5
Comparison of the experimentally measured vs. SSH calculated values of 〈∆E〉. It
is observed that SSH theory predicts 〈∆E〉 values which are an order of magnitude
greater than the experimental measurements.

6.4.3 On the role of polarizability:

As noted above, it is expected that the dominant electrostatic interaction

between the HNC molecule and the rare-gas atomic collider is a permanent dipole-

induced dipole interaction. Specifically, the potential interaction term should be de-

scribable as a function of the product of the permanent dipole moment of the donor

molecule with the linear polarizability of the collider atom, as well as inversely pro-

portional to the sixth power of the separation between the two species. If this is in

fact the case, both the ab initio calculated and SSHT derived interaction energies

should scale as linear functions of the atomic polarizabilities. Figure 6.8 highlights

a plot of the SSHT derived interaction energies (both the pure result as well as the

modification using relation 6.14) as functions of the rare-gas linear atomic polarizabil-

ities. In both instances, a well-behaved linear functional relation is observed, which

provides reasonable justification for the dominance of the noted dipole-induced dipole
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interaction. However, as the sole difference between the pure and modified SSHT val-

ues is the magnitude of the interaction energies, the only observed difference is that

the slope for the pure SSHT energies is correspondingly larger.

Figure 6.8
Correlation of the SSH(T) measured HNC + Rg interaction energies as a function of the
linear polarizabilities of the rare-gas atomic colliders. The circle plot shows the correlation
using the classical Tanczos interaction energy equation and the square plot uses the modified
(2De) form.

As a result, the observed functional relationship with the atomic polarizabilities can-

not be used as a means to argue either for or against the general use of relation 6.14.

Nevertheless, it is of interest to note that the magnitudes of both the calcu-

lated ab initio and measured SSHT derived 〈∆E〉 values are both observed to decrease
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for stronger electrostatic interactions (i.e. 〈∆E〉He > 〈∆E〉Ar > 〈∆E〉Kr > 〈∆E〉Xe).

The observation of such a relation is contrary to the expectation of a long-lived

collision complex. Specifically, given the nature and magnitude of the electrostatic

interaction (especially for the larger Rg atoms), the two collision partners could be

expected to orbit one another and potentially undergo numerous energy transferring

collisions before separating. Under such a scheme, it would be reasonable then to

expect that a stronger interaction would hence result in much more efficient energy

transfer. As noted however, it is observed that the most efficient (V-T) energy trans-

fer is found for the weakly interacting systems. In this regard then, it is either the

case that the true interaction energies are all too weak and hence long-lived collision

complexes are simply not forming; or if the energies are sufficiently strong to yield the

associated complexes, they are simply not resulting in enhanced energy transfer. In

a qualitative sense, such an argument favors the more reasonable (lower magnitude)

interaction energies obtained via relation 6.14 by invoking the assumption that com-

plexation is simply unattainable for such weakly interacting systems. Just the same,

such a description is ultimately unable to provide a rigorous ab initio justification for

the suggested modification (relation 6.14) of SSHT theory, but it does nicely showcase

the origins of the key intermolecular interaction as a dipole-induced dipole attraction.

6.4.4 Efficient energy transfer:

Vibrational energy transfer has been examined many times before in numer-

ous systems of varying sizes and energetic regimes. It is generally observed that V-T

energy transfer is very inefficient, regardless of the average internal energy of the

donor species, with average 〈∆E〉 values typically falling well below 10 cm−1. For
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example, vibrational energy transfer from the series of triatomic species: nitrogen

dioxide (NO2) [23,30,62,63], sulfur dioxide (SO2) [31,36], as well as carbon disulfide

(CS2) [30,34,35], have all been experimentally examined with a variety of atomic col-

lisional partners. In all three cases examined, minimal 〈∆E〉 values (≤ 10 cm−1) were

measured for average energies below the coincident onsets of excited electronic states,

even for 〈E〉 values up to 10,000 cm−1: e.g. {NO2(Ã2B2/B̃2B1) 〈E〉0 ≈ 10,000 /

14,000 cm−1, SO2(ã3B2) 〈E〉0 ≈ 20,000 cm−1, and CS2(R̃3A2) 〈E〉0 ≈ 26,000 cm−1}.

Once the average internal energy rises above the onsets for the associated lowest ex-

cited electronic states, the slopes of the measured 〈∆E〉 vs. 〈E〉 plots are observed

to increase dramatically and adopt new linear trends.

As presented throughout, V-T energy transfer from HNC is found to be an

extremely efficient process with 〈∆E〉 values measured well above 10 cm−1 for all

average energies examined. More specifically, as presented by figure 6.5, enhanced

〈∆E〉 values are observed for all energies with constant linear trends. Based upon

the prior triatomic studies listed above, one might be tempted to assert the presence

of an extremely low lying excited electronic state which, based upon the observed

〈∆E〉 = 0 values, would appear at ≈ 3,000 cm−1 above the zero point energy of

HNC. Nevertheless, the first excited electronic state of HNC (Ã1A
′′
) is calculated to

be 5.8 eV above the zero point level of the ground state [3], well above and beyond

the experimentally available internal energy. One alternative possibility could involve

coupling to the available ro-vibrational levels of ground state HCN. Given that the

zero point energy of HNC lies around 5,000 cm−1 above that of HCN [3], there exists

a potential for coupling (and hence enhanced energy transfer) for all ground state

HNC levels. However, with respect to the numerous theoretical examinations of the

HCN / HNC isomerization system, it has been predicted that, for energies less than

11,000 cm−1 above the HNC zero point energy, the corresponding wavefunctions will
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be purely localized in either of the two potential energy wells [4,5]. In other words, for

the experimentally allowed HNC internal energies, electronic coupling to HCN should

be considered as highly unlikely and therefore should not be viewed as a potential

origin of the energy transfer enhancement of HNC.

6.4.5 Astrophysical HNC / HCN abundance ratios:

It has been well established that HCN as well as HNC are both present in the

various systems of the interstellar medium [6-11]. Given the presence of ultra-violet

(UV) radiation from stars, it is more than reasonable to expect the occurrence of

ongoing photochemistry in the variety of astrophysical environments. Specifically, for

systems composed of cyano-containing molecules, such as vinyl cyanide, it is quite

plausible that photon-induced unimolecular photodissociation will yield vibrationally

highly excited HCN and/or HNC. Given that we have already shown that V-T energy

transfer from HNC is extremely efficient, compounded by the notion that V-T energy

transfer is typically the least efficient process when compared against both vibrational

to rotational (V-R) or vibrational to vibrational (V-V) [64], it is likely that both V-R

and V-V from HNC will be as efficient (if not more so) than V-T. Furthermore, V-V

energy transfer from HCN has already been found to be an efficient process, suppos-

edly due to the presence of a strong permanent dipole moment [1,2]. In this regard

then, given that potential astrophysical photochemical systems will be composed of

numerous polyatomic species, where in addition to V-T, V-V and V-R will also be

possible, it should be expected that any excited HCN / HNC generated should be

readily collisionally quenched.

One of the lingering open questions of the astrophysical community pertains
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to the origin of the comparable HNC / HCN concentrations (measured in the astro-

physical medium) for which it was originally expected that HCN should dominate

by a factor of around 1030 [6-11]. At present, the source of both HCN and HNC is

suspected to originate in the electronic dissociative recombination of the HCNH+ ion

[12], as isomerization of ground state HCN / HNC is highly unlikely due to the low

temperatures of outer space. Given the observation of efficient collisional deactivation

of HNC (as well as HCN), in addition to the occurrence of astrophysical photochem-

istry, the current study provides a provocative alternative origin for the presence of

astrophysical HNC as well as the observed abundance ratios. If astrophysical HCN

and HNC are both produced predominantly from a single process (i.e. electronic dis-

sociative recombination), it should then be expected that their concentrations would

appear in nearly constant ratios, regardless of their physical environment. Alterna-

tively, if the observed isomers originate not from a single process, but rather from

general photochemical events involving different cyano-containing species (each of

which would necessarily yield HCN and HNC in unique ratios); efficient collisional

quenching would provide a means of preserving the nascent abundance ratios. As a

result, if collisional deactivation of HNC and HCN are both highly competitive with

isomerization, UV photodissociation of various cyano-containing species would nec-

essarily yield variable HNC / HCN abundance ratios, even scenarios in which HNC

is more abundant than HCN. Furthermore, as the associated ratios would depend

sensitively upon the structure of the given precursor species, they would therefore be

completely dependent upon the chemical makeup of the local environment.
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6.5 Conclusion

We have presented an experimental examination of the V-T energy transfer

efficiency of vibrationally highly excited hydrogen isocyanide, collisionally quenched

through the rare-gas atomic colliders (He, Ar, Kr, and Xe). A series of time-resolved

internal energy distributions were obtained through a modeling of the anharmonic ν1

NH and ν3 NC stretch modes, observed in time-resolved emission spectra following

the 193 nm photolysis of vinyl cyanide. The average nascent internal energy of HNC

was measured to be 24.5±1.4 kcal mole−1, which is in excellent agreement with the

value observed in the prior PTS study of Blank et al [28]. The dynamic evolution of

the HNC internal energies, as a function of the number of rare-gas collisions, were fit

to analytical forms from which the average energy lost per collision (for each inert

collider) was determined. It is found that HNC exhibits a well behaved SSH reduced

mass trend in which He is observed to be the most efficient quencher, followed by Ar,

Kr, and finally Xe. Additionally, it is observed that HNC exhibits uncommonly effi-

cient V-T energy transfer efficiencies in which 〈∆E〉 > 10 cm−1 (up to about 60 cm−1

at 〈E〉 ≈ 9,000 cm−1) are observed for all internal energies examined. Fitting rou-

tines employing vibrational transition probabilities from SSHT theory, showed that

the observed reduced mass trend correlates with a monotone increasing interaction

energy trend: |DHe
e | < |DAr

e | < |DKr
e | < |DXe

e |. Furthermore, a slight modification of

SSHT theory, in which the attractive energy term is simply doubled, is observed to

yield interaction energies which are in near quantitative agreement with ab initio cal-

culated values. Moreover, the characterization of efficient collisional deactivation of

HNC following the UV photolysis of a cyano-containing species, provides an alterna-

tive explanation for the variation of observed abundance ratios of HNC (as compared

with HCN) in the astrophysical medium.
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Chapter 7

Conclusions
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7.1 Summary

In the preceding chapters, time-resolved Fourier transform infrared emission

spectroscopy was employed as a means of characterizing the vibrational energy trans-

fer properties of molecular transients, generated following the 193 nm photolysis of

specifically chosen molecular precursors. Along the way, it was determined that two-

dimensional correlation analysis [1] was a novel tool capable of enhancing the signal-

to-noise ratio (SNR) in a series of time-resolved emission spectra. Specifically, for

a repeated series of nearly identical experiments, correlation analysis was found to

enhance the common sources of signal while (at the same time) reducing the non-

systematic (unique) sources of noise. In particular, correlation analysis was employed

in chapters three and four for the purpose of enhancing the SNR of the measured

emission spectra of the vibrationally excited ketenyl (HCCO) radical following the

193 nm photolysis of ethyl ethynyl ether.

The enhanced late time spectra, which exhibited partial rotational resolution,

lead to the very first experimental determination of the ν1 CH stretch mode of the

ketenyl (HCCO) radical at 3232 cm−1. Additionally, with the aid of anharmonic-

ity constants obtained from an ab initio quantum chemical analysis, the early time

(high energy) emission spectra of the ν1 CH stretch mode HCCO were fit and the

associated time-resolved average internal energies of HCCO were determined. By

careful variation of the corresponding inert collider species, it was thus possible to

examine the vibrationally highly excited energy transfer properties of this radical. It

was found that, for all internal energies examined, vibrational-to-translational energy

transfer from HCCO was extremely efficient, with average energies lost in excess of

50 cm−1 for most internal energies. Such a result is highly significant for the field

of combustion chemistry given the presence of highly vibrationally excited ground
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state HCCO following intersystem crossing from an initially prepared population of

quartet HCCO [2,3].

Furthermore, our analysis of the 193 nm photodissociation of vinyl cyanide

confirmed the generation of hydrogen isocyanide (HNC) as a primary dissociation

fragment, in an associated (1 : 3) branching ratio with hydrogen cyanide (HCN).

Spectral modeling, along with variation of the employed inert collisional partners,

allowed for the first experimental examination of energy transfer from vibrationally

highly excited HNC. Comparable to HCCO, energy transfer from HNC was found

to be uncharacteristically efficient with average energies lost in excess of 10 cm−1

for most internal energies examined. For experimentalists interested in probing gen-

eral isomerization dynamics, a new and efficient method for generating HNC is just

cause for celebration. Additionally, the fact that isolated HNC is generated in quan-

tities comparable to the more stable HCN, compounded by the notion that HNC is

readily stabilized through inert collisions, is even more so interesting given that it

offers a provocative new solution to the HCN / HNC abundance ratio crisis of the

astrophysical community [4]. Furthermore, that a simple modification to the SSH re-

laxation theory [5] yields quantitatively accurate interaction energies (from TR-FTS

measured emission spectra), suggests a new experimental tool for those in the field

of weak chemical interactions.

Overall, the recent availability of ab initio quantum chemical methods which

allow for the routine determination of ro-vibrational anharmonicity constants (χij,

yijk, zijkl, ...) is found to greatly enhance the utility of TR-FTS. Specifically, while

the ability to generate and observe highly excited emission from radicals has been

around for the last few decades, reasonable means of modeling the observed spectra

has generally been elusive. As a direct result, it was often the case that early time

(high energy) spectra of radicals simply went un-analyzed [6-9]. Nevertheless, given

191



the advent of this new set of theoretical tools, TR-FTS is now shown to be a capable

means of probing energy transfer from vibrationally highly excited radicals.
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