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Economics of Spectrum Allocation in Cognitive Radio Networks

Abstract
Cognitive radio networks (CRNs) are emerging as a promising technology for the efficient use of radio
spectrum. In these networks, there are two levels of networks on each channel, primary and secondary, and
secondary users can use the channel whenever the primary is not using it. Spectrum allocation in CRNs poses
several challenges not present in traditional wireless networks; the goal of this dissertation is to address some
of the economic aspects thereof. Broadly, spectrum allocation in CRNs can be done in two ways- (i) one-step
allocation in which the spectrum regulator simultaneously allocates spectrum to primary and secondary users
in a single allocation and (ii) two-step allocation in which the spectrum regulator first allocates spectrum to
primary users, who in turn, allocate unused portions on their channels to secondary users. For the two-step
allocation scheme, we consider a spectrum market in which trading of bandwidth among primaries and
secondaries is done. When the number of primaries and secondaries is small, we analyze price competition
among the primaries using the framework of game theory and seek to find Nash equilibria. We analyze the
cases both when all the players are located in a single small location and when they are spread over a large
region and spatial reuse of spectrum is done. When the number of primaries and secondaries is large, we
consider different types of spectrum contracts derived from raw spectrum and analyze the problem of optimal
dynamic selection of a portfolio of long-term and short-term contracts to sell or buy from the points of view of
primary and secondary users. For the one-step allocation scheme, we design an auction framework using
which the spectrum regulator can simultaneously allocate spectrum to primary and secondary users with the
objective of either maximizing its own revenue or maximizing the social welfare. We design different bidding
languages, which the users can use to compactly express their bids in the auction, and polynomial-time
algorithms for choosing the allocation of channels to the bidders.
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ABSTRACT

ECONOMICS OF SPECTRUM ALLOCATION

IN COGNITIVE RADIO NETWORKS

Gaurav S. Kasbekar

Supervisor: Saswati Sarkar

Cognitive radio networks (CRNs) are emerging as a promising technology for the ef-

ficient use of radio spectrum. In these networks, there are two levels of networks on

each channel, primary and secondary, and secondary users can use the channel when-

ever the primary is not using it. Spectrum allocation in CRNs poses several challenges

not present in traditional wireless networks; the goal of this dissertation is to address

some of the economic aspects thereof. Broadly, spectrum allocation in CRNs can be

done in two ways– (i) one-step allocation in which the spectrum regulator simultane-

ously allocates spectrum to primary and secondary users in a single allocation and (ii)

two-step allocation in which the spectrum regulator first allocates spectrum to primary

users, who in turn, allocate unused portions on their channels to secondary users.

For the two-step allocation scheme, we consider a spectrum market in which trading

of bandwidth among primaries and secondaries is done. When the number of primaries

and secondaries is small, we analyze price competition among the primaries using the

framework of game theory and seek to find Nash equilibria. We analyze the cases both

when all the players are located in a single small location and when they are spread over

a large region and spatial reuse of spectrum is done. When the number of primaries and

vii



secondaries is large, we consider different types of spectrum contracts derived from

raw spectrum and analyze the problem of optimal dynamic selection of a portfolio of

long-term and short-term contracts to sell or buy from the points of view of primary

and secondary users.

For the one-step allocation scheme, we design an auction framework using which

the spectrum regulator can simultaneously allocate spectrum to primary and secondary

users with the objective of either maximizing its own revenue or maximizing the social

welfare. We design different bidding languages, which the users can use to compactly

express their bids in the auction, and polynomial-time algorithms for choosing the al-

location of channels to the bidders.
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Chapter 1

Introduction

1.1 Motivation

The last decade has seen a tremendous proliferation in the use of different wireless net-

work technologies such as cellular networks, Wireless Local Area Networks, Wireless

Meteropolitan Area networks etc, resulting in a proportionate increase in demand for

radio spectrum. As a result, there is a widespread belief that radio spectrum is becom-

ing increasingly crowded. However, spectrum measurements indicate that the allocated

spectrum is under-utilized, i.e., at any given time and location, much of the spectrum is

unused [21]. This is because, in the traditional spectrum licensing model, a spectrum

regulator (e.g. the Federal Communications Commission (FCC) in the United States),

allocates spectrum by assigning exclusive licenses to service providers to operate their

networks on different bands. So a band lies idle when not in use by the license holder
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on the band.

Cognitive radio networks (CRNs) [2] are emerging as a promising solution to this

dilemma. In these networks, there are two levels of networks on a channel– primary

networks and secondary networks. A primary network has priortized access to the

band, whereas a secondary network can access the band when the primary is not using

it. CRNs allow a more efficient use of spectrum than traditional networks in which

each band is used by a single network– spectrum that would have been idle in the latter

case can be used by secondary networks in the former. CRNs have been enabled by

the cognitive radio technology [28], [29] that allows secondary nodes to detect which

channel is not being used by primary nodes, share this channel with other nodes and

vacate the channel when a primary node is detected. Surveys on CRNs can be found

in [2] and [75].

Spectrum allocation in CRNs poses several challenges not present in traditional

wireless networks; the goal of this dissertation is to address some of the economic as-

pects thereof. Broadly, there are two possibilities for spectrum allocation in CRNs [51].

In the first possibility, which we refer to as one-step allocation, the regulator simulta-

neously allocates the rights to be the primary and secondary networks on the channels

in a single allocation, e.g. by an auction. This is a natural extension of spectrum al-

location in traditional wireless networks– e.g. the FCC has been conducting spectrum

auctions [1] since 1994 to allocate (exclusive) licenses to service providers. In the

other possibility, which we refer to as two-step allocation, the regulator allocates chan-
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nels to primary networks, which then independently allocate unused portions on their

channels to secondary networks. The transition from the spectrum allocation process

in traditional wireless networks to the two step allocation process in CRNs is perhaps

more imminent owing to the decomposition of the allocation process into two steps,

as opposed to the one-step allocation process which will require the involvement of a

larger set of players in auctions involving the regulator. Hence, we first study the two-

step allocation scenario in Chapters 2 to 6 and then the one-step allocation scenario in

Chapter 7.

We now describe some challenges that arise in each of the above two possibilities.

In the two-step allocation scenario, trading of bandwidth between primaries and sec-

ondaries can be done through a market mechanism, in which primaries quote prices

at which they are willing to sell bandwidth, and then sell it to interested secondaries.

There are two possible cases, depending on whether the number of players (primaries

and secondaries) is large or small. When the number of players is small in the two-

step allocation scenario, each player exerts a considerable amount of influence on the

market. In this case, the price is not necessarily set at a competitive level by the mar-

ket. Instead, there may be price competition in which each primary must decide how to

price its bandwidth, the tradeoff being that a low price will attract more buyers for its

bandwidth and a high price will fetch a high profit if the bandwidth is sold. A CRN has

several distinguishing features, which makes the price competition in CRNs different

from that in traditional commodity markets, e.g. (i) there is uncertainty about whether
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a primary has unused bandwidth in a given time slot and (ii) spectrum is a commodity

that allows spatial reuse, i.e. the same band can be used at far-off locations without

interference. A problem of interest is to study the behavior of players in this price

competition setup. This problem constitutes the bulk of this dissertation, we address it

using the framework of game theory [43], and it is the subject of Chapters 2 to 5.

When there are a large number of primaries and secondaries, the amount of influ-

ence that an individual player exerts on the market is typically small, and the price of

bandwidth is set at a competitive level, which is determined by the market. In this case,

a problem facing a primary that owns multiple channels 1 is to dynamically select the

durations for which to lease each of these to secondaries and whether to provide service

guarantees on these “bandwidth contracts”. The corresponding problem facing the sec-

ondaries is to buy an appropriate mix or portfolio of different types of contracts. Since a

primary’s demand for bandwidth evolves stochastically over time, if it sells a long-term

contract on a band and guarantees availability of the bandwidth over this duration, then

it may need to pay a hefty penalty as compensation to the buyer if the primary is later

forced to use the band to satisfy its own demand for bandwidth. On the other hand, it

may wish to sell a lot of long-term contracts if their market price is much higher than

that of short-term contracts. Similar tradeoffs are faced by the secondaries. We address

this problem of selection of a portfolio of spectrum contracts for both the primary and

the secondary using the stochastic dynamic programming framework, as discussed in

1When there are a small number of players, we assume for tractability that each primary owns only

one channel. When there are a large number of players, we allow a primary to own multiple channels.
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Chapter 6.

Now, in the one-step allocation scenario mentioned above, the regulator needs to

select the networks that will be the primary and secondary networks on each band, with

the goal of either maximizing the social welfare or its own revenue. Different networks

may have different traffic demands and utilities, and hence may assign different valua-

tions to a given allocation of primary and secondary rights on the bands. A problem is

to design a mechanism that allows networks to compactly express their valuations for

different channel allocations, and efficient algorithms that allocate the channels based

on the submitted valuations. We have designed an auction mechanism for this problem,

which we discuss in Chapter 7.

1.2 Our Contributions and Related Work

As explained above, this dissertation consists of three parts– (i) spectrum pricing games,

(ii) dynamic contract trading in spectrum markets and (iii) spectrum auction framework

for access allocation. Now we outline our contributions and overview related work in

each of these parts.

1.2.1 Spectrum Pricing Games

We study price competition in a CRN when there are a small number of primaries and

secondaries. Each primary tries to attract secondaries by setting a lower price for its

bandwidth than other primaries. A CRN has several distinctive features, which makes
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the price competition very different from that in traditional commodity markets. First,

in every time slot, each primary may or may not have unused bandwidth available. Sec-

ond, the number of secondaries will be random and not known apriori as each secondary

may be a local spectrum provider or even a user shopping for spectrum in a futuristic

scenario, e.g., users at airports, hotspots, etc. Thus, each primary who has unused band-

width is uncertain about the number of primaries from whom it will face competition

as well as the demand for bandwidth; it may only have access to imperfect information

such as statistical distributions about either. A low price will result in unnecessarily low

revenues in the event that very few other primaries have unused bandwidth or several

secondaries are shopping for bandwidth, because even with a higher price the primary’s

bandwidth would have been bought, and vice versa. Third, spectrum is a commodity

that allows spatial reuse: the same band can be simultaneously used at far-off locations

without interference; on the other hand, simultaneous transmissions at neighboring lo-

cations on the same band interfere with each other. As a result, a primary cannot offer

bandwidth at all locations, but must select an independent set of locations at which to

offer it. Also, the choice of the independent set and the prices at those locations must be

made jointly. We formulate price competition in a CRN as a game, taking into account

bandwidth uncertainty, a random number of secondaries and spatial reuse. We analyze

the game in a single slot, as well as its repeated version.

In the one-shot game at a single location, we explicitly compute the Nash Equi-

librium [43] (NE) and show its uniqueness (Chapter 3). The proof is complicated by
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the fact that the strategies of the primaries being prices, the strategy sets are contin-

uous; also the utility functions are not continuous. Also, we allow the probabilities

with which different primaries have unused bandwidth to be arbitrary and unequal; this

asymmetry further complicates the analysis. The NE turns out to be of a mixed-strategy

type, i.e. each primary randomly chooses his price from a range. The structure of the

NE provides several insights into the price competition among primaries (discussed in

Section 3.3.5).

Next, we analyze the repeated game version of the one-shot game (Section 3.4), and

show that there exists an efficient NE in which each primary sets the highest possible

price and as a result, the sum of expected revenues of the primaries is maximized. This

is achieved through a threat mechanism: if any primary lowers its price in a slot, all

others retaliate in future slots by playing the one-shot game NE strategy and hence the

primary suffers in the long run.

We then analyze a generalization of the basic model in which the valuations of sec-

ondary users for unit bandwidth are not constant, but random variables whose distri-

butions are known (Chapter 4). We explicitly compute the symmetric NE in this game

and show its uniqueness in the class of symmetric NE.

Finally, we consider the game with spatial reuse (Chapter 5), in which each primary

owns bandwidth over a large region containing several smaller locations, which we

model as an undirected graph. Each primary must simultaneously choose a set of mu-

tually non-interfering (an independent set of) locations at which to offer bandwidth and
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the price of bandwidth at each of those locations. We focus on a special class of graphs,

which we refer to as mean valid graphs, such that the conflict graphs corresponding to

a large number of topologies that arise in practice are mean valid graphs. We explicitly

compute a NE in mean valid graphs and show its uniqueness in the class of NE with

symmetric independent set selection probability mass functions of the primaries.

Fig. 1.1 summarizes the main results.

Figure 1.1: The figure summarizes the main results obtained in the “spectrum pricing games” part of the

dissertation (Chapters 2 to 5).

Related Work: Pricing related issues have been extensively studied in the context

of wired networks and the Internet; see [12] for an overview. Price competition among

spectrum providers in wireless networks has been studied in [30], [40], [41], [74], [46], [47].

Specifically, Niyato et. al. analyze price competition among multiple primaries in

CRNs [46], [47]. However, neither uncertain bandwidth availability, nor spatial reuse

is modeled in any of the above papers. Also, most of these papers do not explicitly find
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a NE (exceptions are [40], [46]). Our model incorporates both uncertain bandwidth

availability and spatial reuse, which makes the problem challenging; despite this, we

are able to explicitly compute a NE. Zhou et. al. [77] have designed double auction

based spectrum trades in which an auctioneer chooses an allocation taking into account

spatial reuse and bids. However, in the price competition model we consider, each pri-

mary independently sells bandwidth, and hence a central entity such as an auctioneer is

not required.

In the economics literature, the Cournot game and the Bertand game are two basic

models that have been widely used to study competition among sellers in oligopolies [42].

In a Cournot game, sellers choose the quantity of a good to produce as opposed to prices

in a Bertrand game, and hence the latter is more relevant to our model. In a Bertrand

game, each seller quotes a price for a good, and the buyers buy from the seller that

quotes the lowest price 2 [42]. Several variants of the Bertrand game have been stud-

ied, e.g., [48], [36], [31], [34], [9]. Osborne et al [48] consider price competition in

a duopoly, when the capacity of each firm is constrained. Chawla et al. [9] consider

price competition in networks where each seller owns a capacity-constrained link, and

decides the price for using it; the consumers choose paths they would use in the net-

works based on the prices declared and pay the sellers accordingly. The capacities in

both cases are deterministic, whereas the availability of bandwidth is random in our

model. The closest to our work are [31], [34], which analyze price competition where

each seller may be inactive with some probability and find a Nash equilibrium [42]

2If two or more sellers quote the lowest price, the demand is equally shared between them.
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(NE), which they show to be unique. However, the results in [31], [34] are restricted

to the case of one buyer; but, a CRN is likely to have multiple secondaries, which we

consider. Also, [31], [34] analyze only the symmetric model where the probability of

owning the good is the same for each seller. Also, in [31], it is only shown that the

NE is unique in the class of symmetric NE. In [34], uniqueness in the class of all NE is

shown only for the case of a single buyer (and symmetric good availability probabili-

ties). Moreover, unlike [31], [34], we consider repeated interactions among primaries,

unequal probabilities of availability of unused bandwidth and random valuations for

secondaries (Chapters 3 and 4).

Finally, none of the above papers [48], [36], [31], [34], [9] consider the spectrum-

specific issue of spatial reuse, which introduces a new dimension, that each player

not only needs to determine the price of the commodity he owns (as in [48], [36],

[31], [34], [9]), but also select an independent set to compete in. The joint decision

problem significantly complicates the analysis.

1.2.2 Dynamic Contract Trading in Spectrum Markets

We consider a spectrum market with a large number of primary and secondary providers 3.

Providers in both categories have their subscriber (e.g., TV or mobile communication

subscriber) bases whom they need to serve using the spectrum they respectively license

from the FCC or buy in the spectrum market.

3We use the terms primary network (respectively, secondary network), primary provider (respectively,

secondary provider) and primary (respectively, secondary) interchangeably.
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A question that is key to the efficient operation of the spectrum market is how the

primary and the secondary providers should trade bandwidth contracts dynamically,

based on time-varying demand patterns arising from their subscribers, to maximize

their returns while satisfying their subscriber base. We consider two basic forms of

contracts that are used for selling/buying spectral resources: i) Guaranteed-bandwidth

(Type-G) contracts, and (ii) Opportunistic-access (Type-O) contracts. Under the Type-

G contracts, a secondary provider purchases a guaranteed amount of bandwidth (in

units of frequency bands or sub-bands) for a specified duration of time (typically a

“long term”) from a primary provider, and pays a fixed fee (either as a lump-sum or

as a periodic payment through the duration of the contract) irrespective of how much

it uses this bandwidth. If after selling the contract, the primary is unable to provide

the promised bandwidth (this may for example happen when the primary is forced to

use a band it has sold due to an unexpected rise in its subscriber demand), the primary

financially compensates the secondary for contractual violation. On the other hand,

Type-O contracts are short-term (one time unit in our model), and a secondary which

buys a Type-O contract pays only for the amount of bandwidth it actually uses on the

corresponding band. The primary does not provide any guarantee on a Type-O contract

and may use the channel sold as a Type-O contract without incurring any penalty. Thus,

a Type-O contract provides the secondary the right to use the channel if the primary is

not using it.

The spectrum contract trading problem that we formulate and solve allows the pri-
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mary (respectively, secondary) provider to dynamically adjust its spectrum contract

portfolio, i.e, choose how much of each type of contract to sell (respectively, buy) at

any time, so as to maximize (respectively, minimize) its profit (respectively, cost) sub-

ject to satisfying its own subscriber demand that varies with time, and given the current

market prices of Type-G and Type-O contracts which also vary with time.

We separately address the Primary’s Spectrum Contract Trading (Primary-SCT)

problem and the Secondary’s Spectrum Contract Trading (Secondary-SCT) problem.

We formulate each problem as a finite horizon stochastic dynamic program whose

computation time is polynomial in the input size. We prove several structural prop-

erties of the optimum solutions. For example, we show that the optimal number of

Type-G contracts, for both primary and secondary providers, are monotone (increasing

or decreasing) functions of the subscribers’ demands and the contract prices. These

structural results provide more insight into the problems, and allow us to develop faster

algorithms for solving the dynamic programs. Also, using numerical evaluations, we

investigate properties of the optimal solutions and demonstrate that the revenues they

earn substantially outperform static spectrum portfolio optimization strategies that de-

termine the portfolio based on the steady-state statistics of the contract price and sub-

scriber demand processes.

Note that the spectrum contract trading problem differs in several key aspects from

the problem of trading traditional goods such as stocks, bonds, foodgrains etc. First,

both the primary and the secondary must decide their trading strategies considering
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their subscriber demand which changes with time. For example, a primary (respec-

tively, secondary) cannot simply decide to sell (respectively, buy) a large number of

Type-G contracts at any given time at which their market prices are high (respectively,

low). This is because a primary will need to pay a hefty penalty if it can not deliver the

promised bandwidth owing to an increase in its subscriber demand, and the secondary

will need to pay for the contract even if it does not use the corresponding bands ow-

ing to a decrease in its subscriber demand. Next, spectrum usage must satisfy certain

spatial constraints that are perhaps unique. Specifically, a frequency band cannot be

simultaneously successfully used at neighboring locations (without causing significant

interference), but can be simultaneously successfully used at geographically disparate

locations. Thus, the spectrum trading solution for the primary provider must also take

into account spatial constraints for spectrum reuse, and therefore the computation of

the optimal trading strategy requires a joint optimization across all locations. We prove

a surprising separation theorem in this context: when the same signal is broadcast at all

locations, the Primary-SCT problem can be solved separately for each location and the

individual optimal solutions can subsequently be combined so as to optimally satisfy

the global reuse constraints, and obtain the same revenue as the solution of a computa-

tionally prohibitive joint optimization across locations.

Related Work: The need for bringing market-based reform in spectrum trading, with

the goal of ensuring efficient use of spectrum and fairness in allocation and pricing

of bandwidth, is being increasingly recognized by both economists and engineers [8,
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20, 49, 50, 52, 68]. The literature on the economics of spectrum allocation has so far

mostly focused on the debate of spectrum commons [38, 49, 50] and spectrum auction

mechanism design [33, 53, 65, 64]. Spectrum sharing games and/or pricing issues have

been considered in [14, 18, 44, 24, 59]. A clear design of the spectrum market structure,

precise definition of spectrum contracts, or how the different contracts can be optimally

traded in a dynamic market environment is yet to emerge. This is the space in which

we contribute in this dissertation (Chapter 6).

The question we address in Chapter 6 also differs significantly from existing re-

lated work in the Economics and Operations Research literature. In the inventory prob-

lem [60], [63], a firm maintains an inventory of some good to meet customer demand,

which is uncertain. The firm needs to decide the amount to purchase in every slot of a

finite or infinite horizon. There is a tradeoff between purchasing and storing costs of

the inventory and the cost of not satisfying customers. This is somewhat related to our

model, in which a secondary provider needs to decide the number of Type-G and Type-

O contracts to buy in every time slot to meet its subscriber demand. However, contracts

in our model have a different nature from goods in the inventory model: e.g., Type-G

contracts, once bought, can be used in every subsequent time slot to satisfy subscriber

demand, whereas goods in an inventory can be used only once to satisfy customer de-

mand. This aspect of Type-G contracts is loosely related to production capacity: once

a firm installs capacity, it can be used to manufacture goods in all subsequent time pe-

riods. In capacity expansion problems [16], [39], a firm needs to optimally decide the
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volumes, times, and locations of production plants; the tradeoff is that if capacity falls

short of demand, the demand cannot be met; on the other hand, if capacity exceeds

demand, the excess capacity is wasted. However, our model differs in several aspects

from the capacity expansion problem: e.g., (i) there is no counterpart of Type-O con-

tracts in the capacity expansion model, (ii) Type-G contracts can be bought on the spot,

whereas capacity installation typically needs to be planned in advance. Finally, spa-

tial reuse constraints being spectrum-specific, are not considered in either inventory or

capacity expansion models.

1.2.3 Spectrum Auction Design

We consider a scenario in which the regulator conducts an auction to sell the rights to

be the primary and secondary networks on a set of channels. Networks can bid for

these rights based on their utilities and traffic demands. The regulator uses these bids

to solve the access allocation problem, i.e., the problem of deciding which networks

will be the primary and secondary networks on each channel. The goal of the regu-

lator may be either to maximize its revenue or to maximize the social welfare of the

bidding networks. Now, networks can have utilities or valuations that are functions of

the number of channels on which they get primary and secondary rights, how many and

which other networks they share these channels with etc. The number of valuations of

a network may be large and an exponential amount of space may be required to express

a bid for each valuation. So we design bidding languages, that is, compact formats
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for networks to express bids for their valuations. For different bidding languages, we

design algorithms for the access allocation problem.

We first consider the case when the bids of a network depend on which other net-

works it will share channels with. When there is only one secondary network on

each channel, we design an optimal polynomial-time algorithm for the access alloca-

tion problem based on reduction to a maximum matching problem in weighted graphs.

When there can be two or more secondary networks on a channel, we show that the op-

timal access allocation problem is NP-Complete. Next, we consider the case when the

bids of a network are independent of which other networks it will share channels with.

We design a polynomial-time dynamic programming algorithm to optimally solve the

access allocation problem when the number of possible cardinalities of the set of sec-

ondary networks on a channel is upper-bounded. Finally, we design a polynomial-time

algorithm that approximates the access allocation problem within a factor of 2 when

the above upper bound does not exist.

Related Work: Spectrum auctions have been studied in [22], [76], [61], [27], [32], [62].

In [22], [76] a framework is developed to distribute spectrum in real-time to a set of

wireless users. Channel allocation is done under interference constraints, in which the

same channel cannot be allocated to two or more users whose transmissions interfere

with each other. The mechanism in [76] is strategy-proof, that is, under the mechanism

buyers find it in their best interest to bid according to their true valuations. In [61], there

is a set of bidders and multiple chunks of spectrum. The paper investigates sequential
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and concurrent auction mechanisms to allocate the chunks of spectrum to the bidders

such that each bidder is allocated at most one chunk. In [27], a set of spread spectrum

users is considered, who share the spectrum with the owner of the spectrum. The goal

is to design auctions to allocate the transmit power to each user subject to a limit on

the interference at a measurement location. In [32], there are multiple primary users

who own the licenses to channels in a region and multiple secondary users who are

interested in leasing the unused portions of the channels of the primaries. The paper

proposes a double auction mechanism with multiple sellers (the primaries) and multi-

ple buyers (the secondaries). In [62], a knapsack based auction model is proposed to

allocate spectrum to providers while maximizing revenue and spectrum usage.

We now explain how our work differs from previous work. In some of the existing

work on spectrum auctions [22], [76], [61], [62] each channel is assigned to a single

network, i.e., there is no notion of primary and secondary networks on a single channel.

We consider the case when there is a primary network and one or more secondary

networks on each channel. As explained above, there are two possibilities, one-step

and two-step allocation, for allocating secondary rights on channels [51]. Auctions

have been designed for the two-step allocation scenario in [27] and [32]. To the best

of our knowledge, our work is the first to design an auction for the one-step allocation

scenario.
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1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2, to gain insight, we

analyze a simplified symmetric model for the two-step allocation scenario in which

there are a small number of primaries and secondaries in a region. We also analyze a

simplified symmetric model, which provides insight. Chapter 3 analyzes the general

asymmetric model– both the game in a single slot and its infinitely repeated version.

Chapter 4 considers a generalization in which the valuations of the secondaries are

random and Chapter 5 considers the model with spatial reuse of spectrum. Chapter 6 is

on dynamic contract trading in spectrum markets and Chapter 7 describes our auction

framework for the one-step allocation scenario. Finally, we conclude in Chapter 8.
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Chapter 2

Spectrum Pricing Games: A

Symmetric Analysis

In this chapter and the next three chapters, we consider Cognitive Radio Networks

(CRNs) with a small number of primaries and secondaries; in this scenario, each player

exerts a significant influence on the market price of bandwidth.

2.1 Introduction

Consider a CRN with multiple primaries and multiple secondaries. Price competition

in a CRN has the distinguishing feature that in every slot, each primary may or may not

have bandwidth available. We model this price competition as a game [43] and seek a

Nash Equilibrium (NE) in it. Since prices can take real values, the strategy sets of play-

ers are continuous. In addition, the utilities of the primaries are not continuous func-
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tions of their actions. Thus, classical results, including those for concave and potential

games, do not establish the existence and uniqueness of NE in the resulting game, and

there is no standard algorithm for finding a NE unlike when each player’s strategy set is

finite [43]. Nevertheless, as described in Chapter 3, we are able to explicitly compute a

NE and show that it is unique in the class of all NE, allowing for player strategies that

are arbitrary mixtures of continuous and discrete probability distributions.

Our results also apply to any price competition setting where the sellers’ supply

is uncertain. In particular, microgrids [37] are a newly emerging technology for dis-

tributed electricity generation, which consist of a connected network of generators (e.g.,

solar panels, wind turbines) and loads (e.g., households, factories). There is uncertainty

in the power generated by a generator at a given time, e.g., the power produced by a so-

lar panel on a given day depends on the availability of sunlight. Our results characterize

NE in pricing games in such electricity markets.

In this chapter, we intuitively analyze a simplified symmetric model, which provides

insight. In the next chapter, we provide a formal analysis of the general model.

2.2 Model

Suppose there are n≥ 2 primaries and k ≥ 1 secondaries in a region. Each primary owns

1 channel, which corresponds to 1 unit of bandwidth. Each secondary may constitute a

customer who requires 1 unit of bandwidth, or may simply be a demand for 1 unit of

bandwidth. For simplicity, in this chapter, we assume that the number of secondaries k
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is a constant that is known to the primaries, and in the next chapter generalize our results

to the case where the number of secondaries is random and unknown. Time is divided

into slots of equal duration. In every slot, the channel of each primary is independently

free (unused) with probability (w.p.) q ∈ (0,1); i.e., each primary independently has

1 unit of unused bandwidth w.p. q. For simplicity, in this chapter, we assume that

this probability is the same for all the primaries. In the next chapter, we generalize

our results to the case in which the primaries have unused bandwidth with arbitrary

and possibly different probabilities. A primary i who has unused bandwidth in a slot

can lease it out to a secondary for the duration of the slot, in return for an access fee

of pi. Leasing in a slot incurs a cost of c ≥ 0. This cost may arise, for example, if

the secondary uses the primary’s infrastructure to access the Internet. We assume that

pi ≤ v for each primary, for some constant v > c. This upper bound v may arise as

follows:

1. The spectrum regulator may impose this upper bound to ensure that primaries

do not excessively overprice bandwidth even when competition is limited owing

to bandwidth scarcity or high demands from secondaries, or when the primaries

collude.

2. Alternatively, the valuation of each secondary for 1 unit of bandwidth may be v,

and no secondary will buy bandwidth at a price that exceeds his valuation.

We initially assume that the primaries know this upper limit v, which is likely to be the

case for the first interpretation. For the second interpretation, the primaries need not
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know the secondaries’ valuations– we consider this generalization in Chapter 4.

Secondaries buy bandwidth from the primaries that offer the lowest price. More

precisely, in a given slot, let Z be the number of primaries who offer unused bandwidth.

Then the bandwidth of the min(Z,k) primaries that offer the lowest prices is bought

(ties are resolved at random).

2.3 Game Formulation

We formulate the above price competition among primaries as a game, which is any

situation in which multiple individuals called players interact with each other, such that

each player’s welfare depends on the actions of others [42]. In our model, the primaries

are the players, and the action of primary i is the price pi that he chooses 4. For the

most part of this dissertation, we study the interaction of the primaries in a single slot,

which is referred to as the one-shot game. In Section 3.4 of Chapter 3, we consider a

setting where the one-shot game is repeated an infinite number of times, referred to as

the repeated game.

The utility or payoff of a player in a game is a numerical measure of his satisfaction

level [42], which in our context is the corresponding primary’s net revenue. In (the one-

shot version of) our game, the utility of primary i is 0 if he has no unused bandwidth.

4If primary i has no unused bandwidth, it does not matter what price pi he sets. Yet, for convenience,

we speak of pi as being his action.
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Let ui(p1, . . . , pn) denote his utility 5 if he has unused bandwidth 6 and primary j sets a

price of p j, j = 1, . . . ,n. Thus,

ui(p1, . . . , pn) =





pi − c if primary i sells his bandwidth

0 otherwise

Recall that the distribution function (d.f.) [19] of a random variable (r.v.) X is the

function:

G(x) = P(X ≤ x), x ∈ R

where R is the set of real numbers. Now, a strategy [42] for primary i is a plan for

choosing his price pi. We allow each primary i to choose his price randomly from a set

of prices using an arbitrary d.f. ψi(.), which is referred to as the strategy of primary i.

A d.f. that concentrates its entire mass on a single value allows a primary to determin-

istically choose this value as his price– such a ψ(.) is referred to as a pure strategy. The

5The utility of any primary i who has unused bandwidth depends on whether he sells his bandwidth,

which depends on other primaries’ bandwidth availabilities that are random and not included in the action

space. The expected utility (if the expectation is taken over the availabilities) however depends only on

the primaries’ actions. For example, if n = 2,k = 1, if primary 1 has unused bandwidth, his expected

utility is

E[u1(p1, p2)] =





p1 − c if p1 < p2

(p1 − c)/2 if p1 = p2

(1− q2)(p1 − c) if p1 > p2.

So, in game theoretic terminology, the above expected utility ought to be considered as the utility of

a primary. We will consider the expectation in defining the Nash equilibrium and also in our proofs.

Finally, note that the expected utility is not a continuous function of the actions (prices).
6If instead, ui(p1, . . . , pn) were defined to be primary i’s net revenue, unconditional on whether he

has unused bandwidth or not, then his expected utility in the one-shot game analysis would be scaled

everywhere by q.
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vector (ψ1(.), . . . ,ψn(.)) of strategies of the primaries is called a strategy profile [42].

Let ψ−i = (ψ1(.), . . . ,ψi−1(.),ψi+1(.), . . . ,ψn(.)) denote the vector of strategies of pri-

maries other than i. Let E{ui(ψi(.),ψ−i)} denote the expected utility of player i when

he adopts strategy ψi(.) and the other players adopt ψ−i.

We use the Nash Equilibrium (NE) solution concept, which has been extensively

used in game theory in general and wireless network applications in particular to predict

the outcome of a game. Several arguments have been proposed in the literature for using

NE as a solution concept, e.g. it is a necessary condition if there is a unique predicted

outcome to a game, a strategy profile can be a “focal point” only if it is a NE etc. (see

Section 8.D in [42] for a detailed discussion). A NE is a strategy profile such that no

player can improve his expected utility by unilaterally deviating from his strategy [42].

Thus, (ψ∗
1(.), . . . ,ψ

∗
n(.)) is a NE if for each primary i:

E{ui(ψ
∗
i (.),ψ

∗
−i)} ≥ E{ui(ψ̃i(.),ψ

∗
−i)}, ∀ ψ̃i(.) (1)

When players other than i play ψ−i, ψ∗
i (.) maximizes i’s expected utility and is thus his

best-response [42] to ψ−i.

2.4 Symmetric NE

Since the bandwidth availability probability of each primary is the same (equal to q),

the game in Section 2.2 is a symmetric game, which is one in which all players have the

same action sets and utility functions.
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We focus on a specific class of Nash equilibria, known as symmetric Nash equilib-

ria. A NE (ψ∗
1(.), . . . ,ψ

∗
n(.)) is a symmetric NE if all players play identical strategies

under it, i.e., ψ∗
1(.) = ψ∗

2(.) = . . . = ψ∗
n(.). In practice it is challenging to implement

any other NE– the simple example of two primaries and a NE of (ψ∗
1(.),ψ

∗
2(.)) elu-

cidates the inherent complications in the current context. If ψ∗
1(.) 6= ψ∗

2(.), then since

players have the same action sets, utility functions and probability of having unused

bandwidth (i.e., the game is a symmetric game), (ψ∗
2(.),ψ

∗
1(.)) also constitutes a NE.

If player 1 knows that player 2 is playing ψ∗
2(.) (ψ∗

1(.) respectively), he would choose

the best response ψ∗
1(.) (ψ∗

2(.) respectively), but he cannot know player 2’s choice be-

tween the two options without explicitly coordinating with him, which is again ruled

out due to the competition between the two. Under symmetric NE, all players play

the same strategy, and thus this quandary is somewhat limited– symmetric NE has in-

deed been advocated for symmetric games by several game theorists [10]. The natural

question now is whether there exists at least one symmetric NE, and also whether there

is a unique symmetric NE (only uniqueness will eliminate the above quandary). Note

that some symmetric games are known to have multiple symmetric NE. For example,

consider the simple “Meeting in New York game” [42] with two players, where each

player can either be at Grand Central or at Empire State Building, and both receive

unit utility if they meet and zero utility otherwise. The strategies where each player is

at Grand Central, and where each player is at Empire State Building, both constitute

symmetric NE. We prove existence of a symmetric NE, by explicitly computing one,
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and subsequently prove that it is the unique symmetric NE in our context.

2.5 Nash Equilibria

If k ≥ n, then the number of buyers is always greater than or equal to the number of

sellers. So a primary i will sell his unused bandwidth even when he chooses the maxi-

mum possible price v. So the strategy profile under which all primaries deterministically

choose the price v is the unique NE. So henceforth, we assume that k ≤ n−1.

Theorem 1. There is no pure strategy NE (i.e., one where every primary selects his

price deterministically) in the above game.

Before proving Theorem 1, we state a definition. A strategy pi of player i is said to

strictly dominate [42] another strategy p′i if:

E{ui(pi, p−i)}> E{ui(p′i, p−i)}, ∀p−i

Proof of Theorem 1. For every primary i, and any p−i, ui(c, p−i)= 0. Also, E{ui(pi, p−i)}>

0 for all pi ∈ (c,v] because primary i gets a positive payoff in the event that no other

primary has unused bandwidth, which happens with positive probability. Thus, the

strategy pi = c is strictly dominated by each pi ∈ (c,v], and hence no primary sets

pi = c in any pure-strategy Nash equilibrium.

Suppose (p1, . . . , pn) is a pure-strategy Nash equilibrium, where c < pi ≤ v for i =

1, . . . ,n. Let pmin = min(p1, . . . , pn), Smin = {i : pi = pmin}, and nmin = |Smin|. Note that

Smin is the set of primaries who set the lowest price pmin, and nmin is its cardinality. One
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of the following two cases must hold:

Case (i): nmin ≤ k

Since k ≤ n− 1, nmin ≤ n− 1 and hence at least one primary sets a price above pmin.

Since pi ≤ v, i = 1, . . . ,n, it follows that pmin < v.

Let p j = min{pi : i /∈ Smin} be the second lowest price. Now, note that ∀i ∈ Smin,

ui(pmin, p−i) = pmin − c and ui(p′i, p−i) = p′i − c ∀p′i ∈ (pmin, p j). This is because the

bandwidth of primary i always gets sold for any p′i < p j, since it is among the primaries

with the nmin ≤ k lowest prices. So ∀i ∈ Smin:

ui(pmin, p−i)< ui(p′i, p−i) ∀p′i ∈ (pmin, p j)

Hence pi = pmin is not a best response to p−i, which contradicts the assumption that

(p1, . . . , pn) is a Nash equilibrium.

Case (ii): nmin > k

In this case, for i ∈ Smin:

E{ui(pmin, p−i)}= (pmin − c)P(E1)

where E1 is the event that primary i’s bandwidth is bought by a secondary. Note that

P(E1) < 1 because with a positive probability, k or more primaries, other than i, in

Smin have unused bandwidth. In this case, k randomly selected primaries, out of the

primaries in Smin who have unused bandwidth, sell their bandwidth, and with a positive

probability, primary i is not among them. Also, note that primary i’s bandwidth is

always sold if it sets a price less than pmin and the vector of prices of primaries other

27



than i is p−i. Hence, for small enough ε > 0:

E{ui(pmin − ε, p−i)} = (pmin − ε− c)

> (pmin − c)P(E1)

= E{ui(pmin, p−i)}

Thus, pi = pmin is not a best response, which contradicts the assumption that (p1, . . . , pn)

is a Nash equilibrium.

In contrast, in the Bertrand game, which corresponds to q = 1 in our model, the pure

strategy profile under which each primary deterministically selects c as his price is the

unique NE [42]. This strategy profile is not a NE in our context as this provides 0 utility

for each primary, whereas by quoting any price above c (and less than or equal to v)

each primary can attain a positive utility since he will sell his unused bandwidth at least

when he is the only primary that has unused bandwidth which happens with positive

probability (since q < 1).

In the rest of this chapter, we intuitively derive the symmetric NE in the above

game, which turns out to be the unique symmetric NE. We defer the formal proofs until

Section 3.3.4 in the next chapter.

For convenience, we introduce the notion of “pseudo-price” for each primary. The

pseudo-price of primary j, p′j, is the price he selects if he has unused bandwidth; p′j =

v+ 1 otherwise 7. Consider primary 1 and let p′(k),1 denote the k’th smallest pseudo-

price among the pseudo-prices of the rest of the primaries, i.e., p′j, j ∈ {2, . . . ,n} (which

7The choice v+ 1 is arbitrary. Any other value greater than v would also work.
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primary 1 will know only after choosing his price or equivalently pseudo-price). Since

the primaries choose their prices randomly and since their bandwidth availabilities are

random, p′(k),1 is a random variable; let F(.) be its d.f. If primary 1 offers a price of x,

he sells his bandwidth only if p′(k),1 > x (since there are k secondaries who opt for the

lowest available prices), which happens with probability (1−F(x)); the sale fetches a

utility of x− c. Hence, primary 1’s expected utility is (x− c)(1−F(x)). Now, under

NE, primary 1’s price distribution being his best response to those of others, he must

attain the same expected utility for the entire range of prices he is randomly choosing

his price from, more technically, in the entire support set 8 of his price distribution; this

is because his best response price distribution will never select from the less profitable

ones which will not therefore be in its support set. Thus, (x − c)(1− F(x)) is the

same (i.e., a constant) for all x in the support set for his NE price distribution. Hence,

F(x) is fully specified once this constant is known, which we determine by considering

F(v). Note that F(v) is the probability that p′(k),1 ≤ v, which happens when k or more

primaries have unused bandwidth (among those in {2, . . . ,n}); this probability therefore

is w(q,n), where:

w(q,n) =
n−1

∑
i=k




n−1

i


qi(1−q)n−1−i. (2)

Thus, F(v) = w(q,n). Hence, the constant in question is (v − c)(1− F(v)) = (v −

c)(1−w(q,n)) . Thus, in the support set of F(.), F(x) = 1− (v−c)(1−w(q,n))
x−c

. The x at

8The support set of a d.f. is the smallest closed set such that its complement has probability zero

under the d.f. [19].
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which F(x) = 0 provides the lower limit of this support set, which, from the above

expression, is:

p̃ = v−w(q,n)(v− c). (3)

Thus,

F(x) =





0, x ≤ p̃

x− p̃
x−c

, p̃ < x ≤ v.

(4)

We now only need to determine a price d.f. ψ(.) for each primary that leads to the

above d.f. F(.) for the kth smallest pseudo-price of n− 1 primaries. Note that the

pseudo-price for any given primary is less than or equal to x (where x ≤ v) whenever he

has unused bandwidth and he quotes a price of x or less: the probability that both these

events occur is qψ(x). Thus, since F(x) is the probability that k or more pseudo-prices

(among those n−1) are less than or equal to x, F(x) equals

n−1

∑
i=k




n−1

i


 [qψ(x)]i[1−qψ(x)]n−1−i,

for all x ≤ v. Thus, since we know F(.) from (4), we can compute ψ(x) = (1/q)φ(x),

where φ(x) is the solution of the following equation:

n−1

∑
i=k




n−1

i


 [φ(x)]i[1−φ(x)]n−1−i = F(x). (5)

We can in fact formally prove that:

Lemma 1. Equation (5) has a unique solution φ(x)∈ [0,1]. The function φ(x) is strictly

increasing and continuous on [p̃,v]. Also, φ(p̃) = 0 and φ(v) = q.
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And, the symmetric NE price d.f. ψ(.) is:

ψ(x) =





0, x ≤ p̃

1
q
φ(x), p̃ < x ≤ v

1, x ≥ v

(6)

From the properties of the φ(.) function obtained in Lemma 1, ψ(x) is a continuous

d.f9.

The above intuitive justification however glosses over some technical, nonetheless

important, details: we implicitly assume that F(.) is continuous and that the set of best

responses of a primary is a convex set. In the formal proof, we prove both the above

for any symmetric NE and subsequently establish that:

Theorem 2. The strategy profile in which each primary i chooses his price pi according

to ψ(.), where ψ(.) is defined by (6), (5), (4) is the unique symmetric NE.

This random selection of prices as per ψ(.) can be interpreted as follows: each pri-

mary i sets a base price v and randomly holds “sales” to attract secondaries by lowering

the price to some value pi ∈ [p̃,v]10.

Example: For n = 2 and k = 1, we have w(q,n) = q, p̃ = v−q(v− c), and

ψ(x) =





0 x ≤ p̃

1
q

(
x− p̃
x−c

)
p̃ < x ≤ v

1 x ≥ v

(7)

9A function f (x) is a d.f. iff it is increasing, right continuous, and has limits 0 and 1 as x tends to −∞

and ∞ respectively [19].
10This interpretation has been suggested in [69] for random selection of prices in a different context.
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Chapter 3

Spectrum Pricing Games with

Asymmetric Bandwidth Availability

Probabilities

3.1 Introduction

In Chapter 2, we described a simplified spectrum pricing games model and provided

an intuitive analysis. In this chapter, we analyze the general asymmetric model in

which the bandwidth availability probabilities of the primaries need not be all equal. In

Section 3.3, we analyze the game in a single time slot and in Section 3.4, we study its

repeated version in which the game is repeated an infinite number of times.

For the game in a single slot, we explicitly compute the Nash Equilibrium (NE) and
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show its uniqueness. Our explicit NE computations provide valuable insights, which

we describe in Section 3.3.5.

3.2 Model

In this chapter, we analyze the model described in Section 2.2, with some differences

that we now describe. In the model described in Section 2.2, we assumed that every

primary has unused bandwidth with the same probability q ∈ (0,1). Now, instead,

suppose primary i∈ {1, . . . ,n} has unused bandwidth with probability qi ∈ (0,1), where

we assume without loss of generality that:

q1 ≥ q2 ≥ . . .≥ qn. (8)

Also, in the model described in Section 2.2, we assumed that there are a fixed num-

ber of secondaries k. However, in practice, each secondary may be a local spectrum

provider or even a user seeking to lease spectrum bands to transmit data on an on-

demand basis. So the number of secondaries seeking to buy bandwidth may be random

and and also apriori unknown to the primaries, due to user mobility, varying bandwidth

requirements of the secondaries, etc. Thus, the number of secondaries seeking to buy

bandwidth (henceforth referred to as the number of secondaries for simplicity) is K,

where K is a random variable with probability mass function (p.m.f.) Pr(K = k) = γk.

The primaries apriori know only the γks, but not the values of K. We will make some

technical assumptions on the p.m.f. {γk}: (i) ∑
n−1
k=0 γk > 0 (i.e., the total number of pri-
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maries exceeds the number of secondaries with positive probability, but not necessarily

probability 1) (ii) if γ0 > 0, then γ1 > 0 (if the event that no secondary requires band-

width has positive probability, then the event that only 1 secondary requires bandwidth

also has positive probability). A large class of probability mass functions, including

those generated from the most common scenario, where each local provider or user

from a given pool requires bandwidth with a positive probability independent of others,

satisfy both the above assumptions.

3.3 One-Shot Game Nash Equilibrium Analysis

Recall from Chapter 2 that the pseudo-price of primary i ∈ {1, . . . ,n}, denoted as p′i, is

the price he selects if he has unused bandwidth and p′i = v+1 otherwise. As before, let

ψi(.) be the distribution function (d.f.) of the price pi of primary i. Also, let φi(.) be

the d.f. of p′i. For c ≤ x ≤ v, p′i ≤ x for a primary i iff he has unused bandwidth and sets

a price pi ≤ x. So φi(x) = qiP(pi ≤ x) = qiψi(x). Thus, ψi(.) and φi(.) differ only by a

constant factor on [c,v] and we use them interchangeably wherever applicable.

For a function f (.), we denote the left and right hand side limits at a point a,

limx↑a f (x) and limx↓a f (x) by f (a−) and f (a+) respectively [58].

The proofs of the results in this section are technical and we relegate them to Sec-

tion 3.5.
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3.3.1 Necessary Conditions for a NE

Consider a NE under which the d.f. of the price (respectively, pseudo-price) of primary

i ∈ {1, . . . ,n} is ψi(.) (respectively, φi(.)). In Theorem 3 below, we show that the

NE strategies must have a particular structure. This is the most challenging part of

the analysis; given this structure, the computation of the NE strategies is relatively

straightforward. Before stating Theorem 3, we describe some basic properties of the

NE strategies.

Property 1. φ2(.), . . . ,φn(.) are continuous on [c,v]. φ1(.) is continuous at every x ∈

[c,v), has a jump 11 of size q1 −q2 at v if q1 > q2 and is continuous at v if q1 = q2.

Thus, there does not exist a pure strategy NE (one in which every primary selects a

single price with probability (w.p.) 1).

Now, let ui,max be the expected payoff that primary i gets in the NE and Li be the

lower endpoint of the support set 12 of ψi(.), i.e.:

Li = inf{x : ψi(x)> 0}. (9)

Also, let wi be the probability of the event that at least K primaries among {1, . . . ,n}\i

have unused bandwidth. Let r be the probability that K ≥ 1. Note that r = 1− γ0,

and wi can be easily computed using the p.m.f {γk} and the fact that each primary j

11A d.f. f (x) is said to have a jump (discontinuity) of size b > 0 at x = a if f (a)− f (a−) = b, where

f (a−) = limx↑a f (x).
12The support set of a d.f. is the smallest closed set such that its complement has probability zero

under the d.f.
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independently has unused bandwidth w.p. q j.

Property 2. L1 = . . .Ln = p̃, where p̃ = c+
(v−c)(1−w1)

r
. Also, ui,max = (p̃− c)r, i =

1, . . . ,n.

Thus, the lower endpoints of the support sets of the d.f.s ψ1(.), . . . ,ψn(.) of all the

primaries are the same, and every primary gets the same expected payoff in the NE.

Note that in the symmetric case q1 = . . . = qn, if γk = 1 for some k and γl = 0 ∀l 6= k,

then w1 = . . .= wn = w(q,n), where w(q,n) is given by (2) in Chapter 2 and p̃ reduces

to the expression in (3) in Chapter 2.

Theorem 3. The following are necessary conditions for strategies φ1(.), . . . ,φn(.) to

constitute a NE:

1) φ1(.), . . . ,φn(.) satisfy Property 1 and Property 2.

2) There exist numbers R j, j = 1, . . . ,n+1, and a function {φ(x) : x ∈ [p̃,v)} such that

p̃ = Rn+1 < Rn ≤ Rn−1 ≤ . . .≤ R1 ≤ v, (10)

φ1(x) = . . .= φ j(x) = φ(x), p̃ ≤ x < R j, (11)

for each j ∈ {1, . . . ,n},

and φ j(R j) = q j, j = 1, . . . ,n. (12)

Also, every point in [p̃,R j) is a best response for primary j and he plays every sub-

interval in [p̃,R j) with positive probability. Finally, R1 = R2 = v.

Theorem 3 says that all n primaries play prices in the range [p̃,Rn), the d.f. φn(.) of

primary n stops increasing at Rn, the remaining primaries 1, . . . ,n−1 also play prices
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in the range [Rn,Rn−1), the d.f. φn−1(.) of primary n−1 stops increasing at Rn−1, and

so on. Also, primary 1’s d.f. φ1(.) has a jump of height q1 −q2 at v if q1 > q2. Fig. 3.1

illustrates the structure.

Figure 3.1: The figure shows the structure of a NE described in Theorem 3. The horizontal axis shows

prices in the range x ∈ [p̃,v] and the vertical axis shows the functions φ(.) and φ1(.), . . . ,φn(.).

3.3.2 Explicit Computation, Uniqueness and Sufficiency

By Theorem 3, for each i ∈ {1, . . . ,n}:

φi(x) =





φ(x), p̃ ≤ x < Ri

qi, x ≥ Ri

(13)
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So the candidate NE strategies φ1(.), . . . ,φn(.) are completely determined once p̃,R1, . . . ,Rn

and the function φ(.) are specified. Also, Property 2 provides the value of p̃, and

R1 = R2 = v by Theorem 3. First, we will show that there also exist unique R3, . . . ,Rn

and φ(.) satisfying (10), (11), and (12) and will compute them. Then, we will show that

the resulting strategies given by (13) indeed constitute a NE (sufficiency).

Let p′−i be the K’th smallest pseudo-price out of the pseudo-prices, {p′l : l ∈{1, . . . ,n}, l 6=

i}, of the primaries other than i (with p′−i = 0 if K = 0 and p′−i = v+ 2 if K > n− 1

). Also, let F−i(x) denote the d.f. of p′−i. Since there are K secondaries, if primary 1

has unused bandwidth and sets p1 = x ∈ [p̃,v), its bandwidth is bought iff 13 p′−1 > x,

which happens w.p. 1−F−1(x). Note that primary 1’s payoff is (x− c) if its band-

width is bought and 0 otherwise. So, letting E{ui(x,ψ−i)} denote the expected payoff

of primary i if it sets a price x and the other primaries use the strategy profile ψ−i, we

have:

E{u1(x,ψ−1)}= (x− c)(1−F−1(x)) = (p̃− c)r, x ∈ [p̃,v) (14)

where the second equality follows from the facts that each x ∈ [p̃,v) is a best response

for primary 1 by Theorem 3, and u1,max = (p̃− c)r by Property 2. By (14), we get:

F−1(x) = g(x), x ∈ [p̃,v) (15)

where, g(x) =
x− p̃

x− c
, x ∈ [p̃,v). (16)

Next, we calculate Ri, i = 3, . . . ,n and φ(.) using (15).

13By Property 1, no primary has a jump at any x ∈ [p̃,v). So P(p′−1 = x) = 0.
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3.3.2.1 Computation of Ri, i = 3, . . . ,n

For 0 ≤ y ≤ 1, let fi(y) be the probability of K or more successes out of n− 1 inde-

pendent Bernoulli events, (i−1) of which have the same success probability y and the

remaining (n− i) have success probabilities qi+1, . . . ,qn. An expression for fi(y) can

be easily computed.

Now, to compute Ri, i ∈ {3, . . . ,n}, we note that by (13) and (10), φ j(Ri) = qi, j =

2, . . . , i, and φ j(Ri) = q j, j = i+ 1, . . . ,n. So from the preceding paragraph, with the

events {p′j ≤ Ri}, j = 2, . . . ,n as the n− 1 Bernoulli events, and by the definition of

F−1(.), we get:

F−1(Ri) = fi(qi). (17)

By (15) and (17):

g(Ri) = fi(qi). (18)

By (16) and (18), Ri is unique and is given by:

Ri = c+
(p̃− c)r

1− fi(qi)
. (19)

3.3.2.2 Computation of φ(.)

Now we compute the function {φ(.) : x ∈ [p̃,v)} by separately computing it for each

interval [Ri+1,Ri), i ∈ {2, . . . ,n}. If Ri+1 = Ri, then note that the interval [Ri+1,Ri) is

empty. Now suppose Ri+1 < Ri. For x ∈ [Ri+1,Ri), by (13) and (10):

φ j(x) = q j, j = i+1, . . . ,n (20)
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and φ1(x) = . . .= φi(x) = φ(x). (21)

By definition of the function fi(.), with the events {p′j ≤ x}, j = 2, . . . ,n as the n− 1

Bernoulli events, by definition of F−1(x) and using P{p′j ≤ x}= φ j(x), (20) and (21):

F−1(x) = fi(φ(x)), Ri+1 ≤ x < Ri. (22)

By (15) and (22):

fi(φ(x)) = g(x), Ri+1 ≤ x < Ri. (23)

Lemma 2. For each x, (23) has a unique solution φ(x). The function φ(.) is strictly

increasing and continuous on [p̃,v). For i ∈ {2, . . . ,n}, φ(Ri) = qi. Also, φ(p̃) = 0.

Thus, there is a unique function φ(.), and by (13), unique φi(.), i = 1, . . . ,n that

satisfy the conditions in Theorem 3.

3.3.2.3 Sufficiency

Theorem 4. The pseudo-price d.f.s φi(.), i = 1, . . . ,n in (13), with R1 = R2 = v, Ri,

i = 3, . . . ,n given by (19), and φ(.) being the solution of (23), constitute the unique NE.

The corresponding price d.f.s are ψi(x) =
1
qi

φi(x), x ∈ [c,v], i = 1, . . . ,n.

3.3.3 Efficiency of the unique NE

The efficiency, η, of a NE quantifies the loss in total revenue incurred owing to lack of

cooperation among primaries. η may be defined as η = RNE
ROPT

, where RNE is the expected

sum of utilities of the primaries at the NE and ROPT is the maximum possible (optimal)
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expected sum of utilities. Note that ROPT is attained only when all primaries cooperate

and each selects the maximum possible price v so as to ensure that bandwidth is always

sold at this price. Now, ROPT = E[min(Z,K)](v−c), where Z is the number of primaries

who have unused bandwidth. Also, from Property 2, at the unique NE, whenever a

primary has unused bandwidth, he attains an expected utility of (v− c)(1−w1). Thus,

since primary i has unused bandwidth with probability qi, RNE = (1−w1)(v−c)∑n
i=1 qi.

Hence,

η =
(1−w1)∑n

i=1 qi

E[min(Z,K)]
. (24)

Now, assume for simplicity that each secondary out of a pool of αn secondaries

independently requires bandwidth with some probability, where α is a constant. The

following lemma characterizes the asymptotic behavior of the efficiency for a large

number of primaries and secondaries.

Lemma 3. Suppose K =Kn, the number of secondaries (who require bandwidth) grows

with the number of primaries n. Let E(Kn) = kn. Assume that kn ≥ β for all large n for

some constant β > 0.

1. If kn ≤ ∑n
i=2(qi − ε) for all n and some ε > 0, then η → 0 as n → ∞.

2. If kn ≥ ∑n
i=2(qi + ε) for all n and some ε > 0, then η → 1 as n → ∞.

Note that ∑n
i=2 qi is the expected number of primaries out of primaries 2, . . . ,n who

have unused bandwidth. So the above lemma roughly states that when the expected

demand for bandwidth (kn) is lower than the expected supply of bandwidth, the effi-
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ciency of the NE is close to 0 and vice versa. The intuition is that when the demand

is low compared to the supply, there is intense price competition among the primaries

to sell to the few secondaries who are present, driving down the prices and thereby the

efficiency of the NE.

3.3.4 Symmetric q

We now prove the results that were stated but not proved in Section 2.5. We first

show that Theorem 2 in Chapter 2 follows as a corollary of Theorem 4 above. When

q1 = q2 . . . = qn = q, by definition of the function fi(.) defined in Section 3.3.2.1, for

each i= 1, . . . ,n, fi(q) is the probability of k or more successes out of n−1 independent

Bernoulli events, each with success probability q. So:

fi(q) =
n−1

∑
j=k




n−1

i


qi(1−q)n−i−1 = w(q,n) = w1 (25)

where the second equality follows from (2) and the third equality follows from the

definition of w1, which was defined just before Property 2. So by Property 2,

p̃ = v−w(q,n)(v− c). (26)

Also, by (19), (25) and (26), for each i = 1, . . . ,n:

Ri = c+
(v− c)(1−w(q,n))

(1−w(q,n)

= v

Thus, all primaries play prices in the range [p̃,v].
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Now, we put i = n in (23) to get:

fn(φ(x)) = g(x), p̃ ≤ x < v (27)

By definition of the function fi(.):

fn(φ(x)) =
n−1

∑
i=k




n−1

i


 [φ(x)]i[1−φ(x)]n−1−i (28)

By (16) and (28), (27) becomes:

n−1

∑
i=k




n−1

i


 [φ(x)]i[1−φ(x)]n−1−i =

x− p̃

x− c

Note that the above equation is the same as (5), where F(.) in (5) is given by (4). Also,

φ(.) is the pseudo-price d.f. of each primary and the corresponding price d.f. is given

by (6). So we have proven a strengthening of Theorem 2 in Chapter 2, namely that

the strategy profile identified in that Theorem is the unique NE (not only the unique

symmetric NE). Also, Lemma 1 in Chapter 2 follows from Lemma 2.

3.3.5 Discussion

The structure of the unique NE identified in Theorems 3 and 4 provides several inter-

esting insights:

1) First, from (8), (10) and the fact that the support set of ψi(.) is [p̃,Ri], it follows that

only the primaries with a high bandwidth availability probability (q) play high prices

(see Fig. 3.1). Intuitively this is because all the primaries play low prices (near p̃), so

if a primary sets a high price, he is undercut by all the other primaries. But a primary
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with a high q runs a lower risk of being undercut than one with a low q because of the

lower bandwidth availability probabilities of the set of primaries other than itself.

2) Second, by Property 1, ψ1(.) has a jump at v iff q1 > q2 and is continuous everywhere

else, whereas ψ2(.), . . . ,ψn(.) are always continuous on [c,v].

The above insights highlight the differences of the asymmetric case from the sym-

metric case q1 = . . .= qn discussed in Section 3.3.4, in which the support set of every

d.f. ψi(.), i = 1, . . . ,n is the same ([p̃,v]) and they are all continuous everywhere.

3.4 Repeated Game

3.4.1 Model

We now consider the repeated game version of the one-shot game analyzed in Sec-

tion 3.3. Suppose the one-shot game is repeated an infinite number of times, at times

τ = 1,2,3, . . .. We refer to the game in each individual time slot as a stage game. Each

player perfectly recalls the actions of every player in all preceding time slots. The pay-

off of player i for the overall repeated game is defined to be ui = ∑∞
τ=1 δτ−1ui,τ, where

ui,τ is his payoff at time τ and δ ∈ (0,1) is the discount factor, which is used to discount

future payoffs (see [42], [43] for interpretations of the discount factor). The discount

factor is usually close to 1 [42].

A strategy of a player in a repeated game is a complete plan for choosing the action

in each slot as a function of the actions of all players in all preceding slots. As in a
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one-shot game, a Nash equilibrium (NE) in a repeated game is a strategy profile in

which no player can improve his payoff by unilateral deviation from his strategy [42].

However, NE constitutes a rather weak notion of equilibrium in repeated games [42]

and hence we focus on NE with a special property, known as the Subgame Perfect Nash

Equilibria (SPNE) [42]. A subgame [42] of the repeated game is the part of the game

starting from some slot τ0 ≥ 1, i.e. the stage games in slots τ = τ0,τ0+1, . . .. An SPNE

is an NE of the repeated game that is also an NE of every subgame [42].

3.4.2 Results

It is well-known that for any repeated game, the strategy profile under which every

player uses the one-shot game NE strategy in every time slot is a SPNE [42]. Thus,

the NE we found in Section 3.3 for the one-shot game provides a SPNE in the repeated

game version. Our main contribution, described in the rest of this section, is to present

an SPNE that is also efficient in the sense that the sum of expected utilities of the n

primaries at equilibrium equals the maximum possible sum of utilities, provided the

discount factor δ is sufficiently high.

We consider Nash reversion [42] type of strategy profiles in which each player plays

a specified strategy (called the pre-deviation strategy [42]) at each time until one of the

players deviates from it, and all players play the one-shot game NE strategy thereafter.

Strategy for primary i: Select a price of v at τ = 1, and also for all other τ so long

as all other primaries had chosen v in all previous times. Otherwise, play the one-shot
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game Nash equilibrium strategy ψi(.).

Let uOS
i be the expected payoff, conditional on him having unused bandwidth, that

primary i receives in the one-shot game Nash equilibrium, which we have shown to be

unique in Section 3.3. Let uPD
i be his expected payoff, (conditional on having unused

bandwidth), in each stage game of the repeated game when all primaries play the pre-

deviation strategy in the above Nash reversion strategy. Also, let u
sup
i be the supremum

over the possible expected payoffs that primary i can get, (conditional on having unused

bandwidth), in a single stage game by using any strategy, when all primaries played the

pre-deviation strategy in all slots until the previous stage game, and primaries other

than i play the pre-deviation strategy in the current stage game.

It can be shown that a necessary and sufficient condition for the above Nash rever-

sion strategy to be a SPNE (the proof is similar to that of (12.AA.1) in [42]) is that for

each primary i = 1, . . . ,n:

u
sup
i +

qiδ

1−δ
uOS

i ≤ uPD
i +

qiδ

1−δ
uPD

i (29)

Note that the left-hand side is primary i’s maximum (discounted) payoff starting from

a given slot if he deviates from the pre-deviation strategy, and the right-hand side is the

payoff if he does not deviate. (The factor qi appears in the second term on either side to

account for the fact that primary i would have free bandwidth in each future slot with

probability qi.) So if condition (29) is met, primary i would not deviate from its pre-

deviation strategy. Also, under the pre-deviation strategy, every primary always sets the

maximum price of v. So the sum of utilities of the primaries is the maximum possible.
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Thus, if the condition in (29) is satisfied, the strategy profile in which all primaries play

the above Nash reversion strategy constitutes an efficient SPNE.

In the rest of this section, we simplify the condition in (29). The condition is equiv-

alent to:

1

δ
≤ 1+qi

(
uPD

i −uOS
i

u
sup
i −uPD

i

)
, i = 1, . . . ,n. (30)

Next, we compute u
sup
i , uOS

i and uPD
i . To compute u

sup
i , note that when primaries

other than i set a price of v, primary i’s expected payoff is maximized when he sets a

price just below v. So:

u
sup
i = v− c. (31)

By Property 2, the payoff that each primary gets in the one-shot game NE is the

same, and equals:

uOS
i = (v− c)(1−w1) (32)

where w j is the probability that K or more primaries out of {1, . . . ,n}\ j have unused

bandwidth.

Now we compute uPD
i . Let Z−i be the number of primaries out of {1, . . . ,n}\i who

have unused bandwidth in a given slot. Let Pi(win) be the probability that primary i’s

bandwidth is sold if he and each of the other primaries set a price of v 14. Note that:

uPD
i = (v− c)Pi(win). (33)

14Recall that this computation of uPD
i is conditional on primary i having unused bandwidth, but not

conditional on the other primaries having unused bandwidth.
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Also recall that P(K = k) = γk; also, if K = k and if more than k primaries have unused

bandwidth and set the same price of v, then the bandwidth of k of them, randomly

selected, is bought. So:

Pi(win) =





1, if K = k and Z−i ≤ k−1

k
Z−i+1

, if K = k and Z−i ≥ k

(34)

So:

Pi(win) = ∑
k

(
P(Z−i ≤ k−1)+

n−1

∑
j=k

P(Z−i = j)
k

j+1

)
γk. (35)

P(Z−i = j) and P(Z−i ≤ k−1), and using them Pi(win), can be easily computed using

the fact that primary l ∈ {1, . . . ,n}\i has unused bandwidth w.p. ql .

By (32) and (33):

uPD
i −uOS

i = (v− c)(Pi(win)− (1−w1)). (36)

Also, by (31) and (33):

u
sup
i −uPD

i = (v− c)(1−Pi(win)) (37)

> 0 (38)

since clearly Pi(win)< 1.

We claim that by (8) and the definition of Pi(win):

P1(win)≥ . . .≥ Pn(win). (39)

The reason (39) holds is as follows. Consider primaries i and j, where i < j. When

every primary sets a price of v, a primary’s bandwidth is likelier to be sold the fewer
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the other primaries who have unused bandwidth. Also, the set of primaries other than

i (respectively, j) consists of primaries {1, . . . ,n}\{i, j} and primary j (respectively, i).

Since qi ≥ q j by (8), more primaries out of the set of primaries other than primary i are

likely to have unused bandwidth than out of the set of primaries other than primary j

and hence Pi(win)≥ Pj(win). Equation (39) follows.

By (36) and (39):

(uPD
1 −uOS

1 )≥ . . .≥ (uPD
n −uOS

n ). (40)

Also, by (37) and (39):

(u
sup
1 −uPD

1 )≤ . . .≤ (usup
n −uPD

n ). (41)

By (8), (40) and (41):

q1

(
uPD

1 −uOS
1

u
sup
1 −uPD

1

)
≥ . . .≥ qn

(
uPD

n −uOS
n

u
sup
n −uPD

n

)
. (42)

Now, for i = 1, . . . ,n, let

δi =
1

1+qi

(
uPD

i −uOS
i

u
sup
i −uPD

i

) (43)

Note that the condition in (30) is equivalent to δ ≥ δi, i = 1, . . . ,n. But by (42):

δ1 ≤ . . .≤ δn. (44)

So a necessary and sufficient condition for (30), or equivalently for (29), is δ ≥ δn.

Thus, δ ≥ δn is a necessary and sufficient condition for the strategy profile corre-

sponding to the above Nash reversion strategy to be a SPNE. Note that u
sup
i −uPD

i > 0 ∀i
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by (38). So by (43), δn < 1 if and only if

uPD
n > uOS

n . (45)

Thus, if (45) holds, then for δ large enough (δ ≥ δn), the above Nash reversion strategy

constitutes a SPNE. If uPD
n < uOS

n , then it does not constitute a SPNE. This is because,

for primary n, the payoff under the one-shot game NE is higher than the pre-deviation

payoff of the above Nash reversion strategy. So obviously, primary n will deviate in the

first slot itself and set a price just below v.

Remark 1. Note that the pre-deviation strategy profile in which every primary sets

the maximum price of v can be interpreted as tacit collusion: if a primary i sees that

other primaries are setting the maximum price and are not trying to undercut their

competitors, then primary i also participates in the collusion and keeps setting a price

of v in every slot. However, once at least one primary undercuts its competitors, the

tacit collusion breaks down and primaries revert to the one-shot NE strategy.

Remark 2. Note that by (33) and (39), the pre-deviation strategy profile in which all

primaries set a price of v is most beneficial for primary 1 and least beneficial for pri-

mary n. This is intuitively the reason behind the fact that the condition (δ ≥ δn) for the

above Nash reversion strategy profile to constitute a SPNE is in terms of the parameter

δn of primary n.
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3.5 Appendix

3.5.1 Proofs of results in Section 3.3.1

We first prove a series of lemmas and then deduce Properties 1 and 2 and Theorem 3

from them.

Lemma 4. For i = 1, . . . ,n, ψi(.) is continuous, except possibly at v. Also, at most one

primary has a jump at v.

Proof. Suppose ψi(.) has a jump at a point x0, c < x0 < v. Then for some ε > 0, no

primary j 6= i chooses a price in [x0,x0+ε] because it can get a strictly higher payoff by

choosing a price just below x0 instead. This in turn implies that primary i gets a strictly

higher payoff at the price x0 + ε than at x0. So x0 is not a best response for primary i,

which contradicts the assumption that ψi(.) has a jump at x0. Thus, ψi(.) is continuous

at all x < v.

Now, suppose primary i has a jump at v. Then a primary j 6= i gets a higher payoff

at a price just below v than at v. So v is not a best response for primary j and he plays

it with 0 probability. Thus, at most one primary has a jump at v.

Lemma 5. For every ε > 0, there exist primaries m and j, m 6= j, such that ψm(v−ε)<

1 and ψ j(v− ε)< 1.

That is, at least two primaries play prices just below v with positive probability.
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Proof. Suppose not. Fix i and let:

y = inf{x : ψl(x) = 1 ∀l 6= i}. (46)

By definition of y, ψl(x)= 1 ∀l 6= i and x> y. Also, since ψl(.) is a distribution function,

it is right continuous [19]. So

ψl(y) = 1 ∀l 6= i. (47)

Suppose y < v. By (47):

P{pl ∈ (y,v]}= 0, ∀l 6= i. (48)

So every price pi ∈ (y,v) is dominated by pi = v. Hence:

P{pi ∈ (y,v)}= 0 (49)

By (48) and (49):

P{p j ∈ (y,v)}= 0, j = 1, . . . ,n. (50)

By (46), ∀ε > 0, ψl(y− ε)< 1 for at least one primary l 6= i; otherwise the infimum

in the RHS of (46) would be less than y. So this primary l plays prices just below y

with positive probability. Now, if primary l sets a price pl < v, he gets a payoff equal to

the revenue, (pl −c), if bandwidth is sold, times the probability that bandwidth is sold.

Also, by Lemma 4, ψ j(.), j = 1, . . . ,n are continuous at all prices below v. So by (50),

a price pl just below v yields a higher payoff than a price just below y. This is because,

pl − c is lower by approximately v− y for pl just below y than for pl just below v, but

by (50) and continuity of ψ j(.), j = 1, . . . ,n, the probability that bandwidth is sold for
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a price pl just below y can be made arbitrarily close to the probability that bandwidth

is sold for a price pl just below v. This contradicts the assumption that primary l plays

prices just below y with positive probability.

Thus, y in (46) equals v and hence at least one primary j 6= i plays prices just below

v with positive probability. The above arguments with j in place of i imply that at least

one primary other than j plays prices just below v with positive probability. Thus, at

least two primaries in {1, . . . ,n} play prices just below v with positive probability.

Let ui,max and Li be as defined in Section 3.3.1.

Lemma 6. For i = 1, . . . ,n, Li is a best response for primary i.

Proof. By (9), either primary i has a jump at Li or plays prices arbitrarily close to Li

and above it with positive probability.

Case (i): If primary i has a jump at Li, then Li is a best response for i because in a NE,

no primary plays a price other than a best response with positive probability.

Case (ii): If primary i does not have a jump at Li, then by (9), ψi(Li) = 0. Since every

primary selects a price in [c,v], ψi(v) = 1. So Li < v. So by Lemma 4, no primary

among {1, . . . ,n}\i has a jump at Li. Hence, primary i’s payoff at a price above Li and

close enough to it is arbitrarily close to its payoff at Li. But since primary i does not

have a jump at Li, by (9), he plays prices just above Li with positive probability and

they are best responses for him. So Li is also a best response for primary i.

Lemma 7. For some c < p̃ < v, L1 = . . .Ln = p̃. Also, ui,max = (p̃− c)r, i = 1, . . . ,n.
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That is, the lower endpoint of the support set of the price distribution of every pri-

mary is the same.

Proof. Let Lmin = min{Lm : m = 1, . . . ,n}, and Smin = {m : Lm = Lmin} be the set of

primaries with the lowest endpoint. Let

kmin = min
k
{k : γk > 0}.

Thus, kmin is the minimum number of secondaries at a location. Note that kmin will be

0 if γ0 > 0, and kmin > 0 otherwise. First, we show by contradiction that:

|Smin| ≥ kmin +1. (51)

Clearly, the above holds if kmin = 0. We therefore show that it holds even otherwise.

Suppose |Smin| ≤ kmin. If Lmin = v, then all primaries play the price v w.p. 1, which

does not constitute a NE by Lemma 4. So Lmin < v and again by Lemma 4, no primary

has a jump at Lmin. Also, by Lemma 6, Lmin is a best response for the primaries in

Smin. Let L̂ = min{Lm : m /∈ Smin} be the second lowest endpoint. Now, a primary

m ∈ Smin who has unused bandwidth can get a higher payoff at a price just below L̂ than

at Lmin because in both cases, since |Smin| ≤ kmin, primary m’s bandwidth is sold w.p. 1;

however, it gets a higher revenue at a price just below L̂ than at Lmin. This contradicts

the fact that Lmin is a best response for primary m. Thus, (51) must hold.

Now, suppose Li < L j for some i, j. By Lemma 6, L j is a best response for primary

j. Now, the expected payoff that primary j gets for p j = L j is strictly less than the

expected payoff that primary i would get if it set pi to be just below L j. This is because,
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if primaries i or j set a price of approximately L j, then they see the same price distri-

bution functions of the primaries other than i and j. But primary j may be undercut by

primary i, since Li < L j, whereas primary i may not be undercut by primary j. Also, by

(51), primary j’s expected payoff is strictly lowered due to this undercutting by primary

i. (Note that if kmin > 0, undercutting by primary i would not lower primary j’s prob-

ability of winning, and thereby the expected payoff, if a total of ≤ kmin − 1 primaries

played prices below L j with positive probability. This possibility is ruled out by (51).

If kmin = 0, γ0 > 0. If in addition γ1 = 0, and Smin = 1, it is possible that only 1 primary

(i.e., i) plays prices below L j with positive probability. In this case, note that whenever

at least 1 secondary is available, at least 2 secondaries are available (as γ1 = 0), and

hence undercutting by primary i does not lower primary j’s probability of winning, and

thereby the expected payoff. This possibility is ruled out by assumption (ii) on {γk} in

Section 5.2.1 since γ1 > 0 if γ0 > 0.) Hence, ui,max > u j,max.

Now, by Lemma 6, Li is a best response for primary i. If primary j were to play

price Li, then it would get a payoff of ui,max. This is because, when primary i plays

price Li, it gets payoff ui,max. Since L j > Li, primary i is, w.p. 1, not undercut by

primary j. If primary j were to set the price Li, then w.p. 1, it would not be undercut

by primary i. Also, the price distributions of the primaries other than i and j are exactly

the same from the viewpoints of primaries i and j. Thus, primary j can strictly increase

its payoff from u j,max to ui,max by playing price Li, which contradicts the fact that L j is

a best response for him.
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Thus, Li < L j is not possible. By symmetry, Li > L j is not possible. So Li = L j. Let

L1 = . . .= Ln = p̃.

If p̃ = v, then every primary plays the price v w.p. 1, which does not constitute a NE.

So p̃ < v. So by Lemma 4, no primary has a jump at p̃. Thus, since the lower endpoint

of the support set of every primary is p̃, by (9), a price of p̃ is a best response for every

primary i. Since no primary sets a price lower than p̃, a price of p̃ fetches a payoff of

p̃− c if K ≥ 1 and a payoff of 0 if K = 0. So ui,max = (p̃− c)P(K ≥ 1) = (p̃− c)r,

i = 1, . . . ,n.

Let wi be as defined in Section 3.3.1. Using (8), it can be easily shown that:

w1 ≤ w2 ≤ . . .≤ wn. (52)

Lemma 8. p̃ = c+
(1−w1)(v−c)

r
.

Proof. If primary 1 sets the price p1 = v, then it gets an expected payoff of at least

(v− c)(1−w1) because its bandwidth is sold at least in the event that k − 1 or fewer

primaries out of 2, . . . ,n have unused bandwidth. So u1,max ≥ (v− c)(1−w1). Since

u1,max = (p̃− c)r by Lemma 7, we get:

p̃ ≥ c+
(1−w1)(v− c)

r
. (53)

Now, by Lemma 5, at least two primaries, say m and j, play prices just below v

with positive probability. By Lemma 4, at most one of them has a jump at v. So

assume, WLOG, that no primary other than j has a jump at v. Then a price of p j = v

is a best response for primary j and fetches a payoff of u j,max = (v − c)(1−w j) ≤
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(v− c)(1−w1), where the inequality follows from (52). Since u j,max = (p̃− c)r by

Lemma 7, we get:

p̃ ≤ c+
(1−w1)(v− c)

r
. (54)

The result follows from (53) and (54).

Lemma 9. Let p̃ ≤ a < b ≤ v. Then at least two primaries play prices in (a,b) with

positive probability.

Proof. If b = v, then the claim is true by Lemma 5. If a = p̃, then the claim is true

by Lemma 4 and Lemma 7, since p̃ < v is the lower endpoint of the support set of all

primaries and no primary has a jump at p̃; hence all primaries play prices just above p̃

with positive probability.

Now, fix any a,b such that p̃ < a < b < v. Let:

a = inf{x ≤ a : ψ j(x) = ψ j(a) ∀ j = 1, . . . ,n} (55)

By Lemma 7, a > p̃. Also, by definition of a, P{p j ∈ [a,a]}= 0 ∀ j = 1, . . . ,n.

By definition of a, at least one primary, say primary i, plays prices just below a

with positive probability. (If not, then the infimum in (55) would be less than a.) This

implies that at least one primary j 6= i plays prices in (a,b) with positive probability.

(If not, then pi = b would yield a strictly higher payoff to primary i than prices just

below a.) Now, if primary j is the only primary among primaries {1, . . . ,n} who play

prices in (a,b) with positive probability, then p j = b yields a strictly higher payoff than

p j ∈ (a,b), which is a contradiction. So at least two primaries play prices in (a,b) with
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positive probability. But P{pl ∈ [a,a]}= 0 ∀l = 1, . . . ,n by definition of a. Hence, at

least two primaries play prices in (a,b) with positive probability.

Let F−i(x) be as defined in Section 3.3.2.

Lemma 10. For a fixed x ∈ (p̃,v], and primaries i and j, (i) F−i(x) = F− j(x) iff φi(x) =

φ j(x), (ii) F−i(x)< F− j(x) iff φi(x)> φ j(x).

Proof. Let p′(l) be the l’th smallest out of the pseudo-prices of the primaries other than i

and j. Let F−i,k(x) be the probability that p′−i ≤ x given that K = k. Clearly, F−i,0(x) = 1

since x > p̃ ≥ 0, and F−i,k(x) = 0 if k > n−1. We evaluate F−i,k(x) for 1 ≤ k ≤ n−1.

Conditioning on the event {p′j ≤ x} and using the fact that {p′l : l 6= i} are independent,

we get:

F−i,k(x)

= P{k′th smallest of {p′l : l 6= i} ≤ x}

= P{p′j ≤ x}P{p′(k−1) ≤ x}+P{p′j > x}P{p′(k) ≤ x}

= φ j(x)P{p′(k−1) ≤ x}+(1−φ j(x))P{p′(k) ≤ x}

= φ j(x)[P{p′(k−1) ≤ x}−P{p′(k) ≤ x}]

+P{p′(k) ≤ x} (56)

Similarly,

F− j,k(x) = φi(x)[P{p′(k−1) ≤ x}−P{p′(k) ≤ x}]+P{p′(k) ≤ x} (57)
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By (56) and (57):

F−i,k(x)−F− j,k(x)

= (φ j(x)−φi(x))[P{p′(k−1) ≤ x}−P{p′(k) ≤ x}]

= (φ j(x)−φi(x))αk (58)

where αk = P{p′(k−1) ≤ x}−P{p′(k) ≤ x}. Thus,

F−i(x)−F− j(x) = (φ j(x)−φi(x))
n−1

∑
k=1

αkγk.

We will next show that αk > 0 for 1 ≤ k ≤ n−1. Both parts of the result will then

follow from the above.

Note that αk equals the probability that exactly (k−1) out of the pseudo-prices of

the primaries other than i and j are ≤ x. Since x > p̃, all primaries play prices in (p̃,x)

with positive probability by Lemma 7. So:

φl(x) = P{p′l ≤ x}> 0, l = 1, . . . ,n. (59)

Also,

φl(x)≤ φl(v) = ql < 1, l = 1, . . . ,n. (60)

By (59) and (60):

0 < φl(x)< 1, l = 1, . . . ,n. (61)

Also, since 1 ≤ k ≤ n−1, we have:

0 ≤ k−1 ≤ n−2. (62)
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Since αk equals the probability of exactly k − 1 successes out of n− 2 independent

Bernoulli events that have success probabilities {φl(x) : l = 1, . . . ,n, l 6= i, j}, αk > 0 by

(61) and (62). This completes the proof.

Lemma 11. (i) φ2(.), . . . ,φn(.) are continuous at v. (ii) φ1(.) is continuous at v if

q1 = q2 and has a jump of size at most q1 −q2 at v if q1 > q2. Also,

φ1(v−)≥ q2. (63)

Proof. If no primary i > 1 has a jump at v, then primary 1 gets a payoff of (v− c)(1−

w1), which equals (p̃− c)r by Lemma 8, for a price p1 just below v in the limit as

p1 → v−. So if a primary i ≥ 2 has a jump at v, primary 1 can get a payoff strictly

greater than (p̃− c)r by playing a price close enough to v. This contradicts the fact

that u1,max = (p̃− c)r (see Lemma 7). Thus, no primary i ≥ 2 has a jump at v and

φ2(.), . . . ,φn(.) are continuous.

First, suppose q1 = q2. If primary 1 has a jump at v, then similar to the preceding

paragraph, primary 2 can get a payoff strictly greater than (p̃− c)r by playing a price

just below v, which contradicts the fact that u2,max = (p̃− c)r. So ψ1(.) is continuous.

Now suppose q1 > q2. First, suppose primary 1 has a jump of size exactly q1 −q2

at v. Then if primary 2 sets a price just below v, then the probability of being undercut

by primary j ∈ {3, . . . ,n} is approximately q j. Also, since primary 1 has a jump of

size q1 −q2 at v, the probability of being undercut by primary 1 is approximately q1 −

(q1 −q2) = q2. So at a price just below v, primary 2 sees the same set of probabilities
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of being undercut by primaries other than itself as primary 1 would see if it set a price

just below v. Hence, by the first paragraph of this proof, primary 2 gets a payoff of

approximately (p̃− c)r at a price just below v.

Hence, if primary 1 has a jump of size, not equal to, but greater than q1 − q2 at v,

primary 2 gets a payoff of strictly greater than (p̃− c)r at a price just below v. This

contradicts the fact that u2,max = (p̃− c)r.

Thus, primary 1 has a jump of at most size q1−q2 at v. So φ1(v)−φ1(v−)≤ q1−q2.

This, along with φ1(v) = q1, gives (63).

Lemma 12. If p̃ ≤ x < y < v and ψi(x) = ψi(y) for some primary i, then ψi(v−) =

ψi(x).

Thus, if x ≥ p̃ is the left endpoint of an interval of constancy of ψi(.) for some i,

then to the right of x, the interval of constancy extends at least until v (there may be a

jump at v).

Proof. Suppose not, i.e.:

ψi(v−)> ψi(x). (64)

Let:

y = sup{z ≥ x : ψi(z) = ψi(x)} (65)

By (64), (65) and the fact that ψi(.) is continuous below v (by Lemma 4), we get y < v.

So again by Lemma 4, no primary among {1, . . . ,n}\i has a jump at y. Also, primary i

uses prices just above y with positive probability (if not, the supremum in the RHS of
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(65) would be > y). So y is a best response for primary i and hence:

E{ui(y,ψ−i)}= (y− c)(1−F−i(y)) = ui,max = (p̃− c)r. (66)

where the last equality follows from Lemma 7.

Now, by Lemma 9, there exists a primary j 6= i who plays prices just below y with

positive probability. Since no primary among {1, . . . ,n}\ j has a jump at y, y is a best

response for primary j. Hence:

E{u j(y,ψ− j)}= (y− c)(1−Fj(y)) = u j,max = (p̃− c)r. (67)

By (66) and (67), F−i(y) = F− j(y). So by Lemma 10:

φi(y) = φ j(y). (68)

But since primary j plays prices just below y with positive probability, there exists ε> 0

such that x < y− ε and y− ε is a best response for primary j. So

φ j(y− ε)< φ j(y). (69)

But by (65) and the continuity of φi(.) at y:

φi(y) = φi(y− ε). (70)

By (68), (69) and (70), φi(y− ε)> φ j(y− ε). So by Lemma 10:

F− j(y− ε)> F−i(y− ε)
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This implies:

(p̃− c)r = E{u j(y− ε,ψ− j)}

= (y− ε− c)(1−F− j(y− ε))

< (y− ε− c)(1−F−i(y− ε))

= E{ui(y− ε,ψ−i)}

which contradicts the fact that every primary gets a payoff of (p̃−c)r at a best response

in the NE.

Lemma 13. Part 2 of Theorem 3 holds.

Proof. We prove the result by induction. Let:

Rn = inf{x ≥ p̃ : ∃ y > x and i s.t. φi(y) = φi(x)} (71)

Note that Rn is the smallest value ≥ p̃ that is the left endpoint of an interval of constancy

for some φi(.). For this i, φi(Rn) = φi(y) for some y > Rn
15. We must have Rn > p̃.

This is because, if Rn = p̃, then φi(y) = φi(p̃). But φi(p̃) = 0, since p̃ is the lower

endpoint of the support set of φi(.) by Lemma 7. So φi(y) = 0, which implies that the

lower endpoint of the support set of φi(.) is ≥ y > p̃. This contradicts Lemma 7. Thus,

Rn > p̃.

Now, by definition of Rn, all primaries play every sub-interval in [p̃,Rn) with positive

probability and hence every price x ∈ [p̃,Rn) is a best response for every primary. So

15Note that φi(.) is a distribution function and hence is right continuous [19]. So φi(Rn+) = φi(Rn).
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similar to the derivation of (14), for j ∈ {1, . . . ,n} and x ∈ [p̃,Rn), E{u j(x,ψ− j)} =

(x− c)(1−F− j(x)) = (p̃− c)r. Hence, F−1(x) = . . .= F−n(x) and by Lemma 10,

φ1(x) = . . .= φn(x) = φ(x) (say), p̃ ≤ x < Rn. (72)

which proves (11) for j = n.

Case (i): Suppose Rn = v. Then φl(Rn) = ql, l = 1, . . . ,n (since ψl(v) = 1), which

proves (12).

Case (ii): Now suppose Rn < v. Then φ j(.), j = 1, . . . ,n are continuous at Rn by

Lemma 4. So by (72):

φ1(Rn) = φ2(Rn) = . . .= φn(Rn). (73)

Since Rn is the left endpoint of an interval of constancy of φi(.), by Lemma 12:

φi(Rn) = φi(v−) = φn(Rn)≤ qn (74)

where the second equality follows from (73).

Now, suppose i = 1. Then by (63) and (74):

φi(Rn)≥ q2. (75)

By (74), (75) and (8), q2 = q3 = . . . = qn = φi(Rn). Also, by (73), φ j(Rn) = q j,

j = 2, . . . ,n. So ψ j(Rn) = 1, j = 2, . . . ,n. This implies, since Rn < v by assumption,

that at most one primary (primary 1) plays prices in the interval (Rn,v) with positive

probability, which contradicts Lemma 5. Thus, i 6= 1.
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So by Lemma 11, φi(.) is continuous at v and φi(v−) = φi(v) = qi. So by (74):

φi(Rn) = qi. (76)

By (73) and (76), φn(Rn) = qi. If qi > qn, then φn(Rn) > qn, which is a contradiction

because φn(Rn) = qnψn(Rn)≤ qn. So qi ≤ qn. Also, since qi ≥ qn by (8), qi = qn. So:

φn(Rn) = qn. (77)

which proves (12) for j = n.

Now, as induction hypothesis, suppose there exist thresholds:

p̃ < Rn ≤ Rn−1 ≤ . . .≤ Ri+1 ≤ v

such that for each j ∈ {i+1, . . . ,n}, φ j(R j) = q j,

φ1(x) = . . .= φ j(x) = φ(x), p̃ ≤ x < R j, (78)

and each of primaries 1, . . . , j plays every sub-interval in [p̃,R j) with positive probabil-

ity.

First, suppose Ri+1 < v. Let:

Ri = inf{x ≥ Ri+1 : ∃ y > x and j ∈ {1, . . . , i}

s.t. φ j(y) = φ j(x)}.

If Ri = Ri+1, then clearly by (78):

φ1(x) = . . .= φi(x) = φ(x), p̃ ≤ x < Ri (79)
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which proves (11) for j = i. Also, similar to (77), it can be shown that φi(Ri) = qi,

which proves (12) for j = i and completes the inductive step. Now suppose Ri > Ri+1.

Then similar to the proof of (72), it can be shown that:

φ1(x) = . . .= φi(x) = φ(x), Ri+1 ≤ x < Ri. (80)

By (78) and (80):

φ1(x) = . . .= φi(x) = φ(x), p̃ ≤ x < Ri.

which proves (11) for j = i. Also, similar to the proof of (77), it can be shown that

φi(Ri) = qi, which proves (12) for j = i. This completes the induction.

If Ri+1 = v, then the induction is completed by simply setting R1 = . . .= Ri = v.

It remains to show that R1 = R2 = v. If R1 < v, then no primary plays a price

in (R1,v), which contradicts Lemma 5. So R1 = v. If R2 < v, then only primary 1

plays prices in (R2,v) with positive probability, which again contradicts Lemma 5. So

R2 = v.

Lemma 11 showed that if q1 > q2, then φ1(.) has a jump of size at most q1−q2 at v.

The following result shows that φ1(.) has a jump of size exactly q1 −q2 at v.

Lemma 14. If q1 > q2, then φ1(.) has a jump of size q1 −q2 at v.

Proof. By Lemma 13, φ1(x) = φ2(x) for all x < R2 = v. So:

φ1(v−) = φ2(v−)

= φ2(v) (since φ2(.) is continuous by Lemma 11)

= q2
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Also, φ1(v) = q1ψ1(v) = q1. So φ1(v)−φ1(v−) = q1 −q2.

Finally, (i) Property 1 follows from Lemmas 4, 11 and 14; (ii) Property 2 follows

from Lemmas 7 and 8; (iii) Theorem 3 follows from Properties 1 and 2 and Lemma 13.

3.5.2 Proofs of results in Section 3.3.2

We verify that with Ri as in (19), Ri ≥ Ri+1 as required by (10) in Theorem 3. Recall

from Section 3.3.2.1 that fi(qi) is the probability of K or more successes out of n−1 in-

dependent Bernoulli events, i−1 with success probability qi and n− i with qi+1, . . . ,qn.

Also, fi+1(qi+1) is the probability of K or more successes out of n−1 Bernoulli events,

i−1 with success probability qi+1 and n− i with qi+1, . . . ,qn. Since qi ≥ qi+1 by (8),

it is easy to check that fi(qi) ≥ fi+1(qi+1). So by (19), Ri ≥ Ri+1, which is consistent

with (10).

Proof of Lemma 2. First, let fi(.) be as defined in Section 3.3.2.1. To compute fi(y),

for i ∈ {2, . . . ,n}, let fi,k(y) be the conditional probability given K = k, of K or more

successes out of n− 1 independent Bernoulli events, (i− 1) of which have the same

success probability y and the remaining (n− i) have success probabilities qi+1, . . . ,qn.

Clearly,

fi(y) = ∑
k

fi,k(y)γk.

Again, fi,0(y) = 1 and fi,k(y) = 0 if k > n−1.

Consider 1 ≤ k ≤ n−1. For l ∈ {0, . . . ,n− i}, let vi
l(qi+1, . . . ,qn) be the probability
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of exactly l successes out of n− i independent Bernoulli trials with success probabilities

qi+1, . . . ,qn. Conditioning on the number of successes, say l, out of the n− i trials with

success probabilities qi+1, . . . ,qn, we get:

fi,k(y) =
n−i

∑
l=k

vi
l(qi+1, . . . ,qn)

+
min(k−1,n−i)

∑
l=0

vi
l(qi+1, . . . ,qn)hk(y), (81)

where hk(y) = ∑i−1
m=k−l




i−1

m


ym(1− y)i−1−m. Now, for l satisfying:

1 ≤ k− l ≤ i−1, (82)

hk(y) is a strictly increasing function of y [70]. Also, it can be checked that l = min(k−

1,n− i), which is one of the indices in the expression in (81), satisfies (82). So fi,k(y) is

a strictly increasing function of y. Also, note that fi,k(.) is a continuous function. Thus,

fi(y) is a strictly increasing and continuous function of y as well (since by assumptions

on {γk} γk > 0 for some k between 1 and n−1).

Now, it can be checked from the definition of the function fi(.) that:

fi(qi+1) = fi+1(qi+1). (83)

Also, replacing i with i+1 in (18), we get:

fi+1(qi+1) = g(Ri+1). (84)

By (83) and (84), we get:

fi(qi+1) = g(Ri+1). (85)
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Now, as shown above, fi(y) is a continuous and strictly increasing function of y. So

fi(.) is invertible. By (23), φ(.) is unique and is given by:

φ(x) = f−1
i (g(x)), Ri+1 ≤ x < Ri. (86)

Also, by (85) and (18), fi(qi+1) = g(Ri+1) and fi(qi) = g(Ri). So fi(.) is a continuous

one-to-one map from the compact set [qi+1,qi] onto [g(Ri+1),g(Ri)], and hence f−1
i (.)

is continuous (see Theorem 4.17 in [58]). Also, g(x) in (16) is continuous for all x ∈

[p̃,v) since x ≥ p̃ > c. So from (86), φ(.) is a continuous function on [Ri+1,Ri], since it

is the composition of continuous functions f−1
i and g (see Theorem 4.7 in [58]). Also,

as shown above, fi(.) is strictly increasing; so f−1
i (.) is strictly increasing. Also, using

x ≥ p̃ > c, it can be checked from (16) that g′(x) > 0; so g(.) is strictly increasing. By

(86), φ(.) is the composition of the strictly increasing functions f−1
i (.) and g(.) and

hence is strictly increasing on [Ri+1,Ri]. Also, by (11), (12), (18) and (86), φ(Ri) =

f−1
i (g(Ri)) = qi.

Thus, the function φ(.) is strictly increasing and continuous within each individual

interval [Ri+1,Ri]; also, φ(Ri) = qi, i = 2, . . . ,n, and hence φ(.) is continuous at the

endpoints Ri, i = 2, . . . ,n of these intervals. So φ(.) is strictly increasing and continuous

on [p̃,v).

It remains to show that φ(p̃) = 0. By definition of the function fi(.), fn(0) = 1− r.

As shown above, fn(.) is one-to-one. So f−1
n (1−r) = 0. Also, by (16), g(p̃)= 1−r and

by (10), Rn+1 = p̃. Putting i = n and x = Rn+1 = p̃ in (86), we get φ(p̃) = f−1
n (g(p̃)) =

f−1
n (1− r) = 0.
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Proof of Theorem 4. By Lemma 2 and equation (13), the functions φi(.), i = 1, . . . ,n

computed in Section 3.3.2 are continuous and non-decreasing on [p̃,v]; also, φi(p̃) = 0

and φi(v)= qi. This is consistent with the fact that φi(.) is the d.f. of the pseudo-price p′i

and hence should be non-decreasing and right continuous [19], and φi(v) = qiψi(v) = qi

(see the beginning of Section 3.3).

Now, we have shown in Sections 3.3.1 and 3.3.2 that (13) is a necessary condition for

the functions φi(.), i = 1, . . . ,n to constitute a NE. We now show sufficiency. Suppose

for each i∈ {1, . . . ,n}, primary i uses the strategy φi(.) in (13). Similar to the derivation

of (14), the expected payoff that primary i gets at a price x ∈ [p̃,v) is:

E{ui(x,ψ−i)}= (x− c)(1−F−i(x)). (87)

Now, for x∈ [p̃,Ri), by (10) and (13), φi(x) = φ1(x)= φ(x), and hence by Lemma 10,

F−i(x) = F−1(x). Also note that φ(.) is the solution of (14), (22) and (23). By (14), (87)

and the fact that F−i(x) = F−1(x), for primary i, prices x ∈ [p̃,Ri) fetch an expected

payoff of (p̃− c)r.

Now let x ∈ [Ri,v). Note that Ri ≤ x < v = R1. So by (13), φi(x) = qi and φ1(x) =

φ(x)≥ φ(Ri) = qi. So φ1(x)≥ φi(x). Hence, by Lemma 10, F−1(x)≤ F−i(x), which by

(14) and (87) implies E{ui(x,ψ−i)} ≤ (p̃− c)r.

Finally, note that a price below p̃ fetches a payoff of less than (p̃−c)r for primary i.

So each price in [p̃,Ri) is a best response for primary i; also, by (13), it randomizes over

prices only in this range under φi(.). So φi(.) is a best response. Thus, the functions

φi(.), i = 1, . . . ,n constitute a NE.
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3.5.3 Proofs of results in Section 3.3.3

Proof of Lemma 3. Since Z is the number of primaries who have unused bandwidth,

and primary i has unused bandwidth with probability qi, E(Z) = ∑n
i=1 qi and var(Z) =

∑n
i=1 qi(1−qi).

We now prove the first part. Suppose kn ≤ ∑n
i=2(qi − ε) for some ε > 0. Let the

random variable Yn be defined as:

Yn =





Kn, if Z ≥ Kn

0, else

Then:

E{min(Z,Kn)}

≥ E(Yn)

= knP(Z ≥ Kn)

= kn(1−P(Z < Kn))

= kn(1−P(Z−Kn + kn < kn))

≥ kn(1−P(Z−Kn + kn ≤
n

∑
i=2

(qi − ε))) (since kn ≤
n

∑
i=2

(qi − ε))

≥ kn(1−P(|Z−
n

∑
i=1

qi −Kn + kn| ≥ (n−1)ε))

≥ kn

(
1−2exp

(
−2(n−1)2ε2

n(1+α)

))

(by Hoeffding’s inequality [26], since E(Z) =
n

∑
i=1

qi and E(Kn) = kn) (88)

Now, let Z1 be the number of primaries out of primaries 2, . . . ,n who have unused
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bandwidth. Note that E(Z1) = ∑n
i=2 qi and var(Z1) = ∑n

i=2 qi(1−qi). We have:

1−w1 = P(Z1 < Kn)

= P(Z1 −Kn + kn < kn)

≤ P(Z1 −Kn + kn ≤
n

∑
i=2

(qi − ε)) (since kn ≤
n

∑
i=2

(qi − ε))

≤ P(|Z1 −
n

∑
i=2

qi −Kn + kn| ≥ (n−1)ε)

≤ 2exp

(
−2(n−1)2ε2

(nα+n−1)

)
(by Hoeffding’s inequality [26]) (89)

By (24), (88) and (89):

η ≤
2exp

(
−2(n−1)2ε2

(nα+n−1)

)
∑n

i=1 qi

kn

(
1−2exp

(
−2(n−1)2ε2

n(1+α)

))

≤
2exp

(
−2(n−1)2ε2

(nα+n−1)

)
n

β
(

1−2exp
(
−2(n−1)2ε2

n(1+α)

)) (since kn ≥ β and qi ≤ 1 ∀i)

→ 0 as n → ∞

which proves the first part.

Now we prove the second part. Suppose kn ≥ ∑n
i=2(qi + ε) for some ε > 0. Since

E{min(Z,K)} ≤ E(Z) = ∑n
i=1 qi, by (24):

η ≥
(1−w1)∑n

i=1 qi

∑n
i=1 qi

= 1−w1

= 1−P(Z1 ≥ Kn)

≥ 1−2exp

(
−2(n−1)2ε2

nα+n−1

)
(similar to the derivation of (89))

→ 1 as n → ∞
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which proves the second part.
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Chapter 4

Spectrum Pricing Games with

Random Valuations of Secondaries

4.1 Introduction

In the model introduced in Section 2.2, we stated that pi ≤ v for every primary i for

some constant v. This constant may either be a regulatory upper limit or the valuation

of each secondary. So far, we have assumed that v is a constant and known to all

the primaries. This would be the case in the first interpretation above, i.e. when v is a

regulatory upper limit. However, in the second interpretation, the valuations of different

secondaries may be different and unknown to the primaries. In this chapter, we study

a generalized model in which the valuations of the secondaries are not constants, but

random variables that can possibly take different values for different secondaries.
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We describe the model in Section 4.2. For simplicity, we first analyze this model

in Section 4.3 for the case where there is only one secondary and later generalize our

results to an arbitrary number of secondaries in Section 4.4.

4.2 Model

Consider the model described in Section 2.2 with the following changes 16. Instead of

a common known valuation v for all the secondaries, let v j, j ∈ {1, . . . ,k}, denote the

valuation of secondary j for 1 unit of bandwidth– secondary j does not buy bandwidth

at a price greater than v j. The valuations v1, . . . ,vk of the secondaries for 1 unit of

bandwidth are independent and identically distributed (i.i.d.) random variables with

distribution function (d.f.) G(x) = P(v j ≤ x). We assume that G(.) is continuous and

G(v) = 0, G(v) = 1, where c < v < v. Thus, the valuation of each secondary lies in

the range [v,v] w.p. 1. Note that in practice, the valuations of secondaries are upper

bounded, and hence there always exists some finite upper bound v. The assumption

v > c means that a secondary’s valuation is always greater than the cost that the seller

incurs; so if trade occurs, then it is always profitable to both the buyer and the seller.

As before, we introduce the notion of a “pseudo-price”. The pseudo-price of primary

i ∈ {1, . . . ,n}, denoted as p′i, is the price he selects if he has unused bandwidth and

p′i = v+1 otherwise 17.

16For simplicity, as in Chapter 2, we assume that the probability of having unused bandwidth is the

same for each primary, and equals q.
17The choice v+ 1 is arbitrary. Any other value greater than v also works.
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We formulate the above price competition as a game as in Section 2.3. Note that this

is a symmetric game. Our goal is to explicitly compute a symmetric Nash Equilibrium

(NE) and to show its uniqueness.

4.3 One Secondary

In this section, for simplicity, we find a symmetric NE and prove its uniqueness for

the case in which there is only one secondary, i.e. k = 1. This secondary buys band-

width from the primary who quotes the lowest price, provided this price is less than or

equal to his valuation. In Section 4.4, we generalize our results to allow for multiple

secondaries.

In Section 4.3.1, we will explicitly compute a symmetric NE and in Section 4.3.2

show that it is the unique symmetric NE.

4.3.1 Explicit Computation of Symmetric NE

Consider a symmetric NE under which every primary uses the strategy ψ(.). The fol-

lowing lemma provides a necessary condition that ψ(.) must satisfy.

Lemma 15. ψ(.) is continuous.

Proof. Suppose, to reach a contradiction, that ψ(.) has a jump at x0. Fix an i∈{1, . . . ,n}.

Since every primary other than primary i has a jump at x0, for primary i, a price just

below x0 fetches a higher expected payoff than x0. So x0 is not a best response for
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primary i, which contradicts the fact that primary i uses ψ(.) and hence has a jump at

x0. The result follows.

For a primary m, if

P(p′j ≤ x) = y, ∀ j ∈ {1, . . . ,n}\m, (90)

then let fx(y) be primary m’s expected payoff if he sets the price pm = x. Let

h(x) = fx(q) (91)

and

g(x) = fx(0). (92)

The following lemma provides an expression for fx(y):

Lemma 16.

fx(y) = (x− c)(1−G(x))(1− y)n−1 (93)

Proof. Suppose (90) holds. If primary m sets a price of x, he gets a payoff of (x− c) if

his bandwidth is sold and 0 otherwise. Also, his bandwidth is sold iff (i) the valuation

of the secondary is x or more, which happens w.p. 1−G(x), and (ii) no primary j ∈

{1, . . . ,n}\m who has unused bandwidth sets a price lower than y, which happens w.p.

(1− y)n−1 by (90). The result follows.

We now state some properties of fx(y), which are proved in the Appendix:

Lemma 17. 1. fx(y) is continuous in x and y.
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2. For x ≤ v, fx(y) is a strictly increasing function of x for every fixed y. Also, fc(y) =

0 for every fixed y.

3. h(v) = fv(q)> 0. Also, h(x) = 0 for all x ≥ v.

By (91) and part 1 of Lemma 17, h(.) is a continuous function and hence has a

maximizer on the compact set [c,v]. Let hmax = maxv∈[c,v] h(v) be the maximum value

of h(.) and

vT = inf{v ∈ [c,v] : h(v) = hmax} (94)

be the infimum of the set of maximizers of h(.). Since h(.) is continuous, by (94), vT is

itself a maximizer of h(.) on [c,v]. So h(vT ) = hmax. By part 2 of Lemma 17 and (91),

h(.) is strictly increasing on [c,v]. Also, h(v)> 0 and h(x) = 0 for all x ≥ v by part 3 of

Lemma 17. Since vT is the smallest maximizer of h(.) on [c,v]:

v ≤ vT < v. (95)

We will later show that the upper endpoint of the support set of ψ(.) is vT .

We now state another property of the function fx(y), which is proved in the Ap-

pendix.

Lemma 18. For every fixed x ∈ [c,vT ], fx(y) is a strictly decreasing function of y.

Lemma 19. There exists at least one x ∈ (c,vT ) such that g(x) = h(vT ). The minimum

such x exists; let it be denoted by p̃. Then g(x)< g(p̃) = h(vT ) ∀c ≤ x < p̃.

Proof. By (94) and part 3 of Lemma 17, h(vT )≥ h(v)> 0. Also, by (92) and part 2 of
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Lemma 17:

g(c) = 0 < h(vT ). (96)

By (91), (92) and Lemma 18:

h(vT ) = fvT
(q)< fvT

(0) = g(vT ) (97)

By (96) and (97), g(c) < h(vT ) and g(vT ) > h(vT ). Also, g(.) is continuous by (92)

and part 1 of Lemma 17. So by the intermediate value theorem [58], there exists a

solution of the equation g(x) = h(vT ) in (c,vT ). The minimum such solution, say p̃,

exists because g(.) is continuous and hence the set {x : g(x) = h(vT )} is closed.

Now, suppose, to reach a contradiction, that g(x′)≥ h(vT ) for some x′ ∈ [c, p̃). Then

by (96) and the intermediate value theorem, there exists x′′ such that c ≤ x′′ ≤ x′ < p̃ and

g(x′′) = h(vT ). This contradicts the fact that p̃ is the smallest solution of g(x) = h(vT ).

Thus, g(x)< h(vT ) for all x < p̃.

By definition of fx(y) and by (92), if no primary in {1, . . . ,n}\i plays a price below

x, then primary i gets a payoff of g(.) at price x. It turns out that primaries do not play

prices below p̃ and p̃ is a best response for every primary in the NE. So every primary

gets a payoff of g(p̃) in the NE because when he plays a price of p̃, he is not undercut

by the other primaries.

Let:

C = {x ∈ [p̃,vT ] : g(x)≥ g(p̃)}. (98)

Note that for a price in [p̃,vT ]\C, primary i’s payoff is less than the NE payoff and
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hence each primary plays prices in [p̃,vT ]\C with zero probability.

Lemma 20. For every x ∈C, there exists a unique γ(x) ∈ [0,q] such that

fx(γ(x)) = g(p̃). (99)

Also, γ(p̃) = 0 and γ(vT ) = q.

Proof. First, note that by (91) and Lemma 19:

fvT
(q) = h(vT ) = g(p̃). (100)

Now, fix an x ∈C. By (92):

fx(0) = g(x)

≥ g(p̃) (by (98), since x ∈C). (101)

Also, by (91):

fx(q) = h(x)

≤ h(vT ) (since vT is the smallest

maximizer of h(.) and x ≤ vT )

= g(p̃) (by (100)) (102)

By part 1 of Lemma 17, fx(y) is continuous in y. So by (101), (102) and the intermediate

value theorem [58], the equation fx(y) = g(p̃) has a solution y = γ(x) ∈ [0,q]. Also, by

Lemma 18, this root is unique.

Now, by (92), f p̃(0) = g(p̃). So γ(p̃) = 0. Also, by (100), fvT
(q) = g(p̃). So

γ(vT ) = q.
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Now, we state a general analytic fact, which is proved in the Appendix.

Fact 1. Let F(x,y) be any real-valued continuous function, where x and y are real, and

[a,b] be an interval such that for every x ∈ [a,b], there exists a unique y = γ(x) such

that

F(x,γ(x)) = α, (103)

where α is a constant. Then the function γ(.) is continuous on [a,b].

Now, let C be as in (98). Since g(.) is continuous, C is closed. So C is the union

of a set of disjoint closed intervals– let C = ∪i∈λCi, where λ is some set of indices and

Ci = [ai,bi].

Fix an i ∈ λ. By Lemma 20, for every x ∈Ci, there exists a unique γ(x) ∈ [0,q] such

that fx(γ(x)) = g(p̃). By part 1 of Lemma 17, the function fx(y) is continuous in x and

y. So by Fact 1, γ(.) is continuous on Ci.

Thus, we have shown the following:

Lemma 21. γ(.) is continuous on each Ci, i ∈ λ.

By definition of the function fx(y) and by (99), for every x, γ(x) is a value such

that if P{p′j ≤ x}= γ(x), j 6= i, then a price of pi = x fetches a payoff of exactly g(p̃),

which is the payoff that every primary gets in the symmetric NE. This suggests γ(.) as

a candidate for the symmetric NE pseudo-price strategy d.f. But γ(x) itself need not be

a valid d.f. since it is not non-decreasing in general as shown in Fig. 4.1. So a natural
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idea is to consider the function:

φNE(x) =





max{γ(y) : y ∈C,y ≤ x}, x ≥ p̃

0, x < p̃

(104)

obtained by replacing the portions of decrease of γ(.) by horizontal segments as illus-

Figure 4.1: The figure shows φNE(.) and γ(.) versus price.

trated in Fig. 4.1.

Theorem 5. The strategy profile in which each primary uses the pseudo-price selection

strategy φNE(.) is a NE.

Proof. By (104), the function φNE(.) is non-decreasing on [p̃,vT ]. Also, by Lemma 21

and (104), it is continuous on [p̃,vT ]. By Lemma 20, γ(x) ∈ [0,q] ∀x ∈C. So by (104):

0 ≤ φNE(x)≤ q ∀x (105)

Also, since γ(p̃) = 0 and γ(vT ) = q (see Lemma 20), and by (104) and (105):

φNE(x) =





0, x ≤ p̃

q, x ≥ vT

(106)

Thus, φNE(.) is a valid pseudo-price d.f. and its support set is a subset of [p̃,vT ].
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Suppose every primary uses the strategy φNE(.) to select his pseudo-price. By defi-

nition of fx(y) and the continuity of φNE(.), if primary 1 sets a price of p1 = x, he gets

an expected payoff of:

E{u1(x,ψ−1)}= fx(φNE(x)). (107)

By (104), φNE(x)≥ γ(x) for all x ∈ [p̃,vT ].

Case (i): Suppose x ∈ [p̃,vT ]\C. Then by (107):

E{u1(x,ψ−1)} = fx(φNE(x))

≤ fx(0) (by Lemma 18 and (105))

= g(x) (by (92))

< g(p̃) (since x ∈ [p̃,vT ]\C

and by (98)) (108)

Case (ii): Suppose x∈C and φNE(x)= γ(x). Then by (107) and (99), E{u1(x,ψ−1)}=

fx(γ(x)) = g(p̃).

Case (iii): Now, suppose x ∈C and φNE(x) > γ(x). Then by (107), Lemma 18 and

(99):

E{u1(x,ψ−1)}< fx(γ(x)) = g(p̃) (109)

Also, x is part of an interval of constancy of φNE(x); so primaries play prices around x

with 0 positive probability.
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Case (iv): Suppose x < p̃. Then by (106), φNE(x) = 0. So by (107),

E{u1(x,ψ−1)} = fx(0)

= g(x) (by (92))

< g(p̃) (by Lemma 19) (110)

Case (v): Suppose x ≥ vT . Then by (106), φNE(x) = q. So by (107),

E{u1(x,ψ−1)} = fx(q)

= h(x) (by (91)) (111)

≤ h(vT ) (by (94)) (112)

= g(p̃) (by (100)) (113)

Now, since φNE(.) is non-decreasing and continuous, it has alternating intervals of

constancy and strict increase. Also, note that a primary who uses the d.f. φNE(.) to

select his pseudo-price plays prices in the intervals of constancy with 0 probability

and in the intervals of strict increase with positive probability. Now, by (106), the

intervals [c, p̃] and [vT ,v] (Cases (iv) and (v) respectively) are intervals of constancy of

φNE(.). Also, it can be checked using (104) that the intervals which lie in the regions

[p̃,vT ]\C and {x ∈C : φNE(x)> γ(x)} (Cases (i) and (iii) respectively) are also regions

of constancy. Thus, only intervals that lie in the region {x ∈C : φNE(x) = γ(x)} (Case

(ii)) can possibly be intervals of strict increase of φNE(.).

By Cases (i) to (v), primary 1 gets a payoff of at most g(p̃) at any price. Also,

as shown in the previous paragraph, he can only play intervals in the region {x ∈ C :
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φNE(x) = γ(x)} (Case (ii)) with positive probability. His expected payoff is g(p̃), the

maximum possible, at a price in this region by Case (ii). Hence φNE(.) is a best response

for primary 1. The result follows.

Note that in the proof of Theorem 5, we have shown the following:

Lemma 22. In the symmetric NE in which every primary uses the strategy φNE(.), each

primary gets an expected payoff of g(p̃).

4.3.2 Uniqueness of Symmetric NE

Now, we show that the NE in Theorem 5 is the unique symmetric NE.

Let the functions fx(y), h(.), g(.), γ(.) and φNE(.) be as in (93), (91), (92), Lemma 20

and (104) respectively. Also, let vT , p̃ and the set C be as in (94), Lemma 19 and (98)

respectively.

Consider a symmetric NE under which every primary uses the d.f. ψ̂(.) to select the

price, and let φ̂NE(.) = qψ̂(.) be the corresponding pseudo-price d.f.

Let v′T be the upper endpoint of the support set of ψ̂(.):

v′T = inf{x : ψ̂(x) = 1}. (114)

Lemma 23. v′T = vT . Also, vT is a best response for each primary in the symmetric

NE.

Thus, the upper endpoint of the support set of ψ̂(.) is vT .
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Proof. As in the proof of Lemma 15, ψ̂(.) is continuous. Also, note that by (114), each

primary plays prices in [v′T −ε,v′T ] with positive probability for every ε > 0. Hence, v′T

is a best response for each primary i.

To reach a contradiction, suppose v′T > vT . Then by (114), ψ̂(vT )< 1 and hence

φ̂NE(vT )< q. (115)

Similar to the derivation of (107):

E{ui(vT , ψ̂−i)} = fvT
(φ̂NE(vT ))

> fvT
(q) (by (115) and Lemma 18)

= h(vT ) (by (91))

≥ h(v′T ) (by (94)) (116)

= E{ui(v
′
T , ψ̂−i)} (117)

where (117) follows from (116) similar to the derivation of (111). Thus, E{ui(vT , ψ̂−i)}>

E{ui(v
′
T , ψ̂−i)}, which contradicts the fact that v′T is a best response. Thus, v′T > vT is

not possible

Now suppose v′T < vT . Then ψ̂(vT ) = ψ̂(v′T ) = 1 by (114); so φ̂NE(vT ) = φ̂NE(v
′
T ) =

q. Similar to the derivation of (111):

E{ui(vT , ψ̂−i)} = h(vT )

> h(v′T ) (by (94))

= E{ui(v
′
T , ψ̂−i)}

which is again a contradiction. Thus, v′T < vT is not possible and hence v′T = vT .
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Recall that we have shown in Theorem 5 that φNE(.) constitutes a symmetric NE

strategy. Now we show its uniqueness.

Theorem 6. φNE(.) constitutes the unique symmetric NE strategy.

Proof. Consider a symmetric NE in which every primary uses the strategy φ̂NE(.). We

will show that φ̂NE(.) = φNE(.).

As in the proof of Lemma 15, φ̂NE(.) is continuous. Also, by Lemma 23, vT is the

upper endpoint of the support set of φ̂NE(.) and is a best response for each primary i

in the symmetric NE. Similar to the derivation of (107), the payoff that each primary i

gets at price x in the NE is:

E{ui(x, ψ̂−i)}= fx(φ̂NE(x)) (118)

Also, similar to the derivation of (111), the payoff that each primary i gets at price vT

is:

E{ui(vT , ψ̂−i)}= h(vT ) = g(p̃), (119)

where the second equality follows from (100). Since vT is a best response, each primary

gets an expected payoff of g(p̃) in the NE.

Now, for a price x < p̃, by (118), primary i gets a payoff of:

E{ui(x, ψ̂−i)} = fx(φ̂NE(x))

≤ fx(0) (by Lemma 18) (120)

< g(p̃) (121)
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where (121) follows from (120) similar to the derivation of (110). Thus, primaries do

not play prices below p̃ in the NE and hence φ̂NE(p̃) = 0.

Similar to the derivation of (108), it can be shown that for x∈ [p̃,vT ]\C, E{ui(x, ψ̂−i)}<

g(p̃) and hence x is not a best response. Thus, only prices in C can possibly be best

responses.

If x0 is a best response for primary i, then by (118):

E{ui(x0, ψ̂−i)}= fx0
(φ̂NE(x0)) = g(p̃), (122)

By (122) and Lemma 20:

φ̂NE(x0) = γ(x0), (123)

Now, since φ̂NE(.) is continuous by Lemma 15, it consists of alternating intervals

of strict increase and constancy. If [as,bs] is an interval of strict increase, then each

x ∈ [as,bs] is a best response; so φ̂NE(x) = γ(x) by (123). Thus,

φ̂NE(x)≤ max{y ≤ x : γ(y)}= φNE(x), ∀x ∈ [as,bs]. (124)

where the equality follows by (104).

Now, let [ac,bc] be a maximal interval of constancy of φ̂NE(.) such that φ̂NE(ac)> 0.

Note that ac is the right endpoint of an interval of strict increase 18. So by continuity of

φ̂NE(.), ac is a best response and hence φ̂NE(ac) = γ(ac) by (123). So for all x ∈ [ac,bc],

φ̂NE(x) = φ̂NE(ac) = γ(ac) Thus,

φ̂NE(x)≤ max{y ≤ x : γ(y)}= φNE(x), ∀x ∈ [ac,bc]. (125)

18Note that φ̂NE(ac) > 0 implies that there exists an interval of strict increase of φ̂NE(.) to the left of

ac.
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where the equality follows by (104).

By (124) and (125):

φ̂NE(x)≤ φNE(x) ∀x. (126)

Now, it remains to show that φ̂NE(x) ≥ φNE(x) for all x. To reach a contradiction,

suppose φ̂NE(x)< φNE(x) for some x. Let:

xl = inf{x : φ̂NE(x)< φNE(x)}. (127)

Then for all x < xl , φ̂NE(x) = φNE(x). So by continuity of φ̂NE(.) and φNE(.),

φ̂NE(xl) = φNE(xl). (128)

Also, by (127), there exists an x0 = xl + ε, for some small ε > 0, such that:

φ̂NE(x0)< φNE(x0). (129)

and [xl,x0] is an interval of strict increase of φNE(.). In particular, x0 is a best response

of primary 1 when the other primaries use φNE(.).

Now, by (118), the expected payoff of primary 1 for price p1 = x0 when other pri-

maries play φ̂NE(.) is:

fx0
(φ̂NE(x0)) > fx0

(φNE(x0)) (by (129) and Lemma 18)

= g(p̃) (130)

where (130) follows from the fact that x0 is a best response of primary 1 when the other

primaries use φNE(.) and Lemma 22. This contradicts the fact that the maximum payoff
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that primary 1 can get when the other primaries use φ̂NE(.) is g(p̃). Thus,

φ̂NE(x)≥ φNE(x) ∀x (131)

By (126) and (131), φ̂NE(x) = φNE(x) ∀x and the result follows.

4.4 Multiple Secondaries

In Section 4.3, we explicitly computed the symmetric NE and showed its uniqueness

for the case of one secondary. We now generalize our results to multiple secondaries.

Suppose there are k secondaries, where k ≥ 1.

4.4.1 Primary Secondary Matching Scheme

Let p′(1) ≤ p′(2) ≤ . . .≤ p′(n) be the pseudo-prices p′1, . . . , p′n of the primaries in increas-

ing order. Also, let v(1) ≥ v(2) ≥ . . . ≥ v(k) be the valuations of the secondaries in

decreasing order.

Note that since there are multiple secondaries with possibly different valuations,

after the primaries reveal the prices they are willing to sell at and the secondaries reveal

their valuations, there are in general different possible schemes for matching primaries

with the secondaries who buy bandwidth from them. Let A be the set of all possible

schemes of matching primaries with secondaries such that bandwidth is never bought

from a primary if the bandwidth of a different primary who offers a lower pseudo-price

remains unsold. Note that under every scheme in A , the bandwidth of the primaries
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with the smallest i pseudo-prices p′(1), . . . , p′(i) is sold, for some i ∈ {0,1, . . . ,n}. Let

W be the scheme in which the secondary with the highest valuation v(1) buys from the

primary with the lowest price p′(1) (if p′(1) ≤ v(1)), the secondary with the second-highest

valuation v(2) buys from the primary with the second-lowest price p′(2) (if p′(2) ≤ v(2))

and so on. Ties are broken at random.

For example, suppose n = 4, k = 3, the pseudo-prices of the primaries in increasing

order are p′(1) = 1, p′(2) = 2, p′(3) = 3, p′(4) = 4 and the valuations of the secondaries in

decreasing order are v(1) = 3.5, v(2) = 2.5, v(3) = 1.5. For the scheme W , the following

table shows the valuation of the secondary who buys bandwidth from each primary (a

“-” indicates that the corresponding primary’s bandwidth is unsold):

Primary’s price Secondary’s valuation

1 3.5

2 2.5

3 -

4 -

Consider another scheme in A in which the secondary with the largest valuation buys

bandwidth from the primary who offers the highest price that is below his valuation, the

secondary with the second-largest valuation buys from the primary who offers the next

highest price that is below his valuation and so on (ties are broken at random). The

following table shows the matching of primaries and secondaries under this scheme for

the above example:
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Primary’s price Secondary’s valuation

1 1.5

2 2.5

3 3.5

4 -

The above tables show that the second scheme is more “efficient” than the scheme

W in the sense that more primaries sell their bandwidth. In fact, the following lemma

shows that in this sense the scheme W is the worst-case or least efficient scheme in A .

Lemma 24. For any given set of pseudo-prices of the primaries and valuations of

the secondaries, out of all the schemes in A , the bandwidth of the fewest number of

primaries is sold under the scheme W .

Proof. Fix p′(1), . . . , p′(n) and v(1), . . . ,v(k). Suppose, under the scheme W , the bandwidth

of the primaries with psedo-prices p′(1), . . . , p′(i) is sold. By definition of W , these i pri-

maries sell their bandwidth to the secondaries with the i largest valuations v(1), . . . ,v(i)

and the primary with pseudo-price p′(i) sells to the secondary with the smallest valuation

v(i) out of these. Thus, v(i) ≥ p′(i) and hence:

v( j) ≥ p′(i), j = 1, . . . , i. (132)

Now, consider an arbitrary scheme A∈ A , and suppose, to reach a contradiction, that

under A, only the bandwidth of the primaries with pseudo-prices p′(1), . . . , p′(i′) is sold

for some i′ < i. Hence, at most i′ out of the secondaries with valuations v(1), . . . ,v(i) buy

92



bandwidth under A and hence at least one of these secondaries does not buy bandwidth.

However, by (132), the valuation of such a secondary is ≥ the pseudo-price p(i′+1),

which contradicts the fact that the bandwidth of the primary with pseudo-price p(i′+1)

remains unsold.

The following lemma is an immediate consequence of Lemma 24.

Lemma 25. Out of all the schemes in A and for any given set of pseudo-price distri-

butions of the primaries and distributions of the valuations of the secondaries, given

that a primary i has unused bandwidth and sets price pi = x, the probability that his

bandwidth is sold, and hence his expected payoff, is minimized for the scheme W .

We assume that primaries do not know the scheme that will be used to match the

primaries and secondaries, and hence, each primary, so as to maximize his worst-case

payoff, selects his price distribution assuming that the scheme W will be used.

4.4.2 Analysis

We now generalize the analysis in Section 4.3 to multiple secondaries. First, it is easy

to see that Lemma 15 generalizes without change to the case of multiple secondaries.

Now, recall from Section 4.2 that the valuations of the secondaries are i.i.d., and each

has the d.f. G(.). For i = 1, . . . ,k, let G(i)(.) be the d.f. of v(i). The following lemma

provides some simple properties of the functions G(i)(.), i = 1, . . . ,k.
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Lemma 26. G(i)(.), i = 1, . . . ,n are continuous. Also:

G(i)(x) = 0, x ≤ v; i = 1, . . . ,k (133)

G(i)(x) = 1, x ≥ v; i = 1, . . . ,k (134)

G(1)(x)≤ G(2)(x)≤ . . .≤ G(k)(x),x ∈ [c,v]. (135)

Proof. The continuity of G(i)(.), i = 1, . . . ,n follows from the continuity of G(.). Also,

(133) and (134) follow from the fact that P(v ≤ v j ≤ v) = 1 for every buyer j. Finally,

we get (135) from the fact that v(1) ≥ v(2) ≥ . . .≥ v(k).

Let fx(y) be as defined just after (90) in Section 4.3 and h(.) and g(.) be as in (91)

and (92) respectively. In Lemma 16, we derived an expression for fx(y) for the case of

one secondary. The following lemma generalizes that expression to k secondaries.

Lemma 27.

fx(y) = (x− c)
k

∑
i=1

(1−G(i)(x))




n−1

i−1


yi−1(1− y)n−i (136)

Proof. Let Z be the number of primaries out of primaries {1, . . . ,n}\m for which the

pseudo-price p′j ≤ x. By (90), the events {p′j ≤ x}, j ∈ {1, . . . ,n}\m are independent

Bernoulli events with success probability y each. So:

P(Z = i−1) =




n−1

i−1


yi−1(1− y)n−i. (137)
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Also, if Z = i− 1 for some i ∈ {1, . . . ,k}, then primary m’s bandwidth is sold iff i or

more secondaries have valuations ≥ x; the probability of the latter event is:

1−G(i)(x). (138)

If Z ≥ k, then primary m’s bandwidth is not sold. Conditioning on Z and using (137)

and (138), we get that the probability that primary m’s bandwidth is sold given that he

sets a price pm = x equals the summation in (136). This, combined with the fact that

if primary m’s bandwidth is sold at price pm = x, then he gets a payoff of x− c, gives

(136).

Let vT be defined as in (94). The following lemma generalizes the properties of

fx(y) that were shown for the case of one secondary.

Lemma 28. The properties of fx(y) in Lemma 17 and Lemma 18 hold for the case of k

secondaries.

Now, the analysis in Section 4.3 after Lemma 18 does not use the expression for

fx(y) and relies only on the properties of fx(y) in Lemmas 17 and 18. Since these prop-

erties go through for the case of k secondaries by Lemma 28, the analysis in Section 4.3

after Lemma 18 generalizes to the case of k secondaries. In particular, we define p̃, C,

the function γ(.) and the function φNE(.) as in Lemma 19, (98), Lemma 20 and (104)

respectively. Theorems 5 and 6 generalize to the case of k secondaries and provide the

unique symmetric NE strategy.
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4.5 Discussion on Structure of Symmetric NE Strategy

When the valuations of all the secondaries are constant and equal, the symmetric NE

strategy is contiguous (see Theorem 3 in Chapter 3). However, we now show by provid-

ing an example that when the valuations of the secondaries are random, the NE strategy

φNE(.) can be non-contiguous, even when k = 1.

Let c = 0, n = 2, k = 1, q = 1
6

and

1−G(x) =





1− 3x
2
, 0 ≤ x ≤ 1

2

1
4
, 1

2
< x ≤ 3

4

1− x, 3
4
< x ≤ 1

By (92), (93) and using c = 0, we get g(x) = x(1−G(x)) and hence:

g(x) =





x
(
1− 3x

2

)
, 0 ≤ x ≤ 1

2

x
4
, 1

2
< x ≤ 3

4

x(1− x), 3
4
< x ≤ 1

The function g(.) is plotted in Fig. 4.2. Also, it can be checked that p̃ = 1
4

and

vT = 3
4
. Fig. 4.2 plots the symmetric NE strategy φNE(.) and shows that it has an

interval of constancy and hence is not contiguous. The reason the interval of constancy

arises is as follows. Fig. 4.2 shows that within the interval [p̃,vT ] =
[

1
4
, 3

4

]
, there is a

sub-interval (around the local minimum of g(.) at 1
2
) in which g(x) < g(p̃). So with C

as in (98), this sub-interval is not in C. Hence, each primary plays prices in this sub-

interval with zero probability (see Case (i) in the proof of Theorem 5), which results in

an interval of constancy in φNE(.).
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Figure 4.2: The figure plots g(.) (dashed curve) and φNE(.) (solid curve) versus the price x for the

example in Section 4.5.

4.6 Appendix

Proofs of Lemmas 17 and 18. Note that the expression for fx(y) in (93) is a special case

with k = 1 of the expression for fx(y) in (136). Below, we directly prove Lemma 28,

from which the proofs of Lemmas 17 and 18 follow.

Proof of Lemma 28. By Lemma 26, G(i)(.), i = 1, . . . ,k are continuous. So by (136), it

follows that fx(y) is continuous in x and y, which proves part 1 of Lemma 17 (for the

case of k secondaries). By (133) and (136), for x ≤ v:

fx(y) = (x− c)
k

∑
i=1




n−1

i−1


yi−1(1− y)n−i (139)

from which part 2 of Lemma 17 follows. By (139) and the facts that v> c and 0< q< 1,

it follows that h(v) = fv(q)> 0. Also, by (134) and (136), fx(y) = 0 for x ≥ v and hence
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h(x) = fx(q) = 0 for x ≥ v. This proves part 3 of Lemma 17.

It remains to prove Lemma 18 (for the case of k secondaries). By (94) and part 3 of

Lemma 17, h(vT )≥ h(v)> 0. Also, by (136) and since h(vT ) = fvT
(q) by (91), we get

1−G(i)(vT ) > 0 for at least one value of i in {1, . . . ,k}. Since 1−G(i)(vT ) = P(v(i) >

vT ), it follows that P(v j > vT )> 0, j = 1, . . . ,k. So 1−G(i)(vT )> 0 for all i = 1, . . . ,k.

But for each i, 1−G(i)(x) is a decreasing function of x. Hence:

1−G(i)(x)> 0, x ≤ vT , i = 1, . . . ,k. (140)

Now, fix an arbitrary x ∈ [c,vT ]. Let ai = 1−G(i)(x), i = 1, . . . ,k. By (135) and

(140):

a1 ≥ a2 ≥ . . .≥ ak > 0 (141)

Let bi(y) =




n−1

i−1


yi−1(1− y)n−i. We have the following property from [70]:

Property 3. For every 1 ≤ j ≤ n−1, ∑
j
i=1 bi(y) is a strictly decreasing function of y.

Now, note that for i ∈ {1, . . . ,k}:

ai =
k−1

∑
j=i

(a j −a j+1)+ak. (142)
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Now, by (136), fx(y) = (x− c)T , where

T =
k

∑
i=1

aibi(y)

=
k

∑
i=1

{
k−1

∑
j=i

(a j −a j+1)+ak

}
bi(y) (by (142))

= ak

k

∑
i=1

bi(y)+
k

∑
i=1

k−1

∑
j=1

(a j −a j+1)bi(y)I{ j ≥ i}

= ak

k

∑
i=1

bi(y)+
k−1

∑
j=1

(a j −a j+1)
k

∑
i=1

bi(y)I{ j ≥ i}

= ak

k

∑
i=1

bi(y)+
k−1

∑
j=1

(a j −a j+1)

(
j

∑
i=1

bi(y)

)
(143)

By (141), each of the terms a j − a j+1, j = 1, . . . ,k − 1 are nonnegative and ak > 0;

so by Property 3, the expression in (143) is strictly decreasing in y. So T , and hence

fx(y) = (x− c)T , is strictly decreasing in y for fixed x.

Proof of Fact 1. Let {xn : n = 1,2,3, . . .} be any sequence such that xn → x ∈ [a,b]. It

is sufficient to show that

lim
n→∞

γ(xn) = γ(x). (144)

To show (144), consider the sequence

yn = γ(xn),n = 1,2,3, . . . . (145)

Let L = liminfn→∞ yn. Then there exists a subsequence of the sequence {yn}, say

{ynk
,k = 1,2,3, . . .}, such that ynk

→ L as k → ∞. By (103) and (145):

F(xnk
,ynk

) = α, k = 1,2,3 . . . (146)
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So:

lim
k→∞

F(xnk
,ynk

) = α.

By continuity of F(.), and using xnk
→ x and ynk

→ L:

F(x,L) = α.

But since y = γ(x) is the unique value that satisfies F(x,y) = α, we get

L = γ(x). (147)

Now, let U = limsupn→∞ yn. Similar to the proof of (147), we get:

U = γ(x). (148)

By (145), (147) and (148), liminfn→∞ γ(xn) = γ(x) and limsupn→∞ γ(xn) = γ(x), from

which (144) follows. This completes the proof.
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Chapter 5

Spectrum Pricing Games with Spatial

Reuse

In Chapters 3 and 4, we analyzed price competition in a setup where there are multi-

ple primaries and secondaries in a single location. In this chapter, we analyze price

competition under spatial reuse constraints.

5.1 Introduction

Radio spectrum is a commodity that allows spatial reuse: the same band can be simul-

taneously used at far-off locations without interference; on the other hand, simultane-

ous transmissions at neighboring locations on the same band interfere with each other.

Thus, spatial reuse provides an opportunity to primaries to increase their profit by sell-

ing the same band to secondaries at different locations, which they can utilize subject
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to satisfying the interference constraints. So when multiple primaries own bandwidth

in a large region, each needs to decide on a set of non-interfering locations within the

region, which corresponds to an independent set in the conflict graph representing the

region, at which to offer bandwidth. This is a source of strategic interaction among

the primaries– each primary would like to select a maximum-sized independent set to

offer bandwith at; but if a lot of primaries offer bandwidth at the same locations, there

is intense competition at those locations. So a primary would have benefited by in-

stead offering bandwidth at a smaller independent set and charging high prices at those

locations.

In this chapter, we formulate the price competition scenario with spatial reuse as

a game in which each primary needs to select (i) a set of locations at which to offer

bandwidth and (ii) the price of bandwidth at each location. We first analyze the sym-

metric case q1 = . . .= qn = q for simplicity, which makes the game a symmetric game,

and focus on symmetric NE. Our first contribution is to prove a separation theorem

(Section 5.2.2), which states that in a symmetric NE, the price distributions used by the

primaries at different nodes are uniquely determined once the independent set selection

distributions are obtained. We therefore focus on computing the latter, which in turn

provides the joint independent set and price selection strategies, by virtue of the results

in Chapter 3 for the single location case.

We focus on a class of conflict graphs that we refer to as mean valid graphs. These

are graphs whose node set can be partitioned into d disjoint maximal independent sets
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I1, . . . , Id , for some integer d ≥ 2, and which satisfy another technical condition to be

introduced later (in Section 5.3). As we show in Section 5.5.1, it turns out that the

conflict graphs of a large number of topologies that arise in practice are mean valid. In

particular, several lattice arrangements of nodes in two and three dimensions are mean

valid, e.g., a grid graph in two dimensions, such as that in part (b) of Fig. 5.2 or Fig. 5.3,

which may be the conflict graph of shops in a shopping complex, the conflict graph of

a cellular network with hexagonal cells (see Figs. 5.6 and 5.7), a grid graph in three

dimensions, which may represent offices in a corporate building (see Fig. 5.5) etc.

We show that a mean valid graph has a unique symmetric NE; in this NE, each

primary offers bandwidth only at some or all of the independent sets in I1, . . . , Id with

positive probability and with 0 probability at every other independent set. These proba-

bilities (and thereby the NE strategies) can be explicitly computed by solving a system

of equations that we provide. The fact that primaries offer bandwidth with a positive

probability at only a small number of independent sets is a surprising result, because in

most graphs, including the examples in the previous paragraph, the number of indepen-

dent sets is exponential in the number of nodes. Our characterization of the symmetric

NE also reveals that when the probability q that a primary has unused bandwidth is

small, primaries only offer bandwidth at the larger independent sets out of I1, . . . , Id

and as q increases, primaries also start offering bandwidth at the smaller ones. This is

because, for given prices, a larger independent set yields a larger revenue. However,

as q increases, the price competition at the large independent sets becomes intense and
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drives down the prices and revenues at those independent sets. So primaries also offer

bandwidth at the smaller independent sets.

This chapter is organized as follows. We describe our model in Section 5.2.1. We in-

troduce mean valid graphs in Section 5.3 and provide several examples. In Section 5.4,

we prove the theorem, discussed above, on characterization of the unique symmetric

NE in mean valid graphs. In Section 5.5, we show that the conflict graphs of several

topologies of practical interest as well as some other common types of graphs are mean

valid. In Section 5.6, we show that the mean validity condition is a necessary condition

for the existence of a symmetric NE of the above form when d = 2, and also find the

symmetric NE and prove its uniqueness in a specific non mean valid graph. In Sec-

tion 5.7, we generalize our results to the case in which q1, . . . ,qn may not be equal and

present numerical studies in Section 5.9.

We present some of the proofs in the main text and defer the rest until the appendix

(Section 5.11).

5.2 Model and some Basic Results

5.2.1 Model

Suppose there are n ≥ 2 primaries, each of whom owns a channel throughout a large

region which is a geographically well-separated or separately administered area, such
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as a state or a country 19. The channels owned by the primaries are all orthogonal to

each other. In every slot, each primary independently either uses its channel through-

out the region to satisfy its own subscriber demand, or does not use it anywhere in the

region. A typical scenario where this happens is when primaries broadcast the same

signal over the entire region, e.g., if they are television broadcasters. Let q ∈ (0,1) be

the probability that a primary does not use its channel in a slot (to satisfy its subscriber

demand). For simplicity, we assume that the probability q is the same for all primaries;

we discuss the effect of relaxing this assumption in Section 5.7. Now, the region con-

tains smaller parts, which we refer to as locations. For example, the large region may

be a state, and the locations may be towns within it.

We assume that there are Kv secondaries at location v, where Kv is a random variable

with probability mass function (p.m.f.) Pr(Kv = k) = γk. Also, the random variables Kv

at different nodes v may be correlated. The primaries apriori know only the γks, but not

the values of Kv for any given location v. Also, the p.m.f. {γk} satisfies the technical

assumptions described in Section 3.2 and as before, let r = P(Kv ≥ 1) = 1− γ0.

A primary who has unused bandwidth in a slot can lease it out to secondaries at a

subset of the locations, provided this subset satisfies the spatial reuse constraints, which

we describe next. The overall region can be represented by an undirected graph [71]

G = (V,E), where V is the set of nodes and E is the set of edges, called the conflict

graph, in which each node represents a location, and there is an edge between two

19We assume that all the primaries own bandwidth in the same region.
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nodes iff transmissions at the corresponding locations interfere with each other. Note

that graphs have been widely used to model ad hoc networks, wherein wireless devices

are modeled as nodes in an undirected graph, with mutually interfering nodes being

connected by an edge [23], [66]. However, the concept of spatial reuse in our paper

is more closely related to the corresponding notion in cellular networks, where cells

are represented by nodes in an undirected graph, with interfering cells corresponding

to neighbors in the graph [55]. Recall that an independent set [71] (I.S.) in a graph is

a set of nodes such that there is no edge between any pair of nodes in the set. Now, a

primary who is not using its channel must offer it at a set of mutually non-interfering

locations, or equivalently, at an I.S. of nodes; otherwise secondaries20 will not be able

to successfully transmit simultaneously using the bandwidth they purchase, owing to

mutual interference. Fig. 5.1 illustrates the model.

A primary i who offers bandwidth at an I.S. I, must also determine for each node

v ∈ I, the access fee, pi,v, to be charged to a secondary if the latter leases the bandwidth

at node v. A primary incurs a cost of c ≥ 0 per slot per node for leasing out bandwidth.

As in the single location case, we assume that pi,v ≤ ν for each primary i and each

node v, for some constant ν > c. This upper bound ν may either be a regulator-imposed

limit or the valuation of each secondary for unit bandwidth. We assume that the pri-

maries know this upper limit ν.

20Note that secondaries are usually customers or local providers, and purchase bandwidth for commu-

nication (and not television broadcasts). Thus, two secondaries can not use the same band simultaneously

at interfering locations.
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Figure 5.1: The figure illustrates the network model. Part (a) shows a region containing 11 locations.

There are n = 3 primaries, and k = 2 secondaries in each location. Part (b) shows the conflict graph

corresponding to the region in part (a). The darkened nodes constitute a maximal independent set.

Secondaries buy bandwidth from the primaries that offer the lowest price. More

precisely, in a given slot, let Zv be the number of primaries who offer unused bandwidth

at a node v. Then, since there are Kv secondaries at node v, the bandwidth of the

min(Z,Kv) primaries that offer the lowest prices is bought (ties are resolved at random)

at the node. The utility of a primary i who offers bandwidth at an I.S. I and sets a price

of pi,v at node v ∈ I is given by ∑(pi,v−c), where the summation is over the nodes v ∈ I
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at which primary i’s bandwidth is bought. (The utility is 0 if bandwidth is not bought

at any node).

Thus, each primary must jointly select an I.S. at which to offer bandwidth, and the

prices to set at the nodes in it. Both the I.S. and price selection may be random. Thus,

a strategy, say ψi, of a primary i provides a probability mass function (p.m.f.) for

selection among the I.S. and the price distribution it uses at each node (both selections

contingent on having unused bandwidth). Note that we allow a primary to use different

(and arbitrary) price distributions for different nodes (and therefore allow, but do not

require, the selection of different prices at different nodes), and arbitrary p.m.f. (i.e.,

discrete distributions) for selection among the different I.S.

The vector (ψ1, . . . ,ψn) of strategies of the primaries is called a strategy profile [42].

Let ψ−i = (ψ1, . . . ,ψi−1,ψi+1, . . . ,ψn) denote the vector of strategies of primaries other

than i. Let E{ui(ψi,ψ−i)} denote the expected utility of primary i when it adopts

strategy ψi and the other primaries adopt ψ−i.

Now, let

w(q,n) = ∑
k

γk

n−1

∑
i=k




n−1

i


qi(1−q)n−1−i (149)

This is the probability that Kv or more primaries out of a given set of n− 1 primaries

offer bandwidth at a given node v. Note that when the number of secondaries Kv is

constant, i.e., the p.m.f. {γk} is concentrated at a single value, the above expression

reduces to the expression in (2). We will later use the following fact [70]:
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Lemma 29. w(q,n) is a strictly increasing function of q for fixed n.

Let p̃ be as in Property 2 in Chapter 3. We showed in that chapter (see Section 3.3.4)

that in the price competition game at a single location, there is a unique NE in which

each primary randomizes over the prices in the range [p̃,v] using a continuous distri-

bution function (d.f.) ψ(.). Also, under this symmetric NE, each primary receives an

expected payoff of (see Property 2 in Chapter 3 and note that w(q,n) = w1):

p̃− c = (ν− c)(1−w(q,n)) (150)

5.2.2 A Separation Result

Recall that a strategy of a primary consists of a p.m.f. over I.S. and price distributions

at individual nodes. We now provide a separation framework from which the price dis-

tributions at individual nodes in a symmetric NE follow once the I.S. selection p.m.f.s

are determined.

Let I be the set of all I.S. in G. For convenience, we assume that the empty I.S.

I/0 ∈ I and we allow a primary to offer bandwith at I/0, i.e. to not offer bandwidth at

any node, with some probability. Consider a symmetric strategy profile under which

each primary offers bandwidth at I.S. I ∈ I w.p. β(I), where:

∑
I∈I

β(I) = 1. (151)

The probability, say αv, with which each primary offers bandwidth at a node v ∈ V

109



equals the sum of the probabilities associated with all the I.S. that contain the node, i.e.

αv = ∑
I∈I :v∈I

β(I) (152)

Now, considering that each primary has unused bandwidth w.p. q, it offers it at node v

w.p. qαv. The price selection problem at each node v is now equivalent to that for the

single location case, the difference being that each primary offers unused bandwidth

w.p. qαv, instead of q, at node v. Thus:

Lemma 30. Suppose under a symmetric NE each primary selects node v w.p. αv if it

has unused bandwidth. Then under that NE the price distribution of each primary at

node v is the d.f. ψ(.) in the single location case, with qαv in place of q.

Thus, a symmetric NE strategy is completely specified once the I.S. selection p.m.f.

{β(I) : I ∈ I } (which will in turn provide the αvs via (152)) is obtained.

5.2.3 Node and I.S. Probabilities

Consider a symmetric NE where each primary uses the strategy ψ, under which it offers

bandwidth at I.S. I ∈ I with some probability β(I). The probability, αv, with which

each primary offers bandwidth at a node v ∈ V is determined by the I.S. distribution

{β(I) : I ∈ I } via (152).

Now, for simplicity, we normalize ν− c = 1. With w(q,n) as in (149), let:

W (α) = (1−w(qα,n))(ν− c) = (1−w(qα,n)). (153)

By Lemma 30, and similar to (150) in the single location case, in a symmetric NE if
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primaries offer bandwidth at a node with probability α (and play the single-node NE

strategy with qα in place of q at that node), then W (α) is the maximum expected payoff

that each primary i can get at that node. It gets this payoff W (α) if it sets any price in

the range [ν−w(qα,n)(ν− c),ν] at that node. Under the above symmetric NE with

strategy profile (ψ, . . . ,ψ), each primary offers bandwidth at node v ∈ V w.p. αv. So

the expected payoff of each primary i is given by:

E{ui(ψ,ψ−i)}= ∑
v∈V

αvW (αv). (154)

Now, in general, different I.S. distributions {β(I) : I ∈ I } can result in the same

node distribution 21 {αv : v ∈V}. However, by (154), the expected payoff of each pri-

mary in a symmetric NE is completely determined by the node distribution, i.e. it is the

same under different I.S. distributions that correspond to the same node distribution.

So if primary i knows the node distribution chosen by the other primaries, then it has

sufficient information to choose its best response; it does not need to know their I.S. dis-

tribution in addition. Thus, the game aspect of the price competition, i.e. the strategic

interaction between the primaries, is completely determined by the node distribution.

We now introduce a definition:

Definition 1 (Valid Distribution). An assignment {αv : v ∈ V} of probabilities to the

nodes is said to be a valid distribution if there exists a probability distribution {β(I) :

I ∈ I } such that for each v ∈V, αv = ∑I∈I :v∈I β(I).

Note that, given a valid distribution {αv : v ∈ V}, a corresponding I.S. distribution

21Although we refer to {αv : v ∈V} as a distribution, note that ∑v∈V αv need not equal 1 in general.
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can be computed by solving the system of linear equations (152).

Thus, we can equivalently define the strategy of a primary in a symmetric NE as a

node distribution {αv : v ∈V}. So henceforth, we interchangeably speak of the strategy

of a primary as either an I.S. distribution {β(I) : I ∈I } (note that the price distribution

follows by Lemma 30) or a node distribution {αv : v ∈ V}. Also, we say that the

symmetric NE is unique if the node distribution {αv : v ∈V} is unique.

Remark 3. In Theorem 4 of Chapter 3, we showed the uniqueness of the NE in the price

competition game at a single location, even for the asymmetric case in which q1, . . . ,qn

are not equal. However, in presence of spatial reuse, there are multiple NE even in the

symmetric case q1 = . . .= qn = q. For example, suppose there are two nodes v1 and v2

connected by an edge, two primaries (n = 2) and one secondary with probability 1 at

each node (k = 1). Then the strategy profiles in which primary 1 offers bandwidth at

node v1 and primary 2 at node v2 w.p. 1, or vice versa, and both primaries set a price

of ν w.p. 1, are NE, apart from the symmetric NE to be described in Theorem 8 below.

5.3 Mean Valid Graphs

We now introduce a class of graphs, which we refer to as mean valid graphs. The

motivation behind studying these graphs is that the conflict graphs of several topologies

that commonly arise in practice are mean valid graphs. Also, as we show in the next

section, these graphs have a unique symmetric NE, which can be explicitly computed

and has a simple form.
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5.3.1 Definition

Definition 2 (Mean Valid Graph). We refer to a graph G = (V,E) as mean valid if it

satisfies the following two conditions:

1. Its vertex set can be partitioned into d disjoint maximal 22 I.S. for some integer

d ≥ 2: V = I1∪I2∪ . . .∪Id , where I j, j ∈ {1, . . . ,d}, is a maximal I.S. and I j∩Im =

/0, j 6= m.

Let |I j|= M j,

M1 ≥ M2 ≥ . . .≥ Md , (155)

and I j = {a j,l : l = 1, . . . ,M j}.

2. For every valid distribution 23 in which a primary offers bandwidth at node a j,l

w.p. α j,l, j = 1, . . . ,d, l = 1, . . . ,M j,

d

∑
j=1

α j ≤ 1, (156)

where

α j =
∑

M j

l=1 α j,l

M j

, j ∈ {1, . . . ,d}. (157)

We now explain the two conditions in Definition 2. Recall that a graph G = (V,E)

is said to be d-partite if V can be partitioned into d disjoint I.S. I1, . . . , Id [71]. For

example, when d = 2, G is a bipartite graph. The first condition in Definition 2 says

22Recall that an I.S. I is said to be maximal if I ∪{v} is not an I.S. for all v ∈V [71].
23Note that we write α j,l in place of αa j,l

to simplify the notation.
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that G is a d-partite graph and has the additional property that each of I1, . . . , Id is a

maximal I.S.

Now we explain Condition 2 in Definition 2. Let {α j,l : j = 1, . . . ,d; l = 1, . . . ,M j}

be an arbitrary valid distribution. Consider the distribution α′
j,l = α j, with α j as in

(157), i.e. for each j and l = 1, . . . ,M j, α′
j,l is set equal to the mean of α j,m,m =

1, . . . ,M j. If (156) is true, then this distribution of means is a valid distribution because

it corresponds to the I.S. distribution {β(I j)=α j, j = 1, . . . ,d,β(I/0)= 1−∑d
j=1 α j;β(I)=

0, I 6= I1, . . . , Id, I/0}. Thus, Condition 2 in Definition 2 says that in G, the distribution of

means corresponding to every valid distribution is valid. As we will see in Section 5.4,

this condition is the crux behind the fact that in the symmetric NE in a mean valid

graph, each primary offers bandwidth with equal probabilities at all the nodes in I j for

every j = 1, . . . ,d.

5.3.2 Examples

Technical as Definition 2 may seem, it turns out that several conflict graphs that com-

monly arise in practice are mean valid. For example, consider the following graphs:

1. Let Gm denote a graph that is a linear arrangement of m ≥ 2 nodes as shown in part

(a) of Fig. 5.2, with an edge between each pair of adjacent nodes. As an example,

this would be the conflict graph for locations along a highway or a row of roadside

shops.

2. We consider two types of m×m grid graphs, denoted by Gm,m (see part (b) of
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Fig. 5.2) and Hm,m (see Fig. 5.3). In both these graphs, m2 nodes (locations) are

arranged in a square grid. In Gm,m, there is an edge only between each pair of

adjacent nodes in the same row or column. In Hm,m, in addition to these edges,

there are also edges between nodes that are neighbors along a diagonal as shown

in Fig. 5.3. For example, Gm,m or Hm,m may represent a shopping complex, with

the nodes corresponding to the locations of shops with WiFi Access Points (AP)

for Internet access. Depending on the proximity of the shops to each other and the

transmission ranges of the APs, the conflict graph could be Gm,m or Hm,m. Hm,m is

also the conflict graph of a cellular network with square cells as shown in Fig. 5.4.

3. Let Tm,m,m be a three-dimensional grid graph (see Fig. 5.5), which may, for exam-

ple, be the conflict graph for offices in a corporate building or rooms in a hotel.

4. The conflict graph (Fig. 5.7) of a cellular network with hexagonal cells (Fig. 5.6).

5. Consider a clique 24 of size e, where e ≥ 1 is any integer. This is the conflict graph

for any set of e locations that are close to each other.

All of the above are mean valid graphs:

Theorem 7. The following graphs are mean valid, with d, the number of disjoint max-

imal I.S., indicated in each case:

1. a clique of size e ≥ 1 (d = e),

24Recall that a clique or a complete graph of size e is a graph with e nodes and an edge between every

pair of nodes [71].

115



Figure 5.2: Part (a) shows a linear graph, Gm, with m = 8 and part (b) shows a grid graph, Gm,m, with

m = 5. In both graphs, the darkened and un-darkened nodes constitute I1 and I2 respectively.

2. a line graph Gm (d = 2),

3. a two-dimensional grid graph Gm,m (d = 2),

4. a two-dimensional grid graph Hm,m (d = 4),

5. a three-dimensional grid graph Tm,m,m (d = 8).

6. a cellular network with hexagonal cells, under Assumption 1 in Section 5.5.1 (d =

3).
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Figure 5.3: The figure shows a grid graph Hm,m with m = 7.

Figure 5.4: The figure shows a tiling of a plane with squares, e.g. cells in a cellular network. Transmis-

sions at neighboring cells interfere with each other. The corresponding conflict graph is H 6,6.

We defer the proof of Theorem 7 until Section 5.5.1. Also, as we show in Sec-

tion 5.5.2, some other common classes of graphs, such as a star and a κ-regular bipartite
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Figure 5.5: Part (a) shows a three-dimensional grid graph Tm,m,m for m = 5. It consists of periodic

repetitions of the graph shown in part (b). Also, in part (b), the node labels show the I.S. I1, . . . , I8 they

are in, i.e. a node with the label j is part of the I.S. I j, j ∈ {1, . . . ,8}.

Figure 5.6: The figure shows a tiling of a plane with hexagons, e.g. cells in a cellular network. Trans-

missions at neighboring cells interfere with each other.

graph, are mean valid as well.
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Figure 5.7: The figure shows the conflict graph of a hexagonal tiling of a plane. Both the solid and

dotted edges are part of the graph. The nodes labelled j, j ∈ {1,2,3}, are in I.S. I j. There are four rows

of nodes. The figure also shows the construction of the graph from cliques of size 3 each, shown by the

solid edges. The dotted edges are added later. Note that no edge is between two nodes in the same I.S.,

so the hypothesis of Lemma 38 is satisfied.

A graph obtained by considering the union of disjoint mean valid graphs, all of

which correspond to the same integer d, and then adding some edges to get a connected

graph, is a mean valid graph under some technical conditions 25, e.g., the cellular net-

works in a group of neighboring towns or the WiFi networks in the departments of a

university campus. Fig. 5.8 illustrates the latter example.

5.3.3 A Necessary and Sufficient Condition

We state a property of mean valid graphs for later use.

Lemma 31. Let G = (V,E) be a graph that satisfies Condition 1 in Definition 2. Sup-

25These technical conditions are stated in Lemmas 38 and 39 in Section 5.5.1.
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Figure 5.8: The rectangles represent departments in a university campus and the circles are the ranges of

WiFi access points. The circles (nodes) in each rectangle constitute a grid graph Hm,m, which is mean

valid with d = 4 (see part 4 of Theorem 7). The overall graph is also mean valid with d = 4. With

I j, j ∈ {1,2,3,4}, being disjoint maximal I.S. as in Definition 2, the number in each circle indicates

the I.S. to which the corresponding node belongs, i.e. nodes corresponding to the circles numbered

j ∈ {1,2,3,4} belong to I.S. I j.

pose I ∈ I contains m j(I) nodes from I j, j = 1, . . . ,d. G is mean valid if and only

if:

d

∑
j=1

m j(I)

M j

≤ 1 ∀I ∈ I (158)
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5.4 Symmetric NE in Mean Valid Graphs

In this section, we show that a mean valid graph has a unique symmetric NE; in this

NE, in the notation of Definition 2, primaries offer bandwidth at all the nodes in I j,

j ∈ {1, . . . ,d}, with the same probability t j, i.e. α j,l = t j ∀l = 1, . . . ,M j, where {t j : j =

1, . . . ,d} is the unique solution of a set of equations that we provide.

Let G be a mean valid graph. Suppose there exists a symmetric NE in which each

primary offers bandwidth at node a j,l w.p. α j,l, j = 1, . . . ,d, l = 1, . . . ,M j, where {α j,l}

is a valid distribution. Let ψ denote this strategy. First, we will argue, by contradiction,

that for each j, α j,l = α j ∀l = 1, . . . ,M j, where α j is given by (157). In the symmetric

NE (ψ, . . . ,ψ), by (153) and the discussion just after it, primary 1 gets an expected

payoff of W (α j,l) at node a j,l; also, by (154), its total expected payoff is:

E{u1(ψ,ψ−1)}=
d

∑
j=1

M j

∑
l=1

α j,lW (α j,l) (159)

Suppose α j,l, l = 1, . . . ,M j are not all equal for some j. By (153) and Lemma 29,

W (α) is a strictly decreasing function of α; so primary 1 offers bandwidth with a high

probability α j,l at nodes a j,l at which it gets a low payoff W (α j,l). This seems to

suggest that primary 1 could get a higher overall payoff by unilaterally switching to an

alternative strategy, say ψ0, under which it decreases (respectively, increases) the node

probabilities at nodes that yield a low (respectively, high) payoff, if such a strategy ψ0

were to exist. This would contradict the fact that the distribution {α j,l : j = 1, . . . ,d; l =

1, . . . ,M j} is primary 1’s best response and thereby imply that α j,l, l = 1, . . . ,M j must

121



be equal for every j = 1, . . . ,d.

The existence of such a strategy ψ0 is guaranteed by Condition 2 in Definition 2–

that (156) holds for every valid distribution. Let ψ0 be a strategy under which primary

1 offers bandwidth at each node in I j, j ∈ {1, . . . ,d} w.p. α j. Note that ∑d
j=1 α j ≤ 1 by

(156); so ψ0 is a valid distribution since it corresponds to the I.S. distribution β(I j)=α j,

j ∈ {1, . . . ,d}, β(I/0) = 1 −∑d
j=1 α j, β(I) = 0, I 6= I1, . . . , Id, I/0. By (154), the total

expected payoff of primary 1 if it plays strategy ψ0 is:

E{u1(ψ0,ψ−1)}=
d

∑
j=1

M j

∑
l=1

α jW (α j,l) (160)

By (159) and (160):

E{u1(ψ,ψ−1)}−E{u1(ψ0,ψ−1)}

=
d

∑
j=1

(
M j

∑
l=1

α j,lW (α j,l)−α j

(
M j

∑
l=1

W (α j,l)

))
(161)

Now, we have the following algebraic fact, proved in Section 5.11.

Lemma 32. Let N ≥ 2 be an integer, α1, . . . ,αN be real numbers and α =
∑N

i=1 αi

N
. Let

f (x) be any strictly decreasing function of x. Then:

(
N

∑
i=1

αi f (αi))≤ α(
N

∑
i=1

f (αi)) (162)

with equality iff α1 = . . .= αN = α.

Intuitively, since f (.) is strictly decreasing, in the LHS of (162), the terms in which

f (αi) is large are multiplied by small factors αi and vice-versa; on the other hand, all

terms f (αi) on the RHS are multiplied by the same factor α. So the LHS is smaller.
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Now, as mentioned above, f (α) = W (α) = 1 − w(qα,n) is a strictly decreasing

function of α. So by Lemma 32, the expression in (161) is ≤ 0, with equality holding

iff α j,1 = . . . = α j,M j
= α j for each j ∈ {1, . . . ,d}. But since ψ is a best response,

E{u1(ψ,ψ−1)} ≥ E{u1(ψ0,ψ−1)}. So the expression in (161) must equal 0 and hence

α j,1 = . . .= α j,M j
= α j for each j ∈ {1, . . . ,d}.

Now, suppose ∑d
j=1 α j < 1. Then primary 1 can unilaterally offer bandwidth at each

node in Id with probability 1−∑
d−1
j=1 α j > αd instead of αd and increase its payoff. This

contradicts the fact that the distribution is a NE. So we must have ∑d
j=1 α j = 1. Thus,

we have shown the following:

Lemma 33. In a mean valid graph, under every symmetric NE, each primary offers

bandwidth at each node in I j w.p. t j, j ∈ {1, . . . ,d}, for some t j ≥ 0, j = 1, . . . ,d, where

∑d
j=1 t j = 1.

A typical way in which the node probability distribution α j,l = t j ∀l = 1, . . . ,M j,

arises is via the I.S. distribution β(I j) = t j, j = 1, . . . ,d;β(I) = 0 ∀I 6= I1, . . . , Id .

The following result provides necessary conditions for a distribution {t j : j= 1, . . . ,d}

as in Lemma 33 to constitute a symmetric NE.

Lemma 34. If a distribution {t j : j = 1, . . . ,d} as in Lemma 33 constitutes a symmetric

NE, then I1, . . . , Id′ are best responses and Id′+1, . . . , Id are not, for some integer d′ ∈

{1, . . . ,d}. Also, each I ∈ I containing a node from I j for some j > d′ is not a best

response. Hence:

t j = 0, j > d′. (163)
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Intuitively, a primary prefers to offer bandwidth at a large I.S. because it gets some

revenue at every node in the I.S. it selects and its total payoff is the sum of the revenues

at the nodes of the I.S. Also, recall that by (155), I1, . . . , Id are in decreasing order of

size. So a primary will (i) try to offer bandwidth only at the largest I.S. I1, (ii) offer

bandwidth at the next largest I.S. I2 as well with some probability only if the compe-

tition at I1 increases beyond a threshold, (iii) offer bandwidth at I3 as well with some

probability only if the competition at I1 and I2 increases beyond a certain threshold and

so on. Hence, the set of best responses out of I1, . . . , Id is of the form I1, I2, . . . , Id′ for

some 1 ≤ d′ ≤ d.

Now, if primary i offers bandwidth at I.S. I′ ∈ I , its overall expected payoff, de-

noted by U1(I
′), is the sum of the expected payoffs at the nodes in I′, which, by (153)

and the discussion just after it, is given by:

U1(I
′) = ∑

v∈I′

W (αv) = ∑
v∈I′

(1−w(qαv,n)). (164)

Now, consider a symmetric NE with {t j : j = 1, . . . ,d} as in Lemma 33. By (164) and

the fact that |I j|= M j, the payoff of primary 1 if it offers bandwidth at I j is:

U1(I j) = M jW (t j) (165)

By Lemma 34, I1, . . . , Id′ are best responses and Id′+1 is not. So:

U1(I1) = . . .=U1(Id′)>U1(Id′+1)

Substituting (165) into the above and using (163) and the fact that W (0)= 1−w(0,n)=
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1− (1− r) = r, we get:

M1W (t1) = . . .= Md′W (td′)> Md′+1r (166)

Thus, we have shown the following:

Lemma 35. A distribution {t j : j = 1, . . . ,d} as in Lemma 33 that constitutes a sym-

metric NE must satisfy (163) and (166) for some integer d′ ∈ {1, . . . ,d}.

Lemma 35 provides necessary conditions for a distribution {t j : j = 1, . . . ,d} to con-

stitute a symmetric NE. The following lemma shows that these conditions are sufficient

as well.

Lemma 36. Let 1 ≤ d′ ≤ d and t1, . . . , td be a probability distribution such that (163)

and (166) hold. Then the symmetric strategy profile in which every primary offers

bandwidth at each node in I j w.p. t j, j ∈ {1, . . . ,d}, is a NE.

The proof of Lemma 36 (see Section 5.11) is based on the fact that the graph, being

mean valid, satisfies Condition 2 in Definition 2.

The following technical lemma shows the existence and uniqueness of a distribution

(t1, . . . , td) satisfying (163) and (166) for every value of q.

Lemma 37. For every q ∈ (0,1), there exists a unique integer d′ = d′(q) and a unique

probability distribution (t1, . . . , td) such that (163) and (166) hold. Also, d′(q) is an

increasing function of q and, for every value of q, t1 ≥ t2 . . .≥ td.

Note that the fact that d′(q) is an increasing function of q is consistent with the intu-

ition that for small values of q, primaries tend to offer bandwidth at only the larger I.S.
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out of I1, . . . , Id , and as q, and thereby the competition from other primaries increases,

they also choose the smaller ones. Also, the fact that t1 ≥ t2 . . . ≥ td for all q is con-

sistent with the intuition that primaries offer bandwidth at the larger I.S. with a larger

probability.

Finally, putting together the above discussion, we get the main result of this section:

Theorem 8. In a mean valid graph, for every q ∈ (0,1), there is a unique symmetric

NE; in this NE, each primary offers bandwidth at every node in I j, j ∈ {1, . . . ,d}, w.p.

t j, i.e. α j,l = t j, l = 1, . . . ,M j, where (t1, . . . , td) is the unique distribution satisfying

(163) and (166).

Proof. By Lemma 33, under every symmetric NE, each primary must offer bandwidth

at all the nodes in I j, j ∈ {1, . . . ,d}, w.p. t j for some probability distribution (t1, . . . , td).

Also, by Lemma 35, (163) and (166) hold for this distribution. By Lemma 37, for a

fixed value of q ∈ (0,1), there exists a unique distribution (t1, . . . , td) satisfying (163)

and (166). Finally, by Lemma 36, the strategy profile where each primary uses this

distribution is a NE. The result follows.

Thus, every mean valid graph has a unique symmetric NE, which can be explicitly

computed by solving the system of equations (163) and (166). Note that this is a sys-

tem of non-linear equations in the variables t1, . . . , td and d′. It can be solved using a

standard solver for non-linear equations (e.g., fsolve in Matlab) in combination with a

search procedure to find d′.
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Example: Suppose there are n = 2 primaries and k = 1 secondary with probability

1. Consider a grid graph Hm,m, which was introduced in Section 5.3.2, with m = 7

(see Fig. 5.3). By part 4 of Theorem 7, this is a mean valid graph and, in the notation

of Definition 2, d = 4, the I.S. I1, I2, I3 and I4 are as described in Section 5.5.1, and

M1 = 16, M2 = M3 = 12, M4 = 9. The symmetric NE is of the form described in

Theorem 8 with d′(q), t1, t2, t3 and t4 for different q ∈ (0,1) as follows:

1. For 0 < q < 1
4
, d′ = 1, t1 = 1, t2 = t3 = t4 = 0.

2. For 1
4
≤ q < 15

16
, d′ = 3, t1 =

1
11

(
3+ 2

q

)
, t2 = t3 =

1
11

(
4− 1

q

)
t4 = 0.

3. For 15
16

≤ q < 1, d′ = 4, t1 =
1
49

(
9+ 13

q

)
, t2 = t3 =

1
49

(
1
q
+12

)
t4 =

1
49

(
16− 15

q

)
.

Note that, consistent with Theorem 8, d′(q) is an increasing function of q and t1 ≥ t2 ≥

t3 ≥ t4 for each value of q. In fact, for all q, t2 = t3, which is because I2 and I3 are of the

same size. Fig. 5.9 plots t1, t2 and t4 versus q. For small q, primaries offer bandwidth at

the largest I.S. I1 with probability 1; but as q increases, the competition at I1 increases,

inducing the primaries to shift probability mass from I1 to the other I.S. So t1 decreases

in q. However, note that for all values of q, t1 ≥ t2 ≥ t4 and t4 is very small (less than

0.02).

Remark 4. The unique symmetric NE need not be pure even with respect to the node

selections, as the above example shows. However, this mixed choice is not really an ar-

tifact of mixed price choice. For instance, consider a scenario where all primaries must

choose the same fixed price p0 (perhaps the prices have been standardized because of
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Figure 5.9: The figure shows the symmetric NE probabilities t1, t2 and t4 for the example after Theorem 8.

government regulation). Suppose there are two nodes v1 and v2 connected by an edge,

two primaries (n = 2) and one secondary with probability 1 at each node (k = 1). Then

it is easy to show that the strategy profile under which each primary offers bandwidth

at v1 and v2 w.p. 1/2 each constitutes the unique symmetric NE.

The intuition behind randomization across different I.S. in a symmetric NE is that

primaries would like to offer bandwidth at an I.S. at which other primaries do not offer

bandwidth with a high probability, whereas in a symmetric NE that is pure with respect

to the node selection, all primaries offer bandwidth at the same I.S.

5.5 Some Specific Mean Valid Graphs

Theorem 8 provides the form of the symmetric NE in mean valid graphs. So in this

section, we identify some classes of mean valid graphs.
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5.5.1 Topologies that Commonly Arise in Practice

We now prove Theorem 7.

The proof of part 1 of Theorem 7 is straightforward: let {v1, . . . ,ve} be the nodes

of the clique. I j = {v j}, j = 1, . . . ,e are disjoint maximal I.S. whose union is V . Also,

these are the only I.S. in the graph; so (158) holds and the clique is mean valid by

Lemma 31.

Next, we prove some lemmas that we use to prove the other parts of Theorem 7.

Lemma 38. Let G = (V,E) be a mean valid graph, where V = I1∪ . . .∪ Id and I1, . . . , Id

are disjoint maximal I.S. Let E ′ ⊇ E be any set such that no edge in E ′ is between two

nodes in the same I.S. I j, j ∈ {1, . . . ,d}. Then the graph G′ = (V,E ′) is mean valid.

Thus, if a graph G is mean valid, then the graph G′ obtained by adding edges in any

fashion to G, while ensuring that I j, j = 1, . . . ,d continue to be I.S. in G′, is a mean

valid graph as well.

Lemma 39. Suppose for each i = 1, . . . ,N, Gi = (V i,E i) is a mean valid graph, where

V i = Ii
1 ∪ . . .∪ Ii

d , Ii
1, . . . , I

i
d are disjoint maximal I.S., and |Ii

j| = Mi
j, j = 1, . . . ,d. Let

Mi = (Mi
1, . . . ,M

i
d). If

Mi = ciM
0, i = 1, . . . ,N (167)

for some vector M0 =(M0
1, . . . ,M

0
d) and positive scalars c1, . . . ,cN , then G=(∪N

i=1V i,∪N
i=1E i)

is mean valid.

Lemma 39 says that if Gi, i = 1, . . . ,N are mean valid graphs, then their union G is a
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mean valid graph as well provided each of Gi, i= 1, . . . ,N contains (i) the same number,

d, of disjoint maximal I.S., and (ii) the same proportion of nodes in the d I.S. Ii
1, . . . , I

i
d .

Since the union graph G is a disconnected graph with N components, Lemma 39 is

not useful by itself to prove that a graph is mean valid. But it can be effectively used

in conjunction with Lemma 38 to combine a set of N mean valid graphs into a new

connected mean valid graph by (i) first considering their union, which is a disconnected

graph, (ii) and then adding some edges to it to make it connected.

A useful special case is when each of these N graphs Gi is a clique of size d (which

is mean valid by Part 1 of Theorem 7) with vertex set V i = {vi
1, . . . ,v

i
d}. Note that these

graphs satisfy the hypothesis of Lemma 39 with Ii
j = {vi

j}, Mi
j = 1, ∀i, j, M0 =(1, . . . ,1)

and ci = 1 ∀i. This special case can be used to prove the mean validity of several of the

graphs mentioned in Theorem 7, as we explain below.

We introduce some notation for later use. For an integer m ≥ 1, let me (respectively,

mo) denote the greatest even (respectively, odd) integer less than or equal to m.

We now prove part 2 of Theorem 7. Consider a linear graph Gm with node set

{v1,v2, . . . ,vm} as shown in part (a) of Fig. 5.2. First, let m be even– say m = 2N.

For i = 1, . . . ,N, let Gi be the clique of size 2 with the node set V i = {v2i−1,v2i} and

the edge between the two nodes. In the notation of Lemma 39, let Ii
1 = {v2i−1} and

Ii
2 = {v2i}. By Lemma 39, G = G1∪G2∪ . . .∪GN is a mean valid graph with d = 2 and

the disjoint maximal I.S. I1 = {v1,v3,v5, . . .vmo
} and I2 = {v2,v4,v6, . . . ,vme

}. We can

obtain Gm by adding the edges (v2,v3), (v4,v5), . . . , (v2N−2,v2N−1) to G as illustrated
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in part (a) of Fig. 5.10. Note that no edge is between two nodes in the same I.S. I j,

j ∈ {1,2}; so the hypothesis of Lemma 38 is satisfied. Hence, Gm is mean valid by

Lemma 38. The proof of the fact that Gm is also mean valid for m odd is deferred until

Section 5.11.

Now, we prove part 3 of Theorem 7. Consider Gm,m, where m may be odd or even.

Let vi j be the node in the i’th row and j’th column i, j ∈ {1, . . . ,m}(see part (b) of

Fig. 5.2). We start with a line graph Gm2 , which is mean valid by part 2 of Theorem 7,

and add some edges to obtain Gm,m as shown in Fig. 5.11. Specifically, let Gm2 be the

line graph with the set of nodes {v1,1, v1,2, . . . , v1,m, v2,m, v2,m−1, . . . , v2,1, v3,1, v3,2,

. . . , v3,m, v4,m, v4,m−1, . . . } and an edge between each pair of consecutive nodes in this

order. Gm2 is mean valid with d = 2, and the disjoint maximal I.S. I1 = {v11, v13, . . . ,

v1,mo
, v22, v24, . . . , v2,me

, v31, v33, . . . , v3,mo
, . . . } and I2 = {v12, v14, . . . , v1,me

, v21,

v23, . . . , v2,mo
, v32, v34, . . . , v3,me

, . . . }. Gm,m can be obtained from Gm2 by adding the

remaining edges shown dotted in Fig. 5.11. Note that no edge is between the same I.S.

I j, j = 1,2. So Gm,m is mean valid by Lemma 38.

Next, we prove part 4 of Theorem 7. Consider Hm,m (see Fig. 5.3). As in Gm,m, let

vi j be the node in the i’th row and j’th column. Let d = 4, I1 = {v11, v13, v15, . . . , v1,mo
,

v31, v33, v35, . . . , v3,mo
, . . . }, I2 = {v12, v14, v16, . . . , v1,me

, v32, v34, v36, . . . , v3,me
, . . . },

I3 = {v21, v23, v25, . . . , v2,mo
, v41, v43, v45, . . . , v4,mo

, . . . } and I4 = {v22, v24, v26, . . . ,

v2,me
, v42, v44, v46, . . . , v4,me

, . . . } (see part (b) of Fig. 5.10). Note that I1, I2, I3 and

I4 are disjoint maximal I.S. For i, j ∈ {1, . . . ,m−1}, let Ci, j be the clique consisting of
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the nodes {vi, j,vi, j+1,vi+1, j,vi+1, j+1} and the edges among them (see Fig. 5.17). First,

let m be even. The proof that Hm,m is mean valid is similar to the above proof of mean

validity of Gm with m even: we can obtain Hm,m by considering the union of the cliques

Ci, j, i, j ∈ {1,3,5, . . . ,m− 1}, which is a mean valid graph by Lemma 39, and then

adding the remaining edges as illustrated in part (b) of Fig. 5.10. Note that no edge is

between two nodes in the same I.S. I j, j ∈ {1,2,3,4}; so the hypothesis of Lemma 38

is satisfied. Hence, Hm,m is mean valid by Lemma 38. The proof of the fact that Hm,m

is also mean valid for m odd is deferred until Section 5.11.

The proof of part 5 of Theorem 7 is similar to that of part 4: we outline the differ-

ences. For i, j, l ∈ {1, . . . ,m}, let vi jl be the node in the i’th row, j’th column and l’th

level (in the direction normal to the plane of the paper). The node set of Tm,m,m can

be partitioned into 8 disjoint maximal I.S. I1, . . . , I8 similar to I1, . . . , I4 for Hm,m (see

Fig. 5.5). Also, cliques Ci jl, i, j, l ∈ {1, . . . ,m−1} of size 8 each can be defined similar

to the cliques Ci j for Hm,m. For m even, we can obtain Tm,m,m by considering the union

of the cliques Ci jl , i, j, l ∈ {1,3,5, . . . ,m−1} and then adding the remaining edges. The

fact that Tm,m,m is mean valid then follows from Lemmas 39 and 38. The proof of the

fact that Tm,m,m is also mean valid for m odd is outlined in Section 5.11.

We now prove part 6 of Theorem 7. Consider a cellular network as shown in Fig. 5.6,

whose conflict graph is shown in Fig. 5.7. The nodes in the graph can be partitioned

into three disjoint maximal I.S. I1, I2 and I3 as shown in Fig. 5.7. We consider this

conflict graph with the following assumption, which eliminates problems arising due to
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Figure 5.10: Part (a) (respectively, part (b)) shows the construction of G 6 (respectively, H 4,4) from 3

(respectively, 4) cliques of size 2 (respectively, 4) each. The solid edges constitute the cliques G1, G2,

G3 (respectively, C1,1, C1,3, C3,1 and C3,3) and the dotted edges are those that are added later. The

numbers next to the nodes shows the I.S. they are in, i.e., a node labeled j is in I.S. I j, where j ∈

{1,2} (respectively, j ∈ {1,2,3,4}). Note that no edge is between two nodes in the same I.S. I j; so the

hypothesis of Lemma 38 is satisfied.

boundary effects.

Assumption 1. There are an even number, say δ1, of rows of nodes, each containing

3δ2 nodes, for some integer δ2 ≥ 1.

Under this assumption, as illustrated in Fig. 5.7, the graph can be obtained by con-

sidering the union of δ1δ2 disjoint cliques of size 3 each, which is a mean valid graph

by Lemma 39, and then adding some edges. Note that no edge is between two nodes in
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Figure 5.11: The figure shows the construction of the grid graph Gm,m from the line graph Gm2 for m = 4.

The solid edges constitute Gm2 and the dotted edges are later added to obtain Gm,m. The un-darkened and

darkened nodes constitute I1 and I2 respectively in both Gm2 and Gm,m. Note that no edge is between a

node in I1 and a node in I2, so the hypothesis of Lemma 38 is satisfied.

the same I.S. I j, j ∈ {1,2,3} (see Fig. 5.7); so the hypothesis of Lemma 38 is satisfied.

Hence, the graph is mean valid by Lemma 38.

Note that the above proof goes through if the graph can be partitioned into cliques

of size 3 even if Assumption 1 is not satisfied. If the graph cannot be partitioned into

cliques of size 3, then the analysis is more complicated because of boundary effects.

We omit this analysis for brevity.

5.5.2 Some Other Classes of Mean Valid Graphs

In this subsection, we show that some other common classes of graphs are mean valid.

We focus on connected bipartite graphs [71], which are of the form G = (V,E) where
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V = A∪B and every edge is between a node in A and a node in B. Without loss of

generality, suppose |A| ≤ |B|. In the notation of Definition 2, d = 2, I1 = B and I2 = A.

Also, a necessary condition for a node distribution {αi, i ∈ A;γ j, j ∈ B}, under which

bandwidth is offered at node i ∈ A (respectively, j ∈ B) w.p. αi (respectively, γ j), to be

valid is that

αi + γ j ≤ 1 ∀(i, j) ∈ E. (168)

This is because, if αi + γ j > 1 for some (i, j) ∈ E, then with a positive probability

bandwidth would be offered at both nodes i and j, which are neighbors.

Recall that a κ-regular graph is one in which the degree of every node is κ [71].

Proposition 1. A κ-regular bipartite graph is mean valid.

Proof. Let |A|= N and |B|= M. First, we show that N = M. Since κ edges are incident

upon each node in A, |E|= |A|κ = Nκ. Similarly, |E|= Mκ. So N = M.

Now, let {αi, i∈ A;γ j, j ∈ B} be a valid distribution. Adding (168) over all (i, j)∈ E,

we get:

∑
(i, j)∈E

(αi + γ j)≤ |E|= Nκ (169)

But since exactly κ edges are incident on each node:

∑
(i, j)∈E

(αi + γ j) = κ(∑
i∈A

αi + ∑
j∈B

γ j) (170)

By (169) and (170),

∑i∈A αi

N
+

∑ j∈B γ j

N
≤ 1

So Condition 2 in Definition 2 is satisfied and the graph is mean valid.
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Recall that a star is a graph with a node a1 called the center, nodes b1, . . . ,bM called

the leaves, and edges (a1,b j), j = 1, . . . ,M [71]. Note that this is a bipartite graph with

edges only between the sets A = {a1} and B = {b1, . . . ,bM}.

Proposition 2. A star is mean valid.

Proof. Let {α1,γ1, . . . ,γM} be a valid distribution. By (168),

α1 + γ j ≤ 1, j = 1, . . . ,M

Adding these M inequalities and dividing by M gives α1 +
γ1+...+γM

M
≤ 1.

Now, note that every tree is a bipartite graph [71]. Given a tree, suppose the root

constitutes layer 1, the children of the root constitute layer 2 and the children of all

the nodes in layer i constitute layer i+ 1, i = 2,3, . . .. Not every tree is mean valid;

a counterexample is presented in Section 5.6 (see Fig. 5.13). The following result

provides a sufficient condition for a tree to be mean valid.

Proposition 3. A tree in which every node in an odd layer has exactly κ children is

mean valid.

Proof. Let a tree T in which every node in an odd layer has κ children be given. Let N j

be the total number of nodes in the j’th layer of T and N = ∑ j odd N j.

Let Ai = {ai}, Bi = {bi,1, . . . ,bi,κ} and Gi be a star with center ai and κ leaves– the

nodes in Bi. Note that each Gi is mean valid by Proposition 2. Also, Gi, i = 1, . . . ,N,

satisfy the hypothesis of Lemma 39 with d = 2, Ii
1 = Bi, Ii

2 = Ai, Mi
1 = κ, Mi

2 = 1 ∀i,

M0 = (κ,1) and ci = 1 ∀i. So by Lemma 39, G = G1 ∪G2 ∪ . . .∪GN is mean valid.
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Now, we will obtain T by adding some edges to G as illustrated in Fig. 5.12. Let

the center, a1, of G1 be the root of T . Note that its children are b1,1, . . . ,b1,κ, the leaves

of G1. For j ∈ {1, . . . ,κ}, suppose b1, j has l j children. Join b1, j by an edge to each of

the centers of l j stars out of G2, . . . ,GN , using a different set of stars for each j. Thus,

we have obtained the nodes in the first 4 layers of the tree and the edges connecting

them. Suppose a node b in layer 4 has l′ children. Join it to the centers of l′ stars out of

G1, . . . ,GN , which have not been used so far. Proceed in this manner to get the tree T .

Note that there is no edge between two nodes in the same partition of the tree, which is

a bipartite graph (see Fig. 5.12); so the hypothesis of Lemma 38 is satisfied. Hence, T

is mean valid by Lemma 38.

5.6 Non Mean Valid Bipartite Graphs

We have shown in Theorem 8, that a mean valid graph has a unique symmetric NE that

has a simple form– under this NE, for every q ∈ (0,1), each primary offers bandwidth

with the same probability t j at all the nodes in each I.S. I j, j ∈ {1, . . . ,d}. Thus, mean

validity is a sufficient condition for an arbitrary graph to have a symmetric NE of the

form in Theorem 8 for all values of q. The following result shows that for connected

bipartite graphs, mean validity is also a necessary condition.

Theorem 9. Let G be a connected bipartite graph that is not mean valid. If w(q,n) >

1− M2
M1

, then β(I1) = t1, β(I2) = t2, β(I) = 0 ∀I ∈ I , I 6= I1, I2, is not a symmetric NE
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Figure 5.12: Part (a) shows a tree in which each node in an odd layer has exactly 3 children. Part (b)

shows the construction of the tree. We start with stars with 3 leaves each, whose edges are shown in bold

and then add some edges, shown dotted. Note that none of the dotted edges is between two nodes in the

same partition of the bipartite graph, so the condition in Lemma 38 is satisfied.

for any value of t1 and t2.

Now, we provide an example of a non mean valid bipartite graph and find the sym-

metric NE and prove its uniqueness. The symmetric NE is not of the form in Theorem 8

for any value of q ∈ (0,1).

Let the set of nodes be A∪B, where A = {a1,a2,a3} and B = {b1,b2,b3}, and let

there be an edge between a1 (respectively, b1) and every edge in B (respectively, A) (see

Fig. 5.13). The only maximal I.S. are Iab = {a2,a3,b2,b3}, Ia = A and Ib = B. The I.S.

Iab contains 2 nodes from each of A and B, i.e., m1(Iab) = m2(Iab) = 2 in the notation
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Figure 5.13: A non mean valid graph.

of Lemma 31. Also,
m1(Iab)

3
+ m2(Iab)

3
> 1; so (158) is not satisfied. Hence, this is not a

mean valid graph by Lemma 31.

In every symmetric NE, β(Ia) = ta, β(Ib) = tb and β(Iab) = 1 − ta − tb for some

0 ≤ ta, tb ≤ 1.

Lemma 40. If w(q,n)> 1
2
, then f1(x) = 2W (1−x)−W(x) has a unique root t1 ∈ [0,1].

Also, 0 < t1 <
1
2
.

The following theorem provides the symmetric NE in the above graph for each value

of q ∈ (0,1).

Theorem 10. 1. If w(q,n)≤ 1
2
, then the symmetric strategy profile corresponding to

ta = tb = 0 is the unique symmetric NE.

2. If w(q,n)> 1
2
, then the symmetric strategy profile in which ta = tb = t1, the root of

f1(.), is the unique symmetric NE.

Note that Iab, which contains 4 nodes, is the largest I.S. So for all values of q,

primaries offer bandwidth with positive probability at the I.S. Iab in the symmetric NE.
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Since Iab contains nodes from both A and B, the node probabilities at different nodes in

A (and B) are different. Thus, the symmetric NE is not of the form in Theorem 8 for

any value of q.

Again, since Iab is the largest I.S., Theorem 10 shows, consistent with intuition, that

for small values of q, primaries offer bandwith only at Iab with positive probability;

when q, and thereby the competition at Iab, increases beyond a threshold, they also

offer bandwidth at A and B with positive probability.

5.7 Asymmetric q

So far, we have analyzed the symmetric case q1 = . . .= qn = q. Now we briefly outline

how our results generalize to the general case where the q’s may not be equal.

As noted in Remark 3, there are multiple NE in general in the spatial reuse setting.

Hence, although the bandwidth availability probabilities q1, . . . ,qn may be unequal, we

focus on the special class of NE in which the I.S. selection probabilities {β(I) : I ∈I }

of each primary is the same. As before, let αv = ∑v∈I β(I) be the total probability with

which a primary who has unused bandwidth offers it at node v ∈V .

Since primary i has unused bandwidth w.p. qi and offers it at node v ∈ V w.p. αv,

he offers bandwidth at node v ∈ V w.p. qiαv. Let wi(αv) be the probability that Kv or

more out of primaries {1, . . . ,n}\i offer it at node v.

Lemma 41. w1(α) is a strictly increasing function of α on [0,1].
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Next, we explain how the results for symmetric q generalize to the asymmetric q

case. First, Lemma 30 readily generalizes to give:

Lemma 42. Suppose under a NE in which the I.S. selection distribution {β(I) : I ∈I }

of each primary is the same (symmetric), each primary selects node v w.p. αv if he has

unused bandwidth. Then under that NE, the price distribution of primary i at node v is

the price distribution ψi(.) in the single location case with αvq1, . . . , αvqn in place of

q1, . . . ,qn.

Now, recall from Property 2 and Theorem 4 in Chapter 3 that when there are n

primaries with bandwidth availability probabilities q1, . . . ,qn at a single location, there

is a unique NE; in this NE, each primary gets the same payoff, equal to (ν− c)(1−

w1(1)) = 1−w1(1), where the equality follows from the fact that we have normalized

ν− c to 1. Let

W (α) = 1−w1(α). (171)

By Lemma 42, and similar to Property 2 in Chapter 3 in the single location case, in a

NE with symmetric I.S. distributions {β(I) : I ∈ I } of the primaries, if all primaries

offer bandwidth at a node with probability α (and play the single-node NE strategy with

q1α, . . . ,qnα in place of q1, . . . ,qn at that node), then W (α) is the maximum expected

payoff that each primary i can get at that node.

Now, we define the notions of valid distribution and mean valid graph as in the

symmetric q case and the proofs that the specific topologies such as a line, grid graph,

cellular network, star etc. are mean valid remain unchanged, since they are properties

141



of the graphs and are independent of q1, . . . ,qn.

Consider a mean valid graph G = (V,E), where V = I1 ∪ . . .∪ Id and I1, . . . , Id are

disjoint maximal I.S. Let |I j|= M j, j = 1, . . . ,d.

Theorem 8 generalizes to:

Theorem 11. In a mean valid graph, for every 1 > q1 ≥ . . .≥ qn > 0, there is a unique

NE with symmetric I.S. distributions {β(I) : I ∈ I }; in this NE, each primary offers

bandwidth at every node in I j, j ∈ {1, . . . ,d}, w.p. t j, i.e. α j,l = t j, l = 1, . . . ,M j, where

(t1, . . . , td) is the unique distribution satisfying the equations:

t j = 0, j > d′. (172)

and

M1W (t1) = . . .= Md′W (td′)> Md′+1r. (173)

The proof of the above theorem changes from the symmetric q case only in that we

now use the following lemma, which generalizes the corresponding lemma (Lemma 45)

for the symmetric q case.

Lemma 43. (i) For 0 < α ≤ 1, 0 ≤W (α)≤ r, (ii) W (0) = r, and (iii) W (α) is strictly

decreasing in α.

The proof of the above lemma follows from (171) and Lemma 41.
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5.8 Threshold behavior

In this section, as in Section 5.7, we allow the bandwidth availability probabilities

q1, . . . ,qn of the primaries to be unequal. As in Section 3.3.3, we define the efficiency,

η, of a NE as η = RNE

ROPT
, where RNE is the expected sum of payoffs of the n primaries at

the NE and ROPT is the maximum possible (optimal) expected sum of payoffs, attained

when all primaries jointly select the independent sets and prices to maximize their ag-

gregate revenue. Clearly, η ≤ 1 quantifies the loss in aggregate revenue incurred owing

to lack of cooperation among primaries. Also, since the NE in Section 5.7 is unique

in the class of NE with symmetric I.S. distributions, η quantifies fundamental limits on

the performance of NE in this category.

Let limn→∞ ∑n
i=1

qn

n
= q for some q ∈ (0,1). Here, q represents the “average” band-

width availability probability of the primaries. For simplicity, we assume that each

secondary from a given pool independently seeks bandwidth, and let kn be the expected

number of secondaries at any given location26. Then, the NE structure exhibits inter-

esting threshold behavior as n → ∞; in particular, η switches from 1 to 0 depending on

the relations between nq (availability) and kn (demand).

Lemma 44. Let 27 qn =
q1+...+qn

n
and let p̃ j denote the common lower endpoint of the

price distributions of the primaries who have unused bandwidth in the NE at nodes in

26We allow (but do not require) the number (rather statistics) of the secondaries to scale with increase

in n.
27For simplicity, we state this lemma under the assumption that M1, . . . ,Md are distinct. In the Ap-

pendix, we provide the lemma with this assumption relaxed.
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I.S. I j (if they select I.S. I j).

1. If there exists an ε > 0 such that for all large n, q < kn/(n−1)−ε, then η → 1 as

n → ∞. Also, for all large n, d′ = 1, t1 = 1, t2 = t3 = . . . td = 0, p̃1 → ν.

2. Let l < d. If there exists an ε > 0 such that for all large n, lkn/(n−1)+ ε < q <

(l+1)kn/(n−1)−ε, then for all large n, d′ ≥ l+1, and t jqn → kn/(n−1) for all

j ≤ l.

3. If there exists an ε > 0 such that for all large n, q > knd/(n−1)+ ε, then η → 0

as n → ∞. Also, for all large n, d′ = d and p̃ j → c, j = 1, . . . ,d.

Intuitively, if availability is less than demand, then owing to limited competition, pri-

maries with available bandwidth select only the maximum-sized I.S. among I1, . . . , Id ,

and choose prices in a neighborhood of ν. Thus, η → 1, since no other strategy can

enhance any primary’s payoff. As availability increases, under NE, primaries diver-

sify their choices among the I.S. I1, . . . , Id and are more likely to select low prices as

well (the lower limits of the price distributions hover around c once availability exceeds

demand), thereby drastically reducing the efficiency of the NE.

5.9 Numerical Studies

In this section, we describe numerical computations that are directed towards assessing

the impact of price competition among the primaries on the aggregate revenue of the

primaries and the affordability of spectrum for the secondaries. We consider the specific
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case of a grid graph Hm,m, which was introduced in Section 5.3.2 (see Fig. 5.3). By

part 4 of Theorem 7, this is a mean valid graph and, in the notation of Definition 2,

d = 4 and the I.S. I1, I2, I3 and I4 are as described in Section 5.5.1. Throughout, we use

the parameter values ν = 1 and c = 0, and a constant number of secondaries k at each

node. Also, q1, . . . ,qn are uniformly spaced in [qL,qH ] for some parameters qL and qH .

Let q = qL+qH

2
be the mean bandwidth availability probability of the primaries.

In Hm,m, the NE is of the form in Theorem 8 and the plot on the left in Fig. 5.14 re-

veals, as expected, that price competition significantly reduces the aggregate revenue of

the primaries under this NE relative to OPT, the optimal scheme in which the primaries

collaborate to attain ROPT, the maximum aggregate revenue of the primaries (Note that

under OPT, the I.S. I1, . . . , I4 are selected in order of size and all the primaries always

select the highest price ν). Also, overall, the efficiency (η) decreases as q increases

since the competition increases. The plot on the right in Fig. 5.14 shows that the trends

are similar for a larger topology (larger m). The plot on the left in Fig. 5.15 shows that

η improves as k increases. This is because, for small values of k, demand for bandwidth

is scarce at each node. Under the NE, bandwidth is wasted at several nodes since k+1

or more primaries offer bandwidth at those nodes, resulting in a shortage of bandwidth

at other nodes. On the other hand, since all primaries cooperate in OPT, it judiciously

supplies bandwidth precisely where it is needed. So OPT outperforms the NE by a large

margin for small values of k. For large values of k, the demand is high and so is the

tolerable margin of error in assigning the primaries to I.S.; and hence the performance
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of the NE improves relative to OPT. The plot on the right in Fig. 5.15 shows that η

increases as m increases, which is because the four I.S. I1, . . . , I4 become closer to each

other in size as m increases and hence the loss in revenue resulting from choosing a

smaller I.S. is lower.

Fig. 5.16 shows that under price competition, the expected price per unit of band-

width is lower at the nodes in the larger I.S. This is because primaries prefer larger I.S.

and hence the competition is more intense there, driving down the prices.
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Figure 5.14: Both figures plot the aggregate revenues of the primaries, RNE and ROPT , under the NE and

OPT respectively, and the efficiency of the NE, η = RNE
ROPT

, versus q. In both figures, n = 10, k = 5 and

qH −qL = 0.2 are used. Also, m = 15 (respectively, m = 25) for the figure on the left (respectively, right).

η is scaled by a factor of 500 (respectively, 1000) in the figure on the left (respectively, right) in order to

show it on the same figure as the other plots.

5.10 Conclusions, Discussion and Future Work

We analyzed price competition among multiple primaries in a CRN in the presence of
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Figure 5.15: The figure on the left (respectively, right) plots the efficiency η of the NE versus k (respec-

tively, m). For both figures, n = 10, qL = 0 and qH = 1 are used. Also, m = 15 for the figure on the left

and k = 5 for the figure on the right.
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Figure 5.16: The figure shows the mean price of bandwidth, given that it is offered, at a (fixed) node in

each of I1, I2 and I4 under the NE vs q. Note that since |I3|= |I2|, the mean price of bandwidth at nodes

in I3 is the same as that at nodes in I2. The parameter values used are m = 15, n = 8 and k = 3. Also,

qH − qL = 0.2.

spatial reuse in the symmetric setting in which each primary has unused bandwidth with

the same probability and in a class of graphs which we denote as mean-valid. We have
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proved that there exists a unique symmetric NE in this case, and have characterized

this symmetric NE as a solution of a set of non-linear equations. Such equations can

be easily solved even for large networks such as those consisting of 600 or more nodes

and multiple (e.g., 10) primaries and secondaries. Our numerical computations reveal

interesting insights regarding the efficiency of the NE and also the price and indepen-

dent set selections of the primaries. We have also considered the asymmetric setting

and investigated a special class of NE in which the independent set selection strategies

of the primaries are symmetric.

It would be interesting to investigate whether the NE is stable to minor perturbations

in the selections of the primaries. In this chapter, we characterized the NE in a special

non mean valid graph. The characterization of the NE in other general (non mean

valid) graphs both in the symmetric and the asymmetric settings remain open. We

have also assumed that each primary knows the statistical distribution governing the

bandwidth availabilities of other primaries and the number of secondaries at each node.

Characterization of the NE when primaries have imperfect knowledge of the above,

and seek to enhance their knowledge using learning strategies, remains open. Finally,

we have only characterized the NE strategies in a one-shot game. Primaries may play

this game repeatedly and may use their experience from previous slots and a learning

algorithm to choose their strategy in the current slot. An investigation into whether the

symmetric NE for the one-shot game constitutes a steady-state outcome of some natural

learning algorithms in such a setting is an interesting direction for future research.
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5.11 Appendix

Let W (α) be as in (153). We will use the following result throughout.

Lemma 45. (i) For 0 < α ≤ 1, 0 ≤W (α)≤ r, (ii) W (0) = r, and (iii) W (α) is strictly

decreasing in α.

Lemma 45 follows from (153), the fact that w(0,n) = 1− r and Lemma 29.

5.11.1 Proofs of results in Section 5.3

Proof of Lemma 31. Suppose G is mean valid. Fix an I ∈ I . Let

1I(a j,l) =





1, if a j,l ∈ I

0, else

Consider a distribution {α j,l : j = 1, . . . ,d; l = 1, . . . ,M j} in which bandwidth is offered

at node a j,l ∈ I j w.p. α j,l = 1I(a j,l). This is a valid distribution because it corresponds

to the I.S. distribution {β(I) = 1,β(I′) = 0∀I′ ∈ I , I′ 6= I}. Also,

M j

∑
l=1

α j,l =
M j

∑
l=1

1I(a j,l) = m j(I), j = 1, . . . ,d (174)

Let α j be given by (157). Since the graph is mean valid, (156) holds. Substituting

∑
M j

l=1 α j,l = m j(I) from (174) into (156), we get (158).

To prove the converse, suppose (158) holds. Let {α j,l : j = 1, . . . ,d; l = 1, . . . ,M j}

be a valid distribution. By definition, there exists a distribution {β(I) : I ∈ I } such

that:

α j,l = ∑
I∈I :a j,l∈I

β(I) (175)
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which can be written as:

α j,l = ∑
I∈I

β(I)1I(a j,l) (176)

Now,

d

∑
j=1

(
∑

M j

l=1 α j,l

M j

)

=
d

∑
j=1

1

M j

{
M j

∑
l=1

∑
I∈I

β(I)1I(a j,l)

}
(by (176))

= ∑
I∈I

β(I)

{
d

∑
j=1

∑
M j

l=1 1I(a j,l)

M j

}

= ∑
I∈I

β(I)

{
d

∑
j=1

m j(I)

M j

}
(since

M j

∑
l=1

1I(a j,l) = m j(I))

≤ 1 (by (158))

So (156) holds and hence G is mean valid.

5.11.2 Proofs of results in Section 5.4

The following lemma is used in the proof of Lemma 32.

Lemma 46. Let N ≥ 2 be an integer and α1, . . . ,αN, f1, . . . , fN be real numbers. Then:

N(
N

∑
i=1

αi fi)− (
N

∑
i=1

αi)(
N

∑
i=1

fi) = ∑
1≤i< j≤N

(α j −αi)( f j − fi) (177)

Proof. We prove the result by induction. For N = 2:

LHS = 2(α1 f1 +α2 f2)− (α1+α2)( f1 + f2)

= (α2 −α1)( f2 − f1)

= RHS
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Suppose the result is true for N. For N +1:

LHS = (N +1)(
N

∑
i=1

αi fi +αN+1 fN+1)−

(
N

∑
i=1

αi +αN+1)(
N

∑
i=1

fi + fN+1)

=

{
N(

N

∑
i=1

αi fi)− (
N

∑
i=1

αi)(
N

∑
i=1

fi)

}

+NαN+1 fN+1 +
N

∑
i=1

αi fi +αN+1 fN+1

−αN+1(
N

∑
i=1

fi)− (
N

∑
i=1

αi) fN+1 −αN+1 fN+1

= ∑
1≤i< j≤N

(α j −αi)( f j − fi)

+
N

∑
i=1

(αN+1 fN+1 +αi fi −αN+1 fi −αi fN+1)

(by induction hypothesis and collecting terms)

= RHS

The result follows by induction.

Proof of Lemma 32. By symmetry, we can assume WLOG that α1 ≤α2 . . .≤αN . Since

f (.) is strictly decreasing, f (α1)≥ f (α2)≥ . . .≥ f (αN). Now:

(
N

∑
i=1

αi f (αi))−α(
N

∑
i=1

f (αi))

=
1

N

(
N(

N

∑
i=1

αi f (αi))− (
N

∑
i=1

αi)(
N

∑
i=1

f (αi))

)

=
1

N
∑

1≤i< j≤N

(α j −αi)( f (α j)− f (αi)) (by (177)) (178)

For i < j, αi ≤ α j and f (αi) ≥ f (α j). So each term in (178) is ≤ 0. Hence, the

expression in (178) is 0 iff each term is 0, which happens iff α1 = . . .= αN = α.

151



Proof of Lemma 34. Let

U∗ = max{U1(I j) : j ∈ {1, . . . ,d}}

= max{M jW (t j) : j ∈ {1, . . . ,d}} (by (165))

and B = { j ∈ {1, . . . ,d} : M jW (t j) = U∗}. Note that B is the set of indices of the I.S.

out of I1, . . . , Id that yield the highest payoff and U∗ is the value of that payoff.

By definition of B:

W (t j) =
U∗

M j
, ∀ j ∈ B (179)

W (t j)<
U∗

M j
, ∀ j /∈ B. (180)

Let I be any I.S. containing m j(I) nodes from I j, j = 1, . . . ,d. By (164):

U1(I) =
d

∑
j=1

m j(I)W(t j)

≤
d

∑
j=1

m j(I)

(
U∗

M j

)
(by (179) and (180)) (181)

≤ U∗ (by (158))

So maxI∈I U1(I)≤U∗, and since U1(I j) =U∗, j ∈ B, each I j, j ∈ B, is a best response.

Now, for I as defined above, suppose m j(I)≥ 1 for some j /∈ B. Then the inequality in

(181) is strict. So U1(I)<U∗ and I is not a best response. Thus, each I ∈I containing

a node from I j for some j /∈ B is not a best response. In particular, ∀ j /∈ B, I j is not a

best response and, since primaries offer bandwidth at I j w.p. t j in the above NE, t j = 0

for all j /∈ B.

It now suffices to show that B = {1, . . . ,d′} for some 1 ≤ d′ ≤ d. Suppose not. Then

there exist j, l ∈ {1, . . . ,d} such that j < l, j /∈ B and l ∈ B. Since j /∈ B, t j = 0 by the
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previous paragraph. Now, by (164):

U1(I j) = M jW (t j)

= M jr (by part (ii) of Lemma 45)

≥ Mlr (by (155), since j < l)

≥ MlW (tl) (by part (i) of Lemma 45)

= U∗

So I j is a best response, which is a contradiction since j /∈ B.

Proof of Lemma 36. Suppose primaries 2, . . . ,n use the strategy ψ, under which band-

width is offered at the nodes in I j w.p. t j, j = 1, . . . ,d. By (163) and part (ii) of

Lemma 45, W (t j) = r, j > d′. So by (164), the payoff of primary 1 if it plays I.S. I j,

j ∈ {1, . . . ,d′} (resp., j ∈ {d′+ 1, . . . ,d}) is U1(I j) = M jW (t j) (resp., U1(I j) = M jr).

Hence, by (166) and (155), for some U∗,

U∗ =U1(I1) = . . .=U1(Id′)>U1(Id′+1)≥ . . .≥U1(Id).

The maximum payoff that primary 1 can get at a node v ∈ I j, j ∈ {1, . . . ,d′} equals

W (t j) =
U1(I j)

M j
=

U∗

M j
. (182)

Now, for j > d′, M jr =U1(I j)<U∗. So the maximum payoff that primary 1 can get at

a node v ∈ I j, j > d′ is

r <
U∗

M j
. (183)
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Now, let I be an I.S. containing m j(I) nodes from I j, j = 1, . . . ,d. By (182) and

(183):

U1(I) ≤ U∗

(
d

∑
j=1

m j(I)

M j

)
(184)

≤ U∗ (by (158))

Since U1(I1) = . . .=U1(Id′) =U∗, I1, . . . , Id′ are best responses. Under the strategy ψ,

primary 1 can only play I1, . . . , Id′ with positive probability; hence, ψ is a best response.

Proof of Lemma 37. Existence: For convenience, let Md+1 = 0. Fix q ∈ (0,1). For

x ∈ [M1W (1),M1r] and j ∈ {1, . . . ,d}, if M jr ≥ x, then we show that the equation:

M jW (t j) = x (185)

has a unique solution t j(x) ∈ [0,1]. Let h(t j) = M jW (t j). By part (ii) of Lemma 45,

h(0) = M jr ≥ x. Also,

h(1) = M jW (1)

≤ M1W (1) (by (155))

≤ x

Also, by (2) and (153), h(t j) is a continuous function of t j. So by the intermediate value

theorem [58], h(t j) = x has a solution in [0,1]. By part (iii) of Lemma 45, h(t j) is a

strictly decreasing function of t j; so this solution, say t j(x), is unique. For x = M jr,

t j = 0 satisfies (185) by part (ii) of Lemma 45. So t j(M jr) = 0.

154



Since h(t j) is strictly decreasing on 0≤ t j ≤ 1, it is invertible. Also, since the inverse

of a continuous function is continuous (see Theorem 4.17 in [58]), h−1(x) is continuous.

But x = h(t j(x)). So t j(x) = h−1(x). Thus, t j(x) is continuous in x for x ≤ M jr. For

x > M jr, define t j(x) = 0. As shown above, t j(M jr) = 0. So t j(x) is continuous on

[M1W (1),M1r]. Let,

T (x) =
d

∑
j=1

t j(x) (186)

As shown above, h(t j) is strictly decreasing on 0 ≤ t j ≤ 1 for j = 1, . . . ,d. So t j(x) =

h−1(x) is strictly decreasing for x ≤ M jr. Also, by definition, t j(x) = 0 on M jr <

x ≤ M1r. So by (186), T (x) is strictly decreasing on [M1W (1),M1r] (note that t1(x) is

strictly decreasing on x ≤ M1r). Also, t j(M1r) = 0, j = 1, . . . ,d. So

T (M1r) = 0. (187)

Now, for j = 1 and x = M1W (1), t1 = 1 satisfies (185). So t1(M1W (1)) = 1 and hence,

by (186):

T (M1W (1))≥ 1. (188)

Now, since each t j(x), j = 1, . . . ,d, is continuous on [M1W (1),M1r], so is T (x)

by (186). Hence, by (187), (188) and the intermediate value theorem, the equation

T (x) = 1 has a solution x∗ ∈ [M1W (1),M1r], which is unique because T (x) is strictly

decreasing. Let d′(q) = max{ j : M jr ≥ x∗}. By definition of t j(x), for j = 1, . . . ,d′(q),

M jW (t j(x
∗))= x∗ and for j> d′(q), M jr < x∗ and hence t j(x

∗)= 0. Thus, (t1(x
∗), . . . , td(x

∗))

satisfy (163) and (166). Also, by (186), ∑d
j=1 t j(x

∗) = T (x∗) = 1; so (t1(x
∗), . . . , td(x

∗))

is a probability distribution. The result follows.
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Uniqueness: Fix q. We now show the uniqueness of d′(q) and the distribution

(t1, . . . , td) satisfying (163) and (166). Assume, to reach a contradiction, that there exist

e, f ∈ {1, . . . ,d} and probability distributions t = (t1, . . . , td) and s = (s1, . . . ,sd) such

that t j = 0 (respectively, s j = 0) for j > e (respectively, j > f ) and for some y and z:

y = M1W (t1) = . . .= MeW (te)> Me+1r (189)

z = M1W (s1) = . . .= M fW (s f )> M f+1r (190)

First, suppose e = f . If y = z, then by (189) and (190), M jW (t j) = M jW (s j), j =

1, . . . ,e. By part (iii) of Lemma 45, W (.) is a one-to-one function; so t j = s j, j =

1, . . . ,e. Also, t j = s j = 0, j > e. So t = s.

Now, suppose z > y. Then M jW (s j) > M jW (t j), j = 1, . . . ,e. So W (s j) > W (t j),

and by part (iii) of Lemma 45, s j < t j, j = 1, . . . ,e. So 1= ∑e
j=1 s j < ∑e

j=1 t j = 1, which

is a contradiction. Thus, z > y is not possible. By symmetry, z < y is also not possible.

Now, suppose e < f . Then by (189) and (190), z = Me+1W (se+1) ≤ Me+1r < y. So

for j ∈ {1, . . . ,e}:

M jW (s j) = z < y = M jW (t j)

which implies s j > t j. So ∑e
j=1 s j > ∑e

j=1 t j = 1, which is a contradiction. So e < f is

not possible. By symmetry, e > f is also not possible. The result follows.

Monotonicity Now, we show that d′(q) is an increasing function of q. Suppose not.

Then there exist q and q′ such that q < q′, d′(q) = e, d′(q′) = f and e > f . Hence,

by (166) and (153), there exist probability distributions (t1, . . . , td) and (s1, . . . ,sd) such
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that for some y and z:

y = M1(1−w(qt1,n)) = . . .= Me(1−w(qte,n))> Me+1r (191)

z = M1(1−w(q′s1,n)) = . . .= M f (1−w(q′s f ,n))> M f+1r (192)

So

y = M f+1(1−w(qt f+1,n))≤ M f+1r < z.

Hence, for j= 1, . . . , f , M j(1−w(qt j,n))<M j(1−w(q′s j,n)). So w(q′s j,n)<w(qt j,n).

By Lemma 29, w(x,n) is strictly increasing in x. So q′s j < qt j. Since q < q′, t j > s j.

Thus, ∑
f
j=1 t j > ∑

f
j=1 s j = 1, which contradicts the fact that (t1, . . . , td) is a probability

distribution. The result follows.

Finally, we show that t1 ≥ t2 . . .≥ td . For 1 ≤ i < j ≤ d′(q), MiW (ti) = M jW (t j) by

(166). But Mi ≥ M j by (155); so W (ti) ≤W (t j) and hence, by part (iii) of Lemma 45,

ti ≥ t j. For l > d′(q), tl = 0 by (163). The result follows.

5.11.3 Proofs of results in Section 5.5

Proof of Lemma 38. Since no edge in E ′ is between two nodes in the same I.S. I j, it

follows that in G′, I1, . . . , Id are disjoint maximal I.S. whose union is V . Using the

notation in Definition 2, let {α j,l : j = 1, . . . ,d; l = 1, . . . ,M j} be a valid distribution in

G′. We will show that (156) holds. Then it will follow from Definition 2 that G′ is mean

valid.

Let IG′ (respectively, IG) be the set of I.S. in G′ (respectively, G). Since E ⊂ E ′,

each I.S. in G′ is an I.S. in G as well, i.e. IG′ ⊂ IG.

157



Now, since the distribution {α j,l} is valid in G′, by definition, there exists a distri-

bution {β′(I) : I ∈ IG′} such that

αv = ∑
I∈IG′ :v∈I

β′(I) ∀v ∈V. (193)

Define a distribution on IG as follows:

β(I) =





β′(I) if I ∈ IG′

0 if I ∈ IG \IG′

(194)

By (193) and (194):

αv = ∑
I∈IG:v∈I

β(I) ∀v ∈V. (195)

So by definition, {αi, j} is a valid distribution in G as well. Since G is mean valid, (156)

holds, which completes the proof.

Proof of Lemma 39. First, note that {(I1
j ∪ . . .∪ IN

j ) : j = 1, . . . ,d} are disjoint maximal

I.S. in G; so the first condition in Definition 2 is satisfied.

Let {αi
j,l : j = 1, . . . ,d; l = 1, . . . ,Mi

j} be a valid distribution in Gi. Since Gi is mean

valid:

d

∑
j=1


∑

Mi
j

l=1 αi
j,l

Mi
j


≤ 1, i = 1, . . . ,N (196)

Now, it is given that:

Mi
j = ciM

0
j , i = 1, . . . ,N; j = 1, . . . ,d (197)

Adding (197) over i = 1, . . . ,N:

M0
j (c1 + . . .+ cN) = M1

j + . . .+MN
j , j = 1, . . . ,d (198)
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Multiplying (196) by ci, using (197) and adding over i = 1, . . . ,N, we get:

N

∑
i=1

d

∑
j=1


∑

Mi
j

l=1 αi
j,l

M0
j


≤ c1 + . . .+ cN

Dividing both sides by c1 + . . .+ cN and using (198):

d

∑
j=1


 ∑N

i=1 ∑
Mi

j

l=1 αi
j,l

M1
j + . . .+MN

j


≤ 1

So G satisfies the second condition in Definition 2 as well and hence is mean valid.

Proof of part 2 of Theorem 7. In Section 5.5.1, we showed that Gm is mean valid for

even m. Now, let m be odd, say m = 2N −1 for some integer N ≥ 2. Consider a valid

distribution {αi : i = 1, . . . ,2N −1}, where αi is the probability with which bandwidth

is offered at node vi. With I1 and I2 as defined in Section 5.5.1, note that |I1| = N and

|I2|= N −1. Let

α1 =
α1 +α3 + . . .+α2N−1

N

and

α2 =
α2 +α4 + . . .+α2N−2

N −1

To show that Condition 2 in Definition 2 is satisfied, we need to show that α1+α2 ≤ 1,

i.e.

(N−1)(α1 +α3 + . . .+α2N−1)

+ N(α2 +α4 + . . .+α2N−2)≤ N(N −1) (199)

Since G2N−1 is a bipartite graph and the distribution {αi} is valid, the necessary condi-
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tion in (168) holds and in this case becomes:

αi +αi+1 ≤ 1, i = 1,2, . . . ,2N −2 (200)

Now,

LHS of (199)

= {(N −1)(α1+α2)+(α2+α3)}

+{(N −2)(α3 +α4)+2(α4 +α5)}

+{(N −3)(α5 +α6)+3(α6 +α7)}

+ . . .

+{2(α2N−5 +α2N−4)+(N−2)(α2N−4 +α2N−3)}

+{(α2N−3 +α2N−2)+(N −1)(α2N−2 +α2N−1)}

≤ {(N −1)+1}+{(N−2)+2}+ . . .

+{2+(N −2)}+{1+(N−1)} (by (200))

= N(N −1)

which proves (199) and the result follows.

Proof of part 4 of Theorem 7. In Section 5.5.1, we showed that Hm,m is mean valid for

even m. Now, let m be odd. With I1, I2, I3 and I4 as defined in Section 5.5.1, it is easy

to check that |I1|=
(

m+1
2

)2
, |I2|=

m2−1
4

, |I3|=
m2−1

4
and |I4|=

(
m−1

2

)2
.

Consider a valid distribution {αz : z ∈ V}, where αz is the probability with which
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bandwidth is offered at node z. We now show that the graph is mean valid by showing

that (156) holds, which in this case becomes:

(m−1)2(∑
z∈I1

αz)+(m2−1)(∑
z∈I2

αz)+(m2 −1)(∑
z∈I3

αz)

+(m+1)2(∑
z∈I4

αz)≤
(m2 −1)2

4
. (201)

Consider cliques Ci, j, i, j ∈ {0, . . . ,m}. For i, j ∈ {1, . . . ,m−1}, Ci, j is as defined in

Section 5.5.1. For i or j (or both) equal to 0 or m, let Ci, j be “dummy cliques”, defined

for convenience (see Fig. 5.17). For i, j ∈ {0, . . . ,m}:

∑
z∈Ci j

αz ≤ 1, (202)

because, if not, then bandwidth would be offered simultaneously at two or more of the

nodes in Ci j (which are neighbors) with a positive probability. For i ∈ {0, . . . ,m}, let:

ei =





m− i, i odd

i, i even

(203)

For i, j ∈ {0, . . . ,m}, let

fi j = eie j. (204)

Note that by definition of the cliques {Ci, j}, node vi j belongs to each of the cliques

Ci−1, j−1, Ci−1, j, Ci, j−1 and Ci, j as shown in Fig. 5.18. So multiplying (202) by fi j and

adding over i, j ∈ {0,1, . . . ,m} gives:

∑
z∈V

gzαz ≤ g0 (205)

where,

gvi j
= fi−1, j−1 + fi−1, j + fi, j−1 + fi j (206)
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and

g0 =
m

∑
i=0

m

∑
j=0

fi, j =
m

∑
i=0

m

∑
j=0

eie j =

(
m

∑
i=0

ei

)2

=

(
m

∑
i=0,i odd

(m− i)+
m

∑
i=0,i even

i

)2

=
(m2 −1)2

4
(207)

We will show below that

gz =





(m−1)2, z ∈ I1

(m2−1), z ∈ I2 or z ∈ I3

(m+1)2, z ∈ I4

(208)

Note that (201) follows from (205), (207) and (208), which shows that Hm,m is mean

valid.

Now we show (208). By definition of the I.S. I1, I2, I3 and I4 (see Section 5.5.1), for

vi j ∈ I1, i and j are odd, for vi j ∈ I2, i is odd and j is even, for vi j ∈ I3, i is even and j is

odd and for vi j ∈ I4, i and j are even. So for vi j ∈ I1, by (203), (204) and (206):

gvi j
= (i−1)( j−1)+(i−1)(m− j)+(m− i)( j−1)

+(m− i)(m− j)

= (m−1)2

Similarly, for vi j ∈ I2:

gvi j
= (i−1)(m− j+1)+(i−1) j+(m− i)(m− j+1)

+(m− i) j

= m2 −1
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For vi j ∈ I3, gvi j
= m2 −1 by symmetry with the case vi j ∈ I2. For vi j ∈ I4:

gvi j
= (m− i+1)(m− j+1)+(m− i+1) j

+i(m− j+1)+ i j

= (m+1)2

Thus, we have shown (208), which completes the proof.

Figure 5.17: The figure shows the cliques in H 5,5. The cliques with dotted outlines are the dummy

cliques.

Proof of part 5 of Theorem 7. In Section 5.5.1, we considered the case m even. The

proof of the fact that Tm,m,m is mean valid for m odd is similar to that for Hm,m with m

odd; we outline the differences. We define the cliques Ci jl, i, j, l ∈ {0,1, . . . ,m}, similar

to Ci j for the case Hm,m. Consider a valid distribution {αz : z ∈ V}. Then similar to
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Figure 5.18: The node vi j and the cliques Ci−1, j−1, Ci−1, j, Ci, j−1 and Ci, j.

(202), we get:

∑
z∈Ci jl

αz ≤ 1 (209)

Let ei be as in (203) and fi jl = eie jel , i, j, l ∈ {0, . . . ,m}. Multiplying (209) by fi jl

and adding over i, j, l ∈ {0,1, . . . ,m}, we get (205) for some numbers {gz : z ∈V} and

g0. Now, node vi jl is at the center of the cliques Ci−1, j−1,l−1, Ci−1, j−1,l , Ci−1, j,l−1,

Ci−1, j,l, Ci, j−1,l−1, Ci, j−1,l, Ci, j,l−1, and Ci, j,l. Using this fact, gvi jl
for vi jl in each of

I1, . . . , I8 can be computed similar to the derivation of (208). Also, g0 can be calculated

similar to (207). Substituting these values of {gz : z ∈ V} and g0 into (205), we get

(156) for Tm,m,m and thereby the mean validity follows from Definition 2.

164



5.11.4 Proofs of results in Section 5.6

Proof of Theorem 9. Suppose β(I1) = t1, β(I2) = t2, where t1 + t2 = 1 is a symmetric

NE. By (164):

U1(I j) = M jW (t j), j = 1,2. (210)

First, suppose t1 = 0, t2 = 1. Since β(I2) = t2 > 0, I2 is a best response. By (210)

and part (ii) of Lemma 45, U1(I1) = M1. Again, by (210), and since W (1)< 1 by part

(i) of Lemma 45:

U1(I2) = M2W (1)< M2 ≤ M1 =U1(I1)

which contradicts the fact that I2 is a best response. So t1 = 0, t2 = 1 is not a symmetric

NE.

Now, suppose t1 = 1, t2 = 0. Then I1 is a best response. Similar to the previous

paragraph, U1(I1) = M1W (1) and U1(I2) = M2. So by (153):

U1(I1)−U1(I2) = M1

(
1−

M2

M1
−w(q,n)

)
< 0

since w(q,n) > 1 − M2
M1

. This contradicts the fact that I1 is a best response. Thus,

t1 = 1, t2 = 0 is not a symmetric NE.

Suppose 0 < t1, t2 < 1. Let I ∈ I be such that:

m1(I)

M1
+

m2(I)

M2
> 1, (211)

which exists by Lemma 31 since G is not mean valid. Since β(I1),β(I2) > 0, I1 and I2

are best responses. So U1(I1) =U1(I2) =U∗, where U∗ is the maximum payoff of any
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I.S. By (210):

W (t j) =
U∗

M j

, j = 1,2 (212)

Now, by (164):

U1(I) = m1(I)W(t1)+m2(I)W(t2)

= U∗

(
m1(I)

M1
+

m2(I)

M2

)
(by (212))

> U∗ (by (211))

which contradicts the fact that U∗ is the maximum payoff of any I.S.

Proof of Lemma 40. By (2) and (153), W (.) is a continuous function. So f1(x) is con-

tinuous on [0,1]. Also, it can be shown that [15] the derivative of w(x,n) with respect

to x is given by:

w′(x,n) = (n−1)




n−2

k−1


xk−1(1− x)n−k−1.

Note that w′(x,n) > 0 ∀x ∈ (0,1). So by (153), W ′(α) < 0 ∀α ∈ (0,1). Hence, for

x ∈ (0,1):

f ′1(x) =−2W ′(1− x)−W ′(x)> 0.

So f1(x) is strictly increasing on [0,1] [58].

Also, by (153), f1(0) = 2W (1)−W (0) = 1− 2w(q,n) < 0 since w(q,n) > 1
2
, and

f1

(
1
2

)
=W

(
1
2

)
= 1−w

(
q
2
,n
)
> 0. So by the intermediate value theorem [58], f1(x) has

a root t1 ∈
(
0, 1

2

)
. Also, t1 is the unique root in [0,1] since f1(x) is strictly increasing.
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5.11.4.1 Proof of Theorem 10

Consider a symmetric strategy profile under which each primary offers bandwidth at

Ia (respectively, Ib) w.p. ta (respectively, tb) and at Iab w.p. 1− ta − tb. By (152), the

corresponding node probabilities are αa1
= ta, αa2

=αa3
= 1−tb, αb1

= tb, αb2
=αb3

=

1−ta. So by (164), the total expected payoffs of primary 1 if it offers bandwidth at each

of the three I.S. are:

U1(Iab) = 2W (1− tb)+2W (1− ta) (213)

U1(Ia) = 2W (1− tb)+W (ta) (214)

U1(Ib) =W (tb)+2W (1− ta) (215)

Intuitively, since Iab is the largest I.S., we expect that in a symmetric NE, primaries

would not offer bandwidth at one or both of Ia and Ib without offering it at Iab. The

following result confirms this.

Lemma 47. Let q ∈ (0,1) be arbitrary. None of the following can hold in a symmetric

NE: (i) ta = 1, (ii) tb = 1 (iii) 0 < ta, tb < 1 and ta+ tb = 1.

Proof. First, suppose ta = 1 in a symmetric NE. Since ta > 0, Ia is a best response.

Also, tb = 0. So by (213), (214), (153) and the fact that w(0,n) = 0:

U1(Iab)−U1(Ia) = 1+w(q,n)> 0

So U1(Iab) >U1(Ia), which contradicts the fact that Ia is a best response. Thus, ta = 1

is not possible. By symmetry, tb = 1 is also not possible.
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Now, suppose 0 < ta, tb < 1 and ta + tb = 1. Since ta, tb > 0, Ia and Ib are best

responses. So U1(Ia) =U1(Ib). By (214), (215), (153) and the fact that ta + tb = 1, we

get w(qta,n) = w(qtb,n). So by Lemma 29, ta = tb =
1
2
. Hence, by (213), (214) and

(153):

U1(Iab)−U1(Ia) =
(

1−w
(q

2
,n
))

> 0

which contradicts the fact that Ia is a best response.

Now we are ready to prove Theorem 10.

Case 1: w(q,n)≤ 1
2
. Let ta and tb be arbitrary. By (213), (214) and (153):

U1(Iab)−U1(Ia)

= 1−2w(q(1− ta),n)+w(qta,n)

≥ 1−2w(q,n) (by Lemma 29) (216)

≥ 0

(
since w(q,n)≤

1

2

)

Note that if ta > 0, then the inequality in (216) is strict. So U1(Iab) > U1(Ia), which

is a contradiction because ta > 0 implies that Ia is a best response. Hence, ta = 0. By

symmetry, tb = 0. If ta = tb = 0, then U1(Iab)≥U1(Ia) and U1(Iab)≥U1(Ib); so Iab is a

best response, which is consistent with the fact that it is played w.p. 1. Thus, ta = tb = 0

is the unique symmetric NE.

Case 2: w(q,n)> 1
2
. By Lemma 47, ta + tb < 1 for every symmetric NE and hence

Iab is a best response. Now, suppose ta = 0. By (213), (214), (153) and the fact

that w(0,n) = 0, we get U1(Iab)−U1(Ia) = 1− 2w(q,n) < 0 since w(q,n) > 1
2
. So

168



U1(Ia) > U1(Iab), which contradicts the fact that Iab is a best response. Hence, ta > 0.

By symmetry, tb > 0.

Thus, all three of Ia, Ib and Iab are best responses. So U1(Iab) = U1(Ia) = U1(Ib).

Substituting (213), (214) and (215), these are satisfied iff ta = tb = t1, the root of f1(x) =

0. This completes the proof.

5.11.5 Proofs of results in Section 5.7

Proof of Lemma 41. Let 0 ≤ α < α′ ≤ 1. It suffices to show that w1(α)< w1(α
′).

Let Yi, i = 2, . . . ,n be independent Bernoulli random variables and let Yi have mean

qiα. Also, let Zi, i = 2, . . . ,n be independent Bernoulli random variables that are inde-

pendent of Yi, i = 2, . . . ,n and let Zi have mean
qiα

′−qiα
1−qiα

.

For i = 2, . . . ,n, let:

Xi =





1, if Yi = 1 or Zi = 1 (or both)

0, else

(217)
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P(Xi = 1) = P({Yi = 1}∪ (Zi = 1)})

= P(Yi = 1)+P(Zi = 1)

−P({Yi = 1}∩{Zi = 1})

= P(Yi = 1)+P(Zi = 1)−P(Yi = 1)P(Zi = 1)

(since Yi and Zi are independent)

= qiα+
qiα

′−qiα

1−qiα
− (qiα)

(
qiα

′−qiα

1−qiα

)

= qiα
′

So Xi is Bernoulli with mean qiα
′. Also, since Yi, i = 2, . . . ,n and Zi, i = 2, . . . ,n are

independent, Xi, i = 2, . . . ,n are independent.

But by (217),

{Yi = 1} ⊂ {Xi = 1}, i = 1, . . . ,n (218)

Also,

P{Xi = 1,Yi = 0} = P(Zi = 1,Yi = 0)

= P(Zi = 1)P(Yi = 0)

=

(
qiα

′−qiα

1−qiα

)
(1−qiα)

= qiα
′−qiα

> 0 (219)
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By (218) and (219):

P(Xi = 1)> P(Yi = 1). (220)

Now, let X = ∑n
i=2 Xi and Y = ∑n

i=2Yi. We interpret Xi (respectively, Yi) as the in-

dicator of the event that primary i offers bandwidth at a node v with node probability

αv = α′ (respectively, αv = α). So X (respectively, Y ) is the number of primaries who

offer bandwidth at node v when αv = α′ (respectively, αv = α). By definition of the

function w1(.), and conditioning on Kv, the number of secondaries at node v:

w1(α
′) = ∑

k

P(X ≥ k)P(Kv = k) = ∑
k

γkP(X ≥ k) (221)

and

w1(α) = ∑
k

γkP(Y ≥ k). (222)

By (220), (221), (222) and the facts X = ∑n
i=2 Xi, Y = ∑n

i=2Yi and ∑n−1
k=1 γk > 0, it

follows that w1(α)< w1(α
′).

5.11.6 Proof of Lemma 44

In Lemmas 48, 49 and 50 below, we state and prove a generalization of Lemma 44 in

which we relax the assumption that M1, . . . ,Md are distinct.

Lemma 48. Let z = |{i : Mi = M1}|. If there exists an ε > 0 such that for all large n,

q < zkn/(n− 1)− ε, then η → 1, p̃ j → ν, j = 1, . . . ,z as n → ∞. Also, for all large n,

d′ = z, t1 = . . .= tz = 1/z, tz+1 = tz+2 = . . . td = 0.
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Proof. Note that for all large enough n, for each i,
∑n

j=1 q j−qi

z
< (n−1)q/z+(n−1)ε/2z.

Thus, if each primary selects an I.S. w.p. 1/z, for a given primary with available

bandwidth, the expected number of primaries among the rest minus the expected num-

ber of secondaries is less than −(n− 1)ε/2z. Clearly, then, for each i, wi(1/z) → 0

as n → ∞ (convergence is exponentially fast by Hoeffding’s inequality [26]). Thus,

W (1/z) → 1 as n → ∞. Thus, for all large enough n, M1W (1/z) = M2W (1/z) =

. . .MzW (1/z)>Mz+1r. Thus, (1/z, . . . ,1/z,0, . . . ,0) satisfies the requisite equations for

the symmetric NE I.S. selection p.m.f. The last part follows. For j = 1, . . . ,z, clearly

(ν−c)(1−w1(1/z))≤ p̃ j −c ≤ ν−c. Thus, p̃ j → ν as n → ∞. Thus, the expected util-

ity of any primary with available bandwidth converges to M1, the maximum possible

value, and the error decays exponentially with increase in n. Thus, η → 1.

Lemma 49. Consider l < d. Let lmin = min{i ≤ l : Mi = Ml} and lmax = max{i ≥ l :

Mi = Ml}. If there exists an ε > 0 such that for all large n, lkn/(n−1)+ ε < qn < (l +

1)kn/(n−1)−ε, then for all large n, d′
n ≥max(l+1, lmax). Also, tmnqn → kn/(n−1) for

m = 1, . . . , lmin −1 and tmnqn → min

(
qn−

(lmin−1)kn
n−1

lmax−lmin+1
,kn/(n−1)

)
for m = lmin, . . . , lmax.

Proof. First let d′
n ≤ l. Then t1n ≥ 1/d′

n ≥ 1/l. Thus, t1nqn ≥ kn/(n− 1)+ ε/l. Thus,

W (t1n)→ 0 and M1W (t1n)→ 0 as n→∞. Thus, M1W (t1n)<Ml+1 for all large enough n

(contradiction). Thus, d′
n ≥ l+1. However, the fact that d′

n ≥ l implies that d′
n ≥ lmax. To

prove this, suppose not. Then MlW (tl)>Mlmax
r =Mlr. So W (tl)> r, which contradicts

Lemma 43. So d′
n ≥ lmax and hence d′

n ≥ max(lmax, l + 1). Thus, the first part of the

lemma holds.
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Now, consider a m ≤ lmax. Let there exist a δ > 0 such that tmnqn > kn/(n−1)+δ

for a certain subsequence {qn,kn}. Then W (tmn) → 0 for that subsequence. Thus,

MmW (tmn)→ 0 for that subsequence. Let d′
n = d in a subsequence of the above subse-

quence. In this subsequence td′
n
≤ 1/d, and thus td′

n
qn < kn/(n− 1)− ε, W (td′

n
) → 1

and Md′
n
W (td′

n
) > 0. Thus, MmW (tmn) 6= Md′W (td′

n
) for all large enough n (contra-

diction). Thus, d′
n < d throughout the above subsequence. But then MmW (tmn) <

Md′
n+1r for all large enough n (contradiction). Thus, no such subsequence exists. Thus,

limsuptmnqn ≤ kn/(n−1).

Now, for m∈ {1, . . . , lmin−1}, let there exist a δ > 0 such that tmnqn < kn/(n−1)−δ

for a certain subsequence {qn,kn}. Then W (tmn)→ 1 for that subsequence. Thus, in that

subsequence, MmW (tmn) > Mlmin
r for all large enough n. Then for all large enough n,

d′
n ≤ lmin −1 < lmax (contradiction). Thus, liminftmnqn ≥ kn/(n−1). Hence,

tmnqn → kn/(n−1), m = 1, . . . , lmin−1. (223)

Now, let m ∈ {lmin, . . . , lmax}. Since Mlmin
= . . . = Mlmax

and Mlmin
W (tlmin

) = . . . =

Mlmax
W (tlmax

), it follows that tlmin
= . . . = tlmax

= tl. Suppose for a subsequence, tlqn >

qn−
(lmin−1)kn

n−1

lmax−lmin+1
+δ. This implies

(lmax − lmin +1)tl +

(
1

qn

(lmin −1)kn

n−1

)
>

δ(lmax − lmin +1)

qn

+1

Taking limits as n → ∞ on both sides and using (223) and the fact that tlmin
= . . . =

tlmax
= tl, we get:

lmax

∑
m=lmin

tm+
lmin−1

∑
m=1

tm > 1+
δ(lmax − lmin +1)

q

173



which contradicts the fact that (t1, . . . , td) is a probability distribution. Hence,

limsuptlqn ≤
qn −

(lmin−1)kn

n−1

lmax − lmin +1
.

Now, we consider two cases.

Case (i):

lim
n→∞

qn −
(lmin−1)kn

n−1

lmax − lmin +1
≤ lim

n→∞

kn

n−1
. (224)

Suppose there exists δ > 0 such that for a subsequence tln:

tlnqn <
qn −

(lmin−1)kn

n−1

lmax − lmin +1
−δ (225)

For this subsequence, after accounting for the probability masses put on I1, . . . , Ilmax
,

there is still some left. So d′ ≥ lmax +1 for this subsequence. However, by (224) and

(225):

tlnqn <
kn

n−1
−δ

for large enough n. So W (tln) → 1 for the subsequence. So in the subsequence,

MlW (tln)> Mlmax+1r, which contradicts the fact that d′
n ≥ lmax +1. Thus,

liminftlnqn ≥
qn −

(lmin−1)kn

n−1

lmax − lmin +1
(226)

and hence tlnqn →
qn−

(lmin−1)kn
n−1

lmax−lmin+1
.

Case (ii):

lim
n→∞

kn

n−1
< lim

n→∞

qn −
(lmin−1)kn

n−1

lmax − lmin +1
(227)

Suppose

tlnqn <
kn

n−1
−δ (228)
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for a subsequence. Then

W (tln)→ 1 (229)

for that subsequence. Now, by (227) and (228):

tlnqn <
qn −

(lmin−1)kn

n−1

lmax − lmin +1

for large enough n. So similar to Case (i), after accounting for the probability masses

put on I1, . . . , Ilmax
, there is still some left. So

d′
n ≥ lmax +1. (230)

But by (229), MlW (tln)> Mlmax+1, which contradicts (230). Thus, in Case (ii), tlnqn →

kn

n−1
.

Hence, in both cases, tmnqn → min

(
qn−

(lmin−1)kn
n−1

lmax−lmin+1
,kn/(n−1)

)
and we are done.

Lemma 50. If there exists an ε > 0 such that for all large n, q > knd/(n−1)+ε, η → 0

as n → ∞. Also, for all large n, d′ = d and p̃ j → c, j = 1, . . . ,d.

Proof. Clearly, t1 ≥ 1/d. Thus, t1q ≥ kn/(n− 1)+ ε/d. Now, for all large enough n,

for each i, ∑n
j=1 t1q j − t1qi > (n− 1)t1q− t1(n− 1)ε/2. Thus, if a given primary with

available bandwidth selects I1, then the expected number of other primaries he sees

at a node there minus the expected number of secondaries is greater than (n− 1)ε/2.

Clearly, then for each i, wi(t1) → 1 as n → ∞ (convergence is exponentially fast by

Hoeffding’s inequality [26]). Thus, W (t1) → 0 and M1W (t1) → 0 as n → ∞. Thus,

M1W (t1) < Mdr for all large enough n. Thus, d′ = d. So for j = 1, . . . ,d, M jW (t j) =
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M1W (t1)→ 0 as n → ∞ and hence p̃ j → c. Thus, the second part of the lemma holds.

Since M1W (t1) → 0 as n → ∞, expected utility of each primary approaches 0, and

the approach is exponentially fast. Thus, the overall expected utility of all primaries

approach 0. Clearly, the expected utility attained by OPT is bounded away from 0. The

result follows.

176



Chapter 6

Dynamic Contract Trading in

Spectrum Markets

In this chapter, as in Chapters 2 to 5, we focus on the two-step allocation scenario in

which the regulator such as the FCC in the USA first allocates primary rights to opera-

tors on its channels, who then allocate unused portions on their channels to secondary

users. In Chapters 2 to 5, we assumed that the number of players (primaries and secon-

daries) is small and hence that each player exerts considerable influence on the market

prices. In this chapter, we consider the case in which there are a large number of players

in the market and the price is determined by the market.
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6.1 Introduction

We consider a spectrum market where the license holders (referred to as primary providers

henceforth) can potentially sell to the secondary providers the spectrum they have li-

censed from the FCC but do not envision using in the near future. Primary providers

may either be providers of TV broadcasts, or large providers of wireless service who

operate nationwide. Secondary providers are relatively smaller, but larger in number,

and can be geographically limited providers, whose access to spectrum occurs through

the bandwidth (service) contracts that they buy from primary providers. Providers in

both categories have their subscriber (TV or mobile communication subscriber) bases

whom they need to serve using the spectrum they respectively license from the FCC

or buy in the spectrum market. This spectrum market structure is motivated by, and

closely resembles, secondary financial markets used for trading of financial instruments

(such as stocks, bonds) among investment banks, hedge-funds etc. Like in secondary

financial markets, we allow trading in spectrum markets, not only of the raw spectrum

(bandwidth), but also of the different kinds of service contracts derived from the use

of spectrum. A question that is key to the efficient operation of the spectrum market

is how the players in the market – the primary and the secondary providers – should

trade spectrum (bandwidth/service) contracts dynamically, based on time-varying de-

mand patterns arising from their subscribers, to maximize their returns while satisfying

their subscriber base. This is the central focus of this chapter.

We formulate and evaluate the solutions for the spectrum contract trading problem
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for the primary and the secondary providers. We consider two basic forms of contracts

that are used for selling/buying spectral resources: i) Guaranteed-bandwidth (Type-G)

contracts, and (ii) Opportunistic-access (Type-O) contracts. Under the Type-G con-

tracts, a secondary provider purchases a guaranteed amount of bandwidth (in units of

frequency bands or sub-bands) for a specified duration of time (typically a “long term”)

from a primary provider, and pays a fixed fee (either as a lump-sum or as a periodic

payment through the duration of the contract) irrespective of how much it uses this

bandwidth. If after selling the contract, the primary is unable to provide the promised

bandwidth (this may for example happen when the primary is forced to use a band it

has sold due to an unexpected rise in its subscriber demand), the primary financially

compensates the secondary for contractual violation. On the other hand, Type-O con-

tracts are short-term (one time unit in our model), and a secondary which buys a Type-O

contract pays only for the amount of bandwidth it actually uses on the corresponding

band. The primary does not provide any guarantee on a Type-O contract and may use

the channel sold as a Type-O contract without incurring any penalty. Thus, a Type-O

contract provides the secondary the right to use the channel if the primary is not using

it.

The spectrum contract trading problem that we formulate and solve allows the pri-

mary (secondary) provider to dynamically adjust its spectrum contract portfolio, i.e,

choose how much of each type of contract to sell (buy) at any time, so as to maximize

(minimize) its profit (cost) subject to satisfying its own subscriber demand that varies
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with time, and given the current market prices of Type-G and Type-O contracts which

also vary with time. The exact nature of the spectrum contract trading (selling/buying)

question will depend on whether it is considered from the perspective of the primary

provider (seller) or the secondary provider (buyer). We therefore separately address the

Primary’s Spectrum Contract Trading (Primary-SCT) problem (Section 6.2) and the

Secondary’s Spectrum Contract Trading (Secondary-SCT) problem (Section 6.3). We

formulate each problem as a finite horizon stochastic dynamic program whose com-

putation time is polynomial in the input size. We prove several structural properties

of the optimum solutions. For example, we show that the optimal number of Type-

G contracts, for both primary and secondary providers, are monotone (increasing or

decreasing) functions of the subscribers’ demands and the contract prices. These struc-

tural results provide more insight into the problems, and allow us to develop faster

algorithms for solving the dynamic programs. Finally, using numerical evaluations,

we investigate properties of the optimal solutions and demonstrate that the revenues

they earn substantially outperform static spectrum portfolio optimization strategies that

determine the portfolio based on the steady-state statistics of the contract price and

subscriber demand processes (Section 6.4).

Although the spectrum contract trading problem has been motivated by analogues

in financial markets, the actual questions posed and the techniques used to answer them

turn out to be quite different owing to the nature of the specific commodity, that is RF

spectrum, under consideration. First, both the primary and the secondary must de-
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cide their trading strategies considering their subscriber demand which changes with

time. For example, a primary (or secondary) can not simply decide to sell (buy) a large

number of Type-G contracts at any given time at which their market prices are high

(low). This is because a primary will need to pay a hefty penalty if it can not deliver the

promised bandwidth owing to an increase in its subscriber demand, and the secondary

will need to pay for the contract even if it does not use the corresponding bands owing

to a decrease in its subscriber demand. The portfolio optimization literature in finance

does not usually address the demand satisfaction constraint. Next, spectrum usage must

satisfy certain temporal and spatial constraints that are perhaps unique. Specifically, a

frequency band can not be simultaneously successfully used at neighboring locations

(without causing significant interference), but can be simultaneously successfully used

at geographically disparate locations. Thus, the spectrum trading solution for the pri-

mary provider must also take into account spatial constraints for spectrum reuse, and

therefore the computation of the optimal trading strategy requires a joint optimization

across all locations. We prove a surprising separation theorem in this context: when

the same signal is broadcast at all locations, the Primary-SCT problem can be solved

separately for each location and the individual optimal solutions can subsequently be

combined so as to optimally satisfy the global reuse constraints, and obtain the same

revenue as the solution of a computationally prohibitive joint optimization across loca-

tions (Section 6.2).
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6.2 The Primary’s Spectrum Contract Trading (SCT) Problem

In this section we pose and address Primary-SCT, the spectrum contract trading ques-

tion from a primary provider’s perspective. We first formulate the problem when a

primary provider owns channels in a single region (Section 6.2.1), solve it using a

stochastic dynamic program (Section 6.2.2), and identify the structural properties of

the optimal solution (Section 6.2.3). Later we formulate and solve the trading problem

when the primary owns channels in multiple locations, considering the spatial reuse of

channels across different locations (Section 6.2.4).

6.2.1 SCT in a single region

We now define the Primary-SCT problem for a primary provider that owns M frequency

bands (channels) in a single region, which it sells as Type-G or Type-O contracts to sec-

ondary providers. We assume that each channel corresponds to one unit of bandwidth

and at most one contract – either Type-G or Type-O – can stand leased on a channel at

any time. We also assume that the market has infinite liquidity: there is a large number

of buyers, and hence the primary provider can sell any or all of the channels it owns

anytime and in any combination of Type-G and Type-O contracts.

We assume that time is slotted. Trading of bandwidth is done between primary and

secondary providers separately in each of successive windows of duration T slots each.

Henceforth, we focus on the optimization in a single window or time horizon of T time

slots. At the beginning of each slot t, the primary determines the number of channels
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xG(t) and xO(t) to be sold as Type-G and Type-O contracts respectively. A Type-G

(“long term”) contract that is sold at the beginning of any slot t = 1, . . . ,T lasts till the

end of the horizon. T therefore represents the maximum duration of a Type-G contract.

Type-O contracts last for a single slot from the time they are negotiated.

The prices of both types of contracts (i.e, the prices at which they can be bought/sold

in the spectrum market) vary randomly with time and are determined “by the market”,

possibly depending on the current supply-demand balance in the market and other fac-

tors. The “per-slot” market prices for Type-G and Type-O contracts at time t are de-

noted by cG(t) and cO(t) respectively. When a Type-G contract is sold at slot t, it

remains active for T − t + 1 slots (that is, until the end of the optimization horizon),

and therefore fetches a revenue of α(T − t + 1)cG(t), where α(n) is a (deterministic)

increasing function of n and captures the increase in value of a Type-G contract with the

number of slots for which it remains active, e.g., α(n) = n. We assume that the process

{cG(t)} (respectively, {cO(t)}) constitutes a Discrete time Markov chain (DTMC) with

a finite number of states and transition probability HG
c,d (respectively, HO

c,d) from state c

to d. For simplicity, we assume that the DTMCs {cG(t)} and {cO(t)} are independent

of each other, although our results readily extend to the case when the joint process

{cG(t),cO(t)} is a DTMC.

Each primary provider is associated with a randomly time-varying demand process,

{i(t)} which corresponds to its subscriber demand (of TV channel subscribers or wire-

less service subscribers, for example) that it must satisfy. We assume that the process
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{i(t)} constitutes a DTMC with a finite number of states and transition probability Qi j

from state i to j, that is independent of the price process; each demand state corresponds

to an integral amount of bandwidth consumption in subscriber demand.

We assume that the transition probabilities {HG
c,d}, {HO

c,d} and {Qi j} are known to

the primary provider. They can be estimated from the history of the price and demand

processes.

The contract trading is done at the beginning of time slot t, and (xG(t),xO(t)) are

determined after the market prices cG(t), cO(t) and demand levels i(t) are known. Let

(aG(t),xO(t)) denote the spectrum contract portfolio held by the primary during time

slot t, i.e. the number of Type-G and Type-O contracts that stand leased. Since Type-G

contracts last till the end of the time horizon, we have:

aG(t) = ∑
t ′≤t

xG(t
′) (231)

The bandwidth not leased as Type-G contracts or used to satisfy the demand is sold as

Type-O contracts. Thus, at any time t:

xO(t) = K(aG(t), i(t)) := max{0,M−aG(t)− i(t)}. (232)

However, for all slots, t, for which aG(t)+ i(t) > M, the primary will have to use

channels already sold under Type-G contracts to satisfy its subscriber demand, due

to unavailability of additional bandwidth. In this case, the primary incurs a penalty,

Y (aG(t), i(t)), for breaching Type-G contracts. The penalty is proportional to the num-
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ber of such channels the provider uses for satisfying its subscriber demand. Thus,

Y (aG(t), i(t)) = βmax{0,aG(t)+ i(t)−M}, (233)

where β is the proportionality constant. We make the natural assumption that the

penalty is hefty; in particular, β is greater than or equal to the maximum possible price

of a Type-O contract.

The Primary-SCT problem then is to choose the primary’s trading strategy ((xG(t),xO(t)),

t = 1, . . .T , so as to maximize its expected revenue, expressed as

E

(
T

∑
t=1

(α(T − t +1)cG(t)xG(t)+ cO(t)xO(t)−Y (aG(t), i(t)))

)
, (234)

subject to relations (231)-(233). The optimum strategy must be causal in that for each

t ∈{1, . . .T}, (xG(t),xO(t))must be chosen by time t. Note that at time t, {i(t ′),cG(t
′),cO(t

′) :

t ′ = 1, . . . , t} are known, but {i(t ′),cG(t
′),cO(t

′) : t ′ = t+1, . . . ,T} are not known to the

primary provider. From (231) and (232), xO(t) is a function of {xG(t
′) : t ′ = 1, . . . , t}

and the current demand i(t). Therefore, the Primary-SCT problem as defined above

reduces to finding the optimal (xG(t), t = 1, . . . ,T ).

Note that the revenue function in (234) ignores any revenue earned from the pri-

mary’s subscribers. Since the subscriber demand process i(t) is unaffected by the trad-

ing decisions, such revenue adds a constant offset to the revenue in (234), and therefore

does not influence the optimal spectrum trading decisions.

Generalizations:

1) For a Type-O contract, the secondary provider pays the primary only for the amount
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of bandwidth it uses. Thus, the expected revenue earned by a primary on selling such

a contract equals the secondary’s expected usage of such a channel times the market

price of such a contract. We can incorporate this by considering the revenue from a

Type-O contract in slot t as κcO(t), where κ is the secondary’s expected usage of such

a channel. The formulation and the results extend to this case.

2) Our formulation and results can be extended to consider the case that i(t) is only

an estimate of the demand in slot t, and the estimation error in each slot is an inde-

pendent, identically distributed random variable whose distribution is known to the

primary. Then, xO(t) must be selected so that M − xO(t)− aG(t) is greater than or

equal to the actual demand with a desired probability. Thus, xO(t) will be a function,

K (aG(t), i(t)), of (aG(t), i(t)), which may be different from that in (232), but can nev-

ertheless be determined from the knowledge of the distribution of the estimation error.

Also, in this case, the lack of exact knowledge of the demand will force the primary to

use part or whole of the bandwidth it has sold as Type-O contracts to satisfy its demand.

This will not incur any penalty for the primary owing to the nature of the contract, but

will reduce the secondary’s expected usage κ of each channel sold as a Type-O con-

tract, and thereby reduce the expected amount κcO(t) the secondary pays the primary

for each such channel.

3) For clarity of exposition, we assumed integral demands i(t). However, in practice,

the demands may be fractional. For example, when a set of subscribers intermittently

access the Internet on a channel, a fraction of the bandwidth on a channel is used every
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slot. In this case, a Type-G or Type-O contract may be sold on the channel (while in-

curring a penalty proportional to the fraction used on the channel for the former). All

our results apply without change in this case.

6.2.2 Polynomial-time optimal trading

We show that the Primary-SCT problem defined in Section 6.2.1 can be solved as a

stochastic dynamic program (SDP) [54]. A policy [54] is a rule, which specifies the

decisions (xG(t) and xO(t)) at each slot t, as a function of the demands and prices and

past decisions. Now, since the demand and prices are Markovian, the statistics of the

future evolution of the system from slot t onwards are completely determined by the

vector (aG(t −1), i(t),cG(t),cO(t)), which we call the state at slot t, and the primary’s

decisions {xG(t
′) : t ′ = t, . . . ,T} under the policy being used. Now, in general, a policy

may determine (xG(t),xO(t)) at slot t based on all past states and actions. However,

a well-known result (Theorem 4.4.2 in [54]) shows that there exists an optimal policy

which specifies the optimal xG(t) at any slot t only as a (deterministic) function of the

current state and t 28. We next compute such an optimal policy by solving a SDP.

For a given t, let n = T − t +1 be the number of slots remaining until the end of the

horizon, and Vn(a, i,cG,cO) denote the maximum possible revenue from the remain-

ing n slots, under any policy, when the current state is (aG(t − 1), i(t),cG(t),cO(t)) =

28Such a policy is called a deterministic Markov policy [54].
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(a, i,cG,cO). In particular, note that VT (0, i,cG,cO) is the maximum possible value

of the expected revenue in (234) under any policy when i(1) = i, cG(1) = cG and

cO(1) = cO. The function Vn(.) is called the value function [54]. We have:

Vn(a, i,cG,cO) = max
0≤x≤M−a

Wn(a, i,cG,cO,x), (235)

where Wn(a, i,cG,cO,x) = α(n)cGx+ J(x+a, i,cO)

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi jVn−1(a+ x, j,dG,dO), and (236)

J(aG(t), i(t),cO(t)) = cO(t)K(aG(t), i(t))−Y(aG(t), i(t)), (237)

and the maximum in (235) is over integer values of x in [0,M − a]. Equation (235) is

called Bellman’s optimality equation [54] and holds because, by definition of Vn−1(.),

Wn(a, i,cG,cO,x) defined by (236) is the maximum possible expected revenue when n

slots remain until the end of the horizon and xG(t) = x is chosen. Note that the first

two terms in (236) account for the revenue earned in slot t from the sale of Type-G

and Type-O contracts minus the penalty paid. The last term in (236) is the maximum

expected revenue from slot t + 1 onwards. The summations over dG,dO and j take

the expectation of the revenue over the prices of Type-G and Type-O contracts and

the demand respectively in slot t + 1. We get (235) by taking the maximum over all

permissible values of x. Denote the (largest) x that maximizes Wn(a, i,cG,cO,x) by

x∗n(a, i,cG,cO). The function x∗n(.) provides the optimal solution to the Primary-SCT

problem.

Now, the value function and optimal policy can be found from (235) using backward

induction [54], which proceeds as follows. Note that V0(.)= 0. Thus, W1(.) can be com-
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puted using (236), and V1(.) and x∗1(.) using (235), and similarly, W2(.),V2(.),x
∗
2(.), . . .Wn(.),Vn(.),x

∗
n(.)

can be successively computed. This backward induction consumes O((NGNOM2)2T )

time, where NG (NO) is the number of states in the Markov Chain {cG(t)} ({cO(t)})–

the computation time is therefore polynomial in the input size.

Remark 5. Note that we consider a finite horizon formulation. An alternative would

be to consider an infinite horizon formulation, in which a Type-G contract is valid for

T slots from the time of sale (instead of until the end of horizon). But in this case,

at a given slot, the state would include (yG
1 (t), . . . ,y

G
T (t)), where yG

j (t) is the number

of Type-G contracts that are valid for j slots more. Thus, the size of the state space

is O(MT ), which is exponential in T . Hence, we do not consider an infinite horizon

formulation.

6.2.3 Properties of the optimal solution

We analytically prove a number of structural properties of the optimal policy, which

provide insight into the nature of the optimal solution. Our results are quite general

in that they hold not only for the K(.),Y(.) functions defined in (232), (233), but also

for any functions that satisfy the following properties (which are of course satisfied

by those in (232), (233)). This loose requirement allows our results to extend to the

generalizations described at the end of Section 6.2.1.

Property 4. K(a, i) decreases in a and Y (a, i) increases in a for each i. Hence, by

(237), for each i and cO, J(a, i,cO) decreases in a.
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Property 5. The K(.),Y(.) functions are such that J(a, i,cO) is concave 29 in a for fixed

i,cO.

Property 6. The K(.),Y (.) functions are such that, for each a, J(a, i,cO)− J(a +

1, i,cO) is an increasing function of i.

We next state a technical assumption on the statistics of the demand and price pro-

cesses that we need for our proofs.

Assumption 2. If Xi is the demand in the next slot given that the present demand is i,

or, if Xi is the price of a Type-G (respectively, Type-O) contract in the next slot given

that the present price is i, then for i ≤ i′, Xi ≤st Xi′ (Xi is stochastically smaller [57]

than Xi′), i.e., for each b ∈ R, Pr(Xi > b)≤ Pr(Xi′ > b).

Intuitively, this assumption says that the primary’s demand and the prices do not

fluctuate very rapidly, and the demand (or price) in the next slot is more likely to be

high when the current demand (or price) is high as opposed to when the current demand

(or price) is low.

We are now ready to state the structural properties of the optimum trading policy.

We defer the proofs of these properties until Section 6.5.1.

The first property identifies the relation between x∗n(a, i,cG,cO) and a:

Theorem 12. For each n, i,cG,cO,

x∗n(a+1, i,cG,cO) = max(x∗n(a, i,cG,cO)−1,0). (238)

29A function f (k) with domain being a subset of the integers is concave [7] if f (k+ 2)− f (k+ 1)≤

f (k+ 1)− f (k) for all k [57]. If the inequality is reversed, f (.) is convex.
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Intuitively, this theorem suggests that for each n, i,cG,cO, there exists an optimal

portfolio level of Type-G contracts, a∗G(t), such that if aG(t −1) = a, then xG(t) should

be chosen so as to make aG(t) = a∗G(t). That is, the optimal xG(t) = a∗G(t)− a (if the

latter is non-negative).

Also, due to Theorem 12, for each n, i, cG and cO, it is sufficient to find x∗n(a, i,cG,cO)

only for a = 0 while performing backward induction, and x∗n(a, i,cG,cO) for other a can

be deduced using (238). This reduces the overall computation time by a factor of M:

the optimal policy can now be computed in O((NGNO)
2M3T ) time.

The next two results identify the nature of the dependence between x∗n(a, i,cG,cO)

and the demand i and prices cG, cO.

Theorem 13. For each n, a, cG and cO, x∗n(a, i,cG,cO) is monotone decreasing in i.

Theorem 13 confirms the intuition that when the primary’s demand is high, it should

sell fewer Type-G contracts so as to reserve bandwidth to meet its demand and vice

versa. At the same time, note that this result is not obvious– when the demand is lower,

more free bandwidth is available, which can be sold as Type-G or as Type-O contracts.

Clearly, the number of Type-G versus Type-O contracts sold would influence the states

reached in the future and the revenue earned. Theorem 13 asserts that the primary

should sell at least as many Type-G contracts as before (that is, as for the high demand

state), while possibly also increasing the number of Type-O contracts to sell.

Theorem 14. x∗n(a, i,cG,cO) is monotone increasing in cG for fixed n,a, i,cO and mono-

tone decreasing in cO for fixed n,a, i,cG.
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Theorem 14 confirms the intuition that the primary should preferentially sell the

type of contract (G or O) with a “high” price.

Remark 6. Theorems 2 and 3 can be used to speed up the computation of the optimal

policy using the monotone backward induction algorithm [54]. Similarly, in Theo-

rem 21 (in Section 6.5.1), we prove that the value function is concave in a for fixed

n, i,cG,cO, which can be used to speed up the computation of x∗n(.) from the value func-

tion since the maximizer in (235) can be found in O(logM) time using a binary search

like algorithm [25]. In both cases, the worst case asymptotic running time remains the

same, although substantial savings in computation can be obtained in practice.

6.2.4 SCT across multiple locations

We now consider spectrum contract trading across multiple locations from a primary

provider’s point of view. Wireless transmissions suffer from the fundamental limitation

that the same channel can not be successfully used for simultaneous transmissions at

neighboring locations, but can support simultaneous transmissions at geographically

disparate locations. Thus, a primary provider can not trade contracts in the same chan-

nel at neighboring locations, but can do so at far off locations. Hence, the spectrum

contract trading problem at different locations is inherently coupled, and must be opti-

mized jointly. We now extend the problem formulation to consider the case of multiple

locations, taking into account possible interference relationships between adjacent re-

gions.
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We model the overall region under consideration using an undirected graph G with

the set of nodes S. Each node represents a certain area at some location in the overall

region. There is an edge between two nodes if and only if transmissions at the corre-

sponding locations on the same channel interfere with each other. A primary provider

owns M channels throughout the region. At any time slot, at a given node, on each

channel (a) either a Type-G contract can be sold, (b) a Type-O contract can be sold or

(c) no contract can be sold, subject to the constraint that at no point in time, a contract

can stand leased at neighbors on the same channel. That is, on each channel, the set of

nodes at which a contract stands leased constitutes an independent set [71].

A primary provider needs to satisfy its subscriber demand which is also subject

to certain reuse constraints. We consider the case where the subscribers of a primary

provider require broadcast transmissions. This, for example, happens when the primary

is a TV transmitter that broadcasts signals across all locations over different channels.

At any given slot t, the primary needs to broadcast over a certain number, say i(t),

channels which randomly varies with time depending on subscriber demands. When-

ever the primary broadcasts on a channel, the broadcast reaches all nodes, and thus the

channel can not be used by the secondaries at any node. Hence, if the primary has sold

a Type-G contract on the channel at any node it incurs a penalty of β at the node. Thus,

at slot t, i(t) represents the primary’s demand at all nodes. Note that the set of nodes at

which the primary uses a given channel for demand satisfaction does not constitute an

independent set (as opposed to the set of nodes at which contracts stand leased). Also,
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the primary’s usage status on any given channel at any given time (i.e., whether or not

the primary is using the channel for subscriber demand satisfaction) is the same across

all nodes.

The durations of Type-G and Type-O contracts are as described in Section 6.2.1.

We assume that at any slot t, Type-G (respectively, Type-O) contracts have equal prices

cG(t) (respectively, cO(t)) at all nodes. The processes (i(t),cG(t),cO(t)) evolve as per

independent DTMCs as stated in Section 6.2.1.

The spectrum contract trading problem across multiple locations for a primary

(Primary-SCTM) is to optimally choose at each slot t, the type of contract to sell (if

any) at each location on each channel so as to maximize the total expected revenue

from all nodes over a finite horizon of T slots.

Theorem 15. Primary-SCTM is NP-Hard.

The proof is deferred until Section 6.5.2.

We now characterize the optimal solution of the Primary-SCTM problem.

Lemma 51. Consider the class of policies F , such that a policy f ∈ F operates as

follows. At the beginning of the horizon, it finds a maximum independent set, I(S), in

G . Then, in each slot, it sells contracts only at nodes in I(S). There exists a policy in

F that optimally solves the Primary-SCTM problem.

The proof is deferred until Section 6.5.2.

We refer to a policy in F , which at each node in I(S), sells contracts according
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to the optimal solution of the Primary-SCT problem with demand and price processes

{i(t),cG(t),cO(t)} as a Separation Policy.

Theorem 16 (Separation Theorem). A Separation Policy optimally solves the Primary-

SCTM problem.

Proof of Theorem 16. By Lemma 51, we can restrict our search for an optimal policy

to the policies in F . Now, the total revenue of a policy in F is the sum of the revenues

at the nodes in I(S). Clearly, the total revenue is maximized if the stochastic dynamic

program for the single node case is executed at each node. Note that this solution

satisfies the interference constraints since I(S) is an independent set.

Note that the optimum solution at any node can be computed in polynomial time

using the SDP presented in Section 6.2.1. However, computation of a maximum size

independent set is an NP-hard problem [35]. This computation therefore seems to be

the basis of the NP-hardness of Primary-SCTM. Also, the following theorem, which is

a direct consequence of Theorem 16, shows that Primary-SCTM can be approximated

in polynomial time within a factor of µ if the maximum independent set problem can

be approximated in polynomial time within a factor of µ.

Theorem 17 (Approximate Separation Theorem). Consider a µ-separation policy that

differs from a separation policy in that it sells contracts as per the single node optimum

solution, at each node of an independent set whose size is at least 1
µ

times that of a

maximum independent set. This policy’s expected revenue is at least 1
µ

times the optimal
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expected revenue.

However, in a graph with N nodes, the maximum size independent set problem

can not in general be approximated to within a factor of O(Nε) for some ε > 0 in

polynomial time unless P = NP [3]. Nevertheless, polynomial time approximation

algorithms (PTAS) i.e., algorithms that compute an independent set whose size is within

(1−ε) of the maximum size independent set, for any given ε > 0, using a computation

time of O(N1/ε) are known in important special cases, e.g., when the degree of each

node is upper-bounded [4] (this happens in our case when the number of locations each

location interferes with is upper-bounded). Thus, in view of Theorem 17, for any given

ε > 0, the Primary-SCTM problem can be approximated within a factor of 1− ε using

a computation time of O(N1/ε) in such graphs.

6.3 Secondary’s Spectrum Contract Trading Problem

In this section we pose and address Secondary-SCT, the spectrum contract trading ques-

tion from a secondary provider’s (buyer’s) perspective. First note that the Secondary-

SCT problem need not consider the interference constraints for channels since the sec-

ondary provider buys the spectrum bands that are offered in the market (presumably in

a manner that satisfies the reuse constraints), and also because they are usually local-

ized (i.e., operate in small regions). Thus, the secondary’s spectrum trading decisions in

different regions can be separately optimized. So henceforth in this section, we restrict

ourselves to the case of a single location.
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6.3.1 Formulation

We consider an arbitrary secondary provider that is interested in buying contracts in the

secondary spectrum market. Our assumptions regarding the optimization horizon T ,

the durations of Type-G and Type-O contracts and their price processes (cG(t),cO(t))

remain the same as in Section 6.2.1. Let ĩ(t) denote the subscriber demand of the

provider at time t– it is a DTMC similar to {i(t)} in Section 6.2.1, but with transition

probabilities Pi j in place of Qi j.

The secondary decides the number of Type-G and Type-O contracts it will buy (from

primary providers) at slot t, (x̃G(t), x̃O(t)), after it learns the market prices cG(t) and

cO(t) and the demand level ĩ(t) at t. We continue to assume that the market has infinite

liquidity, which now implies that the market has a lot of sellers (i.e., primary providers),

and hence the secondary can buy as many contracts of any type by paying their market

price. Let (ãG(t), x̃O(t)) denote the spectrum contract portfolio held by the secondary

during slot t, where ãG(t) denotes the number of Type-G contracts that the secondary

has leased out until time t. Then we have

ãG(t) = ∑
t ′≤t

x̃G(t
′). (239)

The secondary provider’s spectrum trading goal is to meet its time-varying subscriber

demand in every time slot at the minimum cost, by choosing an appropriate portfolio

of Type-G and Type-O contracts, {(ãG(t), x̃O(t))}, adjusted dynamically.

Note that there are uncertainties on how much bandwidth the secondary actually
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ends up getting from each contract at a time t during its duration, since a Type-O con-

tract only allows the secondary the right to use the channel when the owner (primary)

is not using it, and there is a non-zero probability of contract violation for a Type-G

contract by the primary due to its subscriber demand level plus the number of Type-G

contracts sold exceeding its total owned spectrum (see the Primary-SCT formulation

in Section 6.2). Due to this, the subscriber demand ĩ(t) can be met only in statisti-

cal terms, e.g., in expectation, or with a certain probability, by any spectrum contract

portfolio. (We assume that statistics on such contract violations are available (possi-

bly from historical data) to the buyers, and can be incorporated in the corresponding

contract trading decision.) We generalize this notion by associating with each value of

subscriber demand δ, a demand satisfaction set Fδ within which a spectrum contract

portfolio (ãG, x̃O) must lie for meeting the demand level δ satisfactorily. A portfolio

(ãG(t), x̃O(t)) is said to be demand-satisfactory at time t if it can meet the demand level

at time t satisfactorily, i.e., if (ãG(t), x̃O(t)) ∈ F ĩ(t).

Thus, the Secondary-SCT problem is to minimize the expected contract trading cost

subject to the spectrum contract portfolio being demand-satisfactory at all times t. The

objective is thus to minimize

E

(
T

∑
t=1

(α(T − t +1)cG(t)x̃G(t)+ cO(t)x̃O(t))

)
, (240)

subject to (239) and

(ãG(t), x̃O(t)) ∈ F ĩ(t), ∀t, (241)

and such that for each t ∈ {1, . . .T}, (x̃G(t), x̃O(t)) must be chosen by time t. Note that
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at time t, {ĩ(t ′),cG(t
′),cO(t

′) : t ′ = 1, . . . , t} are known, but {ĩ(t ′),cG(t
′),cO(t

′) : t ′ =

t +1, . . . ,T} are not known.

We assume that the sets Fδ for different δ are given. Typically, we will have Fδ′ ⊆ Fδ

for δ ≤ δ′. Also, we make the natural assumption that if (ãG, x̃O) ∈ Fδ for some δ,

then (ãG, x̃
′
O) ∈ Fδ ∀x̃′O ≥ x̃O. Accordingly, let L(ãG(t), ĩ(t)) be the minimum number

of Type-O contracts x̃O required for a portfolio (ãG(t), x̃O) to be in F ĩ(t), for a given

(ãG(t), ĩ(t)). It is easy to see that for a given (ãG(t), ĩ(t)), it is optimal to select x̃O =

L(ãG(t), ĩ(t)) (not more).

For example, suppose the secondary seeks to meet the current demand level in ex-

pectation. Due to the uncertain amount of bandwidth available on Type-G and Type-O

contracts, suppose the expected amount of bandwidth obtained from a Type-G contract

is γ (0 < γ ≤ 1). Also, η Type-O contracts are required, on average, to meet one unit of

demand, where η is a positive integer. For simplicity, assume that the product γη is an

integer. Then:

L(ãG(t), ĩ(t)) = max
{

η(ĩ(t)− γãG(t)),0
}

(242)

Remarks: 1) Note that in (240), we do not consider the revenue earned from the penal-

ties paid by the primary due to Type-G contract violations. Such penalties lead to a net

decrease in the price of a Type-G contract, and their effects can be incorporated by con-

sidering the price process of Type-G contracts as {c̃G(t)}, where c̃G(t) = cG(t)−κ(t),

where κ(t) is i.i.d and independent of {cG(t)}. Subsequent formulations and analysis

do not change owing to the above modification.
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2) Like for the Primary-SCT problem, our results can be extended to the case where the

secondary knows only an estimate of ĩ(t) at the beginning of time slot t.

3) Like for the Primary-SCT problem, the cost function in (240) ignores any revenue

earned from the secondary’s subscribers. Since the subscriber demand process ĩ(t) is

unaffected by the trading decisions, such revenue adds a constant offset to the cost in

(240), and therefore does not influence the optimal spectrum trading decisions.

6.3.2 Analysis

We formulate the secondary’s problem as a stochastic dynamic program (SDP) and

prove a number of structural properties of the optimal solution. The formulation and

analysis are very similar to that for the primary; hence we only provide a brief outline.

Let (ãG(t −1), ĩ(t),cG(t),cO(t)) be the state at the beginning of slot t, n = T − t +

1 and Vn(a, i,cG,cO) denote the value function, i.e., the minimum possible cost over

the remaining slots, starting from slot t. In particular, note that VT (0, i,cG,cO) is the

minimum possible value of the expected cost in (240) under any policy when ĩ(1) = i,

cG(1) = cG and cO(1) = cO. Then the optimality equation is given by:

Vn(a, i,cG,cO) = min
x

Wn(a, i,cG,cO,x) (243)

where

Wn(a, i,cG,cO,x) = α(n)cGx+ cOL(x+a, i)

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Pi jVn−1(a+ x, j,dG,dO) (244)
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and the minimum in (243) is over nonnegative integer values of x. Denote the (smallest)

x that minimizes Wn(a, i,cG,cO,x) by x̃∗n(a, i,cG,cO). The value function and optimal

policy can be found from (243) using backward induction [54] in O((NGNOD2)2T )

time, where D is the number of states in the Markov Chain {ĩ(t)}.

We now identify the structure of the optimal trading strategy {x̃∗n(a, i,cG,cO),n =

1, . . . ,T} for the following properties of the L(.) function, which are analogous to Prop-

erties 4, 5 and 6 of the J(.) function for the Primary-SCT problem. (i) For each i, L(a, i)

decreases in a, (ii) L(a, i) is convex in a for fixed i, (iii) For each a, L(a, i)−L(a+1, i)

is an increasing function of i. It can be checked that these properties are true for the

function L(.) in (242). We also assume that the price and demand processes satisfy

Assumption 2.

We have the following structural results, which closely parallel Theorems 12 to 14.

The proofs are similar to those of Theorems 12 to 14, and hence omitted.

Theorem 18. For each n, i,cG,cO, x̃∗n(a+1, i,cG,cO) = max(x̃∗n(a, i,cG,cO)−1,0) .

Theorem 19. For each n, a, cG and cO, x̃∗n(i,a,cG,cO) is monotone increasing in i.

Theorem 20. x̃∗n(a, i,cG,cO) is monotone decreasing in cG for fixed n,a, i,cO and mono-

tone increasing in cO for fixed n,a, i,cG.
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6.4 Numerical Studies

We next study the properties of the optimal trading strategy using numerical investi-

gations, and explore how the expected revenue varies as a function of key system pa-

rameters. Due to the similarity in the results for Primary-SCT and Secondary-SCT, we

only present our results for the former. We consider M = 20 channels, penalty param-

eter β = 3.0 and a birth-death demand process with 21 states and integral state values

{0,1, . . . ,20}. The price process cG (cO) is again a birth-death process that varies be-

tween 1.0 and 4.0 (1.0 and 2.0, respectively) with a total of 10 uniformly-spaced states.

For both the demand and price processes, we assume that the forward and backward

transition probabilities equal p (a parameter).

In Theorems 13 and 14, we have established the monotonicity properties of the

optimal solution x∗n(a, i,cG,cO) with respect to the demand level i and prices cG,cO.

Recall that n = T − t + 1 at slot t, and represents the duration of a Type-G contract

made at slot t. Now, our numerical evaluations suggest that the optimal solution x∗n(.)

is decreasing in n, and when n is close to T , x∗n(.) is zero (see Figure 6.1). Thus,

the primary prefers Type-G contracts towards the end of the optimization horizon, and

Type-O towards the beginning. This is because when n is close to T , Type-G contracts

are very long-term, and hence likely to incur hefty penalties since demand and prices

may be difficult to predict long-term.

The two plots in Figure 6.2 show the variation in the primary’s average (expected)

revenue per slot with respect to p and T . For these results, the initial state for the de-
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mand and price processes are chosen according to the steady state distributions of these

processes. The average revenue obtained from the optimal dynamic trading strategy

is compared with that of an optimal static strategy. In the latter strategy, the number

of Type-G contracts is chosen only once (optimally, based on the steady state distribu-

tion of the demand and price processes), at the very beginning of the time horizon; the

number of Type-O contracts made is adjusted dynamically to the amount of “free band-

width” available at any slot (i.e., the number of channels minus the sum of the demand

and Type-G contracts made). We observe that the average revenue for the optimal static

strategy is invariant to changes in p or T – this happens because the initial states for the

demand and price processes follow their steady state distributions, which in our case is

uniform and does not depend on p or T. We observe that the optimal dynamic contract

trading strategy significantly outperforms the optimal static strategy, demonstrating the

benefits of dynamic choice of the number of Type-G contracts. Note that if the static

strategy buys a Type-G contract, it must buy one that is really long-term (i.e., one that

lasts for the entire T slots), whereas the dynamic strategy can choose the duration of

Type-G contracts it buys by deciding when they are purchased, based on its demand and

prices of the contracts that evolve dynamically. The figures also show that the primary’s

average revenue per slot under dynamic choice increases with an increase in p and T

(for the same value of the other parameters). Note that a larger p (respectively, larger

T ) implies larger temporal variation in the prices (respectively, a longer optimization

horizon), giving the primary more opportunities in which the price of a Type-G con-
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Figure 6.1: x∗n(a, i,cG,cO) versus n for a = 0, i = 4, cG = 2.0,cO = 1.0 and T = 50.

tract is high and the primary can “lock in” a good price for a contract. From the bottom

plot in Figure 6.2, we also observe that the average per-slot revenue shows diminishing

returns as T increases, and appears to stabilize eventually (at a faster rate for a larger

p). This is intuitive since the revenue earned per unit time is upper bounded, and also

because very long-term Type-G contracts offer small returns.

6.5 Appendix

6.5.1 Proofs of results in Section 6.2.3

Notation: Let R denote the set of real numbers.

Let Xi be as in Assumption 2. Recall that Qi j, HG
i j and HO

i j are the transition proba-

bilities of the demand and the prices of Type-G and Type-O contracts respectively. So,
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Figure 6.2: The top plot shows the average per-slot revenue vs transition probability p. The bottom plot

shows the average per-slot revenue vs time horizon T .

if Xi represents the demand, price of a Type-G contract or price of a Type-O contract

respectively in the next slot given that the present demand, price of a Type-G con-

tract or price of a Type-O contract equals i, then for a function f (.), E( f (Xi)) equals

∑ j Qi j f ( j), ∑ j HG
i j f ( j) and ∑ j HO

i j f ( j) respectively. The assumption Xi ≤st Xi′ for i≤ i′
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in Assumption 2 is equivalent to the following condition [57]:

Condition 1. For every increasing function f (i),

E( f (Xi))≤ E( f (Xi′)) ∀i ≤ i′

i.e., ∑ j Qi j f ( j), ∑ j HG
i j f ( j) and ∑ j HO

i j f ( j) are increasing functions of i.

Note that in the summations in Condition 1, as well as in those in the rest of this

section, the summation is over all possible states of the respective Markov Chain.

6.5.1.1 Proof of Theorem 12

We first prove that the value function is concave in a (Theorem 21). Then, using The-

orem 21, we prove Theorem 12. We start with a simple lemma, which is used in the

proof of Theorem 21.

Lemma 52. For fixed i,cG,cO, Vn(a, i,cG,cO) decreases in a.

Proof. We prove the result by induction. Let V0(a, i,cG,cO) = 0. Then the claim is true

for n = 0. Suppose Vn−1(a, i,cG,cO) decreases in a for each i,cG,cO. Now, let a1 ≥ 1

and x∗n(a1, i,cG,cO) = x1 for some x1. Then, by (235):

Vn(a1, i,cG,cO) =Wn(a1, i,cG,cO,x1) (245)
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Now,

Vn(a1 −1, i,cG,cO)

≥ Wn(a1 −1, i,cG,cO,x1) (by (235))

= α(n)cGx1 + J(x1 +a1 −1, i,cO)

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi jVn−1(a1 + x1 −1, j,dG,dO)

≥ α(n)cGx1 + J(x1 +a1, i,cO)

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi jVn−1(a1 + x1, j,dG,dO)

(by induction hypothesis and Property 4)

= Wn(a1, i,cG,cO,x1)

= Vn(a1, i,cG,cO) (by (245))

The result follows.

Theorem 21. For each n, Vn(a, i,cG,cO) is concave in a for fixed i, cG, cO.

Proof. We prove the result by induction. V0(a, i,cG,cO) is concave in a since it is

equal to 0. Suppose Vn−1(a, i,cG,cO) is concave in a for fixed i,cG,cO. Recall that

Vn−1(a, i,cG,cO) is defined for integer values of a. Now, for fixed i, cG and cO, define

Ṽn−1(a, i,cG,cO) for a real as the function obtained by linearly interpolatingVn−1(a, i,cG,cO)

between each pair of adjacent integers a0 and a0 +1. Similarly, define J̃(a, i,cO).

Now, J(x+a, i,cO) (respectively, Vn−1(x+a, i,cG,cO)) is concave decreasing in x+

a for fixed i,cO (respectively, for fixed i,cG,cO) by Properties 4 and 5 (respectively, by

Lemma 52 and induction hypothesis). Hence, we get:
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Property 7. J̃(x+a, i,cO) (respectively, Ṽn−1(x+a, i,cG,cO)) is concave decreasing in

x+a for fixed i,cO (respectively, for fixed i,cG,cO).

Now, consider the function

W̃n(a, i,cG,cO,x) = α(n)cGx+ J̃(x+a, i,cO)

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi jṼn−1(a+ x, j,dG,dO) (246)

as a function of the two real variables a,x, i.e. the vector (a,x).

Recall the following property of composition of functions [7]:

Property 8. Let h : R → R, g : Rk → R, where k ≥ 1 and Rk denotes the k-dimensional

Euclidean space. Let f : Rk → R be defined by f (v) = h(g(v)). If h(.) is concave and

decreasing, and g(v) is convex in v, then f (v) is concave in v.

By the fact that a+ x is linear and hence [7] convex in (a,x), Property 7 and Prop-

erty 8, it follows that J̃(x+ a, i,cO) (respectively, Ṽn−1(a+ x, j,dG,dO)) is concave in

(a,x) for fixed i,cO (respectively, for fixed j,dG,dO). Also, x is clearly concave in

(a,x). Hence, W̃n(a, i,cG,cO,x) being a nonnegative weighted linear combination of

these functions, is concave in (a,x) for fixed i,cG,cO.

Now, define:

Ṽn(a, i,cG,cO) = sup
x∈R,0≤x≤M−a

W̃n(a, i,cG,cO,x) (247)

Note that {x : x ∈ R,0 ≤ x ≤ M − a} is a non-empty convex set. Recall the following

property [7]:
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Property 9. If f (a,x) is concave in (a,x) and C is a convex nonempty set, then the

function

g(a) = sup
x∈C

f (a,x)

is concave in a, provided g(a)< ∞ for some a.

Now, Ṽn(a, i,cG,cO) < ∞ (since the costs of Type-G and Type-O contracts are up-

per bounded). So by (247), Property 9 and the fact that W̃n(.) is concave in (a,x),

Ṽn(a, i,cG,cO) is concave in a for fixed i,cG,cO.

Now, we will show that Vn(a, i,cG,cO) = Ṽn(a, i,cG,cO) for a integer, which will

imply that Vn(a, i,cG,cO) is concave.

Fix i,cG,cO and an integer a. Note that by (235) and (247) and since W̃n(.) =Wn(.)

at integer a and x, Vn(a, i,cG,cO) is the maximum of W̃n(a, i,cG,cO,x) over integer x,

whereas Ṽn(a, i,cG,cO) is the supremum over real x in the range [0,M−a]. Hence, to

prove that Vn(a, i,cG,cO) = Ṽn(a, i,cG,cO), it will suffice to show that the supremum

over real x occurs at integer x.

Now, by the definition of the functions J̃(.) and Ṽn−1(.), f (x) = W̃n(a, i,cG,cO,x) is

continuous and piecewise linear in x, with breakpoints at the integers. Also, note that

the endpoints of the domain of f (x), viz. 0 and M−a are integers that are contained in

the domain. As a result, it can be checked that the maximum of f (x) must occur at an

integer. This completes the proof.

Note that Wn(a, i,cG,cO,x) is concave in (a,x) and Vn(a, i,cG,cO) is the maximum
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of Wn(.) over a non-convex set, namely the set of integers in [0,M − a]. This makes

the above proof more involved, since had the maximum been over a convex set, the

concavity of Vn(a, i,cG,cO) would have simply followed from Property 9.

We are now ready to prove Theorem 12.

Proof of Theorem 12. From (236), we have:

Wn(a, i,cG,cO,x) =Wn(a+1, i,cG,cO,x−1)+α(n)cG, ∀x ≥ 1 (248)

Now, by optimality of x∗n(a, i,cG,cO):

Wn(a, i,cG,cO,x
∗
n(a, i,cG,cO))≥Wn(a, i,cG,cO,x) ∀x ≥ 1 (249)

If x∗n(a, i,cG,cO)≥ 1, then from (248) and (249) and some algebra, we get:

Wn(a+1, i,cG,cO,x
∗
n(a, i,cG,cO)−1)≥Wn(a+1, i,cG,cO,x−1) ∀x ≥ 1

which shows that x∗n(a+1, i,cG,cO) = x∗n(a, i,cG,cO)−1 if x∗n(a, i,cG,cO)≥ 1.

Now, suppose x∗n(a, i,cG,cO) = 0. By Theorem 21 and Property 5, since Vn−1(a+

x, j,dG,dO) and J(x + a, i,cO) are concave in x for fixed a, j,dG,dO, i,cO, it follows

from (236) that Wn(a, i,cG,cO,x) is concave in x. For x ≥ 2, we have:

Wn(a+1, i,cG,cO,x−1)−Wn(a+1, i,cG,cO,0)

= Wn(a, i,cG,cO,x)−Wn(a, i,cG,cO,1) (by (248))

≤ Wn(a, i,cG,cO,x−1)−Wn(a, i,cG,cO,0)

(by concavity)

≤ 0 (since x∗n(a, i,cG,cO) = 0)
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which shows that x∗n(a+1, i,cG,cO) = 0.

6.5.1.2 Proofs of Theorems 13 and 14

The proofs of Theorems 13 and 14 are based on the concepts of submodularity and

supermodularity, which we briefly review. Let I ⊆ R and X ⊆ R be two sets. A function

g(i,x) : I ×X → R is called supermodular [54] if for i+ ≥ i− in I and x+ ≥ x− in X ,

g(i+,x+)+g(i−,x−)≥ g(i+,x−)+g(i−,x+)

If the inequality is reversed, g is called submodular [54].

We will require the following key result [54].

Theorem 22. If g(i,x) is supermodular (submodular) on I×X, then the (largest) max-

imizer of g(i,x) for a given i:

f (i) = max{x′ : x′ ∈ argmax
x

g(i,x)}

is increasing (decreasing) in i.

To prove Theorem 13, we show that Wn(a, i,cG,cO,x) is submodular in (i,x). The

monotonicity of x∗n(a, i,cG,cO) in i then follows from Theorem 22. First, we prove

some lemmas.

The following lemma provides a necessary and sufficient condition for submodular-

ity.

Lemma 53. Let g(i,x) be a function with domain being integer values of x and real val-

ues of i. g(i,x) is submodular in (i,x) if and only if g(i,x)−g(i,x+1) is an increasing
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function of i for all x.

Proof. The necessity directly follows from the definition of submodularity. We now

prove sufficiency. Suppose g(i,y)− g(i,y+ 1) is an increasing function of i for all y.

For an integer z > 0:

g(i,x)−g(i,x+ z) = [g(i,x)−g(i,x+1)]+ . . .+[g(i,x+ z−1)−g(i,x+ z)]

So g(i,x)−g(i,x+ z), being the sum of increasing functions, is increasing in i.

Hence, for x− < x+, g(i,x−)−g(i,x+) is increasing in i. So for i− < i+:

g(i−,x−)−g(i−,x+)≤ g(i+,x−)−g(i+,x+)

Hence, g(i,x) is submodular in (i,x) by definition.

For m ≥ 1, define 30

imn (a,cG,cO) = max{i : x∗n(a, i,cG,cO)≥ m} . (250)

Lemma 54. If x∗n(a, i,cG,cO) is monotone decreasing in i, then

i1n(a,cG,cO)≥ i2n(a,cG,cO)≥ . . .≥ iM−a
n (a,cG,cO)

Also, x∗n(a, i,cG,cO) = m if and only if imn (a,cG,cO)≥ i > im+1
n (a,cG,cO).

Proof. The result follows by definition of imn (.).

The next lemma establishes a sufficient condition for monotonicity of x∗n(i,a,cG,cO).

30If x∗n(a, i,cG,cO)< m ∀i, then let imn (a,cG,cO) be equal to the smallest demand state.
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Lemma 55. Fix n. Suppose Vn−1(a, j,dG,dO)−Vn−1(a+1, j,dG,dO) is an increasing

function of j for each a, dG and dO. Then x∗n(a, i,cG,cO) is monotone decreasing in i

for each a,cG and cO.

It is important to note that the lemma requires Vn−1(a, j,dG,dO)−Vn−1(a+1, j,dG,dO)

to be increasing in j for a fixed n, and asserts that x∗n(a, i,cG,cO) is monotone decreasing

in i for that n.

Proof. By (236):

Wn(a, i,cG,cO,x)−Wn(a, i,cG,cO,x+1)

=−α(n)cG+[J(a+ x, i,cO)− J(a+ x+1, i,cO)]

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi j (Vn−1(a+ x, j,dG,dO)

−Vn−1(a+ x+1, j,dG,dO))

The first term on the right hand side is constant, the second term is increasing in i by

Property 6 and the third term is increasing in i since Vn−1(a+ x, j,dG,dO)−Vn−1(a+

x+1, j,dG,dO) is increasing in j and by Condition 1.

So Wn(a, i,cG,cO,x)−Wn(a, i,cG,cO,x+1) is increasing in i. Hence, by Lemma 53,

Wn(a, i,cG,cO,x) is submodular in (i,x) and so by Theorem 22, x∗n(a, i,cG,cO) is mono-

tone decreasing in i.

The next lemma is a simple consequence of (238).

Lemma 56. Fix n. If x∗n(a, i,cG,cO) is monotone decreasing in i for each a,cG,cO, then

im+1
n (a,cG,cO) = imn (a+1,cG,cO) for m = 1,2, . . ..
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Proof. Fix cG and cO, and let m ≥ 1. Separately with a and with a+1, start with i = M

(the highest demand state) and keep decreasing it to the next lower state, one at a time.

By (238), the maximum i at which x∗n(a, i,cG,cO) ≥ m+1 is precisely the maximum i

at which x∗n(a+1, i,cG,cO)≥ m. So im+1
n (a,cG,cO) = imn (a+1,cG,cO) by definition of

imn (.).

Lemma 57. For each n, Vn(a, i,cG,cO)−Vn(a+ 1, i,cG,cO) is an increasing function

of i for each a,cG,cO.

Proof. We prove the claim by induction. Since V0(a, i,cG,cO)≡ 0, the claim is true for

n = 0.

Suppose the statement is true for n−1, i.e., Vn−1(a, j,dG,dO)−Vn−1(a+1, j,dG,dO)

is an increasing function of j for each a,dG,dO. Then by Lemma 55, x∗n(a, i,cG,cO) is

monotone decreasing in i. Hence, by Lemma 56, im+1
n (a,cG,cO) = imn (a+1,cG,cO) for

m = 1,2, . . ..

Now, we show that Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO) is an increasing function of

i. Fix a,cG and cO. We have the following cases:

Case 1: i > i1n(a,cG,cO)

By Lemma 54 and Lemma 56:

i > i1n(a,cG,cO)≥ i2n(a,cG,cO) = i1n(a+1,cG,cO)
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So by Lemma 54, x∗n(a, i,cG,cO) = x∗n(a+1, i,cG,cO) = 0. Hence, by (235) and (236):

Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO)

= Wn(a, i,cG,cO,0)−Wn(a+1, i,cG,cO,0)

= (J(a, i,cO)− J(a+1, i,cO))

+ ∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi j(Vn−1(a, j,dG,dO)

−Vn−1(a+1, j,dG,dO)) (251)

Case 2: imn (a,cG,cO)≥ i > im+1
n (a,cG,cO), where m ≥ 1.

By Lemma 54, x∗n(a, i,cG,cO) = m and hence by Theorem 12, x∗n(a+ 1, i,cG,cO) =

m−1. So by (235) and (236) and some cancellation of terms, we get:

Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO)

= Wn(a, i,cG,cO,m)−Wn(a+1, i,cG,cO,m−1)

= α(n)cG (252)

By (251) and (252), Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO)

=





α(n)cG if i ≤ i1n(a,cG,cO),

(J(a, i,cO)− J(a+1, i,cO))

+∑dG
∑dO

HG
cGdG

HO
cOdO

∑ j Qi j(Vn−1(a, j,dG,dO)

−Vn−1(a+1, j,dG,dO)) if i > i1n(a,cG,cO).

The expression for Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO) for i> i1n(a,cG,cO) is an increas-

ing function of i by Property 6, induction hypothesis and Condition 1. Thus, to show

that Vn(a, i,cG,cO)−Vn(a+1, i,cG,cO) is increasing in i, it is sufficient to show that for
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i > i1n(a,cG,cO):

(J(a, i,cO)− J(a+1, i,cO))

+∑
dG

∑
dO

HG
cGdG

HO
cOdO ∑

j

Qi j(Vn−1(a, j,dG,dO)

−Vn−1(a+1, j,dG,dO))≥ α(n)cG (253)

By (236), (253) is equivalent to Wn(a, i,cG,cO,0) ≥ Wn(a, i,cG,cO,1), which is true

because x∗n(a, i,cG,cO) = 0 for i > i1n(a,cG,cO). The result follows.

From the above lemmas, we get the desired monotonicity of x∗n(i,a,cG,cO).

Proof of Theorem 13. Fix n, a, cG and cO. By Lemma 57, Vn−1(a, j,dG,dO)−Vn−1(a+

1, j,dG,dO) is an increasing function of j for each dG,dO. The result follows by

Lemma 55.

Proof of Theorem 14. The proof is very similar to the proof of Theorem 13 and hence

omitted.

6.5.2 Proofs of results in Section 6.2.4

Proof of Theorem 15. We show that the Maximum Independent Set (MIS) problem is a

special case of Primary-SCTM. Consider the following special case of Primary-SCTM:

M = 1, T = 1. At each node, the primary’s demand is always 0, and the prices of Type

G and O contracts are fixed, equal to 1
2

and 1 respectively. Thus, it is optimal never to

sell a type G contract.
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The Primary-SCTM problem reduces to that of finding a maximum independent set

of nodes (at which to sell Type O contracts). The result follows, since the MIS problem

is NP-Hard [35].

Proof of Lemma 51. Let Nt
e, j be the number of Type- j contracts ( j ∈ {G,O}) sold by a

policy P in slot t on channel e. We make the following key observations:

(1) The revenue of any policy depends only on the number of Type-G and Type-O

contracts it sells on each channel, in each slot, independent of which nodes it sells them

at. That is, the revenue of the policy P is completely determined by:

{Nt
e,G,N

t
e,O : e = 1, . . . ,M; t = 1, . . . ,T}

This follows from the fact that on each channel, the prices of both types of contracts

and the usage status (i.e., whether or not the primary is using the channel for subscriber

demand satisfaction) are the same at all nodes.

(2) For every policy, on each channel, at any time, the total number of Type-G and

Type-O contracts currently leased is at most equal to |I(S)|.

That is, for the above policy P, for every slot t:

t

∑
τ=1

Nτ
e,G +Nt

e,O ≤ |I(S)|, e = 1, . . . ,M (254)

This follows from the fact that I(S) is a maximum independent set.

Now, let P be an optimal policy. Consider a policy f ∈ F , which initially finds a

maximum independent set I(S). Also, whenever P sells a contract, f sells the same

type of contract on the same channel at a node in I(S) at which no contract has been
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sold on this channel. More precisely, number the nodes in I(S) from 1 to |I(S)|. In slot

t, on channel e, policy f sells Type-G contracts at the nodes ∑t−1
τ=1 Nτ

e,G+1 to ∑t
τ=1 Nτ

e,G

and Type-O contracts at the nodes ∑t
τ=1 Nτ

e,G+1 to ∑t
τ=1 Nτ

e,G+Nt
e,O. It can be checked

that on each channel e, (a) for policy f , two or more contracts never stand leased at the

same node and (b) by (254), in each slot t, f finds enough nodes in I(S) to sell contracts

at.

Now, by observation (1), the revenue of f is the same as that of P, and therefore f

is optimal.
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Chapter 7

A Spectrum Auction Framework for

Joint Access Allocation to Primaries

and Secondaries

7.1 Introduction

Recall from Section 1.1 that there are two possibilities for spectrum allocation in CRNs–

one-step and two-step allocation. In Chapters 2 to 6, we focussed on the two-step allo-

cation scenario. In this chapter, we consider the one-step allocation scenario; recall that

in this scenario, a regulator such as the Federal Communications Commission (FCC)

in the United States jointly allocates the rights to be the primary and the secondary

networks on its channels in a single allocation.
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Different networks may attach different value to being primary and secondary. A

network may wish to mainly transmit delay-sensitive traffic like voice or video. Such

a network will attach a high value to the rights to be primary. On the other hand, a

network may be mainly interested in transmitting delay-insensitive traffic like email or

file transfer. Such a network would not need primary rights and would prefer secondary

rights since the latter would be priced lower than the former. Also, a network whose

traffic is a mixture of delay-sensitive and delay-insensitive traffic would want primary

rights on some channels and secondary rights on some channels.

Auctions are suitable for selling the rights to be primary and secondary on the chan-

nels. Since the regulator need not know the values that bidders attach to primary and

secondary rights, auctions provide a mechanism for the regulator to get a higher rev-

enue than that obtainable through static pricing [22]. Auctions are also beneficial for

the bidders since in general they assign goods to the bidders who value them most [22].

FCC has been conducting spectrum auctions since 1994 to allocate licenses for radio

spectrum [1] (however, so far, no auctions have been conducted for cognitive radio

networks).

In this chapter, we develop a comprehensive auction framework for the one-step

allocation scenario, using which a regulator can simultaneously allocate the rights to

be primary and secondary on the channels. One-step allocation may be more desirable

than its two-step counterpart in certain cases. For example, one-step allocation gives a

greater degree of control to the regulator. In particular, it allows the regulator to choose
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a “socially beneficial” channel allocation that maximizes the social welfare. Note that

in one-step allocation, a network can bid for, and can even be granted, primary and

secondary access to more than one or even all channels. Also, the allocation resulting

from two-step allocation may indeed turn out to be that for one-step allocation but only

when it is the most socially beneficial allocation.

We consider a scenario in which the regulator conducts an auction to sell the rights

to be primary and secondary networks on a set of channels. Networks can bid for these

rights based on their utilities and traffic demands. The regulator uses these bids to solve

the access allocation problem, i.e., the problem of deciding which networks will be the

primary and secondary networks on each channel. The goal of the regulator may be

either to maximize its revenue or to maximize the social welfare of the bidding net-

works. Now, networks can have utilities or valuations that are functions of the number

of channels on which they get primary and secondary rights, how many and which other

networks they share these channels with etc. The number of valuations of a network

may be large and an exponential amount of space may be required to express a bid

for each valuation. So we design bidding languages, that is, compact formats for net-

works to express bids for their valuations. For different bidding languages, we design

algorithms for the access allocation problem.

This chapter is organized as follows. We describe the system model in Section 7.2.

In Section 7.3, we describe how the bidding languages and algorithms that we design

in the paper can be used to maximize the auctioneer’s revenue or to maximize social
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welfare. In Section 7.4, we describe a model in which the bids of a network depend on

which other networks it shares a channel with. In Section 7.4.1, we design an optimal

algorithm for the access allocation problem for a simple case with only one secondary

network on each channel. We show the intractability (NP-Competeness of the access

allocation problem or exponential size of bids) of the extensions of this simple case

in Section 7.4.2. In Section 7.5, we consider the case in which the bids of a network

are independent of which networks it shares a channel with and provide an optimal

dynamic programming algorithm for the access allocation problem in Section 7.6. The

algorithm is polynomial-time when the number of possible cardinalities of the set of

secondary networks on a channel is upper-bounded. In Section 7.7, we describe a bid-

ding language that can be used for the independent bids case for an arbitrary number

of cardinalities of the set of secondary networks on a channel and provide a greedy 2-

approximation algorithm for the access allocation problem. In Section 7.8, using simu-

lations, we show that the above approximation algorithm in fact performs optimally in

a variety of scenarios.

7.2 System Model

We consider a scenario in which there are M identical orthogonal channels in a region.

A regulator conducts an auction to sell the rights to be the primary and secondary

networks on the channels. N bidders participate in the auction. Each bidder is an

independent network of multiple wireless nodes. Each bidding network submits bids to
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the regulator and based on the bids, the latter allocates the rights to be the primary and

secondary networks on the channels.

A primary network on a channel must have priortized access to the channel. If two

or more independent networks were to be the primary networks on a single channel,

then the access of each one of them would be constrained by the transmissions of the

other primary networks, which would transmit at the same priority level. To avoid this,

we assume that there is exactly one primary network on each channel. However, we

allow multiple networks to have secondary rights on a channel.

We assume that all the secondary networks on a channel have equal rights on the

channel. This is because complicated multiple access protocols [5] would be required

to grant access at different priority levels to different secondary networks on a channel

(with all of them getting lower priority access than the primary network). On the other

hand, simple multiple access protocols would suffice if all secondary networks have

equal rights on the channel.

Now, since a primary network has priortized access on a channel, the average delay

of its traffic is low. On the other hand, the average delay of a secondary network’s

traffic is high. Hence, primary rights (respectively secondary rights) are suitable for

communicating delay-sensitive (respectively delay-insensitive) traffic. We assume that

each network has two kinds of traffic: (a) delay-sensitive traffic like voice, video etc.

and (b) delay-insensitive or elastic traffic like email, file-transfer etc. A network uses its

primary rights to transmit its delay-sensitive traffic and its secondary rights to transmit
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its elastic traffic.

A single network i may be both the primary network and one of the secondary net-

works on a channel. In this case, we assume that it transmits its delay-sensitive traffic

as a primary network, i.e., with high-priority, and when it does not have any delay-

sensitive traffic to transmit, it transmits its elastic traffic as a secondary network. Also,

the other secondary networks on the channel can transmit whenever network i is not

transmitting its delay-sensitive traffic.

Let K be the set of all possible ways in which the M channels can be allocated to the

N bidders. For example, consider the simple case in which M = 3, N = 9 and there can

be at most four secondary networks on a channel. An example of an allocation of the

channels is one in which network 1 becomes the primary network on channels 1 and

2, network 2 becomes primary on channel 3, network 3 becomes the sole secondary

network on channel 1, networks 4 and 5 become secondary networks on channel 2,

networks 1, 4, 6 and 7 become secondary networks on channel 3 and networks 8 and 9

do not become primary or secondary networks on any channel.

Let xi(k) be network i’s valuation or utility from the channel allocation k ∈ K, i.e.,

the value that it conjectures or expects to derive from the allocation k when it submits

the bids. Note that since network i will share channels with other networks in the

allocation k, the actual utility that network i will derive from an allocation k after the

networks start using the allocated channels depends on the transmission patterns of the

other networks that are not completely known to network i when it submits the bids.
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So a network can only submit bids based on the expected utilities xi(k), which reflect

its expectations about the actual utilities that it will eventually get. Henceforth, we

use the terms valuation or utility for xi(k), but they should be understood to mean the

conjectured utility or valuation of network i for the channel allocation k.

The valuations xi(.) of network i for the allocations in K depend on its traffic de-

mands, i.e., the volumes of delay-sensitive and elastic traffic that it wants to transmit.

Now, for given traffic demands, the valuation of a network i for a channel allocation

k ∈ K may depend upon the number of channels on which network i has primary and

secondary rights in the allocation k, how many and which other networks have rights

on each of the channels on which network i has primary or secondary rights etc. For

example, a network that wants to transmit a lot of delay-sensitive traffic will ascribe a

high valuation to an allocation in which it is primary on several channels. Note that

network i may have the same valuation for different allocations k ∈ K.

Network i’s net utility is of the form:

ui(k,τi,xi) = xi(k)− τi (255)

where τi is the payment that network i makes to the auctioneer. The auctioneer de-

termines the channel allocation and the payment τi that each network i makes to the

auctioneer. The social welfare of an allocation k is defined to be the quantity:

N

∑
i=1

xi(k)

Thus, the social welfare is the sum of utilities of all bidders from the allocation k.
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Now, there could be two goals for designing the auction: revenue maximization

and maximizing social welfare. In the first goal, based on its valuations, each network

submits a set of bids to the auctioneer. Let zi(k) be the bid of network i for the allocation

k ∈ K, i.e., the amount of money it is willing to pay if the allocation k ∈ K is chosen.

Let k∗ be the channel allocation that maximizes the revenue of the auctioneer, given the

bids zi(.) for bidders 1, . . . ,N. That is, k∗ satisfies:

N

∑
i=1

zi(k
∗)≥

N

∑
i=1

zi(k) ∀k ∈ K (256)

In the second goal of maximizing social welfare, zi(.) are not the bids of the networks,

but have a different interpretation: they are the declared valuations of the networks

(explained in Section 7.3). In this case, the channel allocation that maximizes the social

welfare of the N networks can again be found by finding the k∗ satisfying equation

(256).

For both goals, the access allocation problem is to determine the channel allocation

k∗ satisfying (256). Depending on the interpretation of zi(.), this allocation k∗ either

maximizes the auctioneer’s revenue or the social welfare of the N networks.

Now, the set K of possible channel allocations may be exponential in size. Hence,

the total number of different valuations of network i may be exponential in general.

However, it is not computationally tractable to communicate a bid for each valuation

in this large set. So we introduce bidding languages for the auction models that we

consider. A bidding language [13] is a format to compactly encode the bid information

of a bidder. When there are an exponential number of valuations, a bidding language
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expresses the bids approximately, not exactly.

We now remark on some implementation issues: (i) One way in which the regula-

tor can implement the auction is by deploying a central controller in the region, which

would periodically collect bids that are sent by the bidding networks over a common

control channel, compute the channel allocation and payments and send them to the

bidders over the control channel. (ii) The frequency at which auctions are conducted

is determined by the following tradeoff: the higher the frequency, the more respon-

sive is the channel allocation to changes in traffic demands and higher is the spectrum

utilization, but the overhead is also higher. Hence, the inverval between successive auc-

tions is chosen to be as small as possible while ensuring that the overhead is below an

acceptable limit.

7.3 Solution Framework

As stated earlier, an auction could be designed for two different objectives. In our con-

text, the first objective is to choose the channel allocation that maximizes the regulator’s

revenue for a given set of bids of the bidders. This can be done by choosing the allo-

cation k∗ satisfying (256) when zi(k) is the bid of network i for the channel allocation

k.

The second possible objective for the auction could be to achieve efficiency, that

is, to choose the allocation that maximizes social welfare. To this end, each bidder is

asked to declare its valuation function xi(.). With an abuse of notation, let zi(k) denote
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the declared valuation of network i for the allocation k, which may be different from

xi(k) if bidder i believes that falsely declaring its valuations will improve its net utility.

Truth-telling is said to be a weakly-dominant strategy [42] for network i, if for any

possible declarations of networks other than i, the net utility of network i is maximized

when it sets zi(k) = xi(k) ∀k ∈ K. It follows from the revelation principle [42] that to

maximize social welfare, it is sufficient to consider mechanisms in which the payments

τi are chosen such that for each bidder i, truth-telling is a weakly dominant strategy.

Such a mechanism is called incentive compatible.

To date, the Vickrey-Clarke-Groves (VCG) mechanism [42] is the only known gen-

eral incentive compatible mechanism that can be used to maximize social welfare. Un-

der this mechanism, given the declared valuation functions zi(.) of the bidders, the

allocation k∗ satisfying (256) is chosen. Let k∗−i be the allocation which would have

maximized the social welfare if network i did not participate in the auction. That is, k∗−i

satisfies:

N

∑
j=1, j 6=i

z j(k
∗
−i)≥

N

∑
j=1, j 6=i

z j(k) ∀k ∈ K (257)

Under the VCG mechanism, the payment made by network i to the auctioneer is given

by:

τi =
N

∑
j=1, j 6=i

z j(k
∗
−i)−

N

∑
j=1, j 6=i

z j(k
∗) (258)

The key to implementing the VCG mechanism is to find the allocations k∗ and k∗−i,

i = 1, . . . ,N. Now, k∗ can be found using an algorithm for the access allocation prob-

lem (256) and k∗−i can be found by running the same algorithm on the set of bidders
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{1, . . . ,N}\i.

Now, in general, the set of different valuations of a bidding network is exponential

in size. First, we consider the special case when the number of different valuations of

each bidding network is of poynomial space complexity. But K can still be exponential

in size. This is because a bidder may have the same valuation for two or more allo-

cations in K. Even in this case, it is sometimes computationally intractable to devise

an algorithm to find the optimal allocation k∗ satisfying (256), possibly because this

is NP-hard, but instead an approximation algorithm for the access allocation problem

can be devised. In this case, if the payments are chosen according to the VCG formula

(258) with sub-optimal allocations instead of k∗ and k∗−i, then truth-telling is no longer

a weakly dominant strategy for the bidders. To address this problem, Nisan and Ro-

nen [45] devised the second-chance mechanism under which, the auctioneer publishes

the sub-optimal algorithm that it will use for the access allocation problem. Each bidder

submits its (declared) valuations zi(.) and a so-called appeal function (see [45]) to the

auctioneer. Each bidder optimizes the valuations and the appeal functions to submit so

as to maximize its own utility. The auctioneer specifies a time limit by which the val-

uations and appeal functions must be submitted. The auctioneer uses the sub-optimal

algorithm for the access allocation problem to find the channel allocation using the sub-

mitted valuations and appeal functions. The VCG formula (258) is used to determine

the payment that each bidder will make. Now, the strategic knowledge of a bidder i is a

function that for a set of valuations submitted by the other bidders, gives the valuation

229



that bidder i must declare so as to get the maximum utility. It is shown in [45] that

when there is a bound on the time each bidder i can take to compute its strategic knowl-

edge and when the time limit allowed to each bidder to compute the valuations and

appeal functions to submit is at least as much as this bound, then truthfully declaring

the valuation function is a dominant strategy for each bidder under the second-chance

mechanism. Moreover, the social welfare attained by the second-chance mechanism is

at least as good as the social welfare of the sub-optimal algorithm used for the access

allocation problem.

Now, in some cases, the set of valuations of a bidder takes an exponential amount

of space and hence bidders have to use incomplete bidding languages (see Section 7.2)

to convey their valuations. In this case as well, incentive compatibility does not hold

if the VCG formula (258) is used for payments. As a solution to this problem, Ro-

nen [56] devised the extended second-chance mechanism. In these mechanisms, each

bidder submits a description of its set of valuations in some bidding language, an appeal

function, and an oracle [56], which is a program that can be queried by the auctioneer

for the bidder’s valuation. The auctioneer determines an allocation based on the above

submitted quantities using a (possibly sub-optimal) algorithm for the access allocation

problem. It is shown in [56] that under reasonable assumptions (see [56]), truth-telling

is a dominant strategy for the bidders under the extended second-chance mechanism.

Note that in addition to incentive compatibility, the VCG, second-chance and ex-

tended second-chance mechanisms have the desirable property of individual rational-
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ity [42], i.e., bidders get a non-negative utility when they participate in the auction.

In this paper, we propose several spectrum auction models and design bidding lan-

guages and algorithms for the access allocation problem. These can be used for the ob-

jective of maximizing the revenue of the auctioneer or for maximizing the social welfare

of the bidders in conjunction with the VCG, second-chance or extended second-chance

mechanism, as appropriate. In particular, in Section 7.4.1, we describe an auction

model that allows networks to completely express their bids under certain assumptions

(Assumptions 3 and 4). We provide a polynomial-time algorithm that finds the optimal

solution in the access allocation problem. This algorithm can be used to maximize the

auctioneer’s revenue or, in conjunction with the VCG mechanism, to maximize the so-

cial welfare of the bidders. In the auction model in Section 7.5, we provide a bidding

language that allows bidders to completely express their bids when they have no knowl-

edge of the channel usage behavior (defined in Section 7.4) on a channel of the other

bidders and approximately express their bids when they have this knowledge. Sec-

tion 7.6 provides a polynomial-time algorithm to optimally solve the access allocation

problem for the model in Section 7.5 when the number of cardinalities of the set of sec-

ondary networks on a channel is upper-bounded. When bidders have no knowledge of

the channel usage behavior of other bidders, this algorithm can be used to maximize the

auctioneer’s revenue or to maximize social welfare in conjunction with the VCG mech-

anism. When bidders have this knowledge, the algorithm can be used to maximize the

auctioneer’s revenue or in conjunction with the extended second-chance mechanism to
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maximize social welfare. Finally, in the auction model in Section 7.7, we provide a

bidding language and a 2-approximation algorithm for the access allocation problem

that is polynomial-time for an arbitrary number of cardinalities of the set of secondary

networks on a channel. This algorithm can be used to approximate the maximum rev-

enue of the auctioneer or in conjunction with the extended second-chance mechanism

to approximate the maximum social welfare.

For notational convenience, throughout the paper, we assume that zi(.) are the bids

expressed by bidder i and view the access allocation problem as the problem of maxi-

mizing the revenue of the auctioneer. However, our framework applies without change

to the problem of maximizing social welfare.

7.4 Auction with Dependent Bids

A primary or secondary network on a channel shares the channel with other networks

and hence its actual utility from the channel depends on the transmissions of those net-

works. A network may have some knowledge or beliefs about the typical transmission

patterns of the other bidding networks. For example, the agency owning the network

may conduct a survey on the typical transmission patterns of the other networks in its

region or, if auctions are periodically conducted to allocate spectrum in the region, the

agency may gain this knowledge about the networks with whom it shared channels pre-

viously. Thus, the conjectured utilities and hence the bids of a network would depend

on which networks it will share different channels with.
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7.4.1 Basic Model

In the basic model with dependent bids, we consider the model described in Section 7.2

with the following additional assumptions.

Assumption 3. There is only one secondary network on each channel.

Assumption 4. Each network can be either the primary or the secondary network on

only one channel.

We explore the effect of relaxing either of these assumptions in Section 7.4.2. We

assume that N ≥ 2M, so that all M channels can be allocated.

A secondary network on a channel can use the channel whenever the primary net-

work is not using it. So the throughput and delay of the secondary network on the

channel depends on the channel usage behavior of the primary on the channel, i.e., on

the rate of its transmissions on the channel and how these transmissions are spread over

time. On the other hand, the primary network on a channel has priortized access to

the channel. That is, when the secondary network wants to transmit on the channel,

it senses the channel and can transmit only if it finds that the primary network is not

transmitting. However, due to the imperfect nature of sensing, the secondary network

will sometimes transmit while the primary network is transmitting, resulting in a colli-

sion. Hence the primary network’s utility depends on the channel usage behavior of the

secondary network on the channel. Thus, the actual utility of a primary or secondary

network depends on which network it shares a channel with. As explained above, a
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network may in general have certain beliefs about the channel usage behavior of other

networks and hence may wish to express bids dependent on the network with whom it

shares the channel. To model this, let

z
p
i ( j), j ∈ {1, . . . ,N}\{i}

be the bid of network i for the case when it is the primary network on a channel and

network j is the secondary network on the channel. Similarly, let

zs
i ( j), j ∈ {1, . . . ,N}\{i}

be the bid of network i for the case when it is the secondary network on a channel and

network j is the primary network.

Let

k = {(i1, j1), . . . ,(iM, jM)}

be an allocation of the M channels to a set of networks. k is a set of M orderered pairs

(it, jt) such that network it is the primary network on channel t and network jt is the

secondary network on channel t. Note that the revenue of the allocation k is:

M

∑
t=1

(z
p
it
( jt)+ zs

jt
(it))

We describe an algorithm for determining k∗, the allocation that maximizes the rev-

enue, by reduction to a maximum weight matching problem in a graph. Let G be a

weighted undirected graph with N nodes, one node corresponding to each network. G

is a complete graph, i.e., between every pair of nodes, there is an edge. Let the weight
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of the edge joining nodes i and j be

wi j = max(z
p
i ( j)+ zs

j(i),z
p
j (i)+ zs

i( j)) (259)

Note that the weights are nonnegative real numbers. The interpretation of the weights

wi j is as follows. If network i (respectively, network j) is the primary network on a

channel and network j (respectively, network i) is the secondary network, then the sum

of the amounts paid by networks i and j is z
p
i ( j)+zs

j(i) (respectively, zs
i ( j)+z

p
j (i)). So

wi j, the greater of these two quantities, is the maximum sum of payments of networks

i and j if they are the two networks on the same channel.

A matching M in a graph is defined to be a subset of the edges such that no two

edges in the subset share a common node. The weight of a matching is the sum of the

weights of its edges.

The following algorithm finds the channel allocation k∗ that maximizes the revenue:

STEP1: In graph G, find a matching M ∗
M of maximum weight among matchings

with exactly M edges 31 (we say how later).

STEP2: Let e1, . . . ,eM be the M edges in the matchingM ∗
M . Let e1

t and e2
t be the two

endpoints of edge et . The allocation k∗ is chosen such that for t = 1, . . . ,M, networks

e1
t and e2

t become the two networks (primary and secondary) on channel t. If

z
p

e1
t
(e2

t )+ zs
e2

t
(e1

t )≥ z
p

e2
t
(e1

t )+ zs
e1

t
(e2

t )

then network e1
t becomes the primary network on channel t and network e2

t becomes

31Note that there exists a matching with exactly M edges since there are N ≥ 2M nodes and G is a

complete graph.
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the secondary network, otherwise network e2
t becomes the primary network on channel

t and network e1
t becomes the secondary network.

Theorem 23. The allocation k∗ found from the matchingM ∗
M in the above algorithm is

the one that maximizes the revenue.

Proof. There is a many-to-one correspondence between the set of channel allocations

and the set of matchings with exactly M edges. (It is many-to-one since the alloca-

tions obtained from any allocation by swapping the roles of the primary and secondary

networks on one or more channels correspond to the same matching). From the inter-

pretation of the weight of an edge given above, it follows that the weight of a matching

MM has the maximum revenue among the revenues of the channel allocations that cor-

respond to it. Therefore, the weight of the maximum weight matching M ∗
M equals the

maximum revenue among the revenues of all the channel allocations. Also, note that

Step 2 of the above algorithm ensures that we select the channel allocation k∗, whose

revenue is the same as the weight of M ∗
M. It follows that the allocation k∗ found from

the matchingM ∗
M is the one that maximizes the revenue.

Now, it remains to show how to find the matching M ∗
M . Edmonds [17] gave a

polynomial-time algorithm for finding the maximum weight matching (with any num-

ber of edges) in a graph. However, we are interested in a maximum weight matching

among matchings with M edges, which cannot be directly obtained by Edmonds’ algo-

rithm. It can be obtained in O(M4 +M2N2) time 32 using White’s modification [72],

32Recall that a function f (n) is said to be O(g(n)) if there exist positive constants c and n0 such that
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[73] to Edmonds’ algorithm.

7.4.2 Intractability of Extensions

We now explore the effect of relaxing either one of Assumptions 3 and 4. Suppose

Assumption 3 is relaxed and Assumption 4 is retained. That is, we assume that each

network can be the primary or a secondary network on only one channel. However,

there can be multiple secondary networks on a channel. We show that even if there are

two secondary networks on a channel, the problem of finding a channel allocation that

maximizes the revenue is NP-complete.

Let z
p
i ( j1, . . . , jv−1) be the bid of network i for the case in which it is primary on a

channel and networks j1, . . . , jv−1 are secondary. Let zs
j1
(i, j2, . . . , jv−1) be the bid of

network j1 for the case in which network i is the primary and networks j1, . . . , jv−1 are

the secondary networks. Also, let z
p
i be the bid of network i for the case in which it is

primary on a channel with no secondary on the channel. We now define the r-Network

Dependent Bid Access Allocation Problem (r-DBA).

Definition 3 (The r-DBA Problem). Suppose M channels are to be allocated to N

bidders such that on each channel, one network is primary and at most r−1 networks

are secondary, where r is a fixed positive integer. Each bidder can be a primary or

secondary network on at most one channel and the bids of networks are as given above.

Find the allocation that maximizes the revenue.

f (n)≤ cg(n) for all n ≥ n0 [11].

237



We show that r-DBA is NP-Complete. To this end, we first show that a simpler ver-

sion of r-DBA, which we call the Exactly r-Network Dependent Bid Access Allocation

Problem (r-EDBA) is NP-Complete. The r-EDBA problem is defined in the same way

as r-DBA, except that on each channel, exactly r− 1 networks are secondary, instead

of at most r−1 networks.

Note that if in an instance of r-EDBA, N < rM, then there is no channel allocation

with r networks on each channel. In this case, we define the optimal revenue of the

r-EDBA instance to be −∞.

The decision version of r-DBA or r-EDBA is as follows: given a bound D, is there

a channel allocation such that the revenue under the allocation is at least D? We next

show that (the decision version of) 3-EDBA is NP-Complete.

Lemma 58. 3-EDBA is NP-Complete.

Proof. Given an allocation of the M channels, we can verify in polynomial time whether

the revenue under the allocation is at least D. This shows that 3-EDBA is in the class

NP.

Next, we show that the 3-Dimensional Matching problem (3DM), which is known to

be NP-complete [35], is polynomial-time reducible to 3-EDBA, i.e., 3DM ≤p 3-EDBA.

An instance of 3DM is as follows [35]: Given disjoint sets A, B, C of m elements each

and a set T of ordered triples of the form (a,b,c), where a ∈ A, b ∈ B and c ∈C, does

there exist a set of m triples in T so that each element of A∪B∪C is contained in exactly

one of these triples?
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From this instance of 3DM, we construct an instance of 3-EDBA as follows. Let

there be M =m channels and 3m networks– one network corresponding to each element

of A∪B∪C. We now design the bids, which will complete the construction. For every

set {i, j, l} of three networks such that (i, j, l) (or one of its permutations ( j, l, i), (l, j, i)

etc.) is a triple in T , define all of the following bids to be equal to 1
3
: z

p
i ( j, l), z

p
j (i, l),

z
p
l (i, j), zs

i ( j, l), zs
i (l, j), zs

j(i, l), zs
j(l, i), zs

l (i, j), zs
l ( j, i). For every set {i, j, l} of three

networks such that no permutation of (i, j, l) is a triple in T , let all of the above bids

be equal to 1
6
. In this 3-EDBA problem, we ask: is there a channel allocation of the m

channels with revenue of at least D = m? We claim that the answer is yes if and only if

the answer in the original 3DM problem is yes.

To prove sufficiency, suppose there exists a subset T ′ ⊆ T of m triples such that each

element of A∪B∪C is contained in exactly one of these triples. Let

T ′ = {(at,bt ,ct) : t = 1, . . . ,m}

Then allocate the m channels such that network at is the primary network and networks

bt and ct are the secondary networks on channel t, t = 1, . . . ,m. The revenue of this

allocation is:

m

∑
t=1

{zp
at
(bt,ct)+ zs

bt
(at ,ct)+ zs

ct
(at ,bt)}

=
m

∑
t=1

{
1

3
+

1

3
+

1

3

}

= m

Hence, the answer in the 3-EDBA problem is yes.
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Conversely, suppose there exists an allocation of the m channels with revenue of at

least m. In this allocation, let at be the primary and bt and ct be the secondary networks

on channel t, t = 1, . . . ,m. If (at ,bt ,ct) or its permutation is a triple in T , then the sum

of payments of networks at , bt and ct is 1, else it is
{

1
6
+ 1

6
+ 1

6

}
= 1

2
. Since there are

m channels and the revenue of the allocation is at least m, it follows that the revenue

is exactly m and that for each t, (at ,bt ,ct) or one of its permutations is a triple in T .

Moreover, since each network can be the primary or a secondary network on only one

channel, it follows that each of the 3m networks is a primary or secondary network

on exactly one channel. Hence, the m triples in T corresponding to (at ,bt,ct) or its

permutation for t = 1, . . . ,m are such that each element of A∪B∪C is contained in

exactly one of the triples. So the answer to the 3DM problem is yes. This shows that

3DM ≤p 3-EDBA and hence that 3-EDBA is NP-Complete.

By an analogous reduction from r-Dimensional Matching, it can be shown that r-

EDBA is NP-Complete for fixed r > 3. Note that for r > 3, r-Dimensional Matching is

NP-Complete, which follows from a trivial reduction from 3-Dimensional Matching.

Now we show that for any fixed r ≥ 3, (the decision version of) r-DBA is NP-

Complete by a reduction from r-EDBA.

Theorem 24. For r ≥ 3, r-DBA is NP-Complete.

Proof. Clearly, r-DBA is in the class NP.

Now we show that r-EDBA ≤p r-DBA. From any instance of r-EDBA with given
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M, N, D and bid functions z
p
i (.) and zs

i (.), we construct an instance of r-DBA as follows.

The number of channels, number of networks and the bound on revenue are the same

as in the original r-EDBA instance (M, N and D respectively). The bids of network i

are given by:

z̃
p
i ( j1, . . . , jv−1) =





z
p
i ( j1, . . . , jv−1) if v = r

0 if 2 ≤ v < r

z̃s
i ( j1, . . . , jv−1) =





zs
i ( j1, . . . , jv−1) if v = r

0 if 2 ≤ v < r

and

z̃
p
i = 0

Recall that if N < rM, then there is no channel allocation in the r-EDBA instance

with exactly r networks on each channel. Hence, the answer to the decision version is

negative. Thus, let N ≥ rM. We now show that there exists a channel allocation with

revenue at least D in the r-EDBA instance if and only if there exists one such in the

r-DBA instance. If there is a channel allocation with revenue at least D in the r-EDBA

instance, then by construction of the bids in the r-DBA instance, the revenue of that

channel allocation is the same in the r-DBA instance and hence at least D.

Conversely, suppose there is a channel allocation k with revenue at least D in the

r-DBA problem. From this channel allocation, construct a channel allocation k′ for

the r-EDBA instance as follows: if there are r − 1 secondary networks on a channel

in k, let the primary and secondary networks on the channel be the same in k′. From
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the construction of bids in the r-DBA instance, it follows that the sum of payments of

the networks on this channel in k′ is the same as that in k. If there are v−1 secondary

networks on a channel l in k, where v< r, then on channel l in k′, let the same v networks

be primary and secondary and in addition, let r − v more networks be secondaries,

which were not primary or secondary on any channel in k. Such networks exist since

N ≥ rM. By the construction of the bids in the r-DBA instance, the sum of payments

of the networks on channel l in k is 0, whereas that in k′ is at least 0. Thus, the revenue

of allocation k′ is at least as much as the revenue of channel k and hence is at least D.

This shows that r-EDBA ≤p r-DBA. Since r-EDBA is NP-Complete as shown

above, it follows that r-DBA is NP-Complete.

Note that in the r-DBA problem, if r is unbounded, then each bidder i would have

to submit an exponential number of bids z
p
i ( j1, . . . , jv−1) and zs

i ( j1, . . . , jv−1).

Now, suppose we relax Assumption 4 and retain Assumption 3. Then each net-

work can become a primary or secondary network on up to M channels. As explained

above, the utility of a network from the primary or secondary rights on a given channel

depends upon the channel usage behavior of the network it shares the channel with.

However, the channel usage behavior of this network on the channel may in turn de-

pend upon the number of channels on which it has primary and secondary rights and the

channel usage behavior of the networks it shares those channels with and so on. Thus,

in general, the utility of a network may depend upon which networks are the primary

and secondary networks on each channel. The number of possible ways of choosing
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the primary and secondary networks on the M channels is clearly exponential. Thus,

relaxing Assumption 4 would require each network to express an exponential number

of bids in the auction with dependent bids, which is computationally intractable.

7.5 Auction with Independent Bids

In Section 7.4, we noted that when networks have some knowledge of the channel

usage behavior of other networks, they would like to express bids dependent on which

networks they will share channels with. However, it is quite possible in some scenarios

that networks have no knowledge of the channel usage behavior of the other bidding

networks. In this case, their conjectures about the utility that they will actually get

from a channel allocation would be based only on the number of channels on which

they will get primary and secondary rights and the number of other networks they will

share these channels with in the allocation and would be independent of which other

networks they will share channels with. Thus, they would submit bids, based on these

conjectured utilities, that are independent of which networks share different channels

with them.

Moreover, in Section 7.4.2, we showed that bids of exponential size are needed in

the auction with dependent bids when Assumptions 3 and 4 are relaxed. This motivates

the idea that even when networks have some knowledge of the channel usage behavior

of the other networks, we can obtain a compact bidding language, that is, a means for

networks to approximately convey their bids, by imposing the restriction that the bids
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of a network be independent of which other networks it shares different channels with.

We study the auction resulting from imposing this restriction in this section.

7.5.1 Model

Consider the model in Section 7.2 with the following additions. On each channel, one

network can be the primary network and m1, m2, . . . , m(n−1) or mn networks can be

the secondary networks, where 1 ≤ m1 < m2 < .. . < mn. Note that n is the number of

possible cardinalities of the set of secondary networks on a channel.

When the results of the auction are declared, let ni,0 be the number of channels on

which bidder i is the primary network. Let ni, j, j = 1, . . . ,n be the number of channels

on which bidder i is a secondary network along with m j −1 other secondary networks.

Suppose there are m j secondary networks on a channel. Recall from Section 7.2

that each of these m j secondary networks have equal rights on the channel. The share

of each of these networks in the secondary rights on the channel is called a secondary

part of type j. Also, the channel is said to be divided into m j secondary parts of type

j. Similarly, since exactly one network becomes a primary network on a channel, if

a network is the primary network on l channels, we say that it is allocated l primary

parts. Also, we refer to the throughput received by a network as a secondary network

as its secondary throughput.

In general, network i’s utility may depend not only on the total expected secondary

throughput that it gets, but also on the distribution of this secondary throughput over
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the M channels. For example, it may get the same expected secondary throughput (a)

if it is the secondary network on two channels with one other secondary network on

each and (b) if it is the sole secondary network on one channel. But it may prefer

one of these scenarios over the other. This is because a network has to sense different

channels on which it has secondary rights for ongoing transmissions and also commu-

nicate on them. There may be costs due to delays for switching the antennas of the

network’s nodes between different channels. To take into account this possibility, in

this section, we assume that the utility of network i depends not just on the expected

secondary throughput (and the number of primary parts) it receives, but on the vector

(ni,0,ni,1, . . . ,ni,n). We allow bidder i to submit bids as a function of this vector.

Each bidder i submits the following bid vector to the auctioneer:

{zi(ni,0,ni,1, . . .ni,n) : 0 ≤ ni,0,ni,1, . . .ni,n ≤ M,

ni,1 +ni,2 + . . .+ni,n ≤ M;ni, j integer, j = 0,1, . . .n}

where zi(ni,0,ni,1, . . .ni,n) is network i’s bid for becoming the primary network on ni,0

channels and becoming a secondary network on ni, j channels along with m j −1 other

secondary networks, for j = 1,2, . . .n.

7.5.2 Feasible Allocation

We say that an allocation {ni, j : i = 1, . . . ,N; j = 0, . . . ,n} is feasible if it is possible to

assign to networks, the rights to be primary and secondary on each of the M channels

such that network i, i = 1, . . . ,N is allocated ni,0 primary parts and ni, j secondary parts
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of type j for j = 1, . . . ,n. The following lemma describes necessary and sufficient

conditions for an allocation to be feasible.

Lemma 59. An allocation {ni, j : i = 1, . . . ,N; j = 0, . . . ,n} is feasible if and only if

ni,0,ni,1 . . .ni,n for i = 1, . . . ,N are integers such that for some nonnegative integers

M j, j = 1, . . .n satisfying M1 + . . .+Mn = M:

0 ≤ ni,0 ≤ M, i = 1, . . . ,N (260)

N

∑
i=1

ni,0 = M (261)

0 ≤ ni, j ≤ M j, i = 1, . . . ,N; j = 1, . . . ,n (262)

N

∑
i=1

ni, j = m jM j, j = 1, . . . ,n (263)

Note that the integer M j in the above lemma corresponds to the number of channels

that are divided into m j secondary parts of type j. We assume that the number of bidders

is at least m1 so that a feasible allocation exists.

Proof. The necessity of all conditions is obvious. Now we show sufficiency. Suppose

all the above conditions are satisfied. We construct a feasible allocation. Allocate ni,0

primary parts to network i for i = 1, . . . ,N. Since ∑N
i=1 ni,0 = M, each primary part is

allocated exactly once. Now consider the M j channels divided into m j secondary parts.

Label the m j secondary parts of type j on each of these channels from 1 to m j. Also,

label the M j channels from 1 to M j. Now consider the following order of the m jM j

secondary parts of type j: secondary part 1 of channel 1, part 1 of channel 2, . . . , part

1 of channel M j, part 2 of channel 1, part 2 of channel 2, . . . , part 2 of channel M j,
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. . . , part m j of channel 1, part m j of channel 2, . . . , part m j of channel M j. Now, with

secondary parts in the above order, first allocate n1, j secondary parts to network 1, then

n2, j parts to network 2, . . . , then nN, j parts to network N. Since ∑N
i=1 ni, j = m jM j, in

this way it is possible to allocate each secondary part of type j exactly once. Also, since

ni, j ≤ M j∀i, it is clear that no network is assigned two or more secondary parts on the

same channel. Hence the allocation is feasible.

From a feasible allocation {ni, j : i = 1, . . . ,N; j = 0, . . . ,n}, it is easy to construct

a consistent specification of the primary and secondary networks on each channel.

Hence, the access allocation problem reduces to finding a feasible allocation {ni, j :

i = 1, . . . ,N; j = 0, . . . ,n} that maximizes the auctioneer’s revenue given the submitted

bid vectors zi(.).

Let

k = {ni, j : i = 1, . . .N; j = 0, . . . ,n} (264)

denote a feasible allocation. Let K be the set of all feasible allocations.

7.6 Optimal Solution of Access Allocation Problem

In this section, we present an algorithm for optimally solving the access allocation prob-

lem for the auction described in Section 7.5. The algorithm is polynomial-time when

n, the number of possible cardinalities of the set of secondary networks on a channel,

is fixed (and mn is allowed to grow with the problem size). This special case can be
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useful in practice because even with small n, flexibility in channel allocation can be

achieved by choosing m1, . . . , mn judiciously. For example, with n = 3, we can choose

m1 = 1, m2 = 4 and m3 = 8. In this case, large chunks of secondary throughput can be

allocated to a network by having it the sole secondary network on several channels and

small chunks can be allocated to networks by having 4 or 8 networks share a channel.

7.6.1 Algorithm Description

A dynamic programming algorithm is given in [67] and [13] for the winner determi-

nation problem in a combinatorial auction with multiple units of a fixed number of

different types of objects. We generalize the algorithm in [67], [13] in two directions:

(a) the objects in a combinatorial auction are indivisible, whereas we need to decide into

how many secondary parts to divide each channel and (b) in our auction, the allocation

has to be feasible according to the conditions in Lemma 59.

We first summarize the algorithm. Given the bids zi(.), our goal is to find the alloca-

tion k∗ that maximizes revenue. For each set of nonnegative integers M1, . . . , Mn such

that M1+ . . .+Mn = M, a dynamic programming algorithm is used to find out the max-

imum revenue and the maximizing channel allocation when M j channels are divided

into m j secondary parts, j = 1, . . . ,n. Then we maximize over all sets of M1, . . . ,Mn to

find the optimal set M∗
1, . . . ,M

∗
n .

We now give the details of the algorithm. Fix M1, . . . ,Mn such that M1+ . . .+Mn =

M. Let T ( j0, j1, . . . jn, i) denote the maximum possible revenue from all participating
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networks when j0 primary parts and jt secondary parts of type t, t = 1, . . . ,n, are to

be allocated and networks 1, . . . , i are participating in the auction. More precisely, let

K( j0, j1, . . . , jn, i) be the set of allocations ki = {nv,t : v= 1, . . . , i; t = 0, . . . ,n} satisfying

the following conditions, which parallel the conditions in Lemma 59:

0 ≤ nv,0 ≤ M,v = 1, . . . , i (265)

i

∑
v=1

nv,0 = j0 (266)

0 ≤ nv,t ≤ Mt ,v = 1, . . . , i; t = 1, . . . ,n (267)

i

∑
v=1

nv,t = jt, t = 1, . . . ,n (268)

Then:

T ( j0, j1, . . . jn, i) = max{
i

∑
v=1

zv(nv,0,nv,1, . . . ,nv,n) :

ki ∈ K( j0, j1, . . . , jn, i)}

Thus, T (M,m1M1, . . .mnMn,N) is the maximum revenue from networks 1, . . . ,N when

M j channels are divided into m j secondary parts of type j, for j = 1, . . . ,n. We now

give a dynamic programming algorithm to find T (M,m1M1, . . .mnMn,N).

The following expression is used for finding the values of T ( j0, j1, . . . jn,1).

T ( j0, j1, . . . jn,1) =





z1( j0, j1, . . . , jn)

if j0 ≤ M, jt ≤ Mt , t = 1, . . . ,n

−∞ otherwise

(269)

The reason the above equation holds is as follows. Since there is only one network

(network 1), the only possibility is to allocate all parts to network 1. But if j0 > M,
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then n1,0 > M, which violates condition (265). Similarly, if jt > Mt , then n1,t > Mt ,

which violates condition (267). Hence if j0 > M or jt > Mt , then T (.) is set to −∞.

The following recursion is used for finding the values of T ( j0, j1, . . . jn, i) for i ≥ 2.

T ( j0, j1, . . . , jn, i) = max(

T ( j0 − l0, j1− l1, . . . , jn − ln, i−1)+ zi(l0, l1, . . . , ln) :

l0 ∈ {0,1, . . . ,min( j0,M)}, lv ∈ {0,1, . . . ,min( jv,Mv)},

v = 1, . . . ,n) (270)

In the above recursion, if l0 primary parts and lv secondary parts of type v, v = 1, . . . ,n

are allocated to network i, then it is willing to pay zi(l0, . . . , ln) and the maximum

revenue obtainable from networks 1, . . . , i− 1 for the remaining parts is by definition

T ( j0 − l0, j1 − l1, . . . , jn − ln, i−1). Moreover, lv ≤ jv since jv secondary parts of type

v are available and lv ≤ Mv by (267). So lv ≤ min( jv,Mv) for v = 1, . . . ,n and similarly

l0 ≤ min( j0,M). Equation (270) follows by maximizing the revenue from networks

1, . . . , i−1 over all possible values of l0, l1, . . . , ln.

A feasible channel allocation that achieves the maximum revenue T (M,m1M1, . . .mnMn,N)

for the fixed values M1, . . . ,Mn considered, can be found from the array T (.) by repeat-

edly finding the l0, l1, . . . , ln that achieve the maximum in the right side of (270).

For all sets M1, . . . ,Mn such that M1 + . . .+Mn = M, T (M,m1M1, . . .mnMn,N) and

the revenue maximizing allocation are found as explained above. Then the optimal set
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(M∗
1, . . . ,M

∗
n) is found as follows:

(M∗
1, . . . ,M

∗
n) = argmax

M1+...+Mn=M

T (M,m1M1, . . .mnMn,N) (271)

The revenue maximizing allocation with M1 = M∗
1 , . . . , Mn = M∗

n is the one that maxi-

mizes revenue over all channel allocations.

7.6.2 Running Time

The maximum in (270) is taken over O(MM1M2 . . .Mn) values. Moreover, T ( j0, j1, . . . , jn, i)

is calculated for i from 1 to N, j0 from 0 to M, j1 from 0 to m1M1, . . . , jn from 0 to

mnMn, that is (since m j = O(mn) for j = 1, . . . ,n), for O(MM1M2 . . .Mnmn
nN) values.

Finally, this process is carried out for all M1, . . . ,Mn such that M1 + . . .+Mn = M.

Hence, the time to compute k∗ is:

∑
M1+...Mn=M

O((MM1 . . .Mn)
2mn

nN)

≤
M

∑
M1=0

. . .
M

∑
Mn=0

O((MM1 . . .Mn)
2mn

nN)

= O(M3n+2mn
nN)

Thus, the running time is O(M3n+2mn
nN), which is polynomial for fixed n.

7.6.3 Space Complexity

Each network i submits its bid zi(ni,0,ni,1, . . . ,ni,n) for ni,0 ∈ {0,1, . . . ,M} and all sets

ni,1, . . . ,ni,n satisfying ∑n
j=1 ni, j ≤ M. There are O(Mn+1) such bids. Summing over the

N networks, the storage requirement for bids is O(Mn+1N).

251



To find the revenue maximizing allocation for a fixed set M1, . . . ,Mn, we need to

store the array T ( j0, j1, . . . , jn, i), j0 ∈ {0,1, . . . ,M}, jt ∈ {0,1, . . . ,mtMt}, t = 1, . . . ,n,

i = 1, . . . ,N. This requires O(Mn+1mn
nN) amount of storage. Once the allocation

has been found, only the allocation and the value of T (M,m1M1, . . .mnMn,N) can be

stored, which require O(nN) and O(1) storage respectively, and the rest of the array

T ( j0, j1, . . . , jn, i) can be discarded.

We need to store the revenue maximizing allocation and the value T (M,m1M1, . . .mnMn,N)

for all sets (M1, . . . ,Mn) such that M1 + . . .+Mn = M. The number of such sets is

O(Mn). So the storage required is O(MnNn).

Thus, the maximum amount of storage required at any given time during the entire

algorithm to compute k∗ is O(Mn+1mn
nN).

7.7 A Greedy 2-Approximation Algorithm

The scheme described in Section 7.6 is computationally tractable for fixed n, the num-

ber of possible cardinalities of the set of secondary networks on a channel. However,

if n is allowed to grow, the set of bids of a network is exponential in size as shown

in Section 7.6.3 and hence the scheme is computationally intractable. In this section,

we first provide a compact bidding language for the case with large n. We conjecture

that under this bidding language, the access allocation problem is NP-hard. We give a

basis for this conjecture in Section 7.9. We provide a polynomial-time algorithm that

approximates the maximum revenue of the auctioneer within a factor of 2.
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We describe the bidding language in Section 7.7.1. In Section 7.7.2, we introduce

residual bid functions, a concept used in the approximation algorithm. We describe

the algorithm in Section 7.7.3 and prove that it achieves an approximation ratio of 2 in

Section 7.7.4. Finally, in Section 7.7.5, we describe an efficient implementation of the

algorithm.

7.7.1 Bidding Language

Consider the model in Section 7.5 with the following changes. Let the bandwidth of

each of the M channels be W bps. We assume that the primary network on a channel

uses the channel for an expected fraction of time α, where 0 < α < 1. When auctions

are repeated periodically to assign spectrum, α can be estimated based on long-term

measurements of the primary networks’ channel usage. Alternatively, it can be esti-

mated via simulations. Since secondary networks can use the channel whenever the

primary is not using it, an expected bandwidth of W (1−α) is available on a channel

for the secondary networks. So when m j secondary networks share a channel, each one

of them can get an expected secondary throughput of
W (1−α)

m j
on the channel. 33

In this section, we allow a network to express bids as a function of the number of

channels ni,0 on which it is primary and its total expected secondary throughput T s
i on

33Note that an expected bandwidth of at least
W (1−α)

m j
is available to each of the m j secondary networks.

If some of them do not use this full bandwidth, then more than
W (1−α)

m j
is available to the other networks.
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all M channels. Note that:

T s
i =

n

∑
j=1

ni, jW (1−α)

m j

(272)

In the sequel, for brevity, we simply say secondary throughput instead of expected sec-

ondary throughput. Moreover, we assume that the utility, and hence the bid zi(ni,0,T
s

i ),

of each network i when it is primary on ni,0 channels and has T s
i units of secondary

throughput, is separable, i.e., of the form:

zi(ni,0,T
s

i ) = wi(ni,0)+ yi(T
s

i ) (273)

where wi(ni,0) is its bid for being primary on ni,0 channels and yi(T
s

i ) is its bid for

T s
i units of throughput as a secondary network. This assumption is a good approx-

imation since networks transmit different kinds of traffic (delay-sensitive and elastic

respectively) as a primary and secondary network.

Under this assumption, the access allocation problem separates out into two inde-

pendent problems– allocating the primary parts and allocating the secondary parts. The

problem of allocating the primary parts can be optimally solved in O(M2N) time using

the dynamic programming algorithm in Section 7.6 with n = 0. In this section, we fo-

cus on giving a 2-approximation algorithm for the problem of allocating the secondary

parts. In the rest of the section, “revenue” refers to the auctioneer’s revenue from selling

the secondary rights on the M channels.

Assume that yi(.) is a concave increasing function for each network i. We use piece-

wise linear concave functions to compactly represent the bid functions of the networks.

They can be used to closely approximate arbitrary concave functions [6] and have been

254



previously used in the context of spectrum auctions in [22]. Each network i specifies

its bid for at most P different levels of secondary throughput, for a positive integer P.

More precisely, let Pi ≤ P be a positive integer and let:

0 = qi,1 < qi,2 < .. . < qi,Pi
(274)

For v = 1, . . . ,Pi, network i specifies yi(qi,v), which is its bid for qi,v units of secondary

throughput. Network i’s bid for q units of secondary throughput, where qi,v < q< qi,v+1

is found by linear interpolation:

yi(q) = yi(qi,v)+

(
yi(qi,v+1)− yi(qi,v)

qi,v+1 −qi,v

)
(q−qi,v) (275)

Note that qi,1, . . . ,qi,Pi
are the breakpoints of the piecewise linear function yi(.).

We assume that for each network i, qi,1 = 0, that yi(qi,1) = yi(0) = 0 and that

qi,Pi
≥ MW (1−α). (276)

Since MW (1−α) is the total secondary throughput available on the M channels, the

second assumption means that network i’s bid for any amount of secondary throughput

on the M channels can be found by linear interpolation.

7.7.2 Residual Bid Functions

Our algorithm uses the following concept.

Definition 4. Let q̃ ≥ 0. The q̃-residual bid function of network i is the function ỹi(.)

given by:

ỹi(q) = yi(q̃+q)− yi(q̃) (277)
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We will sometimes say, “the residual bid function after accounting for q̃” instead of

the q̃-residual bid function. Informally, once network i has been allocated q̃ units of sec-

ondary throughput, ỹi(.) acts as its bid function for allocations of additional secondary

throughput. The following lemma gives some simple properties about the q̃-residual

bid function.

Lemma 60. Let ỹi(q) be the q̃-residual bid function of network i for some q̃ ≥ 0. Then

1. ỹi(q)≤ yi(q) ∀q ≥ 0.

2. ỹi(q) is a piecewise-linear concave increasing function of q.

Proof.

yi(q+ q̃)≤ yi(q)+ yi(q̃), ∀q ≥ 0

by concavity of yi(.). Hence,

ỹi(q) = yi(q+ q̃)− yi(q̃)≤ yi(q) ∀q ≥ 0

which proves part 1.

Now, yi(q) is piecewise-linear, concave and increasing by assumption. Thus, yi(q+

q̃) is a piecewise-linear, concave and increasing function of q as well. Part 2 follows by

(277).

The significance of the q̃-residual bid function is given by the following lemma.

Lemma 61. Suppose the bid function of network i is yi(.) and it is successively al-

located secondary throughputs of q1,q2, . . . ,q f . Let yv
i (.) denote the (q1 + . . .+ qv)-
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residual bid function of network i, for v = 1, . . . , f . Then

yi(q1 + . . .+q f ) = yi(q1)+ y1
i (q2)+ . . .+ y

f−1
i (q f ) (278)

Proof. By definition:

y1
i (q2) = yi(q1+q2)− yi(q1)

which implies that:

yi(q1+q2) = yi(q1)+ y1
i (q2) (279)

Similarly,

yi(q1 +q2 +q3) = yi(q1 +q2)+ y2
i (q3) (280)

= yi(q1)+ y1
i (q2)+ y2

i (q3) (281)

where the second step follows from (279). Similarly proceeding for f steps, we get the

desired result (278).

Thus, the significance of the residual bid function is that if a network i is successively

allocated chunks q1, . . . , q f of secondary throughput (e.g. by successive steps of an

algorithm), then we can keep track of its residual bid function after every allocation so

that the extra money that network i is willing to pay for the v’th allocation qv is simply

yv−1
i (qv). Moreover, this tracking can be done using the update rule in part 1 of the

following lemma to calculate yv+1
i (.) from yv

i (.).

Lemma 62. Let ỹi(.) and y+i (.) be the q̃-residual bid function and (q̃+ q̂)-residual bid

function of network i respectively. Then
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1. y+i (q) = ỹi(q+ q̂)− ỹi(q̂) ∀q ≥ 0

2. y+i (q)≤ ỹi(q) ∀q ≥ 0.

Proof.

ỹi(q+ q̂)− ỹi(q̂)

= (yi(q+ q̂+ q̃)− yi(q̃))− (yi(q̂+ q̃)− yi(q̃))

= yi(q+ q̂+ q̃)− yi(q̂+ q̃)

= y+i (q)

Hence, y+i (.) is the q̂-residual bid function corresponding to the bid function ỹi(.). So

by Lemma 60, y+i (q)≤ ỹi(q) ∀q ≥ 0.

7.7.3 Algorithm Description

We now describe the greedy 2-approximation algorithm. The algorithm determines

SG
l , the set of secondary networks on channel l for l = 1, . . . ,M. Denote by qG

i,l, the

amount of secondary throughput allocated by the greedy algorithm to network i in the

l’th channel. Since each network in SG
l equally shares the secondary throughput on

channel l, we have:

qG
i,l =





W (1−α)

|SG
l
|

if i ∈ SG
l

0 else

(282)

Let yl
i(.) be the (qG

i,1 + . . .+qG
i,l)-residual bid function of network i, that is, its residual

bid function after accounting for the secondary throughput allocated to it in channels 1
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to l. Note that for each network i, y0
i (.) is the bid function yi(.).

The greedy algorithm successively determines SG
l , for l = 1, . . . ,M, one channel at

a time. Suppose the algorithm has determined SG
1 ,S

G
2 , . . . ,S

G
l−1 and for each network

i, has found the residual bid function yl−1
i (.). It assigns channel l using the following

steps:

STEP1: For j = 1, . . . ,n, find the maximum increase in revenue Rl
j obtainable

from channel l by dividing the channel into m j secondary parts using the following

rule. Sort the set of numbers yl−1
i

(
W (1−α)

m j

)
, i = 1, . . . ,N into decreasing order. Let

yl−1
(v)

(
W (1−α)

m j

)
denote the v’th largest element. Then Rl

j is given by:

Rl
j =

m j

∑
v=1

yl−1
(v)

(
W (1−α)

m j

)

STEP2: Find the maximum among Rl
1, . . . ,R

l
n. Suppose Rl

j is the maximum. Then

divide the l’th channel into m j secondary parts. On the l’th channel, the m j networks

with the m j largest values yl−1
(1)

(
W (1−α)

m j

)
, . . . ,yl−1

(m j)

(
W (1−α)

m j

)
, which were determined

in STEP1, become secondary networks. This determines SG
l .

STEP3: For each i ∈ SG
l , find the function yl

i(.) from its bid function yi(.) and

qG
i,1, . . . ,q

G
i,l. Note that qG

i,l is given by (282).

Comments on Algorithm:

1. Once channels 1, . . . , l − 1 have been allocated, steps 1 and 2 allocate channel l

so as to obtain the maximum possible increase in revenue over the revenue from

channels 1, . . . , l − 1. This property will be crucial in proving the approximation
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ratio of 2.

2. In Step 3, for conceptual clarity, we have not presented the most efficient imple-

mentation. Specifically, the function yl
i(.) need not be computed from scratch. It

can be found iteratively from yl−1
i (.) using the update rule in part 1 of Lemma 62.

See Section 7.7.5 for details.

7.7.4 Approximation Ratio

Theorem 25. Let R∗ be the maximum possible revenue under any allocation of the

rights to be secondary networks on the M channels and let RG be that achieved by the

above greedy algorithm. Then RG ≥ R∗

2
.

Proof. Let Rl be the increase in revenue obtained by the greedy algorithm from allocat-

ing the l’th channel. By part 2 of Lemma 62:

yl
i(q)≤ yl−1

i (q) ∀q ≥ 0 (283)

From the discussion after Lemma 61, it follows that after channels 1, . . . , l were allo-

cated, the extra money network i was willing to pay for its share in channel (l + 1) is

yl
i(q

G
i,l+1). Moreover, if the greedy algorithm were to allocate the l’th channel to the

same set of networks, SG
l+1, to whom it actually allocated the (l+1)’st channel, then:

1. each network in SG
l+1 would have received on the l’th channel, a throughput of

W (1−α)

|SG
l+1|

, which equals qG
i,l+1 by (282),
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2. after channels 1, . . . , l − 1 were allocated, the extra money network i would be

willing to pay for its share in channel l would have been yl−1
i (qG

i,l+1) and hence by

(283),

3. the increase in revenue from the l’th channel would have been at least Rl+1.

But the actual increase in revenue from the l’th channel, Rl , is by definition of the

greedy rule, the maximum possible from allocating the l’th channel. Hence Rl ≥ Rl+1.

Thus, we get:

R1 ≥ R2 ≥ . . .≥ RM.

Since RG = R1 + . . .+RM , we get:

RM ≤
RG

M
(284)

Now, let q∗i be the total secondary throughput allocated by the optimal algorithm

to network i and qG
i be that allocated by the greedy algorithm. Also, let S∗l be the

set of secondary networks on the l’th channel, l = 1, . . . ,M, in the optimal allocation.

Next, we will upper bound R∗−RG, the excess revenue of the optimal allocation over

the greedy allocation. To this end, for each network i, we account for its payment

for max(q∗i −qG
i ,0), the excess secondary throughput if any, of the optimal allocation

over the greedy algorithm’s allocation, by accounting for its payments for the chunks

qe
i,l, l = 1, . . . ,M. Here, qe

i,l is the contribution of channel l to the excess max(q∗i −qG
i ,0),
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once the contributions of channels 1, . . . , l−1 have been accounted for and is given by:

qe
i,l = min

(
W (1−α)

|S∗l |
,

max(q∗i −qG
i −qe

i,1 − . . .−qe
i,l−1,0)

)
, i ∈ S∗l (285)

qe
i,l = 0, i /∈ S∗l (286)

We motivate the expressions above. The second term in the min in (285) is equal to

the as yet unaccounted for excess, if any, obtained by subtracting the contributions

qe
i,1, . . . ,q

e
i,l−1 of channels 1, . . . , l−1 from the total excess throughput max(q∗i −qG

i ,0).

Also, since channel l is shared by |S∗l | networks, qe
i,l ≤

W (1−α)
|S∗

l
| . Hence, qe

i,l is the mini-

mum of the two terms in (285).

From (285) and (286), it can be shown using a simple, yet tedious, case by case

analysis that:

q∗i −qG
i ≤

M

∑
l=1

qe
i,l, i = 1, . . . ,N (287)

We relegate the proof of (287) to Section 7.10.

Let ye
i,l(.) be the (qG

i +qe
i,1 + . . .+qe

i,l)-residual bid function of network i.
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Now,

R∗ =
N

∑
i=1

yi(q
∗
i )

≤
N

∑
i=1

yi(q
G
i +

M

∑
l=1

qe
i,l)

(by (287) and since yi(.) is increasing)

=
N

∑
i=1

(
yi(q

G
i )+

M

∑
l=1

ye
i,l−1(q

e
i,l)

)
(by Lemma 61)

= RG +
M

∑
l=1

N

∑
i=1

ye
i,l−1(q

e
i,l)

= RG +
M

∑
l=1

∑
i∈S∗

l

ye
i,l−1(q

e
i,l) (288)

where the last step follows since qe
i,l = 0 if i /∈ S∗l by (286) and since ye

i,l−1(0) = 0.

Now, by the definitions of yM−1
i (.) and ye

i,l−1(.), part 2 of Lemma 62 and (288), we

get:

R∗−RG ≤
M

∑
l=1


∑

i∈S∗
l

yM−1
i (qe

i,l)


 (289)

Now, qe
i,l ≤

W (1−α)
|S∗

l
| by (285) and (286), and since yM−1

i (.) is increasing by part 2 of

Lemma 60, we get the following inequality from (289):

R∗−RG ≤
M

∑
l=1


∑

i∈S∗
l

yM−1
i

(
W (1−α)

|S∗l |

)
 (290)

Now, we have:

∑
i∈S∗

l

yM−1
i

(
W (1−α)

|S∗l |

)
≤ RM (291)

because when the greedy algorithm was about to allocate channel M, the increase in rev-

enue it would have got from the channel if it allocated the channel to the |S∗l | networks
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in the set S∗l is equal to the expression on the left hand side of (291) (refer to Lemma 61

and the discussion immediately following it). This expression is at most RM, since the

greedy algorithm allocates the M’th channel so as to maximize the increase in revenue

from it.

By (290) and (291), we get:

R∗−RG ≤
M

∑
l=1

RM

≤ RG (from (284))

The result follows.

7.7.5 Efficient Implementation

We now describe an efficient implementation of the greedy algorithm.

We first discuss how to store the function yl
i(.) so that yl

i(q) can be found for any q

in O(logP) time. Recall from part 2 of Lemma 60 that yl
i(.) is piecewise linear. Similar

to the representation of the bid function yi(.), yl
i(.) is stored by storing its value at Pl

i

values ql
i,1, . . . , ql

i,Pl
i

, which are the breakpoints of the piecewise linear function yl
i(.).

Also, yl
i(q), where ql

i,v < q < ql
i,v+1 is found by linear interpolation similar to (275):

yl
i(q) = yl

i(q
l
i,v)+

(
yl

i(q
l
i,v+1)− yl

i(q
l
i,v)

ql
i,v+1 −ql

i,v

)
(q−ql

i,v) (292)

Now, the numbers ql
i,1, . . . ,q

l

i,Pl
i

and the numbers yl
i(q

l
i,1), . . . ,y

l
i(q

l

i,Pl
i

) can be stored in

two sorted arrays, so that for any v, ql
i,v and yl

i(q
l
i,v) can be accessed in constant time.
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Also, since Pl
i ≤ Pi ≤ P (see the last step in the steps below), given any q, we can find v

such that ql
i,v ≤ q < ql

i,v+1 by binary search [11] in O(logP) time. Once this v is found,

we can find yl
i(q) in constant time using (292).

Suppose the algorithm has allocated the first l−1 channels and hence has computed

yl−1
i (.) and ql−1

i,v ,v = 1, . . . ,Pl−1
i . Also, suppose the l’th channel has been divided into

m j secondary parts. While allocating channel l, in Step 3 , yl
i(.) can be found as follows

from yl−1
i (.) using the update rule in part 1 of Lemma 62. For network i, first find out

v such that:

ql−1
i,v ≤

W (1−α)

m j

< ql−1
i,v+1.

Then find yl−1
i

(
W (1−α)

m j

)
using equation (292). Next, perform the following steps:

ql
i,1 = 0

yl
i(q

l
i,1) = 0

for t = 2,3, . . . ,Pl−1
i − v+1 do

ql
i,t = ql−1

i,t+v−1 −
W (1−α)

m j

yl
i(q

l
i,t) = yl−1

i (ql−1
i,t+v−1)− yl−1

i

(
W (1−α)

m j

)

end for

Pl
i = Pl−1

i − v+1

The second statement in the for loop implements the update rule in part 1 of Lemma 62.

Also, it can be checked that the first statement in the for loop appropriately sets the

breakpoints of the function yl
i(.).
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It can be shown that the running time of the greedy algorithm is O(nMN logNP+

MPmn) when the above implementation is used.

7.8 Simulations

In Section 7.7.4, we proved that the greedy approximation algorithm achieves an ap-

proximation ratio of 2. In this section, we show via simulations, that in fact, for a

variety of scenarios, the greedy algorithm achieves the optimal revenue.

In all our simulations, we used the values n = 2, m1 = 1, m2 = 4 and W (1−α) =

4 units. First, we simulated the case in which the bid function of every network is

different and is a piecewise linear approximation of a quadratic function. Let Cmin,

Cmax and MAX be parameters such that Cmax > Cmin > 0 and MAX > 0. Consider the

following quadratic function:

ŷi(q) = ci

(
1−

(q−MAX)2

(MAX)2

)
, i = 1, . . . ,N (293)

The bid function yi(q) of network i is chosen to be a piecewise-linear approximation of

the above function, where the parameters ci, i = 1, . . . ,N are uniformly spaced in the

interval [Cmin,Cmax]:

ci =Cmin +(i−1)
(Cmax −Cmin)

N −1
, i = 1, . . . ,N (294)

With these bid functions, we found the revenue using the greedy approximation

algorithm and the optimal revenue using the dynamic programming algorithm in Sec-

tion 7.6. We used small values for n and M since the running time of the dynamic
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programming algorithm grows rapidly with these parameters (see Section 7.6.2). For

different values of the parameters N, Cmin, Cmax and MAX , we evaluated the revenues

of the greedy algorithm and the optimal revenue for M varying from 5 to 60 and found

that the greedy algorithm achieves the optimal revenue.

Next, we considered the case in which there are two classes of networks and the

bid function of each network in the same class is the same. The bid functions yi(q) of

networks i = 1, . . . ,N1 and of networks i = N1 +1, . . . ,N are piecewise linear approxi-

mations of the following exponential functions respectively:

ŷi(q) = B1(1− exp(−a1q)), i = 1, . . . ,N1 (295)

ŷi(q) = B2(1− exp(−a2q)), i = N1 +1, . . . ,N (296)

where a1, a2, B1, B2 and N1 are parameters. For different values of these parameters, we

evaluated the revenues of the greedy algorithm and the optimal revenue for M varying

from 5 to 60 and found that the greedy algorithm achieves the optimal revenue.

Thus, although the worst-case approximation ratio of the greedy algorithm is 2, in a

variety of scenarios, it achieves the optimal revenue.

Nevertheless, we could construct some pathological examples in which the greedy

algorithm achieves a revenue equal to 5
6

times the optimal revenue and is therefore

strictly sub-optimal. We now describe one such example. Let M = 2, N = 3, n = 2,

m1 = 2, m2 = 3 and W (1−α) = 6. The bid function of network i, i ∈ {1,2,3} is given
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by:

yi(q) =





qβi if q ≤ 4

4βi if q > 4

(297)

where β1 = β2 = 1, β3 = 1−ε and ε is a small positive constant. It can be checked that

the greedy algorithm assigns channel 1 to networks 1 and 2 and channel 2 to networks 1,

2 and 3 and achieves a revenue of RG = (10−2ε). The optimal algorithm assigns each

one of channels 1 and 2 to networks 1, 2 and 3 and achieves a revenue of R∗= (12−4ε).

Note that RG

R∗ equals 5
6

in the limit as ε tends to 0.

In summary, the greedy algorithm is sub-optimal only for pathological input in-

stances, and is optimal for a large variety of “well-behaved” inputs; thus, it performs

well in practice.

7.9 Future Work

We now describe some directions for future research. We conjecture that the access al-

location problem described in Section 7.7.1 is NP-hard. Our conjecture is motivated by

the facts that (a) the bid function of each network can be an arbitrary real-valued func-

tion satisfying the conditions in Section 7.7.1, (b) the number of secondary networks

on each channel can be selected from a possibly large set {m1, . . . ,mn} and (c) the set

of secondary networks on each channel can be an arbitrary subset of the set of all N

networks. The proof of the conjecture remains an open problem for future research.

Also, we considered the case when the M channels are identical. The extension to
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non-identical channels remains an open problem.

When the auctioneer’s objective is to maximize its revenue, note that the algorithms

that we designed for the access allocation problem can be used to maximize the auc-

tioneer’s revenue given the bids zi(.) of the bidders. To compute its bid, a bidder i may

use different strategies, which it thinks will maximize its net utility in (255). For ex-

ample, when auctions are conducted periodically, a bidder may compute its bid based

on its knowledge of the outcomes of previous auctions. An open problem is the design

of allocation strategies for the auctioneer and bidding strategies for the bidders when

each player chooses its strategies based on the outcomes of previous auctions in order

to influence the other players to act to its own advantage.

7.10 Appendix

Proof of (287)

By (285) and (286), for each channel l, one of the following cases must hold true

for each network i:

Case 1: If i /∈ S∗l , then qe
i,l = 0.

Case 2: Else, if
W (1−α)

|S∗
l
| ≤ q∗i −qG

i −qe
i,1 − . . .−qe

i,l−1 then qe
i,l =

W (1−α)
|S∗

l
| .

Case 3: Else, if q∗i −qG
i −qe

i,1 − . . .−qe
i,l−1 < 0, then qe

i,l = 0.

Case 4: Else, qe
i,l = q∗i −qG

i −qe
i,1 − . . .−qe

i,l−1.

Fix a network i. If Case 3 holds for some channel, then let v be the first such channel.
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Then, q∗i −qG
i −qe

i,1 − . . .−qe
i,v−1 < 0, qe

i,v = 0 and by (285) and (286), qe
i,v+1 = . . . =

qe
i,M = 0. Hence:

q∗i −qG
i <

M

∑
l=1

qe
i,l

and (287) is satisfied.

Now, if Case 4 holds for some channel, then let v be the first such channel. Then

q∗i −qG
i −qe

i,1 − . . .−qe
i,v−1 −qe

i,v = 0 and by (285) and (286), qe
i,v+1 = . . . = qe

i,M = 0.

Hence:

q∗i −qG
i =

M

∑
l=1

qe
i,l

and (287) is satisfied.

Otherwise, neither of Case 3 and Case 4 holds for any channel. Then, for each

channel, one of Case 1 and Case 2 holds and we get that for l = 1, . . . ,M:

qe
i,l =





W (1−α)
|S∗l |

if i ∈ S∗l

0 else

(298)

Let l = M′ be the last channel for which i ∈ S∗l . Then by the above equation, qe
i,M′ =

W (1−α)
|S∗

M′ |
and by (285) with l = M′:

q∗i −qG
i −qe

i,1 − . . .−qe
i,M′−1 ≥

W (1−α)

|S∗
M′|

= qe
i,M′ (299)

By definition of M′, qe
i,M′+1 = . . .= qe

i,M = 0. So if equality holds in (299), then (287)

is satisfied with equality. If there is a strict inequality in (299), then:

q∗i > qe
i,1 + . . .+qe

i,M
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which is a contradiction because

q∗i = qe
i,1 + . . .+qe

i,M

since qe
i,l given by (298) is precisely the amount of secondary throughput allocated

by the optimal algorithm to network i on channel l. Hence, there cannot be a strict

inequality in (299).

Thus, (287) is satisfied in all cases.
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Chapter 8

Conclusions and Future Work

We investigated the economics of spectrum allocation in CRNs in this dissertation.

We considered both the one-step allocation scheme, in which the regulator allocates

spectrum simultaneously to the primaries and the secondaries in a single allocation and

the two-step allocation scheme in which the regulator first allocates spectrum to primary

users, who then separately allocate unused portions on their channels to secondary

users.

Chapters 2 to 6 focussed on the two-step allocation scenario. In particular, Chap-

ters 2 to 5 analyzed the case in which there are a small number of primaries and secon-

daries using the framework of game theory. In Chapter 3, we found the Nash equilib-

rium (NE) and proved its uniqueness for price competition among multiple primaries

when all the players are located in a single location. The structure of the NE provides

several interesting insights into the behavior of the primaries; in particular, it suggests
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that we can expect to see randomization in the setting of the prices by the primaries.

As we mentioned earlier, this can be interpreted as the primaries holding sales to attract

secondaries. In Chapter 4, we generalized our model to allow for random valuations of

secondaries, found the symmetric NE and showed its uniqueness. We showed that the

symmetric NE strategy can be non-contiguous, unlike in the case of constant valuations

of secondaries. In Chapter 5, we analyzed price competition among primaries in the

presence of spatial reuse. We showed that in a fairly general class of graphs, called

mean valid graphs, which covers several conflict graphs that commonly arise in prac-

tice, there exists a unique NE in the class of NE in which all the primaries use the same

distribution for selecting the independent set to offer bandwidth at. Also, this NE has a

simple form and we provided a system of equations which can be solved to explicitly

compute the NE.

We have mainly studied the game in a single slot. As future work, it will be interest-

ing to analyze the case where primaries interact over multiple slots and employ learn-

ing strategies to adapt their behavior in a slot based on their experience from past slots.

Another open question is whether there exist new equilibria if we allow for correlated

equilibria. Analysis of the game in which groups of primaries collude and coordinate

their prices is another open problem for future research.

In Chapter 6, we considered a spectrum market with a large number of primaries

and secondaries and analyzed the problem of optimal dynamic selection of a portfo-

lio of different types of spectrum contracts using the framework of stochastic dynamic
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programming. We proved several interesting structural properties of the optimal solu-

tion that provide insight and can be used to speed up the computation of the optimal

solution.

In Chapter 7, we designed an auction framework for the one-step allocation scenario–

we devised several bidding languages that the primaries and secondaries can use to

compactly express their bids and polynomial-time algorithms that the regulator can use

to solve the access allocation problem.
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