
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

Fall 12-21-2011

Inhaled Oxygen as a Quantitative Intravascular
MRI Contrast Agent
David T. Pilkinton
University of Pennsylvania, davt@mail.med.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Biophysics Commons, and the Radiology Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/450
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Pilkinton, David T., "Inhaled Oxygen as a Quantitative Intravascular MRI Contrast Agent" (2011). Publicly Accessible Penn
Dissertations. 450.
http://repository.upenn.edu/edissertations/450

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/705?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/450?utm_source=repository.upenn.edu%2Fedissertations%2F450&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/450
mailto:libraryrepository@pobox.upenn.edu


Inhaled Oxygen as a Quantitative Intravascular MRI Contrast Agent

Abstract
Increasing the fraction of inspired oxygen (FiO2) generates MR contrast by two distinct mechanisms:
increased T2 from deoxyhemoglobin dilution in venous compartments (blood oxygenation level-dependent
effect or BOLD) and reduced T1 from paramagnetic molecular oxygen dissolved in blood plasma and tissues.
Many research and clinical applications using hyperoxic contrast have recently emerged, including delineating
ischemic stroke penumbra, oxygen delivery to tumors, and functional MRI data calibration. However,
quantitative measurements using this contrast agent depend on the precise knowledge of its effects on the MR
signal – of which there remain many crucial missing pieces.

This thesis aims to obtain a more quantitative understanding of intravascular hyperoxic contrast in vivo, with
the hope of increasing its precision and utility. Specifically, our work focuses on the following areas: (1)
paramagnetic effects of molecular oxygen BOLD and arterial spin labeling (ASL) data, (2) degree and
temporal characteristics of hyperoxia-induced reductions in cerebral blood flow (CBF), (3) use of oxygen in
quantitative measurements of metabolism, and (4) biophysical mechanisms of hyperoxic T1 contrast.

In Chapter 2, the artifactual influence of paramagnetic molecular oxygen on BOLD-modulated hyperoxic gas
studies is characterized as a function of static field strength, and we show that optimum reduction in FiO2
mitigates this effect while maintaining BOLD contrast. Since ASL measurements are highly sensitive to
arterial blood T1 (T1a), the value of T1a in vivo is determined as a function of arterial oxygen partial pressure
in Chapter 3. The effect of both the degree and duration of hyperoxic exposure on absolute CBF are quantified
using simultaneous ASL and in vivo T1a measurements, as described in Chapter 4. In Chapter 5, hyperoxic gas
calibration of BOLD/ASL data is used to measure cerebral oxygen metabolism in a hypermetabolic swine
model, with our results comparing favorably to 17O2 measurements of absolute metabolism. In Chapter 6, a
model to describe the relationship between CBF, oxygen consumption, and hyperoxic T1 reduction is
developed, which allows for a more rigorous physiological interpretation of these data. Taken together, this
work represents several important steps towards making hyperoxia a more quantitative MRI contrast agent for
research and clinical applications.
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ABSTRACT 

Inhaled Oxygen as a Quantitative Intravascular MRI Contrast Agent 

David Thomas Pilkinton 
 

Thesis Supervisor: Ravinder Reddy, PhD 

 

Increasing the fraction of inspired oxygen (FiO2) generates MR contrast by two distinct 

mechanisms: increased T2 from deoxyhemoglobin dilution in venous compartments 

(blood oxygenation level-dependent effect or BOLD) and reduced T1 from paramagnetic 

molecular oxygen dissolved in blood plasma and tissues.  Many research and clinical 

applications using hyperoxic contrast have recently emerged, including delineating 

ischemic stroke penumbra, oxygen delivery to tumors, and functional MRI data 

calibration.  However, quantitative measurements using this contrast agent depend on the 

precise knowledge of its effects on the MR signal – of which there remain many crucial 

missing pieces. 

 

This thesis aims to obtain a more quantitative understanding of intravascular hyperoxic 

contrast in vivo, with the hope of increasing its precision and utility.  Specifically, our 

work focuses on the following areas:  (1) paramagnetic effects of molecular oxygen 

BOLD and arterial spin labeling (ASL) data, (2) degree and temporal characteristics of 

hyperoxia-induced reductions in cerebral blood flow (CBF), (3) use of oxygen in 
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quantitative measurements of metabolism, and (4) biophysical mechanisms of hyperoxic 

T1 contrast. 

 

In Chapter 2, the artifactual influence of paramagnetic molecular oxygen on BOLD-

modulated hyperoxic gas studies is characterized as a function of static field strength, and 

we show that optimum reduction in FiO2 mitigates this effect while maintaining BOLD 

contrast.  Since ASL measurements are highly sensitive to arterial blood T1 (T1a), the 

value of T1a in vivo is determined as a function of arterial oxygen partial pressure in 

Chapter 3.  The effect of both the degree and duration of hyperoxic exposure on absolute 

CBF are quantified using simultaneous ASL and in vivo T1a measurements, as described 

in Chapter 4.  In Chapter 5, hyperoxic gas calibration of BOLD/ASL data is used to 

measure cerebral oxygen metabolism in a hypermetabolic swine model, with our results 

comparing favorably to 17O2 measurements of absolute metabolism.  In Chapter 6, a 

model to describe the relationship between CBF, oxygen consumption, and hyperoxic T1 

reduction is developed, which allows for a more rigorous physiological interpretation of 

these data.  Taken together, this work represents several important steps towards making 

hyperoxia a more quantitative MRI contrast agent for research and clinical applications. 
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Chapter 1:  Theory and Technical Challenges of Using Inhaled Oxygen 

as an Intravascular MRI Contrast Agent 

 

1.1  Overview 

Understanding how oxygen is delivered to and consumed in tissue are central questions 

in physiology.  Many of the details concerning how these processes occur are still the 

subject of ongoing scientific investigation.  Adequate oxygen delivery to tissues at a rate 

that meets or exceeds its demand is critical for life, and impairments in this process are 

centrally important to many diseases, including stroke, cancer, and Alzheimer’s disease.  

Therefore, there is a tremendous potential research and clinical benefit in developing 

imaging techniques that are sensitive to the delivery and utilization of oxygen in vivo. 

 

Magnetic resonance imaging (MRI) is capable of utilizing a wide variety of modalities to 

monitor oxygen physiology in vivo.  One important technique to monitor oxygen delivery 

and consumption involves the use of hyperoxic (fraction of inspired of oxygen or FiO2 > 

0.21) inhalation contrast.  The work undertaken in this thesis consists of important steps 

towards further developing hyperoxia as a quantitative intravascular contrast agent.  But 

before discussing this work in detail, several fundamental concepts must be understood, 

including: the physical properties of oxygen, the mechanisms of in vivo oxygen delivery 

and utilization, the relaxivities of hemoglobin and molecular oxygen, static field shifts 
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from oxygen gas, the physiologic effects of hyperoxia, and the applications of hyperoxic 

MR contrast. 

 

1.2  Physical Properties of Oxygen 

At standard temperature and pressure, oxygen is an odorless, pale blue, diatomic gas with 

the molecular formula of O2 (1).  Two oxygen atoms are covalently bonded in a spin 

triplet configuration.  Triplet oxygen is the normal ground state of the O2 molecule and it 

has two unpaired electrons occupying two degenerate molecular orbitals (2).  In its triplet 

form, oxygen is paramagnetic, the property of a material indicating that it generates an 

attractive magnetic field in the presence of an external magnetic field.  The 

paramagnetism of oxygen is due to its unpaired electrons, which have their own spin 

magnetic moments (2).  While gaseous and dissolved oxygen exhibit mild 

paramagnetism, liquid oxygen is strongly paramagnetic and can even be held up by a 

strong permanent magnet (1). 

 

Oxygen has three naturally occurring stable isotopes:  16O, 17O, and 18O, with 16O being 

by far the most common form with a 99.8% natural abundance level.  18O is an important 

precursor for fluorodeoxyglucose (FDG), which is used in positron emission tomography 

(PET).  To create 18F for FDG, enriched water, H2 18O, is bombarded with high energy 

hydrogen ions in a cyclotron. 17O is the only stable oxygen isotope with a nuclear spin 
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(5/2), making it the only directly detectable form of oxygen by NMR.  It has been used in 

vivo for a direct measurement of regional metabolism, since the formation of H2 17O from 

aerobic metabolism is detectable by an increase in the proton transverse relaxation rate.  

The metabolic rate of oxygen can then be determined by measuring the rate of formation 

of H2 17O (3). 

 

Oxygen has a similar solubility in water to other non-polar, non-chemically reactive 

gases.  The formation of dissolved oxygen gas in water is well-described by Henry’s law, 

which states that, at a constant temperature, the amount of gas that will dissolve into a 

liquid is directly proportional to the partial pressure of the gas in equilibrium with the 

liquid.  The solubility of the gas can be described by the measurement of Henry’s law 

constant: 

 

[ 1.1 ] 

 

Oxygen is approximately twice as soluble in water as nitrogen.  Temperature is inversely 

related to the solubility of oxygen, with about 200C water dissolving approximately twice 

the oxygen of 370C water.  The solubility of oxygen in water at 370C is 0.0031 

mL/dL/mm Hg.  It is also interesting to note that oxygen is approximately four times 

more soluble in lipid than in water.  The relative lipophilicity of oxygen is due to its 

nonpolar structure. 
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1.3  Oxygen Delivery and Consumption In Vivo 

1.3.1  Cellular Respiration 

Since continuous cellular respiration is crucial to the biology of obligate aerobes, a 

continuous delivery of oxygen to tissues is necessary for the viability of almost all multi-

cellular organisms.  Animals that are not adapted to hypoxia cannot survive for more than 

a few minutes without oxygen.  Most cellular respiration is aerobic and can be described 

as: 

 

[ 1.2 ] 

 

Energy created by respiration is converted to an energy storage molecule, adenosine-5’- 

triphosphate (ATP).  The metabolic rate of consumption of oxygen is substantial in 

humans, as the body turns over more than its own weight in ATP every day (4). 

 

1.3.2  Oxygen Transport and Hemoglobin 

As stated above, the amount of oxygen that can be dissolved in water is relatively small. 

Animals have evolved a solution to this problem with the molecule hemoglobin, an iron-

containing oxygen-transport metalloprotein in the red blood cells (RBC) of all 

vertebrates.  Red blood cells are approximately 95% hemoglobin by dry weight, and 

hemoglobin makes up around 35% of total RBC content.  Each molecule of hemoglobin 

can carry up to four molecules of O2, and approximately 1.34 mL O2 can be carried per 
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gram of hemoglobin.  At a partial pressure of oxygen of 100 mm Hg, the carrying 

capacity of oxygen in the blood is increased by approximately 65 fold over blood plasma 

alone.  Hemoglobin also carries approximately 10% of respiratory carbon dioxide in the 

form of carbaminohemoglobin. 

 

1.3.3  Structure of Hemoglobin and Oxygen Binding 

The hemoglobin molecule has a quaternary structure consisting of four globular protein 

subunits.  In humans, the most common hemoglobin type is hemoglobin A, which 

consists of two α and two β subunits non-covalently bound as a tetramer.  These subunits 

are structurally similar and approximately the same size.  Each subunit has a protein 

chain arranged into a set of alpha-helix structural elements, which assemble to form a 

globin fold arrangement.  In this arrangement, a pocket is formed that tightly binds a 

heme group, which consists of a charged atom of iron (Fe) held inside a heterocyclic ring 

known as a porphyrin.  The iron atom is the site of oxygen binding and it can be in the 

Fe2+ or Fe3+ state.  Oxygen can only bind in the Fe2+ state, which reversibly oxidizes it to 

Fe3+ and transforms oxygen into superoxide. 

 

Due to the structural features of hemoglobin, it exhibits cooperative binding of oxygen. 

In general, hemoglobin exists as oxyghemoglobin and deoxyhemoglobin, depending on 

whether it is saturated or desaturated with oxygen, respectively.  When an oxygen 

molecule binds to hemoglobin, steric conformational changes occur to increase the 
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affinity of hemoglobin for additional oxygen molecules on the remaining binding sites.  

This results in a sigmoidal or S-shaped hemoglobin oxygen binding curve (Fig. 1.1).  The 

oxygen binding curve is the relationship between the saturation of oxygen and the arterial 

partial pressure of oxygen (PaO2); for human hemoglobin, it is described by the 

Severinghaus equation: 

 

[ 1.3 ] 
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Figure 1.1.  The hemoglobin oxygen binding curve.  The curve has a sigmoidal shape 

that is due to the cooperative binding of hemoglobin, created through steric 

conformational changes induced from binding oxygen molecules. 

 

Hemoglobin has two distinct structural states, a taut form and a relaxed form.  The taut 

form has lower affinity to oxygen than the relaxed form.  Physiological blood factors 

including high partial pressure of CO2, low pH, and high 2,3-bisphosphoglycerate levels 

favor the taut form, which lowers the affinity for oxygen of hemoglobin and results in a 

rightward shift of the hemoglobin-oxygen binding curve.  This action assists in off-

loading oxygen from hemoglobin in the capillaries, where the partial pressure of CO2 is 

high and the pH is low.  The opposite physiological changes increase the oxygen binding 
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affinity and produce a leftward shift of oxygen binding curve, which is important in 

assisting the uptake of oxygen in the lungs. 

 

1.3.4 Arterial Partial Pressure of Oxygen and Blood Oxygen Content 

When inhaled at normal atmospheric pressure and concentration, the partial pressure of 

oxygen (pO2) is approximately 160 mm Hg.  Taking water vapor pressure into account, 

the pO2 in the trachea is reduced to approximately 150 mm Hg.  By the time oxygen 

reaches the alveoli, the site of final gas exchange in the lung, the pO2 is approximately 

100 mm Hg.  This is because the alveolar pO2 represents a balance between the removal 

of oxygen by the pulmonary capillaries and the supply of oxygen from the airway. 

 

Total arterial blood oxygen content is the sum of oxygen bound to hemoglobin and 

dissolved in the plasma.  When PaO2 is 100 mm Hg, hemoglobin is approximately 98% 

saturated.  Based on its oxygen carrying capacity, the content of oxygen in hemoglobin is 

approximately 19.6 mLo2 per dL of blood.  The solubility of oxygen in the plasma is 

essentially the same as water.  Therefore, the oxygen content of the plasma for this PaO2 

is 0.31 mLo2 per dL of blood, or 1.6% of the total oxygen content of blood.  As 

normobaric oxygen concentration increases to a partial pressure of 760 mm Hg, PaO2 will 

increase to approximately 570 mm Hg (the precise maximum level depending on the 

particular details of lung ventilation).  At 570 mm Hg, content of oxygen in hemoglobin 

increases to only about 20.1 mLo2 per dL of blood, but plasma oxygen content increases 
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to 1.8 mLo2 per dL of blood.  Therefore, the overall increase in the oxygen content of 

blood from a PaO2 of 100 to 570 mm Hg is approximately 9.6%.  The relationship of 

PaO2 to the arterial blood oxygen content (CaO2) is shown in Fig. 1.2.  The process is 

described in further detail in Chapter 5. 

 

 

Figure 1.2.  The arterial blood oxygen content (CaO2) as a function of arterial 

partial pressure of oxygen (PaO2). 

 

1.3.5  Conservation of Mass:  Fick’s Principle 

The conservation of mass principle indicates that the total amount of oxygen delivered to 

the tissue from the arteries must either be consumed by the tissue or must exit via the 
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venous blood.  This is also known as Fick’s principle, and when concerning oxygen 

consumption in the brain, is often stated in the following forms, which are equivalent:  

 
[ 1.4 ] 

 

[ 1.5 ] 

where CMRO2 is the cerebral metabolic rate of oxygen in mL of oxygen per 100 g of 

tissue per minute, CvO2 is the oxygen content of venous blood, SvO2 is the saturation of 

venous blood, and OEF is the oxygen extraction fraction, the difference in saturation of 

arterial and venous blood.  Based on Fick’s principle, we can calculate the regional 

metabolic rate of oxygen consumption in tissue if we know the arterial oxygen content, 

the regional blood flow, and its regional venous oxygen content.  While blood flow and 

venous oxygen concentration must be known locally, it is generally a safe assumption 

that the arterial blood oxygen concentration is a global value and the same in all regions. 

 

1.3.6  Hyperoxic Dilution of Deoxyhemoglobin 

As can be seen from Eqs. [1.4] and [1.5], if the arterial concentration of oxygen is 

increased while metabolism and flow remain constant, the saturation of venous blood 

must also increase.  If we can assume that hyperoxic gas does not affect the blood flow or 

metabolism of oxygen significantly (5), then oxygen can be considered to produce a 

change in the venous saturation that is directly proportional to the excess concentration of 

oxygen in the arterial blood (6). 
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Although there are regional variations in flow and metabolism values at rest, PET studies 

using 15O have found that the resting OEF is remarkably stable and consistent throughout 

the brain (7).  This is important for measurements using the dilution of deoxyhemoglobin 

(dHb) with hyperoxia, since, if a local value of OEF can be assumed, then the local 

saturation of venous blood can be determined from the blood flow and the arterial oxygen 

content.  The concentration of dHb is known to be directly proportional to venous 

saturation.  If we assume a value of OEF=0.3 (8), a quantitative relationship between 

changes in dHb and PaO2, as shown in Fig. 1.3, can be produced.  This line of argument 

is very important for calibrating BOLD measurements of CMRO2 with hyperoxia and is 

discussed more thoroughly in Chapter 5.  From Fig. 1.3, we can see that changing the 

PaO2 from 100 to 570 mm Hg results in a reduction of deoxyhemoglobin concentration 

by more than 20%. 
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Figure 1.3.  The relative change in the deoxyhemoglobin concentration versus PaO2 

(assuming an OEF=0.3 and no change in blood flow or oxygen consumption). 

 

1.4  NMR Relaxation and Paramagnetic MR Contrast Agents 

From thermal agitation, molecules undergo random translation and rotational motion, and 

the nuclear spins are affected by rapidly fluctuating microscopic magnetic fields from 

nearby nuclear and electron paramagnetic spins.  These local fluctuating fields provide a 

mechanism for spins to return to the thermal equilibrium after they are perturbed by a 

radiofrequency magnetic field pulse.  A mathematical description of nuclear magnetic 

resonance relaxation mechanisms was first developed by Bloembergen and his colleagues 

in what is now known as the Bloembergen-Purcell-Pound (BPP) theory (9).  In this 

theory, time series analysis is used to model the random field fluctuations with an 
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exponential autocorrelation function of the form exp(-t/τc), where τc is the correlation 

time.  The correlation time is of the order of the time a molecule takes to turn through a 

radian or translate over a distance comparable to its size.  The Fourier transform of the 

autocorrelation function is referred to as the spectral density, and it describes the 

frequency distribution of the energy of these fluctuating magnetic fields.  Short 

correlation times correspond to fast molecular motions, with increased energy at higher 

frequencies, while long correlation times correspond to slow molecular motions, with 

increased energy at lower frequencies. 

 

Nuclear magnetic relaxation can be separated into two distinct processes, spin-lattice and 

spin-spin relaxation.  Spin-lattice relaxation is the process by which spins return to 

thermal equilibrium from a perturbation by an RF pulse and can be described by a single 

time constant, T1.  T1 is also referred to as the longitudinal relaxation time because it 

determines the rate of approach of the perturbed magnetization back to its equilibrium 

position lying parallel to the static magnetic field.  An accurate phenomenological 

description of the spin-lattice relaxation is a monotonic exponential recovery process to 

the equilibrium magnetization value, which was first described by Bloch (10).  Spin-

lattice relaxation occurs primarily from motions at or near the resonance (Larmor) 

frequency, ω0; it is insensitive to low frequencies (<<ω0) and high frequencies (>>ω0). 
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Spin-spin relaxation, described by T2, is the process by which nuclei interact with other 

magnetic moments to change their phase relative to one another, also known as phase 

decoherence.  T2 is also called the transverse relaxation time because it reflects the decay 

of magnetization lying orthogonal to the static magnetic field.  The phenomenological 

description of the spin-spin relaxation is a monotonic exponential decay process.  Unlike 

spin-lattice relaxation, spin-spin relaxation is sensitive to low frequency processes in 

addition to those at the Larmor frequency. 

 

Relaxation processes are produced by two distinct physical mechanisms:  magnetic 

moments of nuclear and electron spins (i) on the same molecule (intramolecular) and (ii) 

on other adjacent molecules (intermolecular).  An analysis of the forces between spins 

shows that the strength of the interaction is proportional to the inverse of distance 

between the spins to the sixth power (11).  This means that only close neighbors of a spin 

provide a significant contribution to its relaxation process. 

 

The intra- and intermolecular interactions between spins represent different physical 

processes.  The intramolecular interaction is dominated by the random rotational motion 

of the molecule and is characterized by a rotational correlation time.  On the other hand, 

the random translational motion of neighboring spins from diffusion dominates the 

intermolecular interaction, which is described by a translational correlation time (11).  

Rotational and/or translational motions of nearby spins described by correlations times 

whose inverse is at the Larmor frequency will have the most significant effect on T1.  The 
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effects on T2 become larger with increasingly slow rotational and/or translational 

motions, i.e. longer correlations times.  When the motions of neighboring spins are so 

rapid that the correlation times are much less than the inverse of Larmor frequency (i.e. 

the “extreme narrowing limit”), the effects on T1 and T2 are equal. 

 

This description of the intermolecular contribution to relaxation is not complete, 

however, because this interaction depends not only on the transverse correlation time but 

also on the time scale of the interaction between spins.  This interaction was first 

described by Bloembergen (12) in his account of the anomalous inequality of T1 and T2 

in dilute aqueous solutions of the paramagnetic ions Mn2+ and Gd3+.  For these ions, the 

proton transverse relaxation rates are larger than the longitudinal rates in aqueous 

solution due to the spin exchange interaction between the bulk water and the hydration 

sphere around the ion.  The probability of the water molecule being adjacent to the ion is 

larger for these ions than for other paramagnetic ions, such as Fe3+, where the T1 is equal 

to T2.  By increasing the interaction time of the water and paramagnetic ions, the spectral 

density is shifted to lower frequencies.  While this process decreases T1 and T2, it has a 

larger effect on T2 due to its low frequency sensitivity. 

 

Paramagnetic molecules have magnetic moments that are many orders of magnitude 

stronger than nuclear magnetic moments, and through their translational diffusion, they 

produce strong intermolecular interactions that dominate relaxation rates of neighboring 

nuclei.  Since they produce large effects on the relaxation times, paramagnetic molecules 
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are valuable sources of MR contrast.  The effect of a paramagnetic molecule on the 

relaxation rate can be quantified as the relaxivity or r, which is the change in the 

relaxation rate per unit of concentration of the contrast agent: 

 

[ 1.6 ] 

 

where i=1,2, Ri = (1/Ti), and c corresponds to the concentration of contrast agent.  It 

should be noted that this linear description of relaxivity is only an accurate description of 

the pure liquids in a single, homogenous compartment.  The relaxivity of paramagnetic 

contrast agents in tissue is substantially more complex, since the relaxation mechanisms 

involve factors such as local inhomogeneities and exchange between multiple 

compartments.  Despite this fact, the use of this simplified linear model is actually a good 

approximation for most paramagnetic contrast agents in tissue, as we will show below. 

 

In summary, we have provided a basic overview of the nuclear magnetic relaxation 

processes, with a focus on intermolecular interactions that describe the effects of 

paramagnetic molecules.  A complete mathematical description of spin relaxation and its 

intra- and intermolecular contributions is beyond the scope of this work, but it is 

described in detail by the work of Bloembergen, et al. (9,11,12) and Solomon (13).  A 

more rigorous description of relaxation based on density matrix formalism was developed 

by Kubo and Tomita (14), which was further generalized by the work of Gutowsky and 
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Woessner (15). 

 

1.5  Blood Oxygenation and Relaxivity of Deoxyhemoglobin 

Early in the study of hemoglobin, it was discovered that deoxyhemoglobin was 

paramagnetic and oxyhemoglobin was diamagnetic (16).  Given that the lowest energy 

configurations of oxygen and iron are paramagnetic, discovering that oxyhemoglobin was 

diamagnetic was somewhat unexpected.  The conclusion to this finding must be that 

some physical process occurs in the interaction between oxygen and iron in hemoglobin 

to alter the paramagnetism of both species and make their combination diamagnetic.  In 

this case, the low-spin Fe3+ and superoxide anion (⋅O2
-) that form upon oxygen binding to 

hemoglobin collectively have two unpaired electrons that couple antiferromagnetically to 

give diamagnetic properties.  This has been proven true by various experiments (17). 

 

Since deoxyhemoglobin is paramagnetic and oxyghemoglobin is diamagenetic, the 

change in the oxygenation of blood can be determined by analyzing its relaxation times.  

Deoxyhemoglobin primarily affects the transverse relaxation time.  Hemoglobin is a large 

molecule at 68 kDa, and under normal circumstances, all deoxyhemoglobin in the blood 

is compartmentalized within red blood cells, which are approximately 6 µm in diameter.  

These large sizes means deoxyhemoglobin will exhibit a long translational correlation 

time due to its slow translational diffusion.  This makes deoxyhemoglobin relatively 
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ineffective at enhancing T1 relaxation, and quite effective at decreasing T2.  Although 

there is exchange of plasma water protons with intracellular protons, the red blood cell 

membrane limits this process to a significant extent (18).  In fact, an accurate 

approximation of the T2 of blood water protons can be made by a physical model that 

only considers the difference in the magnetic susceptibility between the red blood cell 

and the plasma (19).   The difference in susceptibility between fully desaturated red blood 

cells and plasma is substantial and is approximately equal to 0.27 ppm, a value accurately 

estimated by Pauling in 1936 (16). 

 

Although it is very difficult to develop a precise analytic expression for the transverse 

relaxation rate of blood as a function of oxygenation (20), there are accurate models 

based on simulations and experimental measurements.  An accurate estimation of the 

transverse relaxation time can be made by the Monte Carlo simulation of plasma spin 

diffusion through the inhomogeneous magnetic fields around desaturated red blood cells 

(21).  Briefly, such a simulation can be done as follows.  First, a set of N desaturated red 

blood cells (assuming spherical shape) are randomly distributed in a three-dimensional 

space to give a volume fraction equal to hematocrit and the blood oxygen saturation 

level.  Second, a single proton is placed at a random starting position.  For every time 

step Δt, this proton is randomly displaced in the x, y, z dimension by a distance 

equivalent to the random sample of a normal distribution (mean equal to zero and 

standard deviation equal to the √(2DΔt), where D is the proton diffusion coefficient).  
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Third, the magnetic field experienced by this proton at this location, ΔBz, is determined 

by summing over the fields produced by all of the individual red blood cells according to: 

 

[ 1.7 ] 

 

where ri is the radial distance and θi is the azumithal angle of the proton from the ith red 

blood cell.  Fourth, the phase accumulated by the proton in this time interval is 

determined by the equation Δθ = γΔBzΔt.  Fifth, if there is an RF refocusing pulse(s) in 

the measurement, 1800 is added to the phase at the point of refocusing pulse.  Sixth, this 

process is repeated for the proton over a time scale allowing for sufficient relaxation 

decay.  This will depend on the field strength, per Eq. [1.7].  Lastly, this process should 

be repeated for a sufficiently large number of protons (≥n=10,000), and the phases of all 

proton vectors summed to give a signal at each time point.  The resulting decay curve can 

be fitted to a monoexponential decay, S=exp(-t/T2), to provide a value for T2.  This 

process can be repeated for different hematocrit and oxygenation levels, as well as static 

magnetic field strengths.  As illustrated by this model, the transverse relaxation rate will 

increase nonlinearly with the static field strength, because the phase accrual of spins in 

the same condition is directly proportional to the field strength. 

 

In both simulations and direct experimental measurements, the transverse relaxation rate 

versus oxygenation is best described by a quadratic model (22-24): 

∆Bz =
4π

3
∆χB0
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[ 1.8 ] 

 

where Y is the blood oxygen saturation fraction (where 1 is fully saturated blood) and  R2 

is 1/T2.  R2
* is the transverse relaxation rate with a component due to spin dephasing from 

macroscopic static field inhomogeneities, an effect which can be generally be eliminated 

with RF refocusing.  Based on published empirical fits to the constants A, B, and C from 

in vitro experiments, we can determine the value of R2 and R2
* at arbitrary levels of blood 

oxygenation (22,23).  Curves of R2 versus venous oxygenation (1-Y) of blood are shown 

in Fig. 1.5.  R2
* shows similar trends in relaxivity to R2, but at higher relaxation rates. 

 

 

 

R(∗)
2 = A(∗)(1− Y )2 + B(∗)(1− Y ) + C(∗)
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Figure 1.4.  R2 versus oxygen saturation (1-Y) at 1.5, 3, and 4.7 Tesla from Eq. [1.8] 

and literature values of constants A, B, and C. 

 

The expected relaxivity in tissue from deoxyhemoglobin concentration changes is 

discussed in detail in Chapter 5.  As discussed above, the R2 modulation will depend on 

both the intra- and extravascular effects of local deoxyhemoglobin concentrations, which 

in turn depend on the tissue microstructure.  Modeling these processes is much more 

difficult than for blood, as it depends on many tissue specific features including average 

vessel size, density, and spatial arrangement.  In T2
*-weighted images, the orientation of 

the sample in the magnetic field also has a substantial effect. 
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To approximate the scale of the in vivo relaxivity of deoxyhemoglobin in tissues, 

consider T2
*-weighted images of the brain at 3T.  If deoxyghemoglobin were to be 

completely diluted out, we would expect to see approximately a 5-9% signal change 

across the brain in T2
*-weighted gradient-echo echo planar imaging (EPI) with an echo 

time of 32 ms (6).  Since the change in venous oxygenation is smaller during hyperoxia, 

we typically expect to measure approximately a 1-2% signal change in the same setting.  

These changes are readily detectable with T2 and T2
*-weighted approaches such as echo 

planar and fast spin echo imaging that can produce per voxel signal-to-noise ratios 

greater than 100:1. 

 

1.6  Relaxivity of Molecular Oxygen in Arterial Blood and Tissue 

As discussed above in Section 1.3, the inhalation of hyperoxic gas mixtures dilutes the 

concentration of deoxyhemoglobin in the blood by dramatically increasing the 

concentration of dissolved oxygen in blood plasma.  However, molecular oxygen is itself 

a paramagnetic molecule and will influence the relaxation behavior of blood.  The effects 

of dissolved molecular oxygen on in vivo relaxation times are not as extensively studied 

as those for deoxyhemoglobin and other paramagnetic contrast agents, likely because 

substantial interest in hyperoxic contrast has only recently emerged.  Understanding the 

influence of molecular oxygen on arterial blood is particularly important for quantitative 

studies of arterial spin labeling, as discussed in Chapters 3 and 4. 
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As discussed above in Section 1.4, small paramagnetic molecules contribute to proton 

relaxation in aqueous solutions by two distinct mechanisms, translational diffusion of the 

paramagnetic molecule and the proton interaction with the hydration sphere of the 

paramagnetic molecule (12).  The effective correlation time will therefore involve the 

combination of the contributions of (i) the translational diffusion rate and (ii) the proton 

residence time in the hydration sphere or the electron T1, whichever is shorter (11,25).  In 

the case of dissolve molecular oxygen, the spin exchange with the hydration sphere is 

extremely rapid, so the effective correlation time is the linear combination of the electron 

T1 and translational diffusion rate (26).  In water, the correlation time of translational 

diffusion and the electron T1 are close in value, so both contribute significantly to the 

effective correlation time (27).  However, the effective correlation time of oxygen is still 

very short in dilute aqueous solutions (26), making the contribution of oxygen to T1 and 

T2 small and equal (11).  For a complete mathematical description of the effect of 

dissolved oxygen relaxation of water, we refer readers to the work of Mirhej (27), Parker 

and Harmon, (28), and Teng, et al. (26). 

 

In Chapter 3, we measured the longitudinal relaxivity of molecular oxygen and 

determined that its plasma relaxivity is approximately 1.6 × 10-4 s-1 mm Hg-1.  This 

translates into a T1 change in arterial blood at 3T of approximately 150 ms when 

breathing pure oxygen.  If arterial blood makes up 5% of the measured signal in tissue, 

we expect a change in T1 approaching 10 ms – a change that, although small, is readily 
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detectable by in vivo T1 mapping approaches (29,30).  Although not measured, we expect 

the transverse relaxivity of oxygen to be equal to its longitudinal relaxivity based on the 

arguments above.  However, since the transverse relaxation time in body tissues is 

dominated by interactions with proteins, we do not expect dissolved oxygen to produce 

measurable changes to the linewidth in vivo. 

 

The effect of inhaled oxygen on T1 has been used in several studies to provide 

information about oxygen delivery and consumption in normal tissues and tumors (31-

35).  Although there have been qualitative attempts to explain the origin of this contrast, 

no attempts have been made to relate its T1 relaxivity to blood flow, blood volume, and 

oxygen metabolism.  We take up this task in Chapter 6, where we attempt to establish 

quantitative relationships between the change in T1 during hyperoxia, tissue blood flow, 

and oxygen consumption. 

  

1.7  Oxygen Gas and Bulk Static Magnetic Field Shifts 

When a material is placed in magnetic field B, a magnetization M (magnetic moment per 

unit volume) is induced in the direction of B if the material is paramagnetic.  M is 

induced opposite to B if the material diamagnetic.  M is directly proportional to B: 

 

[ 1.9 ]  
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where κ is the unitless volume susceptibility.  Differences in magnetic susceptibility 

across samples induce static field inhomogeneities.  The brain is near large air filled 

spaces, which have dramatically different magnetic susceptibility than tissue.  Since there 

can be no instantaneous change in magnetic fields when crossing these large 

susceptibility differences (i.e., Maxwell’s equations must be satisfied), large scale 

magnetic field inhomogeneities are created near these boundaries.  The spatial extent and 

magnitude of these field inhomogeneities increase at stronger magnetic field strengths, 

since induced magnetic field differences in the air-filled spaces and tissues also increase. 

 

Due to the paramagnetic and diamagnetic properties of oxygen and nitrogen gas, 

respectively, oxygen dominates the magnetic susceptibility of air.  When the oxygen 

content of inhaled gases increases, bulk susceptibility of the inhaled gas is altered in a 

directly proportional manner.  The volume magnetic susceptibilities of air and oxygen 

gas are opposite in sign and similar in magnitude to tissue; normal air is approximately 

3.2 × 10-8
 (cgs units) with pure oxygen gas having a susceptibility five times higher at 1.6 

× 10-7.  A good approximation for tissue susceptibility is water, which is diamagnetic and 

has a volume susceptibility of -7.2 × 10-7. 

 

Although a complete physical model of the effect of oxygen gas in the upper airway on 

the static magnetic field requires solving Maxwell’s equations as a partial differential 
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equation boundary problem, we can predict that the effects will be measurable based on 

the large changes in magnetic susceptibility of the gases.  The effect of background 

magnetic field shifts is generally not considered in hyperoxic contrast studies of the 

human brain ((36-39)).  However, it is quite possible this will have a significant effect on 

measured values, since gradient-echo echo planar imaging (EPI) approaches typically 

used in these studies are highly sensitive to local static magnetic field changes.  For these 

reasons, we set out in Chapter 2 to further investigate the effect of hyperoxic gas 

inhalation on the static magnetic field of brain regions around the upper airway as a 

function of FiO2 and static magnetic field strength. 

 

1.8  Cerebral Oxygen Consumption, Blood Flow, and Volume During Hyperoxia 

Beyond increasing SaO2 and dissolved oxygen in the arterial blood, an increase in the 

fraction of inspired oxygen (FiO2) is known to produce a multitude of detectable 

biochemical and physiological effects (40,41).  These include altering the partial 

pressures of oxygen and carbon dioxide in tissues, changing the binding of carbon 

dioxide and oxygen with hemoglobin, as well as changing ventilation and cerebral blood 

flow (CBF) (42-45).  Although the causes of such effects and their relationships are quite 

complex, it is not necessary to fully characterize all of the details of these physiological 

processes in order to use hyperoxia as a quantitative MRI contrast agent.  What is 

essential is to fully characterize the effect of hyperoxia on physiological phenomena that 

affect the MR signal during a typical experiment.  While hyperoxia produces detectable 
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effects on CBF, the magnitude and temporal characteristics of these changes is important 

for determining whether or not we can assume that brief oxygen inhalation periods are 

pure sources of image contrast with negligible effects on metabolism. 

 

From prior studies, it has been established that oxygen produces a mild reduction in CBF 

(5,37,41,43,44,46,47).  However, the degree of this reduction and its relationship to FiO2, 

as well as the mechanisms that contribute to it, remain controversial and uncertain (37).  

Increasing FiO2 in humans is known to lower end tidal CO2, which results in arteriolar 

vasoconstriction and a reduction in CBF.  However, oxygen itself also exhibits a 

vasoconstrictive effect that is independent of end tidal CO2 (48,49).  This 

vasoconstrictive mechanism of oxygen is unclear, but likely stems from lower nitric 

oxide activity (50,51).  Although the temporal response characteristics of these effects are 

also different, they are expected to exhibit reproducible dose-dependent responses in 

most physiologic conditions. 

 

Although it has been established that hyperoxia can mildly lower CBF, studies have 

shown that hyperoxia has little to no effect on CBV, even at a FiO2 = 1.0 (6,49,52).  

Additionally, arterial hypocapnia has been shown to produce minimal effects on the 

arterial cerebral blood volume (53).  Similarly, hyperoxia has been shown to have no 

effect on the resting cerebral metabolic rate of oxygen (CMRO2), even with pure 

normobaric hyperoxia (5).  However, it is important to note that direct measures of 
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CMRO2
 changes are difficult to perform, and therefore such changes during hyperoxia 

are difficult to rule out.  This assumption would best be tested by glucose uptake PET 

studies or 17O2 inhalation MRI studies, yet these have not yet been performed.  

Nevertheless, the lack of evidence to the contrary, despite many studies in this area, is a 

good indicator that significant changes in oxygen metabolism during hyperoxia are 

unlikely.  Since metabolic and CBV changes are likely to contribute very minimally to 

MR signal during hyperoxic inhalation, the main physiological parameter that is 

important  is CBF.  Hence, if we can characterize the induced temporal changes of CBF 

in a dose-dependent manner during hyperoxia, we can correct for its effects on the MR 

signal. 

 

1.9  Safety of Inhalation of Hyperoxic Gas Mixtures 

Oxygen begins to exhibit toxic effects at a FiO2 ≥ 0.5 or 50 kPa.  Fortunately, most non-

severe forms of oxygen toxicity are well tolerated.  Oxygen toxicity has its biochemical 

basis in the partial reduction of oxygen by one or two electrons to form reactive oxygen 

species (ROS), including the superoxide anion (O2
-) and the hydroxyl radical (⋅OH).  

Increasing the partial pressure of oxygen in tissue with hyperoxia also increases ROS 

concentrations in these tissues (54).  All the pathogenic mechanisms of these reactive 

species are not fully understood (55), but they are known to create damage to cellular 

membranes and DNA (56).  The body employs antioxidant systems, such as glutathione, 

that can neutralize the effects of ROS in tissues (57). However, these defenses are 
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overwhelmed at sufficiently high concentrations of reactive species, leading to cellular 

damage and potential tissue necrosis (58). 

 

The effects of oxygen toxicity may be classified by the affected organs, namely the  

central nervous system, the pulmonary system, or the ocular system.  Central nervous 

system toxicity is characterized by convulsions and loss of consciousness.  This is the 

most severe form of oxygen toxicity, but it almost always occurs under hyperbaric 

oxygen exposure (>100 kPa).  Pulmonary toxicity is characterized by difficulty breathing 

and chest pain, which can occur when breathing normobaric or hyperbaric oxygen. 

However, this is typically experienced after prolonged exposure times on the order of 

several hours to days.  Ocular toxicity is characterized by damage to the lens of the eye, 

which can lead to myopia or retinal damage causing detachment.  Ocular damage can 

also occur with normobaric or hyperbaric oxygen exposure, but it is also typically due to 

chronic exposure on the order of many hours to days. 

 

Only hyperbaric oxygen exposure generally leads to cerebral and ocular clinical 

manifestations.  Exposures as short as a few minutes to partial pressures of oxygen 

greater that 160 kPa (eight times the atmospheric pressure of 21 kPa) can cause central 

nervous system toxicity.  While the exact mechanism for central nervous system toxicity 

during hyperoxia remains unclear (59,60), it is likely related to the uncontrolled 

formation of ROS in the brain (56).  In adults, ocular damage occurs primarily through 
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damage to the lens.  Hyperoxic myopia has been shown to occur in close circuit scuba 

diving and in those undergoing repeated hyperbaric oxygen therapy (61).  The 

mechanism is an increase in the refractive power of the lens, which is usually reversible 

with time. 

 

Since the lungs and respiratory tract are exposed to the highest concentrations of oxygen 

during hyperoxia, they are the first areas to show effects of oxygen toxicity.  Normobaric 

levels of oxygen can cause acute lung damage, beginning with tracheobronchitis or 

inflamed upper airways, experienced 4 to 22 hours after exposure to pure normobaric 

oxygen after an asymptomatic period (62).  At hyperbaric levels of 200-300 kPa, these 

effects may begin as soon as 3 hours after oxygen exposure.  Small animal experiments 

indicate that a decline in lung function can occur as soon as 24 hours after continuous 

100% oxygen exposure (63).  Diffuse alveolar damage and acute respiratory distress 

syndrome can develop after 48 hours at FiO2 = 1.0 (62).  Alveolar collapse, known as 

atelectasis, can also be induced by hyperoxia and occurs rapidly during 100% oxygen 

inhalation.  In this context, known specifically as absorption atelectasis, as oxygen 

replaces nitrogen in the alveoli it is absorbed into the blood rapidly, decreasing alveolar 

volume and causing alveolar collapse.  High partial pressures of oxygen balanced by 

nitrogen (i.e., hyperbaric gas) avoid this scenario (62). 
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Adult populations that are particularly at risk for oxygen toxicity are those that have been 

treated with the chemotherapeutic agent bleomycin or those with chronic obstructive 

pulmonary disease.  Bleomycin exposure can greatly increase the effects of pulmonary 

oxygen toxicity through the role of proinflammatory cytokines IL-18 and IL-1beta (64).  

Any hyperoxic exposures should be avoided in these patients.  Patients with chronic 

obstructive pulmonary disease can experience a clinical condition called carbon dioxide 

narcosis when inhaling hyperoxic gas mixtures. Carbon dioxide narcosis is caused by 

excessive CO2 retention, and can be at least in part attributed to a reduction in normal 

ventilation-perfusion matching and a reduction in hypoxic drive (62).  Hyperoxia can 

lead to dangerously high levels of CO2 in these patients and its administration should 

generally be avoided. 

 

In summary, although oxygen is not entirely devoid of toxicity and contraindications, 

most of the danger occurs either at high levels of oxygen exposure (>160 kPa) for short 

periods of time or moderate levels (>50 kPa) for long durations.  Therefore, most adverse 

effects can be avoided by reducing oxygen concentration to minimal levels (FiO2 < 1.0) 

and limiting exposure durations.  In our studies, the maximum oxygen exposure was 

100% oxygen for ten minutes, which is generally considered to be very safe and we also 

avoided any adverse events in our healthy adult subjects.  
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1.10  Current Applications of Hyperoxic MRI Contrast 

There has been emerging research and clinical interest in using oxygen as an 

intravascular MRI contrast agent because of a number of attractive features, including its 

wide availability, negligible cost, high tolerability, lack of contraindications, minimal 

physiologic effects, and rapid wash-in and wash-out times.  Most of the studies on 

hyperoxic contrast have focused on using oxygen to create an isometabolic dilution of 

deoxyhemoglobin and have used T2- and T2
*-weighted imaging approaches to measure 

this effect.  Some of the main techniques that have been developed using this effect are 

calibrated simultaneous BOLD/ASL measurement of the relative cerebral metabolic rate 

of oxygen (as an alternative to carbon dioxide) (6,38,39), measurements of regional 

capillary-venous cerebral blood volume (36), the characterization of the ischemic 

penumbra of stroke lesions including its oxygen consumption and spatial extent (65-68), 

and the delineation of hypoxic regions in tumors (31,69).  

 

Other techniques have focused on the other contrast mechanism of hyperoxia, the 

measurement of T1 reduction from the delivery of excess oxygen to tissues as an indicator 

of baseline tissue oxygenation.  Although increases in dissolved oxygen are fairly small, 

many have been successful in measuring these longitudinal relaxation changes using T1-

weighted gradient echo and Look-Locker techniques.  These studies include: measuring 

relative baseline tumor oxygenation (31,33), oxygen delivery and consumption in skeletal 
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muscle (70), lung ventilation (29), and oxygen delivery to physiologic fluids including 

the CSF and vitreous humor (71). 

 

1.11  Summary of Technical Challenges in Using Hyperoxia as a Quantitative 

Intravascular Contrast Agent 

Although progress has been made toward the use of hyperoxia as a quantitative 

intravascular contrast agent, several technical challenges remain.  First, the effect of bulk 

oxygen gas on background field inhomogeneities in typical BOLD-modulated studies of 

the human brain using gradient echo EPI has not been explored.  We expect that the 

fields are likely to change substantially in the frontal lobes near the frontal sinus and oral 

cavity, due to the large changes in volume susceptibility between air and pure oxygen 

gas.  Second, although there have been numerous studies regarding the effects of oxygen 

on regional CBF using ASL, they do not correct for the effect of T1 changes in arterial 

blood plasma. Furthermore, the temporal effects of CBF change as a function of oxygen 

exposure duration have also not been studied in detail.  Knowledge of these effects is 

crucial for any measurement using ASL and hyperoxia simultaneously, particularly for 

BOLD/ASL calibrated studies where flow changes significantly affect the calibration.  

Third, the use of hyperoxia calibration studies of relative changes in CMRO2 has not 

been validated against absolute quantitative measurements of CMRO2.  It is unclear to 

what extent these techniques contain sources of errors in their model assumptions, which 

can only be determined by comparing them to a gold standard.  Fourth, although there 
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have been various studies using the longitudinal relaxation enhancement of molecular 

oxygen to study oxygen delivery and consumption, there have been no attempts to 

quantitatively model the effect of T1 on local tissue blood flow and metabolism.  If these 

techniques are to provide quantitative information concerning the physiological status of 

the tissue, it will be crucial to understand these relationships. 

 

1.12  Specific Aims of Thesis Research 

Several technical issues remain concerning the use of hyperoxia as a quantitative 

intravascular contrast agent. Hence, the focus of this thesis is to address some of these 

important issues, namely to:  (1) characterize the paramagnetic effects of molecular 

oxygen BOLD and arterial spin labeling (ASL) data, (2) determine the degree and 

temporal characteristics of hyperoxia-induced reductions in cerebral blood flow (CBF), 

(3) investigate the use of oxygen in quantitative measurements of metabolism, and (4) 

elucidate the biophysical mechanisms of hyperoxic T1 contrast.  It is towards these goals 

that we present the following specific aims: 

 

1.12.1  Aim 1:  Characterize the effects of molecular oxygen on BOLD-modulated 

hyperoxic contrast studies 

Standard approaches to measuring BOLD-modulated hyperoxic contrast in the brain, 

including gradient echo EPI and other T2
*-weighted approaches, are highly sensitive to 
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changes in the background static magnetic fields.  There have been no attempts in the 

literature to establish whether or not field changes induced by bulk changes in the oxygen 

concentration of the upper airway near the brain can affect the background field to cause 

detectable changes in measured signals.  Chapter 2 aims to characterize these effects as a 

function of field strength and FiO2. 

 

1.12.2  Aim 2:  Determine the change in longitudinal relaxation time of arterial blood 

at arbitrary levels of hyperoxia in vivo 

Although ASL techniques are very sensitive to T1 of arterial blood, there have been no 

studies that attempt to develop an accurate model of arterial blood T1 measurements as a 

function of hyperoxia.  Toward this end, we set out to produce such a model by making 

in vitro and in vivo measurements of the longitudinal relaxivity versus arterial partial 

pressure of oxygen.  The work in Chapter 3 represents our work toward developing a 

complete quantitative model of the longitudinal relaxation time of arterial blood that 

depends only on knowledge of the partial pressure of arterial blood at a given FiO2. 

 

1.12.3  Aim 3:  Quantify absolute cerebral blood flow during hyperoxia using arterial 

spin labeling 

Since ASL is quite sensitive to the T1 of arterial blood, a quantification of absolute 

cerebral blood flow during hyperoxia requires knowledge of arterial blood T1 as a 

function of arterial oxygen concentration. To date, there have been no published studies 
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using in vivo measurements of T1 for arterial blood to correct ASL data.  In an attempt to 

characterize the effect of this variable on measures of CBF, we made simultaneous in 

vivo measurements of T1a and CBF during normoxia and hyperoxia under a brief 

hyperoxic inhalation, as well as graded hyperoxic inhalation paradigms on a per subject 

basis.  This work is the focus of Chapter 4. 

 

1.12.4  Aim 4:  Implement hyperoxic gas calibration BOLD/ASL measurements of 

relative cerebral metabolic rate of oxygen using a hypermetabolic animal 

The focus of this aim is to quantify metabolic changes using hyperoxic calibrated 

BOLD/ASL fMRI in a hypermetabolic swine model.  Metabolic changes in this animal 

model were previously studied by our group using gas isotopically-enriched with 17O2.  

The goal of this study is to cross-validate these absolute metabolic measurements with 

the deoxyhemoglobin dilution methods of relative metabolism, as well as to compare the 

results of hyperoxia and hypercapnia calibrations.  This work is detailed in Chapter 5. 

 

1.12.5  Aim 5:  Develop a biophysical model of the dependence of cerebral blood flow 

and metabolism on hyperoxia-induced changes in the longitudinal relaxation 

rate of tissue 

There have been several studies published regarding the effect of elevated partial 

pressures of oxygen in the arterial blood on longitudinal relaxation time in normal and 

diseased tissue, mostly using tumor models.  While these studies show promising contrast 
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from the reduction in T1, indicating an increase in partial pressure of oxygen in these 

tissue regions, a quantitative understanding of this contrast mechanism has yet to be 

developed.  Chapter 6 represents an attempt to establish a quantitative understanding of 

the relationship between cerebral blood flow, oxygen consumption, and the longitudinal 

relaxivity of hyperoxic contrast. 
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Chapter 2:  Characterization of the Paramagnetic Effects of Molecular 

Oxygen on Blood Oxygenation Level-Dependent-Modulated  

Hyperoxic Contrast Studies 

 

2.1  Overview 

In hyperoxic contrast studies modulated by the blood oxygenation level-dependent 

(BOLD) effect, it is often assumed that hyperoxia is a purely intravascular, positive 

contrast agent in T2
*-weighted images, and that the effects not due to BOLD contrast are 

small enough to be ignored.  In this chapter, this assumption is reevaluated and non-

BOLD effects in T2
*-weighted hyperoxic contrast studies of the human brain were 

characterized.  We observed significant negative signal changes in T2
*-weighted images 

in the frontal lobes; B0 maps suggest this effect was primarily due to increased intravoxel 

dephasing from increased static field inhomogeneity due to susceptibility changes from 

oxygen in and around the upper airway.  These static field effects were shown to scale 

with magnetic field strength.  Signal changes observed around the brain periphery and in 

the ventricles suggest the effect of image distortions from oxygen-induced bulk B0 shifts, 

along with a possible contribution from decreased T2
* due to oxygen dissolved in the 

cerebrospinal fluid.  Reducing the concentration of inhaled oxygen was shown to mitigate 

negative contrast of molecular oxygen due to these effects, while still maintaining 

sufficient BOLD contrast to produce accurate measurements of cerebral blood volume.   

This results of this work serve to outline limits in which studies of the human brain using 
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hyperoxic T2
* contrast can be considered to avoid the artifactual effects of paramagnetic 

oxygen and be entirely due to deoxyhemoglobin dilution. 

 

2.2  Introduction 

As discussed above in Chapter 1, the inhalation of hyperoxic gas mixtures is known to be 

an effective positive contrast agent in T2
*-weighted images (53,72).  To summarize the 

process again briefly, an elevated inspired fraction of oxygen (FiO2) causes excess 

molecular oxygen to dissolve in the blood plasma in the lungs.  The excess oxygen in the 

plasma is then delivered to capillaries, where it diffuses into the tissues preferentially to 

the oxygen bound to hemoglobin.  The deoxy-/oxyhemoglobin ratio and the 

paramagnetism of the blood (blood oxygenation level-dependent, or BOLD, effect) are 

subsequently decreased, resulting in an increase in signal on T2
*-weighted images.  The 

T2
* contrast generated in a given voxel is dependent on the capillary-venous blood 

volume in that voxel and the degree to which the concentration of deoxyhemoglobin 

changes in the capillary-venous blood (72). 

 

For oxygen to be considered as a purely intravascular contrast agent in T2
*-weighted 

images, it must have minimal effects on the MR signal that are not due to the dilution of 

deoxyhemoglobin.  As covered in Chapter 1, molecular oxygen dissolved in the blood 

has a detectable T1 relaxivity (73), and molecular oxygen has been shown to be effective 
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as a T1 contrast agent in body fluids (71,74), displaying a fast wash-in of a significant 

concentration of molecular oxygen into these tissues.  Unless T1-weighting is completely 

eliminated by the imaging sequence approach, it could present a possible confounding 

factor in these studies. 

 

Another important effect is the disruption of the static magnetic field (B0) in the frontal 

lobes of the brain due to the influence of paramagnetic gaseous oxygen in the upper 

airway.  This effect has not yet been characterized or considered in hyperoxic contrast 

studies of the human brain (6,38).  The physical argument for this effect was covered in 

Chapter 1.  To summarize, gaseous nitrogen is diamagnetic, while gaseous oxygen is 

weakly paramagnetic.  However, since the magnetic susceptibility of gaseous oxygen is 

more than 300 times that of gaseous nitrogen (75), the magnetic properties of air are 

dominated by oxygen.  The volume magnetic susceptibility of air and of oxygen are 

therefore approximately equal in value and opposite in sign.  The inhalation of FiO2 = 1.0 

will make the frontal sinuses approximately five times more paramagnetic than air, 

further increasing the difference in magnetic susceptibility at the air-tissue interface.  

This will substantially increase the static field inhomogeneity in surrounding brain 

regions, leading to decreased signal in T2
*-weighted images, distortions in echo-planar 

imaging (EPI) acquisitions, and shifts in slice locations. 
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In this study, the paramagnetic effects of molecular oxygen on typical BOLD-modulated 

T2
*-weighted gradient echo EPI studies in the human brain have been characterized.  The 

degree of negative contrast in tissue specific compartments and regions was also 

examined.  The effects of inhaled oxygen on the static field were characterized by the 

measurement of the difference in B0 maps during normoxia and hyperoxia at 3T and 7T 

field strengths.  We have shown that the degree of static field inhomogeneity increases 

with inhaled oxygen concentration and with increasing field strength.  Furthermore, we 

demonstrate that a reduction in the concentration of inhaled oxygen significantly reduced 

non-BOLD T2
* signal changes, while maintaining adequately high contrast-to-noise from 

the BOLD effect for accurate CBV calculation. 

 

2.3  Materials and Methods 

2.3.1 Gas Delivery and MRI Hardware 

All experiments involving humans subjects were done under protocols approved by our 

Institutional Review Board, and signed, informed consent was obtained from each 

volunteer.  All images were collected on a whole-body clinical 3T MRI scanner (Siemens 

Trio; Siemens Healthcare, Erlangen, Germany) with a body coil transmitter and 8-

channel receiver head coil, except for one dataset collected on a whole-body 7T system 

(Siemens Magnetom) with a transmit-receive circularly-polarized head coil.  For all 

experiments, medical air, oxygen, or hyperoxic mixtures were delivered to the subject 

with a nonrebreathing mask fitted tightly over the nose and chin, running at a flow rate of 
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40 L/min from an air/oxygen blending device capable of delivering precise FiO2 values 

of 0.21-1.0 at high flow rates (Precision Medical Inc, Northampton, PA, Model PM5300).  

A high flow rate was used to ensure that normal resting maximum peak inspiratory flow 

rates were exceeded (76), thus eliminating any entrainment of room air upon inhalation.  

The magnet bore fan was run at maximum to ensure that gases did not build up around 

the subject. 

 

2.3.2  Hyperoxic Challenge Paradigm 

For all hyperoxic challenge experiments, a baseline – stimulation – rest paradigm was 

used.  To examine the positive and negative contrast effects across the brain, an 

experimental paradigm lasting twenty-seven minutes was performed on one normal, 

healthy male volunteer (28 years old).   A baseline three-minute period of normoxia 

(FiO2 = 0.21) was followed by two cycles of a six-minute hyperoxic stimulation	
  period	
  

FiO2 = 1.0 and six-minute rest period of FiO2 = 0.21.   

 

2.3.3  MRI Sequence Parameters 

During the experiment, continuous whole-brain echo-planar imaging (EPI) data were 

collected with the following sequence parameters:  FOV: 220 x 220 mm, 128 x 128 

matrix, TE/TR: 29/2000 ms, 22 slices, slice thickness: 5 mm, 1 mm slice gap, FA: 900.  

In addition to the EPI acquisitions, a high-resolution structural T1-weighted MP-RAGE 

scan with 1 x 1 x 1 mm3 voxel size and a whole-brain dual-echo 3D GRE with phase 
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reconstruction and 2 x 2 x 2 mm3 voxel size (for B0 mapping) were performed at the 

beginning of the experiment to allow for unwarping, structural coregistration, and tissue 

segmentation of the EPI data.  To characterize the positive and negative contrast effects 

as a function of the level of hyperoxia, the same whole-brain EPI data, structural images, 

and B0 maps were collected on a set of normal, healthy volunteers (N=6, three male 

subjects, age range 28-32 years).  All subjects were imaged with experimental paradigm 

lasting 27 minutes similar to the one above, except two different FiO2 levels were used.  

In this case, a baseline three-minute period of normoxia (FiO2 = 0.21) was followed by a 

six-minute mild hyperoxic stimulation	
  period	
  of	
  FiO2 = 0.5, a six-minute rest period of 

FiO2 = 0.21, a six-minute hyperoxic stimulation	
  period	
  of	
  FiO2 = 1.0, and a second six-

minute rest period of FiO2 = 0.21. 

 

To characterize changes in B0 occurring as a function of the level of hyperoxia, the same 

experimental paradigm was performed again while sagitally-oriented whole-brain 

continuous dual-echo 3D GRE phase images were acquired for three of the six subjects 

following the final normoxic rest period.  The sequence parameters were:  FOV: 256 x 

256 x 160 mm, 128 x 128 x 80 matrix, TE1/TE2/TR: 3/7/12 ms, 6/8 partial Fourier factor 

(phase and slice), and FA: 70.  The total acquisition time of each 3D GRE image was 72 

seconds, allowing five whole-brain B0 maps to be acquired during each stimulation and 

rest period.  To characterize changes in B0 during hyperoxia as a function of the static 
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field strength, this same B0 mapping experiment at different FiO2 levels was performed at 

7T for one of these subjects. 

 

2.3.4  Data Analysis 

All data were processed using the FMRIB Software Library (FSL) Tools (77). The EPI 

data were motion corrected and unwarped using a software package designed to process 

intramodal MRI time series data (FEAT) (78).  Each phase image was unwrapped 

separately using an automatic phase unwrapping algorithm (PRELUDE) (77).  The 

structural images were segmented into masks of three tissue types – CSF, gray matter, 

and white matter – using an automatic tissue segmentation algorithm (FAST) (79).  The 

structural images and their respective masks were co-registered to the EPI data using an 

automatic affine registration algorithm (FLIRT) (80).  This tool was also used for motion 

correction of the series B0 maps by co-registering all magnitude volumes and applying 

the affine matrix to the phase data. 

Final analysis of all the datasets was performed using custom scripts written in MATLAB 

(MathWorks, Inc.). All statistical tests used the Student’s paired t-test; all reported values 

and error bars on plots were in mean ± SD.  For each six minute epoch of each dataset, 

the EPI data from the first three minutes or the first two B0 maps were discarded to allow 

the intravascular levels of oxygen to reach a steady state (37).  For the first experiment 

described, data from all normoxia and hyperoxia epochs were averaged and compared.  

For the experiment comparing elevated FiO2 levels, the baseline values of the first 
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hyperoxic epoch were obtained from the mean of the first and second normoxia epochs, 

and, in the same manner, the second and third were used for the second hyperoxic epoch.  

This was done to mitigate signal drift effects.  The unwrapped phase datasets were 

subtracted and divided by the echo time difference and converted to relative B0 maps in 

ppm.  The coregistered tissue segmentation masks were multiplied by the unwarped EPI 

data to obtain values for CSF, gray matter, and white matter regions across the brain.   

 

2.3.5  Calculation of Regional Cerebral Blood Volume 

Regional capillary-venous CBV values were calculated according to the method from 

Bulte, et al. (36), whereby the signal enhancement in tissue is normalized to the signal 

from a pure vein voxel: 

 

    [ 3.1 ] 

  

where n is the number of signal voxel ratios measured after reaching the steady state; 

h=(1 - Hct) / (1 - 0.85 x Hct) accounts for the difference in the hematocrit between the 

large and small vessels; ρ = 1.04 ml/g is the tissue density; Stissue,j and Svein,j are the signal 

measurements made in tissue voxels and a pure vein voxel during hyperoxia; Stissue,0 and 

Svein,0 are the baseline signals from each tissue voxel and a pure vein voxel. 
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2.4  Localization of Hyperoxia-Induced Positive and Negative EPI Signal Changes 

Figure 2.1 provides an example of typical positive (Fig. 2.1b) and negative (Fig. 2.1c) 

percent signal change from baseline with 100% oxygen inhalation, along with 

coregistered structural images.  Positive contrast can be seen across gray matter, with 

large veins showing the most contrast.  Well-defined regions of negative signal change 

can be seen in regions around the frontal sinus as well as in superior slices, but do not 

seem to be associated with a particular tissue compartment.  Coherent negative contrast is 

clearly visualized in the ventricles and large sulci, i.e. specific tissue compartments 

known to contain CSF (compare visually to segmentation of CSF in Fig. 2.3, below).  

Figure 2.1d shows the clear negative modulation upon oxygen inhalation of the signal in 

voxels near the frontal sinuses and in the CSF. 
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Figure. 2.1.  Percent signal change from baseline upon FiO2=1.0.  Both positive (b) 

and negative (c) percent signal changes from baseline occur coherently in specific 

compartments of the brain, shown clearly in the coregistered MP-RAGE images (a).  
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The red arrows point to the negative T2
*-contrast effect of the disruption of the B0 

field in the frontal lobes from gaseous oxygen in the sinuses and nasal cavity, along 

with associated long range static field disruptions in superior-posterior parietal 

lobes.  The green arrows illustrate the effects of the reduction in transverse 

relaxation times from dissolved molecular oxygen in the CSF; major ventricles and 

sulci are clearly outlined in the negative signal change images.  Voxels at the blue, 

red, and green crosses represent tissue, B0-affected, and CSF regions, respectively; 

signal values at these voxels are plotted as percent difference from baseline versus 

time at the blue squares (tissue), red triangles (B0-affected), and green diamonds 

(CSF) (d).  The blue regions represent the two 100% oxygen inhalation epochs.  The 

values of the B0-affected voxel have been scaled down by a factor of 0.1 for clarity. 

 

2.5  Hyperoxia-Induced Negative EPI Signal Changes versus FiO2 

Figure 2.2b, c shows the percent negative contrast from baseline upon inhalation of FiO2 

= 1.0 and 0.5, respectively, from five contiguous slices chosen to cover the ventricles and 

the frontal lobe regions just superior to the frontal sinus and nasal cavity.  The signal 

intensities in these images are scaled in the same manner.  In addition to substantial 

negative contrast centered around the frontal lobes and regions of high CSF, there are 

significant (although less coherent) negative signal changes across the brain in white and 

gray matter.  A distinct reduction in the negative contrast is visualized in all regions at the 

lower FiO2 level.  Figure 2.3 shows a representative slice of coregistered tissue 
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segmentation masks from each tissue type along with the associated EPI slice.  As shown, 

the high T1 contrast between these tissue types allows robust segmentation. 

 

 

Figure 2.2.  Comparison of percent negative signal change from baseline for FiO2 = 

1.0 (b) and 0.5 (c) with their associated EPI images (a).  Note the significant 

reduction in negative contrast across the brain, particularly in the frontal lobe 

regions (red arrow) and in the ventricles and major sulci (green arrow). 
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Figure 2.3.  Tissue masks of cerbrospinal fluid (b), gray matter (c), and white matter 

(d) with a registered, unwarped EPI image (a).  Tissue segmentation was performed 

using an automated tissue segmentation algorithm with a high resolution T1-

weighted image.  The tissue masks were then registered to unwarped EPI data with 

an automatic affine registration algorithm. 

 

2.6  Measurement of Hyperoxia-Induced B0 field Perturbation versus FiO2 

Figure 2.4 shows results from the subject imaged at 3T and 7T field strengths.  Figure 

2.4a shows a sagittal cut from 3D relative B0 maps in parts-per-million (ppm) at baseline 

at 3T and 7T.  The difference in the relative B0 maps between the hyperoxic states at 3T 

and 7T is shown in Fig. 2.4b,c.  In the frontal lobes near the nasal cavity, more than 0.1 

ppm increase in the B0 field was observed during 100% oxygen inhalation at 3T.  Similar 

changes in the B0 field were measured at 3T in the other two subjects (data not shown).  

In the dataset shown, additional static field changes were observed during FiO2 = 1.0 in 

superior, posterior, and inferior brain regions far from the nasal cavity (Fig. 4b, top).  

Negative signal changes were observed in the EPI acquisitions in the same subject (Fig. 
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1c) near these same superior and posterior brain regions showing these additional static 

field changes.  However, these static field effects were not observed in all subjects.  

During 100% oxygen inhalation at 7T, a large region of more than 0.1 ppm increase in 

the static field extends past the frontal lobes into the parietal and temporal lobes.  At each 

field strength, these effects remain present during 50% oxygen inhalation, but to a much 

lesser extent (Fig. 4c).  The relative change in the static field at different oxygen levels 

and field strengths is shown in Fig. 2.4d,e as a change in the normalized relative B0.  This 

shows that the B0 values superior to the nasal and oral cavities changed approximately 

twice as much in FiO2 = 1.0 versus 0.5 at each field strength, and that relative B0 changes 

are approximately twice as high at 7T versus 3T.  It should be noted, however, that the 

results shown here are not from a representative subject, but rather from the one subject 

tested at both field strengths.  Table 2.1 quantifies the negative contrast in each tissue 

type for all (N = 6) subjects as the mean percent of the total voxels in that region that 

show a negative (< 0) percent change from baseline.  Statistically significant reductions 

in the percent of negative voxels for all tissue types are produced at the lower FiO2 level, 

with an average overall reduction of 14.1%. 
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Figure 2.4.  Baseline B0 maps and change in B0 after different levels of oxygen 

inhalation at 3T and 7T.  Baseline relative B0 maps (ppm) (a) during air breathing 

at 3T (top row) and 7T (bottom row).  Change in the relative ΔB0 (ppm) maps from 

baseline during FiO2 = 1.0 (b) and 0.5 (c) at 3T (top row) and 7T (bottom row).  Note 

that the effects of the static field extend beyond the frontal lobe region at both field 

strengths.  The yellow boxes in the top and bottom rows of (a) mark rectangular 

regions of interest that are plotted in (d) and (e), respectively, as normalized relative 

B0 values versus time for FiO2 = 0.5 oxygen (light blue region) and 1.0 (dark blue 
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region) epochs.  Normalized B0 values are normalized voxel-by-voxel division of 

every B0 map by the value of the first B0 map.  Note the substantially larger static 

field disruptions at 7T. 

 

Table 2.1.  Mean Percent Negative Voxels for All Subjects within Specified Tissue 

Regions for FiO2=1.0 and 0.5 

 FiO2=1.0 FiO2=0.5 p-value 

CSF 36.5 ± 5.3 24.1 ± 3.4* <0.001 

White Matter 41.2 ± 7.9 25.0 ± 3.4* <0.002 

Gray Matter 26.4 ± 6.0 12.9 ± 2.3* <0.01 

All Regions 34.7 ± 7.6 20.6 ± 8.8* <0.001 

 

 

2.7  CBV Measurement Accuracy at Low FiO2 

Figure 5a,b demonstrates that the BOLD contrast is lower in FiO2 = 0.5, but the final 

values of CBV computed in Figure 5c,d are very close to those calculated FiO2 = 1.0.  

The values in Table 2.2 confirm this, with the mean global CBV values at FiO2 = 0.5 

being somewhat higher than those at FiO2 = 1.0, although this difference was not found to 

be statistically significant.  The values of CBV in gray matter and white matter measured 

here are in close agreement with those found in the previous implementation of this 

technique (36). 
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Figure 2.5. Percent difference and CBV maps in mL/100 g tissue calculated 

according to Eq. 1.  Positive percent difference from baseline is shown for FiO2=1.0 

(a) and 0.5 (b).  Despite the reduced signal enhancement of the lower FiO2, there still 

remains adequate BOLD contrast to allow for very similar CBV values for FiO2 = 

1.0 (c) and 0.5 (d), made possible by the process of normalization to a pure vein 

voxel (sagittal vein) in each dataset. 
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Table 2.2.  Mean Global CBV Values (mL / 100 g) for All Subjects Measured with 

100% and 50% Inhaled Oxygen 

 FiO2=1.0 FiO2=0.5 

Gray Matter 3.87 ± 0.43 3.95 ± 0.62 

White Matter 2.41 ± 0.36 2.49 ± 0.58 

 

 

2.8.  Chapter Discussion 

In this study, the paramagnetic effects of molecular oxygen in T2
*-weighted hyperoxic 

contrast studies at different FiO2 levels have been characterized.  Of particular 

importance, we have characterized the effect of increased FiO2 on static field 

inhomogeneity, and we have demonstrated the field strength dependence of this 

phenomenon.  These effects can produce signal changes that are equal to or greater than 

the expected BOLD changes; therefore, it is not accurate to assume that hyperoxia is a 

purely intravascular source of image contrast in all brain regions.  It may have been 

difficult to observe these effects in other studies of hyperoxic contrast because of the use 

of lower resolution EPI data, spatial filtering in post-processing, or because the slices 

acquired avoided the frontal sinuses or the ventricles (6,36,38).  Also, since large voxels 

and spatial blurring kernels are commonly used, any negative changes may have been 

obscured, since BOLD contrast dominates in most brain regions. 
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It should be noted that the strength of the conclusions concerning the field-dependent 

effects are limited, since only a single subject was studied at both field strengths.  

However, the static field measurements made were found to be very stable during 

normoxia in all subjects studied, and the B0 changes observed during hyperoxia at both 

field strengths were demonstrably large.  Altogether, this provides reasonable grounds for 

confidence in the accuracy of these results. 

 

There are several potential non-BOLD sources of signal changes during hyperoxia that 

present potential confounding variables in BOLD-modulated hyperoxic contrast studies 

of the brain.  Substantial changes in B0 in the frontal lobes during hyperoxia suggest an 

increase in the paramagnetism of the upper airway directly underneath the brain from 

increased local molecular oxygen concentration.  Oxygen gas in other nearby spaces, 

such as in the mask itself, is also likely to have contributed to the observed effect.  The 

paranasal sinuses may also play a role, but are less likely to substantially change their 

oxygen concentrations during the short inhalation epochs used in this study, as gas 

exchange between the nasal cavity and sinuses is slow (81).  It is also possible that 

oxygen in the lower airway, including the lungs, played a role in changing the static field 

during hyperoxia, despite its relatively large distance from the brain (82).  Gas in the 

lower airway would be expected to produce static field changes that are poorly localized 

and affect the entire brain.  However, the large (> 0.1 ppm) B0 changes observed in this 
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study were well-localized to the anterior and inferior brain regions near the nasal and oral 

cavities.  Static field changes in other parts of the brain were found to be substantially 

smaller, and consistent effects were not observed across subjects.  Although it seems 

reasonable to conclude that the effects of oxygen in the upper airway dominate the static 

field changes in the brain over contributions from the lower airway in the frontal lobes, it 

is possible that smaller static field changes occur across the brain during hyperoxia from 

oxygen gas in the lungs. 

 

Increased static field inhomogeneity significantly increases intravoxel phase dispersion in 

all directions in T2
*-weighted EPI acquisitions, which is most likely the main mechanism 

of the observed decrease in the signal in the frontal lobes.  Static field changes also create 

significant image distortions and shifts in EPI acquisitions in the phase encode and 

through-slice directions.  It has been shown in prior studies that changes in lung magnetic 

susceptibility can create image distortions and shifts that cause either negative or positive 

signal changes (depending on image orientation), with the most significant effects 

occurring at the edges of image intensity (82).  These effects are very sensitive to small 

changes in the static field, and may be a significant source of signal changes observed at 

a distance from the frontal lobes, especially the periphery of the brain in the EPI 

acquisitions (see Figs. 1 and 2).  
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The CSF also appears to show reduced signal intensity in the EPI acquisitions.  The 

reason for these changes is somewhat less clear.  If dissolved oxyen was present in these 

regions, increased signal intensity would be expected from reduced T1.  Based on the 

arguments in Chapter 1, the transverse relaxivity of molecular oxygen is likely to be 

extremely small, even if oxygen were interacting with large proteins. However, it is 

possible that this could affect the measured signal intensities near the ventricles and sulci 

if the oxygen concentration were very high during hyperoxia, as CSF constitutes a very 

large percentage of the voxel signal intensity.  Although the transverse relaxation of 

arterial blood also decreased with hyperoxia (73), arterial cerebral blood constitutes less 

than 3% of tissue voxel volume (83) and signal reductions due to this effect are likely to 

be much less significant.  It should be noted that B0 shifts may contribute substantially to 

any signal changes measured in the CSF-filled spaces in the frontal lobes or at the 

periphery of the brain.  Furthermore, for the reasons discussed in the previous paragraph, 

CSF regions across could show negative contrast due to global field shifts  from changing 

in the oxygen concentration in the lungs, since CSF represents an image intensity 

boundary (82).  We observed consistent signal reductions in the lateral ventricles in the 

center of the brain during hyperoxia (see Fig. 2.1), away from substantial image intensity 

edges and where B0 shift effects are likely to be minimal, lending support to the idea that 

there is a subtle global effect from hyperoxia inhalation. 
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Reduced FiO2 levels have been shown here to be effective in reducing the non-BOLD 

relaxation effects of inhaled oxygen.  This adds further support to the physiological 

arguments for the use of lower FiO2 (37) to reduce effects not related to BOLD-based 

signal modulation.  Although the total percent of voxels showing negative signal change 

decreased with a lower level of hyperoxia, the percent signal increase from the BOLD 

effect in capillaries and veins decreased with lower FiO2.  Therefore the beneficial effect 

of the decrease in negative contrast with lower FiO2 is mitigated somewhat by the 

decreased BOLD response.  However, despite the reduced BOLD contrast, the 

correspondence between values of CBV for FiO2 = 0.5 and 1.0 measured in this study 

indicates that 50% oxygen inhalation exceeds the contrast-to-noise threshold necessary to 

produce precise and accurate CBV values.  The relative effectiveness of FiO2 = 0.5 may 

also be because a significant fraction of the excess oxygen carried to the capillaries under 

hyperoxia is from the increase in the saturation of the arterial hemoglobin, since it is not 

completely saturated under normal physiologic conditions (84).  Furthermore, oxygen is 

known to modestly decrease the cerebral blood flow as a function of increased FiO2 (37), 

which acts to reduce some of the expected increase in BOLD signal from the use of a 

higher FiO2.  It should also be noted that accurate results for CBV measurement may be 

produced at an FiO2 less than 0.5.  The practical minimum FiO2 for a given experiment 

will likely depend on the required contrast-to-noise ratio, which in turn will depend on 

several experimental parameters, including the duration and number of the inhalation 

epochs, the static field strength, and the signal-to-noise ratio of the imaging approach. 
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Several additional strategies could be pursued to reduce or eliminate the non-BOLD 

effects of hyperoxic contrast.  It is theoretically possible to significantly reduce the 

distortion and dephasing effects due to static field alterations by acquiring a three 

dimensional B0 map and additional reference scans to characterize the in-plane and 

through-plane EPI point spread function in both the normoxic and hyperoxic states (85).  

However, these correction methods require substantial increases in the scan time, are 

computationally intensive, and are themselves prone to many artifacts and errors, making 

their implementation in brief hyperoxia protocols impractical.  Although it is not 

physically possible to recover signal from spins that is completely lost due to intravoxel 

dephasing, it is possible to deconvolve the contribution to T2
* of a through-slice gradient 

with a detailed fit of the T2
* decay curve (86).  However, this approach is not possible in 

this context because this approach is too noisy given the small signal changes induced by 

hyperoxia.  Higher resolution and thinner slices can also reduce the static field dephasing 

effects, but the penalty of reduced signal-to-noise ratio would likely be unacceptable 

given the relatively low levels of signal enhancement that can be obtained from BOLD 

contrast.  Fully refocused fast spin echo approaches to BOLD imaging (87) would be 

insensitive to changes in the static magnetic field, but these approaches reduce BOLD 

contrast and are often limited by specific absorption rate, especially at high fields.  

Furthermore, they may be undesirable in certain hyperoxic contrast studies (e.g. CBV 

calculations) since T2-weighted BOLD contrast is dependent on vessel diameter.  The T2
* 

effects due to molecular oxygen in the CSF may be reduced or eliminated by the addition 

of saturation, inversion recovery, or long-T2 suppression pulses to the EPI sequence that 
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null the signal from spins with long T1 or T2 values.  Care must be taken with these 

approaches, however, since molecular oxygen reduces the longitudinal relaxation time in 

CSF, and T1-weighting of these sequences could result in artifactual increases in signal 

intensity if CSF signals are not suppressed adequately. 

 

In conclusion, we have demonstrated that the paramagnetic effects of molecular oxygen 

significantly complicate the analysis of BOLD-modulated hyperoxic contrast studies of 

the brain.  Negative signal changes were observed in T2
*-weighted images in the frontal 

lobes, and B0 maps suggest this effect is due to increased intravoxel dephasing from 

increased static field inhomogeneity from oxygen-induced susceptibility changes in and 

around the upper airway.  Additional negative signal changes were observed in the 

ventricles and brain periphery, suggesting the effect of image distortions from oxygen-

induced static field shifts, along with possible increased transverse relaxation rate in the 

CSF due to dissolved oxygen.  Static field changes during oxygen inhalation were shown 

to scale with the main magnetic field strength, and the use of FiO2 = 0.5 was shown to 

reduce negative signal changes while maintaining adequate BOLD contrast for accurate 

CBV calculation. 
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Chapter 3:  In Vivo Measurement of Longitudinal Relaxation Time  

of Arterial Blood During Hyperoxia 

 

3.1  Overview 

ASL measurements of CBF during hyperoxia are confounded by the reduction in 

longitudinal relaxation time of arterial blood (T1a) from paramagnetic molecular oxygen 

dissolved in blood plasma.  The aim of this study is to accurately quantify the effect of 

arbitrary hyperoxic levels on T1a.  To mitigate artifacts, including the inflow of fresh 

spins, partial-voluming, pulsatility, and motion, a pulsed ASL approach was implemented 

for in vivo measurements of T1a in the rat brain at 3 Tesla.  After accounting for the effect 

of deoxyhemoglobin dilution, the relaxivity of oxygen on blood was found to closely 

match phantom measurements. 

 

3.2  Introduction 

Although it is well-known that inhaled oxygen creates a significant reduction in the T1 of 

arterial blood (T1a) (73,88), and that T1a has a substantial effect on CBF measurements 

using ASL (89), only a small number of studies using arterial spin labeling (ASL) 

approaches to investigate the regional CBF changes during hyperoxia have incorporated 

T1a changes in their CBF calculations (37,46).  For some of these studies, the T1a changes 

during hyperoxia were assumed from results of prior studies of arterial blood at 100% 
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oxygen inhalation (46).  Other studies modeled the expected change in T1a during 

hyperoxia at intermediate hyperoxia levels, since there are no established values of T1a in 

the literature for various oxygen concentration levels (37).  These approaches may be 

problematic for several reasons.  First, the methods used in these studies (73,88) to 

measure T1a are prone to several artifacts and errors.  These include	
  the	
  inflow	
  of	
  fresh,	
  

un-­‐inverted	
   spins	
   from	
  outside	
   the	
   transmit	
   coil,	
   partial-­‐voluming,	
   pulsatility,	
   and	
  

motion.	
   	
  Second, even under equivalent conditions of hyperoxia, T1a changes may vary 

significantly between individuals due to physiologic variations in the blood.  Third, it is 

not clear how to effectively model the expected T1a changes at arbitrary oxygen 

concentration levels, since T1a may be influenced by various factors other than the 

concentration of molecular oxygen in the plasma (e.g., dHb concentration).  All of these 

issues point to the necessity the measurement of T1a on a per subject and per gas 

condition basis that is free from significant artifacts. 

 

To achieve these measurements, we implemented pulsed ASL (PASL) approaches for the 

measurement of T1a (90), which allowed for accurate isolation of arterial blood and 

minimized partial-­‐voluming	
  and	
  pulsatility	
  artifacts.  Due to the requirement that the 

transmit coil be larger than the subject to avoid the contamination of the measurement 

from inflowing spins (90), in addition to the long scan times inherent to inversion-

recovery measurements of T1, adult rats were chosen as a model organism, since they are 
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substantially smaller than the transmit coil and will experience hematologic changes in 

response to hyperoxia that are similar to humans. 

 

3.3  Material and Methods 

3.3.1  Phantom Study of Oxygen Longitudinal Relaxivity 

To characterize T1 as a function of dissolved oxygen concentration, a phantom study was 

performed by bubbling a mixture of nitrogen and oxygen into phosphate-buffered saline 

(PBS) in a centrifuge tube held at 370 C in a water bath.  After ten minutes, to allow the 

gas to fully dissolve in the solution, an airtight lid was secured, and the tube was 

immediately transferred to a foam-insulated holder positioned inside the magnet.  Since 

the measurement of T1 lasted only approximately three minutes, it was not necessary to 

heat the phantom while it was in the magnet.  An inversion-prepared single-shot FSE 

sequence was used with ten inversion times (90, 200, 400, 800, 1200, 1600, 2400, 4000, 

6000, 1000 ms) with a TR = 20 s.  Temperature measurements were performed before 

and after the imaging experiment, and all temperature decreases were found to be less 

than 0.50 C.  This process was repeated for 0 to 100% oxygen (0 to 760 mm Hg) in steps 

of 10%.  To investigate the possible influence of blood proteins on the relaxivity of 

molecular oxygen, this experiment was repeated with 5% bovine serum albumin in PBS.  

All measurements were repeated five times using separate samples. 
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3.3.2  Animals 

All experiments performed were part of an approved protocol by our Institutional Animal 

Care and Use Committee.  All data were obtained using adult male Sprague-Dawley rats 

(n=5; 434-467 g; Charles River, MA, USA).  Anesthesia was induced with 3% isoflurane 

in oxygen for approximately five minutes, and the animals were then maintained on 

spontaneous inhalation anesthesia consisting of 1.5% isoflurane in 30% oxygen delivered 

at 1.5 L/min through a close-fitting nose cone.  If the animal showed any signs of 

movement during the data acquisition, the anesthesia was increased to 1.7-1.8% 

isoflurane for the remainder of the experiment.  The fraction of inhaled oxygen (FiO2) 

was kept at a minimum of 0.3 instead of 0.21 (air) to ensure that physiologic stability was 

maintained and to prevent oxygen desaturation.  Normoxia in this context refers to FiO2 = 

0.3, and hyperoxia refers to FiO2 = 1.  All gases were delivered to the animal with a 

manually controlled oxygen and nitrogen flowmeters, which were then mixed, and run 

through an inline isoflurane vaporizer.  A temperature-controlled water blanket was 

placed under the rat to maintain body temperature at 37.0 ± 0.2 0C; temperatures were 

measured continuously with an optical probe inserted in the rectum.  Head movement 

was restricted during imaging using a custom built MR-compatible animal cradle with 

attached earbars.  To draw arterial blood gases, an arterial catheter was surgically inserted 

using a cut down of the ventral surface of tail.  All blood gas samples were measured 

using disposable cartridges and a hand-held blood gas analyzer (i-STAT System; Abbott 

Laboratories, Abbott Park, IL, USA). 
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3.3.3  Hyperoxia Challenge Paradigm 

Each rat underwent a series of hyperoxic challenges lasting twenty minutes each.  After a 

five minute baseline period, gases were manually switched from 30% O2 to 100% O2 for 

ten minutes of hyperoxia, and then were switched back to 30% for a five minute baseline.  

Data acquired during the first two minutes after switching gases was not analyzed to 

allow for physiological adjustment to the new gas condition.  Hyperoxic challenges were 

repeated continuously without a rest period. 

 

A second imaging experiment was done to determine the degree of T1a change with 

hyperoxia.  All animals were subjected to graded hyperoxia levels of 40%, 60%, 80%, 

and 100% (in order) during continuous measurement of T1a.  As before, data acquired 

during the first two minutes after switching gases was not analyzed, and there was no rest 

period between gas conditions. 

 

3.3.4  MRI Hardware 

All imaging experiments were performed using a whole-body clinical 3T MRI scanner 

(Siemens Trio; Siemens Healthcare, Erlangen, Germany).  RF excitation pulses were 

transmitted with the scanner body coil, and MR signals were received with a custom built 

single loop (35 mm ID) receive-only head coil passively decoupled during transmit.  The 

head coil was fixed firmly over the dorsal aspect of the head of the animal. 
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3.3.5  Measurement of Arterial Blood T1 (T1a) 

A pulsed ASL method based on the work of Thomas, et al. (90) was used to measure T1a 

in each animal.  A schematic of the pulse sequence is shown in Fig. 3.1.  The same 

PICORE inversion described above was used to label arterial blood.  The inversion was 

preceded by an in-plane saturation pulse to limit the interaction of the inversion pulse 

with the static tissue spins in the imaging region.  The approach used by Thomas, et al. 

(90) employed a global saturation pulse to prepare the magnetization along with a flow-

sensitive alternating inversion recovery (FAIR) ASL sequence.  We used a global 

inversion pulse instead of a saturation pulse to prepare the magnetization, which has the 

advantage of increased dynamic range.  Furthermore, the use of the PICORE ensures that 

there is no contamination with venous blood in the measurement, as is possible when 

using FAIR.  It is important to note that because the transmitter coil is much larger than 

the rat, there is no potential for error in the measurement due to the inflow of uninverted 

blood into the imaging region.  Image acquisition was performed with a single-slice, 

single-shot FSE sequence.  Imaging parameters were: TE/TR: 25/8000 ms, slice 

thickness = 8 mm, FOV = 64 ×	
  64 mm, matrix size = 64 ×	
  64, and phase encode direction 

= left-to-right. 

 



	
  

68	
  

	
  

 

Figure. 3.1.  Pulse sequence diagram of the PICORE sequence with a global 

inversion preparation.  An in-plane presaturation pulse was followed by a global 

hyperbolic secant inversion pulse.  After a variable inversion preparation time, τ , a 

second in-plane saturation pulse was followed by either a slab-selective hyperbolic 

secant pulse inferior to the imaging slice (tag) or the same pulse without the slab-

selective gradient (control).  Control and tag pulses were interleaved for each 

acquisition.  After an inversion time TI, a single-shot FSE acquisition was 

performed.  By keeping TI fixed (1.5 s) and using a series of values of τ , a value of 

the T1 of arterial blood (T1a) was obtained. 

 

If TI is kept at a constant value while the inversion preparation time τ is varied, the 

PICORE signal difference can be expressed as: 

 

                    [ 3.1 ] 

 

where A is a voxel-specific constant independent of τ.  To allow for a robust, 

overdetermined fit to Eq. [3.1] in each animal, ten values of τ (65, 400, 800, 1200, 1600, 
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2000, 2400, 3200, 4000, and 6000 ms) were used with a constant TI of 1500 ms.  A 

randomized acquisition order was used, and tag and control images were interleaved for 

each value of τ.  Ten repetitions of each value of τ were obtained with a total imaging 

time of 27 min.  To increase the number of T1a measurements during hyperoxic 

challenges, the same approach was used, except only four values of τ (65, 900, 2500, and 

6000 ms) were obtained.  To increase the robustness of the fit, these data were only fit for 

A and T1a, with the value α taken from the fit from the previous experiment. 

 

3.3.6  Data Analysis 

All images were analyzed using routines and scripts written in MATLAB (MathWorks, 

Inc.).  For analysis of the T1a data, whole brain ROIs were drawn on the PICORE signal 

difference images (see Fig. 3.2) and the mean values were determined. The acquisition 

using ten values of τ was fit to Eq. [3.1] for α, A, and T1a using a non-linear least squares 

fit (MATLAB function, lsqcurvefit).  The value of α determined from this fit was used in 

the fit of data from the acquisition using four values of τ, so that only A and T1a were fit 

to Eq. [3.1]; also, the values from the prior fit were input as starting values for the 

subsequent fit.  This approach yielded a stable and fast converging fit for all the data. 

Before this analysis, the T1a data obtained from all three hyperoxia challenges was 

separated into normoxic and hyperoxic periods and averaged.  The difference in T1a 

between normoxic and hyperoxic states across all animals was compared with a paired 

Student’s t-test. 
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To analyze the difference in T1a in the blood versus arterial partial pressure of oxygen 

(PaO2), the effects of molecular oxygen and deoxyhemoglobin (dHb) were considered.  

R1 (1 / T1) is known to increase linearly with increasing dHb concentration (21).  

Therefore, the R1 of blood versus PaO2 (longitudinal relaxivity of blood as a function of 

PaO2, or r1
PaO2) was modeled as the addition of the linear longitudinal relaxivities of 

blood as a function of molecular oxygen concentration ([O2]; determined by blood gas 

PaO2) and dHb concentration (1-Y, where Y is the fraction of oxyhemoglobin to total 

hemoglobin; determined by P50 and blood gas PaO2), which can be expressed simply as: 

       

                                [ 3.2 ] 

 

The experimental R1a values were fit to this model using a non-linear least squares fit in 

MATLAB (function lsqcurvefit). 

 

3.4  Inversion-Prepared ΔM as a Function of Preparation Time 

A representative set of ΔM images during normoxia with ten values of τ is shown in Fig. 

3.2.  As predicted from the model, the signal increased exponentially from an initial 

negative value of ΔM and changed globally to the final expected positive value of ΔM as 

τ increased.  The values of ΔM around the periphery of brain are reduced due the partial 

voluming from the large voxel size.  However, these effects remain the same across all 

values of τ and do not affect the calculation of T1a.  The experimental data from the 
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whole-brain ROIs from each animal, along with the fits to Eq. [3.1] are shown in Fig. 3.3.  

By visual inspection, the magnetization is well described by a monoexponential recovery.  

The average value of α was found to be 0.94 in the T1a experiment, which (although still 

high) was lower than that found experimentally for a single inversion (0.97). 

 

 

3.5  Baseline T1a Values and T1a Response to Hyperoxia 

The numerical values from the fits of these data are shown in Table 3.1, along with the fit 

values obtained from T1a measurements made during the hyperoxic challenges.  The 

baseline T1a measured with ten values of τ was in very close agreement with the T1a 

measured with four values of τ during the baseline normoxic phase measured before, 

between, and after the hyperoxic challenges.  The baseline normoxia values of T1a 

measured were found to be consistent over time in the same animal, but varied between 

animals.  The measured values of T1a during hyperoxia were found to decrease 

significantly compared to normoxia (p < 0.01). During hyperoxia, T1a decreased by −89 

to −170 ms or −5.6 to −9.4% from normoxia, with an average decrease of −125 ms or 

−7.4%.  Figure 4 shows the values of T1a calculated for increasing levels of FiO2.  Values 

of T1a were found to decrease consistently with increasing FiO2, with the relative 

decrease in T1a each animal approximately equal.  
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Figure. 3.2.  A representative set of PICORE signal difference ΔM (control minus 

tag) images in arbitrary units (a.u.) from the pulse sequence shown in Fig. 1.  Note 

that the ΔM signal recovered globally through zero from an initial negative value as 

the inversion preparation time τ  increased.  The mean value from a whole brain 

ROI (outlined in white in the control image) was used to analyze the signal behavior. 
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Figure. 3.3.  PICORE signal difference (ΔM) in arbitrary units (a.u.) versus 

inversion preparation time τ  in a whole brain ROI (see Fig. 2) during normoxia 

(FiO2=0.3) in five rats.  Ten different values of τ  were used, and the data was fit to 

Eq. [3.1] for each animal using a non-linear least squares regression.  The data fits 

are shown as solid lines and experimental data are shown as symbols. 
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Table 3.1.  Measured T1a Values in Whole Brain ROIs During Normoxia (FiO2 = 

0.3) and Hyperoxia (FiO2 = 1.0) 

Animal no. Baseline T1a (s)† Normoxia T1a (s)‡ Hyperoxia T1a (s)‡ 

1 1.713 1.70 1.54 

2 1.651 1.64 1.49 

3 1.603 1.58 1.48 

4 1.524 1.54 1.45 

5 1.609 1.62 1.53 

Mean ± SD 1.620 ± 0.069 1.621 ± 0.063 1.496 ± 0.035* 

† Values calculated from measurement performed with 10 inversion preparation times, τ. 

‡ Values calculated from measurement performed with 4 inversion preparation times, τ. 

* P < 0.01 from normoxia. 

 

3.6  Longitudinal  Relaxivity of Oxygen in PBS and Arterial Blood In Vivo 

Figure 3.4a shows R1 versus pO2 in the PBS calibration phantom.  Using a linear 

regression, the longitudinal relaxivity of molecular oxygen in PBS was found to be 1.61 ± 

0.02 × 10-4 s-1 mm Hg-1, with R2 = 0.99.  No statistically significant difference was found 

in the relaxivity of the phantom containing bovine serum albumin.   

 

Fig. 3.4b shows R1 versus PaO2.  The PaO2 was measured for each case using arterial 

blood gas.  Using the fit to the model shown in Eq. [3.2] above, the r1
[O2] was determined 

to be 1.59 ± 0.21 × 10-4 s-1 mm Hg-1, while the r1
[dHb] was found to be 0.246 ± 0.051 s-1 

(1-Y)-1.  There was found to be a clear influence of dHb on T1a values measured between 
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FiO2 = 0.3 and 0.6, with the T1a at FiO2 = 0.4 actually showing a slight increase.  At 

higher FiO2 levels, the longitudinal relaxivity with PaO2 appeared to be linear.  The 

values of T1a were found to be 1.632 ± 0.037 ms, 1.641 ± 0.035 ms, 1.606 ± 0.033 ms, 

1.549 ± 0.024 ms, and 1.514 ± 0.027 ms for FiO2 = 0.3, 0.4, 0.6, 0.8, and 1.0, 

respectively.  There was no statistically significant difference between the T1a measured 

during FiO2 = 1.0 during the first experiment (rapidly alternating oxygen levels) and the 

second experiment (gradual hyperoxia). 
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Figure 3.4.  Effect of oxygen concentration on R1 in a phosphate-buffered saline 

(PBS) phantom (a) and effect of arterial oxygen tension on R1 of arterial blood (b).  

The marker indicates the experimental data, and the lines indicate the fits to the 

data.  The effect of oxygen on R1 in (a) was shown to be well-described by a linear fit 

to the data.  The data were well described by a model incorporating the linear 
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relaxivity effect of both molecular oxygen and deoxyhemoglobin.  Values shown are 

mean ±  SD. 

 

3.7  Chapter Discussion 

In this study, we have measured T1a in vivo at 3T during normoxia and hyperoxia using a 

novel PASL approach.  This particular approach is notable for avoiding several artifacts 

and the requirement for physiological gating.  Compared to a similar approach in the 

literature, it approximately doubled the dynamic range with the use of an inversion 

preparation, avoided possible venous signal contamination with a PICORE inversion, and 

maximized the signal-to-noise ratio (SNR) in the presence of static field inhomogeneities 

by using a FSE readout.  We have accurately measured the longitudinal relaxivity of 

oxygen at physiologic temperature at 3T.  Additionally, our model of the relaxivity of 

arterial blood accurately describes the situation in vivo by incorporating the effect of the 

longitudinal relaxivity deoxyhemoglobin.  Given that the longitudinal relaxivity was not 

effected by albumin, it is likely that the interaction of molecular oxygen with blood 

proteins is too rapid to affect T1a.  Therefore, the measured relaxivity of oxygen in blood 

is likely to be independent of B0, and these relaxivity values can be used for experiments 

at different field strengths. 

 

The average value of T1a measured during normoxia shows close agreement to values 

from previous studies in vivo (1623 ms; (91)) and in vitro (1664 ms; (92)).  The measured 

value of T1a in response to oxygen was shown to closely agree with phantom data after 
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accounting for the effect of changing dHb concentration on T1a.  The measured relaxivity 

of dHb was found to be in agreement with previous results (21,92).  Additionally, the 

reduction in T1a due to oxygen was observed to be rapid and consistent across large 

differences in the duration of oxygen exposure.  The observed T1a changes of our in vivo 

data very closely approximated the more robust phantom data. 

 

Although not a trivial operation, the measurements of T1a in rat blood made in this study 

can be translated to human studies.  Given the similarity in the constitution of blood 

between the two species, the longitudinal relaxivity from dissolved molecular oxygen is 

likely to be very similar.  The most important difference between species is effect of 

deoxyhemoglobin, which will exist in different concentrations at the same PaO2 (due to 

the difference in P50) and will likely exhibit different longitudinal relaxivity.  However, if 

these effects can be characterized and accounted for, it should be possible to accurately 

estimate the change in T1a during any oxygen challenge, given knowledge of PaO2 during 

normoxia and hyperoxia.  To this end, it is possible to estimate PaO2 from end-tidal 

oxygen concentration, given normal lung physiology (6). 

 

In conclusion, using measurements of in phantoms and in vivo arterial blood, we have 

demonstrated that T1a is well described by the linear combination of longitudinal 

relaxivities of molecular oxygen and deoxyhemoglobin.  By comparing brief and graded 

hyperoxic inhalation paradigms, we have shown that T1a changes rapidly and remains 

stable with changing FiO2. 
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3.8  Future Directions 

Given the challenges of making in vivo T1a measurements in humans, the use of small 

animal model may be the most practical method for T1a calibration for human 

experiments.  However, a direct measurement of T1a on a per subject and per condition 

basis is still a desirable goal, given the relatively large inter- and intrasubject variability 

in T1a in baseline normoxia as well as in response to oxygen challenge. Although such an 

approach may be feasible, we found a consistent underestimation of T1a by several 

hundred milliseconds when applying the above method to humans using the same clinical 

scanner.  Several changes from the present approach are likely to be necessary to obtain 

this goal, including minimizing the number of acquired inversion preparation times, and 

the application of the constraint on the duration of the inversion preparation times to 

values short enough to avoid contamination of spins flowing in from outside the transmit 

coil. 
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Chapter 4:  Absolute Quantification of Cerebral Perfusion with Pulsed Arterial 

Spin Labeling During Hyperoxia 

 

4.1  Overview 

As discussed in Chapter 1, quantitative arterial spin labeling estimates of cerebral 

perfusion during oxygen inhalation are important in several contexts, including  

functional experiments calibrated with hyperoxia and studies investigating the effect of 

hyperoxia on regional perfusion.  The aim of this study is to accurately quantify the effect 

of arbitrary levels of hyperoxia on CBF on a per-subject basis using ASL by correcting 

for T1a with a simultaneous measurements on a per subject,  per gas condition basis.  The 

results of this study suggest that measured ASL signal changes are dominated by 

reductions in T1a for brief hyperoxic inhalation epochs, while physiologic effects of 

oxygen on vasculature account for most of the measured reduction in CBF for longer 

hyperoxic exposures. 

 

4.2  Introduction 

Hyperoxic gas inhalation, through increases in the arterial partial pressure of oxygen and 

hemoglobin saturation (SaO2), exerts significant effects on the vasculature and is not 

physiologically inert.  Many studies have shown that oxygen reduces cerebral blood flow 

(CBF) due to at least one independent vasoconstrictive mechanism, including the 
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attenuation of the effect of nitric oxide, an endogenous vasodilator (5,49,50,93).  While 

the vasoconstrictive effect of oxygen is well known, the degree to which CBF changes 

occur during hyperoxia remains the subject of ongoing research.  Moreover, if inhaled 

oxygen is to be used as a quantitative contrast agent, precise characterization of its 

changes to the underlying physiology is crucial. 

 

Several studies have used arterial spin labeling approaches to investigate the regional 

CBF changes during hyperoxia (5,37,46,48,93,94), but only a small number of these 

studies have incorporated T1a changes in their CBF calculations (37,46).  As mentioned in 

Chapter 3, the reduction of T1a will significantly affect measured values of CBF using 

ASL, as preparation times of ASL inversion pulses are on the order of the T1 of the 

tagged spins (89).  In this study, our aim was to simultaneously measure CBF and T1a in 

vivo during various levels of hyperoxia using the method outlined in Chapter 3. In 

particular, we wanted to explore the previously reported finding (37,46) that CBF change 

as measured by ASL during hyperoxia is primarily artifactual, since it is dominated by a 

reduction in T1a (37,46).  We implemented a pulsed ASL (PASL) approach for CBF that 

was similar in implementation to the arterial spin tagging method outlined in Chapter 3.  

Using this method, we were able to simultaneously measure these parameters in the brain 

without moving the subject.  As discussed in Chapter 3, although there is no reason in 

theory that these measurements cannot be done in vivo in humans, technical issues 

require that a smaller experimental animal be used.  The rat was chosen due to its 
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physiologic stability under anesthesia and the relative similarity of its physiologic blood 

responses to humans. 

 

4.3  Material and Methods 

4.3.1  Animals 

All experiments performed were part of an approved protocol by our Institutional Animal 

Care and Use Committee.  All data were obtained on adult male Sprague-Dawley rats 

(n=13; 429-472 g; Charles River, MA, USA).   Inhalation anesthesia was induced and 

maintained in the same manner as described in Section 3.3.2.  All arterial blood gases 

were drawn from tail artery catheter.  Again, to ensure that physiologic stability was 

maintained and to prevent oxygen desaturation, animals were maintained with a 

minimum FiO2 of 0.3 (normoxia in this study).  Gases were delivered and altered, 

temperature was maintained constant, and head movement was restricted as described in 

above in Chapter 3. 

 

4.3.2  Hyperoxia Challenge Paradigms 

The response of CBF to oxygen was studied under two different hyperoxia paradigms: 

(1) a brief hyperoxic challenge (Group I) and (2) an increasing, graded hyperoxic 

challenge (Group II), as illustrated in Fig. 4.1.  All data acquired during the first two 

minutes after switching gases were not analyzed to allow for physiological adjustment to 

the new gas condition.  To investigate possible effects unrelated to variations in inspired 
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oxygen (e.g. scanner drift, duration of anesthesia, etc.), data were collected for control 

animals (n=2) using the same measurement protocols of Group I and II described below 

without switching gas conditions (i.e., under continuous normoxia). 

 

In Group I (n=7), each rat underwent a baseline – stimulation – rest paradigm.  After a 

five minute baseline period, gases were switched from 30% O2 to 100% O2 for ten 

minutes of hyperoxia, and then were switched back to 30% for a five minute baseline. 

This paradigm was repeated three times during continuous measurement of T1a and CBF 

(detailed below).  In addition, a second experiment was performed in Group I animals to 

determine the degree of T1a change with hyperoxia.  Animals underwent graded 

hyperoxic inhalation epochs of 40%, 60%, 80%, and 100% (in increasing order) lasting 

approximately ten minutes each during which continuous measurements of T1a were 

made. 

 

In Group II (n=6), both T1a and CBF were measured with graded hyperoxic inhalation 

epochs of 30%, 40%, 60%, 80%, and 100% (in increasing order).  Each measurement of 

T1a or CBF lasted approximately ten minutes, with two measurements of CBF occurring 

between two measurements of T1a to minimize temporal effects.  After gases were 

switched, approximately ten minutes elapsed before the start of the measurements to 

allow for physiological equilibration to the new gas condition. 
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For Group II, arterial blood gases were drawn from a subset of animals (n=4) during the 

imaging experiment immediately after each inhalation epoch.  For Group I, blood gases 

were also analyzed from a subset of animals (n=4), but samples were drawn on a 

subsequent day to eliminate possible effects of the blood draw on the imaging experiment 

(95).  Arterial blood gas measurements were not considered to be a significant issue for 

Group II animals, as there was adequate recovery time after each blood withdrawal (8-9 

min).  All blood gas samples were measured using the technique described previously 

(Section 3.3.2). 

 

 

Figure 4.1.  Hyperoxic challenge paradigms used for Group I and II animals.  

Group I animals underwent a baseline – stimulation – rest paradigm (5 – 10 – 5 

min) to assess the effects of a brief hyperoxic inhalation challenge on CBF and T1a.  

Group II animals experienced a graded hyperoxic challenge to test the effects of 

longer oxygen exposures on CBF and T1a.  Each gas inhalation period lasted 

approximately 40 minutes.  To minimize temporal effects, two CBF measurements 
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were placed between two T1a measurements.  In addition, in Group I animals, a 

graded hyperoxic inhalation was used to assess T1a at different oxygen 

concentrations. 

 

 

4.3.3 Measurement of Cerebral Blood Flow (CBF) with Pulsed ASL 

All imaging experiments were performed using the same MRI scanner and custom RF 

hardware as described in Section 3.3.4.  The measurement of arterial blood T1 was 

performed in the same manner as described previously.  Briefly, a dataset was collected 

initially with ten inversion preparation times (τ) to allow for a robust fit to Eq. 3.1 to 

determine T1a and α.  When hyperoxic gas changes were implemented, a shorter 

approach was used with four values of τ to increase signal-to-noise of the T1a 

measurement.  Data from these shorter acquisitions were only fit to A and T1a of Eq. 3.1. 

 

To quantify CBF, a pulsed ASL technique developed by Wong and Luh (96,97), was 

used in this study for regional quantification of CBF (shown in Fig. 4.2).  This technique 

involves quantitative imaging of perfusion using a single subtraction with thin-slice TI1 

periodic saturation (Q2TIPS) based on proximal inversion with control for off-resonance 

(PICORE) tagging.  This method is insensitive to spatially varying transit delay (δt) and 

flow-through effects (98), which have been shown to be significant sources of systematic 

error in perfusion quantification in rats (99).  
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A multi-shot fast spin echo sequence (FSE) was used for data acquisition.  This approach 

is insensitive to static field inhomogeneities, and therefore should be insensitive to the 

hyperoxia-induced B0 shifts discussed in Chapter 2.  The inversion pulse for tagging 

consisted of a 40 ms adiabatic hyperbolic secant pulse with a 100 mm slab thickness 

(gradient turned off for the control image) positioned 10 mm proximal to the inferior 

imaging slice.  To saturate the tag, a series of 900 three-lobe sinc pulses with 20 mm slab 

thickness, positioned 10 mm proximal to the inferior imaging slice were used for periodic 

saturation.  The inferior saturation pulses were 20 mm thick and spaced 25 ms apart, 

creating a cutoff velocity of 80 cm/s (97).  This cutoff velocity was considered sufficient 

to saturate inflowing spins because peak systolic velocity in normal rat carotid arteries 

measured with ultrasound is typically found to be less than 60 cm/s (100).  Periodic 

saturation was continued until image acquisition to ensure full saturation of intravascular 

spins during imaging.  The imaging parameters were:  TI1 = 900 ms, TI1S = 1475 ms, TI2 

= 1500 ms, TE/TR = 6/4000 ms, slice thickness = 2 mm, slice gap = 2 mm, no. of slices = 

3, FOV = 40 ×	
  40 mm, matrix size = 64 ×	
  64, no. of segments = 5, phase partial Fourier 

factor = 5/8, echo spacing = 6.03 ms, and time between slice acquisitions = 54 ms.  The 

phase encode direction was set left-to-right to avoid pulsation artifacts from the carotid 

arteries beneath the brain.  ASL tag/control pairs were obtained in 40 s (TR = 4 s ×	
  5 

segments × 2).  The equilibrium magnetization scan was acquired with the exact same 

imaging parameters, except there were no saturation or inversion pulses, and TR was set 

to 15 s. 
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Figure 4.2.  A multi-shot fast spin echo sequence (FSE) quantitative imaging of 

perfusion using a single subtraction with thin-slice TI1 periodic saturation (Q2TIPS) 

based on proximal inversion with control for off-resonance (PICORE) tagging.  By 

saturating the end of the tag using a series of 900 three-lobe sinc pulses, this method 

is insensitive to spatially varying transit delay (δ t) and flow-through effects 

 

The ASL signal difference ΔM is independent of δt (96) and the signal can be expressed 

by: 

 

                                                                         [ 4.1 ] 

              [ 4.2 ] 
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where α is inversion efficiency (=1 for perfect inversion), M0a is the fully relaxed 

longitudinal magnetization of arterial blood, f is cerebral blood flow in ml blood/g 

tissue/min, T1a is the longitudinal relaxation time of arterial blood, and σ is the time 

duration of tag.  Since the inversion pulse covered the entire rat heart and lungs, the tag 

did not have an end; typical values of δt for vessels of the rat neck to the brain are less 

than 400 ms (99).  Therefore, the parameters used here should meet the conditions of Eq. 

[4.2] for all imaging regions. Using an agarose phantom, the inversion efficiency was 

determined experimentally to be approximately 0.97.  Although changing oxygen 

concentrations along the vascular tree and spin exchange with different tissue 

compartments make the use of a single value T1a a somewhat oversimplified approach 

(101), the model in Eq. [4.1] is a reasonable approximation since the tagged spins will 

spend the majority of TI in the arteries and arterioles.  Furthermore, this model is 

important to consider since it represents the maximum degree of change in measured 

CBF that could be expected from a change in T1a (see Chapter Discussion). 

 

The value of magnetization of arterial blood was estimated on a per voxel basis using the 

local transverse magnetization of the reference scan and scaling it to the blood-brain 

partition coefficient (89,102).  This method of estimating local M0a has the advantage of 

simultaneously correcting for inhomogeneities of the receive coil (103).  Correcting for 

the proton density and the relaxation rate of the local transverse magnetization and 

arterial blood, the magnetization of arterial blood can be expressed as: 
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    [ 4.3 ] 

 

where R is the signal ratio of local transverse magnetization to blood in a proton-density 

weighted image, M0 is the voxel signal intensity, T2LT is the T2 of the local transverse 

magnetization, and T2a is the T2 of arterial blood.  An approximate value of R=0.98 was 

taken from human studies (104).  The T2 of human gray matter at 3T (80 ms; (105)) was 

used to estimate a value of T2LT, and an approximate value of T2a  (100 ms) was 

determined from the literature (22).  Because of the minimal T2-weighting of our 

sequence (TE = 6 ms), the expected oxygenation changes occurring at the arteriole and 

capillary spaces during  hyperoxia are expected to yield changes in T2a that would change 

the measured signal by less than 1% (22,73,88).  Therefore, we assumed a single estimate 

of T2a for normoxic and hyperoxic states. 

 

T2-weighted anatomical images were acquired with a multi-shot FSE sequence with the 

same slice prescription as the ASL sequence, with the following parameters:  TE/TR: 

81/4000 ms, slice thickness = 2 mm, slice gap = 2 mm, no. of slices = 3, FOV = 40 ×	
  40 

mm, matrix size = 192 ×	
  192, no. of segments = 24, and no. of averages=6. 
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4.3.4  Data Analysis 

All images were analyzed using routines and scripts written in MATLAB (MathWorks, 

Inc.).  Analysis of the T1a data was performed in the same manner as previously described 

in Section 3.3.6.  Before this analysis, the T1a data for each animal and gas condition in 

Group I and Group II were compiled.  For Group I T1a data, the difference in T1a between 

normoxic and hyperoxic states across all animals was compared with a paired Student’s t-

test.  A one-way analysis of variance (ANOVA) was used to compare the difference in 

T1a values between different gas conditions pooled from Groups I and II. 

 

CBF maps were generated for each gas condition for all animals in Group I and II using 

the T1a measured during normoxia (T1a uncorrected), and another CBF map was 

generated for the hyperoxic condition using the value of T1a measured in that animal for 

the given level of hyperoxia (T1a corrected).  CBF data were analyzed regionally for 

normoxia and hyperoxia (FiO2 = 0.3 and 1.0) and whole brain averages for all gas 

conditions in both experimental groups.  Regional analysis was performed because 

several studies have suggested that there are significant regional variations in the 

reduction of CBF during hyperoxia (37,46,49).  Using the anatomical images, regions-of-

interest (ROIs) were manually drawn using a standard rat brain atlas (106) and were then 

transferred to the perfusion maps. The differences across all ROIs between the two gas 

conditions were measured using a two-way ANOVA with replication.  If the ANOVA 

showed significant differences in the means between the two gas conditions across all 

ROIs, analysis of the source of the differences using paired Student’s t-test between 
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individual ROIs was considered to be warranted.  In all cases, a value of p < 0.05 was 

considered a statistically significant difference. 

 

4.4  Arterial Blood Gas and Blood Pressure Analysis 

The arterial blood gas parameters from Group I and Group II are shown in Tables 4.1 and 

4.2, respectively.  Data in Group I show a statistically significant increase in PaO2 (402.3 

mm Hg), producing a 7% increase in SaO2.  Data from Group II were in close agreement 

with Group I, showing a very similar increase in PaO2 (401.9 mm Hg), with increase in 

PaO2 in the intermediate steps closely approximating the relative change in FiO2.  A mild 

but significant increase in the arterial partial pressure of carbon dioxide (PaCO2) was 

measured from FiO2 = 0.3 to 1.0 in Group I (2.3 mm Hg) and Group II (3.2 mm Hg).  

Mean arterial blood pressure (MABP) (measured in Group I only) and pH were not found 

to change significantly. 

 

Table 4.1.  Arterial Blood Gas Parameters for Normoxia and Hyperoxia in 1.5% 

Isoflurane Anesthesia (Group I) 

FiO2 pH PaCO2  
(mm Hg) 

PaO2  
(mm Hg) SaO2

 (%) MABP (mm Hg) 

0.3 7.44 ± 0.03 45.3 ± 1.8 97.0 ± 8.3 92.9 ± 1.3 73.5 ± 4.9 

1.0 7.43 ± 0.04 47.6 ± 1.6* 499.3 ± 32.2* 99.9 ± 0.1* 73.9 ± 5.3 

 * P < 0.05 from normoxia. 
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Table 4.2  Arterial Blood Gas Parameters for Graded Levels of Hyperoxia in 1.5% 

Isoflurane Anesthesia (Group II) 

FiO2 pH PaCO2  
(mm Hg) 

PaO2  
(mm Hg) SaO2

 (%) 

0.3 7.45 ± 0.03 44.7 ± 1.2 99.3 ± 11.6 93.0 ± 2.1 

0.4 7.44 ± 0.03 45.3 ± 1.0 154.3 ± 13.6 97.7 ± 0.6 

0.6 7.44 ± 0.02 46.1 ± 0.8 266.8 ± 16.8 99.4 ± 0.1 

0.8 7.44 ± 0.01 46.7 ± 0.6 388.8 ± 13.4 99.8 ± 0.0 

1.0 7.43 ± 0.02 47.9 ± 0.8 501.2 ± 23.0 99.9 ± 0.0 

 

 

4.5  Cerebral Blood Flow Mapping with Correction for T1a 

An anatomic dataset from a representative animal from Group I is shown in Fig. 4.3, 

along with outlines of ROIs used in the analysis of the perfusion maps.  Quantitative CBF 

maps during normoxia and hyperoxia are shown below.  A reduction in calculated CBF 

values in several regions across the brain can be clearly visualized.  Correcting for T1a 

measured during hyperoxia clearly reduced the degree of the differences between 

normoxia and hyperoxia, but reduced CBF values can still be visualized.  To demonstrate 

the degree of CBF reduction due to hyperoxia in our experimental setup, Fig. 4.4 shows 

the time course of average ΔM across all the ROIs during the hyperoxic challenges for a 
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representative animal.  The signal intensity of the control image was modulated by the 

BOLD signal; although the signal change was small due to the short TE, it clearly shows 

the effects of inhaled oxygen across the experiment.  Overlays of the measured reduction 

(in percent decrease) on anatomical images of the CBF maps corrected for T1a from 

Group II are shown in Fig. 4.5a.  The observed CBF reduction seems to be somewhat 

regional in nature, with a larger effect in the cortex compared to other regions.  The effect 

of FiO2 on whole brain CBF measured from Group II animals is shown in Fig. 4.5b.  CBF 

shows a consistently decreasing trend with time and increasing FiO2. 
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Figure 4.3. T2-weighted structural images with ROIs (outlined in white) for analysis 

of regional CBF values (corresponding columns below), from a representative 

animal.  ROI values from both hemispheres were averaged.  In the left column, the 

inferior slice (bregma -6.5 mm) contains (1) visual/auditory cortex and (2) 

hippocampus/subiculum.  In the middle column, the middle slice (bregma -2.5 mm) 

contains (3) sensory/auditory cortex, (4) hippocampus, and (5) thalamus.  In the 

right column, the superior slice (bregma 1.5 mm) contains (6) motor/sensory cortex 

and (7) caudate putamen.  CBF values (in ml/100 g/min) in the second row were 

calculated during normoxia (FiO2 = 0.3) from Eq. [1] using T1a value measured 

during normoxia, while CBF values in the in third and fourth row were calculated 
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during hyperoxia (FiO2 = 1.0) using the T1a measured during normoxia 

(uncorrected) and hyperoxia (corrected). 

 

 

Figure 4.4. Representative signal time course of ΔM (control minus tag) and control 

image signal intensity during normoxia (FiO2 = 0.3; white regions) and hyperoxia 

(FiO2 = 1.0; green regions).  Signal values were calculated at each time point from 

the mean of all ROIs (see Fig. 4).  Units were calculated as the percent difference 

from starting baseline.  Control image signal intensity is increased during hyperoxia 

due to BOLD response; percent signal change is low (~0.5%) due to the degree of 

T2-weighting (TE = 6 ms). 
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Figure 4.5. Overlays of the measured reduction (% decrease) on anatomical images 

of the CBF maps from a representative animal (a) and the effect of FiO2 on whole-

brain relative CBF.  Both sets of data come from Group II animals.  The data shown 

(a) have been corrected for the per subject change in T1a; the observed CBF 

reductions appears to be regional in nature, with the largest effects observed in the 

cortex.  Relative CBF in (b) shows a consistently decreasing trend with time and 

increasing FiO2.  The squares and circles represent the data uncorrected and 

corrected for the change in T1a, respectively.  Values are mean ±  SD. 
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4.6  ROI Analysis of Hyperoxia-Induced CBF Reduction 

ROI analysis of mean calculated CBF across animals for normoxia and hyperoxia (FiO2 = 

1.0) in Groups I and II is shown in Figs. 4.6a and b, respectively.  CBF was significantly 

reduced across all ROIs before and after correction for T1a in both Groups I and II, as 

determined by ANOVA.  CBF decreases were larger in the Group II animals, with all 

regions still showing statistically significant reductions in CBF after correction for T1a. 

There appeared to be some regional nature to the CBF reduction, particularly in Group II 

animals where, after correction for T1a, the sensory/auditory cortex region showed a 

23.5% reduction, while the caudate putamen region only showed a 10.9% reduction. 

After T1a correction, whole brain values of CBF exhibited a normoxia to hyperoxia 

reduction of 109.2 ± 12.9 ml/100 g/min to 103.9 ± 10.4 ml/100 g/min in Group I and 

108.3 ± 11.0 ml/100 g/min to 90.2 ± 12.5 ml/100 g/min in Group II.  The correction for 

the change in T1a dominated the Group I correction, accounting for 63% of the increase in 

the observed reduction in CBF.  In Group II, the T1a change contributed significantly less, 

accounting for 28% of the increase in the observed reduction in CBF. 
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Figure 4.6. Mean calculated CBF values (ml/100 g/min) in seven ROIs (both 

hemispheres; see Fig. 4.3) during normoxia (FiO2 = 0.3; dark gray bars) and 
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hyperoxia (FiO2 = 1.0) uncorrected (light gray bars) and corrected (white bars) for 

T1a during hyperoxia.  Data are were taken from Group I (a) and Group II (b).  

Values are mean ±  SD.  * P < 0.05 from normoxia. 

 

4.7  Chapter Discussion 

In this study, T1a and quantitative CBF were measured in vivo at 3T during normoxia and 

hyperoxia using PASL approaches.  The measured T1a values were used to correct the 

calculated CBF in each experimental animal under a brief hyperoxic inhalation and 

graded hyperoxic inhalation paradigms.  As discussed in Chapter 3, the reduction in T1a 

due to oxygen is rapid and consistent across large differences in the duration of oxygen 

exposure.  The changes in CBF, however, were found to be significantly different 

depending on the oxygen exposure duration.  The longer exposures of the slow, graded 

hyperoxic inhalation paradigm of Group II produced significantly more reduction in 

CBF.  This is in agreement with established effects of hyperoxia on cerebral blood flow, 

as the attenuation of effects of nitric oxide effects have been shown to depend on the 

duration of hyperoxic exposure (50).  Overall, the results of this study suggest that the 

observed reduction in CBF measured by ASL is dominated by T1a reduction during short 

term inhalation epochs, but physiologic effects become the primary source of the 

reduction over longer hyperoxic exposures. 

 



	
  

100	
  

	
  

Although the measured longitudinal relaxivity of T1a as function of PaO2, and therefore 

the CBF correction, determined in this study were found to be significantly smaller than 

those used in previous studies (37,46), we have grounds to be confident in the findings of 

our study.  As discussed in Chapter 3, we found that the observed T1a changes of our in 

vivo data very closely approximated the more robust phantom data.  Perhaps more 

significantly, the correction made in this study most likely represents the maximum 

degree to which the reduction in T1a would decrease the measured CBF reduction.  We 

have assumed that spins measured in the ASL experiment have spent the vast majority of 

TI (inversion time) in a compartment that approximates arterial blood.  However, toward 

the end of TI, a significant portion of tagged spins will enter the capillary and tissue 

spaces.  In these regions, the change in pO2 during hyperoxia will be substantially lower 

(47), yielding a smaller change in T1.  In addition, in the capillary space, the mild dilution 

of deoxyhemoglobin is likely to yield a slight increase in T1.  In order to accurately 

account for these effects, it will be necessary to develop a model of the average change in 

pO2 experienced by the tagged spins over the duration of TI.  Such a model would need 

to incorporate the temporal characteristics of inflowing blood water and describe the 

relative amount of spins in each tissue compartment as a function of time.  For these 

reasons, the ASL signal model used in this study is not complete, and the effective 

reduction in the T1 experienced by the tagged spins is likely to be significantly less than 

the measured reduction in T1 of arterial blood.  However, the use of this model is 

important, since it represents the upper bound to which the reduction in CBF measured 

can be attributed to a reduction in T1 of the spins measured by the ASL experiment. 
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Baseline mean values of CBF across the rat brain during normoxia were in close 

agreement to literature values (93,94).  In agreement with previous studies in humans and 

mechanically ventilated animals (37,46,48,93), a reduction in regional CBF with 

hyperoxia was observed.  The response to brief inhalation epoch was more uniformly 

global and appeared to demonstrate less regional variance compared to the longer 

hyperoxic exposure of the graded inhalation.  As mentioned above, this may have 

physiologic foundation, since T1a changes produce only a global effect, but it remains 

unclear whether local physiologic effects, like nitric oxide attenuation, exhibit variations 

that are more regional in nature.  Contrary to the results of a previous study of hyperoxia 

in free-breathing rats that showed a mild increase in CBF (5), we found that CBF 

consistently decreased with hyperoxia.  The presumed source of the increase in CBF in 

the previous study was mild hypercapnia caused by hyperoxia-induced hypoventilation, 

and we also observed a slight increase in pCO2 during hyperoxia.  However, very short 

hyperoxic epochs (~2 min) were used in the previous study (5), which are likely too short 

to observe the vasoconstrictive effects of hyperoxia (37,48,93).  Furthermore, the levels 

of isoflurane used in the present study were significantly higher (1.15-1.25% versus 1.5-

1.8%), and isoflurane is known to substantially suppress the effects of CO2 on the 

vasculature (94).  We believe these factors explain why the effects of elevated pO2 on 

CBF were dominant in the present study.  However, the elevation in pCO2 is a likely 

confounding factor in this experiment, and if normocapnia was maintained, it is likely 

that a larger reduction in CBF would have been observed. 
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In conclusion, simultaneous in vivo measurements of T1a and CBF were performed using 

PASL approaches during normoxia and hyperoxia in rat brains at 3T under a brief 

hyperoxic inhalation and graded hyperoxic inhalation paradigms.  The results of this 

study suggest that the measured reduction in CBF using ASL is dominated by T1a 

reduction during short term inhalation epochs, but physiologic effects become the 

primary source of the ASL signal reduction for longer hyperoxic exposures.  

Furthermore, the inter- and intrasubject variability during normoxia and in response to 

hyperoxia observed in this study underscores the importance of the accurate measurement 

of T1a in quantitative ASL studies. 
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Chapter 5: Hyperoxic Calibrated Quantitative fMRI for the 

Measurement of Regional Cerebral Metabolic Rate of Oxygen  

in a Hypermetabolic Swine Model 

 

5.1  Overview 

The aim of this study is to quantify relative metabolic changes using hyperoxic calibrated 

BOLD/ASL fMRI in a hypermetabolic swine model.  Metabolic changes using this large 

animal model were previously studied by our group using gas that is isotopically-

enriched with 17O2.  We sought to cross-validate these measurements with hyperoxic dHb 

dilution methods of relative metabolism and to compare the results of hyperoxia and 

hypercapnia calibration methods using this animal model. 

 

5.2  Introduction 

Significant progress has been made in developing quantitative approaches to measure 

relative changes in metabolism in normal brain tissue with MRI, using calibrations of 

simultaneous BOLD and ASL data with inspired gases (6),(107).  Although these studies 

generally show agreement in producing the same relative changes in CMRO2 under 

similar stimuli as compared with quantitative measurements such as PET (107), there 

have been no studies cross-validating these MRI techniques with simultaneous absolute 

measurements of metabolism.  Part of the reason these studies have not  been performed 
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is the extreme technical difficultly in performing these experiments, as dual-mode 

PET/MRI scanners have only recently come into existence (108).  However, a method 

measuring absolute metabolic rates using MRI would allow for these simultaneous cross-

validation studies to be performed much more easily. 

 

To date, the only MRI methods capable of measuring absolute metabolic rates are those 

using the inhalation of gas isotopically-enriched with 17O2 (109).  These methods work by 

detecting the increase in the transverse relaxation rate created by (i) exchange modulation 

of J-coupling between 17O and 1H in H2
17O formed by the metabolism of 17O2 

immediately after its inhalation and (ii) exchange of 1H between this newly formed H2
17O 

with H2
16O (3).  While extensive studies of 17O2 inhalation have been performed in 

animal models, human experiments have been limited to small studies by a few groups.  

This fact is due primarily to regulatory issues, but it is also because of the expense and 

technical difficulty of the experiment, including the need for rapid delivery and recovery 

of the exhaled 17O2  gas (3). 

 

Our group has recently developed an approach that is capable of performing 17O2 

inhalation experiments in humans using an apparatus to deliver brief 17O2 pulses (110). 

We tested it with a large animal model of elevated metabolism using 2,4-dinitrophenol 

(3).  This hypermetabolic model in swine was devised to generate a stable metabolic 

increase across the entire brain by at least a factor of two.  By comparison, stimulation of 
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brain metabolism by other methods such as peripheral motor stimulation are transient, 

highly localized, and generally increase metabolism by less than 30% (5).  In this model, 

hypermetabolism is induced by administering 2,4-dinitrophenol (DNP), which disrupts 

the mitochondrial proton gradient that is used by ATP synthase to generate ATP (111).  

This disruption causes the cell to respond by using additional energy resources to re-

establish a normal proton gradient.  This additional energy expenditure dramatically 

increases total metabolism and oxygen consumption.  Using these approaches, our group 

has measured substantial whole brain CMRO2 increases of approximately 17% per mg/kg 

DNP in this animal model (3). 

 

In this study, we set out to determine the feasibility of measuring the change in CMRO2 

in this hypermetabolic swine model using simultaneous BOLD and ASL acquisitions 

calibrated with isometabolic dHb dilution using hyperoxia (6) and hypercapnia (107).  

The goal of this study was twofold:  (1) to cross-validate the results of the change in 

CMRO2 with the prior study using 17O2 and (2) to compare the results of hyperoxic and 

hypercapnic calibration methods.  To this end, we carried out the experiment in the same 

manner as the prior 17O2 inhalation study and performed an analysis of CMRO2 at the 

same time point after administration of the same dose of DNP. 
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5.3  Materials and Methods 

5.3.1  Animal Preparation 

All experiments performed were part of an approved protocol by our Institutional Animal 

Care and Use Committee.  Juvenile Yorkshire pigs (n=8; 23-30 kg) were anesthetized 

with an intramuscular injection of ketamine (25 mg/kg), medetomadine (0.1 mg/kg), and 

glycopyrrolate (0.02 mg/kg).  Anesthesia was maintained with a continuous IV infusion 

of ketamine (20-80 mg/kg/hr) and was increased incrementally if the animal exhibited 

motion or response to stimuli.  Animals were mechanically ventilated through an 

endotracheal tube using a custom-built precision delivery breathing circuit (110).  

Diazepam (0.02-0.08 mg/kg) was delivered by IV infusion as needed to reduce any 

ventilation resistance.  Ventilator settings were set at a respiratory rate (RR) of 8-12 

breaths per minute with a tidal volume of 20-25 mL/kg and were constantly monitored 

and adjusted to keep oxygen saturation by pulse oximetry (SpO2) and end-tidal CO2 at 

normal levels (>98% and <40 mm Hg, respectively).  After the experiment was 

completed, all animals were euthanized with pentobarbital administered under anesthesia.  

Normal temperature (38 ± 10C) was maintained throughout the experiment with a water 

warming blanket.  To draw arterial blood gases, an arterial catheter was inserted in the 

medial aspect of the hind limb using ultrasound guidance in the large animal fluoroscopy 

suite.  All blood gas samples were measured using disposable cartridges and a hand-held 

blood gas analyzer (i-STAT System; Abbott Laboratories, Abbott Park, IL, USA).  

Arterial oxygen saturation and heart rate were constantly monitored throughout the 

experiment with a veterinary pulse oximeter (Nonin 8600V, Nonin Medical, Inc., 
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Plymouth, MN, USA) attached to the ear.  End-tidal CO2 (EtCO2) was continuously 

monitored with a capnograph (Capnostream 20, Oridion Capnography Inc., Needham, 

MA), which was sampled using a port at the expiratory side of the ventilator close to the 

mouth. 

 

5.3.2  Preparation and Administration of 2,4-Dinitrophenol 

DNP solutions were prepared in the same manner as our group’s prior 17O inhalation 

studies (109).  Briefly, the DNP solution prepared within 1 day of use by combining 2.5 

mg/mL of DNP (Sigma-Aldrich D198501) and 5 mg/mL of sodium bicarbonate to 0.9% 

saline.  The solution was brought to approximately 700C with constant stirring to dissolve 

all solutes.  The solution was then allowed to cool to room temperature and filtered 

through a 0.1 µm vacuum filter (Millipore SCVPU02RE). 

 

After all gas calibrations (described below) were performed, 9 mg/kg of DNP were 

administered to the animal by slow IV infusion as described previously (109).  Animals 

were monitored for approximately sixty minutes before euthanasia. Two pigs became 

very physiologically unstable after DNP injection, so their datasets were removed from 

the final analysis. 
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5.3.3  Hyperoxia and Hypercapnia Challenge Paradigms 

The swine were given a single, ten minute hyperoxia (FiO2 = 1.0) and hypercapnia (6% 

CO2 in air) challenge in a baseline – stimulation – rest paradigm (5  min baseline, 10 min 

stimulation, 10 min rest).   Data acquired during the first five minutes were discarded to 

allow time for physiologic adjustments to the new gas condition.  At the very end of the 

gas challenge, an arterial blood gas sample was drawn. 

 

5.3.4  MRI Hardware 

All imaging experiments were performed using a whole-body clinical 1.5T MRI scanner 

(Siemens Sonata; Siemens Healthcare, Erlangen, Germany).  RF excitation pulses were 

transmitted with the built-in scanner body coil.  MR signals were received with a custom-

built single loop (80 mm ID) receive-only head coil, which was actively decoupled 

during transmit.   The animal was firmly secured to a custom-built head holder with a bite 

plate to minimize motion during the study.  The head coil was firmly fixed close to the 

brain, over the dorsal aspect of the head. 
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5.3.5  MRI Sequences 

An interleaved BOLD/ASL sequence was implemented to acquire T2-weighted images 

and CBF simultaneously.   A single-shot fast spin echo (FSE) readout was used with a 

pseudocontinuous arterial spin labeling (PCASL) preparation without background 

suppression (112,113).  Although it produces lower BOLD contrast than T2*-weighting, a 

fully-refocused T2-weighted FSE sequence was used to produce a very temporally stable 

signal.  The RF refocusing reduces sensitivity to main magnetic field drift, which can be 

substantial over the long time periods (> 1 hour) used in this experiment.  Furthermore, 

complete RF refocusing of the signal also has the benefit of being insensitive to any B0 

shifts induced by hyperoxia, as discussed in Chapter 2.  The PCASL approach uses a 

rapid pulsed method to produce spatially-varying effective B1 field along the direction of 

the artery, similar to continuous ASL.  This approach is preferred to the continuous 

method since it has a superior approach for generating the control image (112), producing 

higher overall efficiency and signal-to-noise ratios.  

 

The FSE readout parameters were: TE/TR = 118 ms/4000 ms, FOV = 180 x 180 mm2, 

Matrix = 64 x 64, BW = 130 Hz/Px, excitation flip angle = 900, refocusing flip angle = 

1800, slice thickness = 8 mm.  PCASL parameters were:  labeling duration = 1500 ms, 

post-label delay = 1000 ms, label plane offset = 60 mm, B1avg = 1.7 µT, Gavg = 6 mT/m.  

The PCASL control and tag images were interleaved one-to-one. 
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5.3.6  BOLD and Arterial Spin Labeling Analysis 

All images were motion corrected before analysis with FSL tools (77) using a software 

package designed to process intramodal MRI time series data (FEAT) (78). PCASL 

controls were used as the BOLD images .  Given that TR is about four to five times the 

T1 of tissue at 1.5T, T1 weighting will be minimal and the images can be considered 

entirely T2-weighted. 

 

The control and tag images were subtracted, and the resulting PCASL ΔM data were 

converted to CBF according to Eq. 5.1 (114): 

 

[ 5.1 ] 

 

where α is the inversion efficiency (assumed to be 0.9), M0a is the equilibrium 

magnetization of blood, T1a is the longitudinal relaxation time of arterial blood, PLD is 

the post-label delay time (time between the end of tagging pulse and beginning of the 

readout), τ is the labeling duration, and T2a is the transverse relaxation time of arterial 

blood.  As discussed in Section 4.3.3, M0a was calculated based on the local 

magnetization using Eq. [4.3], with R = 0.98, T2a = 200 ms, and T2LT = 120 ms (23).  T1a 

under normoxia was taken to be 1350 ms (21), while the T1a during hyperoxia was 

determined by the application of Eq. [3.2] based on the discussion in Chapter 3.  It was 
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assumed that relaxivity of both deoxyhemoglobin and molecular oxygen were 

independent of field strength (21). 

 

Final analysis of the BOLD and ASL data was performed using custom scripts written in 

MATLAB.  Due to the lower Boltzmann distribution, longitudinal relaxation time, and 

deoxyhemoglobin relaxivity at low field, both the ASL and BOLD data were relatively 

noisy.  Given the limited signal-to-noise ratio of our measurements, we analyzed all 

values using whole brain regions-of-interest that were manually drawn to cover both the 

gray and white matter regions.  Baseline values were calculated using a five minute 

average before the stimulation, and stimulation values were a five minute average at the 

end of the stimulation period.   DNP stimulation values were calculated over five minutes 

and centered at thirty minutes post-DNP administration. 

 

5.3.7  Calculation of Regional Cerebral Metabolic Rate of Oxygen:  Hyperoxic and 

Hypercapnia Calibration Methods 

We calculated relative CMRO2 changes in this study using the formalism introduced by 

Hoge, et al. (107), which is based on the use of simultaneous BOLD and CBF data.  This 

method requires a known isometabolic dilution of deoxyhemoglobin (dHb).  An 

isometabolic reduction in the concentration of dHb can be achieved with a gas inhalation 

of hypercapnic or hyperoxic gas. The former dilutes dHb via an increase in flow, while 

the latter dilutes dHb by raising the oxygen content of arterial blood.  To calculate 
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changes in CMRO2, it is necessary to develop a detailed physical model of the interaction 

between CBF, CBV, and blood oxygenation their effects on the BOLD signal.  A brief 

derivation is provided below for the models of both hypercapnia and hyperoxia as first 

shown by Hoge, et al. (107) and Chiarelli, et al.  (6). 

 

As discussed previously, the regional concentration of dHb is proportional to the 

transverse relaxation time: 

 

[ 5.2 ] 

 

As Boxerman et al. (115) have shown, R2_dHb is proportional to the cerebral blood volume 

and the concentration of venous dHb: 

 

[ 5.3 ] 

 

where A is a constant depending on field strength and local tissue properties; β is a 

constant between 1 and 2 that depends on average blood volume.  Consider a reduction in 

R2,Hb from dHb dilution secondary to an increase in flow (via CO2 inhalation).  The 

change in R2,Hb versus non-baseline values can be expressed as: 
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[ 5.4 ] 

 

where the subscript ‘0’ defines the baseline steady state.  The relationship between the 

change in R2,Hb and the change in the measured BOLD signals is: 

 

[ 5.5 ] 

 

If we assume that changes in R2,Hb are sufficiently small, we can make Eq. [5.5] linear, so 

that: 

 

[ 5.6 ] 

 

Substitution of Eq. [5.4] into [5.6] yields: 

 

[ 5.7 ] 

 

Rearranging yields: 

 

 
[ 5.8 ] 

 

∆BOLD

BOLD
= e

−TE∆R2,dHb − 1
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The term (TE⋅A⋅CBV0⋅[dHb]v0) represents the fractional BOLD attenuation that occurs 

from the dHb at baseline. Importantly, it also represents the maximum possible BOLD 

response if all dHb was removed from tissue in its baseline state.  For clarity, this 

constant is expressed as M: 

 

[ 5.9 ] 

 

This model will assume a consistent relationship between the change in CBV and the 

change in CBF.  This relationship is also referred to as the Grubb relationship, where: 

 

[ 5.10 ] 

 

where α is a constant equal to approximately 0.38 (116).  Based on this relationship, the 

relative CBV term from Eq. [5.8] can be measured by the change in the relative CBF 

alone. 

 

If we assume that the arterial blood has a negligible concentration of dHb, then the 

concentration of dHb in a given tissue volume must be dependent entirely on CMRO2 and 

CBF such that, according to mass conservation (Fick’s principle): 

 

[ 5.11 ] 

CBV

CBV0
=

�
CBF

CBF0

�α

[dHb]v =
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where the factor of four is due to the fact that one molecular of dHb delivers four O2 

molecules.  In the case of isometabolism, the baseline-normalized change in [dHb]v can 

be expressed as: 

 

[ 5.12 ] 

 

Substituting in Eqs. [5.10] and [5.12] into Eq. [5.8] yields an expression for the change in 

the BOLD signal from baseline for a given change in the CBF from its baseline at a 

constant rate of oxygen metabolism: 

 

[ 5.13 ] 

 

Since α is larger than β, there is a monotonic increase in the BOLD signal with perfusion.   

 

In the case where metabolism is not constant, Eq. [5.12] is not valid, and the following 

expression must be used instead: 

 

[ 5.14 ] 
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When substituting this expression into Eq. [5.8], we get an expression relating the relative 

BOLD, CBF, and CMRO2: 

 

[ 5.15 ] 

 

In this way, we have an expression to relate the change in BOLD and CBF signals to the 

change in CMRO2, which depends only on α and β values.  We can obtain a value of the 

calibration factor M by using an isometabolic change in flow, which can be achieved 

with an increase in the arterial partial pressure of CO2.  However, the accuracy of the 

calculated M value will primarily depend on whether hypercapnia does, in fact, leave the 

metabolic rate unchanged. 

 

Since inhaling CO2 gas for calibration of Eq. [5.15] has its drawbacks, including the 

potential alteration of metabolism, there has been interest in calculating M with oxygen 

inhalation.  This is known to produce far fewer physiologically effects.  Chiarelli et al. 

outlined a method to accomplish this, which requires the calculation of the relative 

change in [dHb]v, as Eq. [5.11] is no longer valid during hyperoxia.  To make this 

measurement, we must know the degree of excess oxygen content in the arterial blood 

during hyperoxia. We must also make some assumptions about baseline oxgyen 

extraction fraction (OEF), which will be discussed below. 
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As discussed in Chapter 4, short hyperoxic inhalation epochs produce an approximately 

5% decrease in CBF after we correct for reduction in T1a.  Therefore, reduction in CBF 

with hyperoxia will directly affect [dHb]v change and produce a secondary effect on 

CBV, both of which must be accounted for.  To do this, we must add additional terms to 

Eq. [5.8]: 

 

[ 5.16 ] 

 

where the additional CBV and [dHb]v are due to oxygen.  Since CBV is not changed by a 

change in [dHb]v, the additional term is equal to CBV0.  Noting that: 

 

[ 5.17 ] 

 

we can express Eq. [5.8] as: 

 

[ 5.18 ] 

 

To calculate the baseline-normalized [dHb]v we must have knowledge of the arterial 

blood saturation (SaO2) and the arterial partial pressure of oxygen (PaO2).  The PaO2 can 

either be calculated from the end-tidal oxygen level or directly measured via arterial 

blood gas.  The SaO2 can then be calculated from that PaO2 (84), or it can be measured 

∆BOLD
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= M
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directly via pulse oximetry.  In this study, we calculated SaO2 with pulse oximetry and 

PaO2 with blood gases.  The oxygen content of arterial blood can be expressed as: 

 

[ 5.19 ] 

 

where φ is the oxygen carrying capacity of Hb, assumed to be 1.34 mL02/gHb, ε is the 

solubility coefficient of oxygen in blood, assumed to be 0.0031 mLO2/ dLblood/mm Hg 

(84), and [Hb] is assumed to be 15 gHb / dLblood (117), in lieu of a direct measurement.  

The first term represents the amount of oxygen carried by hemoglobin, while the second 

term is the excess oxygen dissolved in the plasma.  The outflow of arterial oxygen to the 

venous system can be calculated again, analogous to the hypercapnia case above, by 

assuming that hyperoxia is isometabolic and using Fick’s principle: 

 

[ 5.20 ] 

 

where the baseline OEF0 is assumed to be approximately equal to 0.3 from 15O2-labeled 

radiotracer studies in humans  (117).  This is considered to be a good approximation, 

because while CBF and CMRO2 change across the brain, OEF is remarkably stable (6).  

Rearranging the terms, we can show: 

 

[ 5.21 ] 

CaO2 = φ [Hb]SaO2 + PaO2 ε
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Similar to arterial oxygen content, the venous oxygen content can be expressed as: 

[ 5.22 ] 

 

Since only a negligible amount of oxygen in venous blood is not bound to Hb (even at 

high FiO2), the second term can be ignored so that: 

 

[ 5.23 ] 

 

The baseline-normalized expression for [dHb]v can be expressed as a ratio of SvO2 

values: 

 

[ 5.24 ] 

 

Again, to summarize, the calibration value M can be determined using hyperoxia by the 

expression: 

 

[ 5.25 ] 
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where the baseline-normalized change in CBF is measured and corrected according to the 

Chapter 4, and baseline-normalized expression for [dHb]v is calculated as shown above. 

For the [dHb]v calculation of the hyperoxia calibration, SaO2 was determined from the 

PaO2 measured  by arterial blood gas. 

 M can also be obtained from hypercapnia calibration according to the expression: 

 

[ 5.26 ] 

 

In this study, we assumed that α = 0.38 and that β = 1.5 for both calibrations, in 

accordance with previous studies (6,107).  Both of these expressions for M can be placed 

in the original equation for calculating the change in CMRO2 proposed by Hoge et al. 

(107): 

 

[ 5.27 ] 

 

Relative changes in CMRO2 were calculated using both hyperoxia and hypercapnia 

calibrations using custom MATLAB scripts with Eq. [5.27] and the processed BOLD and 

ASL data (as described above).   
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5.4  Physiologic Responses to Hyperoxia, Hypercapnia, and DNP 

Traces of the end-tidal CO2 (EtCO2), pulse oximetry arterial saturation (SpO2), and heart 

rate (HR) from a representative animal are shown in Fig. 5.1.  During hyperoxia, the 

SpO2 clearly rose to complete saturation (99.7 ± 0.1 %).  During both hypercapnia and 

DNP administration, SpO2 typically stayed above approximately 95%.  Hypercapnia 

caused a substantial increase in EtCO2 from a baseline of approximately 40 (41.2 ± 3.4 

mm Hg) to >60 mm Hg (66.2 ± 4.6 mm Hg).  DNP caused an immediate and steady 

increase in EtCO2 after infusion.  Before DNP injection, HR typically stayed constant at 

approximately 80 beats per minute (bpm).  After DNP injection, HR increased steadily 

and was approximately 130 bpm thirty minutes after DNP infusion. 
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Figure 5.1.  Physiological monitoring traces from a representative animal over the 

entire experiment.  The shaded green area represents hyperoxia, the red area 

represents hypercapnia, and the blue area represents post-DNP injection.  End-tidal 
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CO2 increased significantly during CO2 breathing and after DNP injection.  Oxygen 

saturation measured with pulse oximetry was increased to maximum values during 

hyperoxia, and otherwise remained in the normal physiological range (~93-98%) at 

all times.  There was a consistent trend toward some slight desaturation during 

hypercapnia and saturation level instability after DNP injection. This is most likely 

due to the animal resisting mechanical ventilation from high arterial levels of CO2.  

Note that oxygen consistently displayed faster wash-in and wash-out times 

compared to carbon dioxide.  The heart rate remained relatively stable during gas 

challenges, but increased steadily after administering DNP. 

 

5.5  Arterial Blood Gases 

The results of the arterial blood draws taken during the experiment are shown in Table 

5.1.  The blood draws for gas challenges were taken at the very end of the inhalation 

epoch, while post-DNP draws were taken at approximately thirty minutes after the DNP 

was infused.  All values were tested against the baseline using a two-tailed, paired 

Student t-test.  Hyperoxia had a statistically significant increase only in PaO2, while both 

hypercapnia and DNP injection produced a significant increase in PaCO2 and decrease in 

pH. 
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Table 5.1.  Arterial Blood Gas Parameters for Hyperoxia, Hypercapnia, and Post-

DNP Infusion 

 pH pO2 (mm Hg) pCO2 (mm Hg) SaO2
 (%) 

Baseline 7.48 ± 0.08 102 ± 10 38.1 ± 6.6 98.1 ± 1.1 

Hyperoxia 7.49 ± 0.12 524 ± 42* 42.2 ± 5.1 100 ± 0* 

Hypercapnia 7.31 ± 0.05* 101 ± 9 62.3 ± 4.6* 96.2 ± 2.5 

DNP 7.22 ± 0.11* 108 ± 9 81.7 ± 17.2* 96.6 ± 0.9 

* P < 0.05 from baseline 

 

5.6  BOLD and CBF Responses to Hyperoxia, Hypercapnia, and DNP 

Absolute values of CBF were calculated according to Eq. [5.1] and Section 5.3.7. The 

baseline state across the brain was found to be 39.4 ± 7.8 mL/100 g tissue/min.  Relative 

changes are reported below, as they are the focus of this study.  Where indicated, CBF 

has been corrected for T1a according to the approach in Chapter 4, assuming a baseline 

T1a = 1350 ms (21). 

 

The regional changes from baseline in BOLD and CBF from a representative animal are 

shown in Fig. 5.2, with overlays onto the structural images. Change in the CBF after 

correction for T1a was found to be a small reduction, in agreement with findings in 

Chapter 4.  Hyperoxia increased the BOLD response, but less than hypercapnia, which is 

in agreement with prior studies showing significantly smaller BOLD responses in similar 
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experiments (38).  Hypercapnia increased the CBF by at least a factor of two, which is in 

agreement with the widely measured relationship of approximately 5% increase in CBF 

per mm Hg of CO2 (118).  Similar to hypercapnia, DNP showed an increase in flow at 

thirty minutes that is greater than two-fold, but showed a substantially lower BOLD 

change.  This response is predicted by the biophysical model of the BOLD signal given 

above.  As the CMRO2 increases substantially with DNP, the local concentration of dHb 

also increases, decreasing T2 and counteracting the T2 increase from the increase in CBV 

(107). 
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Figure 5.2.  Baseline-normalized changes in BOLD and CBF for each experimental 

condition.  The color scales represent the percent signal change from baseline.   

Hyperoxia showed a mild reduction in CBF and an increase in the BOLD, which 

was less than that for hypercapnia.  Hypercapnia yielded an approximately two-fold 

increase in CBF.  DNP measurements were taken approximately thirty minutes 

after drug infusion.  The CBF increase during DNP was approximately equivalent 

to that after the ten minute hypercapnia challenge, while the BOLD signal was 

approximately around baseline levels. 

 

Fig. 5.3 shows MRI signal responses of an ROI that is drawn over the whole brain from a 

representative animal (same as in Fig. 5.1), using the control and control – tag images.  
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The relative BOLD (control) signal yielded very good stability over the course of the 

initial baseline period.  This is likely due to the use of the FSE sequence, which is 

insensitive to B0 changes, thereby making it much more temporally stable than other 

acquisition approaches.  The BOLD signal increased approximately half as much during 

hyperoxia as compared to hypercapnia.  Again, a slight decrease in the relative CBF 

(control – tag) images was observed during hyperoxia (Fig. 5.3 data not yet corrected for 

T1a), although the extent of the change varied across animals.  After DNP injection, the 

BOLD signal initially stayed approximately stable, but then decreased.  The CBF signal 

showed a steady increase from baseline until the animal was euthanized. 
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Figure 5.3.  MRI signal traces from a whole brain ROI of a representative animal 

(same animal as Fig. 5.1).  The shaded green area represents hyperoxia, the red area 

represents hypercapnia, and the blue area represents post-DNP injection.  

Hyperoxia resulted in a BOLD (control) signal increase, while showing a slight 

decrease in CBF (control – tag).  Hypercapnia was increased in both BOLD and 

CBF.  Post-DNP injection, the BOLD signal was stable and then decreased, while 

the CBF signal constantly increased until the end of the experiment. 
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5.7  Calculation of the Calibration Factor M for Hyperoxia and Hypercapnia 

We calculated a value of M for each animal according to Eqs. [5.25] and [5.26].  The 

relative changes in the ΔBOLD/BOLD0, CBF/CBF0, [dHb]v/[dHb]v0 (for hyperoxia only), 

and M for all experimental animals are shown in Tables 5.2a and 5.2b.  As mentioned 

above, hyperoxia had slightly more than half of the BOLD signal changes compared to 

hypercapnia.  CBF was more than doubled during hypercapnia, while a slight decrease of 

approximately 5% occurred during hyperoxia after correcting for T1a.  The average value 

of M calculated with hyperoxia was determined to be significantly lower (P < 0.001) than 

that calculated during hyperoxia.  The coefficients of variation for M were found to be 

higher for hyperoxia than hypercapnia. 
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Table 5.2a.  Calculation of Calibration  Factor M with Hyperoxia† 

Animal CBF/CBF0 ΔBOLD/BOLD0 (%) dHb/dHb0 M 

1 0.945 0.915 0.719 2.05 

2 0.918 0.917 0.692 1.81 

3 0.952 0.778 0.732 1.84 

4 0.978 1.13 0.703 2.61 

5 0.875 1.36 0.732 2.71 

6 0.943 1.11 0.670 2.18 

7 0.982 1.08 0.630 2.08 

8 0.949 1.35 0.666 2.66 

m ± SD 0.946 ± 0.038 1.13 ± 0.21 0.689 ± 0.041 2.35 ± 0.36 

CoV (% m/SD) 4.06 18.8 5.94 15.4 

†m is the mean, SD is standard deviation, and CoV is coefficient of variation 
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Table 5.2b.  Calculation of Calibration  Factor M with Hypercapnia† 

Animal CBF/CBF0 ΔBOLD/BOLD0 (%) M 

1 1.90 1.34 2.62 

2 2.54 1.90 2.92 

3 2.38 1.72 2.78 

4 2.45 2.45 3.87 

5 2.15 1.91 3.32 

6 1.98 1.63 3.05 

7 1.99 1.79 3.32 

8 1.64 1.34 3.14 

m ± SD 2.10 ± 0.29 1.81 ± 0.37 3.24 ± 0.37 

CoV (% m/SD) 14.1 20.5 11.3 

†m is the mean, SD is standard deviation, and CoV is coefficient of variation 

 

5.8  CMRO2 Calculation with Hyperoxia and Hypercapnia 

Fig. 5.4 shows traces of CMRO2 changes versus time, immediately after DNP 

administration of a whole brain ROI for hyperoxia and hypercapnia.  The traces were 

determined according to Eq. [5.27] and the values of M were calculated above.  As is 

visible from the traces, the change in CMRO2 is similar for both of the calibration 

methods despite the significant difference in calculated M values. 
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Figure 5.4.  CMRO2 signal traces from a whole brain ROI from a representative 

animal immediately after DNP infusion.  Values are in percent difference from the 

baseline.  The blue trace is calibrated from hyperoxia, and the black trace is from 

the hypercapnia calibration. 

 

Fig. 5.5 illustrates regional changes in CMRO2 from a representative animal 

approximately thirty minutes after DNP with the hyperoxia calibration.  Increases in 

CMRO2 were visualized mainly around the large increases in cortical flow, as shown in 

Figure 5.2.  The average increase in CMRO2 approximately thirty minutes after DNP is 

shown in Table 5.3 for both hyperoxia and hypercapnia calibrations.  

 



	
  

133	
  

	
  

 

Figure 5.5. CMRO2 change after thirty minutes of DNP administration in percent 

increase from baseline.  A structural image (left) is shown with an overlay of 

CMRO2 increase (right).  CMRO2 appears to increase globally across the brain, 

with the largest increases occurring in the cortex. 
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Table 5.3.  Calculation of Relative CMRO2 After DNP Infusion† 

Animal CBF/CBF0 ΔBOLD/BOLD0 (%) HC CMRO2 (%) HO CMRO2 (%) 

1 – – – – 

2 4.13 0.474 156 135 

3 2.51 -0.859 138 156 

4 2.50 0.0597 96.4 95.4 

5 2.06 -2.49 149 165 

6 – – – – 

7 2.32 -1.51 141 170 

8 3.03 -0.554 155 159 

m ± SD 2.76 ± 0.74 0.814 ± 1.076 139 ± 22 147 ± 28 

†m is the mean, SD is standard deviation, and CoV is coefficient of variation 

 

5.9  Chapter Discussion 

In this study, the relative CMRO2 changes in a hypermetabolic swine model were 

measured using simultaneous BOLD and ASL data, calibrated with isometabolic dHb 

dilution using inhaled oxygen and carbon dioxide.  Using this method, we observed rapid 

and steady increases in CMRO2 after administering DNP.  The CMRO2 increase at thirty 

minutes was found to be slightly less than that from a prior study using 17O2 inhalation.  

However, both methods show an approximate 150% increase in CMRO2 after thirty 

minutes of 9 mg/kg DNP. 
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We found that hyperoxic and hypercapnic approaches to calibration produced very 

similar final CMRO2 estimations.  However, there were important observed 

inconsistencies between the methods.  First, the calculated M values were significantly 

different between the methods, a finding consistent with prior studies (6,38,39).  The M 

calculated here were lower for hyperoxia than for hypercapnia, which is same trend seen 

in prior studies (39).  There are several potential explanations for this discrepancy.  The 

difference may be caused by a change in OEF during anesthesia from the assumed value 

of 0.3.  The hyperoxic calculation of M is known to be very sensitive to this parameter 

(6), and an underestimated OEF will significantly decrease the calculated M value (Eq. 

[5.20]).  Another reason for this difference may be the uncertainly of the value of alpha 

(39), since hypercapnic calculation M is sensitive to this parameter while the hyperoxic 

calculation is not. 

 

Second, the coefficients of variation were higher for hyperoxia than for hypercapnia 

which is the opposite finding compared to prior studies (39).  The reason for the 

difference may lie in the determination of PaO2.  Prior studies inferred PaO2 from the 

end-tidal oxygen concentration (EtO2), which may yield artifactually consistent results 

whereas arterial blood gas is far more sensitive and accurate measurement of PaO2.  Also, 

since this study involved mechanical ventilation and anesthesia, it may have produced a 

far more consistent CO2 increase and response compared to free breathing humans (39).  
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There are several distinct advantages to using hyperoxia over hypercapnia.  First, as we 

observed in our experiment, oxygen exhibits much faster wash-in and wash-out times as 

compared to carbon dioxide.  This is most likely because excess oxygen has much lower 

solubility in blood and tissue compartments compared to carbon dioxide (37).  Also, in 

many animals, the wash-in of CO2 was so slow that the plateau period of MRI signal 

response was not reached during the ten minute hypercapnic epoch.  This is important 

because a dynamically changing signal can introduce additional error into the calibration.  

Furthermore, the slow wash-out times mean that hypercapnia requires more rest time to 

return to physiologic baseline, substantially increasing the time required for the 

calibration measurement compared to hyperoxia. 

 

Second, there is significantly less controversy in the literature that hyperoxia is 

isometabolic (5) compared to hypercapnia (119,120).  It is crucial to this calibration 

model that hyperoxia and hypercapnia produce isometabolic changes in dHb 

concentration; any metabolism changes during the gas inhalation would invalidate a 

central assumption of the calibration model.  Third, the hypercapnia model depends on an 

accurate measurement of flow changes during gas inhalation.  Perfusion measurements 

with ASL, especially when resolved for regional analysis, are much noisier than BOLD 

measurements at the same resolution.  Since hyperoxia calibration results in only small 

reductions in flow, it is insensitive to perfusion data and its associated noise.  Fourth, 

compared to hyperoxia, the hypercapnia calibration is much more sensitive to the 
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assumed value of alpha from the Grubb relationship, which is a matter of controversy 

(39). 

 

It should be noted that BOLD/ASL data like this is typically used for fMRI experiments 

with repeated stimulation paradigms at a relatively high frequency (on the order of 

around a minute).  The experiment done here is more challenging, because it uses a single 

stimulation occurring over a much longer period of time.  In this case, the results are 

much more sensitive to low frequency noise because the data cannot be passed through a 

high-frequency filter that is typically employed in repeated stimulation paradigm fMRI 

experiments (38).  This limitation was successfully overcome, however, by reducing low 

frequency noise using a fully refocused FSE acquisition.  This dramatically reduced our 

sensitivity to B0 shift over time, which is the main source of low frequency noise in 

standard T2
*-weighted BOLD experiments. 

 

Although a regional analysis was not performed in this study, studies performed at high 

field should allow for higher resolution measurements due to higher overall signal-to-

noise and higher BOLD contrast.  Furthermore, it should be noted that swine have 

smaller brains for their body size compared to humans or primates.  Experiments using an 

animal with a larger brain would likely allow for a low-resolution regional analysis, even 

at this field strength. 
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In conclusion, we have shown that it is feasible to measure CMRO2 changes using 

simultaneous BOLD/ASL data, as calibrated with hyperoxia or hypercapnia.  Both 

hyperoxia and hypercapnia calibrations produced very similar CMRO2 changes, despite 

producing slightly different measurements of the calibration constant M.  Hyperoxia 

exhibited substantially faster wash-in and wash-out times than hypercapnia, allowing for 

a much more rapid establishment of equilibrium conditions.  Compared to measurements 

using 17O2 inhalation in the same animal model and experimental conditions, we showed 

comparable increases in CMRO2 with this calibrated BOLD/ASL method. A superior 

experiment for cross-validation would be to simultaneously use both methods in the same 

animals.  Due to the need to first determine the feasibility of relative CMRO2 

measurements using calibrated BOLD/ASL data in this context, as well as the expense of 

17O2
 gas, this was not done for these initial studies.  However, given that we have shown 

the feasibility of this approach, this will be the goal of future work.  Moreover, the 

advancements made in this study will allow for more accurate cross-validation studies 

using simultaneous MRI measurements of CMRO2
 using 17O2 and BOLD/ASL data. 
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Chapter 6:  Dependence of Cerebral Blood Flow and Oxygen 

Consumption on Hyperoxia-Induced Changes  

in the Longitudinal Relaxation Time 

 

6.1  Overview 

This chapter aims to develop a biophysical model that relates blood flow and oxygen 

consumption to the observed T1 decrease in tissues during hyperoxia.  Showing opposite 

trends compared to hyperoxic effects on R2
 (BOLD), hyperoxic R1 enhancement 

increases as CBF increases and metabolism decreases.  Using hypercapnia to induce an 

isometabolic increase in CBF, our model captures effects on R1 due to this physiological 

parameter during hyperoxia.  Since a comprehensive validation of this model requires 

measuring hyperoxia as a function of metabolism, future work will focus on altered 

metabolic states. 

 

6.2  Introduction  

Tumor oxygenation and the methods to improve it are important in clinical oncology, 

because tumor hypoxia modulates radiation responsiveness and limits the effectiveness of 

radiation therapy (121).  Hyperoxic contrast is an attractive method of studying tumor 

oxygenation because other methods capable of imaging oxygen, such as PET (122), 

electron paramagnetic resonance imaging (EPRI) (123), and 19F compounds (124), are 
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much more expensive, are much more difficult to use, and/or are restricted to animal 

studies.  While most studies of tissue lesions, including ischemic stroke and tumors, have 

focused on the ability of oxygen to dilute dHb and increase T2 (67,125), there have been 

several recent studies using hyperoxia primarily to decrease T1 with dissolved molecular 

oxygen in order to study tissue oxygen delivery to normal tissue and tumors (31,32,67). 

 

Studies using hyperoxic R1 enhancement have shown large heterogeneities between 

tissue types in the ability of oxygen to increase R1 (32,33).  Although qualitative means 

to explain these differences have been proposed, such as differences in blood flow rate 

and/or blood volume (31), no attempts have been made to develop a quantitative 

understanding of the relationship between hyperoxic R1 enhancement and major 

physiologic parameters including blood flow, blood volume, and oxygen consumption.  

An understanding of these relationships is crucial to a more rigorous interpretation of 

hyperoxic R1 enhancement and a more rational approach to its clinical use. 

 

In this study, we set out to take the first steps toward developing a detailed quantitative 

biophysical model of R1 relaxation enhancement in vivo.  To accomplish this, we 

followed a line of reasoning that is similar to the one used in the development of 

quantitative models of deoxyhemoglobin concentration with hyperoxia (6,39).  Our 

central premise is that dissolved oxygen R1 contrast within a volume of tissue is 

dependent solely on the increase in plasma and tissue concentration of oxygen, which in 
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turn will depend primarily on the volume of blood and its concentration of oxygenated 

hemoglobin.  This is because oxygenated blood is the only place where excess dissolved 

oxygen can exist.  Therefore, we expect to see the increased hyperoxic R1 enhancement 

where either blood volume or the concentration of oxygenated hemoglobin is elevated. 

 

Although we focus our study on measurements made in the cerebral tissue (CBF, CBV, 

and CMRO2), basic conclusions of our biophysical model could be applied to any tissue 

type exhibiting a similar flow, volume, and oxygen consumption relationship.  We tested 

this model using an isometabolic increase in CBF using hypercapnia.  To complete a test 

of this model, it will also be necessary to study the relationship of R1 enhancement to 

changes in CBF and CMRO2, examining whether they differ from the CBF response 

alone. 

 

6.3  Theory  

The biophysical model first developed by Hoge, et al. (107) establishes a relationship 

between R2, CBF and CMRO2 based on the expected changes in dHb concentration and 

CBV.  In a similar manner, we have attempted to produce a quantitative model relating 

R1 changes during oxygen inhalation to CBF and CMRO2, based on the expected change 

in oxyhemoglobin concentration (HbO2) and CBV.  Following a similar line of reasoning 

to Hoge, et al. (107), we developed an approach to determine the amount and distribution 
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of molecular oxygen in tissues.  We can consider the longitudinal relaxation observed in 

tissues to be the sum of the components of R1 caused by molecular oxygen and a 

contribution caused by other sources: 

 

[ 6.1 ] 

 

It is crucial to this model that we can describe an accurate relationship between the 

steady-state R1 contribution of oxygen and the underlying physiological parameters.  We 

argue that we can accurately model the effect of oxygen in following way: 

 

[ 6.2 ] 

 

where r02 is the relaxivity of molecular oxygen (s-1 mm Hg-1) and λ is a tissue specific 

constant relating the concentration of oxygen in the blood to its concentration in tissue.  

The constant λ will depend on several physical processes, including the ability of oxygen 

to diffuse into tissue and its absorption by dHb.  Although it does not represent a 

complete physical picture, we argue that this relationship is approximately accurate, since 

the dominant source of molecular oxygen in tissues is from the plasma of oxygenated 

blood. 

 

If we increase the concentration of oxygen only in the arterial blood, and we assume no 

changes in the CBV, CBF, CMRO2, then: 



	
  

143	
  

	
  

 

 

 

 [ 6.3 ] 

 

where the subscript ‘0’ takes its normal meaning as the initial state.  We expect this 

quantity to be positive, since adding oxygen will reduce T1.  It should be pointed out that 

this is only approximately correct for a few reasons.  First, the excess oxygen will 

increase the concentration of HbO2.  However, this change will be small under hyperoxic 

inhalation and only have a small effect on the measured R1.  The contributions of local 

blood volume and λ are expected to dominate over the influence of HbO2 in this context.  

Second, this treatment ignores the potential effect of dHb concentration on R1.  The 

dilution of dHb is expected to decrease R1, because dHb is paramagnetic.  However, this 

effect is again expected to be small in relation to the increase in R1 from oxygen in the 

blood and tissue.  Third, any the reduction in CBF during hyperoxia is also ignored, as 

the small effects it may have on R1 through changes in CBV or [HbO2] are also 

dominated by the effects of dissolved oxygen. 

 

We now want to relate the change in R1 that occurs at a single hyperoxic inhalation where 

CBV, CBF, and CMRO2 are held constant versus when these parameters are changed.  

We will refer to this process as ΔΔR1, since we are comparing the change (at different 
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physiological conditions) of the change (at the same physiological conditions with 

hyperoxia) in R1: 

 

 

[ 6.4 ] 

It is important to remember that the fundamental measurement is ΔR1, which represents 

the difference in R1 due to hyperoxia alone, without other changes.  ΔΔR1 is the change in 

ΔR1, not at different levels of hyperoxia, but at different physiological conditions. 

 

Similar to Eq. [5.11], if we assume a steady-state and Fick’s principle, there exists a 

relationship between the local concentration of HbO2, CMRO2, and CBF: 

 

[ 6.5 ] 

 

If we assume that the CMRO2 does not change, then we can express the ratio of [HbO2] 

as: 

 

[ 6.6 ] 

 

and if we also assume Grubb’s relationship (Eq. [5.10]), we can rewrite Eq. [6.4] as: 
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 [ 6.7 ] 

 

where E is: 

 

[ 6.8 ] 

 

In the more general case where CMRO2 is not constant, then Eq. [6.6] must be replaced 

with: 

 

[ 6.9 ] 

 

Using Eq. [6.9], we can rewrite Eq. [6.7] to include the influence of CMRO2: 

 

[ 6.10 ] 

 

 

From studying Eq. [6.10], we can see that the behavior of change in R1 is different than 

that observed for BOLD contrast during hyperoxia.  In BOLD-modulated studies using 

hyperoxia, the degree of R2 contrast that can be generated is directly proportional to the 

concentration of dHb in the voxel.  As CMRO2 increases or CBF decreases, the 

concentration of dHb will increase, as will the ability to generate BOLD contrast with 
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hyperoxia.  With R1 contrast, the opposite occurs, since the degree of contrast that can be 

generated depends on the concentration of HbO2.  As CMRO2 decreases or CBF 

increases, the degree of R1 contrast generated with hyperoxia will also increase. 

 

The relationships between ΔΔR1, CBF, and CMRO2 as derived in Eq. [6.10] are 

illustrated in Fig. 6.1.  It was assumed that the (PaO2/PaO2,0) = 4 in all cases.  For the 

same CMRO2, an increase in the relative CBF increases the R1 contrast from hyperoxia 

inhalation.  Also, as can be seen from Eq. [6.10], this behavior is not asymptotic, since an 

increase in CBF increases the CBV and [HbO2] continuously.  However, there is a 

physiological limit of CBV increases and [HbO2] that can occur in tissue, so this 

relationship will only hold over a certain set of physiologically determined bounds.  For 

increases in CMRO2, we expect the concentration of [HbO2] to be reduced, which 

reduces the sensitivity of R1 contrast.  As CMRO2 decreases for the same CBF, there will 

be increased concentrations of [HbO2], increasing the sensitivity of R1 contrast.  Again, 

this is also subject to a physiological limit, since there is a point beyond which no 

increase in [HbO2] will occur. 
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Figure 6.1.  The relationships between ΔΔR1, CBF, and CMRO2 as derived by Eq. 

[6.10].  There is increased hyperoxia-induced R1 contrast at higher flow rates and 

lower levels of CMRO2. 

 

6.4  Materials and Methods 

The main purpose of this study was to determine if our model of hyperoxia-induced 

changes in T1 accurately describes the contrast in vivo.  We set out to measure the effect 

of an isometabolic increase in CBF using hypercapnia on the measured R1 contrast.  If 

our model is correct, we expect to see an approximately linear change in ΔΔR1 versus 

CBF. 
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6.4.1  Animals 

All experiments performed were part of an approved protocol by our Institutional Animal 

Care and Use Committee.  All data were obtained on adult male Sprague-Dawley rats 

(n=7; 370-440 g; Charles River, MA, USA).   Inhalation anesthesia was induced and 

maintained in the same manner as described in Section 3.3.2.  To ensure that physiologic 

stability was maintained and to prevent oxygen desaturation, animals were maintained 

with a minimum FiO2 of 0.3 (normoxia in this study).  Gases were delivered and altered, 

temperature was maintained constant, and head movement was restricted as described in 

Chapter 3. 

 

6.4.2  Hyperoxia and Hypercapnia Inhalation Challenge Paradigms 

To generate an isometabolic increase in CMRO2, animals were ventilated in a steady-

state manner with increasing levels of hypercapnia.  Starting at with normoxia, animals 

were ventilated with 5%, 10%, 15%, and 20% CO2 to generate four increased 

isometabolic levels of perfusion.  Five minutes was allowed after switching hypercapnia 

levels before data was collected to allow for physiological adjustment to the new gas 

condition.  During each of these steady state levels of hypercapnia, two oxygen 

challenges from FiO2=0.3 to 0.8 were delivered in a baseline (5 min) – stimulation (10 

min) – rest paradigm.  In this way, we sought to increase the arterial partial pressure of 

oxygen by approximately the same amount for each hypercapnic epoch.  Data from the 

first two minutes of the oxygen challenge were discarded to allow time for the 

equilibrium of oxygen wash-in. 
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6.4.3  MRI Hardware  

All imaging experiments were performed using a whole-body clinical 3T MRI scanner 

(Siemens Trio; Siemens Healthcare, Erlangen, Germany) as in Chapter 3.   

 

6.4.4  Measurement of CBF During Hypercapnia 

We assumed that the brief hyperoxia inhalation epochs would not cause significant 

decreases in CBF based on our prior work as outlined in Chapter 4.  Furthermore, 

changes in CBF due to hypercapnia were expected to dominate these changes, making the 

correction of CBF during hyperoxia insignificant in this context.  CBF was measured for 

a six minute period before and after two oxygen challenges.  CBF values were measured 

using the PICORE-Q2TIPS method with a FSE readout as outlined in Section 4.3.3, with 

the only difference being that we used a higher spatial resolution single-slice FSE readout 

here, which also improved temporal resolution.  This approach has the advantage of 

minimizing sensitivity to transit time, which is particularly important in this case since 

transit time will decrease substantially at higher flow rates.  The imaging parameters 

were:  TI1 = 900 ms, TI1S = 1475 ms, TI2 = 1500 ms, TE/TR = 21/4000 ms, slice 

thickness = 2 mm, FOV = 40 ×	
  40 mm, matrix size = 128 ×	
  128, and partial Fourier 

factor = 5/8. 
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6.4.5  Measurement of the Longitudinal Relaxation Time 

The longitudinal relaxation time was measured with a single-slice fast gradient echo 

Look-Locker technique (also referred to as snapshot-FLASH (30)).  A 15 ms adiabatic 

inversion pulse was used to invert the spins and was followed by fifteen low-angle fast 

gradient echo readouts each lasting approximately 400 ms each and 1500 ms for the 

signal to return completely to equilibrium.  Magnitude and phase images were collected 

to allow for a zero-crossing fit.  The slice was co-localized to the ASL slice and the 

sequence parameters were:  flip angle = 40, slice thickness = 2 mm, FOV = 40 ×	
  40 mm, 

matrix size = 64 ×	
  64, TE/TR: 2.2/400 ms, BW: 260 Hz/Px, and Look-Locker repetition 

time = 8000 ms. 

 

6.4.6  Data Analysis 

All images were analyzed using routines and scripts written in MATLAB (MathWorks, 

Inc.).  Relative CBF maps were generated for each hypercapnic gas condition according 

to Eq. [4.1].  We did not calculate absolute CBF values since only the relative changes in 

CBF were important for this study.   We calculated T1 values for each Look-Locker 

dataset according to the following equation: 

 

[ 6.11 ] 

 

where T1 can be calculated according to (126): 

Mz(t) = A−B · e−t/T∗
1
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 [ 6.12 ] 

 

Mz was considered to have a positive or negative value depending on its relative phase.  

Look-Locker images were averaged for normoxia and hyperoxia at each level of 

hypercapnia.  Per voxel T1 fits were performed on these data.  Using the CBF maps, a 

ROI was manually drawn to include the whole brain.  Using these ROIs, we calculated 

whole brain change in R1 between normoxia and hyperoxia.  We calculated whole brain 

values primarily due to the low resolution of our T1 data.  We determined whole brain 

values for CBF using these same ROIs. 

 

6.5  Cerebral Blood Flow versus Hypercapnia Level 

Relative values of cerebral blood flow were calculated according to Eq. [4.1] and Section 

4.3.3 and are shown in Fig. 6.2.  The single slice acquisition improved signal-to-noise per 

unit time over previously acquired maps (Chapter 4), allowing for good regional analysis 

of CBF.  Global increases in CBF were observed, with the largest increases occurring in 

the cortex, as expected.  CBF increased approximately monotonically with the 

concentration of inspired CO2, without reaching a plateau. Hypercapnia increased CBF 

by 27 ± 12 %, 63 ± 14 %, 94 ± 15 %, and 118 ± 17 %, for 5%, 10%, 15%, and 20% CO2 

inhalations, respectively. 

 

T1 = T ∗
1

�
B

A
− 1
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Figure 6.2.  Relative CBF (in arbitrary units) at each hypercapnia level from a 

representative animal with a co-registered structural image (a).  CBF maps 

correspond to baseline (b), 5% (c), 10% (d), 15% (e), and 20% (f) CO2 inhalation. 

 

 

 6.6  T1 Mapping  

An example quantitative T1 map calculated according to Eqs. [6.11] and [6.12] is shown 

in Fig. 6.3.  This map was acquired during normocapnia and normoxia;  T1 values of 

1200 to 1300 ms measured in the cortex are in agreement with published values 

(127,128).  However, note that the noise for T1 maps was substantially higher than for the 

ASL data, compromising our ability to perform regional analyses of the change in T1 

during hyperoxia. 
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Figure 6.3.  Quantitative T1 map from a representative animal (right) with a co-

registered structural image (left).  T1 maps were significantly noisier than CBF 

maps, but allowed for visualization of regional T1 values. 

 

6.7  Hyperoxia-Induced R1
 versus CBF 

At baseline, oxygen inhalation induced a change in R1 from baseline by approximately 

7.2 ± 1.8 × 10-3 s-1.  Based on our previously determined relaxivity of oxygen as 1.61 × 

10-4 s-1 mm Hg-1, this change seems reasonable, since it is approximately 10% of the 

change we expected to measure in the arterial blood for an increase in PaO2 from 100 mm 

Hg to 500 mm Hg.  The ΔR1 of hyperoxia was determined to be 10.2 ± 2.1 × 10-3, 14.4 ± 

1.5  × 10-3, 18.2 ± 1.9 × 10-3, and 21.5 ± 2.4 × 10-3 s-1 for 5%, 10%, 15%, and 20% CO2 

inhalations, respectively.  Using previously measured oxygen relaxivity, we can 

determine that partial pressure of oxygen increased during hyperoxia by 43, 63, 89, 113, 

and 133 mm Hg for the baseline state and 5%, 10%, 15%, and 20% CO2 inhalations, 

respectively.  The trace of ΔΔR1 versus the percent change in CBF is shown in Fig. 6.4.  

A fit to the model using Eq. [6.7] showed very close agreement to the experimental data. 
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Figure 6.4.  The change in hyperoxic longitudinal relaxation enhancement (ΔΔR1) 

versus relative change in the CBF (% increase from baseline). ΔΔR1data appears to 

increase monotonically with CBF, and shows close agreement the proposed 

biophysical model. 
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6.8  Chapter Discussion  

In this work, we have developed a biophysical model relating CBF, CBV, and CMRO2 to 

the hyperoxic R1 enhancement.  Measurements made during an isometabolic increase in 

CMRO2 were in close agreement to our model.  Furthermore, we can conclude from this 

study that increasing the blood flow does increase the amount of excess oxygen delivered 

to tissues.  This is an important finding since the relationship between tissue flow and 

oxygenation enhancement with hyperoxia is still somewhat controversial (31).  Although 

this does not recommend the use of CO2 for all tumors, as it does not vasodilate in all 

types of cancerous tissue, it highlights the importance of increasing blood flow to 

maximize tumor oxygenation. 

 

It is important to note that the behavior of hyperoxic R1 contrast is the opposite of 

hyperoxic R2 (BOLD) contrast.  As CMRO2 increases at the same CBF, we expect the 

sensitivity of BOLD contrast to increase because the deoxyhemoglobin concentration 

increases (see Eq. [5.27]).  Also, as CBF decreases at the same CMRO2, we expect to see 

BOLD contrast sensitivity increase, since that will also increase deoxyhemoglobin 

concentration.  In this way, in relation to physiological conditions, R1 provides contrast 

that is complementary in sensitivity to BOLD. 
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To test our model completely, the response of R1 to changes in CBF and CMRO2
 also 

should be examined.  The model predicts that a decrease in metabolism will also increase 

the measured R1 contrast.  There are several ways to accomplish this using our current 

animal model, but the easiest protocol might be to induce moderate hypothermia, which 

is known to significantly decrease aerobic metabolism (129,130).  The same experiment 

performed here could then be conducted during hypothermia, and, if our model is correct, 

the relationship between ΔΔR1 and CBF should show a higher slope. 

 

If our hypothesis is correct, this model also provides further explanatory power for why 

hyperoxic R1 contrast is higher in some tumor regions.  Tumors often undergo a switch to 

increased anaerobic metabolism as part of their path to malignancy (131).  As tumors 

consume less oxygen, the model predicts that R1 contrast will also increase due to higher 

concentrations of oxygenated hemoglobin.  This can explain why significant hyperoxic 

R1 enhancement occurs in some tumor regions despite relatively low levels of flow (33).  

Our model suggests that since these regions exhibit significantly lower aerobic 

metabolism, they may still show significant hyperoxic R1 enhancement despite lower 

blood flow to the region. 

 

It is important to note that the Bohr effect, which decreases the affinity of hemoglobin for 

oxygen at higher CO2 levels, may be responsible for at least some of the observed 

increases in hyperoxic R1 enhancement.  If there is less oxygen bound to hemoglobin in 
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the tissue, we expect to see larger increases in R1 enhancement due to the increase in 

dissolved oxygen.  Unfortunately, we cannot determine how much of our observations 

are due to this effect.  To eliminate the effect of Bohr shift on this experiment would 

require the use of another arterial vasodilator that does not affect tissue pH or interact 

with hemoglobin. 

 

In conclusion, this study represents the first steps toward a complete biophysical model of 

the relationship between hyperoxic R1 enhancement and blood flow, blood volume, and 

metabolism.  The model shows that hyperoxic R1 enhancement is expected to increase 

with higher blood volume, blood flow, and decreased tissue oxygen consumption, which 

is the opposite effect expected with BOLD contrast, providing complementary sensitivity 

in relation to physiological conditions.  We have shown that this model provides an 

accurate description of the relationship between hyperoxic R1 enhancement and 

isometabolic increases in CBF.  A comprehensive test of this model will require 

examining the relationship of CBF and R1 relaxation in the setting of altered metabolism. 

 

 

 

 

 



	
  

158	
  

	
  

Chapter 7:  Summary and Future Directions 

 

7.1  Future Directions 

Although we have already mentioned several important future directions for this work in 

the preceding chapters, we summarize and expand on these thoughts here and supplement 

our discussion with some additional considerations. 

 

The work in Chapter 2 of hyperoxic BOLD contrast can be improved by increasing the 

range of FiO2 levels studied, particularly at ultra-high field.  Susceptibility-induced 

distortions rise substantially as field strength increases, but the BOLD contrast also 

increases.  Our work indicates that 50% oxygen is optimal for generating BOLD contrast 

at 3T with minimal oxygen susceptibility-induced errors.  However, acceptable hyperoxia 

levels for BOLD contrast in these experiments are likely to be even lower at 7T.  This is 

important, as it also reduces the physiologic effects of oxygen that can compromise the 

accuracy of data and reduce the likelihood of any adverse events. 

 

The main future goal of studies described in Chapters 3 and 4 is to implement brief T1a 

measurements in human subjects that can be added to ASL study protocols.  As 

discussed, the major technical hurdle is the inflow of inverted spins from outside of the 
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transmit volume.  Some approaches may circumvent this problem.  If only early inversion 

preparation times are used, it is technically possible that inflow of fresh spins can be 

avoided.  It is difficult, however, to determine the time it takes for fresh spins to enter the 

tagging region.  One approach to estimate this time would be to use arterial spin labeling 

methods that sample the entire inflow curve (132) with the global inversion pulse 

preparation.  If the end of the inflow curve can be determined, this time would correlate 

with the entry of uninverted spins.  Using this information, it may be feasible to estimate 

the time it takes for uninverted spins to enter the tagging region.  Since the acceptable 

inversion times before the arrival of uninverted spins are likely to be quite short, a more 

accurate method of determining the T1a value may be to use these values to fit the zero-

crossing point. 

 

Future studies of hyperoxia calibrated BOLD/ASL experiments in our animal model will 

incorporate simultaneous 17O2 inhalation measurement of metabolism.  Although our 

hyperoxia calibrated measurements of relative metabolism compare favorably to 

metabolic increases previously measured in the same model with 17O2 inhalation, minor 

differences in animal preparation, including the time course of DNP administration, depth 

of anesthesia, and other sources of physiological variation between animals will have 

significant effects.  Simultaneous measurements can allow us to greatly reduce these 

variations, increasing the power of cross-validation of this study.  Additionally, we are 

currently in collaboration with the Yodh Lab to implement simultaneous optical 
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spectroscopy of flow and metabolism in this animal model (133).  Difficulty with light 

penetration through the skull has kept this technique from working accurately in the past.  

However, we recently have begun to drill through the skull to place fibers directly on the 

dura.  This should allow for accurate studies and create the possibility of a three-way 

cross validation of optical data, BOLD/ASL data, and 17O2 inhalation. 

 

We plan to further analyze the proposed model in Chapter 6 with an animal model of 

altered metabolism.  As mentioned above, a moderate hypothermia protocol may be 

ideally suited to this task.  It also may be possible to perform this experiment in our 

hypermetabolic swine model, with the expectation that hyperoxic R1 enhancement will be 

reduced upon DNP administration. 

 

While many of these studies above have been performed in animal models, some of these 

can be translated to human studies.  For example, the experiments performed using a 

swine model (Chapter 5) can be performed in humans, although metabolic alteration 

methods other than DNP must be used (such as visual stimulation).  A cross-validation 

study using hyperoxic calibrated function MRI and 17O2 inhalation would be ideal in 

humans, because of the ability to localize and repeat cerebral stimulation paradigms.  

Similarly, the experiments performed on rats in Chapter 6 can also be performed using 

human subjects.  The use of lower levels of CO2
 would be necessary in this context, as 

high levels are not well-tolerated even by healthy subjects (107).  This study in humans 
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may actually be easier than animal models, as testing our model against CMRO2 changes 

can easily be achieved using functional MRI protocols.  For the reasons discussed above, 

the one exception where animal studies may be necessary are studies measuring T1a. 

 

7.2  Summary of Dissertation 

As presented in Chapter 1, interest in the use of inhaled oxygen as an intravascular 

contrast agent has increased due to a number of attractive features.  These include wide 

availability, low cost, high tolerability, lack of contraindications, minimal physiologic 

effects, and rapid wash-in and wash-out times of this contrast agent.  Although numerous 

applications using hyperoxia have emerged, its use as a quantitative MRI contrast agent 

continues to be hampered by the lack of a complete understanding of the nature and 

extent of its effects in vivo.  This thesis has focused on several areas where crucial 

mechanisms of hyperoxia contrast need further elucidation in vivo: (1) the effects of 

gaseous and dissolved paramagnetic molecular oxygen on BOLD and ASL data, (2) the 

degree and temporal characteristics CBF reduction during hyperoxia, (3) the use of 

hyperoxia in quantitative measurements of metabolism with calibrated BOLD/ASL data, 

and (4) the biophysical mechanisms of hyperoxic T1 contrast. 

 

We have demonstrated that the paramagnetic effects of molecular oxygen significantly 

complicate the analysis of BOLD-modulated hyperoxic contrast studies of the brain in 
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Chapter 2.  Negative signal changes that were observed in T2
*-weighted images in the 

frontal lobes, ventricles, and brain periphery suggested the influence of image distortions 

and increased intravoxel dephasing from oxygen-induced susceptibility changes in and 

around the upper airway.  Static field changes during oxygen inhalation were shown to 

scale with the main magnetic field strength and FiO2.  Reducing FiO2 was shown to 

reduce negative signal changes while still maintaining adequate BOLD contrast for 

accurate CBV calculation. 

 

Using measurements of phantoms and arterial blood in vivo, we demonstrated in Chapter 

3 that T1a is well described by the linear combination of longitudinal relaxivities of 

molecular oxygen and deoxyhemoglobin.  We also found that when comparing brief and 

graded hyperoxic inhalation paradigms, T1a changes rapidly with changing FiO2 and does 

not change over time.   In Chapter 4, we showed with simultaneous in vivo measurements 

of T1a and CBF that measured reductions in CBF using ASL during hyperoxia are 

dominated by T1a reduction during short term inhalation epochs.  For longer hyperoxic 

exposures, physiologic effects such as reduced action of nitric oxide seem to be the 

dominant source of ASL signal reduction. 

 

In Chapter 5, we demonstrated the feasibility of accurate CMRO2 measurements with 

hyperoxia calibrated simultaneous BOLD/ASL data in a hypermetabolic animal model.  

Although producing slightly different calibration measurements, hyperoxia and 
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hypercapnia were shown to produce very similar results in detecting changes in CMRO2.  

Finally, we found similar increases in CMRO2 using our hyperoxia calibrated 

BOLD/ASL data as compared to measurements using 17O2 inhalation in the same animal 

model. 

 

We established a biophysical model of the relationship between hyperoxic R1 

enhancement and blood flow, blood volume, and metabolism in Chapter 6.  Our model 

predicts that hyperoxic R1 enhancement increases with faster blood flow and less tissue 

oxygen consumption, showing opposite behavior to BOLD contrast that is 

complementary for differing physiological conditions.  Isometabolic increases in CBF 

were shown to be accurately described by the model, but testing this model in the setting 

of altered metabolism will be necessary for its complete validation. 

 

In conclusion, we hope that this work provides valuable knowledge and insights that 

increase the accuracy and utility of hyperoxia as a quantitative MRI contrast agent.  We 

anticipate that this contrast agent will continue to play an expanding and invaluable role 

in numerous clinical and research settings. 
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