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HIV Transmission, Entry, and Gene Therapy

Abstract
For HIV to enter cells, the viral surface protein Envelope (Env) must sequentially bind the host protein CD4
and one of two coreceptors, either CCR5 or CXCR4. This triggers conformational changes in Env that result
in fusion of the host and viral membranes. Our understanding of this process has led to the development of
successful anti-viral drugs and provided insights into viral pathogenesis. One critical question is whether we
can further exploit our knowledge of the HIV entry process to develop an effective therapeutic vaccine. To do
this, we need to better understand HIV-1 transmission, which may reveal viral properties that could be
targeted in future vaccine efforts. In chapter two, we conduct a phenotypic comparison of clade B
transmitted/founder (T/F) and chronic HIV-1 Envs in an attempt to reveal viral properties associated with
successful transmission. We demonstrate that T/F Envs are more sensitive to neutralization by CD4 binding
site antibodies and that this correlates with antibody binding suggesting T/F Envs have subtle but potentially
important structural differences that may have implications for HIV-1 transmission and vaccine design. A
second critical question is how can we provide long-term viral control in the absence of anti-retroviral therapy.
Recently, an HIV-1 infected individual was ‘cured’ after receiving a bone marrow transplant from an
uninfected donor who had a naturally occurring mutation in CCR5. This suggests genetic disruption of the
HIV coreceptors may provide clinical benefit. Previously ccr5-specific zinc finger nucleases (R5-ZFNs) were
developed to disrupt ccr5 and engineer HIV-resistant cells. ZFNs are DNA binding proteins that specifically
bind and cleave a specific 24 base pair DNA target. After cleavage, error-prone host DNA repair pathways
often introduce mutations resulting in a non-functional gene product. Since 50% of late-stage HIV-infected
people harbor virus that can use CXCR4, we developed cxcr4-specific ZFNs (X4-ZFNs) that safely and
efficiently disrupt cxcr4 conferring resistance to X4 HIV both in vitro and in humanized mice in vivo. Genome
editing with ZFNs results in HIV-resistant cells that can be re-infused into a patients own body and hopefully
confer therapeutic benefit.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Cell & Molecular Biology

First Advisor
Robert W. Doms

Keywords
HIV, CCR5, CXCR4, transmitted/founder virus, gene therapy, zinc-finger nucleases

Subject Categories
Medical Microbiology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/432

http://repository.upenn.edu/edissertations/432?utm_source=repository.upenn.edu%2Fedissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages


This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/432

http://repository.upenn.edu/edissertations/432?utm_source=repository.upenn.edu%2Fedissertations%2F432&utm_medium=PDF&utm_campaign=PDFCoverPages


HIV TRANSMISSION, ENTRY, AND GENE THERAPY 

Craig B. Wilen 

A DISSERTATION 

In 

Cell and Molecular Biology 

Presented to the Faculties of the University of Pennsylvania 

In 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2011 

Supervisor of Dissertation 

Signature___________________________ 

Robert W. Doms, Chair and Professor of Microbiology 

 

Graduate Group Chairperson 

Signature___________________________ 

Daniel S. Kessler, Associate Professor, Department of Cell and Developmental Biology 

 
Disseration Committee: 
 
Carl H. June, Professor of Pathology and Laboratory Medicine 
James A. Hoxie, Professor of Medicine 
Katherine A. High, William H. Bennett Professor of Pediatrics 
Guido Silvestri, Professor of Pathology and Laboratory Medicine 
 

 

 



  ii 

Acknowledgements 

 

I would first like to thank my mentor Bob Doms who over the past few years has 

had a profound influence on my personal and career development.  His limitless support 

and encouragement fostered my scientific curiosity, thought process, and technical skills, 

laying the perfect foundation for what I hope will be a successful career as a physician 

scientist.  Bob created an ideal working environment that nurtured creativity, provided 

ample resources, encouraged hard work, and probably most importantly, made lab fun 

and the long hours enjoyable. Bob has been an ideal mentor and a terrific role model.  

 Two groups of key collaborators have made profound and essential contributions 

to this work. First, Michael Holmes, Jianbin Wang, Philip Gregory, Kenneth Kim, Gary 

Lee, and Jeffrey Miller from Sangamo BioSciences have generously shared their 

reagents, time, and expertise with zinc-finger nucleases. I also thank Scott Sherrill-Mix, 

Rick Bushman, Andrea Jordan, James Riley, Anthony Secreto, Gwenn Danet-Desnoyers, 

and Carl June for their help with various critical aspects of the zinc-finger nuclease 

project.  Second, Nick Parrish, Julie Decker, Beatrice Hahn, George Shaw, and the rest of 

their labs have been equally wonderful collaborators who I have been fortunate to work 

with.  I would like to thank Nick in particular for fostering new ideas and becoming a 

great colleague and friend. 

I would like to thank my thesis committee: Carl June, Guido Silvestri, Katherine 

High, and James Hoxie for their helpful guidance and discussions.  I also thank members 

of the Doms lab past and present including Jennifer Pfaff, Fang-Hua Lee, Elizabeth 

Henning, Jason Wojcechowskyj, Chuka Didigu, Sean Patro, Lauren Banks, Josiah 



  iii 

Petersen, Val Hardy, and especially Chip Tilton, my mentor, friend, and fellow foosball 

doubles champion.  

Finally, I thank my wife Jessica who has displayed endless love, support, and 

patience.  She has endured me thinking and talking about science incessantly for years 

and has always listened attentively and encouraged me.  For this, she is rewarded with 

my deep gratitude and (a detailed molecular understanding of HIV entry).  I would also 

like to thank my parents and brother for their support and guidance along the way even if 

they never quite understand what it is that I do all day. 



  iv 

ABSTRACT 

 

HIV TRANSMISSION, ENTRY, AND GENE THERAPY 

Craig B. Wilen 

Robert W. Doms 

 

For HIV to enter cells, the viral surface protein Envelope (Env) must sequentially 

bind the host protein CD4 and one of two coreceptors, either CCR5 or CXCR4. This 

triggers conformational changes in Env that result in fusion of the host and viral 

membranes.  Our understanding of this process has led to the development of successful 

anti-viral drugs and provided insights into viral pathogenesis. One critical question is 

whether we can further exploit our knowledge of the HIV entry process to develop an 

effective therapeutic vaccine. To do this, we need to better understand HIV-1 

transmission, which may reveal viral properties that could be targeted in future vaccine 

efforts. In chapter two, we conduct a phenotypic comparison of clade B 

transmitted/founder (T/F) and chronic HIV-1 Envs in an attempt to reveal viral properties 

associated with successful transmission. We demonstrate that T/F Envs are more 

sensitive to neutralization by CD4 binding site antibodies and that this correlates with 

antibody binding suggesting T/F Envs have subtle but potentially important structural 

differences that may have implications for HIV-1 transmission and vaccine design. A 

second critical question is how can we provide long-term viral control in the absence of 

anti-retroviral therapy. Recently, an HIV-1 infected individual was ‘cured’ after receiving 

a bone marrow transplant from an uninfected donor who had a naturally occurring 
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mutation in CCR5. This suggests genetic disruption of the HIV coreceptors may provide 

clinical benefit. Previously ccr5-specific zinc finger nucleases (R5-ZFNs) were 

developed to disrupt ccr5 and engineer HIV-resistant cells.  ZFNs are DNA binding 

proteins that specifically bind and cleave a specific 24 base pair DNA target. After 

cleavage, error-prone host DNA repair pathways often introduce mutations resulting in a 

non-functional gene product. Since 50% of late-stage HIV-infected people harbor virus 

that can use CXCR4, we developed cxcr4-specific ZFNs (X4-ZFNs) that safely and 

efficiently disrupt cxcr4 conferring resistance to X4 HIV both in vitro and in humanized 

mice in vivo. Genome editing with ZFNs results in HIV-resistant cells that can be re-

infused into a patients own body and hopefully confer therapeutic benefit.
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Chapter 1 

Introduction to HIV entry 

 

Craig B.  Wilen1, John C.  Tilton2, and Robert W.  Doms1 

 

1Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104 

2Department of General Medical Science, Center for Proteomics and Bioinformatics, 

Case Western Reserve University, Cleveland, OH, 44106 

 

Submitted for publication, in part, as “Chapter Two: Cell binding and entry” in Human 

Immunodeficiency Virus, Cold Spring Harbor Laboratory Press, 2011 and “Molecular 

mechanisms of HIV entry” in Viral Molecular Machines, Springer, 2011. 
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Abstract 

 The first step of the HIV replication cycle - binding and entry into the host cell - 

plays a major role in determining viral tropism and the ability of HIV to degrade the 

human immune system.  HIV utilizes a complex series of steps to deliver its genome into 

the host cell cytoplasm while simultaneously evading the host immune response.  To 

infect cells, the HIV protein Envelope (Env) binds to the primary cellular receptor CD4 

and then to a cellular coreceptor.  This sequential binding triggers fusion of the viral and 

host cell membranes, initiating infection.  Revealing the mechanism of HIV entry has 

profound implications for viral tropism, transmission, pathogenesis, and therapeutic 

intervention.  Here, we provide an overview into the mechanism of HIV entry, provide 

historical context to key discoveries, discuss recent advances, and speculate upon future 

directions in the field. 
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HIV entry fundamentals 

 HIV entry, the first phase of the viral replication cycle, begins with adhesion of 

virus to the host cell and ends with the fusion of the cell and viral membranes with 

subsequent delivery of the viral core into the cytoplasm.  The intricate series of protein-

protein interactions that ultimately results in virus infection can be divided into several 

phases, some of which are essential and others that may serve to modulate the efficiency 

of the process.  First, virions must bind to the target cell, with this being mediated either 

by the viral envelope (Env) protein or host cell membrane proteins incorporated into the 

virion with any one of a number of various cell attachment factors.  Attachment can be 

relatively non-specific, with Env interacting with negatively charged cell surface heparan 

sulfate proteoglycans [1], or can result from more specific interactions between Env and 

α4β7 integrin [2,3] or pattern recognition receptors such as DC-SIGN [4](reviewed in [5].  

HIV attachment to the host cell via any of these factors likely brings Env into close 

proximity with the viral receptor CD4 and coreceptor, increasing the efficiency of 

infection [6] (Figure 1-1).  However, attachment factors differ from receptors in that they 

are not essential, and while they augment infection in vitro their physiologic role in vivo 

remains unclear.   

 The second step of virus entry and the first absolutely required for infection entails 

binding of Env to its primary receptor, the host protein CD4 [7,8].  Env is a heavily 

glycosylated trimer of gp120 and gp41 heterodimers.  The gp120 subunit is responsible 

for receptor binding.  The gp120 contains five relatively conserved domains (C1-5) and 

five variable loops (V1-V5), named for their relative genetic heterogeneity.  Each of the 

variable regions is comprised of a loop structure formed by a disulfide bond at its base, 
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Figure 1-1.  Overview of HIV entry.  To deliver the viral payload into cells, HIV Env, 

comprised of gp120 and gp41 subunits (1) first attaches to the host cell, binding CD4 (2).  

This causes conformational changes in Env allowing coreceptor binding, which is 

mediated in part by the V3 loop of Env (3).  This initiates the membrane fusion process 

as the fusion peptide of gp41 inserts into the target membrane, followed by six-helix 

bundle formation and complete membrane fusion (4). 
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with the exception of V5.  The variable loops lie predominantly at the surface of gp120 

and play critical roles in immune evasion and coreceptor binding, particularly the V3 

loop (reviewed in [9].  CD4 is a member of the immunoglobulin superfamily that 

normally functions to enhance T cell receptor mediated signaling.  Env interacts with the 

CD4 binding site (CD4bs) in gp120 [10].  Env binding to CD4 causes rearrangements of 

V1/V2 and subsequently V3.  In addition, CD4 binding leads to formation of the bridging 

sheet, a four-stranded beta-sheet comprised of two double-stranded beta sheets that are 

spatially separated in the unliganded state [10,11].  The bridging sheet and repositioned 

V3 loop play critical roles in the next step of virus entry, coreceptor engagement.   

The third step of virus entry, coreceptor binding, is widely thought to be the trigger that 

activates the membrane fusion potential of Env.  HIV strains can be broadly classified 

based on their coreceptor usage.  Viruses that use the chemokine receptor CCR5 are 

termed R5 HIV, those that use CXCR4 are termed X4 HIV, and viruses that can utilize 

both coreceptors are called R5X4 HIV [12].  There is no compelling evidence that 

coreceptors other than CCR5 and CXCR4 play important roles in supporting infection of 

HIV-1 in vivo.  With rare exception, only R5 and R5X4 viruses are transmitted between 

individuals [13], likely due to multiple imperfect but overlapping host restrictions on X4 

HIV transmission (reviewed in [14]).  Interestingly, despite identification at earlier time 

points and despite high levels of CXCR4 expression on circulating HIV target cells, X4 

or even R5X4 HIV rarely predominate until late in infection [15,16,17].  In addition, X4 

viruses are less common in clade C HIV and SIV infection [18,19,20,21].  Several non-

mutually exclusive models may explain this.  First, clade B Envs may be different in their 

ability to adapt to CXCR4-tropism.  Second, there may be differences in clade B host 
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biology.  For instance, clade B hosts may have mitigated neutralizing antibody or 

cytotoxic T lymphocyte responses against X4 HIV compared to R5 HIV.  Finally, clade 

B hosts most often live in developed countries and may face different environmental 

stresses including fewer or different chronic co-infections, which may increase target cell 

CCR5 expression.  Elucidating the mechanism of coreceptor switch is a critical next step 

as it has implications for disease progression and therapy with HIV entry inhibitors. 

A fourth step of virus entry is movement of the virus particle to the site where productive 

membrane fusion occurs.  A series of recent studies have shown that a number of viruses 

usurp cellular transport pathways to reach specific destinations that are either needed for 

infection or that make entry more efficient, and that HIV might likewise utilize the host 

cell machinery to reach sites where membrane fusion can occur [22,23,24].  Some viruses 

have been shown to 'surf' along the cell surface, moving from distal sites of attachment to 

more proximal regions of the cell body where virus entry occurs.  Retroviruses, including 

HIV, have been shown to utilize this process on some cell lines [24].  In addition, HIV 

may need to be internalized by the host cell's endocytic machinery in order for productive 

membrane fusion to occur, as will be discussed in a later section [25]. 

 The fifth and final step of virus entry is membrane fusion mediated by Env.  

Coreceptor binding induces exposure of the hydrophobic gp41 fusion peptide, which 

inserts into the host cell membrane.  This tethers the viral and host membranes, allowing 

the fusion peptide of each gp41 in the trimer to fold at a hinge region, bringing an N-

terminal helical region (HR-N) and a C-terminal helical region (HR-C) from each gp41 

subunit together to form a six-helix bundle (6HB) [26,27].  As the HR-N domain is in  
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close proximity to the host cell membrane due to the fusion peptide and the HR-C 

domain is in close proximity to the viral membrane due to the gp41 transmembrane 

domain, formation of the 6HB is the driving force that brings the opposing membranes 

into close apposition, resulting in the formation of a fusion pore (reviewed in [28].  

Whether one or multiple HIV Env trimers are needed for complete membrane fusion is 

not yet clear.  In summary, coreceptor binding unlocks the potential energy of the gp41 

fusion complex resulting in 6HB formation, opening and stabilization of the membrane 

fusion pore, and subsequent delivery of the viral contents into the host cell cytoplasm. 

  

Discovery of the HIV receptors 

 In 1981, several years before the discovery of HIV, Gottlieb and colleagues 

reported CD4+ T cell decline in four men who presented with Pneumocystis pneumonia 

and mucosal candidiasis, among other opportunistic infections [29].  Three years later it 

was demonstrated that HIV preferentially infects CD4+ T cells [30], and that infection is 

potently inhibited by CD4-specific antibodies (reviewed in [31].  CD4 was then shown to 

coimmunprecipitate with Env [7]  and CD4 expression could rescue infection in some 

non-permissive cells [8].  However, CD4 transfection into mouse cells rescued binding of 

virus to the cell surface but not membrane fusion and virus infection, suggesting there 

were other required cofactors [8]. 

 While the discovery of CD4 as the primary HIV receptor occurred shortly after the 

onset of the epidemic, it took more than a decade to discover the first coreceptor.  In 

1993, CD26 was reported as the elusive HIV coreceptor [32]; however, this was later 

disproved by several groups [33,34].  In 1995, Feng and colleagues conclusively 
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identified CXCR4 as a major HIV coreceptor by the use of an expression cloning 

strategy.  A critical finding of this study was that CXCR4, then termed fusin, functioned 

as a coreceptor for what had been termed T cell line tropic strains of HIV but not for 

virus strains that could infect human macrophages but that failed to enter T cell lines 

[35,36].  The seminal discovery of CXCR4 as a G- protein coupled receptor in 

combination with the identification of the inhibitory effect of the β-chemokines CCL3 

(MIP-1α), CCL4 (MIP1β), and CCL5 (RANTES) [37] on some virus isolates led to the 

simultaneous and rapid discovery of CCR5 as the coreceptor for macrophage tropic virus 

strains by five different groups [38,39,40,41,42]. 

The importance of the viral coreceptors for HIV infection in vivo was demonstrated by 

the discovery of a 32 base-pair deletion in ccr5, termed ccr5Δ32, that has an allelic 

frequency of approximately 10% in Caucasians [43,44,45].  The Δ32 mutation results in a 

premature stop codon in the second extracellular loop of CCR5 and subsequent retention 

of the mutant protein in the endoplasmic reticulum.  Homozygosity for this 

polymorphism results in profound resistance to HIV infection, though several Δ32 

homozygotes have been infected with X4 viruses [46,47,48].  In addition, heterozygosity 

confers partial protection to infection [43,45] and disease progression [45,49]. 

Elucidating the mechanism of HIV entry has directly translated into therapeutic benefit.  

Currently, there are two FDA-approved entry inhibitors, enfuvirtide and maraviroc, while 

others are in various stages of development.  In 2003 enfuvirtide became the first licensed 

entry inhibitor; it is a 36 residue long peptide whose sequence is based on that of the HR-

C in gp41.  As a result, enfuvirtide behaves much like HR-C in that it binds to the HR-N 

prehairpin intermediate and inhibits 6HB formation and subsequent membrane fusion 
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[50,51].  While enfuvirtide is a highly specific and effective membrane fusion inhibitor 

[52,53], its use has been limited since it must be injected due to its lack of oral 

bioavailability.  Recently, protease-resistant D-peptide fusion inhibitors have been 

developed that also prevent 6HB formation, which may overcome this limitation 

[54,55,56].  In addition to enfuvirtide, the CCR5 inhibitor maraviroc has been approved 

for clinical use.  Maraviroc is a small molecule allosteric inhibitor that binds within the 

CCR5 transmembrane cavity resulting in conformational changes in the extracellular loop 

domains of the chemokine receptor that interact with Env [57].  Similar CCR5 small 

molecule inhibitors are in various stages of testing (reviewed in [58]. 

 

Key recent advances 

 Our understanding of the HIV entry process is derived largely from structural and in 

vitro studies.  As the field has evolved, there is now increased emphasis on placing the 

now rather well understood membrane fusion reaction in a cellular context, asking where 

and when virus entry takes place as well as on how virus particles are transferred between 

cells.  Increased structural detail continues to provide insight into the entry process and 

suggests targets for small molecule inhibitors and neutralizing antibodies.  Finally, 

attempts to recapitulate the ccr5∆32 phenotype have been developed with some being 

brought forward to early stage clinical development [59]. 

 New structural information.  A full understanding of the HIV entry process 

requires detailed structural information.  The structure of CD4 alone and in complex with 

a gp120 core-fragment has been solved for HIV [10,60] and SIV [11].  The structure of 

the post-fusion 6HB in gp41 has also been determined [26,27].  What has been lacking is 
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a structure of the native Env trimer and the HIV coreceptors.  However, Wu et al recently 

described five independent structures of CXCR4 bound to two different small molecule 

antagonists which have given insight into both the tertiary and quaternary structure of the 

native protein [61] (Figure 1-2).  First, both chemokines and Env have have been reported 

to engage CCR5 and CXCR4 in a two-site model with the chemokine receptor N-

terminus as site one and the extracellular loops (ECLs), particularly ECL2 as site two.  

While the orientation of the CXCR4 N-terminal domain could not be solved due to 

structural flexibility, the crystal structure provides high-resolution insight into the ECL2 

binding site.  Second, all five structures portray CXCR4 as a homodimer, which is 

consistent with biochemical studies that have suggested CXCR4 exists as an oligomer in 

the host cell membrane [62].  While the implications of CXCR4 dimerization remain 

unclear for HIV infection, it may explain the dominant phenotype of a C-terminal 

CXCR4 human mutation that results in WHIM syndrome that is characterized by warts, 

hypogammaglobulinemia, infections, and myelokathexis (retention of neutrophils in the 

bone marrow) [63].  Finally, the identified homodimer interface may represent a novel 

CXCR4 or potentially CCR5 drug target, as CCR5 and CXCR4 have been reported to 

heterodimerize in vivo [64,65].  Further structural studies are needed to better define the 

precise interactions of Env and coreceptor and to assess the mechanisms of signaling and 

heterodimerization with other chemokine receptors. 

 Where does virus entry occur?  The entry of viruses into cells is controlled in 

both time and space, with these parameters being regulated by host cell factors that serve 
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Figure 1-2.  Model of gp120 engagement of CD4 and CXCR4. Recent structural 

studies have enhanced our understanding of the molecular interactions between gp120 

(cyan) and its receptors.  Here CD4 (green) and CXCR4 (purple), shown as monomers 

for clarity, are shown simultaneously binding to gp120. (A) Lateral view (B) Top view.  

However, the number of CD4 and coreceptor molecules required to interact with Env to 

mediate productive fusion remains unknown.  (C) Gp120 has two key interactions with 

coreceptor.  (1) The base of the V3 loop binds to the N-terminal domain of the coreceptor 

while the tip of the V3 loop binds to the second extracellular loop (ECL2).  While both 

interactions are important, viral strains differ on their dependency of each interaction.  

Structural model generated by [61]. 

A B C

1

2
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 to unlock the membrane fusion potential of viral membrane proteins.  Many viruses 

require delivery by the host cell into an acidic, intracellular compartment where low pH 

triggers membrane fusion-inducing conformational changes (reviewed in [66].  HIV entry 

does not require low pH, instead being triggered by receptor engagement [67].  The fact 

that HIV does not require low pH for cellular entry does not imply that fusion occurs at 

the cell surface.  In fact, no spatial information is provided by the triggering mechanism.  

Despite this, it was often assumed that HIV fuses at the cell surface due to several 

observations (reviewed in [68]}.  First, Env expression on the cell surface can mediate 

cell-to-cell fusion, indicating not only that Env is the only viral membrane protein needed 

to elicit fusion but that low pH is clearly not required.  Second, very early studies on HIV 

entry showed that lysomotropic agents, which increase endosomal pH, do not inhibit HIV 

infection [69].  Third, inhibiting endocytosis of CD4 in cell lines by mutating its 

cytoplasmic domain does not affect HIV infection [70].  Together, these studies show 

that HIV entry is not pH dependent, but provide no definitive information as to whether 

fusion occurs at the cell surface or from within endocytic vesicles, albeit in a pH-

independent fashion. 

 The question of where HIV-membrane fusion occurs has recently been re-examined 

[25].  By combining lipid and content mixing assays with single virion fluorescent 

imaging, Miyauchi et al tracked the location of virus membrane fusion in HeLa cells 

over-expressing CD4, CCR5, and CXCR4.  They found that while lipid mixing can occur 

at the cell surface, content mixing only occurred in intracellular perinuclear 

compartments, and thus concluded that complete fusion requires endocytosis.  Whether 
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this is always the case remains to be determined as the genetic variability of HIV and the 

diverse cell types it can infect make generalization difficult. 

An interesting question is whether the site of entry matters.  With regards to the use of 

entry inhibitors, probably not: both coreceptor antagonists and fusion inhibitors block 

virus infection in vitro and in vivo, and neutralizing antibodies clearly function as well.  

However, the site of entry is more likely to have an impact on the likelihood of a 

productive infection actually occurring.  For instance, after cellular attachment, HIV can 

actively ‘surf’ along the cellular membrane from filopodia or microvilli to the cell body.  

This actin-dependent process requires receptor engagement and serves to enhance 

infection efficiency.  Surfing towards the cell body may have several favorable 

consequences for the virus.  First, it may facilitate endocytic HIV uptake.  Second, it may 

bring the virus to a membrane region that has higher levels of coreceptor or important 

downstream signaling molecules [71].  Third, it may allow the fusion event to occur 

closer to the nucleus, which is the ultimate target of HIV.  Thus, the site of initial HIV 

attachment is likely random; however, HIV hijacks the cellular machinery to traverse the 

cell membrane to a more favorable site of entry, be it at the plasma membrane or 

endosome, which ultimately serves to augment infection efficiency [24].   

 Cell-cell transfer and the virological synapse.  In vitro, the rate-limiting step of 

virus infection is attachment to the host cell.  In vivo, newly produced virions may well 

encounter an immediately adjoining, uninfected cell.  In some cases, transfer of virus 

from one cell to another is a specialized process, as in the case of dendritic cells (DCs), 

which are professional antigen presenting cells that scavenge the periphery, sampling 

antigen.  They are commonly found in the mucosa, and thus may be encountered by HIV 
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during transmission.  Upon antigen binding, DCs migrate to the lymph nodes, process, 

and present the antigen to T cells to trigger an adaptive immune response.  DCs are 

relatively resistant to productive HIV infection due to a combination of low CD4 and 

coreceptor expression, host restriction factors, post-integration HIV transcription blocks, 

and other unknown factors [72].  However, they express a diverse range of attachment 

factors that facilitate the internalization and processing of pathogens prior to antigen 

presentation.  HIV, along with other viruses [73,74], can take advantage of this pathway 

to augment infection efficiency and dissemination (reviewed in [75]; Figure 1-3).   

Cameron et al. first demonstrated that DCs could catalyze HIV infection of co-cultured 

CD4+ T cells without themselves getting productively infected [76].  Each DC can bind 

up to several hundred virions [71] most likely via a C-type lectin such as DC-SIGN 

[4,77].  After binding, the virions are endocytosed into a trypsin-resistant compartment 

[4], and then upon DC binding to a T cell, internalized virus migrates to the DC:T cell 

interface [71] where it encounters the T cell membrane forming the infectious synapse, 

analogous to the immunologic synapse that forms upon MHC-T cell receptor binding 

(reviewed in [78]).  In addition to efficiently concentrating and presenting HIV at the site 

of T cell contact, the infectious synapse is characterized by recruitment of CD4, CCR5, 

and CXCR4.   

 Recent advances in electron microscopy have enabled 3D-structural studies of the 

infectious synapse that have shed light on this mechanism [79].  DCs produce 

membranous protrusions that engulf the surrounding extracellular environment, trapping 

virions in a surface-accessible but protected compartment.  It remains unclear as to 

whether this occurs before or after virion binding and whether it is Env-induced.  When 
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CD4+ T cells contact DCs, they extend filopodia, enriched for CD4 and coreceptor, into 

the invaginated DC compartments that contain bound virions (Figure 1-3).  Together, the 

efficient binding of HIV, relocalization to the point of CD4+ T cell contact, and the 

recruitment of the requisite HIV entry receptors promote HIV infection at the infectious 

synapse [71,80].  

 A novel attachment factor: α4β7 integrin.  While cell-to-cell transmission of HIV 

augments infection efficiency, the mechanism of virological synapse formation remains 

unclear.  α4β7 integrin has been reported to bind gp120, induce activation of LFA-1 

(αLβ2 integrin), which contributes to formation of the immunologic synapse (reviewed in 

[81]), and subsequently augment infection efficiency in vitro [2,3].   

α4β7 is a heterodimeric protein comprised of an α4 and β7 subunit that when expressed 

on CD4+ T cells facilitates homing to the gut and other mucosal tissues.  Its activation 

and expression are upregulated by retinoic acid in vitro, which may also be locally 

secreted by mucosal DCs in vivo.  The discovery of α4β7 as an attachment factor is of 

particular interest since HIV disrupts the integrity of the mucosal barrier and 

preferentially depletes gut CD4+ T cells, which are more activated and express higher 

levels of CCR5 than peripheral CD4+ T cells.  α4β7 is thought to bind an LDV tripeptide 

motif on the second variable loop (V2) of gp120, with this resulting in LFA-1 activation.  

In addition, α4β7 colocalizes with CD4 and CCR5 at the virological synapse, which may 

further enhance infection.  Blockade of α4β7 with monoclonal antibodies or a peptide 

delays replication of HIV in vitro further supporting its role in HIV infection [3].  Future 

work is needed to assess whether there are protective effects of inhibiting HIV-α4β7 

interactions in vivo and to validate this novel attachment factor as a therapeutic target. 



  16 

 

Figure 1-3.  Model of DC-mediated trans-infection of CD4+ T cells.  (A) DCs capture 

and concentrate virions in trypsin-resistant surface accessible compartments.  (B) CD4+ 

T cells, containing membrane protrusions, bind DCs (C) The CD4+ T cell protrusions 

invade the virus-containing compartments and efficiently bind HIV.  (D) Virus then 

migrates towards the cell body to initiate infection.  Figure reproduced with permission 

[79]. 
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Inhibitors of HIV entry 

 While studying HIV entry has informed us about basic principles of virology and 

cell biology, the overarching goal should be to develop novel and effective therapeutics 

to limit the morbidity and mortality of the HIV/AIDS pandemic.  Currently, two entry 

inhibitors, the CCR5 inhibitor maraviroc and the fusion inhibitor enfuvirtide, are FDA-

approved for the treatment of HIV infection.  A number of other compounds that have 

targeted nearly every step of the entry pathway have also been tested in the clinic.  For 

purposes of this discussion on therapeutics, HIV entry will be divided into three 

components: (1) attachment and CD4 binding, (2) coreceptor binding, and (3) membrane 

fusion. 

 Attachment and CD4 binding inhibitors. Attachment and CD4 binding inhibitors 

include relatively non-specific anionic polymers, CD4 binding site inhibitors, soluble 

CD4 mimetics, and CD4 down-modulators.  Anionic polymers, which act by preventing 

the favorable electrostatic interactions between the positively charged Env and negatively 

charged cell surface, have been predominantly studied for use in vaginal microbicides. 

PRO2000, a naphthalene sulfonate polymer, inhibits soluble gp120 and CD4 binding in 

vitro [82].  However, in a phase III clinical microbicide trial, PRO2000 demonstrated no 

efficacy [83]. Other anionic polymers including cellulose sulfate and Carraguard, derived 

from seaweed, demonstrated no efficacy and cellulose sulfate may have actually 

increased the risk of HIV transmission [84,85,86]. 

Another approach involves targeting the CD4 binding site on gp120.  Several small 

molecules that bind to gp120, such as BMS-378806 and BMS-488043, have anti-viral 

activity in vitro and prevent CD4-gp120 binding [87,88].  However, for at least BMS-
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378806, HIV quickly adapts resistance limiting its therapeutic potential [88].  

Furthermore, soluble CD4 (sCD4) demonstrated anti-HIV activity in vitro, but early stage 

clinical trials were unable to demonstrate antiviral activity, most likely due to insufficient 

circulating concentrations of sCD4 [89]. An additional class of compounds inhibits Env-

CD4 interactions by down-regulating CD4.  These drugs, derivatives of 

cyclotrizadisulfonamide (CADA) [90] reduce CD4 expression by an unknown 

mechanism.  However, they do not alter CD4 mRNA levels suggesting they exert their 

function in a post-transcriptional manner [91]. 

 Coreceptor binding inhibitors.  Discovery of the ccr5Δ32 mutation demonstrated 

that CCR5 is not essential for normal human growth and development, suggesting that it 

could be safely targeted by small molecule inhibitors [43,44,45].  Several small molecule 

CCR5 antagonists have been developed and shown to have antiviral activity in vivo, 

including maraviroc, which received FDA approval in 2007 for use in treating HIV-

infected individuals.  Most small molecule CCR5 inhibitors, including maraviroc, 

function by binding to a hydrophobic pocket within the transmembrane domains of the 

protein - a region of the receptor not thought to directly interact with the viral Env protein 

[58,92,93].  As a result, CCR5 antagonists likely function by an allosteric mechanism, 

inducing conformational changes in the ECL domains of the receptor that subsequently 

prevent Env binding.  Viral resistance to such compounds occurs by one of two 

pathways.  In vivo, it appears that the most common resistance pathway is outgrowth of 

CXCR4-using viruses, even when present below the limit of detection in standard assays 

at the initiation of therapy. A second, less common pathway results from mutations in 

Env that enable it to utilize the drug-bound conformation of the receptor [94]. In at least 
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some cases, it appears that enhanced utilization of the CCR5 N-terminal domain is 

associated with this phenotype.  In addition to traditional small molecule inhibitors, 

CCR5 blocking antibodies are being explored for therapeutic purposes.  One such 

antibody, PRO140, blocks HIV utilization of CCR5 while preserving CCR5 ligand 

function.  PRO140 is currently in phase II clinical trials [58,95]. 

Unlike for CCR5, inhibiting CXCR4 has been met with limited success primarily due to 

the concerns of systemic toxicity.  Several CXCR4 inhibitors advanced to early stage 

clinical trials but none are currently ongoing for the treatment of HIV.  One CXCR4 

inhibitor, plerixafor, was recently FDA approved to mobilize hematopoetic stem cells to 

the peripheral blood for harvesting prior to bone marrow transplantation [96]. 

 Fusion inhibitors.  Membrane fusion is the net result of Env-receptor interactions, 

and is the target of the first entry inhibitor ever approved, enfuvirtide.  Enfuvirtide, 

previously known as T20, is a 36 amino acid mimetic of the HR-C domain.  The peptide 

binds the central coiled coils comprised of three HR-N molecules and inhibits 6HB 

formation, thus preventing fusion [50,51].  Despite the in vivo efficacy of enfuvirtide, 

resistance mutations in a ten amino acid region of HR-N that prevents enfuvirtide binding 

have been well documented [97].  Importantly though, resistance to enfuvirtide does not 

confer cross-resistance to other classes of entry inhibitors [98].  Novel fusion peptide-

based inhibitors have been designed to combat enfuvirtide resistant viruses and some of 

these molecules have synergistic effects with enfuvirtide [99,100,101]. 

 While these peptide-based fusion inhibitors exhibit efficacy, they are limited by the 

fact that are not orally bioavailable and therefore must be injected, a significant hindrance 

in maintaining patient adherence.  One potential solution is the development of orally 
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bioavailable small molecules that recapitulate enfuvirtide’s mechanism of action by 

blocking the hydrophobic “knob-into-hole” interactions. The knobs are hydrophobic HR-

C residues, specifically tryptophans and isoleucines, that pack into large hydrophobic 

holes present in the HR-N central coil [26]. D-peptide inhibitors of gp120 represent one 

such exciting new class of compounds.  They have potent in vitro activity and are not 

degraded by intestinal proteases and thus have the potential to be orally bioavailable [56]. 

 
Critical remaining questions 
 
 Work on the mechanisms of HIV entry has led to the discovery of human mutations 

affecting HIV susceptibility and disease progression as well as the development of new 

antiviral agents, such as enfuvirtide and maraviroc. In addition to the continued 

development of entry inhibitors, a critical future challenge is translating our molecular 

understanding of HIV entry into therapeutically useful information. Two critically 

important goals are the development of a preventative HIV-1 vaccine and a treatment that 

can functionally “cure” HIV-1 infected individuals.  In this thesis, we attempt to make 

progress towards both of these goals. 

 HIV transmission is a relatively inefficient process characterized by infection in 

roughly 1 per 1,000 coital acts [102,103]. In approximately 80% of cases, transmission is 

mediated by a single virus, called the transmitted/founder (T/F) virus, despite significant 

viral diversity in the donor inoculum [13].  This results in a profound genetic bottleneck 

[13,104,105,106,107,108,109,110]. Questions of critical importance are what causes this 

bottleneck, what viral properties facilitate transmission, and can this knowledge be 

exploited for therapeutic gain.  In chapter two, we assess the phenotypic properties of 
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transmitted/founder Env glycoproteins in an attempt to to better understand HIV 

transmission and pathogenesis and find HIV-1’s Achilles’ heal to aid in vaccine design. 

 In chapter three, we discuss a novel therapeutic strategy to engineer HIV-resistant 

CD4+ T cells with a long-term goal of achieving a functional “cure,” that is, virologic 

control in the absence of long-term anti-retroviral therapy (ART). Despite the success of 

ART, there are significant toxicities associated with its chronic use, and thus improved 

treatment is needed.  One such approach involves genetically disrupting the HIV 

coreeceptors, ccr5 and cxcr4, with gene-specific zinc-finger nucleases (ZFNs). An 

individual’s own cells can be removed, genetically modified ex vivo, and then reinfused 

creating a population of cells resistant to HIV infection.  These cells should have a 

survival advantage in vivo and may serve to maintain a functional immune system and 

prevent progression to AIDS. 

 

Acknowledgements   

 CBW, JCT, and RWD were supported by T32 AI000632, F32 1F32AI077370, and 

R01 AI 040880, respectively. We would like to thank Beili Wu, Ray Stevens, and Sriram 

Subramaniam for the use of figures and PDB files, and Rick Bushman for editing this 

manuscript.



  22 

References 

1. Saphire AC, Bobardt MD, Zhang Z, David G, Gallay PA (2001) Syndecans serve as 

attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol 

75: 9187-9200. 

2. Arthos J, Cicala C, Martinelli E, Macleod K, Van Ryk D, et al. (2008) HIV-1 envelope 

protein binds to and signals through integrin alpha4beta7, the gut mucosal homing 

receptor for peripheral T cells. Nat Immunol 9: 301-309. 

3. Cicala C, Martinelli E, McNally JP, Goode DJ, Gopaul R, et al. (2009) The integrin 

alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is 

highly susceptible to infection by HIV-1. Proc Natl Acad Sci U S A 106: 20877-20882. 

4. Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, et al. 

(2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-

infection of T cells. Cell 100: 587-597. 

5. Ugolini S, Mondor I, Sattentau QJ (1999) HIV-1 attachment: another look. Trends 

Microbiol 7: 144-149. 

6. Orloff GM, Orloff SL, Kennedy MS, Maddon PJ, McDougal JS (1991) Penetration of 

CD4 T cells by HIV-1. The CD4 receptor does not internalize with HIV, and CD4-related 

signal transduction events are not required for entry. J Immunol 146: 2578-2587. 

7. McDougal JS, Kennedy MS, Sligh JM, Cort SP, Mawle A, et al. (1986) Binding of 

HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 

molecule. Science 231: 382-385. 



  23 

8. Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, et al. (1986) The 

T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the 

brain. Cell 47: 333-348. 

9. Hartley O, Klasse PJ, Sattentau QJ, Moore JP (2005) V3: HIV's switch-hitter. AIDS 

Res Hum Retroviruses 21: 171-189. 

10. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, et al. (1998) Structure of an 

HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing 

human antibody. Nature 393: 648-659. 

11. Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, et al. (2005) Structure of an 

unliganded simian immunodeficiency virus gp120 core. Nature 433: 834-841. 

12. Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, et al. (1998) A new 

classification for HIV-1. Nature 391: 240. 

13. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, et al. (2008) 

Identification and characterization of transmitted and early founder virus envelopes in 

primary HIV-1 infection. Proc Natl Acad Sci U S A 105: 7552-7557. 

14. Margolis L, Shattock R (2006) Selective transmission of CCR5-utilizing HIV-1: the 

'gatekeeper' problem resolved? Nat Rev Microbiol 4: 312-317. 

15. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in 

coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp 

Med 185: 621-628. 

16. Tersmette M, Gruters RA, de Wolf F, de Goede RE, Lange JM, et al. (1989) 

Evidence for a role of virulent human immunodeficiency virus (HIV) variants in the 



  24 

pathogenesis of acquired immunodeficiency syndrome: studies on sequential HIV 

isolates. J Virol 63: 2118-2125. 

17. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE, et al. (1992) 

Biological phenotype of human immunodeficiency virus type 1 clones at different stages 

of infection: progression of disease is associated with a shift from monocytotropic to T-

cell-tropic virus population. J Virol 66: 1354-1360. 

18. Ping LH, Nelson JA, Hoffman IF, Schock J, Lamers SL, et al. (1999) 

Characterization of V3 sequence heterogeneity in subtype C human immunodeficiency 

virus type 1 isolates from Malawi: underrepresentation of X4 variants. J Virol 73: 6271-

6281. 

19. Cecilia D, Kulkarni SS, Tripathy SP, Gangakhedkar RR, Paranjape RS, et al. (2000) 

Absence of coreceptor switch with disease progression in human immunodeficiency virus 

infections in India. Virology 271: 253-258. 

20. Huang W, Eshleman SH, Toma J, Fransen S, Stawiski E, et al. (2007) Coreceptor 

tropism in human immunodeficiency virus type 1 subtype D: high prevalence of CXCR4 

tropism and heterogeneous composition of viral populations. J Virol 81: 7885-7893. 

21. Chen Z, Gettie A, Ho DD, Marx PA (1998) Primary SIVsm isolates use the CCR5 

coreceptor from sooty mangabeys naturally infected in west Africa: a comparison of 

coreceptor usage of primary SIVsm, HIV-2, and SIVmac. Virology 246: 113-124. 

22. Sherer NM, Jin J, Mothes W (2010) Directional spread of surface-associated 

retroviruses regulated by differential virus-cell interactions. J Virol 84: 3248-3258. 

23. Coyne CB, Bergelson JM (2006) Virus-induced Abl and Fyn kinase signals permit 

coxsackievirus entry through epithelial tight junctions. Cell 124: 119-131. 



  25 

24. Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005) Actin- and 

myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell 

Biol 170: 317-325. 

25. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells 

via endocytosis and dynamin-dependent fusion with endosomes. Cell 137: 433-444. 

26. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV 

envelope glycoprotein. Cell 89: 263-273. 

27. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic 

structure of the ectodomain from HIV-1 gp41. Nature 387: 426-430. 

28. Melikyan GB (2008) Common principles and intermediates of viral protein-mediated 

fusion: the HIV-1 paradigm. Retrovirology 5: 111. 

29. Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT, et al. (1981) 

Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy 

homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 

305: 1425-1431. 

30. Klatzmann D, Barre-Sinoussi F, Nugeyre MT, Danquet C, Vilmer E, et al. (1984) 

Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T 

lymphocytes. Science 225: 59-63. 

31. Sattentau QJ, Weiss RA (1988) The CD4 antigen: physiological ligand and HIV 

receptor. Cell 52: 631-633. 

32. Callebaut C, Krust B, Jacotot E, Hovanessian AG (1993) T cell activation antigen, 

CD26, as a cofactor for entry of HIV in CD4+ cells. Science 262: 2045-2050. 



  26 

33. Lazaro I, Naniche D, Signoret N, Bernard AM, Marguet D, et al. (1994) Factors 

involved in entry of the human immunodeficiency virus type 1 into permissive cells: lack 

of evidence of a role for CD26. J Virol 68: 6535-6546. 

34. Stamatatos L, Levy JA (1994) CD26 is not involved in infection of peripheral blood 

mononuclear cells by HIV-1. AIDS 8: 1727-1728. 

35. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional 

cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872-

877. 

36. Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, et al. (1995) Translational 

suppression by trinucleotide repeat expansion at FMR1. Science 268: 731-734. 

37. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, et al. (1995) 

Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive 

factors produced by CD8+ T cells. Science 270: 1811-1815. 

38. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, et al. (1996) A dual-tropic primary 

HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and 

CKR-2b as fusion cofactors. Cell 85: 1149-1158. 

39. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, et al. (1996) CC 

CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for 

macrophage-tropic HIV-1. Science 272: 1955-1958. 

40. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, et al. (1996) HIV-1 entry into 

CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381: 667-673. 



  27 

41. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, et al. (1996) The beta-chemokine 

receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85: 1135-

1148. 

42. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, et al. (1996) Identification of a 

major co-receptor for primary isolates of HIV-1. Nature 381: 661-666. 

43. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, et al. (1996) Resistance to 

HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine 

receptor gene. Nature 382: 722-725. 

44. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, et al. (1996) Homozygous defect 

in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to 

HIV-1 infection. Cell 86: 367-377. 

45. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, et al. (1996) Genetic 

restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 

structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort 

Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. 

Science 273: 1856-1862. 

46. O'Brien TR, Winkler C, Dean M, Nelson JA, Carrington M, et al. (1997) HIV-1 

infection in a man homozygous for CCR5 delta 32. Lancet 349: 1219. 

47. Theodorou I, Meyer L, Magierowska M, Katlama C, Rouzioux C (1997) HIV-1 

infection in an individual homozygous for CCR5 delta 32. Seroco Study Group. Lancet 

349: 1219-1220. 



  28 

48. Balotta C, Bagnarelli P, Violin M, Ridolfo AL, Zhou D, et al. (1997) Homozygous 

delta 32 deletion of the CCR-5 chemokine receptor gene in an HIV-1-infected patient. 

AIDS 11: F67-71. 

49. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, et al. (1996) The role 

of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2: 

1240-1243. 

50. Wild C, Greenwell T, Matthews T (1993) A synthetic peptide from HIV-1 gp41 is a 

potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses 9: 1051-

1053. 

51. Wild C, Oas T, McDanal C, Bolognesi D, Matthews T (1992) A synthetic peptide 

inhibitor of human immunodeficiency virus replication: correlation between solution 

structure and viral inhibition. Proc Natl Acad Sci U S A 89: 10537-10541. 

52. Lazzarin A, Clotet B, Cooper D, Reynes J, Arasteh K, et al. (2003) Efficacy of 

enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N 

Engl J Med 348: 2186-2195. 

53. Lalezari JP, Henry K, O'Hearn M, Montaner JS, Piliero PJ, et al. (2003) Enfuvirtide, 

an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. 

N Engl J Med 348: 2175-2185. 

54. Eckert DM, Malashkevich VN, Hong LH, Carr PA, Kim PS (1999) Inhibiting HIV-1 

entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell 99: 

103-115. 



  29 

55. Welch BD, Francis JN, Redman JS, Paul S, Weinstock MT, et al. (2010) Design of a 

potent D-peptide HIV-1 entry inhibitor with a strong barrier to resistance. J Virol 84: 

11235-11244. 

56. Welch BD, VanDemark AP, Heroux A, Hill CP, Kay MS (2007) Potent D-peptide 

inhibitors of HIV-1 entry. Proc Natl Acad Sci U S A 104: 16828-16833. 

57. Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, et al. (2005) Maraviroc (UK-

427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of 

chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 

1 activity. Antimicrob Agents Chemother 49: 4721-4732. 

58. Tilton JC, Doms RW (2009) Entry inhibitors in the treatment of HIV-1 infection. 

Antiviral Res. 

59. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, et al. (2008) Establishment of 

HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat 

Biotechnol 26: 808-816. 

60. Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, et al. (2005) Structure of a 

V3-containing HIV-1 gp120 core. Science 310: 1025-1028. 

61. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, et al. (2010) Structures of the CXCR4 

chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330: 

1066-1071. 

62. Babcock GJ, Farzan M, Sodroski J (2003) Ligand-independent dimerization of 

CXCR4, a principal HIV-1 coreceptor. J Biol Chem 278: 3378-3385. 



  30 

63. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, et al. (2003) Mutations 

in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a 

combined immunodeficiency disease. Nat Genet 34: 70-74. 

64. Sohy D, Parmentier M, Springael JY (2007) Allosteric transinhibition by specific 

antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282: 30062-30069. 

65. Sohy D, Yano H, de Nadai P, Urizar E, Guillabert A, et al. (2009) Hetero-

oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of "selective" 

antagonists. J Biol Chem 284: 31270-31279. 

66. Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124: 729-740. 

67. Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, et al. (1987) pH-

independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma 

membrane. Cell 49: 659-668. 

68. Uchil PD, Mothes W (2009) HIV Entry Revisited. Cell 137: 402-404. 

69. McClure MO, Marsh M, Weiss RA (1988) Human immunodeficiency virus infection 

of CD4-bearing cells occurs by a pH-independent mechanism. EMBO J 7: 513-518. 

70. Maddon PJ, McDougal JS, Clapham PR, Dalgleish AG, Jamal S, et al. (1988) HIV 

infection does not require endocytosis of its receptor, CD4. Cell 54: 865-874. 

71. McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, et al. (2003) 

Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300: 

1295-1297. 

72. Bakri Y, Schiffer C, Zennou V, Charneau P, Kahn E, et al. (2001) The maturation of 

dendritic cells results in postintegration inhibition of HIV-1 replication. J Immunol 166: 

3780-3788. 



  31 

73. Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, et al. (2003) Spread of 

HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 

299: 1713-1716. 

74. Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, et al. (2004) pH-dependent entry 

of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein 

and enhanced by dendritic cell transfer through DC-SIGN. J Virol 78: 5642-5650. 

75. Piguet V, Steinman RM (2007) The interaction of HIV with dendritic cells: outcomes 

and pathways. Trends Immunol 28: 503-510. 

76. Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, et al. (1992) Dendritic 

cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic 

infection to CD4+ T cells. Science 257: 383-387. 

77. Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, et al. (2002) Diversity of 

receptors binding HIV on dendritic cell subsets. Nat Immunol 3: 975-983. 

78. Vasiliver-Shamis G, Dustin ML, Hioe CE (2010) HIV-1 Virological Synapse is not 

Simply a Copycat of the Immunological Synapse. Viruses 2: 1239-1260. 

79. Felts RL, Narayan K, Estes JD, Shi D, Trubey CM, et al. (2010) 3D visualization of 

HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl 

Acad Sci U S A 107: 13336-13341. 

80. Hubner W, McNerney GP, Chen P, Dale BM, Gordon RE, et al. (2009) Quantitative 

3D video microscopy of HIV transfer across T cell virological synapses. Science 323: 

1743-1747. 

81. Bromley SK, Burack WR, Johnson KG, Somersalo K, Sims TN, et al. (2001) The 

immunological synapse. Annu Rev Immunol 19: 375-396. 



  32 

82. Rusconi S, Moonis M, Merrill DP, Pallai PV, Neidhardt EA, et al. (1996) 

Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency 

virus type 1 activities. Antimicrob Agents Chemother 40: 234-236. 

83. CONRAD (December 14, 2009) CONRAD Statement on MDP 301 Results. 

84. Van Damme L, Govinden R, Mirembe FM, Guedou F, Solomon S, et al. (2008) Lack 

of effectiveness of cellulose sulfate gel for the prevention of vaginal HIV transmission. N 

Engl J Med 359: 463-472. 

85. Skoler-Karpoff S, Ramjee G, Ahmed K, Altini L, Plagianos MG, et al. (2008) 

Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a 

randomised, double-blind, placebo-controlled trial. Lancet 372: 1977-1987. 

86. Halpern V, Ogunsola F, Obunge O, Wang CH, Onyejepu N, et al. (2008) 

Effectiveness of cellulose sulfate vaginal gel for the prevention of HIV infection: results 

of a Phase III trial in Nigeria. PLoS One 3: e3784. 

87. Ho HT, Fan L, Nowicka-Sans B, McAuliffe B, Li CB, et al. (2006) Envelope 

conformational changes induced by human immunodeficiency virus type 1 attachment 

inhibitors prevent CD4 binding and downstream entry events. J Virol 80: 4017-4025. 

88. Lin PF, Blair W, Wang T, Spicer T, Guo Q, et al. (2003) A small molecule HIV-1 

inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl 

Acad Sci U S A 100: 11013-11018. 

89. Daar ES, Li XL, Moudgil T, Ho DD (1990) High concentrations of recombinant 

soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 

isolates. Proc Natl Acad Sci U S A 87: 6574-6578. 



  33 

90. Vermeire K, Zhang Y, Princen K, Hatse S, Samala MF, et al. (2002) CADA inhibits 

human immunodeficiency virus and human herpesvirus 7 replication by down-

modulation of the cellular CD4 receptor. Virology 302: 342-353. 

91. Vermeire K, Lisco A, Grivel JC, Scarbrough E, Dey K, et al. (2007) Design and 

cellular kinetics of dansyl-labeled CADA derivatives with anti-HIV and CD4 receptor 

down-modulating activity. Biochem Pharmacol 74: 566-578. 

92. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, et al. (1999) A small-

molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 

activity. Proc Natl Acad Sci U S A 96: 5698-5703. 

93. Tilton JC, Amrine-Madsen H, Miamidian JL, Kitrinos KM, Pfaff J, et al. (2010) HIV 

type 1 from a patient with baseline resistance to CCR5 antagonists uses drug-bound 

receptor for entry. AIDS Res Hum Retroviruses 26: 13-24. 

94. Berro R, Sanders RW, Lu M, Klasse PJ, Moore JP (2009) Two HIV-1 variants 

resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS 

Pathog 5: e1000548. 

95. Jacobson JM, Saag MS, Thompson MA, Fischl MA, Liporace R, et al. (2008) 

Antiviral activity of single-dose PRO 140, a CCR5 monoclonal antibody, in HIV-infected 

adults. J Infect Dis 198: 1345-1352. 

96. Flomenberg N, Comenzo RL, Badel K, Calandra G (2010) Plerixafor (Mozobil((R))) 

Alone to Mobilize Hematopoietic Stem Cells from Multiple Myeloma Patients for 

Autologous Transplantation. Biol Blood Marrow Transplant 16: 695-700. 

97. Greenberg ML, Cammack N (2004) Resistance to enfuvirtide, the first HIV fusion 

inhibitor. J Antimicrob Chemother 54: 333-340. 



  34 

98. Reeves JD, Lee FH, Miamidian JL, Jabara CB, Juntilla MM, et al. (2005) Enfuvirtide 

resistance mutations: impact on human immunodeficiency virus envelope function, entry 

inhibitor sensitivity, and virus neutralization. J Virol 79: 4991-4999. 

99. Pan C, Cai L, Lu H, Qi Z, Jiang S (2009) Combinations of the first and next 

generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly 

potent synergistic effect against enfuvirtide- sensitive and -resistant HIV type 1 strains. J 

Virol 83: 7862-7872. 

100. Pan C, Lu H, Qi Z, Jiang S (2009) Synergistic efficacy of combination of enfuvirtide 

and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. AIDS 23: 639-641. 

101. Dwyer JJ, Wilson KL, Davison DK, Freel SA, Seedorff JE, et al. (2007) Design of 

helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against 

enfuvirtide-resistant virus. Proc Natl Acad Sci U S A 104: 12772-12777. 

102. Wawer MJ, Gray RH, Sewankambo NK, Serwadda D, Li X, et al. (2005) Rates of 

HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect 

Dis 191: 1403-1409. 

103. Gray RH, Wawer MJ, Brookmeyer R, Sewankambo NK, Serwadda D, et al. (2001) 

Probability of HIV-1 transmission per coital act in monogamous, heterosexual, HIV-1-

discordant couples in Rakai, Uganda. Lancet 357: 1149-1153. 

104. Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, et al. (2004) 

Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. 

Science 303: 2019-2022. 



  35 

105. Wolinsky SM, Wike CM, Korber BT, Hutto C, Parks WP, et al. (1992) Selective 

transmission of human immunodeficiency virus type-1 variants from mothers to infants. 

Science 255: 1134-1137. 

106. Pang S, Shlesinger Y, Daar ES, Moudgil T, Ho DD, et al. (1992) Rapid generation 

of sequence variation during primary HIV-1 infection. AIDS 6: 453-460. 

107. Zhang LQ, MacKenzie P, Cleland A, Holmes EC, Brown AJ, et al. (1993) Selection 

for specific sequences in the external envelope protein of human immunodeficiency virus 

type 1 upon primary infection. J Virol 67: 3345-3356. 

108. Zhu T, Mo H, Wang N, Nam DS, Cao Y, et al. (1993) Genotypic and phenotypic 

characterization of HIV-1 patients with primary infection. Science 261: 1179-1181. 

109. Poss M, Martin HL, Kreiss JK, Granville L, Chohan B, et al. (1995) Diversity in 

virus populations from genital secretions and peripheral blood from women recently 

infected with human immunodeficiency virus type 1. J Virol 69: 8118-8122. 

110. Wolfs TF, Zwart G, Bakker M, Goudsmit J (1992) HIV-1 genomic RNA 

diversification following sexual and parenteral virus transmission. Virology 189: 103-

110. 

 

 



    36 

Chapter 2 

Phenotypic and Immunologic Comparison of Clade B Transmitted/Founder and 

Chronic HIV-1 Envelope Glycoproteins 

 

Craig B. Wilen1#, Nicholas F. Parrish2#, Jennifer M. Pfaff1, Julie M. Decker2, Elizabeth 

A. Henning1, Hillel Haim3, Josiah E. Petersen1, Jason A. Wojcechowskyj1, Joseph 

Sodroski3, Barton F. Haynes4, David C. Montefiori4, John C. Tilton5, George M. Shaw2*, 

Beatrice H. Hahn2*, and Robert W. Doms1* 

 

1Department of Microbiology, University of Pennsylvania School of Medicine, 

Philadelphia, PA, 19104, 2Departments of Medicine and Microbiology, University of 

Alabama at Birmingham, Birmingham, AL 35294, 3Department of Cancer Immunology 

and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 4Duke 

Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, 

5Department of General Medical Sciences, Center for Proteomics, Case Western Reserve 

University School of Medicine, Cleveland, OH 44106 

#These authors contributed equally. 

 

Reprinted with permission from the American Society for Microbiology.  

Originally published in Journal of Virology, June 29 [Epub ahead of print] Copyright 

2011. 



    37 

Abstract 

 Sexual transmission of human immunodeficiency virus type 1 (HIV-1) across 

mucosal barriers is responsible for the vast majority of new infections.  This relatively 

inefficient process results in the transmission of a single transmitted/founder (T/F) virus -

- from a diverse viral swarm in the donor -- in approximately 80% of cases.  Here we 

compared the biological activity of 24 clade B T/F envelopes (Envs) with that of 17 

chronic controls to determine whether the genetic bottleneck that occurs during 

transmission is linked to a particular Env phenotype. To maximize the likelihood of an 

intact mucosal barrier in the recipients and to enhance the sensitivity of detecting 

phenotypic differences, only T/F Envs from individuals infected with a single T/F variant 

were selected. Using pseudotyping to assess Env function in single round infectivity 

assays, we compared coreceptor tropism, CCR5 utilization efficiency, primary CD4+ T 

cell subset tropism, dendritic cell trans-infection, fusion kinetics, and neutralization 

sensitivity. T/F and chronic Envs were phenotypically equivalent in most assays; 

however, T/F Envs were modestly more sensitive to CD4 binding site antibodies b12 and 

VRC01, as well as pooled human HIV Ig. This finding was independently validated with 

a panel of 14 additional chronic HIV-1 Envs controls.  Moreover, the enhanced 

neutralization sensitivity was associated with more efficient binding of b12 and VRC01 

to T/F Env trimers. These data suggest that there are subtle but significant structural 

differences between T/F and chronic clade B Envs that may have implications for HIV-1 

transmission and the design of effective vaccines. 
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Introduction 

Sexual transmission of HIV-1 across mucosal barriers is a relatively inefficient 

process and is most often due to the transmission of a single transmitted/founder (T/F) 

virus from the swarm of viral variants present in the donor, resulting in a profound 

genetic bottleneck [1,2,3,4,5,6,7,8].  As discussed in chapter one, a question of central 

importance is whether T/F viruses have particular phenotypic properties, which favor 

their transmission. If so, viruses with these properties should logically be targets of 

vaccination and microbicide efforts.  The viral envelope (Env) protein is a likely 

candidate for transmission-related signatures. For example, viruses expressing Envs that 

utilize the CCR5 coreceptor (R5-tropic) are transmitted far more frequently than those 

expressing Envs that utilize CXCR4 (X4-tropic) [1,6,9,10]. Variations in Env have also 

been linked to differences in the utilization of CD4 and coreceptor, the rate and efficiency 

of membrane fusion, as well as binding to C-type lectins such as DC-SIGN that are 

expressed on dendritic cells (DCs) and can function as virus attachment factors 

[11,12,13,14]. 

Studies to characterize the properties of transmitted HIV-1 strains face several 

challenges. First, it is difficult to identify individuals during the acute phase of HIV-1 

infection, particularly before the onset of immune responses (that is, at early Fiebig 

stages [15]), thus limiting sample sizes. Second, individual viruses cloned from the 

peripheral blood or plasma of acutely infected individuals within weeks of transmission 

may have already evolved away from the actual T/F virus and may thus have acquired 

phenotypic changes [16]. Third, in the absence of extensive sampling of the early viral 

quasispecies by single genome amplification (SGA), it is impossible to know if one or 
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more virus strains established the clinical infection, making it difficult to assess the 

integrity of the mucosal barrier [1]. Infection with multiple T/F viruses may reflect a 

different mechanism of transmission, with these T/F Envs likely facing different or 

reduced transmission selection pressure [17,18]. Nonetheless, small numbers of Envs 

cloned from acutely infected individuals have been obtained and compared to Envs 

cloned from corresponding donors or from other chronically infected individuals. 

Derdeyn et al. examined clade C Envs from eight heterosexual transmission pairs and 

concluded that transmitted Envs have fewer putative N-linked glycosylation sites 

(PNGs), more compact variable loops, and enhanced neutralization sensitivity to donor 

plasma [2], although subsequent phenotypic studies of a subset of viruses bearing these 

Envs did not reveal functional differences [19,20]. Analysis of clade A and D 

transmission pairs also identified shorter recipient Envs with a lower V3 charge, although 

no differences in the number of PNGs were noted [21].  For clade B Envs, initial studies 

suggested that transmission was independent of variable loop length and PNGs 

[22,23,24]; however, more recent comparisons of thousands of clade B T/F and chronic 

env sequences confirmed significantly fewer total PNGs and a trend towards fewer in the 

V1/V2 loops of transmitted Envs (Gnanakaran et al, submitted).  Finally, several studies 

have investigated neutralization sensitivities of acute or T/F Envs compared to chronic 

control Envs, but reported conflicting results [1,23,25,26]. These discrepancies may have 

resulted from differences in sample size, demographics of acutely infected individuals 

and chronic controls, cloning strategy, and whether the Envs under investigation 

represented true T/F viruses. 
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The use of SGA of plasma viral RNA during the earliest stages of infection has 

allowed the inference of the nucleotide sequence of T/F viruses from an increasingly 

large number of individuals [1,27,28,29].  Recent analyses of a large number of clade B 

T/F Env sequences led to the identification of transmission signatures in the CCR5 

binding site, certain PNGs, and sites in the signal peptide and gp41 cytoplasmic domain 

that could affect Env processing and localization (Gnanakaran et al, submitted).  These 

results suggested that T/F Envs might differ in some phenotypic properties from chronic 

Envs.  To examine this, we conducted a comprehensive phenotypic analysis of T/F and 

chronic clade B HIV-1 Envs in the context of viral pseudotypes.  Specifically, we 

assessed coreceptor tropism, CCR5 utilization efficiency, CD4+ T cell subset tropism, 

DC-mediated trans-infection efficiency of T cells, and membrane fusion kinetics. In 

addition, we examined the sensitivity T/F and chronic Envs to neutralization by purified 

immunoglobulin from infected patients (HIV Ig) and a panel of broadly neutralizing 

monoclonal antibodies (MAbs) and assessed the binding efficiencies of these MAbs to 

trimeric Env on the cell surface.  Our results failed to identify a major transmission 

phenotype, but uncovered subtle functional differences between T/F and chronic Envs 

that may be of biological significance.  



    41 

Materials and Methods 

 Pseudovirus production.  Pseudotyped virus was produced by calcium 

phosphate co-transfection of 6 µg of pcDNA3.1+ containing env with 10 µg of HIV-1 

core (pNL43-ΔEnv-vpr+-luc+ or pNL43- ΔEnv -vpr+-eGFP) into 293T17 cells.  Virus 

was harvested 72 hours post-transfection, filtered through a 0.45 µm filter, aliquoted, and 

stored at -80°C.  For the primary CD4+ T cell infection, pseudovius was concentrated by 

ultracentrifugation through a 20% sucrose cushion.  Pelleted pseudovirus was then 

resuspended in PBS.  All luciferase-encoding pseudoviral stocks were serial diluted and 

used to infect NP2 cells to define the linear range of the assay. A viral dilution was 

chosen in the middle of the five-fold linear range of the assay to maximize sensitivity. 

Env cloning and sequence analysis.  The derivation of most T/F Env clones used 

in this study has been described [1]. THRO.F4.2026, SUMAd5.B2.1713, 9010-

09.A1.4924, and PRB959-02.A7.4345 were cloned from SGA amplicons known to 

contain the nucleotide sequence of the corresponding T/F env sequence into pcDNA3.1 

according to manufacturer’s instructions (Invitrogen). The AD17.1 env gene was 

subcloned from a full-length infectious molecular T/F clone described elsewhere [17]. 

Chronic Envs HEMA.A4.2125 and HEMA.A23.2143 were also cloned in pcDNA3.1; 

briefly, viral RNA was extracted from plasma of chronically infected patients and 

amplified using SGA methods. Individual env genes were then either cloned at random, 

or selected, to maximize within-patient env sequence diversity. Env clones were 

sequenced to confirm that they did not contain Taq polymerase errors, but represented 

env genes of viruses circulating in the patient. The nucleotide sequences of all T/F and 

chronic Envs have previously been reported (Gnanakaran et al, submitted). PNGs were 
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determined with N-glycosite (hiv.lanl.org) [30]. To assess lengths of the V1/2, V3, V4, 

V5, and V1-4 regions, sequences were aligned to HXB2, then boundaries were identified 

for each region and non-gap residues were counted. 

Coreceptor tropism testing and cell line infections. NP2 cells stably expressing 

CD4 and either CCR5 (NP2/CD4/CCR5) or CXCR4 (NP2/CD4/CXCR4) were infected 

with HIV-1 pseudoviruses expressing luciferase by spinoculating in 96-well plates at 450 

g for 90 minutes at 25°C.  Cells were lysed with Brite-Glo (Promega) 72 hours post-

infection and analyzed on a Luminoskan Ascent luminometer.  Coreceptor tropism was 

arbitrarily defined by mean relative light units (RLUs) greater than 1 (approximately 100-

fold over background). To assess sensitivity to coreceptor inhibitors, NP2/CD4/CCR5 or 

NP2/CD4/CXCR4 cells were pre-incubated for 30 minutes with saturating concentrations 

of the CCR5 inhibitor maraviroc (1 µM), the CXCR4 inhibitor AMD3100 (2 µM), or the 

fusion inhibitor enfuvirtide (10 µ/ml) prior to infection. To assess sensitivity to broadly 

neutralizing MAbs, viral pseudotypes were pre-incubated with 10 µg/ml of antibody for 

30 minutes at 37°C.  Virus and antibody mixes were then used to infect NP2/CD4/CCR5 

or NP2/CD4/CXCR4 cells. All NP2 cell line infections were done in at least triplicate in 

at least three independent experiments using R5-tropic JRFL as a positive control and 

Env-deficient pseudotypes as a negative control. 

The following reagents were obtained through the NIH AIDS Research and 

Reference Reagent Program, Division of AIDS, NIAID, NIH: pNL4-3-deltaE-eGFP 

(Cat# 11100) from Drs. Haili Zhang, Yan Zhou, and Robert Siliciano [31], bicyclam JM-

2987 (hydrobromide salt of AMD-3100; Cat# 8128) [32,33,34], maraviroc (Cat #11580) 
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[35,36,37], and HIV-1 gp120 MAb IgG1 b12 (Cat# 2640) from Dr. Dennis Burton and 

Carlos Barbas [38,39,40,41]. 

Primary human CD4+ T cell tropism assay. Primary human CD4+ T cells, 

purified by negative selection, were obtained from the University of Pennsylvania’s 

Human Immunology Core.  2x106 cells per virus were stimulated with plate-bound anti-

CD3 (clone OKT3) (eBiosciences) and anti-CD28 (clone 28.2, BD biosciences) and 20 

units (U)/ml recombinant IL-2 in RPMI containing 10% FBS.  Three days post-

stimulation cells were transferred to 96-well V-bottom plates prior to infection. Five 

µl/well of concentrated HIV-GFP was used to infect cells in triplicate.  Plates were then 

spinoculated at 1200 g for 2 hrs.  Cells were then transferred to new 24-well plates and 

new media containing 20 U/ml IL-2 was added.  Three days post-infection, cells were 

stained for flow cytometry. 

Determination of alternative coreceptor use.  Primary human CD4+ T cells 

from two different ccr5Δ32 homozygous donors were obtained and purified as previously 

described.  Prior to infection, cells were pre-incubated with 50 µM AMD3100 for 30 min.  

Cells were infected as previously described.  Two hours after spinfection, enfuvirtide (1 

µg/ml final concentration) was added to all samples to prevent additional fusion prior to 

transferring cells to a 24-well plate for further incubation.  Samples were stained and 

analyzed as previously described. 

Flow cytometry. 1-2x106 cells were stained per tube for flow cytometry.  All 

incubations were done at RT and in Facs Wash Buffer (PBS, 2.5% FBS, 2mM EDTA), 

and all antibodies were from BD Biosciences, unless otherwise noted.  To stain CD4+ T 

cells, cells were first washed in PBS.  Then, live/dead Aqua (Invitrogen) was added and 
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incubated for 10 min.  Next, anti-CCR7 IgM in Facs Wash Buffer was added and 

incubated for 30 min. Cells were then washed in Facs Wash Buffer before staining with 

anti-CD3 Qdot 655 (Invitrogen), anti-CD4 Alexa Fluor 700, anti-CD45RO PE-Texas Red 

(Beckman Coulter), and anti-IgM PE (Invitrogen) for 30 min. Cells were then washed in 

Facs Wash Buffer and resuspended in 1% PFA.  Samples were run on a LSRII (BD) and 

analyzed with FlowJo 8.8.6 (Treestar).  Cells were gated as follows: singlets (FSC-A by 

FSC-H), then live cells (SSC-A by live/dead), then lymphocytes (SSC-A by FSC-A), 

then CD3+ cells (SSC-A by CD3), then by memory markers (CCR7 by CD45RO). 

DC trans-infection assay. To differentiate DCs, freshly isolated monocytes from 

the University of Pennsylvania’s Human Immunology core were treated with 50 ng/ml 

GM-CSF (R&D systems) and 100 ng/ml IL-4 (R&D systems) in AIM V serum free 

media (Invitrogen). New media containing GM-CSF and IL-4 was added on day 3.  Six 

days post-stimulation DCs were washed and plated at 3x104 cells per well in a V-bottom 

96 well plate. 3x104 CD4+ T cells alone, three days post-stimulation with plate-bound 

anti-CD3/anti-CD28 were used as a negative control.  Viral stocks were first titered by 

RLUs on NP2/CD4/CCR5 or CXCR4 cells. Virus sufficient to generate 80 RLUs was 

added to DCs or a CD4+ T cell control and allowed to bind for two hours at 37°C.  Cells 

were washed three times with fresh media to remove cell-free virus.  Then, 3x105 

stimulated heterologous CD4+ T cells were added to each well containing 3x104 HIV-

bound DCs or CD4+ T cells.  As an additional control, and equal amount of virus was 

added to 3x105 stimulated CD4+ T cells to ensure there was no differential infection of 

CD4+ T cells.  For CD4+ T cell luciferase infection, cells were spinoculated at 450 g for 

90 minutes and then incubated without washing off virus.  Cells were then transferred to 
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a flat bottom 96-well plate for three days prior to take down with Brite Glo.  Each 

condition was done in triplicate and each viral pseudotype was used in at least three 

independent experiments with cells from different healthy donors. 

Enfuvirtide time-of-addition assay. To assess entry kinetics of T/F and chronic 

Envs, NL43vpr+luc+ pseudotypes were chilled to 4°C and added to NP2/CD4/CCR5 (or 

NP2/CD4/CXCR4 for the one X4-tropic Env) cells on metal blocks embedded in ice 

covered by a moist towel.  Cells were then spinoculated at 1300 rpm for 90 minutes at 

4°C to enhance viral binding.  Immediately post-spinoculation, cold supernatant was 

aspirated off and all wells were flooded with 270 µl of pre-warmed 37°C media and 

transferred to a 37°C incubator.  30 µl of 10 µg/ml enfuvirtide (final concentration of 

1µg/ml) was then added at 0, 5, 10, 20, 40, 80, or 160 minutes post-warming. A no drug 

control was also included to normalize percent infection.  Cells were then incubated for 

72 hours and assessed for RLUs.  At least three wells per virus per time point were 

included in each experiment, and all Envs were examined in at least three independent 

experiments.  Data was analyzed with Prism 4.0 (GraphPad Software, Inc.) by fitting a 

best-fit sigmoidal line to each independent experiment prior to averaging the Hill slopes 

and time to half-max fusion. 

Neutralization sensitivity.  Neutralization assays were performed using both 

NP2 and TZMbl cells in two independent laboratories. To assess sensitivity to MAbs 

b12, VRC01, PG9, and PG16, viral pseudotypes were pre-incubated with 10 µg/ml of 

antibody for one hour prior to infection of NP2 cells.  To assess sensitivity to HIV Ig, 

pseudotypes were pre-incubated with two-fold serial dilutions of clade B HIV Ig from 

1500-23 µg/ml. This mix was then added to NP2 cells and spinoculated as described 
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previously.  For MAbs, neutralization was assessed by determining the maximum percent 

inhibition (MPI) compared to a no antibody control. Clade B HIV Ig (lot 12 100158) was 

obtained from the AIDS Repository.  

Neutralization sensitivity was assessed on TZMbl cells as previously described 

[42,43]. Briefly, 8 x 103 TZMbl cells were plated overnight.  Five-fold dilutions of MAbs 

(b12, VRC01, PG9, PG16, and clade B HIV Ig) were incubated in the presence of 40 

µg/ml DEAE-Dextran and 2000 infectious units (as measured on TZMbl cells) of 

pseudovirius for one hour at 37°C.  After media was removed from TZMbl cells, the 

virus/MAb dilutions were added to the cells and incubated for 48 hours before being 

analyzed for luciferase expression (Promega).  The highest concentration tested for b12, 

VRC01, PG19 and P16 was 10 µg/ml.  The highest concentraion of clade B HIV Ig was 

1500 µg/ml.  Samples were tested in duplicate with all experiments repeated at least two 

times. IC50 values were calculated as described previously [43]. 

Cell-Based Enzyme-Linked Immunosorbent Assay (CELISA).  The binding of 

MAbs to HIV-1 Env trimers expressed on cells was measured using a cell-based ELISA 

system, as previously described [44].  Briefly, COS-1 cells were seeded in 96-well plates 

(1.8 × 104 cells/well) and transfected the next day with 0.1 µg of a plasmid expressing 

Env and 0.02 µg of a Rev-expressing plasmid per well using Effectene transfection 

reagent.  Three days later, cells were incubated with the indicated MAb suspended in 

blocking buffer (35 mg/ml BSA, 10 mg/ml non-fat dry milk, 1.8 mM CaCl2, 1 mM 

MgCl2, 25 mM Tris, pH 7.5 and 140 mM NaCl) for one hour at room temperature. Cells 

were then washed four times with blocking buffer and four times with washing buffer 

(140 mM NaCl, 1.8 mM CaCl2, 1 mM MgCl2 and 20 mM Tris, pH 7.5).  A horseradish 
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peroxidase-conjugated antibody specific for the Fc region of human IgG was then 

incubated with the samples for 45 minutes at room temperature.  Cells were washed five 

times with blocking buffer and five times with washing buffer.  HRP enzyme activity was 

determined after the addition of 33 µl per well of a 1:1 mix of Western Lightning 

oxidizing and luminol reagents (Perkin Elmer Life Sciences) supplemented with 150 mM 

NaCl.  Light emission was measured with a Mithras LB 940 luminometer (Berthold 

Technologies). To correct for the level of cell surface expression of each envelope 

glycoprotein, binding of the antibodies is expressed as percent binding of the CD4-Ig 

probe at saturating concentrations (5 µg/ml). We decided a priori to exclude all envelope 

glycoproteins that bound CD4-Ig at less than 20% of the binding measured for the 

SC05.8H2.3243 control isolate. Five of the 57 Envs were thus not analyzed, including 

three T/F and two chronic Envs. Measurements of antibody binding and neutralization 

were performed under code to prevent potential bias.  

Statistical analyses. T/F and chronic Envs were compared with Mann-Whitney 

tests and correlations were assessed by Spearman tests.  P-values less than 0.05 were 

considered significant.  Data was analyzed with Prism 4.0 software. 

Ethics Statement.  All human cells used in this study were from normal healthy 

donors who provided written informed consent after approval by the University of 

Pennsylvania’s institutional review board. 
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Results 

 Panels of T/F and chronic Envs. To determine if there are functional differences 

between T/F Envs and those that predominate during chronic infection, we assembled a 

panel of 24 clade B T/F Envs previously inferred and cloned from plasma viral RNA of 

24 individuals with acute HIV-1 infection as defined by the Fiebig staging system, in 

which patients are classified from Stage I (viral RNA positive, antibody and antigen 

negative) to Stage VI (ELISA and western blot positive with multiple bands) [1,17,45] 

(Table 2-1).  Twelve individuals were sampled during Fiebig stage II, five during Fiebig 

stage III, two during in Fiebig stage IV, and five during Fiebig stage V.  Acutely infected 

individuals were predominantly males (22 of 24) from the southeastern United States (18 

of 24) with a variety of sexual risk factors, all denying intravenous drug use (IDU). All 

T/F Envs were inferred from SGA-derived sequences, which are devoid of PCR-induced 

errors and cloning bias [1]. Env clones identical to this inferred T/F sequence were then 

chosen for phenotypic analysis. Importantly, all T/F Envs were selected from subjects 

with single variant transmissions. This was done to increase the likelihood that the 

viruses encoding these Envs were transmitted across an intact mucosal barrier, thereby 

maximizing our chances of observing properties required for this process [17,18].  

To generate chronic clade B control Envs, we used SGA to amplify env genes 

from plasma viral RNA of two groups of anti-retroviral therapy naïve individuals. The 

first group consisted of 11 individuals sampled 14-83 months post-infection (mean 42 

months). A test set of 17 Env clones was derived from this group consisting 

predominantly of males (8 of 11) from the southeastern United States (10 of 11) all 
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denying IDU (Table 2-1). An additional 14 clade B control Envs were SGA amplified 

and cloned from six chronically infected individuals residing in the northwestern United 

States. This second group of chronic Envs served as a validation set to confirm 

differences in neutralization sensitivity observed with the first test set. A phylogenetic 

tree of the 31 chronic Envs is depicted in Figure 2-1 along with the 24 T/F Envs.  None of 

the Envs were from epidemiologically linked infections. 

Previous studies noticed fewer PNGs in the gp120 region of T/F compared to 

chronic Envs [46] (Gnanakaran et al, submitted).  To determine whether our selected 

subset of T/F and chronic Envs differed from this much larger group, we compared 

variable loop length as well as the number and distribution of putative PNGs. There were 

no differences in V1/2, V3, V4, V1-4 lengths between T/F and chronic clade B Envs. 

Further, the median gp120 PNGs in T/F Envs was 26.0 compared to 27.0 for the chronic 

controls (p=0.16) and 26.0 for clade B Envs in general [31]. Thus, the panel of T/F Envs 

selected for our functional analyses exhibited no statistically significant differences in 

patient demographics, virus phylogeny, variable loop length, or PNGs relative to the 

panel of chronic Envs we assembled or to clade B Envs in general. 

Determination of coreceptor tropism. R5-tropic viruses represent the vast 

majority of transmitted viruses, with dual (R5X4)-tropic viruses being transmitted less 

frequently [1,6,9,10]. On rare occasions, X4-tropic viruses can be transmitted [47,48,49]. 

To determine the coreceptor usage in our panel, we characterized the CCR5 and CXCR4 

utilization of the 24 T/F and 17 chronic Envs by producing viral pseudotypes and using 

these to infect NP2 cell lines expressing CD4 and either CCR5 (NP2/CD4/CCR5) or 
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Figure 2-1. Phylogenetic relationships of T/F and chronic Envs selected for 

phenotypic analyses. The tree was constructed from Env amino acid sequences of T/F 

(red), original chronic (blue), and Washington state chronic (green) control viruses 

(subtype B reference sequences from the database are shown in black). All sequences 

were derived by SGA methods; Env sequences from the same individuals form discrete 

subclusters.  A bracket indicates epidemiologically linked infections from Trinidad and 

Tobago [50].  The tree was inferred using maximum likelihood methods [51]; Numbers 

on nodes indicate posterior probabilities (only values above 0.95 are shown). The scale 

bar represents 0.05 amino acid substitutions per site. 
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CXCR4 (NP2/CD4/CXCR4), as well as primary human CD4+ T cells.  NP2 cells were 

selected because they provide a 5-6 log linear range of infection, approximately 2-3 logs 

greater than that of the TZMbl assay. We found that of the 24 T/F Envs, 21 were R5-

tropic and three were R5X4-tropic, while of the 17 chronic Envs, 15 were R5-tropic, one 

was R5X4-tropic, and one was X4-tropic (Table 1). This is consistent with previous 

results with the exception of T/F Envs 1058-11.B11.1550 and CH77.SA2.6559, which 

were R5X4-tropic on NP2 cells and R5-tropic on TZMbl cells [1] (Gnanakaran et al, 

submitted). This discrepancy is likely due to differences in CXCR4 expression, as the 

NP2 cells used stably express high levels of CXCR4 compared to the HeLa-derived 

TZMbl cells, which express lower endogenous CXCR4 levels. All four R5X4-tropic 

Envs utilized CCR5 and CXCR4 with approximately equivalent efficiency as assessed by 

a less than two-fold difference in RLUs between the NP2/CD4/CCR5 and 

NP2/CD4/CXCR4 cells. To assess coreceptor use on human CD4+ T cells, we infected 

ccr5Δ32 or ccr5wt CD4+ T cells in the presence or absence of saturating concentrations 

of the CXCR4 inhibitor AMD3100.  The results paralleled those obtained with the NP2 

cell lines.  R5-tropic Envs mediated infection of ccr5wt but not ccr5∆32 CD4+ T cells, 

while R5X4 Envs mediated infection of both cell types. Infection of ccr5∆32 CD4+ T 

cells by three of the R5X4 Envs was completely inhibited by AMD3100, while Env 

CRPE.B28.4072 could infect ccr5Δ32 cells in the presence of AMD3100, though with 

reduced efficiency (data not shown). However, we found that AMD3100 inhibited 

infection of NP2/CD4/CXCR4 cells by viruses bearing the CRPE.B28.4072 Env  by only 

50%. In addition, this Env was unable to infect NP2 cells expressing CD4 alone or in 

combination with any of 17 different putative alternative coreceptors, indicating that this 
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Env can utilize the drug-bound conformation of CXCR4 (data not shown).  Several other 

HIV-1 Env proteins have been shown to exhibit this property [52]. In su mmary, all T/F 

Envs utilized CCR5, while three were R5X4-tropic. Thus, there were no differences in 

coreceptor tropism between the T/F and chronic Envs with the exception of the one X4-

tropic chronic Env, and there was no evidence for utilization of coreceptors other than 

CCR5 or CXCR4 to infect human CD4+ T cells. 

Sensitivity to coreceptor antagonists and CCR5 utilization efficiency. 

Mucosal transmission of HIV-1 is dependent upon CCR5. Hypothesizing that the ability 

to use low levels of CCR5 may confer selective advantage to viruses at the moment of 

transmission, we determined the sensitivity of each Env to the CCR5 inhibitor maraviroc 

(MVC) as a surrogate for CCR5 utilization efficiency.  High MVC IC50 values indicate 

that an Env can mediate infection at low levels of CCR5, while low IC50 values suggest 

an Env requires high CCR5 expression for viral entry.  We found no significant 

difference in median MVC IC50 values between the T/F (2.4 nM) and chronic Envs (2.3 

nM) (p=0.79; Mann-Whitney) (Figure 2-2A). In addition, we determined the maximal 

percent inhibition (MPI) of infection by MVC.  While uncommon, several in vivo derived 

MVC-resistant R5-tropic viruses have been identified that can utilize the drug-bound 

form of CCR5 [53,54].  Such viruses engage the coreceptor differently, relying 

predominantly upon the N-terminus for entry whereas most viruses require the N-

terminus as well as the extracellular loops of CCR5.  Furthermore, determining the MVC 

sensitivity of T/F viruses has implications for microbicides and pre-exposure prophylaxis.  

All 41 Envs examined had MPIs greater than 85%, with the vast majority greater than 

95%.  There were no significant differences (p=0.17 Mann-Whitney) between the T/F 
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(median= 99.1%) and chronic Envs (median=98.3; Figure 2-2B).  Together, these data 

indicate that the HIV-1 transmission bottleneck does not impose a selection pressure for 

viruses capable of using low concentrations of CCR5. 

Primary CD4+ T cell tropism. CD4+ T cells, the major target and source of 

HIV-1 in vivo [55,56], can be broadly divided into four subsets: naïve (CCR7+CD45RO-

), central memory (TCM) (CCR7+CD45RO+), effector memory (TEM) (CCR7-

CD45RO+), and CD45RA+ in part to variation in coreceptor expression [57], cellular 

activation [58], and tissue localization [59]. TEM and TEMRA cells are found predominantly 

in effector sites including the rectal and cervicovaginal mucosa, while naïve and TCM 

cells are most abundant in the lymph nodes. TEM cells, the most abundant subset in 

mucosal effector sites, are preferentially infected and massively depleted during acute 

infection (reviewed in [60]). Since potential target cells in the mucosa may be limiting 

during transmission, we hypothesized that T/F Envs may infect TEM and TEMRA cells 

preferentially relative to the matched chronic controls.  

 Peripheral blood CD4+ T cells from three normal uninfected donors were purified 

by negative selection and stimulated with anti-CD3/anti-CD28 and IL-2 for three days 

prior to infection with HIV-1 pseudotypes expressing a GFP reporter. Three days post-

infection, viability and expression of CD3, CD4, CCR7, CD45RO, and GFP was assessed 

by FACS analysis. Productively infected cells were defined as CD3+ GFP+ since CD4 

was down-regulated in the majority of infected cells [61]. The gating strategy is shown in 

Figure 2-3A. In all three donors, infected cells were predominantly TEM  (~65%), 
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Figure 2-2. CCR5 utilization efficiency.  (A) Viral pseudotypes were used to infect 

NP2/CD4/CCR5 cells in the presence of serial dilutions of the CCR5 antagonist 

maraviroc (MVC). Higher IC50 values correspond to Envs that can utilize CCR5 more 

efficiently, and vice versa. T/F and chronic clade B Envs have similar MVC IC50 values 

(p=0.79) suggesting they engage CCR5 comparably. (B) Since some Envs can utilize the 

MVC-bound conformation of CCR5 and since MVC is a candidate microbicide, we 

assessed the maximal percent inhibition (MPI) of MVC for each Env. All Envs were 

sensitive to MVC and there was no difference in MPI between the T/F and chronic Envs 

(p=0.17). All infections were done in at least triplicate in each of at least three 

independent experiments. Data was analyzed by a Mann-Whitney test. 
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tropic viruses have been previously reported to readily infect naïve CD4+ T cells 

compared to R5-tropic viruses [62,63,64], this assay contains an important internal 

validation: the five viruses that could utilize CXCR4 for entry (one X4-tropic Env shown 

in cyan; four R5X4-tropic Envs shown in red) preferentially infected naïve cells.  With 

the exception of these five Envs, no other pseudotypes were reproducibly outliers in their 

ability to mediate entry into any of the subsets, and there were no statistically significant 

differences or trends between the T/F and chronic Envs for any of the four cell subsets in 

any of the three donors examined (Figure 2-3B).  In addition, there was no statistically 

significant difference in overall infectivity between the T/F and chronic Env pseudotypes 

in any of the three donors examined suggesting comparable Env fitness in peripheral 

CD4+ T cells (Figure 2-3C). Together, this suggests that transmission and early 

expansion is not due to differential infection of CD4+T cells or their subsets between T/F 

and chronic Envs. 

DC-mediated trans-infection. DCs can enhance HIV-1 infection in trans by 

efficiently capturing virus particles and presenting them to CD4+ T cells. In vitro, co-

culture of monocyte-derived DCs with CD4+ T cells results in enhanced virus infection, 

particularly at low virus inocula (reviewed in [65]). To assess whether DCs preferentially 

bind and transfer T/F compared to chronic Env pseudoviruses, we performed DC:CD4+ 

T cell co-culture experiments. Viral pseudotype stocks were normalized for infectivity on 

NP2 cells to control for differences in viral titer. A relatively limiting amount of virus (80 

RLUs on NP2 cells) was bound to DCs, which were then washed to remove cell-free 

virus and co-cultured with CD4+ T cells.  All Envs were assessed in at least three 
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Figure 2-3. CD4+ T cell subset tropism. To assess human CD4+ T subset tropism of the 

T/F and chornic Envs, cells were infected with Env pseudotypes expressing GFP and then 

stained and analyzed by flow cytometry. (A) Cells were gated as shown. Infected cells 

(GFP+) were then back-gated on the memory markers CCR7 and CD45RO to evaluate 

differential subset infection. Naïve (CCR7+CD45RO-); central memory (TCM) 

(CCR7+CD45RO+); effector memory (TEM) (CCR7-CD45RO+), effector memory RA 

(TEMRA) (CCR7-CD45RO-). (B) T/F and chronic Envs infected all four CD4+ T cell 

subsets comparably. TEM and TCM cells were infected most readily followed by naïve and 

TEMRA cells. As expected, Envs that could utilize CXCR4 preferentially infected naïve 

cells compared to Envs that used exclusively CCR5. (C) T/F and chronic Env 

pseudotypes have comparable overall CD4+ T cell infection frequency in each of the 

three donors examined.  R5X4-tropic Envs are shown in red and the one X4-tropic Env is 

shown in cyan.  R5X4-tropic Envs are shown in red and the one X4-tropic Env is shown 

in cyan.  Tropism was assessed in cells obtained from three different, uninfected normal 

donors as indicated (ND218, ND335, and ND337). The horizontal lines indicate the mean 

value for each group of Envs. 
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independent experiments, each time using DCs and CD4+ T cells from different normal 

donors.  Adding this amount of virus to 3x104 CD4+ T cells, then washing as with the 

DCs, resulted in infection at background levels.  However, adding virus associated with 

DCs markedly increased infection.  Nonetheless, the magnitude of DC:CD4+ T cell 

trans-infection was not different between T/F and chronic Envs (Figure 2-4; p=0.44 

Mann-Whitney). In addition, there was no difference in CD4+ T cell infectivity in the 

absence of DCs and there was no detectable infection of DC control cultures in the 

absence of CD4+ T cells (data not shown). The absence of any difference between T/F 

and chronic pseudoviruses in this trans-infection assay suggests that, at least when 

presented with an equal amount of infectious pseudovirus, DCs bind and transfer T/F and 

chronic Env pseudotypes similarly. 

Entry kinetics and enfuvirtide sensitivity. Productive entry of HIV-1 into cells 

may occur following internalization and delivery to endosomes, albeit in a pH-

independent manner [66]. If so, then the rate at which a virus is internalized, fuses, and 

enters cells could impact viral tropism. In addition, the rate at which a virus fuses is a 

measure of how well it productively engages CD4 and coreceptor. Hypothesizing that 

faster-fusing viruses may preferentially overcome mucosal barriers to transmission, we 

indirectly assessed the entry kinetics of the T/F and chronic pseudoviruses using a time-

of-addition experiment with the fusion inhibitor enfuvirtide. As enfuvirtide is not 

membrane permeable, time to enfuvirtide escape may reflect the rate of viral endocytosis, 

fusion, or some combination thereof. HIV-1 pseudotypes were added to NP2 cells on ice.
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Figure 2-4. Dendritic cell (DC) trans-infection. To assess differential DC-binding and 

CD4+ T cell trans-infection of T/F and chronic Envs, we pulsed DCs with luciferase 

expressing Env pseudotypes and then washed off unbound virus and added CD4+ T cells. 

Relative light units (RLUs) were then measured as a surrogate for infection. DC trans-

infection efficiency was comparable between the T/F and chronic Envs (p=0.44). Viral 

input was normalized based upon infectivity on NP2 cell lines. Data shown is from one of 

at least three independent experiments with cells from different donors, each done in at 

least triplicate. Data was analyzed by a Mann-Whitney test. 
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 Cells were spinoculated at 4°C to facilitate HIV-1 binding and then cold media 

was removed and replaced immediately with pre-warmed media.  Saturating 

concentrations of enfuvirtide were then added at 0, 5, 10, 20, 40, 80, and 160 minutes 

post-warming, and then infectivity was normalized to a no-drug control. To control for 

experimental variation, the prototypic R5-tropic virus JRFL was included in all 

experiments. There was no significant difference or trend in the rate at which T/F and 

chronic Env pseudotypes productively entered NP2 cells, thus becoming resistant to 

enfuvirtide addition.  The median time to half maximal resistance (t ½ max) post-

warming was 32.5 minutes for the T/F and 31.4 minutes for the chronic Envs (p=0.55 

Mann-Whitney). Interestingly, JRFL became resistant to enfuvirtide significantly faster (t 

½ max= 15.9 minutes) than all 41 T/F and chronic Envs (Figure 2-5A).  In addition, we 

assessed enfuvirtide potency, a measure of pre-hairpin bundle exposure that also reflects 

kinetics of CD4/coreceptor engagement and endocytosis [67].  There was no difference 

between T/F and chronic Env sensitivity to enfuvirtide (mean IC50 0.10 vs 0.13 µg/ml; 

p=0.53; Figure 2-5B).  Together this suggests that the kinetics of viral entry/endocytosis 

are comparable between T/F and chronic Envs. 

Sensitivity to broadly neutralizing antibodies and HIV Ig. It has previously 

been reported that Envs derived from acutely infected individuals may exhibit enhanced 

sensitivity to antibody-mediated neutralization because of changes in glycosylation 

and/or variable loop length [2]. This finding raised the possibility that such Envs might 

be able to bind to CD4 and coreceptor more efficiently. To examine this, we measured 

the sensitivity of the T/F and chronic Envs to four broadly neutralizing MAbs. MAbs b12 

[41] and VRC01 [68] neutralize Env by engaging the CD4 binding site (CD4bs), while 
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the epitopes for PG9 and PG16 [69], distinct germ-line variants from the same individual, 

are glycosylation-dependent and include parts of the V1/2 and V3 loops [70]. To assess 

neutralization sensitivity, pseudoviruses were pre-incubated with a single concentration 

(10 µg/ml) of each MAb for 60 minutes prior to infection of NP2 cells. Maximal percent 

inhibition was then determined by normalizing to a control without antibody. 

Interestingly, T/F Envs were more sensitive than chronic Envs to both b12 (mean 

MPI 66% vs. 17%; p=0.0003; Figure 2-6A) and VRC01 (mean MPI 89% vs. 50%; 

p=0.0077; Figure 2-6B compare T/F to Chronic 1).  There was also a trend towards 

enhanced sensitivity to neutralization by PG9 (Figure 2-6C) and PG16 (Figure 2-6D). To 

confirm these differences, the neutralization sensitivity of T/F Envs was independently 

examined using a different backbone (SG3) and HIV-1 reporter cell line (TZMbl), with 

both MPI and IC50 values being determined. The results confirmed the NP2 cell data in 

that the T/F Envs were more sensitive to neutralization by b12 (Figure 2-6E) and VRC01 

(Figure 2-6F). In addition, the T/F Envs exhibited a trend towards increased 

neutralization sensitivity to both PG9 (Figure 2-6G) and PG16 (Figure 2-6H).  While this 

did not reach statistical significance, it is consistent with a more neutralization sensitive 

phenotype of T/F compared to chronic Envs. 

To assess whether the neutralization sensitive phenotype of our T/F Envs 

depended on the particular panel of chronic Envs used, we examined the neutralization 

sensitivity of 14 clade B control Envs derived from six additional chronically infected 

individuals (Chronic 2 in Figure 2-6A-D). Similar to the initial test set of chronic Envs 
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Figure 2-5. Entry kinetics and enfuvirtide sensitivity. (A) To examine differences in 

T/F and chronic Env endocytosis/fusion kinetics, we employed an indirect assay in which 

viral pseudotypes were bound to NP2 cells in the cold prior to the addition of pre-warmed 

media. A saturating concentration of enfuvirtide was added at various times post-

warming.  The time to half-maximal resistance to enfuvirtide (t ½ max) was then 

calculated.  The T/F and chronic Envs became resistant to enfuvirtide at equal rates 

(p=0.55), with all of the Envs acquiring resistance to enfuvirtide more slowly than a 

prototypic R5-tropic HIV-1 control, JRFL. (B) Enfuvirtide potency, a compound measure 

of fusion kinetics and affinity, was assessed for all T/F and chronic Envs.  There was no 

difference in enfuvirtide IC50 between the T/F and chronic Envs (p=0.53) further 

suggesting there is no difference in endocytosis/fusion rates between T/F and chronic 

Envs. Each infection condition was done in triplicate (A) or duplicate (B) for each Env in 

each of at least three independent experiments. Data was analyzed by a Mann-Whitney 

test. 
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(Chonic 1 in Figure 2-6A-D), this validation set exhibited increased resistance to b12 

compared to T/F Envs (p=0.0001 Mann-Whitney). However, unlike the initial chronic 

Env panel, the validation Envs were similar to the T/F Envs in their sensitivity to VRC01 

(p=0.14 Mann-Whitney).  Finally, there were no differences in PG9 and PG16 sensitivity 

between the T/F and the validation Envs (Figure 2-6C, D).  

While broadly neutralizing MAbs are useful tools in examining neutralization 

sensitivity, they are rare in HIV-1-infected individuals and thus may give a biased view 

of HIV-1 neutralization.  Thus, we examined neutralization sensitivity of the T/F and 

chronic Envs to pooled sera from patients infected with clade B HIV-1 strains (clade B 

HIV Ig). The T/F Envs (median IC50 741 µg/ml) were approximately two-fold more 

neutralization sensitive than the chronic test panel (median IC50= 1179 µg/ml p=0.062), 

the chronic validation panel (median IC50 =1500 µg/ml p=0.0095), and the combined 

clade B chronic panel (median IC50 1324 µg/ml p=0.0078; Figure 2-6I).   

To examine the basis for the enhanced b12 and VRC01 neutralization sensitivity 

of T/F Envs, we measured the binding of the two MAbs to both T/F and chronic Envs.  

Binding to the trimeric form of the Env expressed on the surface of cells was measured 

using a cell-based ELISA system [44]. To obtain an accurate measure of antibody 

binding affinity, we corrected binding measurements for the level of cell surface 

expression of the different Envs. For this purpose, the binding efficiency of b12 and 

VRC01 was expressed as a fraction of the binding of a CD4-Ig probe added at saturating 

concentrations. CD4-Ig is a fusion protein that consists of two copies of the two N-

terminal domains of CD4 that are linked to the Fc region of human IgG1.   
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Figure 2-6. Neutralization sensitivity. The sensitivity to monoclonal antibodies b12, 

VRC01, PG9, and PG16 was assessed on both NP2 cells (A-D) and TZMbls (E-H). 

Neutralization sensitivity on NP2 cells was assessed by determining the maximal percent 

inhibition (MPI) to 10µg/ml of the indicated MAb. IC50 values were determined in the 

TZMbl assay. Clade B T/F Envs were more sensitive to b12 and VRC01 compared to the 

geographically-matched panel of chronic Envs (Chronic 1).  To confirm this finding, we 

assessed an independent panel of clade B chronic Envs from Washington state (Chronic 

2). “All chronic” includes clade B chronic panels 1 and 2. (I) Clade B T/F Envs are also 

more sensitive to clade B HIV Ig on NP2 cells as measured by IC50. P-values shown are 

from Mann-Whitney tests with the corresponding T/F Envs.  NP2 and TZMbl 

experiments were performed in at least three and two independent experiments, 

respectively. 
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For the entire group of Envs (i.e., T/F and both chronic Envs groups combined), a 

very strong correlation was observed between the binding of the MAbs to the trimeric 

Envs and their sensitivity to inhibition. Spearman rank-order correlation coefficients of 

0.62 (p<0.0001) and 0.77 (p<0.0001) were obtained for b12 and VRC01, respectively 

(Figure 2-7A and B).  Comparison of MAb binding to the T/F and chronic Envs showed 

clear differences between the two groups for both b12 and VRC01. Binding of b12 to the 

T/F Envs was significantly increased relative to both groups of chronic Envs (Figure 2-

7C). Binding of VRC01 to the T/F Envs was increased relative to the original group of 

chronic Envs (p=0.004; Figure 2-7D). The differential formation/exposure of these 

epitopes suggests the existence of at least modest structural differences within or near the 

CD4-binding site of T/F and chronic Envs. No significant differences were observed 

between VRC01 binding to the T/F and the Washington Envs (p= 0.21). 
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Figure 2-7. Correlation between MAb binding and neutralization. Env was expressed 

on the surface of cells and then binding to b12 (A) and VRC01 (B) was assessed relative 

to a CD4 control by ELISA.  There is a strong positive correlation between binding and 

Env pseudotype neutralization sensitivity for both b12 and VRC01 for the T/F and both 

panels of chronic Envs serving to validate the assay. To assess the mechanism of 

enhanced neutralization sensitivity, we compared b12 (C) and VRC01 (D) binding 

between T/F and chronic Envs. This suggests that differences in MAb binding explain 

neutralization differences between T/F and chronic Envs.  Data shown is the mean of two 

independent experiments. 
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Discussion 

 The genetic bottleneck that occurs during mucosal transmission of HIV-1 results 

from the fact that most often only a single founder virus is successfully transmitted from 

amongst a diverse swarm of viruses present in the donor [1].  It is evident that a 

significant degree of selection is manifest at this step since transmission of R5-tropic 

virus strains is far more efficient than that of X4-tropic and even R5X4-tropic viruses 

[6,71]. Whether there is selection for additional viral phenotypes beyond coreceptor use 

or whether viral transmission is essentially a stochastic process, in which any reasonably 

fit R5-tropic HIV-1 strain can be transmitted, has not yet been determined. Addressing 

this question is of practical importance since properties associated with preferential viral 

transmission could potentially be exploited by vaccine or other antiviral approaches.  

 Genetic, immunologic, and phenotypic signatures associated with transmitted 

HIV-1 Envs have been sought in a number of previous studies, most entailing Envs 

obtained from early infections (acute Envs) [2,3,6,19,20,24,26] as opposed to true T/F 

Envs obtained by SGA analyses [1,17,28]. Several studies concluded that T/F and acute 

Envs have on average shorter variable loops and fewer PNGs than Envs derived from 

chronically infected individuals [2,3]. While such differences have been noted for Envs 

from multiple HIV-1 clades, they are relatively subtle, variable in location and far from 

predictive, with some being evident only when larger numbers of sequences are 

compared. The 24 T/F Envs examined here, for example, exhibited no consistent genetic 

differences from the chronic controls.  Nonetheless, a much larger sequence comparison 

that included all but one of the envs examined here identified a small number of sequence 

signatures associated with transmission, including specific sites in the signal sequence 
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and gp41 cytoplasmic domain that could affect Env processing, localization, and 

incorporation into virus particles as well as changes in the receptor binding regions in 

gp120 and in N-linked glycosylation sites (Gnanakaran, et al, submitted). Thus, existing 

evidence points to an array of genetic features that may be associated with enhanced 

HIV-1 transmission across mucosal surfaces by unknown mechanisms. 

 The identification of genetic motifs in env that are enriched in T/F viruses is 

consistent with the possibility that specific phenotypic properties can be identified that 

might provide a selective advantage to transmitted viruses. This is clearly the case at a 

global level, in that T/F Envs are almost invariably R5-tropic and replicate well in CD4+ 

T cells but poorly in monocyte-derived macrophages (with the exception of clade D 

viruses, G.M. Shaw and J. Baalwa, unpublished data) [28]. More detailed phenotypic 

studies of recently transmitted viruses are generally lacking, although donor and recipient 

Envs from eight transmission pairs exhibited no differences in CD4 or CCR5 utilization, 

while a second study using some of these same Envs did not find consistent differences in 

primary cell infection or use of receptors other than CCR5 and CXCR4 [19,20]. As 

genetic signatures associated with transmission can be both variable and subtle, we 

employed a more detailed series of functional assays to seek differences between viral 

pseudotypes bearing the T/F Envs and those expressing Envs from chronic controls. We 

found no phenotypic differences between the T/F and chronic Envs examined here in 

assays designed to probe the efficiency and rate of membrane fusion, the efficiency of 

coreceptor use, the ability to infect primary CD4+ T cell subsets from different donors, 

and the ability of virus to be captured by DCs and transferred to adjoining CD4+ T cells. 

One could ask whether the assays we employed are sufficiently sensitive to detect 
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functional differences between viruses bearing different Env glycoproteins. We feel that 

they are, as we and others have used these and similar assays to identify significant 

functional differences between Envs at the level of primary CD4+ T cell tropism, 

membrane fusion kinetics, the efficiency of CD4 and co-receptor utilization, and 

attachment to C-type lectins such as DC-SIGN [11,12,13,14]. Even single amino changes 

in Env can impact these properties to extents that can be easily detected. The CD4+ T cell 

subset tropism assay that we have developed, which can determine the efficiency with 

which a given virus infects TCM, TEM, TEMRA and naïve T cells, is a particularly sensitive 

measure of CD4 and coreceptor use, as these receptors are expressed differently on 

various CD4+ T cell subsets [57,72,73,74,75]. The fact that that 24 T/F Envs here were 

functionally equivalent to the chronic Env controls in all of the assays employed argues 

that any phenotypic differences between these and chronic Env controls are apt to be 

slight in magnitude. 

 A second consideration regarding the presence or absence of phenotypic traits 

associated with enhanced virus transmission is whether the assays we employed 

effectively recapitulate the key events during the earliest stages of HIV-1 transmission 

(reviewed in [76]). Following mucosal transmission of HIV-1, virus is not detected in the 

circulation for about 10 days, a period termed the eclipse phase (reviewed in [77]). 

Detailed studies in the macaque model show that after vaginal exposure small clusters of 

infected cells are found in the endocervical region, which is lined by a single layer of 

epithelial cells [56]. The recruitment of plasmacytoid DCs, T cells, and macrophages 

over several days transforms the initial focus of infection into a CD4+ T cell-rich 

environment. Similar studies have not yet been conducted assessing penile or rectal 
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transmission in the rhesus model, the likely mode of transmission in the predominantly 

male cohort assessed in this study.  Conceivably, Env properties that promote entry into 

resting and activated CD4+ T cells in the submucosa as well as transmission between 

cells could increase the possibility that an initial focus of infection will successfully 

propagate and eventually lead to dissemination to regional lymph nodes and a systemic 

infection. The CD4+ T cell subset tropism assay we employed, while more detailed and 

sensitive than bulk CD4+ T cell infection assays, may not produce CD4+ T cells with 

properties identical to those found in the rectal or cervicovaginal mucosa. In addition, the 

DC:CD4+ T cell transmission assay we used is but a surrogate for the likely more 

complex cell-cell interactions found in the initial foci of infection. It is important to keep 

in mind that since virus appears to replicate locally for a period of at least a few days to a 

week, even a relatively subtle change in an Env property that might enhance infection 

could result in a significant selective advantage over the course of multiple rounds of 

infection. The single-cycle assays we employed, while sensitive and well-validated, 

cannot capture the impact of more subtle differences in Env fitness over time. Future 

studies employing T/F infectious molecular clones in both primary cell and tissue explant 

cultures might be better suited for the identification of early fitness differences associated 

with T/F viruses. 

 In addition to genetic signatures, differences at the level of sensitivity to antibody-

mediated neutralization have been found in some studies of recently transmitted viruses 

[1,2]. We found that the panel of clade B T/F Envs was more sensitive to the CD4 

binding site MAbs b12 and VRC01 as well as clade B HIV Ig, but not to the broadly 

neutralizing antibodies PG9 and PG16. These differences were approximately two-fold in 
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magnitude and partially dependent upon the control group employed. Specifically, when 

a second panel of chronic Envs was used as a control, enhanced sensitivity to VRC01 was 

not observed, though MAb b12 and clade B HIV Ig continued to neutralize the T/F Envs 

more efficiently. The relatively modest differences that were observed, along with the 

fact that enhanced neutralization was not seen between all study groups raises several 

important questions: do T/F Envs exhibit features that generally enhance their sensitivity 

to certain types of neutralizing antibodies, and if so, what is the basis for these 

differences and what are the implications for virus transmission? 

One limitation of this study is the selection of chronic control Envs. Ideally, 

chronic control Envs would be selected from longitudinal samples or confirmed 

transmission pairs; however, such samples are difficult to find in sufficient numbers, 

especially since the great majority of acute clade B infections are treated with anti-

retroviral therapy.  It would also be preferable to obtain chronic Envs from semen or 

genital secretions, the likely source of the viral inoculum, but again such samples are 

exceedingly scarce.  In addition, the majority of Envs used in this study were from males 

who likely acquired HIV by penile or rectal transmission.  Thus, further work is needed 

to characterize the transmission bottleneck that occurs during vaginal transmission. Our 

results emphasize the importance of selecting appropriate matched chronic controls since 

the chronic test and validation sets differed in their neutralization profiles to VRC01 

(though not to MAb b12 and clade B HIV Ig) despite no obvious differences in length of 

infection, transmission risk factor, patient demographics, or phylogenetic relationships to 

the T/F Envs. Of course, since we are unable to reliably predict neutralization sensitivity 

from sequence information alone, a control group could by chance differ 
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immunologically from the T/F Envs despite being otherwise well-matched. To mitigate 

this, selecting chronic Env controls from geographically-matched individuals may be 

important. For example, we previously reported that clade B T/F Envs are more resistant 

than chronic Envs to b12 and the membrane proximal external region (MPER) antibodies 

2F5 and 4E10 [1], seemingly in contradiction with our current findings.  However, re-

examination of the data in Keele et al. showed that this was due to the predominance of 

neutralization-sensitive Envs derived from chronically-infected individuals in Trinidad.  

These Trinidad Envs form a subcluster within the other clade B Envs used in this study 

(Figure 2-1), have a Thr deletion in the V3 loop compared to the clade B consensus, were 

over-represented in the chronic controls and were more sensitive to neutralization by 

MAbs b12, 2F5 and 4E10 [50]. Thus, the previous 2F5 and 4E10 neutralization 

difference between T/F and chronic Envs was due to bias resulting from disproportionate 

representation of Envs from Trinidad in the chronic controls. 

Several other studies that have assessed neutralization sensitivity of clade B Envs 

did not use geographically-matched chronic controls, raising the possibility that the 

results from theses studies could be complicated by genotypic differences linked to 

geographic location [25,69,78]. In addition to the location, it may also be important to 

match the time of sample collection when developing well-matched chronic control 

groups. For example, Bunnik et al. reported that HIV-1 has become more neutralization 

resistant over the course of the epidemic and thus patient sampling times may bias 

comparisons between T/F and chronic Envs [79].  Here, the chronic Envs were sampled 

four calendar years before the T/F Envs on average. However, this difference is 

significantly shorter than the 14-21 year time-span between contemporary and historic 
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Envs assessed in Bunnik et al.  In addition, we detected no correlation between sampling 

time and neutralization sensitivity, and thus this cannot account for the neutralization 

differences between the T/F Envs and the chronic controls. It is also of note that multiple 

chronic Envs from the same individual were treated as independent events in this study. 

Reanalyzing the data to include only one chronic Env value (mean of the multiple Envs) 

per individual did not change the magnitude of the neutralization difference, though it did 

decrease the p-values above the level of significance for VRC01 and HIV Ig, but not b12, 

likely due to decreased sample size.  In summary, more detailed studies involving larger 

numbers of T/F Envs with appropriately matched control Envs, including Envs derived 

from the same individuals over time, and a greater number of broadly neutralizing MAbs 

and human sera, will be needed to draw definitive conclusions about the neutralization 

sensitivity of transmitted virus strains. 

When our data are considered along with other published studies on T/F and acute 

Envs, several conclusions can be drawn. First, we believe that HIV-1 transmission is in 

part stochastic, with any reasonably fit R5-tropic virus being capable of initiating an 

infection [1,6,9,10]. With a now relatively large number of T/F and acute Envs having 

been examined, it is evident that no single major genetic, phenotypic or immunologic 

signature is required for transmission beyond the use of CCR5.  Second, an array of 

genetic traits including but not limited to shorter variable loops and reduced numbers of 

N-linked glycosylation sites are associated with enhanced virus transmission. The 

structural implications of these signatures are not well understood, and it is not yet clear 

if these or as yet unidentified other genetic traits are responsible for the modestly 

enhanced sensitivity to antibody-mediated neutralization that is characteristic of some 
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T/F and acute Envs. Third, the presence of genetic signatures linked to transmission 

implies some impact on function that enhances transmission. If so, then the functional 

impact is apt to be modest given the variable nature of the genetic signatures and the fact 

that neither we, nor others, have observed clear differences between T/F and acute Envs 

with chronic controls. However, the possibility exists that relatively subtle alterations of 

Env function, perhaps in the context of full-length T/F viral genomes, could provide a 

sufficiently robust selective advantage during the eclipse phase of HIV-1 transmission to 

result in preferential transmission of viruses with specific properties. The growing 

application of SGA technology coupled with increasingly sophisticated cell-to-cell and ex 

vivo tissue systems will make it possible to more rigorously identify immunologic and 

phenotypic traits associated with HIV-1 transmission. 
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Abstract 

 HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or 

CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5∆32 

polymorphism do not express CCR5 and are protected from infection by CCR5-tropic 

(R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific 

zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to 

protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 

(R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when 

introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-

homologous DNA end-joining. The resulting cells proliferated normally and were 

resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in 

ccr5∆32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 

tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse 

model, though this protection was lost over time due to the emergence of R5-tropic viral 

mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing 

resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals. 
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Introduction 

For HIV to infect cells, the viral envelope (Env) protein must bind to the host 

protein CD4 and then to a coreceptor, most commonly CCR5 (R5 HIV) (reviewed in [1]). 

The importance of CCR5 for HIV-1 pathogenesis is shown by the fact that individuals 

who are homozygous for an inactivating 32 base pair deletion in ccr5 (ccr5∆32) are 

highly resistant to HIV infection [2, 3], while heterozygotes typically live longer after 

HIV infection due to reduced CCR5 expression levels [4, 5]. Recently, an HIV infected 

patient with acute myelogenous leukemia received a bone marrow transplant from a 

ccr5∆32 homozygous donor [6]. This patient’s viral load remains undetectable even in 

the absence of anti-retroviral therapy more than three years post-transplant, suggesting 

that this individual's HIV infection has been eradicated. In theory, the success of this 

approach could be recapitulated by inhibiting CCR5 with an orally bioavailable small 

molecule such as maraviroc, which binds to CCR5 and prevents its use by most R5 HIV-

1 strains. However, virus strains that can utilize CXCR4 either in place of (X4 HIV) or in 

addition to CCR5 (R5X4 HIV) are found at significant levels in roughly 50% of late-

stage infected individuals [7, 8], supporting the need for therapies targeted to CXCR4 [9]. 

Ideally, an approach to target CXCR4 would complement CCR5-specific therapy, but the 

broad expression pattern of CXCR4 has made systemic inhibition of this coreceptor by 

small molecules problematic [10, 11].  In addition, resistance to CCR5 and CXCR4 

antagonists can arise in patients by mutations in the viral envelope protein (Env) that 

enable it to utilize the drug-bound forms of these coreceptors [12-16]. The ability of HIV-

1 to adapt to new selective pressures and the plasticity with which Env interacts with its 

coreceptors argues for approaches that reduce or eliminate coreceptor expression rather 



    91 

than simply altering coreceptor conformation. If approaches could be developed that 

specifically target expression of both CCR5 and CXCR4 on CD4+ T cells, virus entry 

should be inhibited more effectively. 

Several genetic approaches have been taken to reduce or eliminate CCR5 

expression in human cells, including the use of ribozymes [17, 18], single-chain 

intracellular antibodies [19], trans-dominant coreceptor mutants [20], and RNAi [21, 22]. 

However, these studies are limited by the requirement for stable expression of an 

exogenous gene. To circumvent this, a CCR5 specific zinc-finger nuclease pair (R5-

ZFNs) has been developed [23]. Zinc finger proteins that recognize a specific 24bp DNA 

sequence are fused with a monomeric cleavage domain from FokI endonuclease that 

functions only as a dimer. For DNA cleavage to occur, two zinc finger proteins must 

bind, each to specific, adjoining sequences in the CCR5 gene, leading to FokI 

dimerization and subsequent DNA cleavage resulting in a double strand break [24-26]. 

The double strand break then can be repaired by error-prone non-homologous end joining 

(NHEJ) often introducing insertions and deletions leading to a non-functional gene 

product when this break is placed within the coding region of the targeted gene [27]. 

Following introduction into human CD4+ T cells [23] or hematopoietic stem cells [28] 

via an adenovirus vector or DNA nucleofection, respectively, the ccr5 gene was 

efficiently and specifically disrupted. This confers protection in vitro and in humanized 

mice to infection by HIV-1 isolates that require CCR5 (but not CXCR4). Several early 

stage clinical trials using autologous infusions of ZFN-generated CCR5-modified CD4+ 

T cells are currently underway (clinicaltrials.gov identifiers NCT00842634, 

NCT01252641, NCT01044654).  
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In this study we describe the design and pre-clinical evaluation of a CXCR4-

specific ZFN pair (X4-ZFNs) that specifically and efficiently disrupts cxcr4, rendering 

human CD4+ T cells permanently resistant to HIV-1 strains that require CXCR4 for 

infection. We also demonstrate that cxcr4 can be safely and efficiently disrupted in CD4+ 

T cells obtained from ccr5∆32 homozygotes resulting in cells resistant to all strains of 

HIV-1 tested. This suggests that combined treatment of mature CD4+ T cells with X4-

ZFNs and R5-ZFNs can provide permanent protection against HIV-1 infection. 
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Materials and Methods 

 Zinc-finger nuclease constructs. We designed ZFNs specific to the human and 

rhesus CXCR4 and CCR5 genes using a previously described approach [29]. One ZFN 

pair was used to target both the human and rhesus macaque CXCR4 genes since the 24 

bp target sequences are identical. Zinc-finger proteins were optimized against the target 

gene sequence and assembled as described [30] from an archive of in-vitro-selected 

modules [31, 32]. The ZFP moieties (target gene; ZFP name; target sequence (5’3’); 

recognition α-helices (finger number)) are as follows: CXCR4; X4-ZFN-L; 

GTAGAAGCGGTC, DRSALSR (1), RSDDLTR (2), QSGNLAR (3), QSGSLTR (4); 

CXCR4; X4-ZFN-R; GACTTGTGGGTG, RSDSLLR (1), RSDHLTT (2), RSDSLSA 

(3), DRSNLTR (4). Rhesus CCR5; rhR5-ZFN-L; GATGAGGACGAC, RSDNLAR (1), 

TSGNLTR (2), RSDNLAR (3), TSGNLTR (4); Rhesus CCR5; rhR5-ZFN-R; 

AAACTGCAAAAG; RSDNLSV (1), QKINLQV (2), RSDVLSE (3), QRNHRTT (4)., 

The human CCR5-specific ZFNs are described in Perez et al [23]. The Ad5/F35 

adenoviral vectors were generated on an E1/E3 deleted backbone. The ZFNs targeting 

either the cxcr4 or ccr5 genes were linked via a 2A peptide sequence and cloned into the 

pAdEasy-1/F35 vector under control of the CMV TetO promoter, and the Ad5/F35 virus 

for each construct was generated using TREx 293T cells as described [33]. The Ad5/F35 

vector encoding the X4-ZFNs is identical to that use by Nilsson, et al. [33] except for the 

ZFN inserts, promoter, polyA and linker sequences. 

Cel1 (surveyor nuclease) assay. Genomic DNA was extracted with the 

MasterPure kit (Epicentre Biotechnologies) according to manufacturer’s instructions. 

Frequency of gene modification by NHEJ was evaluated as described previously [23, 25, 
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28]. Briefly, the purified genomic DNA was used as a template to amplify a fragment of 

the cxcr4 gene using the specific primers (human CXCR4: 5’-

CAACCTCTACAGCAGTGTCCTCATC -3’and 5’- 

GGAGTGTGACAGCTTGGAGATG -3’; rhesus CXCR4: 5’- 

GGTGGTCTATGTTGGAGTCTGG -3’and 5’- GGAGTGTGACAGCTTGGAGATG -

3’) in the presence of a 32P-dATP and dCTP. The PCR products were then heated, 

allowed to re-anneal followed by treatment with the mismatch-sensitive Surveyor 

nuclease as described in order to detect insertions and deletions caused by NHEJ. For 

humanized mice samples, whole genome amplification using the REPLI-g Mini Kit 

(Qiagen) was conducted prior to the surveyor nuclease assay due to limiting cell 

numbers. 

Human CD4+ T cell stimulation and transduction. Fresh CD4+ T cells from 

normal human donors, purified by negative selection, were obtained from the Center for 

AIDS Research Human Immunology Core at the University of Pennsylvania. 2.5 million 

CD4+ T cells were seeded at a density of 0.8 x 106 cells/ml in RPMI containing 10% 

fetal calf serum, 1% penicillin/streptomycin, and 100U/ml interleukin-2 (IL-2). The cells 

were stimulated with anti-CD3/anti-CD28 coated magnetic beads at a 3:1 bead to cell 

ratio [34]. Approximately 18hrs post-stimulation, the cells were transduced with an 

Ad5/F35 vector encoding either the X4-ZFNs or R5-ZFNs at a multiplicity of infection 

(MOI) of 600. Beginning 72 hours post-stimulation, cells were counted every 48 hours 

using trypan blue dye exclusion on an automated hemocytometer (Countess, Invitrogen) 

and split to 0.8 x 106 with fresh media containing 100U/ml IL-2. Five days post-

stimulation, the magnetic beads were removed and washed twice in fresh media. Cells 
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were counted and split until cell growth plateaued 10-14 days post stimulation. For longer 

experiments, cells were restimulated with beads and cultured for an additional 10-14 

days. 

 In vitro HIV-1 challenge of CD4+ T cells treated with AdX4-ZFNs. Five days 

post-stimulation the anti-CD3/anti-CD28 coated magnetic beads were removed from each 

of the three cultures (non-transduced (NTD), AdX4-ZFNs, and AdR5-ZFNs) and 2.5 

million cells were seeded in each of four cultures that were subsequently infected with 

either Bk132 (primary X4 isolate), HxB2 (lab-adapted X4 isolate), R3A (R5X4 primary 

isolate), or media only (mock). 100ng p24 of HIV-1 was used per million cells. 

Flow cytometry. All staining was done at room temperature in FACS Wash 

Buffer (1mM EDTA, 2.5% fetal calf serum in PBS) and all antibodies were from BD 

Biosciences unless otherwise noted. 0.5-1.0 x106 cells were washed in PBS and stained 

with Live/Dead Aqua (Invitrogen) for 10 min. Then, anti-CD4 PE Cy5.5 and anti-

CXCR4 APC (clone 12G5) were added and cells were stained for 20-30 minutes. Cells 

were then washed and permeabilized per manufacturer’s protocol using Cytofix/cytoperm 

(BD) and stained intracellularly for HIV gag with KC57-RD1 (Beckman Coulter). For 

compensation, ArC beads (Invitrogen) were used for live/dead, and CompBeads (BD) 

were used for all other fluorochromes. To detect wtCXCR4 and CXCR4Δ18 in 293T 

transient transfection experiments, anti-CXCR4 APC (clone 12G5) and anti-CXCR4 PE 

(clone 4G10) (Santa Cruz Biotechnologies) were used. All samples were run on an LSRII 

(BD) and analyzed using FlowJo 8.8.6 (Treestar Inc).  

 Events were gated as follows: singlets (FSC-A by FSC-H), live cells (SSC-A by 

Live/Dead), lymphocytes (FSC-A by SSC-A), CD3+CD4+ (CD3 by CD4), and then 
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events were divided into CXCR4+ and CXCR4- populations based upon a fluorescence 

minus one (FMO) control. 

 454 deep sequencing and cxcr4 analysis. Genomic DNA was isolated from 

CD4+ T cells using the QIAamp DNA Micro Kit (Qiagen). For each condition, 200 ng 

genomic DNA was then PCR amplified using Platinum Taq High Fidelity (Invitrogen) 

using the following primers plus 454 adaptor sequences and 8 letter DNA barcodes: 

CAACCTCTACAGCAGTGTCCTCATC (forward) and 

GGAGTGTGACAGCTTGGAGATG (reverse). Cycle conditions were 95° for 5min, 

then 30 cycles of 95° for 30sec, 55° for 3 sec, 68° for 30 sec, followed by 68° for 2 min. 

Following PCR amplification the PCR product was analyzed on a 2% agarose gel and 

then extracted and gel purified using Wizard SV Gel and PCR Clean-Up System 

(Promega). Quant-iT dsDNA High-Sensitivity Assay Kit (Invitrogen) was then used to 

determine the concentration of each bar-coded amplicon. DNA samples were then pooled 

at an equimolar ratio and run on a Roche/454 GS FLX using standard chemistries at the 

University of Pennsylvania’s DNA Sequencing Facility. Approximately 30,000-100,000 

reads were obtained for each experiment. CXCR4 pyrosequencing data were assigned to 

samples by DNA barcode. Any reads containing ambiguous base calls or without a 

perfect match to barcode and primer were discarded. All remaining reads were aligned to 

the CXCR4 reference sequence using Mosaik 

(http://bioinformatics.bc.edu/marthlab/Mosaik). All deviations from the CXCR4 

consensus sequence 40 base pairs up or downstream from the ZFN binding site were 

determined. Any reads that did not extend across this region or that failed to align were 

discarded. Reads containing only two or fewer substitutions were not classified as 
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mutations as these likely represent sequencing artifacts.  Next, background 

pyrosequencing error, identified by an untransduced control sample, was subtracted from 

each group of reads. For frameshift analysis, the sequencing error was determined and 

subtracted for each individual insertion or deletion size. 

 To ensure sufficient sampling of diverse amplicons, at least 200ng gDNA was 

used for CXCR4 analysis and at least 400ng gDNA was used for off-target site 

amplification, representing the genomic DNA content of approximately 70,000 and 

140,000 alleles, respectively. Determining genetic disruption frequency by both the Cel1 

and 454 assays require the assumption that wild type and disrupted alleles are not 

differentially amplified. 

Systemic evolution of ligands by exponential enrichment (SELEX) and 

determination of off-target sites. To empirically determine the DNA binding preference 

of the X4-ZFNs, we employed SELEX as previously described [23]. Briefly, each ZFP 

was HA-tagged and incubated with randomized DNA oligonucleotides and anti-HA Fab 

fragments. Any DNA bound to the ZFPs was then isolated and amplified. The newly 

amplified DNA was then used to repeat this process for a total of four rounds of 

enrichment. The DNA pool was then sequenced at approximately 50x coverage to 

generate a positional-weighted matrix. This matrix was then aligned to the human 

genome with the following criteria: putative off-target sites could have up to six 

mismatches compared to the SELEX consensus sequence, the ZFP pairs must be 

separated by either 5 or 6 bps, and both ZFP homo- and heterodimers were considered. 

Off-target sites were ranked and scored by multiplying the probability of each nucleotide 

at each of the 12 positions of the positional-weighted matrix. The highest scores were 
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then deemed most likely to be disrupted. 454 off-target site data was analyzed as 

discussed previously [23]. 

 NSG mice. NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/Szj) mice, 8-9 weeks old at time of 

initial injection, were derived from breeders purchased from The Jackson Laboratory 

(Bar Harbor, ME). Animals were maintained in a defined flora animal barrier facility at 

the University of Pennsylvania’s Stem Cell and Xenograft Core.  

Human CD4+ T cells were isolated and stimulated as previously described and 

then transduced with an Ad5/F35 vector expressing either the R5-ZFNs or the X4-ZFNs 

at an MOI of 600. Cells were maintained as previously described. Ten days post 

stimulation 107 modified cells resuspended in 100µL PBS were injected intravenously 

into the tail vein of each mouse. 23 animals received cells treated with X4-ZFNs and 22 

mice received cells treated with R5-ZFNs. Animals were randomized by age, sex, and 

cage. Mice were maintained on the antibiotic Baytril (Bayer) for 24 hours post-injection. 

To infect the mice with HIV-1, 105 autologous CD4+ T cells previously infected 

with X4 HIV-1 strain Bk132 were injected into the tail vein of each mouse. Autologous 

cells used to infect mice that were not transduced were obtained and stimulated 

simultaneously as the initially engrafted cells. Five days post-stimulation cells were 

infected with 100ng p24/million cells and then were cryopreserved four days post-

infection. Cell engraftment was assessed 27 days post injection, and mice were infected 

with HIV-1 the following day. 

To obtain whole blood, mice were anesthetized with isoflurane and a capillary 

tube was used to drain the retroorbital vein. Human CD4+ T cell counts were determined 

by staining 50µl of whole blood in Trucount tubes (BD) with anti-CD45 FITC 
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(Biolegend), anti-CD3 Qdot 655 (Invitrogen), anti-CD4 Alexa Fluor 700, anti-CD8 

Pacific Blue (Biolegend), and anti-CXCR4 PE-Cy5. Human CD4+ T cells were defined 

as CD45+CD3+CD4+CD8-.  

At the time of sacrifice, a cardiac puncture was performed to obtain maximal 

blood volume and then the spleen was harvested. Spleens were homogenized and 

erythrocytes were lysed with ACK lysis buffer (Invitrogen) before cell purification. 

Human CD4+ T cells were then isolated with the Human CD4 Positive Selection Kit 

using the Robosep robotic cell separator (Stem Cell Technologies). 

 Rhesus macaque CD4+ T cell modification. Whole blood from rhesus 

macaques (Macaca mulatta) housed at the Tulane National Primate Research Center was 

used for CD4+ T cell isolation and ZFN treatment. Peripheral blood mononuclear cells 

were isolated by centrifugation with 96% Ficoll (BD), followed by erythrocyte lysis with 

ACK lysis buffer. CD4+ T cells were then isolated by negative selection with a non-

human primate CD4+ T cell selection kit (Miltenyi). Cells were then stimulated with 1:4 

anti-CD3 (clone FN-18)/ anti-CD28 (clone L293) M-450 tosylactivated beads 

(Invitrogen) at a ratio of 1 bead per cell [35, 36]. 

 Approximately 18 hours post-transduction, cells were transduced with an 

Ad5/F35 vector expressing either the X4-ZFNs or rhesus specific R5-ZFNs. Cells were 

maintained in culture as human CD4+ T cells. Surveyor nuclease assay was performed 

six-ten days post transduction to assess disruption efficiency. 

 Ethics statement. Human CD4+ T cells were obtained after written informed 

consent and approval by the University of Pennsylvania’s institutional review board. All 

humanized mouse experiments were approved by the University of Pennsylvania’s 
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Institutional Animal Care and Use Committee (Protocol 802436), and were carried out in 

accordance with recommendations in the Guide for the Care and Use of Laboratory 

Animals of the National Institutes of Health. All rhesus macaque experiments were 

approved by the Tulane Institutional Animal Care and Use Committee approval (Protocol 

P0085; Project 3520) The Tulane National Primate Research Center (TNPRC) is an 

Association for Assessment and Accreditation of Laboratory Animal Care accredited 

facility (AAALAC #000594). The NIH Office of Laboratory Animal Welfare assurance 

number for the TNPRC is A3071-01. All clinical procedures, including administration of 

anesthesia and analgesics, are carried out under the direction of a veterinarian. Blood was 

collected while the animals were anesthetized with Tiletamine-zolazepam with 

Burprenorphine given as an analgesic. All possible measures are taken to minimize 

discomfort of all the animals used in this study. The University of Pennsylvania and 

Tulane comply with NIH policy on animal welfare, the Animal Welfare Act, and all other 

applicable federal, state and local laws. 
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Results 

 Design and characterization of X4-ZFNs. To genetically disrupt the CXCR4 

allele, we designed a pair of zinc-finger proteins (ZFPs) targeting the region of the cxcr4 

gene that encodes residues Asp 187 to Val 196 in the second extracellular loop (ECL2) of 

this seven-transmembrane domain receptor using methods previously described [29-32] 

(Figure 3-1). The ECL2 was chosen because this region is less well conserved amongst 

the CXC family of chemokine receptors, which should reduce the frequency with which 

other CXC receptors might be targeted, and because ECL2 is important in supporting 

interactions with the HIV-1 Env protein [37, 38]. Two ZFPs were designed to bind each 

of two 12bp targets separated by 6bp in this region of CXCR4. Each ZFP was then fused 

to a modified FokI cleavage domain, active preferentially as a dimer to reduce 

nonspecific DNA cleavage, resulting in zinc-finger nucleases (ZFNs) [25]. Upon binding 

of both X4-ZFNs, the FokI nuclease cleavage domains dimerize and then generate a 

double strand break that can subsequently be repaired by error-prone NHEJ resulting in 

mutations targeted to the cleavage site that can include missense mutations, deletions and 

insertions (Figure 3-1). 

 Efficiency of CXCR4 allele disruption in human CD4+ T cells. To determine 

the efficiency and specificity with which the cxcr4 genes could be disrupted in human T 

cells, we produced a bicistronic Ad5/F35 vector to deliver the X4-ZFNs (AdX4-ZFNs). 

The Ad5/F35 vector is a serotype 5 virus with the fiber protein from a serotype 35 

adenovirus that utilizes CD46 for entry as opposed to the coxsackie and adenovirus 

receptor (CAR), which is poorly expressed on human CD4+ T cells [39].  Primary human 

CD4+ T cells were stimulated with anti-CD3/anti-CD28 coated magnetic beads and  
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ACTGGAACACAACCACCCACAA                                         GCGGTCACAGATATATC             15bp deletion (5.2%)
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ACTGGAACACAACCACCCACAAGTCATTGGTTGGGGTAGAAGCGGTCACAGATATATC   4bp insertion (2.5%)
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Figure 3-1. Zinc finger nucleases (ZFNs) bind, cleave, and disrupt cxcr4. (A) A 

CXCR4-specific ZFN pair was generated, comprised of two DNA-binding zinc finger 

proteins (ZFPs) each fused with a FokI endonuclease monomer.  Each ZFP was designed 

to target 12 bp of cxcr4 sequence (in red), separated by 6 bp (in blue), conferring 24 bp of 

total specificity. Upon binding of both ZFPs, the FokI domains can dimerize and cleave 

the double stranded DNA.  The subsequent double strand break is then repaired by error 

prone non-homologous end-joining resulting in various targeted mutations and a non-

functional protein product. (B) The most common mutations induced by the X4-ZFNs, as 

detected by 454 deep sequencing, are indicated with their frequencies among all ZFN-

induced lesions. In-frame deletions were preferentially generated with the most common 

being an 18 bp deletion, referred to as CXCR4Δ18. Frequences were averaged across five 

independent experiments in the absence of HIV infection. 
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transduced 18 hours later with AdX4-ZFNs, AdR5-ZFNs which expresses previously 

described CCR5-specific ZFNs [23], or an Ad5/F35 vector that expresses green 

fluorescent protein (AdGFP).  To identify optimal disruption conditions, multiplicities of 

infection ranging from 100 to 1000 were employed. Cell growth was monitored every 48 

hours post-stimulation for approximately two weeks, and the efficiency of CXCR4 

disruption was assessed at day five post-transduction by both the Surveyor nuclease assay 

and by deep-sequencing of the CXCR4 target site. As shown in Figure 3-2A, the 

Ad5/F35 vectors had a slight dose-dependent impact on cell growth at higher 

multiplicities of infection that was similar with the AdX4-ZFNs and AdGFP vectors.  

Cxcr4 allelic disruption efficiencies as determined by either deep sequencing or 

the Surveyor nuclease assay were comparable, and were approximately 10% at an MOI 

of 100, 20% at an MOI of 300, 34% at an MOI of 600, and 38% at an MOI of 1000 

(Figure 3-2B). For subsequent experiments we used an MOI of 600 as this provided near-

maximal disruption efficiency with limited impact on cell growth. Notably, this is also 

the MOI being used in an adoptive therapy phase I clinical trial with R5-ZFNs. 

Importantly, the level of cxcr4 disruption in cells from multiple donors was stable over 

nearly four weeks in culture (Table 3-1), indicating that CXCR4-disrupted cells 

continued to grow normally. Cell proliferation remained dependent on stimulation, and 

transformation has not been observed after treatment with ZFNs (data not shown).   

 Mutations introduced by cleavage with X4-ZFNs. Deep sequencing of the 

ZFNs target site 10 days after transduction made it possible to assess the mutations 

introduced by NHEJ reactions following cleavage with X4-ZFNs. Of the nearly 50,000 

modified cxcr4 alleles analyzed across five independent experiments, 81.1% (range 75.3-
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81.7%) contained pure deletions from 1-64 bp in size with the most common deletions 

being 2, 9, 12, 15, 18, and 25 bp, while 13.5% (range 12.8-16.9%) of cxcr4 alleles 

contained pure insertions ranging from 1 to 69 bp with more than 90% being 7 bp or less 

(Figure 3-1B). The remaining 5.3% (range 4.3-7.4%) of disruption events contained 

multiple insertions and deletions that may be due to more extensive DNA end-processing 

or multiple cycles of ZFN-mediated cleavage and subsequent NHEJ. Surprisingly, 

frameshift mutations occurred at a ratio of 0.90 in-frame per out-of- frame mutation as 

opposed to the expected frequency of 0.50 (1 in-frame per 2 out-of-frame mutations; 

Table 3-1). This unexpected bias likely resulted from microhomology-mediated joining 

that produced in-frame deletions. To our knowledge, preferential in-frame repair has not 

been reported or seen with other ZFNs [23, 40, 41]. 

 To further characterize the consequences of disruption mediated by X4-ZFNs, we 

analyzed an unusually common lesion, an in-frame 18 bp deletion (CXCR4Δ18) that 

results in the deletion of DNA encoding amino acids R188 to D193 (Figure 3-1B). This 

deletion comprised 11.2% (range 9.8 and 11.9%) of all cxcr4 disruptions across five 

independent experiments with cells from five different donors. The resulting CXCR4Δ18 

protein, containing a six-residue deletion in ECL2, could potentially be expressed at the 

cell surface and support HIV infection. To examine this, we transiently expressed 

CXCR4∆18 or wt CXCR4 as a control in 293T cells, which have low endogenous 

CXCR4 expression. CXCR4 cell surface and intracellular expression was detected by 

flow cytometry after co-staining with the N-terminal specific CXCR4 antibody 4G10 and 

the extracellular loop (ECL) specific antibody 12G5 whose epitope includes the 

CXCR4Δ18 deleted residues [42]. As expected, CXCR4 could be detected on the surface 
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Figure 3-2. X4-ZFNs mediated disruption of cxcr4 in primary human CD4+ T cells.  

(A) Primary human CD4+ T cells were stimulated and transduced with an Ad5/F35 

vector expressing either the X4-ZFNs (top) or GFP (bottom) at MOIs from 100-1000. 

Total live cells were counted at different times after stimulation, and compared to an 

untransduced control.  Data is from one of two independent experiments. (B) Cxcr4 

disruption was determined four and eight days post treatment with the X4-ZFNs by the 

surveyor nuclease assay (cel1).  
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of control cells by both the N-terminal and ECL antibodies. However, CXCR4Δ18 was 

not detected at the cell surface, though it was detected intracellularly by the N-terminal 

antibody (Figure 3-3). In addition, cells expressing CXCR4Δ18 along with CD4 did not 

support HIV-1 infection. These findings indicate that CXCR4Δ18, the most common in-

frame deletion resulting from the X4-ZFNs, does not readily traffic to the cell surface and 

does not function as an HIV-1 coreceptor. 

 Specificity of cleavage by X4-ZFNs. Potential off-target genome modification 

comprises the predominant safety concern with ZFNs. Although ultra-deep full genome 

sequencing could best identify off-target effects, it is impractical and cost-prohibitive 

with current technology. Instead, we took a more targeted approach that used an 

experimentally derived binding site for each X4-ZFP to guide the identification of 

potential off-target cleavage sites. We conducted in vitro selection, or SELEX (systemic 

evolution of ligands by exponential enrichment) to determine the actual binding site 

preference of each X4-ZFP (Figure 3-4) [43, 44]. A positional-weighted matrix was then 

generated of the 12bp binding site and 1bp flanking region for each ZFP. A BLAST 

search against the human genome was then used to determine the top 15 off-target 

binding sites by allowing up to six mismatches per ZFP binding site, a 5 or 6 bp gap 

between ZFPs, and formation of hetero or homodimers (Table 3-2) [23]. To assess low 

frequency disruption events, we conducted 454 deep sequencing on all 15 sites in both 

control CD4+ T cells and those treated with X4-ZFNs, yielding approximately 7,500-

26,000 reads per site in the ZFN-treated samples (Table 3-2). In a sample with 26.9% of 

CXCR4 alleles disrupted, NHEJ events were detected at a frequency of 2.3%  (170/7531 

reads) in an extragenic region on chromosome 12 and 0.8% (84/10531) in 20,312 reads 
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Figure 3-3. X4-ZFNs preferentially generate in-frame deletions resulting in the 

absence of CXCR4 cell surface expression. The most common lesion induced by the 

X4-ZFNs was an 18bp deletion, cxcr4Δ18, that results in deletion of the amino acid 

sequence RFYPND from the second extracellular loop of CXCR4 (see Figure 3-1B). To 

determine if CXCR4Δ18 was expressed on the cell surface, a mock, wild type cxcr4, or 

cxcr4Δ18 plasmid was transiently transfected into 293T cells that have low endogenous 

CXCR4 expression.  Cells were then analyzed by flow cytometry after being stained 

simultaneously with anti-CXCR4 clone 4G10, which recognizes the N-terminus, and 

clone 12G5 whose epitope includes the second extracellular loop that is disrupted by the 

X4-ZFNs. WtCXCR4 was detected equally by both antibodies on the cell surface (middle 

panel, top row) and intracellularly (middle panel, lower row).  However, CXCR4Δ18 was 

not detected by the N-terminal antibody on the cell surface (right panel, top row), but was 

detected when cells were permeabilized (right panel, bottom row) suggesting the 18bp 

deletion prevents its expression on the cell surface. 
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found in DEC1 (a putative tumor suppressor [46]) and the single mutation out of 21,139 

reads found in an extragenic region of chromosome 11 could be due to PCR and 

sequencing errors or to very low levels (< 0.02%) of ZFN-mediated cleavage events. 

Overall, the X4-ZFNs are highly specific for cxcr4 with low frequency disruption clearly 

seen at 2 of 15 putative off-target sites with the highest homology to the intended target. 

 X4-ZFNs confer in vitro protection to human CD4+ T cells from HIV 

challenge. Disruption of both cxcr4 alleles should render human CD4+ T cells resistant 

to X4- and perhaps some R5X4- viruses as well, while cells harboring a single disrupted 

allele might express lower levels of CXCR4 and so be more resistant to virus entry. To 

determine whether ZFN-mediated disruption of cxcr4 indeed protects CD4+ T cells from 

an in vitro HIV challenge, human CD4+ T cells from three different ccr5 wild type 

donors were stimulated and transduced with AdX4-ZFNs or an AdR5-ZFNs control. Four 

days post-transduction, the cells were infected with three diverse HIV-1 strains: BK132 

(primary X4 HIV), HxB2 (lab-adapted X4 HIV), or R3A (primary R5X4 HIV). 

Approximately two weeks post-transduction the cells were restimulated with anti-

CD3/anti-CD28 beads, and cultures were maintained for an additional two weeks. 

 In the absence of HIV infection, there was no detectable growth difference 

between the X4-ZFNs treated, R5-ZFNs treated, and non-transduced controls over the 

course of the experiment. However, upon infection with the X4- or R5X4- HIV-1 strains, 

X4-ZFNs treated cells maintained exponential growth compared to profound cell death 

seen in the R5-ZFNs and untransduced controls. Despite the ability of R3A to utilize both 

CCR5 and CXCR4 to infect cell lines, in human CD4+ T cells stimulated with anti-

CD3/anti-CD28 coated magnetic beads, CCR5 is downregulated causing transient 
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Figure 3-4. Determination of putative off-target sites.  The DNA binding preference of 

the X4-ZFP left and X4-ZFP right was determined empirically by systemic evolution of 

ligands by exponential enrichment (SELEX). Briefly, a random pool of oligonucleotides 

was mixed with each ZFP.  Unbound oligos were washed and bound oligos were 

amplified.  After four rounds of selection, the enriched oligo pool was sequenced, and a 

position weighted matrix was generated for the 12 bp target site and one flanking residue 

per side (faded). Nucleotides corresponding to the wild type cxcr4 sequence are shown 

above the horizontal line. 
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resistance to R5 HIV [47]. Thus, R5X4 HIV strains are likely to function predominantly 

as X4 HIV strains under these conditions [47]. The growth advantage conferred by 

treatment with X4-ZFNs in the presence of HIV was magnified upon restimulation. 

(Figure 3-5A). This likely resulted from increased cell activation, which increases the 

ability of HIV to infect and replicate in CXCR4 positive cells.To determine whether the 

growth advantage conferred by X4-ZFNs treatment in the presence of X4- and R5X4- 

HIV resulted from a survival advantage of CXCR4 disrupted cells, we performed flow 

cytometry at various time points post infection as well as deep sequencing of the X4-

ZFNs target site on HIV-infected and uninfected cultures. In the absence of HIV 

infection, the cxcr4 disruption frequency remained stable over time in four independent 

experiments testing four different ccr5 wild type donors as measured by deep sequencing. 

A representative experiment is shown in Figure 3-5B and CXCR4 disruption data from 

all experiments is shown in Tables 3-1 and 3-3. While CXCR4 gene disruption remained 

stable over time at approximately 30%, CXCR4 gene disruption in HIV-infected cultures 

increased to 87%, 91%, and 88% in the presence of BK132, HxB2, and R3A respectively 

after 21 days of infection. FACS analysis showed that at day 19 post-HIV challenge, the 

frequency of CXCR4 negative cells amongst all live mock HIV-infected CD4+ 

lymphocytes was 13.0% in untransduced cells, 14.1% in cells transduced with R5-ZFNs, 

and 35.0% in cells transduced with X4-ZFNs compared to greater than 98%, 97%, and 

99% of Bk132, HxB2, and R3A infected cultures transduced with the X4-ZFNs, (Figure 

3-5C). We also found that after 19 days post-HIV infection, reduced but significant cell 

growth was detectable in several of the HIV-infected control cultures, 
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Figure 3-5. Treatment of human CD4+ T cells with X4-ZFNs confers protection to 

HIV-1 challenge in vitro. (A)  Human CD4+ T cells were treated with the X4-ZFNs or 

R5-ZFNs expressed by Ad5/F35 vectors or were non-transduced (NTD).  Four days later 

cells were infected with a primary X4 HIV-1 (Bk132), lab-adapted X4 HIV-1 (HxB2), 

primary R5X4 HIV-1 (R3A) or mock infected. The number of viable cells were measured 

at various times after stimulation. Cells were re-stimulated on day 13 (arrows).  (B) The 

proportion of disrupted cxcr4 alleles was determined at the indicated times post-

stimulation by 454 deep sequencing. The frequency of cxcr4 disruption was relatively 

constant in the mock-treated cells, but increased dramatically in the presence of HIV-1. 

(C) FACS analysis using a CXCR4-specific monoclonal antibody was performed at 19 

days post infection (24 days post-stimulation). Mock HIV-infected cultures are shown on 

the left and HIV infected cultures on the right. Data shown is one of three independent 

experiments.  
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Table 3-3. Surveyor nuclease data after treatment with X4-ZFNs and challenge by HIV. 
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 untransduced and treated with R5-ZFNs. However, greater than 95% of these cells, 

compared to approximately 10% of cells treated with X4-ZFNs, were CD3+CD4- 

suggesting that the surviving cell population was protected from HIV infection by down-

regulating CD4 (Figure 3-6). Thus, CXCR4 disruption had no impact on cell viability, 

but conferred a significant survival advantage in the presence of HIV strains that can use 

CXCR4 to infect cells. Furthermore, in control cultures that were untransduced or treated 

with R5-ZFNs, viral titers exponentially increased until extensive cell death began 

approximately 8-10 days post infection. In contrast, in cultures treated with X4-ZFNs 

viral titers steadily decreased after peak viremia while cell growth remained exponential 

suggesting there was not significant viral production (data not shown).  

 Ccr5∆32 CD4+ T cells treated with X4-ZFNs are resistant to R5 and X4 HIV. 

Given the ongoing adoptive therapy trial of CD4+ T cells treated with R5-ZFNs and the 

anti-viral success of the recent ccr5∆32 bone marrow transplant in an HIV-infected, we 

sought to determine if cxcr4 could be genetically disrupted simultaneously with ccr5. 

Human CD4+ T cells from a ccr5∆32 homozygote were transduced with AdX4-ZFNs or 

AdR5-ZFNs and subsequently infected with HIV-1 strains Bk132, HxB2, and R3A as 

described above. Representative data from one of two independent experiments 

conducted in cells from the same donor is shown in figure 3-7 and data from both 

experiments is shown in Tables 3-1 and 3-3. As seen in ccr5 wild type CD4+ T cells, 

exponential cell growth was preserved in cultures treated with X4-ZFNs compared to 

control cultures that were untransduced or treated with R5-ZFNs (Figure 3-7A). In 

addition, disruption frequency in cultures treated with X4-ZFNs as determined by deep 
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Figure 3-6. Treatment with X4-ZFNs prevents CD4 downregulation by HIV-1. CD4 

is profoundly downregulated on live CD3+ cells HIV-1 infected cultures that were NTD 

or treated with R5-ZFNs but not X4-ZFNs. Thus, the limited cell growth remaining by 19 

days post infection in NTD cultures and those treated with R5-ZFNs is due to HIV-1 

induced CD4 downregulation, and thus the protective effect on cell growth for 

CD3+CD4+ cells is underestimated by the growth curves in Figure 4A. Cells are from 

same experiment as Figure 3-4 [6]. 
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sequencing remained remarkably stable between 32-33% from day 5 to day 26 post-

transduction in the absence of HIV, which suggests that simultaneous disruption of ccr5 

and cxcr4 does not adversely affect cell growth. However, in the presence of Bk132, 

HxB2, and R3A, cxcr4 disruption increased after 21 days of HIV challenge to 89%, 83%, 

and 90%, respectively (Figure 3-7B), and was associated with markedly diminished virus 

replication (data not shown), again consistent with significant protection conferred by 

cxcr4 disruption. Thus, treatment with X4-ZFNs of both wild-type and ccr5∆32 CD4+ T 

cells confers stable cxcr4 disruption and a marked survival advantage in the presence of 

R5X4-HIV and X4-HIV in vitro without any detectable effect on cell growth or viability 

in the absence of HIV. This suggests that both ccr5 and cxcr4 can be genetically targeted 

simultaneously for the treatment of HIV infection, while preserving the replicative 

capacity of the CD4+ T cells. 

X4-ZFNs confer partial protection in NSG humanized mouse model.  As a 

first step in evaluating the safety and efficacy of the X4-ZFNs in vivo, we employed a 

NSG humanized mouse model. Briefly, human CD4+ T cells were stimulated with anti-

CD3/anti-CD28 beads and transduced with either AdX4-ZFNs or an AdR5-ZFNs control 

at an MOI of 600. Cells were then expanded in vitro for ten days after which 107 CD4+ T 

cells treated with X4-ZFNs (n=23) or R5-ZFNs (n=22) were injected intravenously into 

each mouse. Engraftment was assessed by peripheral blood CD4+ T cell counts 27 days 

post-injection. All 45 animals successfully engrafted; however, one animal that received 

cells treated with the X4-ZFNs had a significantly higher but stable CD4+ T cell count 

and was thus excluded as an outlier from the remainder of the study. On day 28 post-
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engraftment, mice were intravenously injected with 105 autologous CD4+ T cells that 

were previously infected with the highly cytopathic X4 HIV-1 strain Bk132 or a mock 

control. CD4 counts, viral load, and CXCR4 disruption were then monitored to determine 

the effect of treatment with X4-ZFNs. 

 To determine if X4-ZFNs impacted cell growth or viability in the absence of HIV, 

we first compared CD4 counts over time between the uninfected X4-ZFN and R5-ZFN 

control mice. There was no significant difference in CD4 counts between the two groups 

over the course of the 61 day experiment as determined by a generalized estimating 

equation (GEE) method (p=.88) (Figure 3-8A). Next, we examined the frequency of 

CXCR4 DNA disruption over time with the surveyor nuclease assay. At the time of 

injection the percentage of cxcr4 alleles disrupted was 24.3%. This remained constant 

inboth the blood (p=0.32) and spleen (p = .70) over the course of the experiment  

suggesting that CXCR4 disruption did not significantly impact trafficking between these 

two compartments (Figure 3-8B). Next, we characterized CXCR4 cell surface expression 

over time by FACS. In the R5-ZFN control group, with intact cxcr4 genes, 88% of CD4+ 

T cells expressed CXCR4 protein at day 27 post engraftment, compared to 84% of cells 

in the X4-ZFN mice (~24% cxcr4 gene disruption) as determined by a fluorescence 

minus-one (FMO) control. This difference persisted over time in the absence of HIV-1 

infection (p <0.001) (data not shown). Together the stable disruption of CXCR4 as 

determined by both the surveyor nuclease assay and flow cytometry suggests that 

CXCR4 disruption did not negatively impact cell viability or growth in humanized NSG 

mice over a two-month period. As expected, xenogeneic graft versus host disease  

(GVHD), assessed clinically by dermatitis and hair loss, was observed in mice receiving 
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Figure 3-7. Treatment with X4-ZFNs is effective in ccr5Δ32 homozgyous human 

CD4+ T cells. (A) Ccr5Δ32 CD4+ T cells were stimulated on day 0 and transduced on 

day 1 with an Ad5/F35 vector expressing the X4-ZFNs, R5-ZFNs, or an untransduced 

control.  On day 5, cells were HIV-infected with a mock, primary X4 HIV-1 (Bk132), 

lab-adapted X4 HIV-1 (HxB2), or a primary R5X4 HIV-1 (R3A).  Live cells were 

counted approximately every two days. Cells were restimulated on day 13 (arrows). (B) 

Cxcr4 disruption frequency was assessed at various times by 454 deep sequencing.  

Disruption remained stable in the absence of HIV-1 infection, but profoundly increased 

in the presence of the three HIV-1 strains examined.  Data shown is from one of two 

representative experiments. 



    121 

cells treated with both R5-ZFNs and X4-ZFNs in the absence of HIV challenge.  The 

development of GVHD was equivalent between the two groups (data not shown), 

suggesting that treatment with X4-ZFNs did not affect CD4+ T cell effector functionality.  

 In response to X4 HIV challenge with HIV-1 Bk132, CD4 counts decreased in 

both X4-ZFN and R5-ZFN mice. However, this rate of decline was slower in the X4-ZFN 

mice. The X4-ZFN group exhibited a mean 1.1 log CD4 count protection by day 14 post 

infection (p=.05 for a parametric t-test). However, this protective effect waned over time 

and there was no significant difference in CD4 counts by day 33 post infection (p=.88) 

suggesting that treatment with X4-ZFNs conferred only transient protection (Figure 3-

8A). 

 One mechanism that could account for this would be if mutations arose in the 

viral Env protein to enable it to use CCR5. To explore this possibility, we bulk cloned 

and sequenced the V3 loop of Env, the main determinant of coreceptor tropism [48], from 

plasma isolated from three R5-ZFN mice and three X4-ZFN mice at the time of sacrifice. 

We identified a single amino acid substitution (Y302N) present in Env isolated from X4-

ZFN mice but not R5-ZFN mice or the viral innoculum. Next, we cloned six distinct, 

functional Envs from the X4-ZFN mice and three distinct, functional Envs from the viral 

innoculum. As full length Bk132 Env would not pseudotype on an NL43 HIV core we 

truncated the cytoplasmic tail of the Envs [49, 50], and conducted tropism testing on NP2 

cell lines expressing CD4 with either CCR5 or CXCR4. Of the six functional Envs from 

X4-ZFN mice, four contained the Y302N mutation. Interestingly, these four Envs were 

able to utilize CCR5 and CXCR4 equivalently, similar to the R5X4-tropic control R3A. 

All clones with the wild type Tyr302, including the Envs from the viral innoculum and 



    122 

two Envs from X4-ZFN mice utilized CXCR4 approximately 1000-fold more efficiently 

than CCR5 and comparably to the X4-tropic control TYBE (Figure 3-8C). Thus, in an 

NSG humanized mouse model of HIV infection, the cells treated with X4-ZFNs 

engrafted, trafficked, and persisted comparably to control cells. In addition, treatment 

with X4-ZFNs resulted in significant transient protection of CD4+ T cell counts in 

response to X4-tropic HIV challenge, and HIV challenge provided cxcr4 disrupted cells 

with a survival advantage as determined by increase of cxcr4 disruption in the presence 

but not the absence of HIV. However, the extent of the protection conferred by the X4-

ZFNs was mitigated by evolution or outgrowth of preexisting R5X4-tropic HIV. 

ZFN-mediated coreceptor disruption is feasible in rhesus macaque CD4+ T 

cells.  While humanized mouse models for HIV infection have utility, the model is 

limited due to incomplete immune reconstitution, development of xenogeneic graft 

versus host disease (GVHD), and the absence of normal T cell homeostasis. For these 

reasons and others, the NSG model is suboptimal compared to non-human primate 

models to further elucidate the safety and efficacy of treatment with X4-ZFNs and R5-

ZFNs. As a proof of concept for future clinical adoptive therapy studies, we attempted to 

disrupt the ccr5 and cxcr4 genes with ZFNs in rhesus macaque CD4+ T cells. Briefly, 

rhesus CD4+ T cells were isolated from whole blood, purified by magnetic bead negative 

selection, and then stimulated with anti-CD3/anti-CD28 coated beads as previously 

described [35, 36]. As the 24bp X4-ZFPs’ binding site is identical between rhesus and 

humans, we were able to utilize the same ZFN pair. However, in order to target rhesus 
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Figure 3-8. Treatment with X4-ZFNs confers partial protection to HIV-1 in 

humanized mice in vivo. NSG mice were injected with human CD4+ T cells  treated 

with X4-ZFNs or R5-ZFNs.  28 days post injection, mice were infected with primary X4 

HIV-1 (Bk132) or were mock-infected.  (A) CD4+ T cell counts were measured every 7-

10 days post infection. In the presence of Bk132, treatment with X4-ZFNs conferred 

protection at 14 d.p.i (p=.05); however, this protection wanes by 34 d.p.i. (p=.88) (B) 

Cxcr4 disruption frequency was assessed by the surveyor nuclease assay in both 

peripheral blood (p<.001) and spleen (p<.001). At day 34 post infection, human CD4+ T 

cells were purified by positive selection prior to analysis to reduce any bias from low 

frequency contaminating human cells.  Only samples with a detectable PCR signal are 

shown. Disruption frequency did not deviate significantly from the cell innoculum in 

either the blood or spleen. Data in (A) and (B) were analyzed by a general estimating 

equation (GEE). (C) HIV-1 Env from X4-ZFN mouse plasma was sequenced revealing a 

consensus Y302N mutation.  To evaluate coreceptor tropism, a representative Env from 

the X4-ZFN mice and the viral innoculum were pseudotyped and used to infect NP2 cell 

lines expressing CD4 and either CCR5 or CXCR4.  R5 HIV-1 (JRFL), R5X4 HIV-1 

(R3A), and X4 HIV-1 (TYBE) controls are shown. Infectivity on NP2/CD4/CXCR4 cells 

was divided by that on NP2/CD4/CCR5 cells to determine relative coreceptor use. Data is 

an average of three independent experiments each done in triplicate.  Error bars represent 

standard error. 
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CCR5, rhesus specific R5-ZFNs were developed. As for human cells, the ZFNs were 

delivered with an Ad5/F35 vector and disruption was assessed by the surveyor nuclease 

assay. Utilizing a range of MOIs of 600, 1000, and 2000 we observed mean ccr5 and 

cxcr4 disruption levels of 19.6% and 14.0%, respectively (Figure 3-9), which suggests 

that adoptive therapy of cells modified with ZFNs is feasible to model in rhesus 

macaques. 
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Figure 3-9. ZFNs can efficiently disrupt ccr5 and cxcr4 in rhesus macaque CD4+ T 

cells. The X4-ZFN pair’s 24bp binding site is conserved between humans and rhesus 

macaques.  However, the human and rhesus R5-ZFNs have different binding sites; thus, a 

novel CCR5-ZFN pair was generated targeting rhesus ccr5.  The rhesus R5-ZFNs and 

X4-ZFNs were delivered by Ad5/F35 vector at MOIs from 600-2000 into rhesus CD4+ T 

cells.  Disruption frequency was measured by the surveyor nuclease assay.  Data shown is 

an average of three independent experiments in cells from two different animals.  Error 

bars represent standard error.  
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Discussion 

 The apparent eradication of HIV resulting from a ccr5Δ32 homozygous 

allogeneic bone marrow transplant into an HIV-infected patient represents the first 

reported “cure” of HIV [6]. While an important proof-of-principle, few individuals could 

benefit from allogeneic ccr5Δ32 homozygous transplants due to toxicities of allogeneic 

rejection and limitations of finding sufficient HLA-matched ccr5Δ32 homozygous 

donors. However, coreceptor-specific ZFNs represent a novel therapeutic approach to 

recapitulate this success via autologous transplantation of gene-modified hematopoietic 

stem cells and mature CD4+ T cells. Ccr5 can be efficiently disrupted in both human 

CD4+ T cells and hematopoietic stem cells, conferring protection to HIV challenge in 

vitro and in humanized mice [23, 28]. In addition, transgenic autologous hematopoietic 

stem cells can be successfully transplanted in HIV-infected individuals [18] and several 

phase I adoptive transfer trials of CD4+ T cells treated with R5-ZFNs in HIV infected 

individuals are currently underway. By design, this strategy addresses only viruses that 

require CCR5 to infect cells. Our long-term goal, therefore, is to explore the potential to 

genetically disrupt both ccr5 and cxcr4 for cell replacement therapies in HIV infected 

individuals, and in the case of cxcr4 do so in a way that specifically targets CXCR4 on T 

cells and not the many other cell types on which it is expressed. We hope this could lead 

to long-term virologic control in the absence of continued ART, a critical goal of the HIV 

field as discussed in chapter one.    

Unlike for ccr5, there are no known humans with loss of function cxcr4 mutations 

that would provide insight into the safety and viability of cxcr4 disruption in mature 

CD4+ T cells. A concern associated with targeting CXCR4 is that it is broadly expressed, 
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while CCR5 expression is largely limited to hematopoietic cells. CXCR4, along with its 

natural ligand CXCL12, plays a critical role in normal B cell, cardiovascular, and 

cerebellar development, though T lymphocytes appear to develop normally in cxcr4-/- 

mice [51]. Thus, it is possible that the selective disruption of cxcr4 in mature post-thymic 

CD4+ T cells may be tolerable. In addition to its role in development, the CXCR4-

CXCL12 axis is a potent CD4+ T cell chemoattractant, and the broad expression of both 

proteins suggests that this axis may play a fundamental role in basal chemotaxis as 

opposed to a response to inflammation [52]. Indeed, inhibiting CXCR4 function 

systemically with the small molecule antagonist plerixafor results in the peripheral 

mobilization of hematopoetic stem cells, thus mitigating the potential of such therapy for 

long-term anti-retroviral therapy. However, plerixafor, which has not been reported to 

have adverse immunologic consequences resulting from inhibiting CXCR4 function in 

mature CD4+ T cells, provides proof of principle that inhibiting CXCR4 in mature CD4+ 

T cells may prove to be safe and viable [10, 53]. This suggests that this essential gene can 

be targeted in a cell-type specific manner with CXCR4-specific ZFNs that limits the 

toxicities of systemic disruption. While we have demonstrated that CXCR4 is not 

essential for CD4+ T cell viability and function in vitro and in humanized mice in vivo, 

the redundancy of lymphocyte chemokine receptors and their ligands makes predicting 

the in vivo consequences of cxcr4 disruption in a normal host on CD4+ T cell function 

and trafficking difficult. We conclude that a logical next step will be to study the 

consequences of cxcr4 disruption in a non-human primate model of HIV infection, which 

will simultaneously permit the assessment of the consequences of this approach on T cell 

function and trafficking. 
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  A significant advantage of ZFN gene modification, compared to retrovirus based 

approaches, is that only transient transgene expression is required to permanently 

engineer an HIV resistant cell. As a result, adenovirus or other delivery mechanisms such 

as RNA transfection can be employed that avoid toxicities that can be associated with 

retroviral integration, such as cellular expansion or transformation. This “hit-and-run” 

approach limits the requirement of chronic transgene expression and the potential 

leakiness of other approaches including siRNA [21, 22], intrabodies [19], and ribozymes 

[17]. However, like most gene transfer approaches a major concern with ZFN technology 

is the potential for oncogenesis due to off-target effects. Efforts have been made to 

reduce off-target effects by using modified Fok1 catalytic domains, which act as obligate 

heterodimers, and future work will examine the effects of modulating the DNA binding 

affinity of ZFN pairs on DNA specificity.  While additional study is clearly needed, our 

current studies have clearly identified off-target disruption in two of the top 15 putative 

off-target sites: an extragenic site on chromosome 12 and in the metalloprotease 

ADAMTS17, which is not expressed in CD4+ T cells. In addition, mature CD4+ T cells 

appear to be resistant to malignant transformation [54], thus mitigating the potential 

concerns of off-target disruption. Consistent with this, more than 200 people have safely 

undergone adoptive transfer of genetically engineered lymphocytes with no reported 

cases of therapy-induced oncogenesis [55]. Reasons for resistance to transformation of 

mature lymphocytes are unclear, but may involve an unknown mechanism that ensures 

the diversity of the TCR repertoire and thus limits clonal outgrowth [54]. In contrast, the 

safety record of hematopoietic stem cell gene therapy is less clear, with a significant 

frequency of gene-therapy induced oncogenesis or clonal outgrowth reported in several 
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hematopoietic stem cell trials [56, 57].  However, given the continued production of 

CD4+ T cells, a ZFN-based approach in CD4+ T cells may require intermittent lifelong 

treatment. 

 One unexpected finding reported here is the predominance of in-frame mutations, 

particularly in-frame deletions, resulting from ZFN mediated cleavage of cxcr4. This has 

not been observed in other ZFN studies reported thus far. The deep-sequencing approach 

we have taken makes it possible to comprehensively and accurately assess the types and 

frequencies of mutations that result from ZFN cleavage followed by DNA repair. The 

striking preponderance of in-frame deletions may have resulted from toxicities of 

frameshift mutations shortly after treatment with X4-ZFNs leading to decreased survival 

relative to in-frame mutants. However, this is unlikely given that the frequency of in-

frame mutations remained stable over nearly four weeks in culture, that there was no 

significant increase in cell death between control cultures and those treated with X4-

ZFNs, and that the most common in-frame mutant was not expressed on the cell surface 

and thus cannot maintain functionality. Rather, the preference for in-frame deletions is 

likely due to preferential in-frame DNA repair. The deletion in the most common X4-

ZFN-induced lesion, cxcr4Δ18, is flanked by a GTCA microhomology domain at the 5’ 

and 3’ ends consistent with a repair mechanism of microhomology-mediated NHEJ [58]. 

Similar microhomology sites are present in other common ZFN-induced cxcr4 mutants 

that we identified. Thus, it appears that the nucleotide sequence of the X4-ZFN binding 

site directs a preference for an in-frame repair mechanism. 

 Our studies provide a fundamental demonstration that inactivation of cxcr4 by 

treatment with X4-ZFNs rendered human CD4+ T cells resistant to infection by X4 virus 
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strains, while CXCR4 inactivation in the context of a ccr5∆32 homozygous background 

rendered cells resistant to infection by both R5 and R5X4 strains. Genetic ablation of 

both CCR5 and CXCR4 will likely make CD4+ T cells entirely resistant to HIV-1. Dual-

disruption of CCR5 and CXCR4 will be needed for maximal therapeutic benefit since 

46% of treatment-experienced individuals harbor R5X4 strains of HIV compared to 4% 

with only X4-HIV strains [59]. While virus strains have been identified that can infect 

cells in the absence of CD4 (reviewed in [60]), none have been identified that can infect 

cells in the absence of a suitable coreceptor. In addition, virus strains that can use 

coreceptors other than CCR5 or CXCR4 to infect primary human cells are exceedingly 

rare. However, targeting CXCR4 alone could provide a selective advantage to CCR5-

tropic virus strains. Suppression of CXCR4 by plerixafor in vitro can lead to the 

emergence of CCR5-tropic virus strains [61], and highly active antiretroviral therapy can 

sometimes result in enhanced prevalence of R5 relative to R5/X4 virus strains in infected 

patients [62]. In the humanized mouse model under the conditions studied here, partial 

loss of cxcr4 in human T cells due to treatment with X4-ZFNs provided selective 

pressure for either the evolution or emergence of a pre-existing single amino acid 

mutation in the V3 loop of the infecting X4 HIV-1 strain that enabled it to use CCR5 as 

efficiently as CXCR4. Thus, just as either genetic or therapeutic suppression of CCR5 

can provide an advantage to virus strains that use CXCR4, deletion of CXCR4 is 

expected to provide an advantage to CCR5-tropic viruses. However, this could provide a 

clinical benefit given the increased in vitro pathogenicity and correlation with 

progression to AIDS of X4-tropic HIV. 
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While humanized mouse models provided a logical first approach to examine in 

vivo efficacy of CXCR4 disruption, this system does not make it possible to fully assess 

the functional impact of CXCR4 loss on CD4+ T cell function. To study this in the most 

rigorous way possible, we have explored the possibility of targeting CCR5 and CXCR4 

in CD4+ T cells derived from rhesus macaques. Following re-design of the R5-ZFNs to 

account for sequence differences between the human and macaque alleles, we found that 

ZFNs could disrupt both alleles with reasonable efficiency in macaque CD4+ T cells. By 

inactivating CXCR4 singly and in combination with CCR5, it will be possible to study 

the effects of CXCR4 loss on T cell function as well as virus infection in a more relevant 

animal model. 
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Introduction 

Acquired immunodeficiency syndrome (AIDS) is a devastating disease caused by 

human immunodeficiency virus (HIV) mediated destruction of CD4+ T lymphocytes 

[1,2].  Since its emergence over 25 years ago, HIV/AIDS has killed more than 25 million 

people, and another 33 million are currently infected [3].  The profound effect of this 

pandemic has led to tremendous research efforts to elucidate the mechanisms of the HIV 

life cycle and identify susceptible targets for therapeutic intervention. Two critical goals 

of the field are development of a vaccine to prevent new HIV-1 infections and effective 

treatment enabling HIV-1 control in the absence of long-term anti-retroviral therapy, 

termed here a “functional cure.”  

 

Future directions 

Understanding the HIV-1 transmission bottleneck. In chapter two, we examine 

phenotypic properties of T/F Env glycoproteins in an effort to elucidate Env properties 

that can be targeted in future vaccine and microbicide efforts.  Probing for differences 
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between clade B T/F and chronic Env glycoproteins, we employed a variety of 

phenotypic assays in an attempt to reveal the cause of the genetic bottleneck during HIV-

1 transmission.  We demonstrated that clade B T/F Env glycoproteins are more sensitive 

to CD4 binding site MAbs b12 and VRC01 and that this differential neutralization 

sensitivity correlates with differential binding of these MAbs.  This suggests that there 

are structural differences in the CD4 binding site between T/F and chronic Envs; 

however, this did not manifest itself as a phenotypic difference in a variety of in vitro 

functional assays assessing CCR5 utilization efficiency, entry inhibitor sensitivity, CD4+ 

T cell subset infection, DC trans-infection, or fusion kinetics.  The significance of a more 

exposed CD4 binding site in clade B T/F Envs remains to be determined.  However, it is 

possible that it may confer a subtle advantage during HIV-1 transmission that is 

magnified over multiple rounds of replication, and that the single-round infection assays 

we employed may be insufficient to detect such a modest difference. 

There are several areas of future direction for the study of T/F viruses.  First, 

while Env is a likely viral candidate responsible for the transmission bottleneck, a more 

rigorous approach would utilize full-length infectious molecular HIV-1 clones. This may 

reveal roles of other key HIV genes as well as interactions between these gene products 

and Env that may play a role in transmission.  Second, our study has highlighted that the 

selection of well-matched chronic control viruses is critical.  For instance, compared to 

the T/F Envs our test panel of chronic Envs was significantly more resistant to VRC01; 

however, our validation panel of chronic Envs was similar to the T/F Envs. The test panel 

was geographically matched to the T/F Envs while the validation panel was from a 

geographically distinct region; thus, geographical or other factors may have a significant 



  145 

confounding effect.  We propose that future studies should employ T/F and chronic 

control viruses from serodiscordant couples or less optimally, longitudinal samples from 

infected individuals.  Third, transmission of clade B HIV-1 represents a fraction of new 

HIV-1 infections [4]. As it is possible that the cause of the transmission bottleneck may 

be different among HIV-1 clades, future studies should expand our work to examine 

other clades, most notably clade C, the predominant subtype globally [4].  Fourth, while 

the in vitro assays used in chapter two are well validated and have previously revealed 

subtle differences between different Envs [5,6,7,8], it is possible that they are not 

sufficiently replicating events impacting the genetic bottleneck in vivo.  Thus, more 

sensitive and/or sophisticated assays involving human tissue explants and replication 

competent virus should be utilized, which may reveal more subtle functional differences 

between T/F and chronic HIV-1. In summary, future studies should use infectious 

molecular T/F and chronic HIV-1 clones from serodiscordant couples and examine 

functionality in tissue explants or other replication competent in vitro assays. 

Towards a functional cure of HIV-1: the role of ZFNs. The recent report of the 

‘Berlin patient’ suggests that heterologous transplants of HIV-resistant hematopoetic 

cells may be of clinical benefit [9,10]. However, this is not feasible on a large scale due 

to the morbidity and mortality of heterologous transplants and the dearth of ccr5Δ32 

donors.  Coreceptor specific ZFNs may overcome this limitation by allowing gene 

modification of one’s own cells for autologous transplant.  Previously, CCR5-ZFNs have 

been developed [11] and several clinical trials are currently ongoing to assess preliminary 

safety and efficacy (clinicaltrials.gov identifiers NCT00842634, NCT01252641, 

NCT01044654).  While CCR5-based therapies represent a viable approach to control 
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HIV-1, efficacy of such therapy may be limited due to evolution or outgrowth of pre-

existing X4 HIV [12,13,14,15]. 

In chapter three, we generated X4-ZFNs to genetically engineer X4 HIV-resistant 

CD4+ T cells for autologous transplant in HIV-infected individuals.  The X4-ZFNs 

efficiently and stably disrupt cxcr4, have no adverse affect on cell growth or stability, and 

provide protection to X4 HIV challenge in vitro and in a humanized mouse model.  

However, several areas of future work are needed prior to using X4-ZFNs in humans for 

the treatment of HIV-1 infection.  

First, while infection with X4 HIV occurs in about 50% of late stage individuals 

in the developed world [16,17], infection with a pure population of X4 HIV is relatively 

uncommon since most individuals also harbor either R5 or R5X4 HIV [18].  Thus, 

genetic disruption of both ccr5 and cxcr4 may be needed for maximal therapeutic benefit. 

By using X4-ZFNs in ccr5Δ32 cells, we have shown that genetic disruption of both 

coreceptors is viable in vitro, but future work is needed to optimize delivery of both R5- 

and X4-ZFNs to disrupt both copies of both genes in the same cell.  One concern with 

simultaneous delivery of two ZFN pairs is increased off-target activity resulting from 

trans-heterodimerization of the two different ZFN pairs.  Recent modifications in the 

Fok1 catalytic domains have been made creating ZFN pairs that act as obligate 

heterodimers [19]. This should be applied to the R5- and X4-ZFNs to minimize off-target 

activity resulting from simultaneous delivery of two ZFN pairs. 

Second, while cxcr4 disruption does not impact T cell development or function in 

mice [20,21] and seems well tolerated in human CD4+ T cells in vitro, further work is 

needed to assess the safety and viability of cxcr4 disruption in vivo because unlike for 
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ccr5 there are no known humans with cxcr4 loss of function mutations due to CXCR4’s 

critical role in embryonic development [21]. Thus, adoptive therapy studies of X4-ZFN 

modified CD4+ T cells should be conducted in rhesus macaques to evaluate the effect of 

cxcr4 disruption on cell viability, trafficking, and function in vivo.  If cxcr4 disruption is 

well tolerated in vivo then an X4-SHIV challenge should be performed to assess efficacy 

prior to using X4-ZFNs in humans.  Unlike for the R5-ZFNs, the 24bp binding site of the 

X4-ZFNs is identical between rhesus macaques and humans which would allow the use 

of the same ZFN pair and increase the validity of extrapolating safety, off-target, and 

efficacy data from macaques to humans. 

It is unlikely that any gene therapy approach will achieve 100% gene modification 

as seen in the ‘Berlin patient,’ and thus important questions moving forward are can we 

increase ccr5 and cxcr4 disruption efficacy and what frequency of gene disruption is 

necessary for clinical benefit.  Gene disruption efficiency may be increased through a 

combination of alternate ZFN delivery methods, hypothermic shock [22], optimization of 

cell stimulation, and administration of small molecules that alter chromatin structure, 

ZFN activity, or host DNA repair pathways. The minimal frequency of coreceptor 

disruption necessary for therapeutic benefit should be evaluated in humanized mice and 

rhesus macaques.  

Next, in addition to receiving ccr5Δ32 cells, total body irradiation, graft versus 

host disease, chemotherapy, and other immunosuppressants may have played a role in 

“curing” the ‘Berlin patient’ [10,23]. While we feel coreceptor ablation is critical, it may 

not be sufficient to recapitulate the ‘Berlin patient,’ and thus the role of 

immunosuppressants such as anti-thymocyte globulin and cyclophosphamide should be 
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explored to reduce the latent HIV-1 reservoir and improve engraftment of gene-modified 

CD4+ T cells and HSCs. In summary, genome editing of the HIV-1 coreceptors with 

ZFNs represent a novel therapeutic strategy that may lead to long-term control of HIV-1 

in the absence of ART. 
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