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Learning Local Phonological Processes

Abstract

We present a learning algorithm for local phonological processes that relies on a restriction on the expressive
power needed to compute phonological patterns that apply locally. Representing phonological processes as a
functional mapping from an input to output form (an assumption compatible with either the SPE or OT
formalism), the learner assumes the target process can be described with the functional counterpart to the
Strictly Local (McNaughton and Papert 1971, Rogers and Pullum 2011) formal languages. Given a data set of
input-output string pairs, the learner applies the two-stage grammatical induction procedure of 1)
constructing a prefix tree representation of the input and 2) generalizing the pattern to words not found in the
data set by merging states (Garcia and Vidal 1990, Oncina et al. 1993, Heinz 2007, 2009, de la Higuera 2010).
The learner’s criterion for state merging enforces a locality requirement on the kind of function it can converge
to and thereby directly reflects its own hypothesis space. We demonstrate with the example of German final
devoicing, using a corpus of string pairs derived from the CELEX2 lemma corpus. The implications of our
results include a proposal for how humans generalize to learn phonological patterns and a consequent
explanation for why local phonological patterns have this property.

This working paper is available in University of Pennsylvania Working Papers in Linguistics: http://repository.upenn.edu/pwpl/
vol20/iss1/5
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Learning Local Phonological Processes

Jane Chandlee and Cesar Koirala*

1 Introduction

This paper presents a learning algorithm for local phonological processes that exploits a restriction
on the expressive power needed to compute phonological patterns that apply locally. This restric-
tion reflects the well-recognized idea that locality plays an important role in phonology (Kenstowicz
1994, Gafos 1996) and arguably in learning (Heinz 2009). We first characterize phonological pro-
cesses as functions mapping underlying to surface forms and then demonstrate how a learner with a
locality bias can generalize such a function from a finite set of underlying-surface pairs.

This approach to the learning problem recognizes the utility of restricting the hypothesis space
of a learner. The formal grammars needed to analyze phonological patterns are less powerful than
those needed for syntactic patterns (Heinz and Idsardi 2011). It has been known since Johnson
(1972), Koskenniemi (1983), and Kaplan and Kay (1994) that phonological rules of the form A =
B/ C __ D, where A, B, C, and D are regular expressions, can be described with regular relations,
making them more restricted than the context-free and context-sensitive patterns found in syntax
(Chomsky 1956, Schieber 1985). The class of regular relations, however, does not appear to be
learnable in the limit from positive data (Gold 1967). In truth, however, learning the entire class of
regular relations is not desirable from the phonological standpoint, since this class includes many
patterns that are unattested and unexpected in natural language. Thus we propose a further restriction
on the computational bound of a local phonological process, one that rules out many unexpected
patterns and defines a subregular class of functions that is identifiable in the limit. The learning
results presented here propose such a class, one that is delimited by a requirement of locality.

There is a large and growing body of literature on learning in Optimality Theory (Tesar and
Smolensky 1993, 1998, Tesar 1995, 1998, Boersma 1997, Boersma and Hayes 2001, Pater and
Tessier 2003, Hayes 2004, Riggle 2004, 2006, Pater 2004, Prince and Tesar 2004, Alderete et al.
2005, Merchant and Tesar 2008, Magri 2010, 2012), with relatively less attention being paid to the
learning of phonological rules (Johnson 1984, Gildea and Jurafsky 1996, Albright and Hayes 2002,
2003). The learner we present targets a functional mapping from an input to output form, an abstract
characterization of phonological processes that is compatible with either the SPE or OT formalism.
The findings then contribute to our understanding of how phonological rules can be learned, but also
suggests a inductive principle that could be incorporated into a variety of learning frameworks.

The organization of the paper is as follows. Section 2 introduces the computational framework
we are assuming, in which phonological processes are represented as functions that map input (‘un-
derlying’) to output (‘surface’) forms. Section 3 formalizes the notion of locality and presents a
two-step algorithm that uses the locality assumption to learn a particular class of formal languages.
Section 4 adapts this algorithm to the functional domain in order to learn phonological processes,
and section 5 demonstrates the algorithm with the example of German final devoicing. Section 6
discusses the results of this demonstration, and section 7 concludes and identifies future directions
of this research.

2 Phonological Processes as Mappings

In an SPE-style grammar, phonological processes are expressed with a rewrite rule such as in (1).
(1) +voice, —son = —voice / _#

This rule describes the process of final obstruent devoicing, attested in German and other lan-
guages, by which voiced obstruents at the ends of words surface as their voiceless counterparts.
Alternatively, the devoicing phenomenon could be captured with an OT-style analysis of ranked
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32 JANE CHANDLEE & CESAR KOIRALA

constraints, such that a constraint against word-final voiced obstruents outranks faithfulness to voic-
ing, as in (2).

(2) *[+voice, —son]# >> IDENT(voice)

Both of these grammatical formalisms in fact converge on the same mapping of underlying to
surface forms. In other words, both (1) and (2) would map an input form such as /ba:d/, ‘bath’, to
[ba:t], and the form /za:g/, ‘say’, to [za:k]. Thus, abstracting away from a particular formalism,
phonological processes can be represented as pairs of underlying and surface forms: (ba:d, ba:t),
(za:g, za:k), (alt, alt), etc.

Our approach is to represent such mappings as functions encoded as finite state transducers
(FSTs), such as in Figure 1. In the figure, the symbols N, V, T, and D represent nasal, vowel,
voiceless obstruent, and voiced obstruent, respectively. The FST reads an input form one symbol at
a time and produces an output. At any given time the FST is in one of its two states; the labeled
arrows represent transitions between the states that are taken if the input matches the symbol on the
lefthand side of the label (the symbol on the righthand side is the output).!

Figure 1: Finite state transducer for final devoicing.

Starting in state 0, any input symbol except for a voiced obstruent is unchanged in the output
and the FST remains in state 0. When it does read a voiced obstruent, it transitions to state 1 and
outputs A, the empty string. This temporary withholding of output is necessary because the voiced
obstruent may need to be ‘devoiced’, but the FST must verify that it is in fact a word-final obstruent
before it does so. If this turns out to be the case (i.e. if the next input symbol is the word-final marker
#), the voiceless obstruent is outputted. If the next input symbol is anything else (represented with
the symbol ? in the figure), then the voiced obstruent is outputted unchanged and the FST returns to
state 0. Figure 2 below shows an example derivation for the input string VDVND. The FST in Figure
1 will in fact be the target of the phonological learner we present in this paper, since a learner that
can generalize this FST from input data will have successfully learned the mapping that underlies
the final devoicing process.

Input: v D v N D
State: 0 —0 —~1 —~0 —~0 —1
Output: A% A DV N AT

Figure 2: Example derivation for FST in Figure 1.

In this and all FSTs in the paper, the state marked in bold is the initial state, where the FST is before
reading any input, and the states marked with double circles are accepting states, the states where the FST must
be when it reaches the end of the input in order for the input form to be valid.
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3 Locality in Phonology

The learning algorithm we will present uses an assumption of locality as the inductive principle for
generalizing an infinite function from finite data. What this means is that of all the logically possible
functions that are consistent with the data, the learner will only consider those that are local in a way
we will make more precise below. Functions that do not meet this criterion of locality will not even
be considered by the learner. Though locality has been articulated in various ways to accommodate
a range of linguistic phenomena (e.g., non-contiguous segments may be considered adjacent when
projected onto a tier), for our purposes the target of a rule and its triggering contexts must form a
contiguous substring in the input form in order to be captured with a local function. This conception
of locality of course rules out certain phonological processes, most notably consonant harmony
(Hansson 2001, 2007, Rose and Walker 2004), and it does follow that such nonlocal processes fall
outside of the scope of our learner. There is potential, however, to extend our methodology to the
nonlocal domain (see Section 6 for discussion).

3.1 Strictly Local Languages

As stated above, the notion of locality that will serve as the inductive principle of the learner is based
on contiguous segments. In the realm of phonotactics, this notion has been formalized with the class
of formal languages known as Strictly Local languages (McNaughton and Papert 1971, Rogers and
Pullum 2011), which are languages for which string membership can be determined by examining
the substrings of length & (called k-factors). For example, consider the well-attested phonotactic
restriction that requires nasal-stop clusters to be homorganic. This constraint can be restated as, ‘the
following 2-factors are not permitted in any string in the language: nb, nk, mt, gp, etc.” Given a
string like [01gk], we can determine whether it is part of the language (i.e., whether or not it violates
the constraint) by scanning its 2-factors and verifying that none of them are in the set of illegal ones.
In this case, all of the 2-factors (#0, 01, 1), gk, k#, where # is the word-boundary) are permitted, so
the string is in the language. On the other hand, the string [01nk], is not, because one of its 2-factors
(nk) is not permitted.

The ‘strict locality’ of these languages means that no information beyond the k-factors can be
used to determine string membership. This same restriction is the basis for an approach to learning
them (Garcia and Vidal 1990, Heinz 2010). As our own learning algorithm is an adaptation of this
approach to the functional domain, we will first describe this method for learning SL languages and
then our adaptation to learning functions.

3.2 Learning SL Languages

Learning SL languages was first discussed by Garcia and Vidal (1990). The learning algorithm
presented here takes as input a set of strings that are in the target language and generalizes a finite
state acceptor that accepts all and only the strings of the language. Its first step is to construct a
representation of the input data called a prefix tree, which is a finite state acceptor in which the
states correspond to prefixes of the strings in the data set. Note that the term prefix is not being used
in the morphological sense; here a prefix is any initial portion of the string. As an example, Figure
3 is a prefix tree representation of the data set in (3).

(3) {6m, 6k, baegk, 6am, nambo+}

The prefix tree in Figure 3 accepts only the five words in the data set that was used to construct
it. In order to learn the target language this dataset is a sample from, the learner has to somehow
generalize from the prefix tree. Its method of generalization is state merging, a strategy by which
certain states that meet a predetermined criterion are merged while their respective transitions are
preserved. State merging is a way of discarding irrelevant information and gradually paring the
(maximally informative) prefix tree down to a FSA that only keeps track of the information necessary
to distinguish legal from illegal strings in the target language. A trivial example demonstrates. The
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Figure 3: Prefix tree for the data in (3).

FSA on the left of Figure 4 accepts exactly one string: aa. Merging all states with the same incoming
transition gives the FSA on the right. This FSA accepts all strings of one or more a’s.

a

Figure 4: State merging demonstration.

The merging criterion in this example, to merge all states with the same incoming transition,
determines the language that is learned. If all strings of one or more a’s is indeed the target language,
then the merging criterion is a useful one. If the target language is something else, the learner will
not be able to learn it. The merging strategy of the SL language learner is to merge states with the
same suffix of length k — 1, with k being the length of the k-factors that define the target language.
Recall that the states of the prefix tree are prefixes, which are just strings, so to say two states have
the same suffix of length k — 1 simply means the previous k — 1 transitions leading into the states
have the same symbols. Returning to the homorganic nasal-stop cluster example, the k-value of this
phonotactic constraint is 2 (since the illegal factors are of length 2). Applying the state merging
strategy to the prefix tree in Figure 3 gives the FSA in Figure 5 (the states have been relabeled with
their k — 1 suffix to clarify the merging that took place).

The acceptor in Figure 5 accepts strings not found in the data set. For example, it includes
the hypothetical word 6ambo~, which, importantly, obeys the requirement of homorganic nasal-stop
sequences. Note also that according to the FSA, all occurrences of 1 must be followed by a k.
Though this is not true of English (e.g., thing, ring, rang), it is true according to the input data set.
This ‘error’ on the learner’s part reflects the fact that it has not received enough data to make the
correct generalization.

This section has shown how a two-stage learning algorithm (step one, build a prefix tree; step
two, merge states) that assumes its target obeys strictly locality can learn SL languages. For natural
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Figure 5: Merging states in Figure 3 with the same k — 1 suffix.

language, this general strategy (with a different state merging criterion) was applied to the learning
of stress patterns in Heinz (2009). For more information on prefix trees and state merging, see
de la Higuera (2010). In the next section we adapt this algorithm to the problem of learning local
phonological processes.

4 Learning Local Phonological Processes

The learner for SL languages began with a finite state acceptor, but the learner for functions first
constructs a finite state transducer.> The input will be a set of pairs of underlying-surface strings,
some of which have undergone the phonological process being learned. Continuing with the example
in the previous section, assume the target of the learner is the rule in (4), which assimilates an
alveolar nasal to a following velar stop.

@ n=7n/_{k g}

The input data to the learner would include pairs like (Bink, 61gk), (Baenk, Baepgk), etc. Our
learner’s first step is to construct a prefix tree transducer of this input data, as shown in Figure 6.

Figure 6: Prefix tree transducer.

The learner’s state merging strategy is again to merge states with the same k — 1 suffix, this time
looking only at the input side of the transitions leading into a state. Note in Figure 6 that the n:n
transition for thin and the n:y transition for think both lead to a state labeled 6. This is because the
same input symbols were read in for both of these words; the difference is only that in the latter case
the n becomes 1 on the output side of the transition. The learner ignores this difference and merges
the states, as well as the state labeled Oaen.

Recall again the simple 2-state transducer in Figure 1 that models final devoicing. The reason
only two states are needed to capture this process is because the only relevant information is whether
the previous symbol read in was a voiced obstruent (state 0 means ‘no’, state 1 means ‘yes’). In the
case of Figure 6, it does not matter what input preceded the potential target of the assimilation rule,

2Though FSTs can be thought of as acceptors of pairs of strings, rather than individual strings.
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n, so this information can be discarded. All that matters to determine whether that n should become
a 1) is whether the very next symbol is a velar stop.

This section presented the two-stage learning algorithm (modified from the algorithm for learn-
ing SL languages) for local phonological processes and illustrated with a trivial example. In the next
section we present the results of running the learner on an actual test case with input data from a
natural language corpus.

5 Demonstration

As a test for the learner, we gave it a data set of string pairs that reflect the process of final devoicing
described above. This data set was derived from the CELEX2 German lemma corpus (Baayen et al.
1996) as follows. Words with a word-final voiced obstruent in the orthography and a word-final
voiceless obstruent in the phonetic transcription were assumed to have undergone the process of
final devoicing. An input-output pair was constructed for these words that reflected this change. For
all other words, a pair was constructed in which the input and output forms are identical. In addition,
to make the FST outputted by the leaner more readable, these input-output pairs were recoded with
the collapsed alphabet mentioned above and repeated in (5).

(5) D = voiced obstruent
T = voiceless obstruent
N = nasal
V = vowel

The corpus with the full alphabet contains 51,723 pairs; with the collapsed alphabet it contains
18,936 pairs. Given this corpus as input and set with a k-value of 2 for final devoicing, the learner
converged on the FST shown in Figure 7.

Figure 7: Result with corpus that reflects final devoicing.

The resulting FST has more states than the target (shown in Figure 1), but it describes the same
mapping. The larger number of states is in fact entirely expected. Since the learner only merges
states that share a suffix of length k£ — 1, the smallest FST it will produce will have at least one state
per k — 1 factor. In this example, since k = 2, the resulting machine, as predicted, has one state for
each symbol in the alphabet. In the FST in Figure 1, the N, V, T, and initial state are combined,
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because these states have one more thing in common: the FST can only be in them if the previous
symbol was not D. Thus state 1 in Figure 1 corresponds to state D in Figure 7 and state 0 in Figure
1 corresponds to the set of states {A, V, T, N} in Figure 7.

6 Discussion

The demonstration with final devoicing reveals how a learner with a ‘locality bias’ can converge on
a FST that describes a phonological process that meets the condition of locality. This approach to
the learning problem is based on a restriction on the computational complexity of local phonological
rules. As stated in the introduction, phonological rewrite rules have previously been shown to be
restricted to the class of regular relations, which distinguishes them from the more complex syntac-
tic rules. This restriction, however, does not bear directly on the learning problem, since the regular
relations do not appear to be identifiable in the limit from positive data (Gold 1967). It has also been
demonstrated that many phonological processes fall into the subsequential class of functions (Mohri
1997, Chandlee et al. 2012, Gainor et al. 2012, Chandlee and Heinz 2012, Luo 2013, Payne 2013,
Heinz and Lai 2013), which is a proper subset of the regular relations (Mohri 1997). The subse-
quential functions are identifiable in the limit (Oncina et al. 1993), but it was shown by Gildea and
Jurafsky (1996) that an algorithm for the class of subsequential functions cannot learn phonological
rules given the data available in natural language corpora.

Gildea and Jurafsky (1996) tested the algorithm called OSTIA (Oncina et al. 1993), which was
proven to learn the class of subsequential functions. To succeed, OSTIA needs to see a certain set
of data points (called a characteristic sample) that will allow it to make the necessary distinctions
among the data and generalize to the correct FST. Some of these data points, however, will never
occur in a natural language corpus, which is what Gildea and Jurafsky (1996) discovered when they
tested OSTIA on the English flapping rule and found it to be unsuccessful. They went on to modify
OSTIA with three learning heuristics (faithfulness, community, and context) and found that their
modified algorithm successfully learned the flapping rule, among others. The goal of the current
work was likewise to facilitate the learner’s ability to converge on the target given the available data,
though our approach differs from that of Gildea and Jurafsky (1996). Their community heuristic
allowed OSTIA to generalize over the natural classes present in the corpus’s alphabet, an issue we
instead addressed with the collapsed alphabet of {T, D, N, V}. And their notion of context is encoded
directly in our learner’s state merging strategy of only merging states that share a k — 1 length suffix.

Our approach thus narrows the learner’s hypothesis space so that the available data is sufficient
for it to converge on the target function and furthermore allows us to be more definitive about ex-
actly what class of functions the learner can learn. If the learner assumes its target is not just any
subsequential function, but one that only requires paying attention to the previous k — 1 symbols, it
automatically rules out a number of candidate functions and may be able to converge on the correct
one using the available data. Figure 8 illustrates the contribution of locality.

As noted above, the locality requirement that the learner assumes is not in fact met by all
phonological processes. Long-distance phenomena like vowel harmony (with transparent vowels),
consonant harmony, nonlocal partial reduplication (Riggle 2003), and dissimilation cannot be mod-
eled with the kind of functions targeted by our learner. However, these processes still appear to be
subsequential (Chandlee and Heinz 2012, Heinz and Lai 2013, Luo 2013, Payne 2013), meaning
they are still more restrictive than regular. There are in fact other subregular languages that can
model the long-distance phonotactics behind these long-distance processes (Heinz 2010). We sus-
pect that our methodology can thus be extended to the learning of the (as yet undefined) functional
counterparts to these other subregular languages.

7 Conclusion and Next Steps

This paper has demonstrated that the property of locality (which is inherent to many phonological
mappings regardless of the formalism used to describe them) can serve as a useful learning bias, and
we demonstrated how a learning algorithm with this bias can generalize a phonological mapping
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REGULAR

SUBSEQUENTIAL

Figure 8: Narrowing the hypothesis space with the locality assumption.

from positive data. This utility of locality in the learning domain suggests that this is not simply a
tendency of many phonological processes, but rather a defining property. If the phonological learner
assumes its target process applies locally (and therefore will not learn processes that do not have
this property) then we have an explanation for why the attested patterns are restricted in this way.
The suggestion is that nonlocal processes are likewise learned by a learner that assumes the defining
property of the subregular functions that describe them. More work is needed to identify these other
functional classes, but the results presented here serve as a crucial first step in what we see as a
promising line of research.

Additional work is needed as well to refine the local function learner introduced in this paper.
First is a formal definition of the class of functions it can learn, from which should follow a proof
of the algorithm’s correctness. This proof is necessary to conclude that it learns all and only the
phonological mappings with the necessary property of locality and will address concerns that the
learner succeeds based on some other, coincidental property of the particular examples used to test
it. Along with the proof is an identification of the algorithm’s characteristic data sample. It was
briefly discussed in Section 4.1 that a learner needs a certain amount of data in order to converge on
the correct generalization. In fact, it is not the amount of data that matters as much as the content of
that data. The characteristic sample that an algorithm needs to see in order to succeed includes all
of the crucial data points, and this needs to be precisely defined to fully understand the conditions
under which the learning algorithm succeeds.’
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