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Ramifications of Phonology-Syntax Interactions for 
Phonological Models' 

Benjamin K. Bergen 

1 Syntax-Phonology Relations are not Arbitrary 

This paper presents evidence that, contrary to the typically assumed arbi· 
trariness of the sign, probabilistic correlations exist between syntactic and 
phonological properties of lexical items. Moreover, language users make use 
of these correlations during language processing. Deterministic linguistic 
models cannot account for this behavior, but the processing properties 
emerge nalUrally in linguistic models which allow the assignment of prob
abilities of application to linguistic generalizations. This paper presents a 
Belief Nct model in which probabilistic asymmetries in processing arise 
from the representation of probabilistic distributions of English phonosyn
tactic generalizations. Such a model has the desirable properties of being 
neurally-plausible and cleanly learnable at the connectionist level. 

1.1 Arbitrariness 

The arbitrariness of the sign (Saussure 1916) is a doctrine which implicitly 
underlies most linguistic theories. It holds that the form of linguistic units , 
for example, words, is completely arbitrary; there is no deterministic 
relationship between what a word means and what phonological form it 
takes. Clear examples of lexical arbitrariness can be found by simply 
comparing monomorphemic words signifying similar concepts across 
unrelated languages. Aside from observing infrequent and controversial 
sound-symbolic lexical properties, doing so suggests that knowing a word's 
meaning does not permit us any insight into its form or vice versa. On the 
basis of the arbitrariness of the sign, most linguistic models conclude that 
there need be no direct relation between phonological and semantic proper
ties of words. 

The phonosyntactic arbitrariness of the sign is a related tenet, which 
holds that phonological properties of lexical items are arbitrary relative to 
their syntactic properties. However, contrary to arbitrariness assumptions, 
lexica display regular correlations between syntactic properties and 

'Thanks are due to Mark Paskin for his technical assistance and to Steve Chang 
for helpful commentary. All errors and omissions are my own. 
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28 BENJAMIN K. BERGEN 

phonological ones that do not belong to the domain of predictable or rule
governed morphology. and yet are not entirely arbitrary either. At least three 
types of such phonosyntactic generalizations can be described. 

• 'Strict' grammatical category restrictions on the distribution of 
phonological elements. For example, word-initial [oj is claimed to be 
restricted in English to function words.! 

• Sub~morphemic elements correlated with morphosyntactic cate
gory. Certain English past-tense and past-participle strong verbs seem to 
be best analyzed as category-specific schemata, rather than as deriva
tions from (heterogeneous) base forms (Bybee and Moder 1982). 

• Statistical asymmetries in the distribution of phonological elements 
in grammatical categories. Phonological properties like stress (Davis 
and Kelly 1997) and vowel quality (Sereno 1994) are distributed in une
qual proportions in English verbs and nouns. The present article ad
dresses this type of phonosyntactic generalization. 

1.2 The Phonology of Syntactic Classes 
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Figure 1: Front vowels in frequent English words (Sereno & Jongman 1990) 

The English lexicon shows subtle but significant asymmetries in the 
distribution of phonological features across grammatical categories. For ex-

lHowevcr. I know of at least one attested use of voiced [0] word-initially in an 
open-class word. this used as a verb, in its sense as a piece of Java jargon. 
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ample. in a survey of the Brown Corpus (Francis and Kucera 1982), Sereno 
and Jongman (1990) found frequent English verbs to more often have front 
vowels than not, while they found the reverse for frequent nouns (Figure I). 

This distributional asymmetry is of little interest unless it is shown to be 
part of linguistic knowledge. A small set of psycholinguistic studies have 
recently demonstrated that language users usc knowledge of asymmetrical 
phonosyntactic generalizations during perception (Sereno and Jongman 
1990. Kelly 1994, Sereno 1994. and Davis and Kelly 1997). For example, 
Sereno's (1994) work with the English lexicon yielded the following obser
vations: 

• Nouns with back vowels (716 ms) are categorized significantly faster 
than nouns with front vowels (777 ms). 

• Verbs with front vowels (776 rns) arc categorized significantly faster 
than verbs with back vowels (783 ms). 

Importantly. this perceptual advantage holds not only for frequent words. but 
for words of all frequencies. 

2 Existing Solutions 

2.1 Ramifications 

These findings suggest that detailed (morpho-)syntaclic information is 
directly related to phonological information in generalizations over lexical 
forms. Additionally. since neither the distributions nor the processing 
properties are categorical in nature, these generalizations must have 
probabilistic properties. These two ramifications stand in direct opposition to 
the normal assumptions of generative phonology: that syntactic properties 
are irrelevant for phonological generalizations and vice versa, and that 
phonological generalizations are categorical, not probabilistic. 

What would a model of phonological knowledge look like if it is to 
display the behavior described above? It would extract probabilistic 
correlations between infonnation from different domains from the 
phonological signal, and also adapt its production to multi-modal factors 
impacting phonology. At the service of these functions , it would encode 
probabilistic, multi-modal knowledge. One such model is embodied by 
Variable Rules (Labov 1972). 
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2.2 Variable Rules 

Variable Rule analysis (Labov 1972) treats variation by adding quantitative 
weightings correlated with social factors to SPE-sty1e generative rules. The 
best-known case study treats English word-final tid deletion (e.g. Guy 1991, 
i.a.). In the variable rule below, weighted phonological contexts are marked 
with angled brackets. 

• t, d ---7 <0> / <-stress> <+cons> [+cons] _ <+50n> 

Unfortunately, Variable Rules are inappropriate for probabilistic phono
syntactic generalizations, however, since they deal with sociolinguistic and 
not syntactic correlates of variable phonological behavior (Fasold 1996). 
Moreover, extending their domain of application to syntactic variables op
poses the fundamental assumption that different values of a given variable 
all convey the same meaning. Finally, Variable Rules disallow the interac
tion of constraints, but Sereno and Jongman (1990) found frequency to inter
act with the processing correlation between grammatical class and vocalic 
frontness in certain test conditions. In their study, the more freq uent a word 
was, the more likely it was to be processed along the lines predicted by the 
lexical asymmetry. 

Aside from Variable Rule analysis, other existing phonological frame
works have no way of capturing the probabilistic correlations described 
above since they assume that both linguistic representations and their combi
nation are discrete and deterministic. The next section introduces a mecha
nism that can account for the properties described above through the use of 
probabilistic representations and interactions of phonological and syntactic 
knowledge. 

3 Belief Nets: Aspects of the Representational Architecture 

Belief Networks (BNs; Jensen 1996) are a concise and powerful computa
tional representation of uncertain knowledge in a propositional network. 
They are made up of nodes with probabilities assigned to their values. Nodes 
are connected through causal links, and each node specifies the dependent 
probabilities of its values given its parents. Such a network calculates the 
probabilities of the values for a node, given observed values of its relatives. 

In a simple example, two propositions, each with multiple possible 
values, stand in a causal relation (Figure 2) . Cloudiness and raininess are 
represented as Cloudy and Rain nodes in a network, and each can be in one 
of two states: true or false. In more complicated cases, values will bc morc 
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numerous and states of a node are continuous, rather than discrete. The 
unidirectional causal relation between the two propositions is represented as 
an arrowed link. [n this network, each node has a prior probability for each 
of its values (which add up to I). For example, a prior probability of 
cloudiness might be 0.3 , thus Cloudy(true) will have a prior of 0.3 and 
Cloudy(false) one of 0.7 . Lct's imagine that the prior probabili ty of 
Rain(true) is 0.1. The causal relationship between the two propositions is 
encoded in a probability distribution for the downstream node which 
captures the probability of each Rain state given each Cloudy state. If we 
know that Cloudy(true), let's say wc havc obscrved thcre is a 0.6 probability 
of rain, and if Cloudy(false), the probability of rain is 0.01. 

Cloudy 
T .3 
F .7 

Rain Cloudy 
T F 

I 
Rain I T .6 .01 

I F .4 .99 

Figure 2: BN relating cloudiness and rain 

Cloudy Rain 
a. True 0.3 0.19 

False 0.7 O.SI 
b. True 1 0.6 

False 0 0.4 
c. True 0.96 1 

False 0.04 0 
. . ... 

Figure 3: 3. UnconditIOnal probabIlIties; b. Causal; and c. Diagnostic 
inference. 

BNs would be entirely innocuous, however, if they were not equipped 
with a means for performing inference on the basis of their correlative repre
sentations. Various inferencing mechanisms exist for. BNs, and all perform 
essentially the same function; given observed states of some subset of the 
nodes in a network, predictions are made about the probabilities of all other 
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node values. In the example above. in the absence of any observation, the 
unconditional (prior) probabilities of the two nodes are as displayed in Fig
ure 3a. above. If Cloudy is observed to be true (in bold), the network eon
eludes the probability of Rain(true) to increase through causal (forward) rea
soning (Figure 3b.). If Rain is observed to be true (in bold), the probability 
of Cloudy(true) increases through diagnostic (backwards) inference. 

4 Belief Nets for Phonosyntactic Generalizations 

Belief Nets are shown in this section to be appropriate for modeling the 
kinds of interactions responsible for the processing asymmetries described 
above. For example, in the network in Figure 4. one node represents the set 
of words known by the speaker, another the grammatical classes of those 
words, and a third a schcmatized phonological feature representing 
frontlbackness. This model assumes that in production, expressive desires 
evoke lexical representations, which subsequently give rise to grammatical 
and phonological properties. Thus. forward causative relations hold between 
lexical identity and grammatical or vocalic properties. Conversely. in 
recognition, phonological information (and some grammatical class 
informalion) is directly extracted from the speech signal, and the lexical 
information most likely to have caused those properties is induced. 

Word(givc. stop. thing. car) 

Vowel (front. b:lck) 

Figure 4: BN for phonological and syntactic properties in words 

For such a network, the only statistically relevant distributions we will 
find on the basis of a data source like the Brown corpus will be over relative 
frequencies of the words. That is , because of the asymmetric relation be
tween vowel quality and grammatical class, words like give will be on aver
age more frequent than words like stop and words like stay more frequent 
than words like thing. Thus, if the values of the node Word are taken as rep
resentative of entire elasses, then the relative probabilities of the different 
word types can be reflected in the probabilities of the values of Word.' 

=This simplification is made for the purpose of not representing an entire lexicon 
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From the data in Figure I, we can schematize the relative ratio of verbs 
with front vowels to verbs with back vowels at approximately 3:2, and about 
the same distribution for nouns with back vowels versus nouns with front 
vowels. Assuming that nouns and verbs arc equally likely, this means that 
the priors of front vowel verbs and back vowel nouns are 0.3, and the others 
0.2. 

The values of Vowel given its parent should be straightforward; given 
stop or car. Vowel(back) will approach a probability of I, while for give and 
thing. it will approach O. Thc values of Gram-Class follow along the same 
lines: given give or stop, Gram-Class(verb) approaches I, while for thing or 
car, it approaches O. 

Word Vowel Gram-Class 
Give StOD thing car front Back Verb Noun 

a. 0.3 0.2 0.2 0.3 0.5 0.5 0.5 0.5 
b. 0.59 0 0.4 0.01 1 0 0.6 0.4 
c. 0.01 0.4 0 0.59 0 1 0.4 0.6 
d. 0.01 0 0.4 0.59 0.4 0.6 0 1 
e. 0.59 0.4 0 0.01 0.6 0.4 1 0 

Figure 5: A BN for phonosyntactlcs: a. pnor probablhucs; b. front vowel 
observed; c. back vowel observed; d. noun observed; and e. verb observed. 

The network just described, representing only frequency information 
and correlations between domains of knowledge, demonstrates a graded bias 
for verbs when presented with front vowels and for nouns when presented 
with back vowels. This is demonstrated in Figure 5, where a. shows the prior 
probabilities of all values, b. an observed front vowel and c. an observed 
back voweL3 Relevant are the relative probabi li ties of give versus thing in 
Figure 5b. and stop versus car in Figure 5b. 

in the little space available here. At scale. a single node representing the entire lexi
con would become unwieldy as it interacts with other nodes, since the conditional 
distributions would need to take account of the entire lexicon. Thus, at scale, separate 
nodes for the lexicon and the four word classes would be needed. 

:l Such a network additionally allows us to make an empirically testable predic
tion: that there is also an advantage in speed of production for front verbs and back 
nouns. as shown in Figures 5d and e. To my knowledge, no study exists that could 
confirm or deny this prediction. 
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5 Properties ofthis Solution 

It remains to be demonstrated, however. how the probabilistic asymmetries 
shown in the previous section can be related to processing speed differences. 

The best way to think about this problem is in the neural grounding of a 
language representation system. Two competing models for the neural repre
sentation of mental constructs have very similar properties in terms of speed 
of recognition. Local representational schemes posit groups of neurons real
izing mental representations, while distributed models posit different states 
of networks representing different mental representation (Feldman 1988). In 
the first model , identi fy ing a mental construct involves the altainment of a 
relatively or absolutely high level of activation on the pan of the appropriate 
group of neurons. In the second. a single network sett les on a state repre
senting that menlal construct to the detriment of other Slales. In both, in
creased speed can arise from stronger default activations of cen ain 
nodes/states or from stronger or more numerous connections impingi ng on 
those nodes or leadi ng to that Slate. A neural translation of the BN in Figure 
4 would sett le into a state of high activation morc quickly the higher its 
probability, if probability is interpreted neurally as degree of activation. 

It is relatively obvious how such a network would learn the asymmetric 
distributions we see in Figure l. Since all that needs to be extracted is the 
probability of each class, a simple algori thm could increase the relative 
probability of a value each time it was observed. By the same token. in a 
neural implementation of such a network. Hebbian learning suffices for 
learning these probabilities (Wendelken and Shastri, in preparation).~ Ab
ducing the structure of BNs is a more complex exercise, but various methods 
have met with significant success, including entropy methods, score metrics, 
simulated anneali ng, and genetic algorithms (Jordan 1998). 

6 Conclusion 

The unmotivated nature of the distributional asymmetries described above 
means that they most likely exist solely due to historical accident , and as 
such are unexplai nable from a synchronic perspective. But language users 
unconsciously incorporate this information, as the processing evidence dem
onstrates. The model presented above gives an account of the processing 
properties on the basis of a simple probabilistic model of the storage and 

' Hebbian learning is the simplest and earliest-recognized type of neural learning. 
It involves the strengthening of connections that fire in association with other. 
stronger connections. and is responsible for types of associative learning. 
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relations between linguistic representations. As such it serves as an explana
tion for the processing data. which can not even be described by determinis
tic linguistic models. 

From a broader perspective. to the extent that all sorts of linguistic 
knowledge arc to be modeled, the particular argument presented above con
stitutes a piece of evidence for probabilistic and connectionist models of 
language. A possible objection to the contentions above might be that these 
observed regularities do not actually constitute facets of the linguistic system 
or grammar proper. but rather mallers of language use. This argument 
becomes dangerously circular. however. as its definition of language or 
grammar as either entirely productive or entirely arbitrary depends on 
excluding partially productive features, like the ones discussed in this paper, 
from language. If. however. we define language to include all knowledge 
about the relation between sound sequences and the meanings they evoke. 
then we are unable to overlook these generalizations, since they are 
empirically shown to be part of the psychological reality of language for 
speaker-hearers. Other related studies of probabilistic properties of the 
relations between phonological and semantic (Bergen 2000a), phonological 
and speaker-specific (Bergen 2000b). and phonological and syntactic 
knowledge (de long 1989) demonstrate the degree to which linguistic 
knowledge defies the normally accepted determinism assumptions. 
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