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IMpACT: Inverse Model Accuracy and Control Performance Toolbox for
Buildings

Abstract
Uncertainty affects all aspects of building performance: from the identification of models, through the
implementation of model-based control, to the operation of the deployed systems. Learning models of
buildings from sensor data has a fundamental property that the model can only be as accurate and reliable as
the data on which it was trained. For small and medium size buildings, a low-cost method for model capture is
necessary to take advantage of optimal model-based supervisory control schemes. We present IMpACT, a
methodology and a toolbox for analysis of uncertainty propagation for building inverse modeling and
controls. Given a plant model and real input data, IMpACT automatically evaluates the effect of the
uncertainty propagation from sensor data to model accuracy and control performance. We also present a
statistical method to quantify the bias in the sensor measurement and to determine near optimal sensor
placement and density for accurate signal measurements. In our previous work, we considered the end-to-end
propagation of uncertainty in the form of fixed bias in the sensor data. In this paper, we extend the method to
work with random errors in the sensor data, which is more realistic. Using a real building test-bed, we show
how performing an uncertainty analysis can reveal trends about inverse model accuracy and control
performance, which can be used to make informed decisions about sensor requirements and data accuracy.
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IMpACT: Inverse Model Accuracy and Control Performance Toolbox for
Buildings

Madhur Behl, Truong X. Nghiem and Rahul Mangharam
Dept. of Electrical and Systems Engineering

University of Pennsylvania
{mbehl, nghiem, rahulm}@seas.upenn.edu

Abstract— Uncertainty affects all aspects of building per-
formance: from the identification of models, through the im-
plementation of model-based control, to the operation of the
deployed systems. Learning models of buildings from sensor
data has a fundamental property that the model can only be as
accurate and reliable as the data on which it was trained. For
small and medium size buildings, a low-cost method for model
capture is necessary to take advantage of optimal model-based
supervisory control schemes.

We present IMpACT, a methodology and a toolbox for analy-
sis of uncertainty propagation for building inverse modeling and
controls. Given a plant model and real input data, IMpACT au-
tomatically evaluates the effect of the uncertainty propagation
from sensor data to model accuracy and control performance.
We also present a statistical method to quantify the bias in
the sensor measurement and to determine near optimal sensor
placement and density for accurate signal measurements. In
our previous work, we considered the end-to-end propagation
of uncertainty in the form of fixed bias in the sensor data. In this
paper, we extend the method to work with random errors in the
sensor data, which is more realistic. Using a real building test-
bed, we show how performing an uncertainty analysis can reveal
trends about inverse model accuracy and control performance,
which can be used to make informed decisions about sensor
requirements and data accuracy.

I. INTRODUCTION

Control-oriented models are needed to enable optimal
control in buildings. Models for building load requirements,
temperature dynamics and building systems are difficult to
capture as each building is designed and used in a different
way and therefore, it has to be uniquely modeled. Learning
mathematical models of buildings from sensor data has a
fundamental property that the model can only be as accurate
and reliable as the data on which it was trained. Any sensor
measurement exhibits some difference between the measured
value and the true value and, therefore, has an associated
uncertainty. Non-uniform measurement conditions, limited
sensor calibration, the amount of sensor data and the amount
of excitation of the plant make the measurements in the field
vulnerable to errors. In the case of using sensor data for
training inverse models (e.g., grey box or black box), the goal
is to provide maximum benefit, in terms of model accuracy,
for the least sensor cost. In this effort, we have developed a
toolbox to investigate methods for low-cost building model
capture by accounting for uncertainty propagation from
sensors (type, density, placement) to model accuracy, and
consequently, the operation cost of model-based control.

Small and medium sized buildings constitute more than
90% of the commercial buildings stock, but only about 10%
of such buildings are equipped with a building automation

system [1]. Current approaches for modeling buildings is
cost-prohibitive for such buildings and they are unable to
benefit from optimal supervisory control with model-based
control schemes. An approach to obtaining the necessary data
for generating building models involves installing temporary
sensors and measuring the necessary model inputs and out-
puts to enable training and testing of the model. A report
by the Department of Energy (DoE)[2] also emphasizes
a program focused on adapting wireless sensors into an
inexpensive retrofit system for energy-efficiency optimization
of buildings.

The question of interest here is: How do we determine
the most important sensors and their best placement to min-
imize the cost of model capture and, consequently, reduced
operation cost for building controls. This provides a direct
economic value by reducing the set of sensors needed as
inputs for the control of the heating ventilation and air-
condition system (HVAC). The quality of the model training
data, characterized by uncertainty, depends on the accuracy
of sensors, sensor placement and density. To evaluate the im-
pact of uncertainty, we provide a method so the practitioner
can clearly and easily assess the affect of input data quality
on building modeling and control.

In [3], we presented a technique to quantify the effect
of data uncertainty on building inverse model accuracy and
control performance. However, that work only considers
uncertainty in the form of fixed biases in sensor data. In
this paper, we extend our method and toolbox to work with
uncertainty in the form of random errors or random biases,
which is more realistic.

This paper has the following contributions:
1) We present a toolbox for offline assessment of the

influence of random bias in the input-output data on
the accuracy of the inverse grey-box model.

2) We present a statistical method to quantify the bias of
the sensor measurements due to their location and den-
sity, especially when it is measuring a spatially varying
quantity, such as temperature. Our method can also be
used for identifying near optimal sensor placement and
density for a zone.

3) We evaluate both the uncertainty analysis and the sensor
placement methods of the toolbox with case studies
using data from real buildings.

A. Sources for Uncertainty in Building Modeling
Assessing the effect of uncertainties aids the understanding

of building performance and, therefore, leads to effective



Fig. 1: RC lumped-parameter model representation for a thermal zone obtained from information about the zone geometry and usage.

decision making. The uncertainty in the model training data
can be characterized in two ways: fixed error or random
error. Fixed error can also be referred to as the systematic
error, precision or fixed bias. The fixed error in the sensor
measurement is due to a combination of two reasons. The
first reason is the sensor precision. The best corrective
action in this case is to ascertain the extent of the error
(using the data-sheet or by re-calibration) and to correct the
observations accordingly. The sensor may also exhibit a fixed
error due to its placement, especially if it is measuring a
physical quantity which has a spatial distribution, e.g., air
temperature in a zone. In this case, it is hard to detect
or estimate the bias unless additional spatially distributed
measurements are obtained.

Measurement noise, sensor location and unknown extra-
neous conditions can cause the sensor reading to take some
random values distributed about a mean. Errors (fixed or
random) in the model training data adversely influence the
accuracy of the building model which in turn affects the
performance of the model based controller – which is the
focus of this paper.

Organization: We begin with a short primer on the inverse
modeling process for buildings in Section III. The input
uncertainty analysis for inverse models within the IMPACT
toolbox is presented in Section IV. Section V presents a
case study in which we demonstrate our approach on sensor
data obtained from a real building. Section VII concludes
the paper with a discussion on the use of the free and open-
source IMpACT toolbox.

II. BUILDINGS INVERSE MODELING

The main objective of an HVAC system for air temperature
control is to reject disturbances due to outside weather con-
ditions and internal heat gain caused by occupants, lighting
and plug-in appliances. Therefore, the building model must
accurately capture the thermal response of the building to the
different disturbances. The building environment comprises
of a complex set of interactions of heat, mass and momentum
transfers. These transfers interact dynamically under the
action of occupant and system control. The problem of
representing such time varying interactions in a manner
suitable for prediction and evaluation of alternate designs
can be broadly classified into three model categories:

1) White-box models are based on the laws of physics and
permit high fidelity modeling of the building system.
Simulation programs like EnergyPlus and TRNSYS [4]

fall into this category. Such models are unsuitable for
control design due to their high level of complexity
and large number of parameters. Furthermore, model
capture and parameter tuning is time consuming and
not cost effective.

2) Black-box models are not based on physical behaviors of
the system but rely on the available data to identify the
model structure (e.g., regression methods and neural-
nets) These models are often purely statistical provide
little insight into the dynamics dictating the system
behavior.

3) Grey-box models fall in between the two above cate-
gories. A simplified model structure is chosen loosely
based on the physics of the system and the available data
is used to estimate the values of the model parameters.
These models are suitable for control design and still
respect the physics of the system.

A. Model Structure

A commonly used grey-box representation of the thermal
response of a building due to heat disturbances uses a
lumped parameter Resistive-Capacitative (RC) network. The
building fabric is described in terms of orientation, area, ma-
terial thickness, density, conductivity, specific heat capacity,
surface shortwave absorptivity and long-wave emissivity to
enable calculation of heat transfers. This approach has been
used widely, e.g., in [5], [6], [7].

Figure 1 shows an example of such a model for a single
zone, as used in [5]. In this representation, the central node
of the RC network represents the zone temperature Tz(◦C).
The geometry of the zone is divided into different kinds
of surfaces, each of which is modeled using a ‘lumped-
parameter’ branch of the network. The zone is subject to
several (heat) disturbances which are applied at different
nodes in the network in the following manner: (a) solar
irradiation on the external wall Q̇sol,e(W) and the ceiling
Q̇sol,c(W) is applied on the exterior node, (b) incident
solar radiation transmitted through the windows Q̇solt(W) is
assumed to be absorbed by the internal and adjacent walls,
(c) radiative internal heat gain Q̇rad(W) is distributed with
an even flux to the walls and the ceiling, (d) the convective
internal heat gain Q̇conv(W) and the sensible cooling rate
Q̇sens(W) is applied directly to the zone air, (e) the zone is
also subject to heat gains due to the ambient temperature
Ta(
◦C), ground temperature Tg(

◦C) and temperatures in
other zones which are accounted for by adding boundary



condition nodes to each branch of the network. The list of
all parameters in the model is given in Table I. The nodal
equations for the external wall network are:
CeoṪeo(t) = Ueo(Ta(t)− Teo(t)) + Uew(Tei(t)− Teo(t)) + Q̇sol,e(t)

CeiṪei(t) = Uew(Teo(t)− Tei(t)) + Uei(Tz(t)− Tei(t)) + Q̇rad,e(t)

(1)

Similarly, one can write the equations for the dynamics of
the nodes of the floor, the ceiling and internal wall network.
The law of conservation of energy gives us the following
heat balance equation for zone

CzṪz(t) = Uei(Tei(t)− Tz(t)) + Uci(Tci(t)− Tz(t))

+Uii(Tii(t)− Tz(t)) + Ugi(Tgi(t)− Tz(t))

+Uwin(Ta(t)− Tz(t)) + Q̇conv(t) + Q̇sens(t)

(2)

Differential equations (1) and (2) are combined
to give a state space model of the system. Define
x = [Teo, Tei, Tco, Tci, Tgo, Tgi, Tio, Tii, Tz]

T as
the state vector of all temperatures. The input u
is a vector of all the inputs to the systems, i.e.,
u = [Ta, Tg, Ti, Q̇sol,e, Q̇sol,c, Q̇rad,e, Q̇rad,c, Q̇rad,g, Q̇solt,
Q̇conv, Q̇sens]

T . The elements of the system matrices
depend non-linearly on the parameters U and C. Consider
θ = [Ueo, Uew, Uei, . . . Cio, Cii]

T as a vector of all the
model parameters. The state space equations have the
following representation emphasizing the parameterization
of the system matrices.

ẋ(t) = Aθx(t) +Bθu(t)

y(t) = Cθx(t) +Dθu(t)
(3)

This model is based on the assumption that the air inside
the zone is well mixed and hence it can be represented by a
single node. Only one-dimensional heat transfer is assumed
for the surfaces. The parameters of the model are assumed
to be time invariant.

B. Parameter Estimation (Model Training)

The goal of parameter estimation is to obtain estimates
of the parameter vector θ from input-output time series
measurement data. The parameter search space is constrained
both above and below by θl ≤ θ ≤ θu. For a given
parameter vector θ, the model, given by (3), can be used
to generate a time series of the zone air temperature Tzθ
using the measured time series data for the inputs u(k). The
subscript θ denotes that the temperature value Tzθ is the
predicted value using the model with parameters θ and the
inputs u. This model generated time series Tzθ is compared
with the observed values of the zone temperature Tzm , and
the difference between the two is quantified by a statistical
metric. The metric chosen is the sum of the squares of
the differences between the two time series. The parameter
estimation problem is to find the parameters θ∗, subject to

TABLE I: List of parameters

U?o convection coefficient between the wall and outside air
U?w conduction coefficient of the wall
U?i convection coefficient between the wall and zone air
Uwin conduction coefficient of the window
C?? thermal capacitance of the wall
Cz thermal capacity of zone zi

g: floor; e: external wall; c: ceiling; i: internal wall

θl ≤ θ ≤ θu, which lead to the least square error between
the predicted and the measured temperatures, i.e.,

θ∗ = argmin
θl≤θ≤θu

∑N
k=1(Tzm(k)− Tzθ (k))2 (4)

where the summation is over the N data points of the input-
output time series under investigation.

The least square optimization of (4) is a constrained
minimization of a non-linear objective. It is numerically
solved using a trust region reflective algorithm such as the
Levenberg-Marquardt [8] algorithm. The parameters of grey-
box models usually have physical meanings, it is desirable
that the initial parameter estimates θ0 are as close as prac-
ticable to their (unknown) optimal (true) values. The initial
values of the parameters can be estimated from the building
structure and materials.

III. IMPACT: UNCERTAINTY PROPAGATION ANALYSIS

We now describe the approach for analyzing uncertainty
propagation for building inverse models. Methods within
this approach require multiple simulations of systematically
altered models and the subsequent analysis of the differences
in the appropriate output in order to draw conclusions on the
effect of uncertainty. The accuracy of the building inverse
model depends primarily on the following three factors:
(a) The structure of the model which depends on the extent

to which the model respects the physics of the underlying
physical system,

(b) The performance of the estimation algorithm. The
performance of of non-linear estimation depends heavily
on the nominal values of the parameters.

(c) The quality of the training data, which can be char-
acterized by its uncertainty.

The main premise of the input uncertainty propagation is
that once the model structure and the parameter algorithm
are fixed, one can study the influence of the uncertainty
in the training data on the accuracy of the model using
simulations which utilize artificial data sets. We introduce
a random bias in each of the training data streams in form
of perturbations around the nominal values. This results in
the creation of artificial training data sets, each of which is
similar to the original unperturbed data set except for one
input data stream. For each artificial data set, we train a new
inverse model and calculate its test error. A common test
data-set is used to compare the accuracy of the models in
terms of their test root mean square error (RMSE). This
quantifies the effect of uncertainty in each input on the
accuracy of the inverse model.

Parameter

Estimation

(Inverse 

Model 

Training)

Prediction 

Error

Perturb 

each input

stream
(N perturbations)
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...

...
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Fig. 2: Overview of the IMpACT input uncertainty analysis method-
ology, an offline method to confirm the influence of each training
input on the accuracy of the model.



A. Input Uncertainty Analysis

The aim of this analysis is to determine the influence of
bias in the training data inputs on the accuracy of the inverse
model and then, to quantify the relative importance of the
inputs. First, some notation is introduced for brevity. We
consider a model with m > 0 training input data sets denoted
by V = {v1, · · · , vm}. Note that these are inputs for model
training, not the inputs for the model itself, e.g., even though
zone temperature is a model output, it is still a required
data-set (hence, an input) for model training. Vi,δ ={
v̂i = vi + δ, vj = vj |i, j ≤ m, j 6= i, δ = N (µi, σ

2)
}

denotes the artificial data-set obtained by perturbing input
vi by an random Gaussian perturbation δ ∼ N (µi, σ

2) with
mean µi and variance σ2 while keeping all other input
data-sets unperturbed. V0 denotes the data-set in which all
the inputs are unperturbed. Now, M̂Vi,δ is the inverse model
with obtained by training on the data-set Vi,δ and M̂V0

is
the model obtained by training on a completely unperturbed
data-set. The approach for conducting an input uncertainty
analysis consists of the following steps:
(a) Establish a baseline (reference) model: The baseline

model, M̂V0 , is the inverse model obtained by training
on the unperturbed data set V0, which is considered as
the ground truth.

(b) Determine which model outputs will be investigated for
their accuracy and what are their practical implications.

(c) Each of the input data streams are then perturbed within
some bounds. There are a total of N perturbations
δ1, · · · , δN (δi ∼ N (µi, σ

2)) for each input stream
ui, i ≤ m. For each perturbation δi, the mean µi
of the Gaussian error is changed while keeping the
variance the same. This results in N artificial data-sets
Vi,δ1 , · · · , Vi,δN for each input stream i.

(d) Corresponding to every perturbation, the inverse mod-
eling process is run again and a new model M̂Vi,δk

is
obtained.

(e) The prediction accuracy of each of the trained model
is evaluated on a common input data stream VT . The
accuracy of the model M̂Vi,δk

is measured by the RMSE
r(M̂Vi,δk

) between the predicted and the actual model
output values for the common input stream VT .

(f) Using the RMSE of the fit and the magnitude of the
perturbation, the sensitivity coefficient for each input
training stream is determined. It is calculated as follows:

γi = mean
k=1,··· ,N

(
r(M̂Vi,δk

)−r(MV0
)/r(MV0

)

|δk|

)
(5)

where, |δk| is the mean of the kth random perturbation. The
input uncertainty analysis method is shown in Figure 2.

The magnitude of the sensitivity coefficient γi can be in-
terpreted as the mean value of the change in the RMSE of the
model due to the presence of a random error in the input data-
set. It is the mean of the ratio of the normalized change in the
model accuracy to that of the normalized magnitude of the
perturbation in the input data. The sensitivity coefficient is
also referred to as the influence coefficient or point elasticity.
The sensitivity coefficients are calculated for each training
input data-set and then compared to reveal the significance

Fig. 3: Temperature sensor locations for suite 210. The thermostat
(Tstat) is located on the south (right) wall.

of the inputs in terms of their influence on the inverse model
accuracy.

Although the method presented here assumes a specific
model structure (i.e., state-space), the IMpACT toolbox’s
input uncertainty analysis approach is general and will work
for any building inverse model (i.e., any model structure and
the accompanying estimation algorithm).

IV. CASE STUDY WITH REAL DATA

In this section we present the results of applying the input
uncertainty analysis to real sensor data. The site chosen for
analysis is called Building 101. Located in Philadelphia, it is
the headquarters of the U.S. DoE’s Energy Efficient Building
Hub [9]. It is a highly instrumented commercial building
where the acquired data is made available to researchers.
We focus on suite 210, a large office space on the second
floor of the north-wing of the building. This zone has a single
external wall on the east side with 8 windows, a large interior
wall on the west side which is adjacent to the porch area on
the north-wing and two more adjacent walls on the north and
the south side. On July 20, 2013, functional tests were run
from 00:00 to 22:29, on the air handling unit serving suite
210. During a functional test, the supply air temperature is
changed rapidly so there is enough thermal excitation in the
zone to generate a rich data-set for learning its dynamical
model.

A. Sensor Placement and Data Quality
We first show how the location of a sensor can affect the

quality of measured data and also present a statistical method
to determine the optimal sensor placement and density for
obtaining high quality data. Our aim was to analyze the
temperature data from suite 210 to determine if there is
any significant location bias in the thermostat reading and to
study how adding additional temporary sensors to a location
changes the accuracy of the data. It should be pointed out
that the thermostat reading is the one which is used for
controlling the zone temperature so any biases/errors in the
temperature measurement are not desired. There are a total
of six different locations (S1,S2,S3,S4,S5 and Tstat) in suite
210 where air temperature is logged, as shown in Figure 3.
The zone thermostat (Tstat) is placed on the south wall.

The true value of the temperature of a zone (air volume) is
extremely hard to determine. Since the different temperature
sensors are located around the zone in a uniform manner,
the mean of all six temperature measurements is a better



Fig. 4: Q-Q plot for the temperature data from all the locations show
that the temperature data is not likely to be normally distributed.

representation of the zone temperature and is regarded as the
true temperature (denoted by Ttr). We wanted to estimate the
bias due to sensor location and to determine the best sensor
placement and density. For this, we select k sensors (k =
1, 2, · · · , 5) out of the six available sensors and compare the
average temperature Tk of the selected k sensors with the
true temperature Ttr through hypothesis testing.

We first check the normality of the temperature data from
each sensor using a quantile-quantile (Q-Q) plot. The Q-Q
plot is used to check the validity of a distributional assump-
tion for a data-set. The idea is to compute the theoretically
expected value for each sample based on the distribution in
question. If the temperature data follow a normal distribution,
then the points on the normal Q-Q plot will fall on a straight
line. Figure 4 shows the Q-Q plot for the data from all six
sensors against the theoretical samples obtained from normal
distribution. The plots suggest that the temperature data is
not normally distributed and is likely to follow a distribution
with thicker tails than the normal distribution. This implies
that the t-test is no longer the best test for comparing any two
data-sets as it assumes that the data is normally distributed.

To overcome this problem, we use non-parametric statis-
tics for comparing temperature data-sets against each other.
In particular, we use the Wilcoxon rank-sum statistic. The
Wilcoxon test is valid for data from any distribution, whether
normal or not, and is much less sensitive to outliers than the
t-test. It is suitable for testing differences between paired
data-sets, for e.g., comparing the air temperature measure-

Fig. 5: Bland-Altman plots for all 6 sensors i.e., k = 1. The
solid red line indicates the mean difference between the true
temperature and the data-set. The estimated bias is obtained through
the Wilcoxon’s test.

ments from two different sensors sampling at the same rate.
While comparing any data-set Tk to the true temperature Ttr
we check the hypothesis that the two data-sets are originating
from the same distribution and that the median difference
between pairs of observations is zero. The Wilcoxon’s test
provides an estimate µk (Hodges-Lehmann estimate) and the
95% confidence interval (C.I.) of the bias between the two
data-sets.

An intuitive, but informal, method of comparing the true
temperature with another data-set by visual inspection is
through the Bland-Altman plot also known as Tukey’s mean
difference plot. In this method, the difference of the two
paired data-sets is plotted against their mean. Figure 5 shows
Bland-Altman plots for the case k = 1, i.e., each sensor
measurement (TS1

,TS2
,TS3

,TS4
,TS5

and Tstat) is compared
with the true temperature Ttr. The estimate of the bias
µk between the data-sets and the true temperature obtained
through the Wilcoxon’s test is also indicated for each data-
set. For the case k = 1, there are 6 possible comparisons
with the true temperature. It turns out that the sensor location
S4 is the closest to the true temperature with an estimated
bias of only 0.027◦C. The thermostat measurement Tstat
has an estimated bias of 0.588◦C with respect to the true
temperature. This means that if we were to place just one
sensor in the zone to estimate the true temperature, it should
be placed at the location of S4. The next section evaluates
whether the bias in the zone thermostat is enough to affect
the model accuracy.

The same method is repeated for each value of k =
(1, 2, · · · , 5). For each k, all

(
6
k

)
sensor combinations are

enumerated and the mean temperature Tk of the k selected
sensors is compared with the true temperature using the same
techniques as described above. The combination with the
minimum bias estimate µk is selected as the best sensor
subset for each value of k. The results of these comparisons
are summarized in Table II.

The results indicate that adding multiple sensors to a
zone tends to improve the accuracy of the quantity being
measured. However, it is not always the case that adding
additional sensor will always lead to an improvement in data
accuracy. This can be seen from Table II where the bias in the
combined measurement of the data obtained from 3 sensors
is much less than the bias due to the combined measurement
obtained from 4 different sensors. The minimum bias sensor
subset for k = 3 and k = 4 is also shown in Figure 3.

B. Input Uncertainty Analysis for Suite 210

We created the lumped parameter RC-network model for
suite 210 using the principles described in Section III. The
model has 9 states, 9 inputs and 1 output. There are a total
of 22 RC parameters in the model structure for this zone.

TABLE II: Wilcoxon’s test results for all values of k

k Min. bias subset Tk Bias Estimate µk
1 S4 0.0275
2 S3 , S4 −0.0106
3 S1 , S2 , Tstat 0.00708
4 S1 ,S3 ,S4 , Tstat 0.22
5 S1 ,S3 ,S4 ,S2 ,Tstat -



1:40 AM 5 AM 8:20 AM 11:40 AM 3 PM 6:20 PM
26
28
30
32
34

◦
C

Ambient temperature

1:40 AM 5 AM 8:20 AM 11:40 AM 3 PM 6:20 PM
20

22

24

Pattern due to Functional Testing

◦
C

Porch Temperature

1:40 AM 5 AM 8:20 AM 11:40 AM 3 PM 6:20 PM
0

2

4

·104

Solar gain during dayW

External Solar Irradiation

1:40 AM 5 AM 8:20 AM 11:40 AM 3 PM 6:20 PM
0

0.2
0.4
0.6
0.8
1 ·104

AHU Functional Testing

W

Sensible Cooling Rate

Fig. 6: Training data for suite 210 of Building 101. The data
obtained by running a functional test on the zone’s air handling
unit from 20-07-2013 00:00 to 20-07-2013 22:29

This model can be used for advanced control methods such
as model predictive control (MPC).

The temperature inputs to the model were the ambient
temperature Ta(◦C), floor temperature Tf (◦C), ceiling tem-
perature Tc(◦C) and temperature of the adjacent porch area
Tp(
◦C). The external solar irradiation Qsole is logged by

a pyranometer. For the internal heat gain calculation, we
consider 3 different heat sources: occupants, lighting and
appliances. The number of people in the zone at differ-
ent times was estimated using data from people counters.
We assume, using ISO standard 7730, that in a typical
office environment the occupants are seated, involved in
light activity and emit 75 (W) of total heat gain, 30% of
which is convective and 70% is radiative gain. Using the
power rating of the lighting fixtures and their efficiency, one
can calculate the heat gain due to lighting. In this zone,
lights contribute about 13 (W/m2) with a 40% − 60% split
between the convective and the radiative part. A constant
heat gain due to the electrical appliances and computers is
also assumed. The total internal convective heat gain Qconv
was obtained by adding the convective gain contributions
from the three different heat gain sources. The total internal
radiative heat gain was obtained in a similar way. The total
internal radiative gain is further split into the radiative gain
on the external wall Qqgrade and on the ceiling Qqgradc.
The sensible cooling rate Qsen was calculated using the
temperature and mass flow rate measurements for the supply
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Fig. 7: Fit between the predicted and actual zone temperature in
suite 210. Top: for the training period, with RMSE = 0.062 and
R2 = 0.983. Bottom: for the test period with RMSE = 0.091 and
R2 = 0.948.

and the return air.
The total available data was split into a training set (80%)

and a test set (20%). Some of the inputs for training the
inverse model are shown in Figure 6. The output of the model
is the zone temperature Tz . The results of the inverse model
training are shown in Figure 7. The RMSE for the training
data-set was 0.062(◦C) with R2 equal to 0.983 (Figure 7,
top) while the RMSE and R2 values for the test set were
0.091(◦C) and 0.948 respectively (Figure 7, bottom).

After successfully training the inverse model, we con-
ducted an input uncertainty analysis on the training data-set
as described in Section IV-A. The model trained on unper-
turbed data serves as the baseline model for the uncertainty
analysis. We created artificial data-sets from the training data
by perturbing each training input, one at a time, by adding a
random bias to the nominal data-set. The random bias in the
temperature measurements was varied between [−3, 3]◦C in
increments of 0.2◦C and the variance was held constant at
1. For the heat gains and the sensible cooling load the mean
of the Gaussian random perturbation was varied between
[−300, 300]W. The range for the perturbation was calculated
based on the estimated uncertainty due to the characteristics
of the physical sensor and due to the method of inference of
the data (for internal heat gains).

With 30 additional data-sets per input, there were a total
of 300 artificial data-sets. Each of these data-sets were used
for model training and the resulting model was evaluated for
its accuracy (RMSE) on the test-set.

C. Results

The results of the input uncertainty analysis for suite
210 in Building 101 are shown in Figure 8. We see a
parabolic trend obtained as a result of “artificial” uncertainty
in the training data for each of the training data-sets. This
aligns well with the intuition that as the magnitude of the
uncertainty bias increases in the input data stream, the inverse
model becomes worse and its prediction error increases. This
is the case for all the input data streams and it results in the
parabolic trend. The shape of the curve varies from input
to input, due to a different sensitivity coefficient value, and
is an indicator of the extend to which a particular input
influences the model accuracy. The sensitivity coefficients for
the different training inputs were calculated. Figure 9 shows
the comparison of the model accuracy sensitivity coefficients
for the inverse model for suite 210.

It is seen that the zone temperature has the largest model
accuracy sensitivity coefficient suggesting that the accuracy
of the model is quite sensitive to the zone temperature
measurement. We saw in Section V-A that the thermostat
measurement has an uncertainty bias of about 0.588◦C. From
figure 8(j), we see that this can effect the model accuracy on
by up to 13%. This suggests that for this zone, it would
be better to deploy additional low-cost wireless sensors just
during the model training phase and get a better estimate of
the zone temperature for training the inverse model. Also,
the mean value obtained by adding more sensors could be
used to re-calibrate or correct the thermostat reading for
location bias, resulting in data which can yield an inverse
model which can better represent the dynamics of the zone.
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Fig. 8: The x axis shows the normalized Gaussian perturbation introduced in the data while the y axis is the normalized change in the
model accuracy (RMSE). The following inputs are shown: (a) ambient temperature (◦C); (b) porch temperature (◦C); (c) incident solar
irradiation on the external walls (W); (d) and (e) radiative internal heat gain on external wall and ceiling (W); (f) convective internal heat
gain (W); (g) sensible cooling rate (W); (h) floor temperature (◦C); (i) ceiling temperature (◦C), and (j) zone temperature (◦C)

Tz Tc Qconv Ta Qsen Tp Tg QgradcQgrade Qsole
0

10

20

Input-Output Training Data

M
o
d

el
A

cc
u

ra
cy

S
en

si
ti

v
it

y
C

o
effi

ci
en

t

Fig. 9: Model accuracy sensitivity coefficients for Building 101

Although the IMpACT approach has been presented for the
case of a single zone, it can be easily extended for a multi-
zone scenario in which zones interact with each other.

Model Accuracy and Control Performance: The IMpACT
toolbox has been presented as a means of conducting an
automated input uncertainty analysis. However, the tool-
box also has the capability to relate model accuracy to
control performance for a complete end-to-end treatment
of uncertainty propagation. This is based on our previous
work [3], in which we present the method for establishing the
relationship between model accuracy and the performance
of a model predictive controller. We showed (Figure ??)
that the potential savings of MPC deteriorate rapidly as
the model accuracy decreases (i.e., test RMSE increases).
By empirically establishing a relationship between model
accuracy and MPC performance, one can take informed
decisions about the investment on additional sensors and the
associated cost benefit for improving the data quality.
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Fig. 10: MPC performance for models of different degrees of
accuracy. In the left region there is a positive cost benefit associated
with adding sensors but in the right region there is no cost benefit
associated with adding additional sensors.

V. RELATED WORK

Parametric sensitivity analysis of a model reveals the
important parameters of the model which most significantly
affect the model output. This bears some resemblance with
the way the input uncertainty analysis is conducted in the
IMpACT toolbox. In [10], important design parameters are
identified from points of view of annual building energy
consumption and peak loads. In [11], the authors extend tra-
ditional sensitivity analysis and increase the size of analysis
by studying the influence of about 1000 model parameters.

It is only recently in [12], [13] and [14], that researchers
have analyzed the uncertainty propagation in modeling for
close loop control. In [12], the authors acknowledge that
the performance of advanced control algorithms depends on
the estimation accuracy of the parameters of the model.
In [13], the authors discuss the development of a control-
oriented simplified modeling strategy for MPC in buildings
using virtual simulations. [14] presents a methodology to
automate building model calibration and uncertainty quantifi-
cation using large scale parallel simulation runs. In [15], the
authors consider the co-design of the sensing and the control
platform for buildings. They also present a case study with
mutli-point temperature measurements of the same space to
quantify the effect of sensor location on the measurement.
However, they do assume that the measurement error has a
Gaussian distribution, whereas our analysis is non-parametric
and distribution free. In recent work [16], researchers have
utilized computation fluid dynamic models to figure out
the best sensor placement for state estimation for optimal
control.

VI. CONCLUSION

We introduced IMpACT, a methodology and a toolbox for
analysis of uncertainty propagation for building inverse mod-
eling and controls. Given a plant model and real input data,
IMpACT automatically evaluates the effect of the uncertainty
propagation from sensor data to model accuracy and control



performance. The extent of the influence of uncertainty in
each training data stream on the model accuracy can be
quantified through an input uncertainty analysis. We run
the IMpACT toolbox on a data-set obtained from a real
building and show that the density and placement of sensors
are responsible for introducing a location based bias in the
measured data. We observe that a bias of ∼ 0.6◦C in the
zone temperature degrades the model accuracy by ∼ 13%
for the zone. We also presented a statistical method to
quantify the bias in the sensor measurement (if any) and
to determine near optimal sensor placement and density for
accurate data measurements. One limitation of the input
uncertainty analysis is that it assumes independence between
training inputs and analyzes them one by one. It may be the
case that the model training inputs are not independent. This
will require better sampling methods (factorial sampling,
latin hypercube sampling) for perturbing multiple inputs at
the same time. We are continuing our efforts to develop
IMpACT into a an open source toolbox to automate the input
uncertainty analysis for building inverse models.
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