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An Overview of Sigma-Delta Converters: How a 1-bit ADC achieves
more than 16-bit resolution

Abstract
This article briefly describes conventional A/D conversion, as well as its performance modeling. We then look
at the technique of oversampling, which can be used to improve the resolution of classical A/D methods. We
discuss how sigma-delta converters use the technique of noise shaping in addition to oversampling to allow
high resolution conversion of relatively low bandwidth signals. Next, we examine the use of sigma-delta
converters to convert narrowband bandpass signals with high resolution. Several parallel sigma-delta
converters, which offer the potential of extending high resolution conversion to signals with higher
bandwidths, are also described.
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An Overview of Sigma-Delta 

A lthough real world signals are analog, it is often 
desirable to convert them into the digital domain 

.using an analog to digital converter (ADC). Motivat- 
ing designers to apply this conversion is the efficient trans- 
mission and storage of digital signals. Digital representation 
of an audio signal, for example, allows CD players to achieve 
virtually error free storage using optical disks [l]. Intricate 
processing of the signal may also necessitate analog to digital 
(AD) conversion, since such processing is only feasible in 
the digital domain using either conventional digital comput- 
ers or special purpose digital signal processors (DSPs). Signal 
processing in the digital domain is also extremely useful in 
such areas as biomedical applications, providing the needed 
accuracy for tasks such as ultrasound imaging. 

One technique, sigma-delta modulation, has become quite 
popular for achieving high resolution. One significant ad- 
vantage of the method is that analog signals are converted 
using only a 1-bit ADC and analog signal processing circuits 
having a precision that is usually much less than the resolu- 
tion of the overall converter. 

Converters 
How a I-bit ADC achieves 

more than 16-bit 
resolution 

PERVEZ M. AZIZ, 
HENRIK V. SORENSEN, and 

JAN VAN DER SPIEGEL 

Although sigma-delta concepts have existed since the 
middle of the century, it is only in the last two decades that 
this method has become more attractive [2]. One reason is 
that recent advances in VLSI technology, focused towards 
realizing high speed densely packed digital circuits, have 
made feasible the adequate digital processing of the bit 
stream. Using sigma-delta A/D methods, high resolution can 
be obtained for only low to medium signal bandwidths. 

This article briefly describes conventional A/D conver- 
sion, as well as its performance modeling. We then look at 
the technique of oversampling, which can be used to improve 
the resolution of classical A/D methods. We discuss how 
sigma-delta converters use the technique of noise shaping in 
addition to oversampling to allow high resolution conversion 
of relatively low bandwidth signals. Next, we examine the 
use of sigma-delta converters to convert narrowband band- 
pass signals with high resolution. Several parallel sigma- 
delta converters, which offer the potential of extending high 
resolution conversion to signals with higher bandwidths, are 
also described. 
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Nyquist rate sampling 
fs II 2fB 

$3 fs 2fs A signal spectrum 
A repeated versions of the signal spectrum 
..! ;.. required anti-aliasing filter response ... 

1. Nyquist rate sampling showing the original band limited sig- 
nal spectrum, periodically repeated versions of the signal spec- 
trum due to sampling, and the anti-aliasing filter response needed 
to band limit the signal. 

PCM A D  Conversion 

Nyquist Rate Conversion 

Sampling 
Analog to digital conversion of a signal is traditionally de- 
scribed in terms of two separate operations: uniform sampling 
in time, and quantization in amplitude. In the sampling proc- 
ess, a continuous time signal is sampled at uniformly spaced 
time intervals, T,. The samples, x[n], of the continuous time 
signal, x( t )  can be represented as x[n]  = x(nT,). The effect, in 
the frequency domain, of the sampling process is to create 
periodically repeated versions of the signal spectrum at mul- 
tiples of the sampling frequency& = l/Ts [3, pp. 80-871. This 
relationship is written in Eq. 1, where Xsv> represents the 
spectrum of the sampled signal, and X ( f )  is the spectrum of 
the original continuous time signal. 

The sampling process is shown graphically in Fig. 1 for 
the case wheref, = 2f~, and f B  is the bandwidth of the signal. 
In general, the signal can be reconstructed back to continuous 
time if the repeated versions of the signal spectrum do not 
overlap. Thus, the signal must be band limited to half the 
sampling rate, Le., a signal with bandwidth fB must be sam- 
pled at a rate greater than twice the bandwidth, fs 2 2  fB. 

Interference between the repeated versions of the signal spec- 
trum is known as aliasing and it prevents reconstruction of 
the signal. 

Even if a signal is nominally band limited to fJ2, an 
anti-aliasing filter is often used to ensure that the signal is 
indeed band limited. For example, speech has a nominal 
bandwidth of 4 kHz and so in principle can be sampled at 8 
kwz. However, there is some residual signal energy above 4 
H z ,  which results in aliasing if a 8 kHz sampling rate is used. 
The anti-aliasing filter is a continuous time analog filter 
preceding the sampler. 

The case where & = 2fB is known as Nyquist rate sampling, 
and clearly the anti-aliasing filter here must have a very sharp 
cutoff at frequency fB = fJ2 as shown in Fig 1. Later, we will 
discuss how the sharp cutoff requirement on this filter can be 
relaxed. 

The discretization or quantization in time as a result of the 
sampling is an invertible operation, since no signal informa- 
tion is lost and the original continuous time signal can be 
perfectlyreconstructed [3, pp. 80-911. Note that although Fig. 
1 shows the sampling process for the case where the signal is 
a baseband signal, i.e., the spectrum has a bandwidth centered 
at DC frequency, Eq. 1 still describes the sampled spectrum 
even if the signal spectrum is centered at some higher fre- 
quency fc. In this case, for a signal bandwidth fB, the signal 
spectrum occupies the region [fc yd2, f c  + fd23, and it will 
still be possible to avoid aliasing and reconstruct the signal 
provided that f s  Z 2  fB. 

Quantization 
Once sampled, the signal samples must also be quantized in 
amplitude to a finite set of output values. Typical transfer 
characteristics of quantizers or AfD converters with an input 
signal sample, xEn], and an output, y[n],  are shown in Fig. 2. 

Quantization is a non-invertible process, since an infinite 
number of input amplitude values are mapped to a finite 
number of output amplitude values. The quantized output 
amplitudes are usually represented by a digital code word 
composed OF a finite number of bits. For example, for the 1 
bit A D  converter of Fig. 2c, the output levels V and -V can 
be mapped to digital codes “1” and “0.” The digital code 
words are often said to be in pulse code modulation (PCM) 
format. 

Another way of looking at this would be to plot the digital 

iY l Y  

- 

+ -V 
- 1  a :  a i  

(a) 4 level midriser (b) 5 level midtread 

IY 

(c) 2 level midriser 
(comparator) 

I I 
2. Transfer characteristics of typical A/D converters (ADCs) or quantizers. 
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code words instead of the quantized amplitude values for y 
in Fig 2. The quantized output amplitude values can also be 
considered the output of an ideal digital to analog converter 
(DAC) whose inputs are the corresponding digital code 
words. 

An ADC or quantizer with Q output levels is said to have 
N bits of resolution where N = log2 (Q). As should be clear 
from Fig 2, for an ADC with Q quantization levels, only input 
values separated by at leastA = 2V/(Q-1) can be distinguished 
or resolved to different output levels. Ndigital bits are needed 
to encode the Q codewords corresponding with each output 
level. The difference between the binary digital codes for two 
adjacent output levels is one least significant bit (LSB) of the 
overall N bit codeword. Consequently, a difference in input 
amplitudes corresponds to a one LSB difference in the digital 
output code words. 

We now point out some general properties of the quanti- 
zation transfer curves shown in Figs. 2a-2b for a four level (2 
bit) “midriser” and a five level (roughly 2 bit) “midtread” 
ADC. Unlike the midtread ADC, the midriser ADC does not 
contain a zero output level for a zero input value, effectively 
creating a DC offset that may be undesirable in some appIi- 
cations. Note that all the transfer characteristics shown in Fig. 
2 are symmetric. The midriser needs to have an even number 
of output levels to produce a completely symmetric transfer 
curve, whereas the midtread needs an odd number of output 
levels. 

The midriser ADC’s symmetric characteristic, with an 
even number of levels, is an advantage because the number 
of output levels, Q, can be made a power of two and encoded 
with exactly N= loga(Q) bits. However, the number of output 
levels, Q, for a symmetric midtread ADC must be odd, and 
so cannot be made a power of two and encoded as efficiently. 
The number of bits needed will be N = logz(Q-1) + 1, where 
Q-1 is chosen a power of two. If the number of levels for the 
midtread ADC is forced to be a power of two by using only 
Q- 1 levels, it will no longer have a symmetric transfer char- 
acteristic and will distort large amplitude symmetric input 
signals (e.g., a sinusoid). This distortion, of course, may be 
negligible when the number of output levels is very large. 

These issues may play a role in choosing whether a midriser 
or midtread quantizer transfer characteristic should be used. For 
the special case of a 2 level quantizer, a midtread characteristic 
will not be able to represent both positive and negative output 
levels, and so will severely distort a signal containing samples 
of both polarities. For this 2 level case, a midriser characteristic, 
shown in Fig. 2c, will almost always be used. 

Trading Resolution for  Bandwidth 
Most conventional A/D converters, such as the successive 
approximation, subranging, and flash converter types quan- 
tize signals sampled at, or slightly above, the Nyquist rate. 
Consequently, these converters are often referred to as 
Nyquist rate PCM converters. These, and other converters, 
provide tradeoffs among signal bandwidth, output resolution, 
and the complexity of the analog and digital hardware. 

I t  Sigma Delta 

Successive 
Approximation 

SubrangingPipelined 

Flash 
I > 

Signal Bandwidth Converted 

3. Bandwidth resolution tradeoffs. 

Qualitative bandwidth and resolution tradeoffs of some of 
these A/D techniques, as well as sigma-delta conversion, is 
shown in Fig 3. As is evident from Fig 3, sigma-delta A/D 
converters attain the highest resolution for relatively low 
signal bandwidths. Consequently, sigma-delta techniques are 
often used in speech applications where the signal bandwidth 
is only 4 kHz and where up to 14 bits of resolution may be 
needed. Similarly, sigma-delta ADCs are popular for digital 
audio applications, where the signal bandwidth is 20-24 kHz 
and where high fidelity audio requires 16-18 bits of resolu- 
tion. Flash converters, on the other hand, may be used for 
broadcast video applications where the signal band is about 
5 MHz, but the resolution required is only about 8 bits. 

Performance Modeling 
Having looked at the sampling and quantization processes, 
we now examine the A/D converter and characterize its 
performance. The diagrams in Fig. 2 show the transfer char- 
acteristic for typical quantizers with input x and output J J .  

Let the maximum and minimum quantized output values 
always be Vand -V. The least significant bit (LSB) of an ADC 
with Q quantization levels is equivalent to 2V/(Q-l). For both 
the midriser and midtread type of ADCs of Fig 2, the magni- 
tude of the quantization error (e  = y - x) between the output 
and input does not exceed half a LSB, i.e., le1 A/2, 
provided that 1x1 d V + A /2. Under these circumstances, the 
quantizer or ADC is said to be not overloaded. For 1x1 > V +  
A /2 (hence, le1 >A/2), the ADC is said to be overloaded. 

The quantizer embedded in any ADC is a non-linear 
system, which makes its analysis difficult. To make the 
analysis tractable, the quantizer is often linearized and mod- 
eled by a noise source, e [n] ,  added to the signal x[n] ,  to 
produce the quantized output signal y[n]: 
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....~~~._..._ TS 

Aliasing 
Filter x[n]=x(nTs ) L ....... ---.._I 

Quantizer 
1 Ts = - 

fs 
Block diagram and model of a conventional N D  converter 

(ADC) system. 

A block diagram of an AID system showing the sampling 
process and the quantizer model is shown in Fig 4. To further 
simplify the analysis of the noise from the quantizer, the 
following assumptions about the noise process and its statis- 
tics are traditionally made [3, p. 1201: 

* The error sequence, e[n],  is a sample sequence of a 
stationary random process. 

* e[n] is uncorrelated with the sequence x[n].  
The probability density function of the error process is 
uniform over the range of quantization error, i.e., over 
-c A/2. 
The random variables of the error process are uncorre- 
lated, i.e., the error is a white noise process. 

Under certain conditions, such as when the quantizer is not 
overloaded, N is large, and the successive signal values are 
not excessively correlated, these assumptions are reasonable 
[4]. Consider an N bit ADC with Q = 2Nquantization levels, 
i.e., with A= 2V/ Q-1 = 2V/(2N-1). For a zero mean e[n],  its 
variance u,2 or power is 

(3) 

If the signal is treated as a zero mean random process and 
its power is U:, then the signal to quantization noise ratio is: 

(4) 

Note that for each extra bit of resolution in the ADC, i.e., 
for every increment in N, there is about a 6 dB improvement 
in the SNR. Thus, there is a direct relationship between the 
resolution of an ADC and its SNR, and it is common to equate 
differences in SNR in dB to bits by dividing the dB value by 
6. For example, if an ADC has a SNR that is 3 dB better than 
that of another ADC, the better ADC will be said to have 1/2 
bit higher resolution. Also, note that for a given N, the SNR 
in dB is linearly related to the signal power, a:, in dB. 

Let us now examine the dynamic range of the ADC, which 
is a measure of the range of input amplitudes for which the 
ADC produces a positive SNR. For sinusoidal inputs, the 
dynamic range of the A/D converter is defined as the ratio of 
the signal power of a full scale sinusoid to the signal power 

of a small sinusoidal input that results in a SNR of 1 (or 0 dB) 
[5]. The signal power of a full scale sinusoid is V2/2. A 
sinusoid with signal power U: = 02 = A2/12 will result in an 
SNRof 1, or 0 dB. 

The dynamic range, by definition, is 

(V' -1- A2)  (V' -1 (2V/2N)') 
2 12 2 12 

This expression reduces to a dynamic range value given 
by: 

R = 6.02N + 1.76 (dB) (5) 

Note that the ratio of V2/2 to A2 /2 is just the peak SNR of the 
ADC for a sinusoidal input. Consequently, the dynamic range 
of the Nyquist rate ADC is the same as its peak SNR. 
Sigma-delta converters do not necessarily have their peak 
SNR equal to their dynamic range. However, by using the 
dynamic range of a sigma-delta converter in Eq. 5 and calcu- 
lating the corresponding N, we will be able to determine the 
resolution of a Nyquist rate PCM converter that would be 
required to produce the same dynamic range. 

Limitations of Nyquist Rate ADCs 
For Nyquist rate converters, each signal sample is quantized 
at the full precision or resolution of the converter. The reso- 
lution of such converters implemented on VLSI chips is 
Limited by the technology in which these chips are fabricated. 
For example, some successive approximation A/D tech- 
niques rely on matching of two capacitors to perform a 
repeated division of a reference voltage by 2. 

If such a converter is to convert signal values to N bits of 
resolution, the required matching on the capacitor compo- 
nents needs to be at least one part in 2N. Matching of compo- 
nents to greater than 10 bits (one part in 2") or equivalently 
to more than 0.1% is difficult in VLSI. 

High resolution Nyquist rate converters are extremely 
difficult to attain in current integrated circuit technology 
without the use of techniques such as laser trimming of 
components or calibration. Furthermore, if the signal is sam- 
pled too close to the Nyquist rate, the anti-aliasing filter must 
have a very sharp cutoff, which is a non-trivial design require- 
ment for analog filters. 

Oversa m pled PCM Co nve rsi o n 

System Description 
Oversampled PCM conversion is a technique that improves 
the resolution obtained from straightforward Nyquist rate 
PCM conversion. This improvment is achieved by oversam- 
pling the signal, i.e., samples are acquired from the analog 
waveform at a rate significantly faster than the Nyquist rate. 
Each of these samples is quantized by an N bit ADC. Since 
quantization is described by Eq. 2, the total amount of noise 
power injected into the sampled signal, x[n] ,  is U: and is 
given by Eq. 3. 
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f 
fs2 - = f B  - 

fs 1 
2 2 

y[n] 

Nyquist rate PCM conversion 

LowPass Down 
, Filter + Sampler - 

resolution > N bits 

Digital Decimator 

Oversampled PCM conversion 

. Quantization noise power spectral density for Nyquist rate 
PCM and oversampled PCM conversion. 

Obviously, this is exactly the same noise power produced 
by a Nyquist rate converter, but its frequency distribution is 
different because of the higher sampling rate. The perform- 
ance modeling criteria designated the noise process as white, 
which means that the noise power is uniformly distributed 
between $12 tof,/2, where5 is the sampling frequency. 

Fig 5 shows the power spectral density, P e ( f ,  of the 
quantization noise for Nyquist rate sampling with ratef,] and 
oversampling rate 5 2 .  For Nyquist rate sampling where the 
signal band, f B  = f,d2, all the quantization noise power, 
represented by the area of the tall shaded rectangle, occurs 
across the signal bandwidth. 

In the oversampled case, the same noise power, repre- 
sented by the area of the unshaded rectangle has been spread 
over a bandwidth equal to the sampling frequency,&z, which 
is much greater than the signal bandwidth,fB. Only a rela- 
tively small fraction of the total noise power falls in the band 
[$, f B ] ,  and the noise power outside the signal band can be 
greatly attenuated with a digital low-pass filter following the 
ADC. 

After the low-pass filtering is performed, the signal can be 
downsampled to the Nyquist rate without affecting the signal 
to noise ratio. The collective operation of low-pass filtering 
and downsampling is known as decimation. The low-pass 
filter and downsampler are collectively called a decimator. A 

block diagram of an oversampled PCM system showing the 
sampling, the ADC model, and the decimator is presented in 
Fig 6. 

Pe$ormance Modeling for  Oversampled PCM Converters 
By taking the Z transform of Eq. 2, we obtain the Z domain 
relationship between the input and output of an oversampled 
PCM converter: 

where Y, X and E are the Z transforms of the output, input 
signal and the quantization error process, respectively. Based 
on our two-input linear system model for the quantizer, Eq. 
6 states that in the Z domain, the output is the input plus the 
quantization error or noise. We can observe that X and E both 
experience a unity transfer function. 

A more general way of writing Eq. 6, where X and E do 
not necessarily experience a unity transfer function, is 

The output is now the input signal modulated by a signal 
transfer function, denoted by H,(z), plus the quantization 
noise modulated by a noise transfer function, denoted by 
H,(z). To evaluate the performance of such a converter, we 
need to find the total signal and noise power at the output of 
the converter. To do this, we need to evaluate the power 
spectral densities, Pq(f) and P,(f, of the signal and noise at 
the output of the converter, based on the power spectral 
densities, Pxv)  and Pe(f) of the signal and noise at the input 
of the converter. We can make use of the fact that if a 
stationary random process with power spectral density P(fl is 
the input to a linear filter with transfer function HV), the 
power spectral density of the output random process is 
PNIH~~I’. Consequently, 

For the oversampled PCM converter, IH,(f)l= IHecf)l = 1, 
and our white noise assumption for e[n] states that P,f)  = 
U:&, which implies Peyfl  is also a:&. 

Assuming an ideal low-pass filter with cutoff frequency 

I analog p r o c e s s i n g 4  

Quantizer 1 Ts = ~ 

fS 

digital signal processing 
fs=D (ZB 

6. Oversampled PCM conversion system. 
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f B  following the oversampled quantizer, the in-bund noise 
power, U,; at the output of the A/D is 

Note that some of the noise power is now located outside 
of the signal band as a result of the oversampling, and so the 
in-band power U,; is less than what it would have been 
without any oversampling (U?). Since the signal power is 
assumed to occur over the signal band only, it is not modified 
in any way and the signal power at the output (uq2 ) is the 
same as the input signal power U?. The maximum achievable 
SNR in dB is then: 

SNR=lOlog 3 
[ o i l  

= lO1og(o~)-lOlog(o~)+lOlog - (dB)  (2J 
For the case of Nyquist rate sampling where5 = 2 6 ,  this 
formula reduces to Eq. 3, which is the SNR for the Nyquist 
rate PCM quantizer. Letting the oversampling ratio&12fB = 2', 
we obtain, 

SNR= lOlog(~~)- lOlog(o~)+3.01r  (dB) (9) 

Sampling at twice the Nyquist rate 
lfs'443 

... .S .  

c , 
O f  t t f  

43 fs 29 
A signal spectrum 

repeated versions of the signal spectrum 
required anti-aliasing filter response 

. Sampling at twice the Nyquist rate, showing the original band 
limited signal spectrum, repeated versions of the signal spectrum 
due to sampling, and an anti-aliasingfilter that is sufficient to 
band limit the signal. 

For every doubling of the oversampling ratio, i.e., for every 
increment in r, the SNR improves by about 3 dB, or the 
resolution improves by one-half bit. 

Note that in this scheme, we are trading speed for resolu- 
tion. The higher resolutions are obtained at the expense of 
requiring the internal PCM quantizer to quantize samples at 
the oversampled rate. Analog circuit complexity has also 
been traded for digital circuit complexity. The analog circuit 

complexity is simplified, since we have said the resolution of 
the intemal N bit quantizer, an analog circuit, is lower than 
that of the overall conversion resolution. 

Another benefit, which is a direct consequence of the 
oversampling, is that the analog anti-aliasing filter does not 
need as sharp a cutoff. This can be seen from Fig. 7, where a 
signal is sampled at four times the nominal signal bandwidth 
(twice the Nyquist rate). In this case, the anti-aliasing filter 
can have a transition band between fB andf,i2 as long as it 
provides very good attenuation beyond fJ2. However, a price 
is paid in the digital domain, since the digital filter must 
attenuate the remaining quantization noise power (beyond f B )  
as much as possible. In the process of filtering out-of-band 
quantization noise, any other noise that existed in the transi- 
tion band of the anti-aliasing filter prior to sampling will be 
attenuated further. The closer the low-pass filter approxi- 
mates an ideal low-pass filter, the more resources it will need. 

Finally, note that for high resolution conversion, one 
needs,& >>fB, and the signal bandwidth must be small so that 
fs does not exceed the maximum circuit speed attainable in 
the given technology. Let us use Eq. 8 for a simple calcula- 
tion. Suppose we apply a full scale sinusoid with amplitude 
V= 1 corresponding with signal power V2/2 = 0.5, as the input 
to an oversampled PCM ADC with a 20 kHz audio range 
signal band. Let the final desired resolution be 16 bits (for CD 
quality audio), which corresponds to a 98 dB SNR according 
to Eq. 4. Now, if we use an 8 bit A/D in an oversampled PCM 
scheme, i.e., if we use N = 8 in the expression for U? in Eq. 
8, we can calculate the& required for SNR = 98 dB and fB = 
20 H z .  The neededf, is 2.64 GHz! Eight bit ADCs imple- 
mented in current CMOS technology certainly can not oper- 
ate at such a high speed. 

Suppose a 12 bit internal ADC is used instead. In this case, 
the required& is about 10 MHz, an operating speed that is not 
extremely high, per se, but which is still not trivial for a 12 
bit ADC to attain. We will later see how sigma-delta modu- 
lation AID conversion allows the use of internal ADCs with 
as low as 1 bit (i.e., N = 1) of resolution to achieve an overall 
resolution of 16 bits for a 20 kHz audio bandwidth. 

Sigma-Delta Modulation A/lD Conversion 

A general way of writing the Z domain output of an AID 
converter was given in Eq. 7, as Y(z) = X(z)H,(z) + E(z)H,(z), 
where H, is the signal transfer function (STF) and He is the 
noise transfer function (NTF). For oversampled PCM conver- 
sion, we saw that H,(z) = H,(z) = 1. This need not be the case 
and, in fact, oversampled AID converters can be designed to 
incorporate noise shaping, where He is designed to be differ- 
ent from H,such that H, usually leaves the signal undisturbed 
but H, shapes the noise to allow a high resolution output [2, 
61. 

Although the term delta-sigma (AX) was used by some of 
the earliest researchers in the field [7], the term sigma-delta 
(XA) has also become almost synonymous with noise shaping 
ADCs. We will use the term sigma-delta to describe noise 
shaping ADCs. As noted, oversampling reduces the quanti- 
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8. First order sigma-delta modulator A/D system. 

zation noise power in the signal band by spreading a fixed 
quantization noise power over a bandwidth much larger than 
the signal band. Noise shaping or modulation further attenu- 
ates this noise in the signal band and amplifies it outside the 
signal band. Consequently, this process of noise shaping by 
the sigma-delta modulator can be viewed as pushing quanti- 
zation noise power from the signal band to other frequencies. 
The modulator output can then be low-pass filtered to attenu- 
ate the out-of-band quantization noise and finally can be 
downsampled to the Nyquist rate. 

The price of attaining high resolution is again a penalty in 
speed, as the hardware has to operate at the oversampled rate, 
and an increased complexity of the digital hardware. For high 
resolution conversion, the sampling frequencyhmust still be 
much greater than the signal bandwidth fB,  but, of course, not 
as great as needed by oversampled PCM conversion. 

First Order Sigma-Delta Modulation 

Operation and Performance Modeling 

A block diagram of a first order sigma-delta moduIator A/D 
system is shown in Fig 8. The system consists of an analog 
sigma-delta modulator, followed by a digital decimator. The 
modulator consists of an integrator, an internal A/D converter 
or quantizer, and a D/A converter (DAC) used in the feedback 
path. 

The signal that is quantized is not the input x[n] but a 
filtered version of the difference between the input and an 
analog representation, ya[n], of the quantized output, y[n]. 
The filter, often called the feedforward loop filter, is a discrete 
time integrator whose transfer function is z- /( 1-z-'). 

The integrator and the rest of the sigma-delta analog 
circuit are typically implemented in sampled data switched 
capacitor technology. Consequently, the sampling operation 
is not shown explicitly in Fig. 8 or any other modulator 
architectures to be described in the rest of this article. Con- 
tinuous-time versions of the modulator have also been con- 

1 

sidered [SI, but this aspect of the modulators will not be 
discussed here. The linearized model replaces the quantizer 
with a noise source, ern], as shown in Fig 8. 

If the DAC is ideal, it is replaced by a unity gain transfer 
function. The modulator output Y(z) is then given by: 

Y ( z )  = x(z)z-' + E(z)( l -  z-1) (10) 

so that H,(z) = f1 and H,(z) = (1-z-I). The output is just a 
delayed version of the signal plus quantization noise that has 
been shaped by a first order 2 domain differentiator or high- 
pass filter. The corresponding time domain version of the 
modulator output is 

y[n] = x[n - I] + ern] - e[n - 11 (1 1) 

where the e[n]-e[n-1] term is the first order difference of e[n]. 
The magnitude spectrum of a first order sigma-delta 

noise transfer function (NTF) is plotted in Fig 9a, while Fig 
9b shows the same plot in dB. The frequency axis has been 
normalized with respect to the sampling frequency, f s .  

Since H,(z) contains a zero at z = 1, i.e., at DC frequency 
on the unit circle of the Zplane, note the zero gain or infinite 
attenuation provided by the NTF at DC frequency. Note the 
large attenuation at lower frequencies and relative amplifica- 
tion at higher frequencies. For comparison, the oversampled 
PCM NTF, which has unity gain, is shown in Fig 9(a). The 
vertical bar demarcates the extent of the signal band, f B ,  where 

f B  = 0.05 fs. Quantization noise to the left of the bar that 
contributes to the finite resolution of the modulator is greatly 
attenuated while noise to the right of the bar is not attenuated 
as much or is actually amplified. However, noise to the right 
of the bar can mostly be removed with a digital low-pass 
filter. 

Let us now examine the DAC before going on to examine 
the performance of the converter. The DAC is required to be 
nearly as linear as the overall conversion resolution. Any D/A 
non-linearity can be modeled as an error source that adds 
directly to the input. This error source benefits from the 
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(a) (b) 
NTF f o r  a first order sigma-delta modulator (a)  magnitude spectrum on linear scale. For comparison, the oversampled PCM NTF, 

which has unity gain, is shown; (b) magnitude spectrum in dB. 
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0. 1st order sigma-delta responding to a DC input: ( a )  DC input x [ n l =  0.55 = 11/20. (b) modulator output y[n]; (c )  “error” signal 
u[n]; ( d )  integrator output v[n] 
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1. 1st order sigma-delta responding to various sinusoidal inputs with sampling frequency of about I MHz: ( a )  amplitude = 0.95, fre-  
quency= 20 kHz; ( b )  amplitude = 0.5, frequency = 20 kHz; ( c )  amplitude = 0.95, frequency = 40 kHz; ( d )  amplitude = 0.5, frequency 
= 40 kHz. 

Letting the oversampling ratio, fJ2h = 2', we obtain: 

SNR = lOlog(cr:) - lOlog(0:) 

oversampling but unlike e[n] ,  which models the AID quanti- 
zation error, is not subject to the noise shaping. 

Since a 1 bit DAC is perfectly linear, it is common to use 
a 1 bit DAC and a corresponding 1 bit quantizer, which is 
simply a comparator. Consequently, provided the sampling 
frequency is high enough, the sigma-delta A/D allows the use 
of a 1 bit quantizer to achieve high overall resolution. Using 
H, = z-', He = (1-f'), and the procedure used for the oversam- 
pling PCM AD, the in-band noise power (i.e., the noise in 
the frequency range [+, f B ] )  at the output of a first order 
sigma-delta modulator is 

-lOlog - +9.03r (dB)  [:I 
For every doubling of the oversampling ratio i.e., for every 

increment in r, the SNR improves by 9 dB, or equivalently, 
the resolution improves by 1.5 bits. 

Let us revisit the example considered at the end of the 
discussion on oversampled PCM. It was desired to convert a 
20 k?dz audio band to CD quality resolution of 16 bits. Using 
Eq. 13, we can compute that the required fs with a 1 bit 
internal ADC is 96.78 MHz. A 1 bit ADC or comparator can 
operate at this speed in current CMOS technology. However, 
it is not possible for the sampled data analog switched capaci- 
tor integrators to operate at such high speeds. Second order 
sigma-delta modulation can allow the use of a 1 bit quantizer, 
allowing us to meet the 16 bit 20 kHz target with a much more 
reasonable f s .  

The SNR in dB is then: 

SNR = 10 log(0;) - 10 log(02) - 10 log - [:I 
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Qualitative Time Domain Behavior 

The sigma-delta modulator can be thought of as a PCM 
converter with feedback, which attempts to force the output 
signal y[n] to be equal to the input signal, x[n]. Consider the 
case where a 1 bit A/D converter or comparator is used. The 
transfer characteristics of this 1 bit ADC with output levels V 
and -Vis shown in Fig 2c. 

Assume that V = 1, such that the comparator’s digital 
output is 1 or - I ,  so that y[n] and y,[n] can be used interchange- 
ably. In the time domain, referring to Fig. 8, we have, 

v[n] = urn - 11 + v[n - 11 (15) 

1 v[n]>O { -1 v[n]<O Y [El = 

The “error” between the modulator output and input is u[n]. 
Note that this is not the quantization error, which is given by 
e[n] = y[n] -v[n]. 

Since y[n] can take on values of 1 or -1 only, it can never 
equal the input unless the input happens to be one of these 
two values exactly. Consequently, except for the mentioned 
cases, there will always be an error, u[n] f O .  Consider a DC 
input for x[n]. When y [ n ]  = 1, y[n] is greater than the input 
x[n] and the error u[n] is negative, and so negative values are 
accumulated by the integrator to produce v[n]. After a number 
of clock cycles, enough negative values will have accumu- 
lated to cause the quantizer to produce y[n] = -1, thereby 
changing the sign of the error u[n] to be positive. The error 
between the output and input has been reduced, in some sense, 
because the positive errors will now cancel the prior negative 
errors when averaged over a period of time. 

Now with y[a]=-  1, the ei-rors will be positive, and positive 
values of the error will be accumulated again until the quan- 
tizer output changes, this time back to y[n] = l. Over a period 
of time, the proportion (or density) of 1’s and -1’s will be 
related to the DC input value-the larger the input, the more 
1’s will be present in the output, and vice versa, for smaller 
inputs. For this reason, the output of a sigma-delta modulator 
using a 1 bit quantizer is often said to be in pulse density 
modulated (PDM) format. 

Let us now illustrate the time domain behavior using a few 
examples. Fig 10a shows a DC input x[n] = 0.55 = 11/20, 
while Fig 10b shows the corresponding modulator output, 
y [ n ] .  Roughly, three fourths of the output values are l’s, and 
the others are -1’s. Fig 1Oc shows the error signal, u[n], and 
Fig 1Od shows the accumulated error signal or integrator 
output v[n]. whose sign change forces the quantizer output to 
change. For a DC input of x[n] = 1, all the modulator output 
values will be 1’s. For a zero DC input, half the modulator 
output values will be l’s, half -1’s. For a DC input of -1, all 
the values will be - 1 ’s. 

By averaging the modulator output over a period of time, 
we can approximate the input. This averaging operation 
represents the low-pass filter block in Fig. 8, since averaging 
is a crude low-pass filtering operation. Using a better low- 
pass filter will result in the modulator output being a better 
approximation to the input for a given oversampling ratio. 

Finally, let us look at some time domain examples of the 
modulator output for sinusoidal inputs. Figures I la-d show 
the modulator outputs for various sinusoidal inputs. As for 
the DC input case, the sinusoid amplitude information is 
encoded in the relative number of 1’s vs -1’s. The modulator 
output pulse pattern has periodic components, and the funda- 
mental period encodes the sinusoid frequency. This is paxticu- 
larly clear in Figs. 1 la-c. 

I m plementat ion I m perfect ions 

The results presented thus far have not considered imperfec- 
tions in the analog hardware. Let us now discuss the conse- 
quences of imperfections in some of the main circuit 
parameters. 

The integrator in the modulator may have a gain of g 
instead of unity, and may be leaky. For an input u[n], an 
integrator with gain g and leakage factor a has an output v[n] 
= g u[n-I] + av[n-11 instead of v[n] = u[n-11 + v[n-l], and 
the integrator transfer function is g z-’ /I-az-‘ instead ofz-’/l- 
2.’. 

The DIA gain may also not be perfectly unity, and assum- 
ing a gain of d, we find the STF and NTF are H, = g z /( 1+ 
(g d -a)i’) and He = 1- az-’ /(l+(g d -a)z-’ ). 

The original NTF (l-f’), which had a 2 domain zero at z 
= 1 (on the unit circle and at DC), now has a zero which is 
still at DC but is moved inside the unit circle. This degrades 
the NTF noise attenuation in the signal band and can thus 
affect the noise performance significantly. The term “leaky” 
comes from the fact that there is charge leakage in the 
switched capacitor implementation of the integrator circuit 
and only a portion of the charge from the input capacitor is 
transferred to the integrating capacitor. 

The leakage factor a is related to the open loop gain, A, of 
the operational amplifier (opamp) used to implement the 
switched capacitor integrator such that 1 - a = l/A. Ignoring 
the denominator (which will add a slight ripple to the numera- 
tor) of the degraded He, i.e., by considering the degraded NTF 
to be (l-az-’), we find the in-band quantization noise power 
with integrator leakage is: 

instead of Eq. 12. Note that the noise power now contains a 
term that is inversely proportional to the oversampling ratio, 
fs/2 f B ,  as well as a term inversely proportional to the oversam- 
pling ratio cubed. However, the first term is divided by A’, 
and it has been found that if the opamp open loop gain, A, 
exceeds the oversampling ratio, f J2h ,  leakage causes no 
significant degradation of the SNR [2]. Consequently, the 
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circuit constraint required to implement good integrators is 
not that difficult to meet unless the oversampling ratio is 
extremely high. 

From the linearized analysis, the STF and NTF pole is 
stable only for O< gd <2. Consequently, there is a relatively 
wide margin over which the two gains may vary from this 
point of view. It has been reported [2] that variations of g by 
up to 10% from unity does not degrade the SNR significantly. 
The gain is implemented in practice as a ratio of two capaci- 
tors and so the corresponding precision on the capacitor 
matching is minimal-one part in 10, or three and a quarter 
bits. 

Now consider an imperfect DAC gain, d, that is slightly 
different from unity. This can be modeled as a gain of lld at 
the input of the modulator. To see this, consider that a gain 
of l/d is inserted at the input of the integrator. This gain can 
be moved past the summing node at the modulator input in 
Fig 8. The result is that the DAC gain d is cancelled by the 
gain lld but the input now experiences a gain of lld before 
the modulator. Consequently, the STF experiences a slight 
gain change but there is no great impact on the modulator 
SNR. 

Finally, consider imperfections in the quantizer. Any non- 
linearity in the quantizer can be modeled as another noise 
source which adds to e [n] ,  the quantization error. However, 
the noise from this extra source is subject to noise shaping by 
the modulator and so its affect on SNR degradation is not 
significant. 

If the 1 bit quantizer or comparator has a non-zero thresh- 
old, vth, its output is given by: 

1 v[n]-  
-1 v[n]- y[nI= 

This is equivalent to an offset at the input of the compara- 
tor, i.e., at the output of the integrator. However, an offset vth 

at the output v[n] of the integrator corresponds to an impulse 
at its input u[n] = x[n]- y[n] which amounts to one incorrect 
output y[n] for a given x[n]. One such incorrect value will 
have a negligible impact on the overall performance of the 
modulator. The offset can also be modeled as an error source, 
with mean vrh and zero variance, that adds to e[n]. 

If for any reason, the offset is input dependent or changes 
with time, this new error source will have non-zero variance. 
However, it will be subject to the noise shaping property of 
the modulator just as e[n] and its presence will not degrade 
the performance of the modulator significantly. 

Non-linear Behavior 

A sigma-delta modulator is a non-linear system incorporating 
feedback. Not surprisingly, the modulator may display limit 
cycle oscillations that result in the presence of periodic (tone) 
components in the output. This phenomenon is analogous to 
limit cycles that occur in digital IIR filters operating with 
finite precision arithmetic, because, like a sigma-delta modu- 
lator, such a filter is a non-linear system that employs feed- 

back. The quantizer error spectrum is not white, which is not 
surprising as the conditions for the white noise assumption 
are not perfectly satisfied-the quantizer has only two output 
levels, and due to the oversampling, successive quantizer 
input samples may be correlated. 

Now consider the existence of limit cycles in the modula- 
tor, as has been done in [9] for the simple case of a DC input, 
x[n] = x. For a limit cycle of period T, v[n] should be periodic 
with period T, i.e., v[n] = v[n+T]. This clearly implies that 

For the DC input, the input to the integrator, u[n] = x -y[nl, 
will likewise be periodic with period T. Thus, the modulator 
behavior can be represented by T equations. 

Combining Eqs. 15 and 17, weobtain: v[n] -v[n-1] =x[n-I ]  
-y[n-11, which for a DC input becomes v[n] -v[n-11 = x 
-y[n-11. Writing this equation for T different time instances 
starting (arbitrarily) at n = 1, and adding up all these equa- 
tions we obtain, 

Y [nl = Y rn+Tl. 

1=0 I=O 

However, v[n=v[O] by assumption, and consequently: 

V ( P - M )  
T 

1 T-1 

l=O 
x = - ~ y [ l ]  = - 

where P is the number of positive quantizer outputs over T 
output samples, and M is the number of negative quantizer 
outputs over T output samples. Since ( P  -M) is an integer as 
is T by assumption, we have x = bV1a , with a and b integers. 
Thus, the output y consists of a limit cycle with period T, 
provided that x is a rational multiple of V. 

The limit cycle with period T will manifest itself in the 
output spectrum as tones present at frequency L/T and its 
harmonics. The period is T = 2a if a or b is even. T = a if both 
a and b are odd [ 111. For the prior example of x = 11/20 in 
Fig 10, a = 20 and b = 11, and as can be seen in the figure, 
u[n], v[n], and y[n] do have the expected period of 40. 

For the special case of x = 0, the output oscillates between 
V and -V and the output spectrum consists of a pure tone at 
512. More complete results, which are independent of the 
integrator initial condition, v[O], are provided in [9, 10, 121. 
In fact, it is shown in [ 101 and [ 121 that even if the DC input 
is an irrational multiple of V, the quantization noise will not 
be white and the spectrum at the output of the modulator will 
be discrete, consisting of tones. 

Even for sinusoidal inputs, the quantization error is not 
white and strong tone components are observed in the output 
and the strength of the tone distortion components depends 
on the input amplitudes in a complicated way [ 141. The tone 
structure present at the output of the modulator for very low 
DC or sinusoidal input amplitudes is often called idle-channel 
noise. 

One other point is worth noting. It can be shown that for 
comparator output levels of 5 V, the output of the integrator 
can have magnitude of at most 2Vif the input to the modulator 
is bounded by t V [ 141. This is easily seen from Eqs. 15 and 
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12. NTF for first, second, and third order sigma-delta modulators. (a)  Magnitude spectra on linear scale. For comparison, the oversam- 
pled PCM NTF, which has unity gain, is shown; (6)  magnitude spectra in dB. 
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13. Second order sigma-delta modulator. 

17, from which we have v[n] = x[n-11 - ('yEn-11 -v[n-ll), 
which is v[n] = x[n-1] - e[n-11. If we assume Iv[n-l]l c2V,  
then from the transfer characteristic of the 1 bit quantizer (Fig. 
2c), le[n-111 <V, i.e., the quantizer is not overloaded. We then 
have, Iv[n]l = Ix[n-1] - e[n-111 G Ix[n-111 + le[n-111 4 V+ V =  
2V. Thus if 1x1 G V and Iv[n-111 62V, then lv[n]I < 2V. This 
can be guaranteed by ensuring that lv[O]I 2V, so that Iv[l]l 
Q 2V, and so on. 

In practice, because of the significant tone structure pre- 
sent at the output of a first order sigma-delta ADC, it is rarely 
used in applications such as speech or audio, where the 
prasence of such tones is objectionable even if the oversam- 
plipg ratio, 5/2f~, is high enough to provide a good overall 
SNR based on the linearized white noise model. 

Higher Order Sigma-Delta Modulation 

The fundamental ideas presented can be extended to create 
sigma-delta architectures in a variety of ways that provide 
different tradeoffs among resolution, bandwidth, circuit com- 
plexity, and modulator stability. Our discussion will include 
higher order, multi-bit, and multi-stage (cascaded) architec- 
tures. In general, to obtain a performance improvement, most 
of these converters require analog circuits that need to be 
more complex and precise than those used in the 1st order 
sigma-delta modulator. Of course, the precision required 
must still be significantly less than the overall high conver- 
sion resolution. 

Second Order Modulation 

Operation and Pe$ormance Modeling 
The standard 2nd order sigma-delta modulator A/D is widely 
used. This modulator realizes H,(z) = i' and &(z) = (l-if')', 
so that 

The second order modulator noise transfer function (NTF) is 
shown in Fig 12 along with the NTFs for the first order 
modulator and the third order modulator (a logical extension 
of the second order modulator which will be discussed later). 

Note that, compared with the first order sigma-delta NTF, 
the second order NTF provides more quantization noise sup- 
pression over the low frequency signal band, and more am- 
plification of the noise outside the signal band. Compared 
with a f i s t  order sigma-delta, more noise power is pushed 
outside the signal band. 

A block diagram of the modulator is shown in Fig. 13. The 
structure now contains two integrators. The transfer function 
of the first one is Ul-z? and that of the second one is z'I1-z '. 
Assuming the modulator output is filtered by an ideal low- 
pass filter, the linearized white noise model yields the follow- 
ing for the in-band SNR: 

-10 log( $1 + 50 log[&-] (dB)  

Again, letting&/2fB = 2', we obtain: 

SNR = lOlog(o2) - lOlog(o:) 

-lOlog - +15.05r (dB)  [J  (23) 

Thus, for every increment in r or for every doubling of the 
oversampling ratio,fDfB, the SNR improves by 15 dB, or the 
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14. Simulation of a 2nd order modulator (a)  power spectrum of the modulator output before decimation: (b )  in-band SNR vs amplitude 
of input sinusoid. 

equivalent resolution by 2.5 bits, which is 1 bit better than the 
improvement achieved by a first order sigma-delta. 

Now consider the example used previously where a 20 
lcHz audio band needs to be converted to a resolution of 16 
bits. T h e 5  needed by a 2nd order sigma-delta modulator 
using only a 1 bit quantizer is, from Eq. 22, only 6.12 MHz 
in contrast with the 96 MHz needed by the 1st order sigma- 
delta. This circuit speed is very reasonable in current CMOS 
technology. 

Fig 14a shows the low frequency portion (0 to 40 kHz) of 
an FFT based power spectral density estimate of the output 
of a 2nd order modulator with a sinusoidal input frequency 
of 9.3 kHz and& of 6.20 MHz. The tall peak is, of course, the 
sinusoidal signal. Notice the noise shaping whereby the noise 
at lower frequencies is greatly attenuated. Such power spectra 
are often used to numerically calculate the in-band SNR. 
Here, the in-band SNRs are computed over the 20 kHz audio 
band. The SNR computation can be repeated for various 
sinusoid amplitudes to obtain a plot of in-band SNR vs 
amplitudes. This plot is shown in Fig 14b. 

The dashed curve corresponds to the values which are 
obtained from the linearized white noise model SNR formula 
(Eq. 22). The discrepancy between the two plots will be 
discussed later. The dynamic range, R, can be determined 
from the in-band SNR vs amplitude plot by looking at the 
amplitude value for which the SNR is 0 dB. The peak SNR 
is about 90 dB and R is about 88 dB which, from Eq. 5, yields 
an equivalent resolution, N, of 14.32 bits. 

Qualitative Time Domain Behavior 
In the time domain, referring to Fig. 13, we have, 

Figures 15a and b show plots of a DC input, x[n] = 0.55, 
and the resulting output, y[n] ,  of a second order sigma-delta 
modulator. The input and output of the first integrator are 
ul[n], and vl[n], respectively, while the input and output of 
the second integrator are u2[n], and v2[n], respectively. The 
“error” between the modulator input and output is ul[n], 
which again is not the quantization error (given by e[n] = y[n] 
-v2[n]). Looking at u2[n], we see that it is the difference 
between an integrated (or low-pass filtered) version, vl[n], of 
the modulator “error,” ul[nI, and the output, y[n].  Thus, uz[n] 
can be considered to be a more fine or accurate version of the 
modulator error. The signal which is quantized, vz[n], is an 
integrated version of the “fine error,” u2[n]. Consequently, 
ul[n], and vl[n] are analogous to the u[n] and v[n] of the 1st 
order modulator. Outputs u2[n] and vz[n] are more accurate 
representations of ul [n] and v ~ [ n ] ,  and thus produce an output 
y[n],  which is more accurate than the output of a 1st order 
modulator. This should be clear from comparing Fig 15c with 
Fig 15e and Fig 15d with Fig 15f. 

In comparing y[n] of the second order sigma-delta of Fig. 
15b to the y[n] of the first order sigma-delta of Fig. lob, the 
key point is that the distribution of 1’s and -1’s in Fig. 15b is 
such their average provides a more accurate representation of 
the input than the corresponding average of the first order 
modulator output. In other words, for a given block of output 
samples, the second order modulator uses its allocation of 
samples more efficiently to represent the input. 
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Implementation Impegections 
Compared with a first order sigma-delta modulator, a second 
order modulator contains an extra integrator. Assuming the 
same leakage factor, a , for both integrators, the degraded 
NTF is approximately (1- a ~ - l ) ~ .  The leakage factor of the 
second order integrators can satisfy somewhat less stringent 
requirements than that of the first order modulator integrator. 

One might expect this since despite the NTF zeros being 
moved inside the unit circle, there are still two of them 
providing attenuation of quantization noise. The reduced 
requirement on the second order modulator integrator leak- 
age factors can also be seen if one calculates the in-band noise 
power, U,:, from the (l-az-')* NTF. 

The noise term inversely proportional to the oversampling 
ratio, fs/2fEi, is now divided by A4 rather than A2, as was the 
case for the first order modulator in Eq. 18. Consequently, a 
lower op-amp gain can suffice for the second order modulator. 

The other parameter to consider is the gain of the second 
integrator. From the linearized analysis, the STF and NTF 
poles are stable for integrator gains up to 413, and so still allow 
a relatively wide variation from this point of view. 

Simulations indeed show that the integrator gains are 
relatively insensitive to deviations from their nominal values 
over a wide range of oversampling ratios [ 81. 

Non-linear Behavior 
Like the 1st order sigma-delta modulator, a second order 
modulator may also display limit cycle oscillations [2,9], and 
this is easily illustrated in a manner similar to that used for 
the 1st order modulator. The nature of these limit cycles has 
been investigated and unlike the first order modulator de- 
pend on the initial conditions of the integrator outputs [9, l l]. 

Most of the exact analyses, e.g., [13-151, which provide 
an exact description of the spectrum of the quantization error 
and the modulator output for DC or sinusoidal inputs, have 
been performed for second order modulators using quantizers 
with 2 or more bits. In fact, a 1 bit quantizer used in a 2nd 
order modulator can become overloaded, thereby making the 
analysis much more difficult. The quantizer is overloaded 
because the output of the second integrator can significantly 
exceed values of 22V [2] even with the modulator input 
bounded by the quantization levels +- V. This is particularly 
true for large modulator inputs near the quantization levels. 
However, it has been determined from simulations that a 
modified 2nd order architecture [5] using a 1 bit quantizer 
can operate without the integrator outputs having to signifi- 
cantly exceed values of ?2V. 

The spectral properties of overload noise have not been 
theoretically characterized but simulations have been re- 
ported in the literature [16, 171. The simulations demonstrate 
that the noise significantly manifests itself as harmonic dis- 
tortion tones for sinusoidal inputs as well as significant tone 
components nearh12. 

As with the first order sigma-delta, idle channel tones may 
be observed for small DC or low amplitude tone inputs. 
According to the linearized model (Eq. 22), U: is fixed and 
the SNR should increase linearly with signal power a:. 

However, due to the presence of overload or idle channel 
tones, the SNR of a second order modulator, using a 1 bit 
quantizer, increases linearly with signal power only over a 
certain range of signal power even though the modulator 
input may be between the quantization levels * V. More and 
more overload noise power is produced with increasing input 
values. Consequently, above a certain value of high signal 
power, the SNR will actually start to decrease when the 
increase in overload noise power dominates the increase in 
signal power. 

This can be seen in Fig 14b for input amplitudes greater 
than about -5 dB. On the other hand, as the input power 
becomes low, the SNR decrease is caused both by the de- 
crease in signal power and by the presence of idle channel 
tone noise in the signal band. This can be clearly be seen in 
Fig. 14 for low amplitude values. 

According to Eq. 22 based on the linearized white noise 
model, the peak SNR and dynamic range should have been 
about 98 dB. Thus, idle channel tone problems, resulted in a 
10 dB degradation of the dynamic range predicted by the 
linearized model while overload noise prevented the modu- 
lator from reaching the peak SNR predicted by the model. 
Dithering techniques [ 171 will often break up tone structures 
including overload and idle channel tones, thereby producing 
a smoother power spectrum output, a more linear dependence 
of SNR on signal power, and a dynamic range, which is closer 
to the value predicted by Eq. 22. 

Another factor which affects the in-band SNR is the 
sinusoid input frequency. This is particularly true if the 
sinusoid amplitude is such that strong harmonic distortion 
components are produced in the power spectrum output. In 
this case, the choice of a higher input frequency will result in 
these harmonics falling outside the 20 kHz bandwidth and 
not contributing to the in-band SNR. On the other hand, the 
choice of a lower input frequency will yield poorer values of 
in-band SNR because the harmonics will now fall inside the 
20 kHz signal band. 

Other Types of Higher Order 
Sigma-Delta Modulation 

Sigma-delta converters realizing higher order NTFs achieve 
even higher resolution by pushing even more noise power 
outside the signal band. Alternatively, a lower sampling rate 
can be used to achieve the same resolution for a given signal 
bandwidth. In this case, the speed requirements on the analog 
hardware is relaxed. 

An order L modulator based on a straightforward exten- 
sion of the first order sigma-delta realizes a STF given by H, 
= i' and a NTF given by He = (1 -z- ' )~ ,  which contains L zeros 
at z = 1 or at DC frequency on the unit circle. A third order 
modulator structure can be created from the second order 
structure of Fig. 13 by inserting an integrator with transfer 
function 1/( I-$) between the the summing node of the modu- 
lator input and the first integrator of the second order modu- 
lator. The input to this new integrator is now x[n]-y[n] and 
the output of this integrator minus y[n] is fed as the input to 
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6. An example of a fourth order modulator topology. 

what used to be the first integrator of the second order 
modulator. 

The magnitude spectra for a third (L = 3) order NTF plotted 
on a linear scale and in dB are shown in Figs. 12a and b. Note 
that over the signal band, which is 0.05fs in the figure, the 3rd 
order NTF provides more attenuation of the quantization 
noise than the second or first order NTFs and so is capable of 
pushing more noise power outside the signal band than the 
second or first order modulators. The ideal in-band S N R  
achieved by an Lth order modulator is given by 

sNR=1010g(0~)-1010g(0~)-1010g 

+(20L+lO)log ~ (dB)  (9 
Thus, for every doubling of the oversampling ratio, this 

modulator provides an extra (6L + 3) dB of S N R ,  or an extra 
(L+ 1/2) bits of resolution. For the CD example used through- 
out this article, a 3rd order modulator will need a& of 1.92 
MHz to convert a 20 kHz band to 16 bits of resolution. 

Modulator topologies are not constrained to always realize 
FIR NTFs as we have seen until now or to realize all the NTF 
zeros which provide attenuation at DC frequency. In fact, 
distributing the zeros over the signal band rather than placing 
them all at DC frequency can be more efficient in pushing 
quantization noise outside the signal band. 

Examples of higher order topologies are described in 
[18-211. One such fourth order topology described in [19] is 
shown in Fig 16, where Zk(z) denotes the kth integrator. This 
structure realizes Eq. 7 in the form 

Note that the STF and NTF are IIR transfer functions in 
this case. The feedforward coefficients sk  realize B1, which 
contains the Z domain zeros of the STF. The feedback coef- 
ficients nk between every second integrator realize Be, which 
contains the zeros of the NTF. Finally, the feedback coeffi- 
cients ak realize A,  which contains the poles of both the STF 
and the NTF. 

In order to implement Eq. 25, based on a sigma-delta 
modulator that incorporates feedback, the zo coefficient in Be 
andA must be equal to ensure a causal feedback loop (in other 
words to avoid non-computable delays, [3, pp. 308-3091). If 
the NTF is FIR, i.e., if A(z) = 1, then the causality constraint 
will require the zo coefficient of B(z) to be 1. 

Note that the performance will be limited by the degree to 
which the analog coefficients a k ,  s k ,  and n k ,  match their desired 
values. For the modulator to be useful, the degree of required 
matching should be significantly less than the overall resolu- 
tion of the converter. 

Higher order architectures also alleviate some of the tone 
problems mentioned earlier [2, 181. The main difficulty with 
such higher order structures is that such modulators are only 
conditionally stable when an one bit quantizer is used. Stabil- 
ity may for example depend on the input signal being kept 
below a certain value or on precise circuit matching needed 
to satisfy a stability criterion. Stability is often described in 
the sense of the quantizer not being overloaded. This is useful 
because any higher order modulator structure can be trans- 
formed into an equivalent modulator in the form of the 1st 
order modulator of Fig 8 with the integrator being replaced 
by a general “loop filter” H(z). If the quantizer is not over- 
loaded, its input is bounded by ?2V, and this implies that the 
loop filter is also operating in a stable manner and all internal 
signals will be bounded. Stability is, in general, difficult to 
determine for a modulator using an 1 bit quantizer. One 
reason is the difficulty in characterizing the gain of the 1 bit 
quantizer. The gain of the 1 bit quantizer of Fig. 2c is 
variable-it depends on the quantizer input. The smaller the 
quantizer input, the larger is its gain (e.g., if the input is zero, 
the output is V and the gain is infinite). The larger the 
quantizer input, the smaller is its gain (e.g., if the input is 
infinite, the output is V and the gain is zero). Another way of 
looking at this is to observe that if one attempts to linearize 
the quantizer transfer curve of Fig. 2c by trying to fit a straight 
line to the curve, the correct slope of the straight line is 
arbitrary. 

As we have seen earlier, the input to the quantizer clearly 
changes with time, even if the input to the modulator is a DC 
signal. The manner in which the quantizer gain changes over 
time will also depend on the type of input applied to the 
modulator. Consequently, performing a linear system analy- 
sis of the modulator signal and noise transfer functions in 
terms of modulator parameters is inadequate because the 
poles of the transfer function, which determine stability, 
depend on a time varying and input dependent quantizer gain. 
An attempt to characterize the quantizer gain more accurately 
for DC and sinusoidal inputs has been made for several 
modulators [22]. 

The phenomenon of limit cycle oscillations is also con- 
nected to stability. This is because the structure of limit cycles 
may be such that the amplitude of internal modulator vari- 
ables is large, causing the quantizer to overload. The fre- 
quency of such a deleterious limit cycle oscillation can 
correspond to the point on the unit circle where the modulator 
transfer function pole crosses the unit circle into the unstable 
region. Properties of limit cycles in the context of stability 
have been investigated in [ 111. A limit cycle that corresponds 
to the modulator transfer function pole moving from the 
inside to the outside of the unit circle may not necessarily 
result in unstable behavior in the long term, provided integra- 
tor outputs do not saturate before stability is restored [23]. 

76 IEEE SIGNAL PROCESSING MAGAZINE JANUARY 1996 



Suppose an unstable limit cycle, corresponding to poles 
moving outside the unit circle, results when the quantizer gain 
is too high, i.e., when the input to the quantizer is small. If 
this is the case, growing signal values in the modulator which 
result from this instability will eventually increase the input 
to the quantizer thereby reducing its gain and so moving the 
poles back inside the unit circle [23]. 

One way to guarantee stability would be to reset the 
integrators if it was detected, by additional circuitry, that their 
values were becoming too large. However, this approach may 
cause a significant decrease in the SNR [24]. Similarly, 
allowing integrator outputs to clip or saturate may also cause 
degradations in the SNR performance. In particular, low 
frequency limit cycles which may introduce distortion com- 
ponents in the signal band may occur (albeit with reduced 
values of integrator output) and may persist for a long time 
thereby reducing the SNR [23]. An alternative approach uses 
local feedback loops in an attempt to gracefully return inte- 
grator outputs to their normal operating region [24]. Since the 
linearized transfer function of the system is modified due to 
the local feedback loops, the effect of these loops is cancelled 
in the digital domain. 

Several quantitative criteria have also been proposed to 
characterize stability. The 11 norm criterion [14, 25, 261 
relates the sum of the magnitudes of the modulator NTF 
impulse response coefficients, the number of bits in the 
quantizer, and the modulator input level to the no overload 
stability requirement. This is a sufficient but not necessary 
condition for stability, and it has unfortunately been found to 
be too conservative for practical use. An ad-hoc stability 
criterion which has been proposed [ 181 and found to be useful 
[21] is to design the NTF to possess less than 2 to 6 dB of 
out-of-band gain. 

Multi-bit Sigma-Delta Modulation 

Until now, we have assumed that the quantizer and DAC 
inside our sigma-delta modulator were 1 bit devices. How- 
ever, converters using a multi-bit internal quantizer offer 
more potential resolution from the internal quantizer. A 2nd 
order multi-bit sigma-delta converter would look exactly the 
same as the modulator shown in Fig. 13, except that ern] in 
the figure would be the model for an N bit quantizer instead 
of a 1 bit quantizer, and the DAC would be an N bit DAC 
instead of a 1 bit DAC. The use of a multi-bit quantizer affects 
the U: term in the expressions for the SNR, where each 
additional bit used in the quantizer will yield a 6 dB improve- 
ment in the SNR. Using Eq. 3 without the approximation, it 
is easy to see that if a 5 bit internal quantizer is used instead 
of a 1 bit quantizer, a 30 dB improvement in SNR is possible. 
Alternatively, the sampling frequency can be reduced by a 
factor of 4, while keeping the resolution the same. For our 
CD example, a 2nd order modulator using a 5 bit internal 
quantizer can use afs of 1.53 MHz, rather than thefs of 6.12 
MHz needed by a modulator using a 1 bit quantizer. 

The behavior of multi-bit sigma-delta systems more 
closely follow that predicted by the linearized model (in the 

extreme case, if the quantizer has an infinite number of bits, 
there is no non-linearity). Consequently, the stability of 
higher order modulators using multi-bit quantizers is gener- 
ally more accurately predicted. Another way of viewing 
enhanced stability is to consider the gain of the multi-bit 
quantizer. If a midtread multi-bit quantizer is used, its gain is 
relatively close to one for most output values (even for zero 
input, a midtread quantizer will have a zero output and hence 
unity gain unlike the midriser 1 bit quantizer, which has 
infinite gain for a zero input). This is because a straight line 
drawn through the multi-bit quantizer transfer characteristic 
(e.g., Fig. 2b) can no longer be arbitrarily drawn. Of course, 
if for any reason the quantizer does start to overload, its gain 
will start to deviate more and more from unity. Even though 
the ZI stability criterion mentioned earlier may be too conser- 
vative, it may allow one to obtain an initial idea about the 
number of bits needed for stable operation for a given NTF 
and input signal level. 

Modulators using multi-bit quantizers also display less of 
the tone problems associated with the 1st and 2nd order 
sigma-delta converters using a 1 bit internal quantizer. The 
main disadvantage is that the multi-bit DAC cannot be easily 
fabricated in VLSI with sufficient linearity needed for high 
resolution conversion. Various techniques, examples of 
which can be found in 127-331, have been proposed to reduce 
the linearity required for the DAC. The multi-bit output also 
complicates the digital low-pass filter hardware following the 
modulator, because for multi-bit processing, the filter re- 
quires multi-bit hardware multipliers. 

Multi-stage (Cascaded) 
Sigma-Delta Modulation 

Higher order "IFS can also be created by cascading inde- 
pendent modulator stages. This cascading does not adversely 
affect the stability of the overall modulator, provided the indi- 
vidual stages are stable. They may also suffer fewer of the tone 
problems than a fist  or second order sigma-delta alone [2, 141. 

An example of a second order modulator obtained by 
cascading two 1st order modulators is shown in Fig 17. The 
signal x[n] is the input to the first modulator in the cascade 
but the quantization error, eI[n], of the first modulator is used 
as the input to the second modulator. Finally, the outputs of 
the first stage and second stage modulators are added in the 
digital domain after passing through a digital delay (z-') and 
a digital differentiator (1 -z-'), respectively. 

From the Z domain analysis of the linear system model 
with the DACs replaced by unity gains, we have, 

Y*(z) = El(z1Z-l + Ez(Z)(l- z-l) (27) 

The output is computed as Yl z-' - Yz(1-z-'). This sum 
results in a cancellation of the first order noise term El(z) to 
produce the overall output, 
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1st order modulators. 

Except for the sign on the noise that is irrelevant and an extra 
delay experienced by the input, the modulator realizes the 
same output as the standard second order sigma-delta modu- 
lator. One advantage of using this structure over the second 
order modulator is the fact that the quantizer in either of the 
first order modulator sections will never overload for x[n] 
bound by 2V.  However, the cascaded structure requires 
matching between the analog and digital transfer functions as 
well matching among the D/A output levels among various 
stages [2,34]. In fact, mismatch effects and integrator leakage 
can lead to the propagation of unshaped or poorly shaped 
noise from an earlier section to the final output [36,40]. 

Assume there are circuit imperfections in the "1-1" cas- 
cade of Fig. 17, such that the transfer function of the integrator 
in the first section is g z-'/ ( l -a f ' )  instead of z-'/ (1-z-'). Even 
if we assume the integrator in the second stage is ideal, the 
output is then 

The first term of the equation contains the signal, which is no 
longer a pure delay but will have a ripple to it determined by 
the factor g/(l -(g-a)z-'). However, since the signal is over- 
sampled, this additional signal transfer function will mostly 
be flat at lower baseband frequencies. Ignoring the ripple due 
to the factor I/( 1 -(g-a ) z-I), the second term in Eq. 29 is the 
unshaped noise from the first stage, the third term in Eq. 29 
is the first order shaped noise from the first stage, and the 
fourth term in Eq. 29 is the desired second order shaped noise 
term. Clearly, for large imperfections, the unshaped noise 

term might dominate the noise term subject to second order 
noise shaping. If more than two stages are cascaded, the 
cumulative effects of such quantization error leakage effects 
will yield diminishing returns in performance improvement. 

Architectures using only first order modulators have been 
realized [35], as have architectures using second order modu- 
lators [37-391. A comparison of some architectures can also 
be found in [40]. Finally, note that due to the addition of 
various single bit intermediate outputs, the architecture has a 
multi-bit final output, which complicates the decimation filter 
hardware. 

Band-pass Sigma-Delta Systems 

Thus far, we have assumed that the sampling frequency& is 
much greater than the Nyquist rate, which is twice the highest 
frequency component in the input signal. For low-pass sig- 
nals, the highest frequency component is also the signal 
bandwidth fB. If a signal with bandwidth fB is band-pass but 
is located at a center frequency,&, its highest frequency isfc 
+ fd2. If fc is large, choosing5 to be much greater than the 
highest frequency will lead to an unreasonably large&, and 
does not take advantage of the band-pass nature of the signal. 

Band-pass sigma-delta modulation [41] allows high reso- 
lution conversion of band-pass signals if & is much greater 
than the signal bandwidth fB, rather than the highest signal 
frequency. Band-pass sigma-delta modulators can be used in 
AM digital radios [41] or receivers for digital cellular mobile 
radios [45]. 

Real Band-pass Modulation 

Unlike low-pass sigma-delta modulators, which realize NTF 
zeros at DC or low frequencies on the unit circle of the Z 
plane, band-pass modulators have NTFs that realize zeros or 
notches in the signal band of interest, Ifc 5 / 2 ,  fc + f~/2].  
Consequently, quantization noise that occurs over the signal 
band is attenuated, and noise power is pushed outside this 
band. Regardless of where the signal band is centered, the 
smaller the signal band&, relative to the sampling frequency, 
fs, there is less in-band noise power for a given NTF. Noise 
outside the signal band can be attenuated with a digital 
decimation filter and so high resolution conversion is possible 
for large oversampling ratios fJ2f~. The modulator STF and 
the decimation filter will typically have a band-pass charac- 
teristic, providing unity gain over the signal band. 

As an example, the NTF and STF magnitude spectra for 
the design in [42] are shown in Fig 18a. In this example, the 
signal band has a center frequency of f c  = 455 kHz,& = 3 MHz, 

fB = 20 kHz, so the oversampling ratio is 75. Figure 18a shows 
the magnitude spectra in dB of H, ,and He. Figure 1% shows 
a closeup view of the magnitude spectrum in dB of He over 
the 435 kHz to 475 kHz region. The vertical bars delineate 
the 20 kHz signal band centered at 455 kHz. The NTF is sixth 
order, and as should be clear from Fig. 18b, contains three 
notches or zeros, which provide attenuation of the quantiza- 
tion noise over the 20 kHz signal bandwidth (the other three 
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18. Band-pass sigma-delta: ( a )  magnitude spectra in dB of Hn (the STF, dashedplot), and He (the NTF); (b) closeup of the magnitude 
spectrum in dB of He. 
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19. Zplane zeros f o r  ( a )  second order real FIR NTF; (b) second order complex FIR NTF. 

zeros are complex conjugates of these). The STFis band-pass 
and has minimal ripple and is approximately linear phase in 
the signal band. Band-pass converters employing Lth order 
modulators display a SNR performance that improves at the 
rate of (3L + 3) dB per octave increment with the oversam- 
pling ratiof,/2f~ 1421. 

Complex Band-pass Modulation 

Most band-pass sigma-delta converters [43-451 use real 
NTFs. Thus, all the coefficients in the Z domain transfer 
function are real. Let us now discuss the idea of complex 
band-pass NTFs, which have been proposed independently 
in [46] and [47]. The use of complex NTFs can improve the 
resolution that can be obtained for real band-pass signals [47]. 
The reason for this improvement is best illustrated through 
an example using second order FIR NTFs. 

Figure 19a shows the unit circle on the Zplane containing 
zeros for a real second order FIR NTF. We find it more 
convenient to use the discrete time frequency w = 27rf/fs 
instead offin our discussion. A real NTF realizing a zero at 
center frequency w= wc is constrained to also realize one at 

For a signal bandwidth wb consider the attenuation of the 
NTF at half the bandwidth away from the zero, that is, at oc 
- wd2. This attenuation is given by the product of the magni- 
tude of the vectors vr1 and vr2, i.e., by Ivd  x Ivrd The smaller 
this product, the better the attenuation provided by the NTF, 
and the better the quantization noise suppression over the 
signal band, hence a better SNR will be obtained. 

Vector vrl represents the contribution from the zero at wcr 
and vr2 represents the contribution from the zero at -wc. In the 
figure, the distance between wc and wc -wd2 has been exag- 
gerated-in practice, high resolution can be obtained only if 

-wc. 
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the signal is narrowband and this distance is small. As the 
center frequency oc increases, V,Z increases as well, and the 
attenuation provided by the NTF becomes worse and so there 
will be less quantization noise suppression. 

For the complex case, the zeros of a second order FIR NTF 
with both zeros located at a center frequency w ,  are shown 
in Fig. 19b. The attenuation at wc-wb/2 is given by the quantity 
I vCl x I vc I ,  which depends only on O b  and not on wc, as there 
is no influence from a zero at -U,. Consequently, the attenu- 
ation provided by the complex NTFs does not suffer any 
degradation with increasing center frequency. Therefore, at 
higher center frequencies, complex NTFs can provide more 
attenuation in the signal band, i.e., better quantization noise 
suppression and so a better SNR than a real transfer function. 
Complex band-pass converters employing Lth order modula- 
tors display a SNR performance which increases at the rate 
of (6L + 3) dB per octave increment in the the oversampling 
ratio fs/2fB. This is in contrast to the (3L + 3) dB rate of 
improvement for Lth order real band-pass modulators. 

Having discussed the complex NTF, we now discuss the 
implementation of a complex 2nd order modulator with a 
band centered at 0,. Such a modulator can be generated by 
modulating the 2 domain NTFs and STFs of a standard 2nd 
order modulator with the transformation z I-+ z-lexp(jw,) = 
z ‘exp 0’ 2nfc lfs). A block diagram of such a system obtained 
from Fig. 13 with the above transformation is shown in Fig. 
20. Notice, for example, that the integrator z /( 1 - z-’) of Fig. 
13 is replaced with the integrator ( z-’ e”.)/( 1 -eJWc z-l ), 
which will have complex inputs and outputs consisting of real 
and imaginary parts. S u c k a m p k x  integrator can be physi- 
cally reaIized in switched capacitor technology using two 
cross coupled integrators [48]. Note there also need to be two 
physical quantizers, E, and E,, one for the “real” channel and 
the other for the “imaginary” channel. The Z domain output 
of the complex modulator is given by 

VZ) = [ X ,  ( z )  + j X J  (z)lz-’ exp( jo , )  

+LE,(Z)+JE,(Z)I[~-Z-~ ~ x P ( J ~ , ) I ~  (30) 

1 + eJ%z-’ - YIbl 

l -eJWcz- l  -+ l-e’Wcz-’ 0 .  
YJ 

The STF is no longer a pure delay but contains the phase 
factor eJWc However, this phase factor can be compensated 
digitally by multiplying the output of the complex modulator 
with the complex constant e-’“ to obtain the phase compen- 
sated output. The phase compensated output is Yc(z) = 

phase compensation real ~~~.............~~~~ output computatior 

< A 

1. Complex BP sigma-delta modulation of a real input signa1,fol- 
lowed by phase compensation and computation of a real output. 

Y(z)e-jwc . For a real input signal, we have xl[n] = 0 and Xj (z) 
= 0 so that x[n] = x,[n] and X(z) = X,(z). In this case, 

where Ydz) = Ydz) + j yJc(z). 
Y,(z) consists of a signal term Xr(z) z l ,  which we have 

assumed results from a real signal, plus the shaped quantiza- 
tion noise term. From Eq. 3 1, we can also see that in the time 
domain, the signal component in yJn] is x,[n-11. However, 
yc[n] will still be complex because of the complex noise and, 
accordingly, the spectrum of yc[n] = yJn] + j yJn] will not 
be symmetric. A real output can be obtained without disturb- 
ing the signal or altering the SNR by considering the final 
output to be y J n ]  -~,~[n]*h,[n] where h, is the impdse re- 
sponse of an ideal Hilbert transformer, H,(z). In the 2 domain, 
the final output is then [Ylc(z)-yJc(z)Ht(z)]. This operation 
amounts to keeping only positive frequencies (discarding 
negative frequencies) with the Hilbert transformer and then 
taking the real part to make the spectrum symmetric by 
folding the positive frequencies on to the negative frequency 
axis. 

The phase compensation and computation of the real 
output are shown in Fig. 21 where c = cos( w,) = cos(2 nfc/&) 
and s= sin(w,) = sin(2nfcK). Decimation of the sigma-delta 
output and demodulation of the band-pass signal to baseband 
are not shown here. 

Note that in the case of a real input signal, the imaginary 
channel of the modulator is not directly connected to the input 
signal. One could feed x,[n] into the imaginary channel input 
as well. This has the benefit of resulting in a f i  gain of the 
STF which in principle will result in a 3 dB improvement in 
signal power. However, simulations show that with the input 
being fed to the imaginary channel, the quantizers overload 
much more often and the increase in quantization noise does 
not merit the gain in the signal power. 

Parallel Sigma-Delta Systems 

The use of parallelism for PCM A D  conversion has been 
considered in [49] and [50]. This section very briefly dis- 
cusses several schemes that use architectural parallelism to 
improve the performance of sigma-delta modulators AD 
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2. Multi-band sigma-delta system architecture for P = 4 chan- 
nels. 

3. Two channel time interleaved conversion using 1st order 
sigma-delta modulators. 

converters. For a given signal bandwidth, modulator order, 
and sampling frequency, these architectures can attain higher 
resolution. The cost of realizing the improved performance 
lies clearly in the extra hardware needed for each parallel 
channel. 

Multi-band Sigma-Delta Modulation 

One architecture [5 11 uses modulators that realize different 
band reject NTFs for different portions of the signal band. 
Each band (channel) is converted in parallel. A bank of FIR 
filters attenuates the out-of-band noise for each band and can 
achieve perfect reconstruction of the signal component as- 
suming that the modulator STF is a simple delay [52]. 

A block diagram of the system architecture for four chan- 
nels is shown in Fig. 22, where i b f k  denote the modulators, and 
Fk(z) and G(z) comprise the digital filter bank. Using Lth 
order complex band-pass modulators, assuming equal sized 
bands, and assuming the quantization errors from the differ- 
ent channels to be mutually uncorrelated, the total in-band 
noise power, a,:, at the output of the reconstructed signal is 

where f B  is the total signal bandwidth converted, f c  = fB/P is 
the bandwidth per channel, P is the number of channels, and 

I '  
u,bI 

4. Hadamard modulated sigma-delta A/D conversion system. 

a: is the quantizer noise power in any one modulator. The 
SNR improves at a rate of (6L + 3) dB, or the resolution by 
( L  + 1/2) bits per octave increment in the oversampling ratio 
per channel, 5/2fc. The SNR and resolution also improve at 
rates of (6L) dB, and L bits, respectively, per octave incre- 
ment in the number of channels, P. 

Time Interleaved Sigma-Delta Modulation 

Another method for incorporating parallelism into sigma- 
delta converters is through time interleaving [53]. This archi- 
tecture employs ideas of block filter theory to use P identical, 
mutually cross coupled, modulators running at a sampling 
rate5 to generate the same modulator transfer function, which 
runs at an equivalent sampling rate of PA. The block diagram 
for a two channel system using 1st order modulators running 
in each individual channel is shown in Fig 23. Note that 
downsampling the signal can result in aliasing, but the choice 
of the cross coupling terms ensure that the aliasing is can- 
celled in the final output for the ideal system. 

If Lth order low-pass sigma-delta modulators are used in 
each channel, the ideal in-band SNR improves by (6L + 3) 
dB, or the resolution by L + 1/2 bits per octave increment in 
the number of channels, P, since each octave increment in P 
amounts to an octave increment in the oversampling ratio of 
the modulators. 

Hadamard System 

Another parallel sigma-delta system has been described in 
the literature [54] recently. Here, each channel contains a 
Hadamard modulator, which multiplies the input signal by a 
?1 sequence, uk[n]. This operation is called Hadamard 
modulation. 

The Hadamard sequences are obtained from repeating the 
rows of the Hadamard transform matrix. The Hadamard 
modulated sequence of each channel is then quantized using 
a standard sigma-delta modulator. The output of each sigma- 
delta modulator is filtered to attenuate out-of-band noise, and 
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again multiplied by a Hadamard sequence before all the 
channel outputs are added to provide the final output. 

The block diagram of the system is shown in Fig 24, where 
ko is assumed to be the delay in the S lT  of the sigma-delta 
modulators. The overall effect of the system on the signal is to 
filter it with a subset of the filter coefficients of H(z). The 
relevant H(z)  coefficients affecting the signal can be chosen such 
that the STF experiences a delay, while the other coefficients can 
be chosen to maximize the quantization noise attenuation. 

The quantization error does not see the first Hadamard 
sequence and the effect of the second Hadamard sequence 
modulation is to frequency shift the filtered quantization error 
power spectral density. Using Lth order low-pass sigma-delta 
modulators, the SNR using this approach improves by (6L) 
dB or the resolution improves by L bits per octave increment 
in the number of channels P. 

Applications Using Actual 
Sigma-Delta Converters 

We now present some applications using actual sigma-delta 
converters that have been fabricated in VLSI. The purpose 
here is to provide a sense of the final performance achieved 
by the converters as to resolution and bandwidth, rather than 
to compare them with respect to theoretical performance or 
to the multitude of other performance criterion (power, area, 
topology, technology, etc.). To aid the resolutionbandwidth 
evaluation, we use the abbreviation osr for the oversampling 
ratio, &l2f~, where f s  is the signal bandwidth and fs is the 
sampling frequency. To provide an overview of the convert- 
ers discussed here, we have included all the converters in a 
common format in the Table. 

Data conversion for instrumentation applications may re- 
quire resolutions up to 19-20 bits, albeit at low bandwidths. 
One such converter used in instrumentation transducers [55] 
uses a 5th order modulator topology with a 6  = 128 kHz (os7 

= 128) to a achieve a 118 dB dynamic range, or more than 19 
bits of resolution over a 492 Hz bandwidth. Similarly, a 

converter that is used for seismic activity measurements uses 
a 128 kHz sampling rate with an osr of 128, achieving more 
than 120 dB peak S N R ,  or almost 20 bits of resolution over 
about a 500 Hz bandwidth [56j. A 4th order topology is used. 
Note that for extremely high resolution such as reported here, 
the quantization noise floor approaches the level of circuit 
noise for state of the art technologies. Thus, very careful 
circuit design and optimization is required to fully take ad- 
vantage of the potential performance that can be realized by 
the sigma-delta ADC. 

Sigma-delta converters are good candidates for voiceband 
(speech) applications where the signal bandwidth is 4 kHz 
and 13-14 bits of resolution is desirable. One such converter 
[57] actually used a single bit 1st order modulator with& = 4 
MHz, or an OST- of about 500 to achieve a 79 dB dynamic 
range, i.e., about 13 bits of resolution. Dithering was required 
to alleviate the tone problem associated with the first order 
modulator. Another converter [58j also achieved 13 bits 
resolution using afs = 1.024 MHz with an osr of 128. The 
modulator used is a standard second order modulator employ- 
ing a 1 bit quantizer. 

Digital audio applications such Hi-Fi CD and DAT sys- 
tems often use sigma-delta A D  converters. Consumer quality 
Hi-Fi audio needs to be digitized at 16 bits of resolution, and 
audiophiles prefer up to 18-20 bits of resolution. Many con- 
verters have been reported in the literature for audio band- 
widths of 20-24 kHz. A high resolution audio range converter 
was reported as early as 1986 and achieved a dynamic range 
of 106 dB, or almost 18 bits of resolution over a 24 kJ3z 
bandwidth using a fourth order modulator and 4 bit internal 
AID and D/A converters [59]. The sampling frequency used 
was 6.144 MHz with an osr of 128. Another converter that 
also uses a fourth order modulator to convert a 24 kJ3z 
bandwidth achieves near 16 bit dynamic range using single 
bit quantizers with an osr of 64 or & = 3.072 MHz [60j. Audio 
band conversion has also been performed by a standard 2nd 
order modulator with a 4 bit internal ADC and DAC. The 
converter achieved nearly 16 bit peak SNR for a 20.5 kHz 
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bandwidth using an osr of 128, or fs = 5.25 MHz [30]. Finally, 
an architecture consisting of a cascade of second order and a 
first order modulator and employing 1 bit quantizers achieves 
nearly 17 bit performance for a 25 kHz bandwidth, also using 
an osr of 128 with a&= 6.4 MHz [39]. 

A sigma-delta converter has also been used as a receiver 
input of an ISDN U-interface 2B 1Q access rate receiver [16]. 
The converter attains a dynamic range of 89 dB, or a resolu- 
tion of 14 bits, for a 40 kHz bandwidth. A standard 2nd order 
modulator was used with a 1 bit quantizer running at a 10.24 
MHz sampling frequency, and an osr of 128. Another con- 
verter [37] used for a similar ISDN U-interface consisted of 
a cascade of a 2nd order modulator, followed by a 1st order 
modulator. The resolution was 13 bits, using afs of 2.56 MHz, 
i.e., an osr of 32. 

A sigma-delta ADC has been used as the baseband con- 
verter for a digital cellular radio that required a moderately 
higher bandwidth of 100 kHz [61]. The converter produced 
15 bit peak resolution by using a three stage cascade employ- 
ing three 2nd order modulators running atfs = 3.25 MHz. The 
osr was about 16. 

At somewhat higher bandwidths, high resolution conver- 
sion has been attained for 160 kHz and 250 kHz bandwidths. 
The 160 kHz bandwidth converter achieves a dynamic range 
of 96 dB, or nearly 16 bit performance using a cascade of 
second and first order modulators that employ 1 bit quantizers 
[38]. The sampling rate i s h  = 20.48 MHz and the resulting 
osr is 24. The 250 kHz bandwidth converter achieves 14 bit 
resolution using a 4th order modulator using a 1 bit quantizer 
[20]. The osr is 32 and thus thefsis 32 MHz. 

At high conversion bandwidths of about 1 MHz, a 12 bit 
converter has been realized with an osr of about 24, and afs 
of about 50 MHz [62]. The converter uses a cascade of second 
order and first order modulators. The second order modulator 
used in the first stage employs a 1 bit quantizer, while the 1st 
order modulator used in the second stage utilizes a 3 bit 
internal ADC and DAC. Such a converter can find use in data 
acquisition for ultrasound imaging systems. 

Finally, sigma-delta ADCs have been integrated with 
digital signal processor (DSPs) to provide a single chip data 
conversion/ computation engine solution. Sigma-delta ADCs 
require relatively imprecise analog circuits and digital deci- 
mation filtering, thus making them good candidates for fab- 
rication using digital technology such as CMOS. The task of 
decimation can be handled entirely by a DSP or shared by a 
DSP and some extra digital hardware dedicated to performing 
a portion of the decimation. 

Conclusion 

We have reviewed the basic principles of A/D conversion 
with sigma-delta modulators. The techniques of oversam- 
pling and noise shaping allows the use of relatively imprecise 
analog circuits to perform high resolution conversion using 
only a 1 bit A/D converter. Oversampling reduces the amount 
of quantization noise power present in the signal band, and 
noise shaping further attenuates quantization noise in the 

signal band, thereby pushing noise power to out-of-band 
frequencies. The use of analog filtering combined with feed- 
back around the 1 bit A/D can be used to implement the noise 
shaping sigma-delta modulator. The noise power that is 
pushed outside the signal band can be attenuated by a digital 
filter such that it has no further effect on the signal. 

Various sigma-delta architectures exist and many of these 
have been used in applications such as instrumentation, 
speech and Hi-Fi audio digitization, ISDN and digital cellular 
radio. Sigma-delta techniques are also applicable to the high 
resolution A/D conversion of narrowband band-pass signals 
using band-pass sigma-delta modulators. Parallel sigma- 
delta systems offer the potential for extending high resolution 
operation to larger signal bandwidths than currently possible 
with single channel systems. 
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