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Abstract
A systematic design methodology for high-performance gain-boosted opamps (GBOs) is presented. The
methodology allows the optimization of the GBO in terms of ac response and settling performance and is
incorporated into an automatic computer-aided design (CAD) tool, called GBOPCAD. Analytic equations
and heuristics are first used by GBOPCAD to obtain a sizing solution close to the global optimum. Then,
simulated annealings are used by GBOPCAD to find the global optimum. A sample opamp is designed by this
tool in a 0.6-μm CMOS process. It achieves a dc gain of 80 dB, a unity-gain bandwidth of 836 MHz with 60o

phase margin and a 0.0244% settling time of 5 ns. The sample/hold front-end of a 12-bit 50-MSample/s
analog–digital converter was implemented with this opamp. It achieves a signal-to-noise ratio of 81.9 dB for a
8.1-MHz input signal.
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GBOPCAD: A Synthesis Tool for High-Performance
Gain-Boosted Opamp Design

Jie Yuan, Student Member, IEEE, Nabil Farhat, Life Fellow, IEEE, and Jan Van der Spiegel, Fellow, IEEE

Abstract—A systematic design methodology for high-perfor-
mance gain-boosted opamps (GBOs) is presented. The method-
ology allows the optimization of the GBO in terms of ac response
and settling performance and is incorporated into an automatic
computer-aided design (CAD) tool, called GBOPCAD. Analytic
equations and heuristics are first used by GBOPCAD to obtain
a sizing solution close to the global optimum. Then, simulated
annealings are used by GBOPCAD to find the global optimum.
A sample opamp is designed by this tool in a 0.6- m CMOS
process. It achieves a dc gain of 80 dB, a unity-gain bandwidth
of 836 MHz with 60 phase margin and a 0.0244% settling time
of 5 ns. The sample/hold front-end of a 12-bit 50-MSample/s
analog–digital converter was implemented with this opamp. It
achieves a signal-to-noise ratio of 81.9 dB for a 8.1-MHz input
signal.

Index Terms—Doublet, equation based, gain boost, gain-boosted
opamp computer-aided design (GBOPCAD), global optimum,
stability, high-speed opamp, opamp synthesis, sample/hold (S/H)
front-end, simulated annealing (SA).

I. INTRODUCTION

THE operational amplifier is one of the most fundamental
components in analog integrated circuit design. It is the

critical component that, in most cases, is responsible for the per-
formance of switch-capacitor circuits. The demands for high-
performance CMOS analog circuits increased dramatically in
recent years, especially for digital–analog interface circuits [1],
due to the emergence of system-on-chip (SoC). In recent years,
considerable efforts have been spent on the design of CMOS
analog–digital converters (ADCs) with higher sampling rates
and resolution [2]–[4]. One of the essential tasks in all these
efforts is to provide a high-performance opamp with high gain
and bandwidth, and fast settling time.

High-speed opamps use only one stage to reduce the para-
sitics in order to achieve a high bandwidth. Telescopic opamps
and folded-cascode opamps are commonly used for this purpose
[19]. In order to achieve a high gain with high bandwidth, a gain
boosting technique [5] is normally incorporated by exploiting
the principle of the regulated-cascode stage [6]. However, the
existence of a doublet can unfavorably delay the settling process
of the gain-boosted opamp (GBO) [5], [7]. On the other hand,
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the effort of reducing the effect of the doublet can raise a sta-
bility problem. Our work will show that the complex conjugate
pole pair reported in [8] and [9] eventually pushes the system
into instability. Therefore, it is necessary to optimize the design
of GBO for its transient performance.

Many computer-aided design (CAD) tools [10]–[17] have
been developed for analog circuit synthesis, especially for
opamp synthesis. A generic analog synthesis CAD tool usually
includes seperate steps of topology selection and circuit sizing.
Some tools, such as DARWIN [10], uses genetic algorithms
to combine these two steps during the synthesis. However,
the overhead of computation time would be tremendously
increased, in order to find a real globally optimal solution.
Besides, a small number of possible topology candidates can
be chosen relatively easy by an experienced synthesis system,
based on the coded heuristics and the previous designs, just as
experienced circuit designers do. Therefore, we believe that a
system including individual sizing routines for different topolo-
gies, with a topology selection process based on heuristics, is a
more viable choice for practical analog synthesis CAD tools.

In terms of circuit sizing, three essential issues, which are
accuracy, global optimality and computation time, have to be
properly addressed in the design of practical analog synthsis
CAD tools.

Equation-based approaches[11]–[14] rely heavily on simpli-
fications of circuit equations and device models. Using spe-
cial optimization techniques for equations, such as geometric
programming in [11], these tools can solve the optimization
problem in minutes. However, although the simplified equations
can show the first or second order behavior of circuits, higher
order effects, which can be rather important for CMOS pro-
cesses in the deep-micro range, are usually neglected. As a re-
sult, the optimal solution out of equation-based CAD tools can
deviate substantially from the real circuit optimum. In order to
obtain solutions with better accuracy, a long preparatory period
is usually required to derive better-performing equations, which
undermines the justification of this type of approach.

Simulation-based approaches [15][16][17] resolve the accu-
racy problem by directly using SPICE for circuit evaluation.
Tools, like DELIGHT.SPICE in [15], use gradient-based opti-
mization techniques, which makes them capable of finding only
local optimal solutions. In order to find the global optimum for
circuits, simulated annealing (SA) is used in [16] and [17]. As
introduced in [18], in theory, with sufficiently large annealing
times, SA is able to find the global optimum within the design
space, regardless of the inital condition. However, the design
space is usually rather complicated for most real design prob-
lems. It is difficult to design an adaptation process for plain SA,

1057-7122/$20.00 © 2005 IEEE
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Fig. 1. TGBOP structure.

without any knowledge of the circuit, to settle to the exact global
optimum, which leads to the pessimistic assertion in [11] about
SA. In order to increase the chance of reaching the global op-
timum, long annealing runs are used by these CAD tools.

A new automatic synthesis tool, GBOPCAD, is proposed in
this paper by combining the characteristics of equation-based
approaches and that of the simulation-based approaches, so as
to gain the benefits of both methods, while avoiding their short-
comings. In our approach, a good sizing solution, which is close
to the global optimum, is found by using algorithms based on
equations and heuristics at first. SA is then carried out on the
basis of this good initial condition, which enables the tool a
higher probablity of reaching the global optimum. GBOPCAD
is currently a synthesis tool for the design of high-performance
GBO. The tool is built on a GBO design methodology, which
we proposed at the circuit part of this paper. We believe that,
the proposed tool GBOPCAD can be included into an analog
synthesis system for the design of high-performance opamps.

The remainder of the paper is organized as follows. The cir-
cuit fundamentals and the design methodology will be intro-
duced in Section II. The implementation environment and the
design context will be described in Section III. The development
of GBOPCAD, accompanied by a sample TGBOP design will
be covered in Sections IV and V. The GBOPCAD design results
of the sample opamp will be shown in Section VI. Section VII
gives concluding remarks.

II. CIRCUIT FUNDAMENTALS AND DESIGN METHODOLOGY

A. Gain Boosting Technique

The GBO employs two amplifiers: the main opamp and the
gain boosting opamp (GBAmp). In Figs. 1 and 2, a telescopic
GBO (TGBOP) and a folded-cascode GBO (FGBOP) are given,
respectively. The dc gain of TGBOP can be expressed as

(1)

Fig. 2. FCGOP structure.

Fig. 3. Ideal gain-frequency chart of the GBO.

where is the dc gain of GBAmp. Hence, the ideal effect
of the GBAmp is to improve the output impedance by
times, which boosts the dc gain by the same amount.

The ideal gain-frequency chart of the GBO is shown in Fig. 3.
At the low-frequency end, because the output impedance of the
opamp is improved times by the GBAmp, the dominant
pole at the opamps output node will be times lower in
frequency

(2)

where is the dominant pole frequency of the main
opamp. Also, the loads at the ouput node of GBAmps are usu-
ally small, which will have the gain-frequency characteristic
of GBAmps to be a first-order rolloff. Ideally, on the dB–dB
plot, the high-frequency performance of the GBO remains
unchanged from that of the main opamp, except for a higher
dc gain and a lower dominant pole as shown in Fig. 3. This
characteristic enables GBOs to achieve high bandwidth and
high gain at the same time.
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Fig. 4. ac performances with different GBAmp compensations.

B. Higher Order Effects

However, the characteristic of the GBAmp has significant in-
fluence on the transient performance of the opamp. There are
two potential problems that can affect the performance of the
GBO.

As mentioned in [5], when the bandwidth of GBAmp is not
excessively high, there exists a doublet at the unity-gain fre-
quency of the GBAmp . The doublet can be detrimental
for the settling performance of the opamp, although it might not
be easy to spot the existence of doublet on the opamps ac char-
acteristic charts, as discussed in [7]. A common solution would
be to push the doublet to a higher frequency.

However, at the high frequency, this effort can potentially lead
to an instability problem. When the doublet is pushed near the
nondominant pole of the main opamp , [8] and [9] re-
ported the generation of a pair of complex conjugate poles. The
attempt to push this pair of poles to higher frequencies would
reduce the phase margin (PM) of the circuit.

To study these two effects, we plotted the ac and transient
characteristics of GBO for different bandwidthes of GBAmps
in Figs. 4 and 5. In Figs. 4 and 5, the same GBAmp is subjected
to different compensations, which changes the bandwidth of the
GBAmp accordingly. Using Matlab simulation, the major pole-
zero evolution of GBO can be inferred, as shown in Fig. 6.

For large compensation, or when is as low as at position
A in Fig. 6, the doublet can be seen moving up in frequency as

increases. In this phase, the settling time reduces as
increases. When the doublet moves to a higher frequency, a pair
of complex conjugate poles is generated, as reported in [8] and
[9]. Further increasing can push the complex conjugate
pole pair up along the real axis, which continues reducing the
opamps settling time. At the same time, however, it also pushes
the poles away from the real axis, which gives way to oscilation
in the time domain. Beyond some point, such as B, the pair starts
to move back along the real axis while it continues moving away
from the real axis. During this phase, the envelope settling time
starts to increase instead, as does the oscilation frequency for the
transient output. The dampened oscilation shows its way when
the envelope settling time becomes longer than the oscillation
period, such as at position C.

Fig. 5. Settling performances with different GBAmp compensations.

Fig. 6. Pole–zero evolution of GBO with ! .

Hence, there exists an optimal position in terms of the opamps
settling performance. As a result, the design of the GBO need
to include an optimization process to push up the doublet while
keeping the system stable. A small compensation capacitance of
several hundred femto-Farads is used for the GBAmp to manage
the optimization process.

C. Design Methodology

Based on the studies in previous sections, a three-step design
methodology can be followed for the design of GBOs.

Due to the decoupling of gain and bandwidth, the main opamp
is designed during the first design phase. The objective in this
design phase is to reach the constraints of bandwidth , PM,
voltage swing (VS), and the slew rate (SR).

During the second design phase, the two GBAmps are de-
signed. The objective in this design phase is to reach the gain

constraint, and to optimize the GBAmp for highest non-
dominant pole position , which is used potentially to
achieve a high bandwidth for GBAmp and to leave room for
the settling performance optimization in the next phase.
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Fig. 7. S/H front-end.

Fig. 8. GBAmp circuit.

The last design phase is dedicated for opamp settling per-
formance optimization. The objective in this design phase is to
achieve the best settling performance of the GBO.

III. IMPLEMENTATION ENVIRONMENT

The differential GBO is designed for a sample/hold (S/H)
front-end of a 12-bit 50 Ms/s ADC, as shown in Fig. 7. There-
fore, we will use Fig. 7 as a test bench for the final opamps tran-
sient performance testing. The circuit is designed in a 0.6- m
CMOS process, with a supply voltage of 5 V. The differential
signal swing range is V V.

We choose the TGBOP topology of Fig. 1 for our design.
However, the general rules of the methodology can readily be
extended to the FGBOP shown in Fig. 2. In order to fulfill
the dc level constraints, a folded-cascode structure is used for
GBAmps, as shown in Fig. 8. In order to reduce the capacitive
load at the output, a continuous CMFB circuit, Fig. 9, is used
in our design.

The synthesis tool, GBOPCAD, is written in Perl. Although
the language is slow in speed compared to C, it gives us flexi-
bility on inter-process operation under UNIX. Hence, it serves
well as a prototyping tool. We use HSPICE as the evaluation tool
for our design. GBOPCAD runs on a Sun Blade 1500 work-
station, with a 1-GHz UltraSPARC IIIi processor and 2 GB
memory.

Fig. 9. Common-mode feedback circuit.

TABLE I
SAMPLE SPECIFICATIONS FOR HIGH-PERFORMANCE GAIN-BOOSTED OPAMP

IV. OVERVIEW OF GBOPCAD

A. Specification Conversion

Like most previously introduced CAD tools, such as
GPCAD [11], OPASYN [14], DELIGHT.SPICE [15] and
ASTRX/OBLX [16], GBOPCAD employs an optimiza-
tion-based analog sizing approach for synthesis. Therefore, as a
first step, the specifications of the synthesis problem should be
transformed into the contraints for a contrained-optimization
problem. Then, the constraits should be coded to formulate a
cost function for the optimization problem.

In Table I, a sample of the specifications for high-perfor-
mance GBO are listed. According to the applications, the spec-
ifications can be transformed into contraints in two categories.

1) Strong Constraints: These are the constraints that the de-
sign must meet. For example, is usually a strong
constraint, because below this margin, the circuit is prone to be
unstable. During the optimization process, once a sizing config-
uration is found to fail any strong constraint, the configuration
will be rejected immediately.

2) Weak Constraints: These are the constaints that the de-
sign should try to meet at its best effort. For example, for many
applications, mW can be a weak
constraint. The design goal of these applications is actually to
obtain the minimal power consumption, on achieving the other
specifications.

The classification of the two constraint types are important
because different types of contraints will be codified differently
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in the formulation of the cost function. However, the classifica-
tion result is application specific. For certain applications, band-
width can be of paramount importance. Then, the bandwidth
specification will be a strong constraint, and the power specifi-
cation can be a weak constraint, as in the example above. How-
ever, for other applications, to achieve a specified low power
consumption might be important, then, the power specification
becomes a strong constraint, while the bandwidth can become
a weak constraint.

B. Cost Function Formulation

The cost function of the constrained-optimization problem is
generally formulated as (3). The objective of the problem is to
maximize the cost function in the design space of

(3)

Here, are the collective codified strong constraints, and
are the collective codified weak constraints.

The codification of strong constaints is relatively easy, as
shown in (4).

if strong constraint is not met
if strong constraint is met.

(4)

However, the codification of weak constraints needs more
discussion. Some previous work [16], [17] codified the weak
constraints into exact equations. The advantage of this method
is that the cost function can be measured in numerical values
for any configuration. However, the problem is that circuit de-
signers do not always feel comfortable at the idea of comparing
bandwidth with power consumption, unless they are forced to.
In other words, the exact way of codification can be contentious.
Hence, in GBOPCAD, we resort to a different approach. We
transform all the specifications into strong constraints, except
one. With only one weak constraint, the cost function simplifies
to (5)

if any strong constraint is not met
if all strong constraints are met.

(5)

Here, is the direct variable in the weak constraint, such
as bandwidth, or power consumption.

The only occasion that this cost function formulation method
generates significantly different solutions than the previous
method is when all the design specifications can not be met at
the same time. At these moments, it would make more sense
to have a circuit designer be actively engaged in changing to
a new process, a new circuit topology, or recalculating the
specifications, rather than leaving a programmed equation to
make decisions.

C. GBOPCAD Fundamentals

As described in Section I, equation-based tools can find an
optimized solution in a short computation time, while their re-
sults are either inaccurate or not globally optimal. On the other
hand, simulation-based tools can provide more accurate circuit
results and have a better chance of finding the global optimum,
at the cost of longer computation time, which can grow quickly

TABLE II
SPECIFICATIONS FOR TARGET S/H FRONT-END

with circuit complexity. The complementary nature of the two
methods tantalizes us trying to combine the two methods. Al-
though it is difficult to design a generic way to combine them,
effective tools can be built specific to individual topology.

In GBOPCAD, SPICE is used to evaluate the performance
of each sizing configuration to guarantee the accuracy. We
also notice that analytic equations are valuable assets from
previous experiences. Therefore, we use them as guidance for
our adaptation process. Based on the equations and heuristics,
we developed optimization algorithms, with groups of adaption
rules, specific to the circuit under optimization. Because these
algorithms are basicly based on equations, which eliminates
large number of impossible configurations from being evaluated,
they can find a good solution in a short time, in the order of
10 minutes for our implemenations. Although this solution is still
crude, since all the space for possible “optimal” configuration
has been sampled, there is a good chance that the global optimum
locates close or has a close value to this good solution.

In the next step, GBOPCAD uses SA to search for the true
global optimum. With a good starting point, SA has a better
chance to find the global optimum in a short time.

V. GBOPCAD DETAILS

GBOPCAD takes the opamp specifications as input, and gen-
erates an optimal sizing solution to meet the specifications. For
our application, however, extra preparation need to be taken to
convert the specifications for the S/H front-end in Fig. 7 to those
for the opamp.

The specifications for S/H front-end are shown in Table II.
From the resolution and sampling rate specifications in Table II,
one finds that the opamp is required to settle to 0.0244% in 10
ns. If we make a conservative clock budget, the slewing process
is allowed to last 5 ns, the overhead of clock skew is 2 ns and
sampling clock is 1 ns ahead of the phase clocks, the opamp
should linearly settle to 0.0244% in 2 ns. This results in a time
constant of the opamp of 0.24 ns, according to (6), [19]. The
unity-gain bandwidth of the opamp can easily be calculated,
from (7), to be 663 MHz with the feedback factor

(6)

(7)

If the differetial input signal sampled by C1–C2 is during
the sampling phase in Fig. 7, the output voltage is given by (8),
during the hold phase. In order to achieve 12-bits accuracy of
the output value, the error of the output voltage should be less
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TABLE III
OPTIMIZATION-ORIENTED CONSTRAINTS FOR MAIN OPAMP

than half LSB. Therefore, the opamp is required to achieve a
gain larger than dB

(8)

Hence, the opamp specifications listed in Table I are indeed
the target specifications for our design.

A. Main Opamp Design

1) Optimization Problem Formulation: As described in
Section II, the objective in this design phase is to achieve the
specifications of unity-gain frequency , PM, VS, and SR of
the main opamp. We also need to budget power consumption
for each component in the GBO. The SR specification and
the external load sets the lower bound of the biasing current
for the main opamp in (9), which will be 2 800 V/ s 2
pF 3.2 mA. Therefore, we assign 20 mW to the differential
stage of main opamp, 4 mW each to the differential stages of
the two GBAmps in Fig. 8. The remaining 20% of the power
is to be assigned to the CMFB circuits in Fig. 9 and biasing
circuitry. As a result, the optimization-oriented contraints for
the main opamp are listed in Table III

(9)

The biasing and CMFB circuitry are not performance deter-
mining components, although wrong configurations can lead to
failure of the opamp. In GBOPCAD, they can be either chosen
from the library or provided by users. The optimization is fo-
cused on the differential pair, as shown in Fig. 10.

The independent design variables in this optimization
problem are W’s and L’s of MN1, MN3, MP1 and MP3, the
gate voltages Vout1’s (Voutn1, Voutp1), Vout2’s (Voutn2,
Voutp2) of the cascode transistors MP3 and MN3, and the
biasing current I.

2) Algorithm Description: For the differential pair in
Fig. 10, we have performance equations in (10) & (11). Based
on the equations, of MN1-MN2 need to be increased to
optimize . The nondominant pole of the differential pair
need to be maximized, which requires minimal transistor sizes
to reduce parasitics

(10)

(11)

The major optimization procedure for the main opamp is
shown in Fig. 11. It includes three major modules. The Bias
Adapt module generates the minimal sizing configuration for
the transistors to stay in the specified operation region under

Fig. 10. Main opamp optimization problem.

Fig. 11. Main optimizer for main opamp.

an external biasing condition. The voltage swing (VS) Adapt
module is to optimize the sizing configuration for the VS
specification. For the main opamp problem, the Metrics-related
Parameters Adapt (MPA) module is to optimize the sizing
configuration for PM and Bandwidth constraints. Inside of each
funtional module, a group of rules are designed based on the
previous introduced equations and heuristics.

The optimizer in Fig. 11 optimizes the problem in the design
space of transistors MN1, MN3, MP3 and Vout1, Vout2, in an
efficient way, which takes less than 1 minute for one run of the
routine. At the outside of the optimizer, MP1 is sampled to find
the best global solution, since there is no applicable heuristics
available for the determining of MP1. The biasing current I steps
up gradually in trying to minimize the power if possible. The
complete procedure for main opamp design is given below.

Algorithm 1: Main Opamp Design
INPUT: PM constraint , VS
constraint VS, minimal biasing current , maximal biasing
current , allowed biasing range of each transistor BIAS,
external bias voltage and load ENV;
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TABLE IV
OPTIMIZATION-ORIENTED CONSTRAINTS FOR GBAmp1

Fig. 12. Optimization problem of GBamp1.

OUTPUT: an optimized solution with W’s and L’s for every
transistor, Vout1, Vout2 and .
0. ;
1. if , then Completes;
2. minimal allowed;
3. optimzer (I, , BIAS, ENV, , VS);
4. if , then ;
5. increased;
6. if CHECK yes, then goto 3;
7. ; goto 1.

In the implementation of this routine, large granules are used
in the adaption processes of MP1 and I to save computation
time, because simulation annealing will follow this routine to
fine the solution. At the meantime, because the MP1 and I space
are globally sampled during this routine, the resulted solution
should have a better chance to be close to the global optimum.

After running of this routine, several runs of plain SA with de-
creasing granule-size are followed. The annealing process stops
when the resulted cost function stablizes.

B. GBAmp Design

1) Optimization Problem Formulation: As described in Sec-
tion II, the objective in this design phase is to achieve the gain
specification and maximize the nondominant pole posi-
tion of GBAmp . After the main opamp design, the gain
of the main opamp will be reduced from to ob-
tain the gain constraint for GBAmp . Because the dc
output voltages of GBAmps are actually Vout1 and Vout2 in the
main opamp, they have to be kept close to the optimized value
found in the previous design phase. A sample of the possible
constraints for the optimization problem of GBAmp1 is given
in Table IV.

Again, the optimization focus is on the differential part in
Fig. 12. The independent design variables in this optimization
problem are W’s and L’s of MN1, MN3, MN5, MP1 and MN3,

Fig. 13. Main optimizer for GBamps.

the gate voltages VB2, VB3 of the cascode transistors MP3 and
MN3, and the biasing current I.

2) Algorithm Description: The gain of the opamp in Fig. 12
is given in (12). Thus, the gain can be adjusted either by in-
creasing of MN1-MN2 or by increasing the transistor sizes
in the cascode stack to improve . However, both efforts tend to
lower the position of the nondominant pole. Therefore, the joint
design space of the two efforts are sampled to find the optimal
sizing

(12)

The major optimization procedure for GBAmp is shown in
Fig. 13, which is similar to that for the main opamp. The Bias
Adapt and VS Adapt modules are responsible for similar func-
tions as those in the main opamp optimizer. The VOUT Adapt
module is used to tune the opamp into the allowed output voltage
range. The Metrics-related Parameters Adapt module adapts the
opamp for the gain and constraints. Again, groups of rules
are designed based on equations and heuristics inside of each
functional module.

The optimizer in Fig. 13 optimizes the problem in the design
space of W’s of MN1, MN3, MN5, MP1, MP3 and VB2, VB3,
with a given and bias current I1 and I2. Then, the L’s of the
cascoding stack are stepped through to provide the stack with
different output resistance. Because the power consumption of
GBAmps is not critical for the total power of the GBO, the max-
imal biasing current will be chosen to provide the GBAmps with
best possible and . The complete routine for the de-
sign of GBAMP is given below.

Algorithm 2: GBAmp Design
INPUT: gain constraint , VS constraint VS,
maximal biasing current , allowed biasing range of each
transistor BIAS, external bias voltage and load ENV;
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TABLE V
MAIN OPAMP OPTIMIZATION RESULTS

OUTPUT: an optimized solution with W’s and L’s for every
transistor, V2B, V3B and .
0. ;
2. L minimal allowed;
3. optimzer (I, L, BIAS, ENV, , VS);
4. if , then ;
5. L increased;
6. if CHECK(L) yes, then goto 3;
7. Completes.

Again, a sequence of plain SA with decreasing granule-size
follows this routine to fine the optimal sizing solution.

C. Settling Performance Optimization

The objective of the last design phase is to adjust the com-
pensation of GBAmps for the optimal transient response of
the GBO. Therefore, GBOPCAD assembles the previously
designed main opamp and GBAmps into a GBO. The S/H
front-end in Fig. 7 is used as the test-bench for this design
phase.

VI. OPTIMIZATION RESULTS

In this section, GBOPCAD is used to optimize for the opamp
with the specifications given in previous sections.

First, the routine in Section V.A is followed to design the main
opamp with constraints in shown Table III. In 8 minutes, a sizing
solution is found, as listed in the middle column in Table V.
Then, several runs of SAs are carried out. The annealing process
completes after 4 rounds, when the annealed results of two suc-
cessive runs varies less than 0.1%. The final optimized result for
the main opamp is in the right column of Table V.

In this experiment, dozens more annealing runs are used
to search for possibly a better “global optimum.” However,
no better solutions are found. Therefore, the final solution in
Table V has a good probability to be the global optimal sizing
configuration for the constraints in Table III. As we can see,
the proposed main opamp design routine is able to generate a
solution close to the global optimum within a short computation
time.

Next, the GBAmp design routine is followed to compute the
optimal transistor sizes for GBAmp1, with optimization con-
straints generated in the way introduced in Section V.B. The op-
timized results after the design routine are listed in the middle
column of Table VI. The results of the found global optimum
after SA are shown in the right column of Table VI. The design

TABLE VI
GBAMP1 OPTIMIZATION RESULTS

TABLE VII
GBAMP2 OPTIMIZATION RESULTS

Fig. 14. Settling time changes as a function of compensation capacitance (or
bandwidth) of GBAmp.

results for GBAmp2, after the GBAmp design routine and SAs,
are shown in Table VII.

Next, the GBO is assembled with the designed main opamp
and GBAmps. The S/H front-end in Fig. 7 is subjected to a
differential rectangular input signal with amplitude of V
to test the opamps transient performance under worst slewing
condition. GBOPCAD adjusts the compensation capacitors of
GBAmps to find the optimal settling position. A measurement
of the relationship between the compensation capacitors of
GBAmp and the 0.0244% settling time of the opamp is shown
in Fig. 14. Because the slewing time is difficult to identify
during the measurement, the settling time in Fig. 14 is actually
the result of both slewing and linear settling. A window of
relatively low settling time exists as seen from the measure-
ments. Outside this fast-settling window, the settling process is
found to be rather slow. This justifies the inclusion of the final
transient performance optimization phase by the GBOPCAD.
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TABLE VIII
CHARACTERISTICS OF FINAL DESIGNED GAIN-BOOSTED OPAMP

Fig. 15. Frequency characteristics of the final designed GBO.

The fundamentals of this behavior has been discussed in Sec-
tion II. Also, the window has a fair size and a relatively flat
floor. This enables the designs from GBOPCAD to be robust
against temperature and process variations for applications. For
our optimized opamp, the optimal 0.0244% settling time is 5
ns, including slewing and linear settling.

By now, a GBO design has been completed by GBOPCAD.
The final optimized opamp achieves the characteristics in
Table VIII. The frequency response of the opamp is shown in
Fig. 15. The designed opamp is able to meet the specifications
for a S/H front-end of a 12-bit 50 MS/s pipeline ADC. In order
to test the linearity of the designed opamp for the S/H front-end,
a 512-point FFT test is carried out for the front-end, with the
result shown in Fig. 16. The differential input sinusoidal signal
has a frequency of 8.1 MHz, and an amplitude of 1.8 V. The
overal SNR is 81.9 dB, which is good enough for 12 bits
resolution.

The whole process of finding the global optimum lasts about
2.5 h using a 1-GHz UltraSPARC IIIi processor and 2 GB
memory, with time usage of each component listed in related
tables. However, for each component, the design procedures
that we proposed in Section V are shown to be able to generate
sizing solutions that are close to global optima. Therefore,
the majority time spent for simulated anealings to find global
optima might not be justified for many applications that have
less stringent specifications. For those applications, the design
process can be accomplished in 0.5 h by running GBOPCAD
without SAs.

Fig. 16. 512-point FFT result for the designed S/H front-end.

VII. CONCLUSION

High-performance opamps are essential for the design of
high-speed high-resolution pipeline ADCs. In this paper, the
properties of GBOs are studied. Based on the study, a new
methodology is proposed for the design of high-performance
opamps.

An automatic tool GBOPCAD is developed to design GBOs
following the proposed methodology. In order to improve the
accuracy of the design, GBOPCAD uses SPICE as the evalua-
tion tool. In order to increase the probability of finding the global
optimum, and to reduce the time of reaching it, GBOPCAD first
generates a good design close to the global optimum by estab-
lishing groups of rules based on equations and heuritics. Then,
GBOPCAD employs SAs to search for the global optimum from
the “good” initial configuration. As a result, GBOPCAD is able
to provide an accurate global optimal design in relatively short
time. For applications with loose specifications, GBOPCAD is
able to generate a good design close to global optimal within
short time that is comparable to the one used by equation-based
CAD tools.

Using GBOPCAD, a gain-boosed opamp with high-gain,
high-bandwidth and short settling time is designed for our
application of a 12-bit 50 MS/s pipeline ADC.
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