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ABSTRACT 

The use of Magneto Hydro Dynamics (MHD) to circulate fluids in conduits fabricated with low temperature co-

fired ceramic tapes is described.  Conduits shaped like toroidal and rectangular loops were fabricated.  Electrodes 

printed on the ceramic substrate along the conduits' walls facilitated transmission of electric currents through the test 

fluids.  When the devices were subjected to a magnetic field, the resulting Lorentz forces propelled the liquids.  The 

paper details the fabrication process and describes experiments with mercury slugs, saline solution, and deionized 

water.  The measured fluid velocities were compared with theoretical predictions. 

 

Keywords:  Microfluidic devices, Magneto Hydro Dynamics, MHD, pump 

 

1. INTRODUCTION 

In recent years, there has been a growing interest in developing minute chemical and biological laboratories and 

reactors.  Often it is necessary to propel fluids from one part of a device to another, control the fluid motion, mix, 

and separate fluids.  In microdevices, these tasks are far from trivial.  Typically, electrostatic forces are being used to 

move liquids around.  These forces usually induce only very low flow rates, require the use of high electrical 

potentials, and may cause significant heating of the solution.  The use of electromagnetic forces presents an 

interesting, flexible means for manipulating liquids in micro fluidic devices and systems.  The only requirement is 

that the liquid be at least slightly conductive.  This requirement is met by many biological solutions. 

The application of electromagnetic forces to pump, confine, and control fluids is not new.  The field is generally 

known as Magneto Hydro Dynamics (MHD), and it deals with the conversion of electromagnetic energy into 

mechanical work in fluid media [1,2].  To date, MHD has mostly been used to pump and control highly conducting 

fluids such as liquid metals and ionized gases and to study ionospheric/astrophysical plasmas.  MHD models are 

also extensively used in the analysis of magnetic fusion devices.  The potential use of electromagnetic forces in 
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microdevices has attracted much less attention.  Recently, a few researchers [3,4] constructed MHD micro-pumps on 

a silicon substrate and demonstrated that these pumps are able to move liquids around in micro conduits.  MHD can 

be used not only for the purpose of pumping fluids but also to induce secondary complex flows that may be 

beneficial for stirring and mixing [5, 6, 7].  Furthermore, by patterning electrodes in a desired fashion, one can 

propel liquids in virtual, wall-less channels.  In this paper, we describe the fabrication of MHD pumps with low 

temperature, co-fired ceramic tapes. 

We start by briefly reviewing the theory of MHD pumping.  We then describe two MHD pumps fabricated with 

low temperature ceramic tapes.  Although MHD pumps can be fabricated in various substrate materials, ceramic 

tapes offer a particularly convenient substrate medium by being highly dielectric and by being a layered 

manufacturing technology that facilitates integration of hydraulic conduits and metallic paths in a three-dimensional 

setting.  Finally, we describe a few experiments in which we propelled mercury slugs, saline solution, and deionized 

water in toroidal and rectangular planar "loops."  The experimental measurements are compared with theoretical 

predictions. 

 

2. THEORY 

In this section, we review briefly the fundamental principles of MHD pumping.  Consider a nearly straight 

conduit of length (L) with a rectangular cross-section of height H and width W aligned in the x2-x3 plane (Fig. 1).  

The coordinate x1 is directed along the conduit's axis.  Perfectly conducting electrodes are deposited on the two 

opposite sides of the conduit.  The conduit is filled with a liquid of electrical conductivity σ and viscosity μ.  The 

liquid needs to be only slightly conductive.  The electrodes are subjected to a potential difference (V) that induces a 

current of density .  The conduit is relatively long; fringe effects are neglected, and the current flow is 

assumed to be one-dimensional.  The conduit is placed in a magnetic field of flux density directed in the 

x2-direction. 

3êJ=J

2êB=B

Ohm's law for a moving conductor of conductivity σ in a magnetic field is 

 ( )vBEe += σ3ˆJ , (1) 

where  and v(x2,x3) are, respectively, a unit vector in the (i) direction and the fluid's velocity component in the x3-

direction.  E is the electric field.  The interaction between the electric current and the magnetic field generates a 

iê
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Lorentz force of density BJ ×  in the x1-direction.  We assume that the electrodes are relatively long, L>>W, and 

the fluid flow is fully developed ( 0
1

=
∂
∂
x

).  The dimensionless, time-independent Navier-Stokes equation for an 

incompressible, fully developed flow in a straight conduit is: 

 12
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In the above, we use the conduit width, W, as the length scale and 
μ

σ VBW 
 as the velocity scale. The axial 

velocity, v(x2,x3), satisfies no-slip conditions at all solid walls: v(0,x3)=v(W,x3)=v(x2,0)=v(x2,H)=0.  

μ
σBWHa =  is the Hartman number.  α=H/W is the conduit's aspect ratio.  When the liquid is a poor conductor 

of electricity such as saline solution, Ha<<1 and the second term in equation (2) can be safely neglected.  When the 

liquid is metal such as mercury, the Hartman number may be on the order of 10, and the second term in (2) must be 

accounted for. 

The above analysis indicates that the fluid velocity is proportional to the characteristic length (W).  In 

microfluidic systems, where W is small, this compares unfavorably with electro-osmotic flows in which the velocity 

scales like ⎟
⎠
⎞

⎜
⎝
⎛

L
V

μ
ες

, where L is the conduit's length, ζ is the electrokinetic (zeta) potential, and ε is the permittivity.  

Nevertheless, MHD has a fair amount of advantages.  The magnetic field can be applied externally so that B can be 

fairly large.  Long conduits with electrodes can be used to achieve high pressures.  Moreover, the electrodes can be 

printed at the bottom of the conduit in a complex pattern leading to intricate flow fields. Finally, by manipulating the 

directions of the electric and magnetic fields, one can generate flow fields with both spatial and temporal 

complexity.   

With Mathematica's [8] assistance, equation (2) can be readily solved using the Fourier series expansion: 
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where .  When Ha=0, expression (3) is identical to that of pressure-driven Poiseuille 

flow in a conduit with a rectangular cross-section (i.e., White [9], page 123).  Indeed, when the Hartman number is 

small, the Lorentz force plays a similar role to that of the pressure gradient. 

2222 )12( πλ ++= nHan

By integrating (3) over the cross-sectional area, we obtain the flow rate in the conduit: 
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1
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. (4) 

When the Hartman number is small, series (3) and (4) converge rapidly.  The convergence rate deteriorates as the 

Hartman number increases.  For large Hartman numbers, one can work out asymptotic approximations for the 

velocity field and the flow rate.  Since here we are interested only in low and moderate Hartman numbers, 

expressions (3) and (4) will suffice for our purposes. 

When α=1, Fig. 2 depicts the velocity profile at the cross-section's mid-height, |v(x2,0.5)|, as a function of x 

when Ha=0 and Ha=10.  When Ha>0, the velocity profile is parabolic just as in the case of pressure-driven 

Poiseuille flow.  As the Hartman number increases, the maximum velocity declines and the velocity profile flattens.  

In order to accommodate conveniently both velocity profiles on the same graph, we multiplied the velocity for 

Ha=10 by the factor 7. 

When α=1, Fig. 3 depicts the centerline velocity (upper curve) |v(0.5,0,5)| and the flow rate Q (lower curve) as 

functions of the Hartman number.  As the Hartman number increases, the maximum velocity and the flow rate 

decrease.  The flow rate decreases at a somewhat slower pace than the rate of decrease of the maximum velocity.  

This is because of the flattening of the velocity profile as the Hartman number increases, as is evident in Fig. 2.  In 

other words, as the Hartman number increases, |v(0.5,0.5)|->Q. 

 

2. FABRICATION 

We constructed the prototypes of the MHD pumps with low temperature, co-fired ceramic tapes (LTCC).  LTCC 

technology facilitates inexpensive, rapid prototyping, and provides a rapid platform for the integration of passive 

electronics and fluidics. 

In their pre-fired (green) state, the ceramic tapes consist of oxide particles (i.e., alumina), glass frit, and organic 

binder (that can be made from photo-resist).  The tapes are typically available at thicknesses starting at 100μm+7%.  
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One can cast, however, even thinner tapes.  In the pre-fired state, the tapes can be machined by laser, milling, and 

photolithography (when the binder is photo-resist).  Metallic paths can be either printed or processed 

photolithographically to form electrodes, resistors, conductors, and thermistors.  Conduit sizes may range from 

~10μm to a few millimeters.  Upon firing, the organic binder burns out, the oxide particles sinter, and the tapes 

solidify.  Many tapes (>80) can be stacked together, aligned, laminated, and co-fired to form monolithic structures 

with complex, three-dimensional mazes of fluidic conduits, electronic circuits, and electrodes.  Glass windows and 

other materials can be readily attached to the tapes to facilitate optical paths.  Multiple layers of coils can be 

embedded in the tapes to generate magnetic fields [10, 11].  As the application of LTCC for the fabrication of fluidic 

systems is relatively new, there is little experience with respect to the reproducibility of the machined features.  We 

estimate that one can achieve reproducibility within 5%. 

Two different crude prototypes of MHD pumps were fabricated with DuPont, LTCC 951AT tapes that have 

nominal (pre-fired) thicknesses of ~125μm and ~250μm.  One prototype housed the toroidal conduit (Fig. 4) and the 

other a rectangular loop  (Fig. 5).  The toroidal conduit that was used in the experiments with mercury was 22mm in 

inner diameter, 2.2mm wide, and 700μm deep.  The toroidal conduit that was used in the water experiments was 

1.4mm wide and 700μm deep.  The inner part of the rectangular loop was 13.5mm long and 6.7mm high, and the 

conduit's width and height were, respectively, 1.2mm and 700μm. 

The fabrication process consisted of blanking rectangular segments of tapes to a desired size.  The various 

layers were machined individually using a numerically controlled milling machine.  Subsequently, electrodes and 

conductor paths were printed on the various layers.  Fig. 6 depicts schematically the various layers that were used in 

the fabrication of the toroidal loop and the features that were machined on them. The layer numbers should be cross-

referenced with the cross-sectional view shown in Fig. 4b.   The rectangular loop was constructed in a similar way. 

In Fig. 6, the circular hole machined in layer 1 provided a cavity for housing the permanent magnet.  Layer 2 

includes a conductor path (the dark line, DuPont 5734 gold paste) that facilitates the connection of the inner 

electrode to a power supply. The two circular electrodes were made with 20μm thick DuPont 5734 gold paste and 

printed on layer 3.  The straight conductor segments connected the electrodes to the location of the vias.  A few 

layers of type 4 were used to form the conduit. These layers also housed vertical vias.  The number of layers of type 

4 determined the height of the conduit.  Layer 5 forms the cover (which we did not use in our experiments so as to 

enable flow visualization).  The vias were filled with silver paste (DuPont 6141) and terminated with soldering pads 
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(DuPont 6146) on the top surface.  Subsequent to the machining and printing, the layers were stacked, aligned, 

laminated, and co-fired to form a monolithic block.  

The cross-section of the assembled device is shown schematically in Fig. 4b.  In our experiments, we 

positioned, respectively, a circular, permanent Neodymium (NdFeB) magnet (Edmund Scientific, serial number 

CR35-107, load carrying capacity of 15 lb, 1" diameter and 0.25" height) and two rectangular magnets bounded 

together (Edmund Scientific, serial number CR81-237, load-carrying capacity of 12-15 lb, 32mm × 16.76mm × 

9.91mm) under the toroidal and rectangular loops.  The magnetic field can also be generated by other means.  For 

example, one can machine the conduits in magnetic tapes.  Alternatively, one can use an external electromagnet or 

coils embedded in the ceramic tapes [12].  In the latter case, soft magnetic material such as permalloy can also be 

encapsulated in the tapes to focus the magnetic field.  In order to allow the transmission of significant electric 

currents through the electrolyte without bubble generation and to prevent electrode degradation (which turned out to 

be a serious problem in our experiments), it would be preferable to use an AC current.  By appropriate 

synchronization of the electromagnetic field with the AC current, the direction of the Lorentz force would remain 

unaltered [4]. 

 

4. EXPERIMENTS 

We carried out experiments both in the toroidal and the rectangular loops with mercury slugs, deionized water, 

and saline solution.  Power was supplied to the electrodes using an adjustable power supply (HP 6032A).  The 

power supply also provided current data with a resolution of about 10mA that turned out to be insufficient for most 

of our needs. 

 

4.1 Experiments with Mercury  

Experiments were carried out in both open and capped conduits.  In the latter case, the conduit was capped with 

a glass slide after the introduction of the mercury slug into the conduit.   A mercury slug of an approximate length of 

4mm was inserted in the conduit.  In the presence of the slug, the total electric resistance of the system (including 

contact resistances) both in the uncapped and capped conduits was 0.2ohm. The effective conductivity of the 

mercury was estimated to be σ=106(Ω•m)-1.  The voltage differential across the electrodes was gradually increased.  

When the voltage increased very slowly, once it exceeded a certain value, the slug deformed and "splashed" along 
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the inner electrode. When the voltage was increased at a sufficiently rapid rate, once it exceeded a threshold, V1, the 

mercury slug started moving around the toroidal conduit.  The threshold voltages for the open and closed conduits 

were, respectively, V1=0.35 and V1=0.5V.  The slug's motion was monitored with a video camera.  During its 

motion, the slug appeared to elongate to about 5.3mm, apparently at the expense of its height.   

Figs. 7 and 8 depict, respectively, the slug's velocity as a function of the applied voltage in the open and capped 

conduits.  In the open and capped conduits, the voltage ranged, respectively, up to 0.4V and 0.9 V.  The symbols, 

solid line, and dashed line correspond, respectively, to experimental data, theoretical predictions for the maximum 

velocity, and theoretical predictions for the average velocity.  The difference between the average and maximum 

velocities is relatively small since the Hartman number is larger than 10 (see Fig. 3). The slug's velocity was 

measured by counting the number of revolutions that the slug completed within a given amount of time.  The 

vertical bars indicate the estimate of the experimental error. 

The experiment was carried out by gradually increasing the voltage.  Motion was observed once V>V1, and in 

the range tested, the slug speed increased nearly linearly as the voltage was further increased, i.e., the measured 

speed can be correlated with v~a*V.  In the open and capped conduits, a~0.59 m/s/V and ~0.19 m/s/V, respectively.  

Not surprisingly, due to the additional friction, the slug's velocity in the capped conduit was lower than in the open 

conduit.  Eventually, once motion was established, we decreased the voltage gradually.  As the voltage decreased so 

did the speed of the slug.  When V>V1, the velocities when the voltage was decreased were about the same as when 

the voltage was increased.  The slug kept moving, however, at voltages smaller than the threshold voltage for the 

onset of motion, V1.  Once the voltage was reduced below a second threshold, 0<V2<V1, the slug came to a stop.  In 

the open and capped conduits, V2=0.17 and 0.20V, respectively.  In other words, the slug exhibited a hysteresis 

phenomenon.  In the voltage range V2<V<V1, motion was sustained only when the slug started from a motion state.  

We suspect that this hysteresis was predominantly caused by static friction.  The lack of motion when V<V1 is 

probably due to contact resistance. 

We conducted experiments up to velocities of 0.2m/s.  That is, the slug completed a full circle in less than one 

second.  We did not go to higher speeds out of fear that centrifugal forces would project the slug out of the uncapped 

conduit and because it became increasingly difficult to monitor the slug's velocity.   By reversing the electrode's 

polarity, the slug's direction of motion was reversed.  The mercury slug required a fair amount of power to propel.  
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Fig. 9 depicts the slug's velocity in the uncapped, toroidal loop as a function of the power consumption expressed in 

Watts. 

A second set of experiments with a mercury slug was conducted in the rectangular channel.  We inserted a 

mercury slug in the conduit section containing the parallel electrodes and applied low frequency (<100Hz), 

alternating voltage to the electrodes.  As a result, the Lorentz force changed direction, causing the mercury slug to 

exhibit linear, oscillatory motion. 

 

4.2 WATER AND SALINE SOLUTION 

We carried out experiments with de-ionized water and saline solutions.  The resistance of the entire system was 

measured at the onset of the experiments, and the specific apparent conductivity was determined to be, respectively, 

σ =2.2×10-4
 (Ω•m)-1 and σ =2.2×10-3

 (Ω•m)-1 for the de-ionized water and saline solutions.  The experiment was 

complicated by the gradual dissolution of the electrodes that resulted in the gradual increase in the solutions' 

conductivity.  The life expectancy of the electrodes depends, among other things, on the paste material, the thickness 

of the thick film, and the current's intensity.  The electrodes made out of gold paste lasted typically for about one 

hour of operation.  This undesirable deterioration of the electrodes as well as bubble generation can be eliminated 

through the use of alternating currents and magnetic fields [4].  However, this remedy was not attempted here.   

In all cases, the Hartman number was very small, and its effects could be safely ignored.  Experiments were 

conducted both in the toroidal and rectangular loops.  In the toroidal loop containing saline solution, we monitored 

the liquid speed by tracking a small particle suspended in the liquid.  Because of the relatively high velocities that 

were achieved by the saline solution in the toroidal loop, tracking the fluid velocity with a dye was impractical.  In 

the cases of the toroidal loop operating with de-ionized water and the rectangular conduit operating with both de-

ionized water and saline solutions, the velocities were much lower and were monitored by tracking a dye.  The 

saline solution in the rectangular loop was slower than in the toroidal loop because only one leg of the rectangular 

loop was actuated.  To account for the effects of diffusion, we employed two different strategies.  In the first 

strategy, once the drop of dye was injected into the test liquid, we monitored as a function of time the progression of 

both the dye's leading and trailing edges and then estimated the velocity of the colored blob's center.  In the second 

strategy, we injected a drop of dye into the conduit in the absence of an electric field.  When the liquid was 

stationary, we monitored the spreading of the dye due to diffusion alone as a function of time.  This allowed us to 
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estimate the progression of the leading and trailing edges due to diffusion.  This data was later subtracted from the 

monitored locations of the leading and trailing edges at corresponding times and in the presence of fluid motion.  

Both methods yielded essentially identical results. 

Figs. 10 and 11depict, respectively, the velocity (mm/s) of the de-ionized water and saline solutions in the 

toroidal loop as functions of the applied voltage.  The current's magnitude was estimated to be in the μA range and 

well below the measurement capabilities of our power supply.  The symbols, solid line, and dashed line correspond, 

respectively, to the measured velocity, the predicted maximum velocity, and the predicted average velocity.   

For the construction of Fig. 10, we monitored the electric conductivity of the solution throughout the 

experiment.  In other words, the electric conductivity of the liquid varied from one data point to another.  In Fig. 11, 

we used the electric conductivity at the beginning of the experiment. 

Fig. 12 depicts, as a function of the applied voltage, the velocity (mm/s) of the saline solution in the rectangular 

loop. The symbols, solid line, and dashed line correspond, respectively, to the measured velocity, the predicted 

maximum velocity, and the predicted average velocity.  Here again, the electric conductivity was measured only at 

the beginning of the experiment. 

The data is in qualitative agreement with theoretical predictions.  Given the significant differences between the 

mathematical model and the physical set-up, perfect agreement could not be expected.  The mathematical model 

assumed uniform current density.  In contrast, in the experiment, the electrodes were printed along the conduit's 

bottom resulting in more complex current distribution.  The comparison between theory and experiment was also 

complicated by the fact that we did not have accurate knowledge of the magnetic field and by the continuous 

deterioration of the electrodes. 

 

CONCLUSIONS 

 The paper demonstrates that magnetic forces can be utilized to propel liquids such as mercury, saline 

solution, and de-ionized water in minute conduits.  Experimental observations were in qualitative agreement with 

theoretical predictions.  Low temperature, co-fired ceramic tapes provide a particularly convenient platform for the 

construction of MHD devices because they allow the integration of electrodes, conductors, and hydraulic paths in 

the pre-fired, green state.  The technology also facilitates the construction of three-dimensional structures, all of 

which can be served by the same magnetic field.  The LTCC technology allows one to integrate multiple layers of 
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coils into the substrate for the generation of the magnetic fields.  Coils can also be conveniently embedded around 

the conduits to monitor the flow rates in-situ.  Finally, one can use magnetic tapes to provide the necessary magnetic 

field.   

The pressure head generated by the MHD pump can be controlled by adjusting the intensity of the magnetic 

field, the magnitude of the applied voltage across the electrodes, and the length of the actuated section.  By using a 

great length of meandering conduits, it is possible to achieve considerable pressure heads.  The magnetic forces can 

be utilized not only for pumping purposes but also to induce the complex flow patterns needed to stir the fluid and 

enhance mixing [5, 6, 7].  Moreover, one can use MHD to control fluid flow in a fluidic network very much in the 

same way as one would control current flow in an electrical network and without the need for valves and pumps [6].  

To this end, one would deposit parallel electrodes along each of the network's legs (conduits) in the same way as we 

described in this paper.  By controlling the voltage across each electrode pair, one can direct the fluid flow in any 

desired way.  By reversing the electrodes' polarity, the direction of the flow will be reversed. 

 During the experiments, our devices suffered from the gradual deterioration of the electrodes.  This may 

not be a problem in devices that are meant to operate for only short amounts of time.  In any event, this problem can 

be reduced by proper choice of materials and possibly eliminated altogether by employing an AC potential with 

appropriately synchronized alternating direction magnetic field as was suggested by Lemoff and Lee [4]. 
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LIST OF CAPTIONS 

1. Conduit's cross-section 

2. The velocity profiles, |v(x2,0.5)| and 7|v(x2,0.5)|, are depicted as functions of x when Ha=0 and Ha=10, 

respectively. Conduit aspect ratio, α=1. 

3. The centerline velocity and the flow rate are depicted as functions of the Hartman number (Ha).  Conduit aspect 

ratio, α=1. 

4. A top view photograph of the toroidal conduit fabricated with low temperature ceramic tapes. (b) A cross-

section (not drawn to scale) of the toroidal loop.  The various layers' numbers are cross-referenced with Fig. 6. 

5. A rectangular loop fabricated in LTCCs.  Electrodes were printed only along the upper conduit. 

6. The various LTCC layers that were used in the construction of the toroidal pump.  Layer 1 houses the 

permanent magnet.  Layer 2 supports a conductor. Layer 3 houses the electrodes and provides the bottom wall 

of the conduit.  Layer 4 houses the conduit.  A few layers of type (4) are used to obtain the desired conduit 

height.   Layer 5 (not used in our experiments) caps the conduit. 

7. The velocity (cm/s) of the mercury slug in an uncapped, toroidal conduit as a function of the applied voltage.  

The symbols, solid line, and dashed line correspond, respectively, to experimental data, maximum theoretical 

velocity, and average theoretical velocity. 

8. The velocity (cm/s) of the mercury slug in a capped, toroidal conduit as a function of the applied voltage.  The 

symbols, solid line, and dashed line correspond, respectively, to experimental data, maximum theoretical 

velocity, and average theoretical velocity. 

9. The mercury slug's velocity in the uncapped toroidal loop as a function of the power consumption.    

10. The velocity is depicted as a function of the applied voltage for deionized water in a toroidal conduit. The 

symbols, solid line, and dashed line correspond, respectively, to the experimental data (approximately 

maximum velocity), the prediction for the maximum velocity, and the prediction for the average velocity.  The 

calculations were carried out based on the electric conductivity at the beginning of the experiment. 

11. The velocity is depicted as a function of the applied voltage for saline solution in a toroidal conduit. The 

symbols, solid line, and dashed line correspond, respectively, to the experimental data for approximately the 

maximum velocity, the prediction for the maximum velocity, and the prediction for the average velocity.  The 
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electric conductivity was periodically measured, and theoretical predictions at various voltages correspond to 

different electric conductivities. 

12. The velocity is depicted as a function of the applied voltage for saline water in the rectangular loop.  The 

symbols, solid line, and dashed line correspond, respectively, to the experimental data for approximately the 

maximum velocity, the prediction for the maximum velocity, and the prediction for the average velocity.  The 

electric conductivity was measured at the beginning of the experiment. 
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Fig. 2: The velocity profiles, |v(x2,0.5)| and 7|v(x2,0.5)|, are depicted as functions of x when Ha=0 and Ha=10, 

respectively. α=1. 
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Fig. 4:  (a) A top view photograph of the toroidal conduit fabricated with low temperature ceramic tapes. 

(b) A cross-section (not drawn to scale) of the toroidal loop.  The various layers' numbers are cross-referenced with 

Fig. 6. 

5
b 

2

a Conduit 

Gold Electrodes 

Permanent Magnet 

+V-

4

3

1

 
 
 

Fig. 5: A rectangular loop fabricated in LTCCs.  Electrodes were printed 

only along the upper conduit. 
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Fig. 6: The various LTCC layers that were used in the construction of the toroidal pump.  Layer 1 houses 

the permanent magnet.  Layer 2 supports a conductor. Layer 3 houses the electrodes and provides the 

bottom wall of the conduit.  Layer 4 houses the conduit.  A few layers of type 4 are used to obtain desired 

conduit height.   Layer 5 (not used in our experiments) caps the conduit. 
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Fig. 7: The velocity (cm/s) of the mercury slug in an uncapped, toroidal conduit as a function of 

the applied voltage.  The symbols, solid line, and dashed line correspond, respectively, to 

experimental data, maximum theoretical velocity, and average theoretical velocity. 
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Fig. 8: The velocity (cm/s) of the mercury slug in a capped, toroidal conduit as a function of the 
applied voltage.  The symbols, solid line, and dashed line correspond, respectively, to 
experimental data, maximum theoretical velocity, and average theoretical velocity. 
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Fig. 9: The mercury slug's velocity in the uncapped toroidal loop as a function of the power consumption. 

 
 

0

0.2

0.4

0.6

0 5 10 15 20

v (mm/s) 

V(volts) 

Fig. 10: The velocity is depicted as a function of the applied voltage for de-ionized water in a toroidal conduit. 

The symbols, solid line, and dashed line correspond, respectively, to the experimental data (approximately 

maximum velocity), the prediction for the maximum velocity, and the prediction for the average velocity.  The 

calculations were carried out based on the electric conductivity at the beginning of the experiment. 
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Fig. 11: The velocity is depicted as a function of the applied voltage for saline solution in a toroidal conduit. The 

symbols, solid line, and dashed line correspond, respectively, to the experimental data for approximately the 

maximum velocity, the prediction for the maximum velocity, and the prediction for the average velocity.  The 

electric conductivity was periodically measured, and theoretical predictions at various voltages correspond to 

different conductivities. 
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Fig. 12: The velocity is depicted as a function of the applied voltage for saline water in 
the rectangular loop.  The symbols, solid line, and dashed line correspond, respectively, 
to the experimental data for approximately the maximum velocity, the prediction for the 
maximum velocity, and the prediction for the average velocity.  The electric 
conductivity was measured at the beginning of the experiment. 
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