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Electromagnetic Wave Propagation in the Wire Medium:

A Complex Medium with Long Thin Inclusions

C. A. Moses and N. Engheta

Moore School of Electrical Engineering

University of Pennsylvania, Philadelphia, PA 19104

September 10, 2000

Abstract

The wire medium is a type of complex artificial material we conceptually envision as many identical

finite-length, parallel, thin wire inclusions embedded within a host medium. It is representative of a class

of novel artificial materials characterized by long thin inclusions. Unlike some conventional artificial ma-

terial, the inclusions of this class are not necessarily electrically short. Here we present our theoretical

analysis for wire media and, by studying certain salient features of plane wave propagation through these

media, introduce equivalent medium parameters that depend, among other parameters, on the direction

of wave propagation. The approach we use separates the artificial material into its elementary planes and

then uses periodic moment method techniques to individually characterize each elementary plane. An-

alytic formulas from periodic structure theory are then used to determine the effective wavenumber for

the overall medium and the transverse impedance at the midpoint between adjacent elementary planes.

Our examples show that some realizations of these media are spatially dispersive and may exhibit inter-

esting features such as “angular windows of propagation” and other properties that are dependent on the

polarization, frequency, and direction of wave propagation.



1 Introduction

The history of artificial materials seems to date back to the pioneering work of Lindman (for review, see

[1]) who, in 1914, fabricated a chiral medium from a collection of randomly-oriented small wire helices.

Kock [2] later suggested that a large-scale model of a solid dielectric, with small metallic inclusions playing

the role of the molecules of the dielectric, might duplicate some of a solid dielectric’s essential macroscopic

electromagnetic features. As a demonstration of their practical use, Kock fabricated lightweight microwave

lenses from periodic arrangements of conducting spheres, disks, and strips, and in doing so, verified his

predictions for modification of the effective refractive index of the artificial material. Kock’s theory, like

many of its modern-day counterparts, utilizes a low frequency, quasi-static analysis to determine the polar-

izability of each inclusion. Once the polarizabilities are known, spatial averaging establishes the effective

net polarization and magnetization of the bulk artificial material. The similarity to real dielectrics then

permits one to ascribe to the artificial material an effective permittivity and permeability, an estimate of

which may be determined by means of Lorentz’s theory for non-polar dielectrics [3, Sec. 8-1] or other well-

known mixing formulas [4]. An interesting point noted by Brown [5] in his review on artificial dielectrics

is that Kock’s theory essentially “returns to the starting point of classical dielectric theory, since Mossotti

developed his theory by postulating that a solid dielectric could be represented as a lattice of conducting

spheres.”

The investigation of artificial and complex materials is not merely of academic interest; analysis of wave

propagation through artificial materials is necessary in connection with their use in fabricating some special

microwave devices (for examples, see [5]). In principle, devices fabricated using real material for applica-

tion at optical frequencies may be designed for lower frequency (e.g., microwave) using artificial material

by simply length scaling all dimensions (e.g., see [6]). In this regard, it is of no surprise that a recent push

toward integrating the concepts of solid state physics with artificial materials has brought forth new ideas

and applications for artificial materials (e.g., 3D wire mesh photonic crystals [7]). In comparison to some

solid dielectrics, an artificial dielectric may feature low density and may offer significant cost and weight
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savings [8].

Recent research efforts in designing artificial complex material have introduced some unusual inclu-

sions intended to achieve interesting electromagnetic features; as an example, inclusions intended to pro-

duce artificial material with similar characteristics as optically active (chiral) media have received much

attention (e.g., [9, 10, 11]). Along with advances in inclusion design, researchers have proffered improved

polarizability models (e.g., [12, 13, 14, 15, 16, 17]) and mixing formulas (e.g., [18, 19, 20, 21]). But without

combining these two steps into a single step, the same fundamental theoretical limitations [22, p. 751] on

inclusion size and density encountered by Kock in his modeling also limit modeling more general media.

To circumvent these limitations all at once, an entirely numerical procedure based on the method of

moments was proposed by Blanchard, Newman and Peters [23] and Newman and Peters [24] for analyzing

artificial material with inclusions distributed about a periodic lattice (they illustrate their technique for an

infinite artificial medium composed of closely-spaced, short, conducting wires and wire crosses). Unlike

conventional analytic techniques, their approach has the advantage of directly taking into account all of

the mutual coupling effects between inclusions, regardless of their size, shape, orientation, or composition,

so long as all the inclusions are identical. In the course of analysis, however, the elements of the moment

method impedance matrix must be determined by evaluating a conditionally-convergent triply-infinite

sum. Supposing the necessary acceleration techniques (e.g., see [25]) are used for computing the sum, the

propagation constants for plane wave propagation in a specified direction may then be found by requiring

the determinant of the impedance matrix to vanish. Since the elements of the impedance matrix themselves

depend upon the wavenumber, the process is iterative and may be computationally demanding.

Traditionally, in the analysis of the electromagnetic properties of complex media, more attention has

been given to cases where the inclusions, which are dispersed in some manner throughout the host media,

are assumed to be small compared to the wavelength (i.e., they are electrically small). However, can one

imagine a novel class of artificial materials in which the inclusions are permitted to be electrically long in

one dimension, but still electrically small in the other two dimensions (i.e., they have small transverse cross

sections that might vary along the length of an inclusion, but at every point along the major axis of this
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inclusion the transverse cross section would be axially symmetric)? These inclusions can then all be posi-

tioned in parallel and in close proximity to each other so the entire structure can be viewed macroscopically

as a medium. How might one analyze wave propagation in such a medium?

As is well known, the electromagnetic description of media is generally rendered macroscopically

through constitutive relations expressed by DDD = �oEEE + PPP and HHH = 1
�o
BBB �MMM where the field vectors

take their usual meanings, PPP and MMM are the polarization and magnetization, respectively, (in principle PPP

and MMM may include higher-order multipoles as well as dipole moments) and the constants �o and �o are,

respectively, the permittivity and permeability of vacuum. In general, PPP andMMM may be functions of both

EEE and BBB, as they are, for example, in bi-anisotropic and bi-isotropic (i.e., chiral) media (e.g., see [9]). For

media that may be conductive, one can also have @
@tDDD = �o

@
@tEEE+ JJJe to indicate the presence of an induced

electric current JJJe. Obviously, if one sets JJJe = @PPP=@t, then the first and third equations above are math-

ematically equivalent in non-static conditions. Therefore, one could mathematically absorb JJJe into PPP (or

vice versa); however, the decision to use JJJe alone, PPP alone, or both JJJe and PPP to describe induced electric ef-

fects is usually based on physical knowledge of the microscopic structure of the material. For example, an

artificial material with electrically short inclusions might be best described through PPP since in such media

one can readily identify the induced electric dipoles (the magnetic dipoles can be handled by means ofMMM).

Similarly, a theory for a material with infinitely-long conductive fibers (that is applicable to the case of the

rodded media described by Brown [26], for example) might permit unimpeded induced current and would

be best described through JJJe. We propose that media with long (but not infinitely-long) thin inclusions (as

we have mentioned in the preceding paragraph) might be best modeled by means of both PPP and JJJe; the

effects due to the long dimension of the inclusions can be modeled through JJJe, whereas the effects due to

the small cross section in the other two dimensions can be handled using PPP and/or MMM (including higher-

order multipoles as appropriate). For media in which PPP and JJJe both contribute to the induced effects, the
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Maxwell equations—when combined with the constitutive relations—can be written as:

r�EEE+
@

@t
BBB = 0 (1a)

1

�o
r�BBB� �o

@

@t
EEE = JJJs + JJJe +

@

@t
PPP+r�MMM (1b)

with JJJtotale = JJJe +
@
@tPPP representing the total induced current within the medium and JJJs representing the

source (if any).

In the present paper, we discuss wave propagation in a special illustrative example of this novel class of

artificial material. The example that we discuss can be envisioned as a three-dimensional periodic artificial

medium conceptually synthesized by embedding many identical, finite-length, parallel thin wires within

some host material. Unlike conventional artificial complex media for which the inclusions are typically

electrically short, the wire inclusions in these media need not necessarily be small compared to the wave-

length. The wires can be chosen, per design, to have a length from a fraction of a wavelength to multiple

wavelengths. However, the spatial periodicities1 in such media are still chosen to be (electrically) small

so an ensemble of such wires would have the macroscopic characteristics of a medium and would inhibit

the well known grating-lobe and band-gap phenomena usually associated with periodic media. We have

given such media the name Wire Media. The thin wire inclusion used in these media is an example of an

inclusion that may be electrically long in one direction (i.e., length of the wire), but small in the other two

dimensions (thin cross section). To examine propagation in these media, the electric current JJJe induced

along each wire needs to be evaluated, whereas the polarization PPP and magnetization MMM (including mul-

tipole moments) induced due to the transverse cross section of the wire can be assumed to be negligibly

small because the wire is taken to be thin2. If the wire inclusions are attached to some end-elements (as in

the case of FFFB media [27]), then PPP and/or MMM induced due to the presence of the end-elements needs to

1The periodicities mentioned above are not necessarily essential to constructing a wire medium; however, here we introduce them
to simplify the electromagnetic analysis. Generally, one may place the wires randomly, but all parallel with some fixed orientation
and an average inter-element spacing related to the spacings of the periodic media. This has not been investigated here.

2 If a more exact model is desired, the polarization and magnetization (and higher-order multipoles, as needed) induced due to the
transverse cross sections of the wires can be evaluated based on a quasi-static approach. However, for the media presented here, these
effects would be negligible.
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be analyzed independently.

Our approach is intermediary to the completely numerical approach of Blanchard, Newman, and Peters

and the completely analytical quasi-static technique of Kock. Instead of either of these approaches, we use

a combination of both analytical and numerical techniques to analyze some of the salient features of plane

wave propagation in wire media. Specifically, we blend the technique used by Brown [26] of breaking an

artificial material into its elementary planes with Blanchard et al.’s periodic moment method approach (ap-

plied only for a single elementary plane rather than the entire medium). By treating the three-dimensional

artificial material as a concatenation of many closely-spaced elementary planes (each of which contains

inclusions located on a two-dimensional periodic lattice), the numerical calculations can be focused on

characterizing one elementary plane completely, since well-known analytical formulas can be used under

certain circumstances to describe the interaction of many identical elementary planes if the characteristics

of a single plane are known.

If the elementary planes are periodically spaced, then the currents induced on inclusions in any single

plane are related to those in any other by only a multiplicative complex factor that may be determined by

means of Floquet’s theory [22, Sec. 9.1]. When an incident plane wave illuminates one elementary plane,

to solve for the currents induced on the inclusions of that plane, one can use the periodic moment method

technique [28] and apply the Poisson sum formula [3, Sec. 11-9] to write the appropriate Green’s function

appearing in the integral equation as a rapidly converging series (as previously reported by Munk and

Burrell [29] in the analysis of super-dense dipole arrays). If the two-dimensional lattice period on each el-

ementary plane is small enough, then only one scattered wave propagates away from the plane (into each

half-space separated by the plane); that is, there are no grating lobes. The appropriate coefficient of the

scattered wave is proportional to some properly defined average current induced in that plane, suggesting

that we might replace the actual current distribution on each plane by this average value (together with the

appropriate phase variations as determined by the angle of incidence of the incident wave). Conceptually,

the elementary plane is being replaced by a thin admittance sheet with an admittance equal to the ratio

of the average current to the average total tangential electric field on the plane. Based on this equivalent
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admittance sheet, we then treat the three-dimensional artificial material as if it were fabricated from peri-

odic spacings of admittance sheets and reformulate the problem as a periodically loaded transmission line

problem. By doing so, we neglect entirely all the evanescent waves excited by the currents in each elemen-

tary plane; clearly this neglect is permissible only if the evanescent waves of one elementary plane have

sufficiently decayed before reaching the next elementary plane3. If so, then well-known periodic structure

theory [30, Chp. 8] may be used to determine the wavenumber and transverse impedance associated with

the lowest-order wave in this artificial material. Under certain conditions, the overall structure effectively

acts as an artificial medium, with some equivalent effective (tensorial) permittivity. On the other hand, the

permeability of the artificial material is taken to be that of vacuum, since: (1) the wires are non-magnetic;

(2) the wires are very thin, so there is little opportunity to develop significant eddy-currents on any one

wire; and (3), the volume density is very low (see Footnote 2). Since our technique completely evaluates the

mutual coupling between neighboring inclusions in any single elementary plane, it follows that no electro-

magnetic modeling limitations are placed on the lengths of the wires, provided the spacing between planes

is chosen properly (see Footnote 3). Our investigation of these media shows that a variety of polarization,

frequency, and angle of propagation dependencies may be engineered into a wire medium by judiciously

choosing the lengths and separations of the wires in each plane, as well as the interplanar spacings. Fur-

thermore, with the additional degrees of freedom that these media possess, the observation of Blanchard,

et al., that “one may be able to engineer or design a medium which has desirable permeability, permittivity,

and dispersion characteristics” appears to be even more viable [23].

Our interest in studying wire media was brought about by our theoretical research on plane-wave prop-

agation in artificial feedforward-feedbackward (FFFB) media [31, 27, 32]. In the conceptualization of FFFB

media, a large number of small inclusions were dispersed throughout some host material (as in conven-

tional artificial material) and then pairs of inclusions were connected by means of tiny4 transmission lines.

In such a conceptualization of FFFB media, all of the transmission lines were parallel. As would be ex-

3 More will be said about this matter later in this paper.
4The adjective tiny refers to the cross-sectional area, not length, of the connecting transmission lines. In our conceptualization of

FFFB media, the tiny-transmission lines may be of any length.
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pected, plane wave propagation in the axial direction (i.e., along the direction of the transmission line axis)

of FFFB media requires knowledge of only the transverse characteristics of the medium since the electro-

magnetic waves cannot significantly interact directly with the transmission line [27]. However, for oblique

propagation, the wave may suffer significant interaction with these transmission lines, and, therefore, may

induce currents and charge separations directly on the transmission lines. To understand these interactions

and to simplify the analysis, we can conceptually replace the two-wire transmission lines with single wires

of equivalent radius. Such wires, without the end-elements attached, are the constituent inclusions of wire

media, as addressed above.

2 Single elementary plane analysis

The types of surfaces resembling the elementary planes in wire media have been called Super-Dense Dipole

surfaces (or Gangbuster surfaces) by Schneider and Munk [33], Larson and Munk [34], and Kornbau [35].

The labels super-dense and gangbuster refer to the feature that the wire lengths may be greater than the

lattice periodicity (accomplished by tilting the wire axes away from one lattice axis; see Figure 1). One

of the underlying motivations for study of Super-Dense surfaces is due to their application as broad-band

frequency selective surfaces (FSS) and polarization selective surfaces [33]. Noted investigations of these

surfaces have utilized elements excited at or below their first resonance frequency, but there seems to be no

theoretical or practical limitations that would prohibit longer elements.

The fundamental research on bi-infinite arrays with arbitrarily oriented piece-wise linear elements (from

which the theory of gangbuster surfaces originates) was performed by Munk and Burrell [29]; here we

present only a brief summary of their work, but please note a slight change of notation. Consider the array

illustrated in Figure 2 where the (l;m)th cylindrical wire element lies in the � -� (or y-z) plane with center

at (�; �) = (lD� ;mD�) and with its axis tilted away from the �-axis by some angle � (note: the axes of

the wires are aligned with the z-axis). The value of � for square (i.e., D� = D� = D) gangbuster dipole

surfaces is constrained by � = arctan(1=�n), where �n is some integer [33]; simply stated, a type �n gangbuster
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Figure 1: An example gangbuster surface. In this illustration, the radius of the dipoles is exaggerated five
times in order to be visible in print. The parameters D = 0:13�, L = 0:533�, a = 0:001�, and n = 4 were
used to construct this surface (see text and Figure 2 for parameter explanations). From these parameters,
one can compute � = 14:0�, dnear = 0:0315�, and dend = 0:006�. Here � is some reference length that may
be chosen to scale this surface to any desired physical dimension.

dipole surface has the property that the midpoints of two neighboring collinear wire elements are separated

by �n periodicity units along one axis and one periodicity unit along the perpendicular axis. As shown in

Figure 2, each wire has overall length L and radius a; simple geometrical relations show the nearest parallel

wires to be separated by dnear = (L + dend)=(1 + �n2), where dend is the distance between ends of any two

neighboring collinear wires. An example of a gangbuster surface is shown in Figure 1. The parameters

used to create this surface are listed in Figure 1, where � is some reference length that may be assigned

any desired value; it is independent of the wavelength of the incident wave in the host medium which we

designate as �o. The surface shown in the figure measures 0:7�� 0:7�.

Suppose the array is illuminated by a plane wave E(inc) = Eoe
�jkoŝ�r (an ej!t time-dependence is im-

plicit throughout) propagating in the direction of the unit vector ŝ = sxx̂+syŷ+szẑ, where ko = !
p
�o�o =

2�=�o, then, as one might expect, only the portion of this wave TMz polarized appreciably interacts with

the wire elements (the TEz portion has no electric field component parallel to the wires). In terms of the

the incident electric field, the TMz portion is E(inc);TM = (ẑ � Eo)
�
ẑ � stsz

1�s2z

�
e�jkoŝ�r; here st = ŝ � ẑsz is
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Figure 2: (a) The bi-infinite wire array as an elementary plane and (b) one wire element.

the transverse (to z) part of ŝ. If the elements are sufficiently thin, azimuthally symmetric surface currents

will be induced on the periphery of each wire. For our purposes, the surface current can be replaced by a

filament of current, I(z), lying along the axis of each wire. As derived by Munk and Burrell [29], the electric

field at an observation point r = (x; y; z) exterior to the array is given by

E
(scat) =

�o
2D�D�

+1X
h=�1

+1X
n=�1

e�
e�jko(r�ro)�r�

rx

Z +L=2

�L=2

I(z0)e+jkoz
0
ẑ�r� dz0 x ? xo (2)

where �o is the intrinsic impedance of the surrounding medium, ko is the wavenumber associated with a

plane wave in the surrounding medium, ro = (xo; yo; zo) is a reference point taken to be the midpoint of

the reference dipole element on the surface, and: rx =

r
1�

�
s� + h �o

D�

�2
�
�
s� + n �o

D�

�2
, r� = �x̂ rx +

�̂
�
s� + h �o

D�

�
+ �̂

�
s� + n �o

D�

�
, and e� = (ẑ� r�)� r�. As can be seen, rx, r�, and e� take the summation

indices h and n as parameters. The choice of sign is made throughout depending upon the position of the

observation point relative to the reference point (x ? xo). Note that the array lies in the x = xo plane. In
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(2), I(z) is the current distribution on the reference wire; the currents on all the other wires of the array are

related to I(z) by a complex factor in accordance with Floquet’s theory: Ilm(~z) = I(~z)e�jko(lD� s�+mD�s�).

Here, Ilm(~z) is the current on the (l;m)th wire and ~z is the local coordinate variable along that wire. The

integral in (2) can be interpreted as the far-field pattern of a single element (without the obliquity factor)

carrying a current distribution I(z).

Each of the (h; n) terms in the summation corresponds to a Floquet spatial harmonic, and physically

represents either an evanescent or propagating plane wave, depending upon the sign of r2x; if Escat is to

be evaluated at a distance jx� xoj from the array, some of these terms may be neglected. The h = n = 0

term always propagates; it corresponds to the specular rays in the directions �sxx̂ + syŷ + szẑ. If certain

conditions are met on the periodicity of the array in the � and � directions (D� < �o=2 and D� < �o=2), then

no grating lobes are present and the specular wave is the only propagating scattered wave (for any angle

of incidence); the electric field associated with the specular wave is determined by evaluating

E
(spec) =

�oe�e
�jko(r�ro)�r�

2D�D�

q
1� s2� � s2�

Z +L=2

�L=2

I(z0)e+jkoz
0(s� sin�+s� cos�) dz0 (3)

once the current distribution I(z) is known on the reference element.

One can apply a moment method (MoM) procedure to determine the unknown current distribution

and solve by matrix methods. In view of the relative simplicity of the anticipated current distribution,

the unknown current can be expanded in terms of a complete set of entire domain basis functions consist-

ing of even and odd modes that each vanish at each end of the wire: I(z) =
PP

p=1 I
e
p cos

�
(2p� 1)�zL

�
+

PQ
q=1 I

o
q sin

h
q �z
L=2

i
. After the current is expressed analytically, albeit with unknown modal coefficients, the

integrals involving the current distribution appearing in (2) can be computed in closed form [32]. In usual

moment method fashion, the unknown current coefficients are determined by requiring the total (incident

plus scattered) tangential electric field to vanish on the surface of each wire element. In our work we have

employed a Galerkin procedure with weighted residuals (e.g., see [36, Sec. 7.3]) and assumed azimuthal

symmetry.
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Once the current coefficients are known, the scattered field equations can be used to find the reflected

TMz wave. On defining the reflection coefficient5 as R̂TM = E
(re)
z =E

(inc)
z , one finds

R̂TM =
�oL

D�D�

s2z � 1q
1� s2� � s2�

(
PX
p=1

Iep
Eoz

�
sinc

�
(2p� 1)

�

2
� koLsz

2

�
+ sinc

�
(2p� 1)

�

2
+
koLsz

2

��

+j

QX
q=1

Ioq
Eoz

�
sinc

�
q� � koLsz

2

�
+ sinc

�
q� +

koLsz
2

��)
: (4)

Similarly, the corresponding transmission coefficient is T̂TM = E
(tran)
z =E

(inc)
z = 1 + R̂TM. The meaning of

the hat over the coefficients will become apparent in the next section. We have not addressed the case of

currents excited by TEz waves because the electric field associated with these waves only develops a negli-

gibly small charge separation across the diameter of the thin cylinders—not their length. Consequently, the

elementary plane will be essentially transparent to TEz waves.

3 Sheet admittance analogy

When a plane wave is used to illuminate a single gangbuster surface, one sees, at some distance from the

surface, a reflected plane wave (assuming the surface is constructed to inhibit grating lobes). Since the re-

flected wave is planar, the array must effectively appear to carry some “average uniform surface current”

(possibly with linearly progressive phase). This equivalent surface current is proportional to the specu-

lar reflection coefficient (not including certain obliquity factors). If we are only interested in the specular

waves, we should be able to conceptually replace the elementary plane by an equivalent thin anisotropic

admittance sheet that develops the same equivalent current. By doing so, we can simplify the analysis of

the wire medium provided that the elementary planes are placed far enough apart so the first evanescent

mode excited by one elementary plane is decayed sufficiently (say, at least 20 dB below the propagating

mode [22, p. 773]) before reaching the next elementary plane and close enough so the periodicity is a small

5Since we are considering TMz waves, all the field components can be derived from Ez ; therefore, the reflection coefficient, as it is
defined here, is identical to one defined for the amplitude of the entire wave.
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fraction of a wavelength. To determine the equivalent sheet admittance, we employ a general procedure

involving the plane wave reflection coefficient. Based on this idea, we conceptually replace the gangbuster

surface by a new surface—uniform in the z-direction—that develops the necessary equivalent surface cur-

rent. If the new surface is taken to be an infinitesimally-thin anisotropic admittance sheet, then the induced

current, which is restricted to flow along the axes of the wires (i.e., z-axis), is the product of the transverse

admittance and the z-component of the total electric field: Jsh = ẑYshEz, where Ysh is identified as the

equivalent transverse sheet admittance. The electric field appearing here is the z-component of the total

electric field. Clearly the necessary admittance will vary depending upon the parameters of the gangbuster

surface; we shall show that it is also a function of the angle of incidence and frequency of the illuminating

wave.

Suppose a plane-wave illuminates an impedance sheet lying in the x = xo plane. The usual boundary

conditions hold for fields on opposite sides of the sheet: x̂� (H2 �H1) = Jsh and x̂� (E2 � E1) = 0.

The subscript 1 refers to fields in the region x < xo and the subscript 2 refers to fields in the region x > xo.

An arbitrary plane wave propagating in the ŝ direction illuminates the sheet: E(inc) = Eoe
�jkoŝ�r. If we

decompose the wave into TMz and TEz components, clearly the TEz part, not having any ẑ-directed electric

field component, cannot excite Jsh; for this reason we need only consider the TMz portion, E(inc);TM. The

reflected and transmitted waves, due to the TMz incidence, will also be TMz polarized. Satisfaction of the

boundary conditions at the sheet permits solving for the unknown reflection and transmission coefficients

RTM and TTM (we have assumed sx positive):

RTM = �1
��

1 +
2

�oYsh

�sx
1� s2z

�
TTM = 1

��
1 +

�oYsh
2

1� s2z
�sx

�
: (5)

Inverting the first relation to find �oYsh = �2RTM
1+RTM

�sx
1�s2z

. Since the wires in the gangbuster surface are pre-

sumed loss-less, we anticipate that the necessary admittance must be purely susceptive, with Ysh = jBsh.

However, when we use the reflection coefficient as found numerically through the moment method analy-

sis described earlier (Equation 4) in the above equation, we find that a small amount of real part is present
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in Ysh. Some additional investigation shows the error is systematic and results from assuming (in executing

the numerical procedure) that the dipole currents lie as filaments on the wire axis (rather than as surface

currents on the wire’s periphery). As detailed in [32], analysis shows that a simple transformation of the

computed reflection coefficient can be made so that, if used in the above formula, will yield a purely imag-

inary sheet admittance. If we denote the compensated reflection coefficient by RTM, then the appropriate

transformation, RTM = R̂TM
1+j tan(kosxa)(R̂TM�1)

, shows that the systematic correction is not merely a phase

factor, as one might have thought. Clearly, as kosxa reduces to zero, then the difference between the com-

puted reflection coefficient and the compensated reflection coefficient vanishes. For electrically-thin wire

inclusions, this factor, although very small, is non-negligible.

4 Transmission line analysis

Analysis of artificial material can make use of the similarity of plane wave propagation and wave propa-

gation on TEM transmission lines [37]. In this context, the anisotropic sheet admittances introduced earlier

are analogous to shunt admittances placed across a transmission line. Here we only consider TMz plane

waves, but the theory can be readily extended to include TEz plane waves as another case. Suppose we

take the position along the transmission line to correspond to the x variable of Cartesian space. Then, if we

correspond the voltage on the transmission line with the total tangential electric field (Ez) and the current

with the total tangential magnetic field (�Hy, for waves traveling in the �x̂ direction), the characteristic

impedance of the (unloaded, i.e., no shunt loading) line, ZTM = �o
1�s2z
sx

, can be found by taking the ratio of

Ez to �Hy. The propagation constant on the (unloaded) line is kosx. (In these equations we have taken the

real part of sx to be positive since we are considering propagation in the positive x direction.) Using this

model, we can show that reflection from a shunt load Ysh placed across the transmission line causes a wave

to be reflected with the same reflection coefficient as from a sheet admittance in free-space.

Now, on extending this concept to model the three-dimensional artificial material as a periodically

loaded transmission line, the appropriate loads to the transmission line correspond to the equivalent sheet
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admittances of the elementary planes. In the wire medium, all the elementary planes have the same value

of sheet admittance, Ysh. Application of Floquet’s theorem [22, Sec. 9.1] to the analysis of the periodically

loaded transmission line [32] determines the complex (Bloch) propagation constant  = j� that solves6 the

transcendental equation [30, p. 367]

cosh(Dx) = cos(kosxDx) +
j

2
�oYsh

�
1� s2z
sx

�
sin(kosxDx) (6)

and also the effective (Bloch) impedance Zx (referred to the midpoint between two adjacent elementary

planes) [22, p. 369]

Zx = ZTM

s
2 sin(kosxDx)� jYshZTM [cos(kosxDx)� 1]

2 sin(kosxDx)� jYshZTM [cos(kosxDx) + 1]
(7)

where ZTM = �o
�
1� s2z

�
= (sx) and Dx is the physical length of transmission line between any two adjacent

shunt admittance loads (corresponding to the distance Dx between elementary planes in the artificial mate-

rial). We notice here, of course, that the propagation constant and transverse impedance are both functions

of Ysh.

5 Effective media limit

When kosxDx and �Dx are small, then the effective wavenumber and impedance of the periodically-loaded

transmission line should reduce to that of homogeneous transmission line with some additional per unit

length shunt loading of Ysh=Dx. In this limit, the unbounded wire medium can be macroscopically con-

sidered as a homogeneous anisotropic medium in which the z-component of diagonal relative equivalent7 per-

mittivity is different from unity and the other two components are nearly unity. To make the connection

6As is well known, there are additional, higher order, spatial harmonics that also solve (6); these are given by �n = � + 2�n=Dx.
Here we only consider the fundamental mode.

7 The adjective equivalent is used to denote that in the effective media limit the wire medium can be macroscopically viewed as
a medium with an equivalent effective permittivity tensor when considering wave propagation. Such permittivity does not have the
complete meaning and role of the conventional permittivity or dielectric constant obtained phenomenologically for a dielectric.
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between the periodic structure parameters and effective media parameters, consider making the appropri-

ate small argument approximations to find:

 = j�! j�e = jkosx

r
1� jYshZTM

kosxDx
(8)

Zx ! Zxe =
ZTMq

1� jYshZTM
kosxDx

: (9)

The wavenumber �e defined in (8), like �, is only the x-component of the total vector wavenumber.8 Since

the equivalent sheet admittance is purely imaginary (i.e., Ysh = jBsh), the argument of the square root is

real; if the susceptance is capacitive, the wire medium appears to allow propagation of waves with �e (real)

such that �e > kosx (hence, the index of refraction for the x-component of wavenumber of the wire medium

is greater than unity). On the other hand, if the susceptance is inductive (0 > �jYsh > �kosxDx=ZTM), the

wire medium may allow propagation of waves with �e < kosx, or, if IfYshg is sufficiently negative (i.e.,

if �jYsh < �kosxDx=ZTM), then with purely real , indicating the wave is evanescent (in the x-direction).

Effective media theory is a reasonable substitute for periodic structure theory if one can ensure operation

of the material near the central axis of the band diagrams in the periodic structure; clearly, effective media

theory cannot reproduce the standard stop-band behavior that occurs near the band-edges of a periodic

structure.

To compute the equivalent effective permittivity of unbounded wire media, we assume a relative per-

mittivity tensor given by ��� = �xxx̂x̂ + �yyŷ + ŷ + �zz ẑẑ. Owing to the thinness of the wires, the induced

polarization across the cross section is negligible and thus we can take �xx = �yy = 1 (see Footnote 2). How-

ever, from the effective wavenumber (8) and effective transverse impedance (9), one can deduce (recall

8The y and z components of the vector wavenumber are the same as those components of the incident vector wave number.
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Ysh = jBsh)

�zz = 1 +
Bsh�o
koDx

(10)

reflecting the effective loading of the material by the wires. Here, if Bsh > 0 (i.e., capacitive loading), then

the equivalent relative permittivity �zz is greater than unity; if 0 > Bsh > �koDx=�o, then the equivalent

relative permittivity �zz is less than unity; and, if Bsh < �koDx=�o, then the equivalent relative permittivity

�zz is negative. Since Bsh is always real (for loss-less wires), the equivalent relative permittivity is also

always real. The idea of refractive indices less than unity was also observed by Brown in his investigation

of the rodded media [26] and by Bahl and Gupta [38]. It is interesting to note that the possibility of a

negative component of tensorial equivalent permittivity may lead to some of the features discussed by

Felsen and Marcuvitz [39, Sec. 7.1, 7.3] in connection with modeling a cold plasma under the influence of

a strong axial magnetic field. Furthermore, because Bsh is a function of angle of incidence, the equivalent

relative permittivity depends upon the angle of incidence and frequency (as well as upon the physical

parameters of the media). Consequently, wire media appears spatially dispersive, with the equivalent

medium parameters depending upon the vector wavenumber of the propagating wave.

In order to ascertain the characteristics of wave propagation in wire media, we suppose a plane wave

in free-space encounters a semi-infinite wire medium that occupies the region x > 0. Taking the z direction

to be the axes of all the parallel wires and the interface between free-space and the wire medium to be

in the y � z plane, then the incident wave can be decomposed into its TEz and TMz constituent waves.

The TEz portion does not appreciably interact with the wire medium, so the transmitted TEz portion is

E
(tran);TE(x) � E

(inc);TE(x). On the other hand, the TMz portion does interact with the medium, bringing

about a reflected wave in the vacuum region outside the wire medium. The reflection coefficient can be

calculated based on the transverse input impedance of the periodic structure as given by RTM = Zx�ZTM
Zx+ZTM

,

where ZTM = �o(1� s2z)=(sx) is the transverse wave impedance of a TMz wave outside the wire medium.
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6 Results and Discussion

Having now presented the underlying theory associated with our analysis of wire media, we now turn to

a few illustrative examples. For a larger set of examples, the reader is referred to [32]. In particular, we

show results for a specific case of wire media constructed from gangbuster surfaces with the parameters

listed in Figure 1. The order of the figures is intended to illustrate the general procedure outlined above,

beginning with the single elementary plane reflection coefficient and sheet admittance, continuing with the

medium parameters (wavenumber and transverse impedances), and finishing with the z-component of the

equivalent effective (tensorial) permittivity. Along the way we also show an interesting figure regarding

the direction of (phase) propagation within a wire medium half-space as a function of angle of incidence.

In our studies we noticed that the variation of these parameters was greater as a function of incidence angle

in the E-plane (x-z plane) than in the H-plane (x-y plane), so we have restricted the incident wave to lie

in the E-plane for the results presented here. Additionally, we only consider TMz waves in this section; as

mentioned earlier, the wire medium is essentially transparent to TEz waves.

6.1 Reflection coefficient of a single elementary plane

In Figure 3a the surface reflection coefficient is plotted as a function of increasing �o=� (i.e., increasing rela-

tive wavelength) for a normally incident TMz plane wave. At the smallest relative wavelength, �o=� = 0:25,

the wires in the array are just over two wavelengths long (i.e., L = 2:13�o) and, at the largest relative wave-

length, �o=� = 2, the wires in the array are just over a quarter wavelength long (i.e., L = 0:27�o). Grating

lobes are not present for normal incidence throughout this range of relative wavelengths. Three features of

this plot, which are typical for frequency selective surfaces, are especially striking. First, notice two points

on the curve where the reflection coefficient indicates the gangbuster surface is essentially completely re-

flecting (R = �1): one occurs for �o=� = 0:83 (i.e., L = 0:64�o), the other for �o=� = 0:34 (i.e., L = 1:57�o).

Second, notice the deep null in the reflection that occurs near �o=� = 0:39 (i.e., L = 1:37�o), between the

two points of complete reflection. This is a feature of devices exhibiting multiple resonances and has been
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(a) (b)

Figure 3: A plot of (a) the (compensated) reflection coefficient as a function of normalized wavelength
for normally incident TMz plane waves on the example gangbuster surface (see Figure 1); (b) the E-plane
specular plane wave reflection coefficient as a function of incidence angle for a single gangbuster surface
illuminated with incident wavelength �o = 0:41�. The parameters for this gangbuster surface are given in
Figure 1.

given the name modal interaction null in the literature [34]. On fixing the wavelength of the incident wave to

�o = 0:41� and varying the angle of incidence in the E-plane (set sx = cos �, with � the angle of incidence

to the elementary plane), we notice in Figure 3b somewhat similar features as in Figure 3a. Although the

surface does not become perfectly reflecting for any angle of incidence, the reflection coefficient is large for

angles near normal incidence (� near 0) and then vanishes near � = 57� and again for � = 90� (grazing

incidence).

6.1.1 Equivalent sheet reactance

Next we use the reflection data presented above to compute the equivalent surface admittance. Since

the surface is loss-less, the admittance is purely imaginary; instead of presenting Bsh, we have plotted

Xsh = �1=Bsh. At the two points where the surface is completely reflecting, the array is resonant, as can be

seen by interpreting Figure 4a for the equivalent sheet reactance of the surface. At these points, the sheet

reactance vanishes, indicating, as in lumped circuits, that the time-averaged stored electric and magnetic

energies are equal. In between the two resonances, at the modal interaction null, the sheet reactance is infi-
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(a) (b)

Figure 4: A plot of (a) the imaginary part of the sheet impedance Zsh = 1=Ysh = Rsh + jXsh as a function
of normalized wavelength for TMz normal incidence on the example gangbuster surface; (b) The sheet
reactance as a function of incidence angle (in the E-plane) for a single gangbuster surface illuminated with
incident wavelength �o = 0:41�. Since the sheet impedance is purely reactive, the real part of Zsh vanishes
(Rsh = 0), so only the imaginary part is shown. The parameters for the gangbuster surface are given in
Figure 1.

nite, implying there is no “equivalent average uniform surface current” and thus there can be no scattered

waves—all of the incident power is transmitted. Notice that for long wavelengths the sheet reactance is

negative (this corresponds to the well-known fact that dipoles excited below resonance have a capacitive

input impedance); for wavelengths between the first resonance and the modal interaction null, the sheet

reactance is positive (corresponding to the inductive input impedance of dipoles excited just above reso-

nance); for wavelengths between the modal interaction null and the second resonance, the sheet reactance

is again capacitive, due to the strong excitation of the second current mode. Finally, for those wavelengths

(shown in the figure) shorter than the wavelength of the second resonance, the sheet reactance is again

inductive. If this plot were extended to even shorter wavelengths, we would expect to see a similar trend

of alternation of zeros and poles in the sheet reactance. Notice, the resonances appear roughly near the odd

multiples of a half wavelength; since the array (for the examples of Figures 3a and 4a) is excited by a nor-

mally incident plane wave, odd current modes are not excited on the wires and so there are no resonances

near the even multiples of a half wavelength. Analogous to Figure 3b, the sheet reactance is plotted in Fig-

ure 4b as a function of angle of incidence in the E-plane for fixed wavelength �o = 0:41�. Notice that at the
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incidence angle for which the equivalent sheet reactance is infinite, the reflection coefficient (see Figure 3b)

vanishes. For large angles of incidence, the equivalent reactance is negative (i.e., the surface appears to

have a capacitive nature) and for smaller angles of incidence, the equivalent reactance is positive (i.e., the

surface appears inductive). One can expect then, that when these elementary planes are used to create a

medium, if the equivalent reactance is negative, then the medium might behave as if it were capacitively

loaded; on the other hand, if the equivalent reactance is positive, then the medium might behave as if it

were inductively loaded. This variation of Xsh as a function of angle of incidence is responsible, in part, for

giving rise to the spatially-dispersive behavior of wire media.

6.2 Wire media

Suppose the gangbuster surface discussed here is used as the elementary planes of a wire medium. The ele-

mentary planes, with interplanar spacing Dx, should be placed far enough apart that the evanescent waves

of neighboring planes do not significantly interact but close enough that the period is a small fraction of a

wavelength. It has been noted (see, for example [22, p. 773]) that, as a rule of thumb, if the neighboring

planes are spaced far enough apart that the first evanescent wave (in the plane-wave expansion) excited at

an elementary plane decays at least 20 dB (compared to the propagating wave) through a distance Dx, then

all of the evanescent waves can be discarded. For the values of �o, Dx, and D� used in these examples, we

find that the first evanescent wave has decayed by at least 28 dB for all ratios of �o=� examined. In the plots

shown below, the inter-planar spacings are chosen as Dx = �=15; as can be seen in Figure 5 the normalized

x-component of wavenumber, �=ko, of the periodic wave (recall from Footnote 6 that we are only consid-

ering the principal value, or dominant mode solution to (6)) is purely real for long relative wavelength

(roughly, �o=� ' 1:3), but as the wavelength decreases, the x-component of the wavenumber becomes

complex (0:8 / �o=� / 1:3), and is eventually purely imaginary (0:4 / �o=� / 0:8). As the wavelength

continues to decrease, one may speculate that this progression repeats (and also that the bandgap effects of

the periodic lattice may appear). Also, we have plotted the corresponding x-component of wavenumber as

determined by the effective media theory (Equation 8); here we see certain ranges for which the effective
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(a) (b)

Figure 5: A plot of (a) the normalized x-component of wavenumber, �=ko, of the periodic wave and its
effective-media counterpart �e=ko (see Footnote 6) and (b) the transverse impedance of both waves as func-
tions of relative wavelength for a wire medium conceptually constructed from layers of gangbuster surfaces
separated by an inter-planar distance of Dx = �=15 (see Footnote 9). Each gangbuster surface is identical—
the parameters are given in Figure 1. Physical remarks are given in the text.

media theory may apply (based on the similarity of results for the periodic and effective media theories),

and other ranges—especially where � is complex—where it may not. Clearly, if one allows Dx to decrease

(but not beyond the point where the interaction of the evanescent waves is significant), then the results of

the effective media theory and the periodic theory would be closer. Figure 5b shows the two transverse

impedances associated with these wavenumber.9 As can be seen, in the regions where the wavenumber are

purely imaginary, so too is the transverse impedance (as one would expect).10

We can understand the differences between the regions of real, imaginary, and complex � by noting the

value of equivalent sheet reactance in each region. In the first region, the sheet reactance (see Figure 4) is

large and negative—this implies the x-component of wavenumber will be purely real. In the second re-

gion, the sheet reactance is small and negative; here kosxDx = � indicates that the wave is experiencing

the bandgap effect of periodic media. As is well known in the analysis of wave propagation in periodic

structures, complex effective wavenumber may occur in these bandgap regions. In such regions, there is

9The transverse impedance for the wave associated with the wavenumber � is evaluated at the midpoint between the adjacent
elementary planes.

10Because of the granularity of the data, it appears that at certain points the impedance might be complex, however this is only a
plotting artifact. The transverse impedance is either purely real or purely imaginary.
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significant coupling between the traveling wave and the backward wave and so the energy of the forward

ware is mainly transferred into the backward wave. For this reason, the effective media approximations are

not valid in these regions and the full periodic media approach must be employed. Continuing, in the third

region, when the sheet reactance becomes positive, the x-component of wavenumber is now purely imag-

inary. In this region evanescence is not due to band-gap phenomena, but instead to the heavily inductive

loading of the medium. Both effective media theory and periodic structure theory are applicable for this

region.

Do these properties remind us of photonic bandgap structures? It must be noted that the evanescent

regions, where the normal component (i.e., x-component) of the wavenumber is purely imaginary, are not

due to the conventional bandgap features of periodic structures, since the elementary planes are closely

spaced (Dx = �=15). Rather it is mainly due to the properties of the currents induced on each elementary

plane and their resulting effect of shunt loading on the wave propagating in the medium. Since the spacing

between the elementary planes is smaller than that for typical photonic bandgap structures, more compact

wire media can be designed to provide some of the features of photonic band-gap structures.

Next, in Figure 6, the x-component of vector wavenumber is plotted (also for Dx = �=15). In these fig-

ures, when the incident angle is greater than approximately � = 52�, the curves corresponding to effective

media theory and periodic structure theory essentially overlap, while for smaller incident angles the two

theories seem to agree less. As can be seen in these figures for this example of wire media, the plane wave

cannot penetrate into the medium for angles of incidence in the E-plane between � = 0 and � = 52�. Notice

that for near normal incidence, plane waves cannot penetrate into the wire medium (the normal compo-

nent of wavenumber inside the wire medium is purely imaginary; i.e., the transmitted wave is evanescent)

and thus the incident power will be totally reflected at the interface. However, the wavenumber in the z

direction is real (as phase-matching requires for oblique incidence), so the wave is essentially an inhomo-

geneous plane wave—the phase progresses in the z direction, yet the amplitude decays in the x direction.

This phenomenon, although perhaps expected, is an interesting characteristic and is rather opposite to what

usually occurs in the case of conventional total internal reflection for which the wave is totally reflected for
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(a) (b)

Figure 6: A plot of (a) the normalized x-component of wavenumber, �=ko, of the periodic wave and its
effective media counterpart �e=ko (see Footnote 6 and (b) the transverse impedance of both waves for a wire
medium conceptually constructed from layers of gangbuster surfaces separated by an inter-planar distance
of Dx = �=15 (see Footnote 9). Each surface is identical—the parameters are given in Figure 1. The plot
shows both the real and imaginary parts as a function of incidence angle � in the E-plane (sy = 0; sx = cos �)
for an incident wave of wavelength �o = 0:41�. Here, � is the angle of incidence of an illuminating wave
to an interface between vacuum and a semi-infinite wire medium, with � = 0 corresponding to normal
incidence and � = 90� corresponding to grazing incidence. Physical remarks are given in the text.

angles of incidence between grazing incidence and some critical angle. This rather unusual property of wire

media, when combined with the usual feature of total internal reflection between two unequal dielectrics,

may find some useful application in the design of novel waveguiding structures.

To support our arguments for the direction of propagation inside the wire medium as a function of

the angle of illumination of the incident wave, we show in Figure 7a the interior angle of propagation,

�med, as a function of the angle of incidence, �. When 0 < � / 52�, there is no propagation into the

wire medium on account of purely imaginary � (and �e). As � increases to angles of incidence greater

than approximately 52�, the wave begins to propagate within the wire medium parallel to the interface

(�med = 90) and then peaks at some oblique angle �med � 51�. As � continues to increase, the wave inside

the wire medium returns to make a grazing angle to the interface. Therefore, plane wave propagation

within the wire medium for TMz E-plane incidence is restricted to an “angular window” about the z-axis

(grazing incidence). The component of the equivalent effective permittivity �zz (see Equation 10) is plotted

in Figure 7b for the wire medium considered here. This permittivity is the equivalent effective permittivity
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Figure 7: Plots of (a) the propagation angle, �med, in a wire medium as a function of the angle of incidence,
�, in the E-plane and (b) z-component of equivalent (see Footnote 7) effective relative permittivity, �zz, for
the wire medium considered here as a function of the angle of incidence in the E-plane for an incident wave
of wavelength �o = 0:41� and an inter-planar spacing of Dx = �=15. The parameters for the gangbuster
surface are given in Figure 1.

of the wire medium when it can be considered as a homogeneous medium (see Footnote 7). Notice, in the

region where wave propagation is permitted within the wire medium, �zz is positive; in the other region,

it is negative. Felsen and Marcuvitz [39, Sec. 7.1] considered the case of a uniaxial dielectric with �z (their

notation) negative and found that such media prohibits wave propagation in certain angular regions. A

similar mechanism may be responsible for wave behavior here.

Based on our theoretical analysis reported here and in [32], wire media possess interesting spatial dis-

persion characteristics, viz., with appropriate design parameters (number densities, orientation, and length

of the simple wire inclusions) these media, even though loss-less, may exhibit wave windowing, i.e., they

may prohibit wave propagation in certain directions while allowing propagation in other directions. Fur-

thermore, these media are frequency dependent and behave differently for different polarizations. In other

words, like frequency-selective surfaces and filters, wire media may effectively behave as angle-selective

volumes and filters, frequency-selective volumes and filters, and polarization-selective volumes and fil-

ters. Such properties may find interesting applications; for example, in beam-forming for small antennas

embedded in wire media or as radomes for selecting directions, polarizations, and frequencies of radiation.
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Even though the wires of wire media seem to be densely packed on each elementary plane, the volume

fraction is still very small (less than 0:15% for the example presented) since the radius of the wires is taken

to be small. Despite the small volume fraction of the metal inclusions, the resulting medium may have

significantly different electromagnetic properties than the host medium alone. If one compares two blocks

of dielectric—one with wire inclusions and the other without—substantial differences in the electromag-

netic properties will be noticed. This change in electromagnetic properties of the material may have very

useful applications for design of antennas, devices and components. Moreover, the mechanical structures

of such media are rather simple, so one may speculate that these media might be constructed with the use

of microfabrication and micromachining technologies.

In our analysis, we have only considered plane wave propagation in wire media. However, it is also

interesting to note how one might determine the electromagnetic fields arising due to sources present in

such media. In order to synthesize source-excited fields, one can express them in terms of a plane wave

spectrum (i.e., spatial Fourier transform), and then determine the interaction of each of these plane waves

with the wire medium. One will need to perform an inverse transform if results in the original domain are

desired. If, in this inverse transformation, one needs to deform the contour of integration into the complex

angular domain, since the plane wave spectra in this medium are not represented in terms of closed-form

expressions, the analytic continuation for the wavenumber would not be obviously tractable. However, if

one considers propagation of Gaussian waves (which includes elements of the plane wave spectrum in the

desired direction of propagation as well as those in other directions with appropriate weighting functions),

then most of the contribution to the inverse transformation integral would arise near the wavenumber cor-

responding to the direction of the Gaussian beam. This being the case, if one is satisfied with numerical

integration of the inverse transform, then one may avoid integration along the entire axis of the complex

angular domain and instead consider the major contributions to the integral that appear near the wavenum-

ber of the Gaussian wave. Of course one would need to know (albeit numerically) the plane wave spectra

for all wavenumber in order to evaluate such integrals completely. It must also be noted that the reciprocity

theorem can be applied as an alternative technique for finding the far-zone fields of a radiating dipole in
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such a medium (see, e.g., Section III, Ref. 40). Finally, the idea that an artificial material can be divided into

a number of elementary planes for analysis can also be used as a general synthesis principle. Then, any

of the well-known types of surfaces that display interesting behavior (e.g., frequency selective surfaces or

polarization selective surfaces) can be used as basic building blocks for artificial material.
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