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Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric

Abstract
Relaxor ferroelectrics have been a focus of intense attention due to their anomalous properties, and
understanding the structure and dynamics of relaxors has been one of the long-standing challenges in solid-
state physics. We investigate the local structure and dynamics in 75%PbMg1/3Nb2/3O3-25%PbTiO3 using
molecular dynamics simulations and the dynamic pair distribution function technique. We show that relaxor
transitions can be described by local order parameters. The relaxor phase is characterized by the presence of
highly anisotropic correlations between the local cation displacements that resemble the hydrogen bond
network in water. This contradicts the current model of polar nanoregion inside a nonpolar matrix. We
therefore suggest a new model of a homogeneous random network of anisotropically coupled dipoles.
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Relaxor ferroelectrics have been a focus of intense attention due to their anomalous properties, and

understanding the structure and dynamics of relaxors has been one of the long-standing challenges in solid-

state physics. We investigate the local structure and dynamics in 75%PbMg1=3Nb2=3O3-25%PbTiO3 using

molecular dynamics simulations and the dynamic pair distribution function technique.We show that relaxor

transitions can be described by local order parameters. The relaxor phase is characterized by the presence of

highly anisotropic correlations between the local cation displacements that resemble the hydrogen bond

network in water. This contradicts the current model of polar nanoregion inside a nonpolar matrix. We

therefore suggest a new model of a homogeneous random network of anisotropically coupled dipoles.

DOI: 10.1103/PhysRevLett.110.147602 PACS numbers: 77.80.Jk

Recently, relaxor ferroelectrics have become important in
technological applications due to a strong piezoelectric
effect, a high permittivity over a broad temperature range,
and unique dielectric response with strong frequency dis-
persion, resulting in a revival of interest in this long-standing
fundamental scientific problem [1–6]. The inverse dielectric
response starts deviating from the Curie-Weiss law at the
Burns temperature (Tb), significantly above the Curie tem-
perature (Tc). For several decades, these effects have been
ascribed to the appearance of polar nanoregions (PNRs),
which form spherical or elliptic clusters in a nonpolar
matrix at Tb, and increase in size due to interactions of the
PNR on cooling until the Vogel-Fulcher freezing tempera-
ture (Tf). However, this model provides only a qualitative

description of the changes in the structure through relaxor
transitions. Furthermore, recent studies usingRaman,NMR,
neutron-scattering pair distribution functions (PDFs), and
diffuse scattering techniques [7–11] have demonstrated that
static local polarization on at least a nanosecond time scale
appears only at a temperature T� between Tc and Tf.

In this work, we use molecular dynamics (MD) simula-
tions and analysis of PDFs for 75%PbðMg1=3Nb2=3ÞO3-

25%PbTiO3 (PMN-PT) to show that relaxor transitions
are characterized by well-defined and observable local
order parameters and are due to the onset of anisotropic
nanoscale correlations of the in-phase cation motions.
These correlations do not form clusters and therefore can-
not be explained by the current PNR model. Rather, the
couplings between displacements are analogous to the
network of hydrogen bonds in water. Both in water and
in relaxors, the presence of such a network in a polar
environment leads to unique physical properties. We there-
fore propose that the PNR model should be replaced with a
model of a hydrogen-bond-like network of dipoles gener-
ated by local anisotropically coupled cation displacements.

We study an 8640-atom supercell of PMN-PT with
bond-valence MD simulations [12,13] in this work.

Application of the dynamic pair distribution function
(DPDF) method [10] enables identification of the size
and directions of displacement correlations and the
atomic-scale local order parameters for relaxor transitions
(computational details of MD and methodology of DPDF
are described in the Supplemental Material [14]).
We first compare our results with the experimental

0.75PMN-0.25PT phase transition temperatures and with
integrated experimental DPDF data of Dmowski et al. [10]
for PMN [Figs. 1(a) and 1(b)]. We integrate the total DPDF

from 10 to 20 meV and from 0 to 5 meV for 2< r < 5 �A
for our 0.75PMN-0.25PT material [Figs. 1(c) and 1(d)]. For
the higher frequency interval [Fig. 1(c)], a short Pb-O peak
appears at� 550 K, same as the experimental Tb ¼ 550 K
of 0.75PMN-0.25PT [15]. This can be clearly seen in a 1D
plot of the integrated high-frequency DPDF intensity at

r ¼ 2:38 �A versus temperature [Fig. 1(e)], where a more
rapid rise of DPDF intensity with lower T sets in at 550 K.
Though the color change in Fig. 1(d) is subtle, the 1D plot

for the integrated lower-frequency DPDF intensity at r ¼
3:3 �A [Fig. 1(f)] shows two changes of slope at 550 and at
425 K. The transition at 425 K is at a temperature that is
intermediate between the experimental Tb ¼ 550 K and
Tf ¼ 380 K of 0.75PMN-0.25PT [16]. The integrated

lower-frequency DPDF intensity for the short Pb-O dis-
tance [Fig. 1(d)] shows a split of the Pb-O peak away from
the main Pb-O and O-O distances peak at 2.83 Å. Because
the splitting decreases DPDF intensity at distances
between the two peaks, we examine the integrated lower-

frequency DPDF intensity for r ¼ 2:58 �A [Fig. 1(g)]. This
shows two changes of slope at 525 and at 350 K, with the
rapid intensity decrease and strong peak splitting appearing
at temperatures slightly below the experimental Tf ¼
380 K of 0.75PMN-0.25PT. Similar features are present
in the integrated DPDF intensities for PMN obtained by
Dmowski et al. [Figs. 1(a) and 1(b)]. Here, in integrated
DPDF in the higher frequency interval [Fig. 1(a)], the 2.4 Å

PRL 110, 147602 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

0031-9007=13=110(14)=147602(5) 147602-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.110.147602


peak appears at� 600 K, close to Tb ¼ 630 K of PMN. In

the lower frequency [Fig. 1(b)], at r ¼ 3:3 �A there is a
strong intensity enhancement at � 300 K, between PMN
Tb ¼ 630 K and Tf ¼ 200 K [10], and a faint increase in

intensity above 300 K. The 2.4 Å peak visibly splits off
from the main 2.8 Å peak at � 170 K, slightly below
Tf ¼ 200 K. The correspondence between the transition

temperatures found in our DPDF data and the experimental
0.75PMN-0.25PT values as well as the good agreement
between the main features of the experimental PMN and
computational 0.75PMN-0.25PT DPDFs show that our
simulations are a good basis for investigating the structure
and dynamics.

Cation-oxygen instantaneous and time-averaged PDFs
(Fig. 2) reveal the changes in the dynamics and a sequence
of transitions on cooling. The peak of the instantaneous
Pb-O partial PDF gðr; t ¼ 0Þ presented in Fig. 2(a) corre-
sponds to the Pb-O12 cage and is asymmetric for all
temperatures with the positively skewed distributions of
gðr; t ¼ 0Þ above T ¼ 550 K. This means that Pb atoms
shift away from the center of their O12 cages even in the
high-temperature paraelectric phase, in agreement with
previous results [12,17,18]. Unlike gðr; t ¼ 0Þ, the time-
averaged Pb-O partial PDF Gðr;! ¼ 0Þ in Figure 2(b)
shows almost symmetric Pb-O peaks centered at 2.81 Å
for T > 475 K, indicating a small and temperature inde-
pendent time-averaged Pb atom off centering. The
strong local random fields due to the B-cation arrange-
ment leads to the small time-averaged local cation
displacements [13,17].

To clearly show the changes of local structure with
temperature, we use the short Pb-O peak positions for
gðr; t ¼ 0Þ and Gðr;! ¼ 0Þ to calculate the magnitude of
the instantaneous and the time-averaged static local Pb
displacements (Dinst

Pb and Dstatic
Pb ) shown in Fig. 2(c).

These are obtained by subtracting the peak position from
2.83 Å Pb-O distance of the high symmetry Pb-O12 cage at
the 0.75PMN-0.25PT lattice constants. We also show the

dynamic component of the Pb displacement Ddyn
Pb defined

as the difference between Dinst
Pb and Dstatic

Pb .

Examination of the data in Fig. 2(c) shows that phase
transitions occur at Tb ¼ 550 K, T� ¼ 450 K, and Tf ¼
375 K; these coincide with experimental 0.75PMN-0.25PT
data [15,16]. For T > Tb,D

inst
Pb andDstatic

Pb are both small and

change little with temperature. For 450 K< T < 550 K,
Dinst

Pb increases rapidly as T is lowered, while Dstatic
Pb is the

same as for T > 550 K. The increasing Ddyn
Pb indicates the

onset of the dynamic relaxor phase. For 400 K< T <

450 K, Dstatic
Pb increase slowly and Ddyn

Pb starts to plateau.

Finally, at T ¼ 375 K, another transition takes place with

Dstatic
Pb increasing rapidly andDdyn

Pb decreasing and both then

saturating at their low temperature values, as the system
undergoes a transition into the frozen phase.
The transition at T� is characterized by the change in

Dstatic
Pb ; we therefore assign the difference between the

calculated Dstatic
Pb and the Dstatic

Pb of the paraelectric phase

as the order parameter for the low-temperature phases at
T < 475 K. The Dstatic

Pb is related to the Edwards-Anderson

spin glass order parameter q, defined as q ¼ �ihSii2 [19],
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FIG. 1 (color online). The frequency averaged DPDF. (a),(b) Contour plot of experimental Gðr;!Þ for PMN integrated from 10 to
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which measures the average magnitude of the static local
polarization in the material and has been used to model
relaxor behavior [9,17,20]. Using NMR experiments on
PMN and an analytical random-bond random-field spin
model, Blinc et al. have previously shown that q rises
above zero at a temperature between Tb and Tf [9]. This

is similar to theDstatic
Pb rising above the paraelectric value at

T� ¼ 450 K. Because q and Dstatic
Pb do not change at Tb,

the freezing of the local displacements that has been the
focus of previous investigations is not the relevant process
for the onset of relaxor behavior at Tb. Rather, the
transition at Tb is characterized by the increase in the
local scalar magnitude of the instantaneous cation dis-
placements Dinst

Pb [Fig. 2(c)]. We therefore assign the dif-

ference between the calculated Dinst
Pb and the Dinst

Pb of the

paraelectric phase as the order parameter for the dynamic
relaxor phase found for � 475 K< T < 550 K.

Inspections of Nb-O and Ti-O partial PDFs [Fig. 2(d)]
show trends similar to those observed for Pb displacements
(Mg cation displacement magnitudes are close to zero for
all temperatures). The main difference between the Pb and
B-cation displacements is the Ddyn peaks at a higher tem-
perature for the B cations since the cation-oxygen bonding
is more distributed and flexible in the PbO12 cuboctahe-
dron than in the BO6 octahedron.

The fact that a local quantity such as Pb displacement
magnitude shows order parameter behavior implies that
local interactions are at the root of relaxor behavior.
Enhanced local correlation between the Pb displacements
is the physical origin of the increase inDinst

Pb for T < 550 K.
Pb atom displacements in neighboring unit cells are
coupled, so that correlated displacements in the same di-
rection (even if time averaged to zero) allow a greater
magnitude of individual Pb ion off centering. We now

examine the cation-cation DPDFs to reveal the changes in
displacement-displacement correlations that give rise to the
structural and dynamical properties of the relaxor phase.
We compare Pb-Pb Gðr;!Þ along the (100), (110), and

(111) high symmetry directions. In Fig. 3, we show only
the (100) and (110) directions because the intensities
along (111) directions are only slightly weaker than the
intensities along (110) directions. The Gðr; !Þ reveal the
spatial extent and the frequency spectrum of the correlated
cation motion. We find that the correlations between Pb
displacements are enhanced between Tf and Tb and exhibit

a strong direction dependence. Starting at Tb, the Gðr;!Þ
data along the (100) direction show a strong increase in
intensity at low!, with a shift of the low-frequency peak to
below 0.1 meVas T approaches Tf. The intensity weakens

and the peak position changes as r increases from 4 to
20 Å, but the appearance of low-! peaks at Tb and their
shift to lower frequencies with lower T is present for all
DPDF along the (100) direction. By contrast, although the
(110) and (111) directions also show peaks in the in-phase
vibration intensity, they decay dramatically with increasing
distance. For example, for all temperatures, we find essen-
tially zero DPDF intensity for the (330) Pb-Pb peaks,
which indicates a lack of correlated in-phase oscillations.
This shows that below Tb, the coupling between the local
dipoles created by Pb displacements is anisotropic, with
strong interactions only between the dipoles located along
Cartesian directions. Anisotropic correlations between cat-
ion displacements were also very recently reported by
Akbarzadeh et al. in BaðZr;TiÞO3 relaxor [20]. The direc-
tion dependences of the B-cation-B-cation correlations are
more substantial and anisotropically strong coupling, con-
fined to the B-cation sublattice, along the Cartesian direc-
tions is present even in the high temperature paraelectric
phase of PMN-PT (see the Supplemental Material [14]).
This is in disagreement with the current model of PNR
inside a nonpolar matrix, where correlations should extend
along all directions as the temperature is lowered below Tb.
The stronger correlation along the (100) direction indi-

cates that the Pb displacement coupling is not solely due to
the dipole-dipole interactions. The anisotropy is induced
by the through-oxygen interactions between nearest-
neighbor cations that share one (for the B cations) or
more (for Pb) O atoms along a Cartesian direction in the
ABO3 structure. These interactions are stronger for the B
cations, due to the much higher average bond valence of
each B-cation-oxygen bond (4=6) compared to the valence
of the average Pb-O bond (1=6). The sharing brings strong
B-cation displacement coupling even in the paraelectric
phase. On the other hand, for Pb atoms, the coupling along
(100) is weaker and is therefore absent above Tb.
Despite the presence of strong B-cation–B-cation dis-

placement correlations, at T > Tb PMN-PT still exhibits
normal paraelectric behavior. We ascribe this to the fact
that the strongly correlated B-cation displacement
chains are one dimensional and therefore cannot undergo
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Pb-O partial PDFs for the first Pb-O peak. The magnitude of the
instantaneous cation displacement and its static and dynamic
components versus T are shown for Pb in (c) and for Nb and Ti
in (d). See text for interpretation of the data in the figure.
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a phase transition into a more ordered phase. In addition
to the through-oxygen interactions, the chains of the
B-cation-B-cation correlations enhance Pb atom correla-
tions along the Cartesian directions. At Tb, as the Pb atom
displacements next to the B-cation chains become corre-
lated, the correlated region becomes three-dimensional,
enabling a transition from a paraelectric phase to a locally
correlated dynamic relaxor phase.

Our results show that a network of the correlations forms
a tubelike shape with a radius of around 7.5 Å, which is the

same as � 7 �A estimated for the size of PNR by Gehring
et al. based on the ‘‘waterfall effect’’ in 0.98PZN-0.02PT
[4]. The change of the correlations in the low-! region
from a sharp peak at T > Tb to a broadband absorption for
T < Tb is in agreement with the waterfall effect observed
by neutron-scattering experiments in relaxor materials.
Thus, the waterfall effect stems from the correlated in-
phase vibrations of cation pairs coupled by short-range
through-oxygen interactions.

The in-phase vibrational correlations for low ! between
a B-cation and its nearest cation show that high intensity is

favored by Nb and disfavored by Mg. Especially, the Pb-
Mg Gðr; !Þ only shows weaker changes with temperature
(see Supplemental Material [14]), in contrast to all other
atom pairs (including Mg-Mg). In earlier works, Mg atoms
and Nb atoms surrounded by Mg atoms (NbMM) exhibited
fast Arrhenius dynamics implies the high-temperature
paraelectric phase even for T < Tf [13,21,22]. The lack

of Pb-Mg coupling causes the paraelectriclike dynamics of
the Mg and NbMM atoms.
The current understanding of the relaxor transitions is

that at Tb small and dynamic spherical PNR form within a
paraelectric matrix; as T is lowered, the PNR grow, show
smaller polarization fluctuations, and start to freeze in at T�
[11,23,24]. At Tf, a percolation transition takes place as all

of the PNR coalesce into a single cluster resulting in the
freezing of the local polarizations [25]. The static relaxor
state is described as inhomogeneous and consisting of
static PNR in a statically nonpolar matrix, with volume
fraction of the PNR of about 0.3 [26].
Our results cast doubts on the conventional picture of

relaxor structure and dynamics. Recent simulations have

1 2 3 4 5 6 8 10 20 30 40
100

200
300

400
500

600
700

Frequency (meV)

Te
m

pe
ra

tu
re

 (K
)

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

-0.00010

0.00000

0.00010

0.00020

0.00030

0.00040

In
te

ns
ity

Paraelectric
Relaxor
Frozen

In
te

ns
ity

(330)
1 2 3 4 5 6 8 10 20 30 40

100
200

300
400

500
600

700

Frequency (meV)

Te
m

pe
ra

tu
re

 (K
)

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

-0.00010

0.00000

0.00010

0.00020

0.00030

0.00040

In
te

ns
ity

Paraelectric
Relaxor
Frozen

In
te

ns
ity

(110)

1 2 3 4 5 6 8 10 20 30 40
100

200
300

400
500

600
700

Frequency (meV) Te
m

pe
ra

tu
re

 (K
)

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

-0.00010

0.00000

0.00010

0.00020

0.00030

0.00040

In
te

ns
ity

Paraelectric
Relaxor
Frozen

In
te

ns
ity

(500)
1 2 3 4 5 6 8 10 20 30 40

100
200

300
400

500
600

700

Frequency (meV)

Te
m

pe
ra

tu
re

 (K
)

-0.00005

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

-0.00010

0.00000

0.00010

0.00020

0.00030

0.00040

In
te

ns
ity

Paraelectric
Relaxor
Frozen

In
te

ns
ity

(100)

(c)

(b)

(d)

(a)
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shown that structural and dielectric properties of PMN-PT
and PMN can be reproduced without PNR [13,17,27].
Relaxor behavior in Pb-based perovskites was also shown
to be controlled by local structure parameters [28]. In this
work, we find that the average magnitude of local cation
displacements is quite large at T � Tf ¼ 375 K, with DPb

magnitude of �0:40 �A, close to that found in the proto-
typical normal ferroelectric PbTiO3. In ferroelectric per-
ovskites, uncorrelated displacements incur a large energy
cost due to oxygen atom underbonding and overbonding,
increased A-B cation repulsion, and unfavorable dipole-
dipole interactions [29,30]. Therefore, a large magnitude
of local polarization requires strong correlated displace-
ments, as found in our simulations of PMN-PT; this is
inconsistent with the idea that most of the material exists
in a nonpolar matrix state. Additionally, we find that cor-
relations between the cation displacements are highly an-
isotropic and are weak for (110) and (111) directions even
at temperatures close to Tf; this is inconsistent with the

picture of the strongly polarized spherical nanoclusters.
We therefore suggest an alternate model for relaxor

structure and dynamics. The transition at Tb is character-
ized by a shift from dipole-dipole interactions to the an-
isotropic short-range, through-oxygen coupling along the
Cartesian directions. At high T, the thermal energy is high
enough to disrupt the through-oxygen coupling, so that
dipole-dipole interactions play a dominant role in deter-
mining the dynamics of the system. At Tb, the energy
lowering due to correlated displacements and the decrease
in oxygen atom overbonding is larger than the entropy cost
of correlated displacements. Therefore, the structure
changes to a network of strong, through-oxygen coupled
motions along the Cartesian axes. Such a transition is
similar to the changes that take place when superheated
water is cooled down to room temperature, where a stan-
dard polar liquid local structure dominated by dipole-dipole
interactions is transformed into a directional, highly aniso-
tropic random H-bond network with unique structural and
dynamical properties. Extending an analogy suggested by
Pirc and Blinc relating the ferroelectric phase to solids and
the paraelectric phase to liquids [24], we suggest that
relaxors are analogous to hydrogen-bonded water. A cou-
pling network mediated by O atoms plays the role of the H
bonds in water and preferential bonding directions lead to
dynamic clusters of correlated displacements of various
sizes. The fact that water exhibits Vogel-Fulcher dielectric
response including some extremely slow relaxation pro-
cesses due to the collective H-bond network behavior fur-
ther supports this analogy [31].
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